Science.gov

Sample records for insects

  1. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis. PMID:27545732

  2. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  3. Incredible Insects.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes an Insect an Insect?," including…

  4. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  5. Insects: A nutritional alternative

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  6. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  7. Insect abatement system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Burnell, Timothy Brydon (Inventor); Wengrovius, Jeffrey Hayward (Inventor)

    1997-01-01

    An insect abatement system prevents adhesion of insect debris to surfaces which must be kept substantially free of insect debris. An article is coated with an insect abatement coating comprising polyorganosiloxane with a Shore A hardness of less than 50 and a tensile strength of less than 4 MPa. A method for preventing the adhesion of insect debris to surfaces includes the step of applying an insect abatement coating to a surface which must be kept substantially free of insect debris.

  8. Allergies to Insect Venom

    MedlinePlus

    ... The smell of food attracts these insects.  Use insect repellents and keep insecticide available. Treatment tips:  Venom immunotherapy (allergy shots to insect venom(s) is highly effective in preventing subsequent sting ...

  9. Insect transgenesis and the sterile insect technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of broadly applicable insect transgenesis systems will enable the analyses of gene function in diverse insect species. This will greatly increase our understanding of diverse aspects of biology so far not functionally addressable. Moreover, insect transgenesis will provide novel st...

  10. What Makes an Insect an Insect?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides background information on characteristics common to all insects, activities, and student materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes) which describe: how insects are classified; how they are different from other animals; and the main insect characteristics. Activities include recommended age levels,…

  11. Book Review: Insect Virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  12. Insect-ual Pursuits.

    ERIC Educational Resources Information Center

    Mallow, David

    1991-01-01

    Explains how insects can be used to stimulate student writing. Describes how students can create their own systems to classify and differentiate insects. Discusses insect morphology and includes three detailed diagrams. The author provides an extension activity where students hypothesize about the niche of an insect based on its anatomy. (PR)

  13. Insect Bites and Stings

    MedlinePlus

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  14. Insects: An Interdisciplinary Unit

    ERIC Educational Resources Information Center

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  15. Insects and Scorpions

    MedlinePlus

    ... gov . Workplace Safety and Health Topics Insects & Scorpions Bees, Wasps, and Hornets Fire Ants Scorpions Additional Resources ... to outdoor workers. Stinging or biting insects include bees, wasps, hornets, and fire ants. The health effects ...

  16. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  17. Ecophysiology and insect herbivory

    SciTech Connect

    Clancy, K.M.; Wagner, M.R.; Reich, P.B.

    1995-07-01

    The relationship of insect herbivory to conifer physiology is examined. Aspects of nutrient assimilation, nutrient distribution, water stress, and climatic change are correlated to defoliation by insects. Other factors examined include plant age, density, structure, soils, and plant genotype.

  18. Exploring Sound with Insects

    ERIC Educational Resources Information Center

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  19. Insects and Spiders.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of nine Audubon Nature Bulletins, providing teachers and students with informational reading on insects and spiders. The bulletins have these titles: What Good Are Insects, How Insects Benefit Man, Life of the Honey Bee, Ants and Their Fascinating Ways, Mosquitoes and Other Flies, Caterpillars, Spiders and Silk,…

  20. Acoustic Monitoring of Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers, grain elevator managers, and food processors often sample grain for insect damaged kernels and numbers of live adult insects but these easily obtained measurements of insect levels do not provide reliable estimates of the typically much larger populations of internally feeding immature inse...

  1. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  2. Interdisciplinary Outdoor Education, Insects.

    ERIC Educational Resources Information Center

    Orsborn, Edward E.

    This manual is a teacher's resource and guide book describing activities for elementary students involving the collecting, killing, preserving, and identification of insects. Most activities relate to collecting and identifying, but activities involving terrariums and hatcheries, finding hidden insects, and insect trapping are also described.…

  3. Insects and Others.

    ERIC Educational Resources Information Center

    Mills, Richard

    1984-01-01

    Several ideas for observing insects and soil animals in the classroom are provided. Also provided are: (1) procedures for making insect cages with milk cartons; (2) suggestions for collecting and feeding insects; and (3) techniques for collecting and identifying soil animals. (BC)

  4. InsectBase: a resource for insect genomes and transcriptomes.

    PubMed

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  5. InsectBase: a resource for insect genomes and transcriptomes

    PubMed Central

    Yin, Chuanlin; Shen, Gengyu; Guo, Dianhao; Wang, Shuping; Ma, Xingzhou; Xiao, Huamei; Liu, Jinding; Zhang, Zan; Liu, Ying; Zhang, Yiqun; Yu, Kaixiang; Huang, Shuiqing; Li, Fei

    2016-01-01

    The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96 925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22 536 pathways of 78 insects, 678 881 untranslated regions (UTR) of 84 insects and 160 905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes. PMID:26578584

  6. Insect Barcode Information System

    PubMed Central

    Pratheepa, Maria; Jalali, Sushil Kumar; Arokiaraj, Robinson Silvester; Venkatesan, Thiruvengadam; Nagesh, Mandadi; Panda, Madhusmita; Pattar, Sharath

    2014-01-01

    Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client– server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn. Availability http://www.nabg-nbaii.res.in/barcode PMID:24616562

  7. Insects: Bugged Out!

    ERIC Educational Resources Information Center

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  8. Insects and Bugs

    ERIC Educational Resources Information Center

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  9. Sterile Insect Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter discusses the history of the development of quality control tchnology, the principles and philosophy of assessing insect quality, and the relative importance of the various parameters used to assess insect quality in the context of mass-rearing for the SIT. Quality control is most devel...

  10. Corazonin in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corazonin is a peptidergic neurohormone of insects which is expressed in neurosecretory neurons of the pars lateralis of the protocerebrum and transported via nervi corpus cardiaci in the storage lobes of the corpora cardiaca. This peptide occurs with a single isofomr in all insects studied so far,...

  11. Effects on Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of controlled and modified atmospheres on insects is reviewed and summarized in this chapter. Traditionally, controlled and modified atmospheres are used to store and preserve fresh fruits and vegetables. The effects on insects and the potential of these treatments are secondary to the...

  12. Sugarcane insect update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect are an important group of pests affecting sugarcane production. Agricultural consultants play an important role is assisting sugarcane farmers to choose the most appropriated means of managing damaging infestations of insects in their crop. In this presentation, information will be presented ...

  13. Principal Areas of Insect Research

    ERIC Educational Resources Information Center

    Williams, Carroll M.

    1973-01-01

    Research for insect control has been quite complex. However, recent knowledge of using insect hormones against them has opened new vistas for producing insecticides which may be harmless to human population. Current areas of insect research are outlined. (PS)

  14. Mycetocyte symbiosis in insects.

    PubMed

    Douglas, A E

    1989-11-01

    1. Non-pathogenic microorganisms, known as mycetocyte symbionts, are located in specialized 'mycetocyte' cells of many insects that feed on nutritionally unbalanced or poor diets. The insects include cockroaches, Cimicidae and Lygaeidae (Heteroptera), the Homoptera, Anoplura, the Diptera Pupiparia, some formicine ants and many beetles. 2. Most mycetocyte symbionts are prokaryotes and a great diversity of forms has been described. None has been cultured in vitro and their taxonomic position is obscure. Yeasts have been reported in Cerambycidae and Anobiidae (Coleoptera) and a few planthoppers. They are culturable and those in anobiids have been assigned to the genus Torulopsis. 3. The mycetocyte cells may be associated with the gut, lie free in the abdominal haemocoel or be embedded in the fat body of the insect. The mycetocytes are large polyploid cells which rarely divide and the symbionts are restricted to their cytoplasm. 4. The mycetocyte symbionts are transmitted maternally from one insect generation to the next. In many beetles (Anobiidae, Cerambycidae, Chrysomelidae and cleonine Curculionidae), the microoganisms are smeared onto the eggs and consumed by the hatching larvae. In other insects, they are transferred from mycetocytes to oocytes in the ovary, a process known as transovarial transmission. The details of transmission in the different insect groups vary with the age of the mother (adult, larva or embryo) at which symbiont transfer to the ovary is initiated; whether isolated symbionts or intact mycetocytes are transferred; and the site of entry of symbionts to the egg (anterior, posterior or apolar). 5. Within an individual insect, the biomass of symbionts varies in a regular fashion with age, weight and sex of the insect. Suppression of symbiont growth rate and lysis of 'excess' microorganisms may contribute to the regulation of symbionts (including freshly-isolated preparations of unculturable forms) are used to investigate interactions between the

  15. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  16. Insects and climate change

    SciTech Connect

    Elias, S.A. )

    1991-09-01

    In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions (i.e., insect-host plant relationships, host-parasite relationships, and other interactions that tie a particular insect species' distribution to that of another organism), only predators and scavengers are discussed. These insects respond most rapidly to environmental changes, because for the most part they are not tied to any particular type of vegetation.

  17. Insect hemolymph clotting.

    PubMed

    Dushay, Mitchell S

    2009-08-01

    The clot's appearance in different large-bodied insects has been described, but until recently, little was known about any insect clot's molecular makeup, and few experiments could directly test its function. Techniques have been developed in Drosophila (fruit fly) larvae to identify clotting factors that can then be tested for effects on hemostasis, healing, and immunity. This has revealed unanticipated complexity in the hemostatic mechanisms in these larvae. While the clot's molecular structure is not yet fully understood, progress is being made, and the loss of clotting factors has been shown to cause subtle immune defects. The few similarities between coagulation in different insect species and life stages, and the current state of knowledge about coagulation in insects are discussed. PMID:19418022

  18. Feeding the insect industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reports the use of insect colloidal artificial diets suitable for the rearing of economically important arthropods, such as Lygus lineolaris, Lygus hesperus, Coleomegilla maculata, and Phytoseiulus persimilis The different diets contain key nutrients such as proteins, carbohydrates, vit...

  19. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  20. Evolution of the Insects

    NASA Astrophysics Data System (ADS)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  1. Exploring Insect Vision

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2005-01-01

    A fly is buzzing around in the kitchen. You sneak up on it with a flyswatter, but just as you get close to it, it flies away. What makes flies and other insects so good at escaping from danger? The fact that insects have eyesight that can easily detect moving objects is one of the things that help them survive. In this month's Science Shorts,…

  2. Insect immunology and hematopoiesis.

    PubMed

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. PMID:26695127

  3. Insect--plant adaptations.

    PubMed

    Southwood, T R

    1984-01-01

    The adaptation of insects to plants probably commenced in the early Permian period, though most current associations will be more recent. A major burst of adaptation must have followed the rise of the Angiosperms in the Cretaceous period, though some particular associations are as recent as this century. Living plants form a large proportion of the potential food in most habitats, though insects have had to overcome certain general hurdles to live and feed on them. Insects affect the reproduction and survival of plants, and thus the diversity of plant secondary chemicals may have evolved as a response. Where an insect species has a significant effect on a plant species that is its only host, coevolution may be envisaged. A spectacular example is provided by Heliconius butterflies and passion flower vines, studied by L.E. Gilbert and others. But such cases may be likened to 'vortices in the evolutionary stream': most plant species are influenced by a range of phytophagous insects so that selection will be for general defences--a situation termed diffuse coevolution. Evidence is presented on recent host-plant shifts to illustrate both the restrictions and the flexibility in current insect-plant associations. PMID:6559112

  4. Enterococci in Insects

    PubMed Central

    Martin, Jonathan D.; Mundt, J. Orvin

    1972-01-01

    Enterococci were obtained from 213 of 403 insects cultured during a 14-month period, in numbers from 103 to 3 × 107/g of insect. Insects were taken only from nonurban, wild, and cultivated fields and woods. In species of insects carrying them, enterococci were not always present in every individual cultured, and often more than one species of enterococcus occurred within a species. Enterococci were obtained from certain insects taken in the field during the dormant season, suggesting their role as overwintering agents. They were generally present in species feeding on nectar, succulent plant parts, and on and ir forest litter, but not from insects feeding on less succulent leaves and stems. Streptococcus faecalis was recovered from 32%, Streptococcus faecium from 22.4%, and Streptococcus faecium var. casseliflavus from 43.5% of members of the 37 taxa of insects. S. faecalis and S. faecium var. casseliflavus exhibit a high percent of conformity to the properties published for them. The heterogeneity in properties of S. faecium is similar to that found for the species taken from plants. Many fail to grow in broth at 45 C or in broth containing 6.5% NaCl; 50% of the cultures ferment both melezitose and melibiose, and a few ferment neither sugar. The remainder ferment melibiose only. Failure to reduce methylene blue in milk by S. faecalis and S. faecium is correlated with the inability to ferment lactose. More than 93% of the cultures of S. faecalis digest casein in milk from the top downward, following the production of a soft, flowing curd. Because this property is not characteristic of S. faecalis taken from humans, the reaction in litmus milk is suggested as a means of differentiation between cultures of remote and innocent origin in nature and recent, human pollution. PMID:4628796

  5. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  6. Behavioral Immunity in Insects

    PubMed Central

    de Roode, Jacobus C.; Lefèvre, Thierry

    2012-01-01

    Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied. PMID:26466629

  7. Insect Repellents: Protect Your Child from Insect Bites

    MedlinePlus

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Article Body Mosquitoes , ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is having ...

  8. Cognition in insects

    PubMed Central

    Webb, Barbara

    2012-01-01

    A traditional view of cognition is that it involves an internal process that represents, tracks or predicts an external process. This is not a general characteristic of all complex neural processing or feedback control, but rather implies specific forms of processing giving rise to specific behavioural capabilities. In this paper, I will review the evidence for such capabilities in insect navigation and learning. Do insects know where they are, or do they only know what to do? Do they learn what stimuli mean, or do they only learn how to behave? PMID:22927570

  9. Protecting Yourself from Stinging Insects

    MedlinePlus

    ... at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While most ... by several stinging insects, run to get away. (Bees release a chemical when they sting, which attracts ...

  10. Colour constancy in insects.

    PubMed

    Chittka, Lars; Faruq, Samia; Skorupski, Peter; Werner, Annette

    2014-06-01

    Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete 'discounting' of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects. PMID:24647930

  11. Insects. Thematic Unit.

    ERIC Educational Resources Information Center

    Gosnell, Kathee

    This book is a captivating whole-language thematic unit about the study of insects, relating it to our understanding of the past and our hopes for using our knowledge in the present to balance the ecosystem in the future. It contains a wide variety of lesson ideas and reproducible pages designed for use with intermediate students. At its core,…

  12. SOCIAL INSECT PHEROMONES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Social insects include the social Hymenoptera (Formicidae, ants; Apidae, bees; Vespidae, wasps) and Isoptera (Termitidae, termites). Social interactions are required for effective food retrieval, brood and queen care, regulation of caste (sexuals/workers), recognition and exclusion of non-nestmates,...

  13. People and Insects.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on how insects affect human lives, both positively and negatively, and on integrated pest management strategies; (2) student activities; and (3) materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes). Each activity includes an objective, recommended age level(s), subject area(s),…

  14. Insect mass production technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects provide a very promising alternative for the future production of animal protein. Their nutritional value in conjunction with their food conversion efficiency and low water requirements, make them a more sustainable choice for the production of food and animal origin. However, to realize the...

  15. Recycled Insect Models

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Meyer, Mary Ann

    2007-01-01

    This article presents an engaging activity in which high school students use a dichotomous key to guide the creation and classification of model insects from recycled plastic lids and containers. Besides teaching the use of a dichotomous key and the effect of evolutionary descent upon groupings of organisms, this activity focuses on an…

  16. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  17. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  18. Investigation--Insects!

    ERIC Educational Resources Information Center

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  19. Fluorescence in insects

    NASA Astrophysics Data System (ADS)

    Welch, Victoria L.; Van Hooijdonk, Eloise; Intrater, Nurit; Vigneron, Jean-Pol

    2012-10-01

    Fluorescent molecules are much in demand for biosensors, solar cells, LEDs and VCSEL diodes, therefore, considerable efforts have been expended in designing and tailoring fluorescence to specific technical applications. However, naturally occurring fluorescence of diverse types has been reported from a wide array of living organisms: most famously, the jellyfish Aequorea victoria, but also in over 100 species of coral and in the cuticle of scorpions, where it is the rule, rather than the exception. Despite the plethora of known insect species, comparatively few quantitative studies have been made of insect fluorescence. Because of the potential applications of natural fluorescence, studies in this field have relevance to both physics and biology. Therefore, in this paper, we review the literature on insect fluorescence, before documenting its occurrence in the longhorn beetles Sternotomis virescens, Sternotomis variabilis var. semi rufescens, Anoplophora elegans and Stellognatha maculata, the tiger beetles Cicindela maritima and Cicindela germanica and the weevil Pachyrrhynchus gemmatus purpureus. Optical features of insect fluorescence, including emitted wavelength, molecular ageing and naturally occurring combinations of fluorescence with bioluminescence and colour-producing structures are discussed.

  20. Corn Insect Pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests have been corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, Bt-corn hybrids are not effective against corn leaf aphid, corn root aphid, sap beetles, corn rootwor...

  1. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  2. Detection of insects in grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detecting insects hidden inside kernels of grain is important to grain buyers because internal infestations can result in insect fragments in products made from the grain, or, if the grain is stored before use, the insect population can increase and damage the grain further. In a study in the Unite...

  3. Insect Ferritins: typical or atypical?

    PubMed Central

    Pham, Daphne Q. D.; Winzerling, Joy J.

    2010-01-01

    Insects transmit millions of cases of disease each year, and cost millions of dollars in agricultural losses. The control of insect-borne diseases is vital for numerous developing countries, and the management of agricultural insect pests is a very serious business for developed countries. Control methods should target insect-specific traits in order to avoid non-target effects, especially in mammals. Since insect cells have had a billion years of evolutionary divergence from those of vertebrates, they differ in many ways that might be promising for the insect control field—especially, in iron metabolism because current studies have indicated that significant differences exist between insect and mammalian systems. Insect iron metabolism differs from that of vertebrates in the following respects. Insect ferritins have a heavier mass than mammalian ferritins. Unlike their mammalian counterparts, the insect ferritin subunits are often glycosylated and are synthesized with a signal peptide. The crystal structure of insect ferritin also shows a tetrahedral symmetry consisting of 12 heavy chain and 12 light chain subunits in contrast to that of mammalian ferritin that exhibits an octahedral symmetry made of 24 heavy chain and 24 light chain subunits. Insect ferritins associate primarily with the vacuolar system and serve as iron transporters—quite the opposite of the mammalian ferritins, which are mainly cytoplasmic and serve as iron storage proteins. This review will discuss these differences. PMID:20230873

  4. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  5. Insect maintenance and transmission.

    PubMed

    Kingdom, Heather

    2013-01-01

    Phytoplasmas are plant pathogens of huge economic importance due to responsibility for crop yield losses worldwide. Institutions around the world are trying to understand and control this yield loss at a time when food security is high on government agendas. In order to fully understand the mechanisms of phytoplasma infection and spread, more insect vector and phytoplasma colonies will need to be established for research worldwide. Rearing and study of these colonies is essential in the research and development of phytoplasma control measures. This chapter highlights general materials and methods for raising insect vector colonies and maintenance of phytoplasmas. Specific methods of rearing the maize leafhopper and maize bushy stunt phytoplasma and the aster leafhopper and aster yellows phytoplasma strain witches' broom are also included. PMID:22987405

  6. Undergraduates' mental models about insect anatomy and insect life cycles

    NASA Astrophysics Data System (ADS)

    Diaz, Arlene Edith

    Educational studies focused on students' alternative conceptions have shown the importance of developing strategies to correct understanding. Identifying and comprehending student mental models are important since they may reflect alternate conceptions about scientific concepts. Mental models have been identified in various science education studies, but little is known about mental models undergraduates hold about insects. This research is significant because it identified mental models undergraduates have about insect anatomy and insect life cycles, exposed students to cognitive conflict by having them complete an online insect tutorial, and analyzed the effectiveness of this insect tutorial in correcting student understanding. An insect assessment was developed and administered pre- and post-instruction to probe students' mental models about insects. Different numbers of undergraduate students participated in different parts of the assessment; 276, 249, 166, and 58 students participated in the listing, drawing. definition, and life cycle parts of the assessment, respectively. The tutorial contained a variety of manipulated insect and non-insect images that challenged the students' understanding and generated cognitive conflict. This intervention guided students in replacing alternate conceptions with correct understanding. It was hypothesized that the tutorial would have a positive impact on student learning about insects. The results suggest that the tutorial had a positive impact on learning.

  7. [Protection against insects].

    PubMed

    Rudin, W

    2005-11-01

    Successful protection against haematophagous insects and ticks, especially in areas where transmission of diseases occurs, requires a consistent application of a combination of appropriate measures. However, this can never substitute a chemoprophylaxis. Which measures have to be used depends on the circumstances under which they have to work. Indoor, physical means such as mosquito-screens on doors and windows, air-conditioners, and bed nets can be used to keep the insects away. These measures can be supplemented or supported by insecticides used as knock-down sprays, by electrical evaporation or for the treatment of screens and bed nets. In the field, if it is not possible to avoid mosquito-areas during phases of activity, appropriate clothing and repellents must provide the protection. Bright, wide pants and shirts of dense weaving covering as much skin as bearable should be preferred. Repellents are sprays, lotions, milks or creams which are evenly applied to the skin to prevent insects from biting. They contain synthetic or natural active substances of substantially varying effectiveness. The gold standard since about 60 years is diethylbenzamine (DEET). There are a few other active substances with a lower risk of side effects, however, combined with a lower effectiveness mainly on people with a high attractiveness for mosquitoes. Products containing an extract of Eucalyptus citriodora provide the best protection amongst those with natural active substances. Wearing bracelets or necklaces treated with repellents, acoustic devices (buzzers), electrocuters, topical or systemic Vitamin B1 or eating garlic are useless measures to prevent insects from biting. PMID:16350532

  8. Interrogating an insect society

    PubMed Central

    Gadagkar, Raghavendra

    2009-01-01

    Insect societies such as those of ants, bees, and wasps consist of 1 or a small number of fertile queens and a large number of sterile or nearly sterile workers. While the queens engage in laying eggs, workers perform all other tasks such as nest building, acquisition and processing of food, and brood care. How do such societies function in a coordinated and efficient manner? What are the rules that individuals follow? How are these rules made and enforced? These questions are of obvious interest to us as fellow social animals but how do we interrogate an insect society and seek answers to these questions? In this article I will describe my research that was designed to seek answers from an insect society to a series of questions of obvious interest to us. I have chosen the Indian paper wasp Ropalidia marginata for this purpose, a species that is abundantly distributed in peninsular India and serves as an excellent model system. An important feature of this species is that queens and workers are morphologically identical and physiologically nearly so. How then does an individual become a queen? How does the queen suppress worker reproduction? How does the queen regulate the nonreproductive activities of the workers? What is the function of aggression shown by different individuals? How and when is the queen's heir decided? I will show how such questions can indeed be investigated and will emphasize the need for a whole range of different techniques of observation and experimentation. PMID:19487678

  9. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts. PMID:23393276

  10. Escape behaviors in insects.

    PubMed

    Card, Gwyneth M

    2012-04-01

    Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior. PMID:22226514

  11. Edible insects are the future?

    PubMed

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy. PMID:26908196

  12. Insect bite prevention.

    PubMed

    Moore, Sarah J; Mordue Luntz, Anne Jennifer; Logan, James G

    2012-09-01

    Protection from the bites of arthropod (insect and acarine) vectors of disease is the first line of defense against disease transmission and should be advised in all cases when traveling abroad. Details are described of the main approaches for the prevention of bites, including topical or skin repellents, impregnated clothing, bed nets, and spatial or aerial repellents and aerosols. The bionomics of the main arthropod vectors of disease are described along with photographic plates and tabulated advice to give the traveler. An in-depth treatment of the different protection methodologies provides an up-to-date overview of the technologies involved. PMID:22963776

  13. Aircraft anti-insect system

    NASA Technical Reports Server (NTRS)

    Spiro, Clifford Lawrence (Inventor); Fric, Thomas Frank (Inventor); Leon, Ross Michael (Inventor)

    1997-01-01

    Insect debris is removed from or prevented from adhering to insect impingement areas of an aircraft, particularly on an inlet cowl of an engine, by heating the area to 180.degree.-500.degree. C. An apparatus comprising a means to bring hot air from the aircraft engine to a plenum contiguous to the insect impingement area provides for the heating of the insect impingement areas to the required temperatures. The plenum can include at least one tube with a plurality of holes contained in a cavity within the inlet cowl. It can also include an envelope with a plurality of holes on its surface contained in a cavity within the inlet cowl.

  14. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  15. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  16. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  17. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  18. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel....

  19. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  20. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture....2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect feeding. Metric Conversion Table...

  1. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding....

  2. 1977 Kansas Field Crop Insect Control Recommendations.

    ERIC Educational Resources Information Center

    Brooks, Leroy; Gates, Dell E.

    This publication is prepared to aid producers in selecting methods of insect population management that have proved effective under Kansas conditions. Topics covered include insect control on alfalfa, soil insects attacking corn, insects attacking above-ground parts of corn, and sorghum, wheat, and soybean insect control. The insecticides…

  3. Hydrodynamics of insect spermatozoa

    NASA Astrophysics Data System (ADS)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  4. Environmental RNAi in herbivorous insects

    PubMed Central

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B. Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C.; Johnson, Steven; Meyer, Steve E.; Kerstetter, Randy A.; McNulty, Brian C.; Bolognesi, Renata; Heck, Gregory R.

    2015-01-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. PMID:25802407

  5. RNAI: Future in insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference is a post-transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, envir...

  6. Plant Defense against Insect Herbivores

    PubMed Central

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  7. Polarization Imaging and Insect Vision

    ERIC Educational Resources Information Center

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  8. Reader Survey for INSECT ALERTS.

    ERIC Educational Resources Information Center

    Miller, Mason E.; Sauer, Richard J.

    To determine what might be done to improve "Insect Alerts," which is a newsletter that carries "information on insect biology, abundance, activity and interpretation of control need," put out through the Michigan Cooperative Extension Service 26 weeks a year, a survey was conducted. A mail questionnaire was sent to all 120 county extension…

  9. Eicosanoids mediate insect hemocyte migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemocyte chemotaxis toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating chemotaxis in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hyp...

  10. Chickpea Ascochyta blight and insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early symptoms of Acochyta blight and insect damages were detected in the Paliuse region.This article informs chickpea scientists and growers about current disease and insect pest problems in the Palouse region. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insec...

  11. A Template for Insect Cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is intended to update the reader on the progress made on insect embryo cryopreservation in the past 20 years and gives information for developing a protocol for cryopreserving insects by using a 2001 study as a template. The study used for the template is the cryopreservation of the Old...

  12. Insect Immunity to Entomopathogenic Fungi.

    PubMed

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. PMID:27131327

  13. Population fluctuation in phytophagous insects

    SciTech Connect

    Redfearn, A.; Pimm, S.L. )

    1994-06-01

    We examined how community interactions affect year-to-year population variability in three groups of phytophagous insects: British aphids and moths, and Canadian moths. We first examined how the number of host plant species on which a given phytophagous insect species feeds affects its population variability. Specialist insect species showed a weak tendency to be more variable than generalist species. We then examined how the number of species of parasitoids from which a given phytophagous insects species suffers affects its population variability. Species that are host to few parasitoid species showed a weak tendency to be more variable than species with many parsitoid species. These relationships also depend on other aspects of the life histories of the phytophagous insect species.

  14. The aerodynamics of insect flight.

    PubMed

    Sane, Sanjay P

    2003-12-01

    The flight of insects has fascinated physicists and biologists for more than a century. Yet, until recently, researchers were unable to rigorously quantify the complex wing motions of flapping insects or measure the forces and flows around their wings. However, recent developments in high-speed videography and tools for computational and mechanical modeling have allowed researchers to make rapid progress in advancing our understanding of insect flight. These mechanical and computational fluid dynamic models, combined with modern flow visualization techniques, have revealed that the fluid dynamic phenomena underlying flapping flight are different from those of non-flapping, 2-D wings on which most previous models were based. In particular, even at high angles of attack, a prominent leading edge vortex remains stably attached on the insect wing and does not shed into an unsteady wake, as would be expected from non-flapping 2-D wings. Its presence greatly enhances the forces generated by the wing, thus enabling insects to hover or maneuver. In addition, flight forces are further enhanced by other mechanisms acting during changes in angle of attack, especially at stroke reversal, the mutual interaction of the two wings at dorsal stroke reversal or wing-wake interactions following stroke reversal. This progress has enabled the development of simple analytical and empirical models that allow us to calculate the instantaneous forces on flapping insect wings more accurately than was previously possible. It also promises to foster new and exciting multi-disciplinary collaborations between physicists who seek to explain the phenomenology, biologists who seek to understand its relevance to insect physiology and evolution, and engineers who are inspired to build micro-robotic insects using these principles. This review covers the basic physical principles underlying flapping flight in insects, results of recent experiments concerning the aerodynamics of insect flight, as well

  15. Peripheral olfactory signaling in insects

    PubMed Central

    Suh, Eunho; Bohbot, Jonathan; Zwiebel, Laurence J.

    2014-01-01

    Olfactory signaling is a crucial component in the life history of insects. The development of precise and parallel mechanisms to analyze the tremendous amount of chemical information from the environment and other sources has been essential to their evolutionary success. Considerable progress has been made in the study of insect olfaction fueled by bioinformatics- based utilization of genomics along with rapid advances in functional analyses. Here we review recent progress in our rapidly emerging understanding of insect peripheral sensory reception and signal transduction. These studies reveal that the nearly unlimited chemical space insects encounter is covered by distinct chemosensory receptor repertoires that are generally derived by species-specific, rapid gene gain and loss, reflecting the evolutionary consequences of adaptation to meet their specific biological needs. While diverse molecular mechanisms have been put forth, often in the context of controversial models, the characterization of the ubiquitous, highly conserved and insect-specific Orco odorant receptor co-receptor has opened the door to the design and development of novel insect control methods to target agricultural pests, disease vectors and even nuisance insects. PMID:25584200

  16. Flight of the smallest insects

    NASA Astrophysics Data System (ADS)

    Miller, Laura; Santhanakrishnan, Arvind; Hedrick, Tyson; Robinson, Alice

    2009-11-01

    A vast body of research has described the complexity of flight in insects ranging from the fruit fly, Drosophila melanogaster, to the hawk moth, Manduca sexta. Over this range of scales, flight aerodynamics as well as the relative lift and drag forces generated are surprisingly similar. The smallest flying insects (Re˜10) have received far less attention, although previous work has shown that flight kinematics and aerodynamics can be significantly different. In this presentation, we have used a three-pronged approach that consists of measurements of flight kinematics in the tiny insect Thysanoptera (thrips), measurements of flow velocities using physical models, and direct numerical simulations to compute lift and drag forces. We find that drag forces can be an order of magnitude larger than lift forces, particularly during the clap and fling motion used by all tiny insects recorded to date.

  17. Eicosanoid actions in insect immunology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this chapter we review eicosanoid actions in insect immunity. Eicosanoids are oxygenated metabolites of arachidonic acid (AA) and two other C20 polyunsaturated polyunsaturated fatty acids. Groups of eicosanoids include prostaglandins, lipoxygenase products and epoxyeicosatrienoic acids. These ...

  18. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  19. Entomopathogenic nematodes and insect management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes (genera Heterorhabditis, Steinernema, and Neosteinernema) are used as bioinsecticides. The nematodes are ubiquitous and have been isolated in soil of every continent except Antarctica. The nematodes kill insects through a mutualism with a bacterium (Photorhabdus spp. or ...

  20. Insect symbionts in food webs

    PubMed Central

    Henry, Lee M.

    2016-01-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481779

  1. Insect symbionts in food webs.

    PubMed

    McLean, Ailsa H C; Parker, Benjamin J; Hrček, Jan; Henry, Lee M; Godfray, H Charles J

    2016-09-01

    Recent research has shown that the bacterial endosymbionts of insects are abundant and diverse, and that they have numerous different effects on their hosts' biology. Here we explore how insect endosymbionts might affect the structure and dynamics of insect communities. Using the obligate and facultative symbionts of aphids as an example, we find that there are multiple ways that symbiont presence might affect food web structure. Many symbionts are now known to help their hosts escape or resist natural enemy attack, and others can allow their hosts to withstand abiotic stress or affect host plant use. In addition to the direct effect of symbionts on aphid phenotypes there may be indirect effects mediated through trophic and non-trophic community interactions. We believe that by using data from barcoding studies to identify bacterial symbionts, this extra, microbial dimension to insect food webs can be better elucidated.This article is part of the themed issue 'From DNA barcodes to biomes'. PMID:27481779

  2. Freshwater Biodiversity and Insect Diversification

    PubMed Central

    Dijkstra, Klaas-Douwe B.; Monaghan, Michael T.; Pauls, Steffen U.

    2016-01-01

    Inland waters cover less than one percent of Earth’s surface, but harbor more than six percent of all insect species: nearly 100,000 species from 12 orders spend one or more life stages in freshwater. Little is known about how this remarkable diversity arose, although allopatric speciation and ecological adaptation are thought to be primary mechanisms. Freshwater habitats are exceptionally susceptible to environmental change, and exhibit marked ecological gradients. The amphibiotic lifestyles of aquatic insects result in complex contributions of extinction and allopatric and non-allopatric speciation in species diversification. In contrast to the lack of evolutionary studies, the ecology and habitat preferences of aquatic insects have been intensively studied, in part because of their widespread use as bio-indicators. The combination of phylogenetics with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification. PMID:24160433

  3. Insect bites and stings (image)

    MedlinePlus

    Even though some insect bites or stings can be extremely painful they usually do not require emergency medical care. Although the stung or bitten area should be carefully observed for signs of infection or reaction to venom.

  4. Preface: Insect Pathology, 2nd ed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pathology is an essential component of entomology and provides a non-chemical alternative for insect pest management. There are several groups of organisms that can infect and kill insects including viruses, fungi, microsporidia, bacteria, protists, and nematodes. The dilemma in insect patho...

  5. Pollen Recovery from Insects: Light Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous insect species feed on the pollen, nectar, and other plant exudates that are associated with flowers. As a result of this feeding activity, pollen becomes attached to the insects. Analysis of the pollen attached to these insects can reveal what insects eat, their dispersal patterns in and...

  6. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  7. How Do Insects Help the Environment?

    ERIC Educational Resources Information Center

    Hevel, Gary

    2005-01-01

    There are some 5 to 30 million insect species estimated in the world--and the majority of these have yet to be collected or named by science! Of course, the most well known insects are those that cause disease or compete for human agricultural products, but these insects represent only a small fraction of the world's insect population. In reality,…

  8. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  9. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  10. 7 CFR 51.2122 - Insect injury.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence...

  11. 7 CFR 51.2290 - Insect injury.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of...

  12. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  13. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  14. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  15. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  16. 46 CFR 108.215 - Insect screens.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation...

  17. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  18. 7 CFR 51.2008 - Insect injury.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of...

  19. Don't Let Insects Bug You!

    ERIC Educational Resources Information Center

    Abraham, Doc; Abraham, Katy

    1977-01-01

    Are you one of those people who feel that the only good insect is a dead one? Do you suffer from entomophobia--dread fear of insects? Such attitudes, fears, and prejudices stem from insect ignorance. Authors explain what insects are good for and give students a more realistic and fascinating view of their world. (Editor/RK)

  20. Discontinuous gas exchange in insects.

    PubMed

    Quinlan, Michael C; Gibbs, Allen G

    2006-11-01

    Insect respiratory physiology has been studied for many years, and interest in this area of insect biology has become revitalized recently for a number of reasons. Technical advances have greatly improved the precision, accuracy and ease with which gas exchange can be measured in insects. This has made it possible to go beyond classic models such as lepidopteran pupae and examine a far greater diversity of species. One striking result of recent work is the realization that insect gas exchange patterns are much more diverse than formerly recognized. Current work has also benefited from the inclusion of comparative methods that rigorously incorporate phylogenetic, ecological and life history information. We discuss these advances in the context of the classic respiratory pattern of insects, discontinuous gas exchange. This mode of gas exchange was exhaustively described in moth pupae in the 1950s and 1960s. Early workers concluded that discontinuous gas exchange was an adaptation to reduce respiratory water loss. This idea is no longer universally accepted, and several competing hypotheses have been proposed. We discuss the genesis of these alternative hypotheses, and we identify some of the predictions that might be used to test them. We are pleased to report that what was once a mature discipline, in which the broad parameters and adaptive significance of discontinuous gas exchange were thought to be well understood, is now a thriving and vigorous field of research. PMID:16870512

  1. Flower constancy in insect pollinators

    PubMed Central

    Ratnieks, Francis L.W.

    2011-01-01

    As first noted by Aristotle in honeybee workers, many insect pollinators show a preference to visit flowers of just one species during a foraging trip. This “flower constancy” probably benefits plants, because pollen is more likely to be deposited on conspecific stigmas. But it is less clear why insects should ignore rewarding alternative flowers. Many researchers have argued that flower constancy is caused by constraints imposed by insect nervous systems rather than because flower constancy is itself an efficient foraging method. We argue that this view is unsatisfactory because it both fails to explain why foragers flexibly adjust the degree of flower constancy and does not explain why foragers of closely related species show different degrees of constancy. While limitations of the nervous system exist and are likely to influence flower constancy to some degree, the observed behavioural flexibility suggests that flower constancy is a successful foraging strategy given the insect’s own information about different foraging options. PMID:22446521

  2. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  3. Line following terrestrial insect biobots.

    PubMed

    Latif, Tahmid; Bozkurt, Alper

    2012-01-01

    The present day technology falls short in offering centimeter scale mobile robots that can function effectively under unknown and dynamic environmental conditions. Insects, on the other hand, exhibit an unmatched ability to navigate through a wide variety of environments and overcome perturbations by successfully maintaining control and stability. In this study, we use neural stimulation systems to wirelessly navigate cockroaches to follow lines to enable terrestrial insect biobots. We also propose a system-on-chip based ZigBee enabled wireless neurostimulation backpack system with on-board tissue-electrode bioelectrical coupling verification. Such a capability ensures an electrochemically safe stimulation and avoids irreversible damage to the interface which is often misinterpreted as habituation of the insect to the applied stimulation. PMID:23366056

  4. Neurosecretion: peptidergic systems in insects

    NASA Astrophysics Data System (ADS)

    Predel, R.; Eckert, Manfred

    Insect neuropeptides are produced in less than 1% of the cells of the central nervous system. Despite this, they are important messenger molecules which influence nearly all physiological processes, including behaviour. They can act as transmitters, modulators and classical hormones, and often exhibit pleiotropic functions when released into the haemolymph. The large number of neuropeptides that has been identified from some of the model organisms among insects underlines the complexity of the neurosecretory system; studies about the coordinated actions of these substances are in their preliminary stages. Recent advances in insect neuropeptide research will be reviewed here, concentrating on the distribution of multiple peptide forms in the central nervous system and adjacent neurohaemal organs, and the role of neuropeptides in eclosion behaviour.

  5. Rice Reoviruses in Insect Vectors.

    PubMed

    Wei, Taiyun; Li, Yi

    2016-08-01

    Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147

  6. Insect Screening Results: Assessment of Corn Hybrids for Insect Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the growing season of 2006, the relatively dry environmental conditions in Tifton, Georgia were favorable for the rapid buildup of corn earworms, providing the potential for considerable damage to the corn crop. Six ear-feeding insects recorded in the order of infestation severity were: the...

  7. Insect growth regulators and insect control: a critical appraisal.

    PubMed Central

    Siddall, J B

    1976-01-01

    Insect growth regulators (IGRs) of the juvenile hormone type alter physiological processes essential to insect development and appear to act specifically on insects. Three natural juvenile hormones have been found in insects but not in other organisms. Future use of antagonists or inhibitors of hormone synthesis may be technically possible as an advantageous extension of pest control by IGRs. A documented survey of the properties, metabolism, toxicology, and uses of the most commercially advanced chemical, methoprene, shows it to be environmentally acceptable and toxicologically innocuous. Derivation of its current use patterns is discussed and limitations on these are noted. Residue levels and their measurement in the ppb region have allowed exemption from the requirement of tolerances in the EPA registered use of methoprene for mosquito control. Tolerances for foods accompany its fully approved use for control of manure breeding flies through a cattle feed supplement. The human health effects of using this chemical appear to be purely beneficial, but further advances through new IGR chemicals appear unlikely without major changes in regulatory and legislative policy. PMID:976222

  8. Insects as a Nitrogen Source for Plants.

    PubMed

    Behie, Scott W; Bidochka, Michael J

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  9. Insects as a Nitrogen Source for Plants

    PubMed Central

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  10. Palaeontology: Chinese amber insects bridge the gap.

    PubMed

    Ross, Andrew

    2014-07-21

    n the study of fossil insects, Chinese amber from Fushun has been largely overlooked. A new study now reveals a highly diverse biota and provides a wealth of new information on the past Asian insect fauna. PMID:25050958

  11. Insects--How To Study Them

    ERIC Educational Resources Information Center

    Matthews, E. G.

    1975-01-01

    Describes an approach to the study of entomology directed at people with no special knowledge of insects. The aim of this approach is to reveal some biological principles by studying insects from an ecological point of view. (GS)

  12. The Curious Connection Between Insects and Dreams

    PubMed Central

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  13. Introducing Virological Concepts Using an Insect Virus.

    ERIC Educational Resources Information Center

    Sheppard, Roger F.

    1980-01-01

    A technique is presented which utilizes wax moth larvae in a laboratory investigation of an insect virus. Describes how an insect virus can be used to introduce undergraduate biology students to laboratory work on viruses and several virological concepts. (SA)

  14. First Aid: Insect Stings and Bites

    MedlinePlus

    ... Can I Protect My Family From Ticks? Are Insect Repellents With DEET Safe for Kids? Bug Bites and Stings Can I Use Bug Killers and Repellents During Pregnancy? Insect Sting Allergy How Do I Watch for Lyme ...

  15. The Curious Connection Between Insects and Dreams.

    PubMed

    Klein, Barrett A

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans' dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream's significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  16. Plant defense against insect herbivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Damage to maize crops by insect herbivores such as beet and fall army worm causes significant impact in the Southern United States in terms of both yield loss and insecticide use. Enhanced understanding of how maize can defend itself against such attacks at a molecular level will enable development ...

  17. Exaggerated trait growth in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal structures occasionally attain extreme proportions, eclipsing in size other, surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles, the claspers of praying mantises, the elongated hindlimbs of grasshoppers, and the giant heads of soldie...

  18. Insects Affecting Man. MP-21.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Spackman, Everett

    The insects discussed in this document are those which have a direct effect upon humans either through a permanent association, as with lice, or a temporary association in the case of flies, bees, wasps, and spiders. In each case, life cycles and identifying characteristics are presented with remarks about the specific effect incurred by man. (CS)

  19. The Seat of Insect Learning.

    ERIC Educational Resources Information Center

    Dyer, Fred C.

    1997-01-01

    Describes the role of mushroom bodies--cup-shaped structures perched atop the brain of an insect--in learning. Mushroom bodies may help fruit flies in learning meaningful odors, cockroaches in spatial learning, and honeybees both in locating pollen and nectar and in navigating back to the colony. (PVD)

  20. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  1. The insect SNMP gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SNMPs are membrane proteins that have been shown to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis vaccenyl acetate (Benton et al., 2001; Jin et al., 2008). To extend these observations to other ...

  2. Bug City: Aquatic Insects [Videotape].

    ERIC Educational Resources Information Center

    1998

    "Bug City" is a video series created to help children learn about insects and other small critters. All aspects of bug life are touched upon including body structure, food, habitat, life cycle, mating habits, camouflage, mutualism (symbiosis), adaptations, social behavior, and more. Each program features dramatic microscopic photography, fun…

  3. Making Connections with Insect Royalty.

    ERIC Educational Resources Information Center

    Hobbie, Ann

    2000-01-01

    Describes a one-month sixth grade class activity with monarch butterflies called Monarch in the Classroom. Students learn about insects, especially the class material butterflies, including their life cycle, eating habits, migration, and how they overwinter. The lesson plan covers sorting animals, focusing on features, analyzing the community for…

  4. Rearing insects on artificial diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are reared in the laboratory for various purposes. They may be reared either on their natural food or artificial diets. Developing artificial diets may be difficult and time consuming but once optimized, artificial diets usually are simple to prepare and easy to use. Because they are process...

  5. Transposable elements for insect transformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germ-line of more than 35 species from five orders of insects have been genetically transformed, using vectors derived from Class II transposable elements. Initially the P and hobo vector systems developed for D. melanogaster were not applicable to other species, but four transposons found in ot...

  6. Nontoxic Antifreeze for Insect Traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Propylene glycol in water is a safe and effective alternative to ethylene glycol as a capture liquid in insect traps (pitfalls, flight intercepts, pan traps). Propylene glycol formulations are readily available because it is the primary (95%) ingredient in certain automotive antifreeze formulations...

  7. Using new technology and insect behavior in novel terrestrial and flying insect traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...

  8. Buckling failures in insect exoskeletons.

    PubMed

    Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David

    2016-02-01

    Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the

  9. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species. PMID

  10. Insect Control (1): Use of Pheromones

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)

  11. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  12. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  13. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  14. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  15. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  16. 21 CFR 1250.95 - Insect control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors...

  17. Mechanisms by which pesticides affect insect immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The known effects of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing morta...

  18. Applications of acoustics in insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  19. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  20. Insects as alternative hosts for phytopathogenic bacteria.

    PubMed

    Nadarasah, Geetanchaly; Stavrinides, John

    2011-05-01

    Phytopathogens have evolved specialized pathogenicity determinants that enable them to colonize their specific plant hosts and cause disease, but their intimate associations with plants also predispose them to frequent encounters with herbivorous insects, providing these phytopathogens with ample opportunity to colonize and eventually evolve alternative associations with insects. Decades of research have revealed that these associations have resulted in the formation of bacterial-vector relationships, in which the insect mediates dissemination of the plant pathogen. Emerging research, however, has highlighted the ability of plant pathogenic bacteria to use insects as alternative hosts, exploiting them as they would their primary plant host. The identification of specific bacterial genetic determinants that mediate the interaction between bacterium and insect suggests that these interactions are not incidental, but have likely arisen following the repeated association of microorganisms with particular insects over evolutionary time. This review will address the biology and ecology of phytopathogenic bacteria that interact with insects, including the traditional role of insects as vectors, as well as the newly emerging paradigm of insects serving as alternative primary hosts. Also discussed is one case where an insect serves as both host and vector, which may represent a transitionary stage in the evolution of insect-phytopathogen associations. PMID:21251027

  1. Fungal allelochemicals in insect pest management.

    PubMed

    Holighaus, Gerrit; Rohlfs, Marko

    2016-07-01

    Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies. PMID:27147531

  2. Insect sodium channels and insecticide resistance

    PubMed Central

    2011-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides. PMID:17206406

  3. Immunity in a Social Insect

    NASA Astrophysics Data System (ADS)

    Rosengaus, Rebeca B.; Traniello, James F. A.; Chen, Tammy; Brown, Julie J.; Karp, Richard D.

    Although pathogens appear to have exerted significant selective pressure on various aspects of sociality, mechanisms of disease resistance in the social insects are poorly understood. We report here on an immune response to infection by the dampwood termite, Zootermopsis angusticollis. Nymphs immunized with an injection of 7.6×107, 7.6×105, or 7.6×104 cells/ml glutaraldehyde-killed solution of the bacterium Pseudomonas aeruginosa had significantly higher survivorship than controls following a challenge with a lethal concentration of active bacteria. Similarly, nymphs exposed to a 9×10-1 spores/ml suspension of the fungus Metarhizium anisopliae had higher survivorship than controls after a challenge with a lethal concentration of spores. Prior exposure to a pathogen thus conferred upon termites a degree of protection during a subsequent encounter with the same pathogen. This represents the first demonstration of immune function in vivo in a social insect.

  4. Corpse Management in Social Insects

    PubMed Central

    Sun, Qian; Zhou, Xuguo

    2013-01-01

    Undertaking behavior is an essential adaptation to social life that is critical for colony hygiene in enclosed nests. Social insects dispose of dead individuals in various fashions to prevent further contact between corpses and living members in a colony. Focusing on three groups of eusocial insects (bees, ants, and termites) in two phylogenetically distant orders (Hymenoptera and Isoptera), we review mechanisms of death recognition, convergent and divergent behavioral responses toward dead individuals, and undertaking task allocation from the perspective of division of labor. Distinctly different solutions (e.g., corpse removal, burial and cannibalism) have evolved, independently, in the holometabolous hymenopterans and hemimetabolous isopterans toward the same problem of corpse management. In addition, issues which can lead to a better understanding of the roles that undertaking behavior has played in the evolution of eusociality are discussed. PMID:23569436

  5. Visual homing: an insect perspective.

    PubMed

    Zeil, Jochen

    2012-04-01

    The ability to learn the location of places in the world and to revisit them repeatedly is crucial for all aspects of animal life on earth. It underpins animal foraging, predator avoidance, territoriality, mating, nest construction and parental care. Much theoretical and experimental progress has recently been made in identifying the sensory cues and the computational mechanisms that allow insects (and robots) to find their way back to places, while the neurobiological mechanisms underlying navigational abilities are beginning to be unravelled in vertebrate and invertebrate models. Studying visual homing in insects is interesting, because they allow experimentation and view-reconstruction under natural conditions, because they are likely to have evolved parsimonious, yet robust solutions to the homing problem and because they force us to consider the viewpoint of navigating animals, including their sensory and computational capacities. PMID:22221863

  6. Visual Navigation in Nocturnal Insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2016-05-01

    Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain. PMID:27053732

  7. Benzoquinolinediones: activity as insect teratogens

    SciTech Connect

    Walton, B.T.; Ho, C.H.; Ma, C.Y.; O'Neill, E.G.; Kao, G.L.

    1983-10-28

    Morphological abnormalities including extra compound eyes, extra heads, and distally duplicated legs were generated in cricket embryos by treating eggs with single doses of either benz(g)isoquinoline-5,10-dione or benzo(h)quinoline-5,6-dione. Slight structural modifications of the molecules resulted in a loss of teratogenic activity, although embryotoxicity occurred. These potent insect teratogens can be used for analysis of developmental events during embryogenesis. 13 references, 4 figures, 1 table.

  8. Gut immunity in Lepidopteran insects.

    PubMed

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. PMID:26872544

  9. Macroecology of local insect communities

    NASA Astrophysics Data System (ADS)

    Krüger, Oliver; McGavin, George C.

    2000-01-01

    The inter-relationships between animal body weight, range size, species richness and abundance are currently the basis of macroecology. Using 41 099 insects sampled from 31 Acacia tree canopies in north-east Tanzania, we first documented the basic macroecological patterns. The relationship between body weight and both species richness and abundance was polygonal with the highest insect species richness and abundance occurring at intermediate body weights. Across individual tree communities, the most statistically robust relationships were found between range size, abundance and species richness and they were all linear. In a second part, we focused on the positive abundance-range size relationship and we could test predictions of six of the eight proposed hypotheses to explain this widely documented pattern of community structure. The relationship is most likely explained by the metapopulation hypothesis stating that with more patches being occupied, local abundance in a given patch increases due to a higher rate of immigration from nearby patches. In addition, we found high slopes for the species-area relationship, typical of island systems and thus it seems reasonable to characterise Acacia trees in the savannah as habitat islands for insects.

  10. Herbivory increases diversification across insect clades

    PubMed Central

    Wiens, John J.; Lapoint, Richard T.; Whiteman, Noah K.

    2015-01-01

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life. PMID:26399434

  11. Raindrops push and splash flying insects

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Shankles, Peter G.; Hu, David L.

    2014-02-01

    In their daily lives, flying insects face a gauntlet of environmental challenges, from wind gusts to raindrop impacts. In this combined experimental and theoretical study, we use high-speed videography to film raindrop collisions upon both flying insects and dynamically scaled spherical mimics. We identify three outcomes of the collision based upon the insect's mass and characteristic size: drops push the insect while remaining intact, coat the insect, and splash. We present a mathematical model that predicts impact force and outcome consistent with those found in experiments. Small insects such as gnats and flies are pushed by raindrops that remain intact upon impact; conversely, large flyers such as locusts and micro-aerial vehicles cause drops to splash. We identify a critical mass of 0.3 g for which flyers achieve both peak acceleration (100 g) and applied force (104 dyn) from incoming raindrops; designs of similarly massed flying robots should be avoided.

  12. Insect stereopsis demonstrated using a 3D insect cinema

    PubMed Central

    Nityananda, Vivek; Tarawneh, Ghaith; Rosner, Ronny; Nicolas, Judith; Crichton, Stuart; Read, Jenny

    2016-01-01

    Stereopsis - 3D vision – has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, “anaglyph” filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception. PMID:26740144

  13. Insect stereopsis demonstrated using a 3D insect cinema.

    PubMed

    Nityananda, Vivek; Tarawneh, Ghaith; Rosner, Ronny; Nicolas, Judith; Crichton, Stuart; Read, Jenny

    2016-01-01

    Stereopsis - 3D vision - has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, "anaglyph" filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception. PMID:26740144

  14. Delayed insect access alters carrion decomposition and necrophagous insect community assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertebrate carrion in terrestrial ecosystems is an unpredictable, ephemeral resource pulse that contributes to local biodiversity and nutrient transformation dynamics. We hypothesized that delayed insect access to carrion would demonstrate marked shifts in necrophagous insect community structure, t...

  15. Feeling what an insect feels.

    PubMed

    Mohand Ousaid, Abdenbi; Millet, Guillaume; Haliyo, Sinan; Régnier, Stéphane; Hayward, Vincent

    2014-01-01

    We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface. PMID:25271636

  16. Feeling What an Insect Feels

    PubMed Central

    Mohand Ousaid, Abdenbi; Millet, Guillaume; Haliyo, Sinan; Régnier, Stéphane; Hayward, Vincent

    2014-01-01

    We describe a manually operated, bilateral mechanical scaling instrument that simultaneously magnifies microscopic forces and reduces displacements with quasi-perfect transparency. In contrast with existing micro-teleoperation designs, the system is unconditionally stable for any scaling gains and interaction curves. In the present realization, the work done by the hand is more than a million times that done by a microscopic probe so that one can feel complete interaction cycles with water and compare them to what is felt when an insect leg interacts with a wet surface. PMID:25271636

  17. Ellipsometry of diffractive insect reflectors

    NASA Astrophysics Data System (ADS)

    Brink, D. J.; Lee, M. E.

    1996-04-01

    Scales on the wings of certain insects, such as Trichoplusia orichalcea, exhibit a surface microstructure resembling a fine diffraction grating. Diffraction of incident light by this structure is responsible for many of the optical properties of the wings of this moth, such as the metallic yellow color and the almost-specular reflection and polarization properties of the scattered radiation. It is shown that by the use of null ellipsometry the polarization characteristics can be used to obtain the optical constants of the scale material. Theoretical considerations and suitable experimental conditions are discussed and evaluated.

  18. Bacterial strategies to overcome insect defences.

    PubMed

    Vallet-Gely, Isabelle; Lemaitre, Bruno; Boccard, Frédéric

    2008-04-01

    Recent genetic and molecular analyses have revealed how several strategies enable bacteria to persist and overcome insect immune defences. Genetic and genomic tools that can be used with Drosophila melanogaster have enabled the characterization of the pathways that are used by insects to detect bacterial invaders and combat infection. Conservation of bacterial virulence factors and insect immune repertoires indicates that there are common strategies of host invasion and pathogen eradication. Long-term interactions of bacteria with insects might ensure efficient dissemination of pathogens to other hosts, including humans. PMID:18327270

  19. Insect Flight: Aerodynamics, Efficiency, and Evolution

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2007-11-01

    Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?

  20. Insect hormones and their derivatives as insecticides

    PubMed Central

    Bowers, William S.

    1971-01-01

    The hormonal control of moulting, reproduction, and diapause in insects has little or no relationship to any similar phenomena in other animals, and the hormones involved in these processes are unlike any known hormones of vertebrates. The availability of pure chemicals with high biological activity has permitted an astonishing increase in research on insect hormones. At present, understanding of insect endocrinology is far too incomplete to justify much speculation about the possibility of using insect hormones as insecticides. However, the preliminary studies discussed in this paper give reason for hope, and the results justify further effort. PMID:4938025

  1. A magnetic fluid microdevice using insect wings

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Tsuyuki, K.; Yano, T.; Takagi, K.

    2008-05-01

    A magnetic fluid microdevice using Diptera insect wings is proposed and constructed. The magnetic fluid device is composed of insect wings, a small permanent magnet, coil, and kerosene-based magnetic fluid. First, the structural properties of insect wings are studied through measurements of certain morphological parameters. Secondly, the novel type of microwind energy converter is constructed. Thirdly, the power generation characteristics of the magnetic fluid microdevice using insect wings are examined. It is found that the output power is roughly proportional to the cube of the airflow velocity.

  2. Insect Seminal Fluid Proteins: Identification and Function

    PubMed Central

    Avila, Frank W.; Sirot, Laura K.; LaFlamme, Brooke A.; Rubinstein, C. Dustin; Wolfner, Mariana F.

    2014-01-01

    Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral post-mating changes in females. These changes include decreasing receptivity to re-mating, affecting sperm storage parameters, increasing egg production, modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have anti-microbial functions and induce expression of anti-microbial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the post-mating processes of female insects. PMID:20868282

  3. The use and manipulation of insect reproductive molecules for controlling insect populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use and manipulation of insect reproductive molecules, and the genes that encode them, provides a variety of methods to control insect fertility and thus a means of population control for insect pests. Towards this end, we first studied the yolk polypeptide gene from the caribfly, Anastrepha su...

  4. Smads and insect hemimetabolan metamorphosis.

    PubMed

    Santos, Carolina G; Fernandez-Nicolas, Ana; Belles, Xavier

    2016-09-01

    In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing. PMID:27452629

  5. Laser- based Insect Tracker (LIT)

    NASA Astrophysics Data System (ADS)

    Mesquita, Leonardo; Sinha, Shiva; van Steveninck, Rob De Ruyter

    2011-03-01

    Insects are excellent model systems for studying learning and behavior, and the potential for genetic manipulation makes the fruitfly especially attractive. Many aspects of fruitfly behavior have been studied through video based tracking methods. However, to our knowledge no current system incorporates signals for behavioral conditioning in freely moving flies. We introduce a non-video based method that enables tracking of single insects over large volumes (> 8000cm3 at high spatial (<1mm) and temporal (<1ms) resolution for extended periods (>1 hour). The system uses a set of moveable mirrors that steer a tracking laser beam. Tracking is based on feedback from a four-quadrant sensor, sampling the beam after it bounces back from a retro reflector. Through the same mirrors we couple a high speed camera for flight dynamics analysis and an IR laser for aversive heat conditioning. Such heat shocks, combined with visual stimuli projected on a screen surrounding the flight arena, enable studies of learning and memory. By sampling the long term statistics of behavior, the system augments quantitative studies of behavioral phenotypes. Preliminary results of such studies will be presented.

  6. Secondary succession: insect-plant relationships

    SciTech Connect

    Brown, V.K.

    1984-12-01

    Botanists have dominated the study of secondary succession, and as a result, models and theories have focused on plants. Recent work, however, has revealed several complex relationships between plants and insects during succession, including adaptations of life-cycle strategies. Furthermore, insect herbivores play a key role in the course and rate of plant succession.

  7. Potential applications of insect symbionts in biotechnology.

    PubMed

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value. PMID:26659224

  8. Towards the elements of successful insect RNAi

    PubMed Central

    Scott, Jeffrey G.; Michel, Kristin; Bartholomay, Lyric; Siegfried, Blair D.; Hunter, Wayne B.; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E.

    2013-01-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases. PMID:24041495

  9. Applications of genome editing in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in inse...

  10. What Do Elementary Students Know about Insects?

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    2002-01-01

    Presents an interview-based study of (n=56) elementary school students. Determines students' understanding about insect characteristics, life cycles, environmental conditions, and impact on humans. Suggests building units of instruction based on students' personal questions about insects. (Contains 16 references.) (Author/YDS)

  11. Eicosanoids: Progress Toward Manipulating Insect Immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect immunity is exclusively innate, lacking the antibody-based adaptive immunity of vertebrates. Innate immunity is a naturally occurring, non-specific system that does not require previous infectious experience. In this essay I describe insect immunity and review the roles of prostaglandins an...

  12. Permian insect wing from antarctic sentinel mountains.

    PubMed

    Tasch, P; Riek, E F

    1969-06-27

    A homopterous insect wing was found in micaceous graywacke from the Polarstar Formation, Sentinel Mountains. The unusual venation is reminiscent of family Stenoviciidae known from the Permian and Triassic of Eastern Australia and elsewhere. This first documented account of Paleozoic insects in Antarctica bears on drift questions. PMID:17748532

  13. Anti-viral Responses in Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the study of anti-viral responses in insects has lagged behind studies of responses to other types of pathogens, progress has begun to rapidly accelerate over the past few years. Insects are subject to infection by many different kinds of DNA and RNA viruses. These include viruses that ar...

  14. Diversity in Protein Glycosylation among Insect Species

    PubMed Central

    Vandenborre, Gianni; Smagghe, Guy; Ghesquière, Bart; Menschaert, Gerben; Nagender Rao, Rameshwaram; Gevaert, Kris; Van Damme, Els J. M.

    2011-01-01

    Background A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. Methodology/Principal Findings In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin) affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum), the silkworm (Bombyx mori), the honeybee (Apis mellifera), the fruit fly (D. melanogaster) and the pea aphid (Acyrthosiphon pisum). To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. Conclusions/Significance The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed. PMID:21373189

  15. Testing mechanistic models of growth in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2015-11-22

    Insects are typified by their small size, large numbers, impressive reproductive output and rapid growth. However, insect growth is not simply rapid; rather, insects follow a qualitatively distinct trajectory to many other animals. Here we present a mechanistic growth model for insects and show that increasing specific assimilation during the growth phase can explain the near-exponential growth trajectory of insects. The presented model is tested against growth data on 50 insects, and compared against other mechanistic growth models. Unlike the other mechanistic models, our growth model predicts energy reserves per biomass to increase with age, which implies a higher production efficiency and energy density of biomass in later instars. These predictions are tested against data compiled from the literature whereby it is confirmed that insects increase their production efficiency (by 24 percentage points) and energy density (by 4 J mg(-1)) between hatching and the attainment of full size. The model suggests that insects achieve greater production efficiencies and enhanced growth rates by increasing specific assimilation and increasing energy reserves per biomass, which are less costly to maintain than structural biomass. Our findings illustrate how the explanatory and predictive power of mechanistic growth models comes from their grounding in underlying biological processes. PMID:26609084

  16. Estimating Aquatic Insect Populations. Introduction to Sampling.

    ERIC Educational Resources Information Center

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  17. Applications of genome editing in insects.

    PubMed

    Reid, William; O'Brochta, David A

    2016-02-01

    Insect genome editing was first reported 1991 in Drosophila melanogaster but the technology used was not portable to other species. Not until the recent development of facile, engineered DNA endonuclease systems has gene editing become widely available to insect scientists. Most applications in insects to date have been technical in nature but this is rapidly changing. Functional genomics and genetics-based insect control efforts will be major beneficiaries of the application of contemporary gene editing technologies. Engineered endonucleases like Cas9 make it possible to create powerful and effective gene drive systems that could be used to reduce or even eradicate specific insect populations. 'Best practices' for using Cas9-based editing are beginning to emerge making it easier and more effective to design and use but gene editing technologies still require traditional means of delivery in order to introduce them into somatic and germ cells of insects-microinjection of developing embryos. This constrains the use of these technologies by insect scientists. Insects created using editing technologies challenge existing governmental regulatory structures designed to manage genetically modified organisms. PMID:27436552

  18. VIRAL DISEASES OF INVERTEBRATES OTHER THAN INSECTS

    EPA Science Inventory

    Thirteen examples of virus or viruslike related pathoses in non-insect invertebrates are described. From consideration of these examples, it becomes obvious that detailed descriptions of pathogenesis of virus diseases in non-insect invertebrates has not kept pace with the frequen...

  19. Perspectives on the state of insect transgenics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation is a critical component to the fundamental genetic analysis of insect species, and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which a...

  20. Insects and Spiders. Environmental Education Curriculum.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    This unit is designed to provide information on insects and spiders that special education students are capable of understanding. The activities are aimed at level 2 and level 3 educable mentally retarded classes. There are four topics: (1) Characteristics and Life Cycles of Insects; (2) Characteristics of Spiders; (3) Habitats and Food Sources of…

  1. Scope and Basic Principles of Insect Pathology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are the dominant animals in the world with more than one million described species. The vast majority of insects are innocuous or beneficial to humans, but a small percentage are pests that require a significant amount of our time, effort and funds to reduce their negative effects on food pr...

  2. Eric Carle-Inspired Insect Collages.

    ERIC Educational Resources Information Center

    Palamountain, Eileen; Turner, Kim

    2000-01-01

    Describes a lesson in which students create collage insects inspired by the work of Eric Carle (The Very Hungry Caterpillar). Connects art, language arts, and science. Discusses how students make paper to use as the collage material and how students create the insects. (CMK)

  3. Genomics of Insect-Soybean Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dissection of plant-insect interactions has lagged behind that of interactions between plants and other types of pests. Insect pests interact with plants in a variety of ways, ranging from piercing and sucking of phloem to consumption of leaves and other tissues. Hence, a wide range of genetic m...

  4. Beneficial Insects and Spiders of Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of integrated pest management programs is dependent on the availability of biological information on beneficial insects and natural enemies of agricultural pests. This cooperative effort between ARS and UAF represents the first manual on beneficial insects and natural enemies of pest...

  5. Polydnaviruses: Roles in insect pathology and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the more unusual groups of insect pathogens consists of members of the family Polydnaviridae, DNA insect viruses that live in mutual symbioses with their associated parasitoid wasp (Hymentoptera) carriers until they are injected into specific Lepidopteran hosts. Once inside this secondary hos...

  6. CHARACTERIZATION OF MICROBIAL GUT FLORA OF HETEROPTEROUS INSECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects harbor a robust complement of prokaryotes in their alimentary canals. These microorganisms may facilitate nutrient availability and utilization, detoxification of environmental toxins, or play other important roles in the insect's life history. Understanding insect-microorganism inter...

  7. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  8. Symbiont-mediated functions in insect hosts

    PubMed Central

    Su, Qi; Zhou, Xiaomao; Zhang, Youjun

    2013-01-01

    The bacterial endosymbionts occur in a diverse array of insect species and are usually rely within the vertical transmission from mothers to offspring. In addition to primary symbionts, plant sap-sucking insects may also harbor several diverse secondary symbionts. Bacterial symbionts play a prominent role in insect nutritional ecology by aiding in digestion of food or supplementing nutrients that insect hosts can’t obtain sufficient amounts from a restricted diet of plant phloem. Currently, several other ecologically relevant traits mediated by endosymbionts are being investigated, including defense toward pathogens and parasites, adaption to environment, influences on insect-plant interactions, and impact of population dynamics. Here, we review recent theoretical predictions and experimental observations of these traits mediated by endosymbionts and suggest that clarifying the roles of symbiotic microbes may be important to offer insights for ameliorating pest invasiveness or impact. PMID:23710278

  9. A call to insect scientists: Challenges and opportunities of managing insect communities under climate change

    USGS Publications Warehouse

    Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.

    2016-01-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  10. An Automated Flying-Insect-Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2005-01-01

    An automated flying-insect-detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect's wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing beat signatures are preprocessed (Fourier transformed) in real-time to display a periodic signal. These signals are sent to the end user where they are graphically displayed. All AFIDS data are pre-processed in the field with the use of a laptop computer equipped with LABVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation.

  11. Exaggerated trait growth in insects.

    PubMed

    Lavine, Laura; Gotoh, Hiroki; Brent, Colin S; Dworkin, Ian; Emlen, Douglas J

    2015-01-01

    Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait. PMID:25341090

  12. Energy scavenging from insect flight

    NASA Astrophysics Data System (ADS)

    Erkan Aktakka, Ethem; Kim, Hanseup; Najafi, Khalil

    2011-09-01

    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (Cotinis nitida) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm3, respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5-22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.

  13. The earliest known holometabolous insects.

    PubMed

    Nel, André; Roques, Patrick; Nel, Patricia; Prokin, Alexander A; Bourgoin, Thierry; Prokop, Jakub; Szwedo, Jacek; Azar, Dany; Desutter-Grandcolas, Laure; Wappler, Torsten; Garrouste, Romain; Coty, David; Huang, Diying; Engel, Michael S; Kirejtshuk, Alexander G

    2013-11-14

    The Eumetabola (Endopterygota (also known as Holometabola) plus Paraneoptera) have the highest number of species of any clade, and greatly contribute to animal species biodiversity. The palaeoecological circumstances that favoured their emergence and success remain an intriguing question. Recent molecular phylogenetic analyses have suggested a wide range of dates for the initial appearance of the Holometabola, from the Middle Devonian epoch (391 million years (Myr) ago) to the Late Pennsylvanian epoch (311 Myr ago), and Hemiptera (310 Myr ago). Palaeoenvironments greatly changed over these periods, with global cooling and increasing complexity of green forests. The Pennsylvanian-period crown-eumetabolan fossil record remains notably incomplete, particularly as several fossils have been erroneously considered to be stem Holometabola (Supplementary Information); the earliest definitive beetles are from the start of the Permian period. The emergence of the hymenopterids, sister group to other Holometabola, is dated between 350 and 309 Myr ago, incongruent with their current earliest record (Middle Triassic epoch). Here we describe five fossils--a Gzhelian-age stem coleopterid, a holometabolous larva of uncertain ordinal affinity, a stem hymenopterid, and early Hemiptera and Psocodea, all from the Moscovian age--and reveal a notable penecontemporaneous breadth of early eumetabolan insects. These discoveries are more congruent with current hypotheses of clade divergence. Eumetabola experienced episodes of diversification during the Bashkirian-Moscovian and the Kasimovian-Gzhelian ages. This cladogenetic activity is perhaps related to notable episodes of drying resulting from glaciations, leading to the eventual demise in Euramerica of coal-swamp ecosystems, evidenced by floral turnover during this interval. These ancient species were of very small size, living in the shadow of Palaeozoic-era 'giant' insects. Although these discoveries reveal unexpected Pennsylvanian

  14. New light shed on the oldest insect.

    PubMed

    Engel, Michael S; Grimaldi, David A

    2004-02-12

    Insects are the most diverse lineage of all life in numbers of species, and ecologically they dominate terrestrial ecosystems. However, how and when this immense radiation of animals originated is unclear. Only a few fossils provide insight into the earliest stages of insect evolution, and among them are specimens in chert from Rhynie, Scotland's Old Red Sandstone (Pragian; about 396-407 million years ago), which is only slightly younger than formations harbouring the earliest terrestrial faunas. The most well-known animal from Rhynie is the springtail Rhyniella praecursor (Entognatha; Collembola), long considered to be the oldest hexapod. For true insects (Ectognatha), the oldest records are two apparent wingless insects from later in the Devonian period of North America. Here we show, however, that a fragmentary fossil from Rhynie, Rhyniognatha hirsti, is not only the earliest true insect but may be relatively derived within basal Ectognatha. In fact, Rhyniognatha has derived characters shared with winged insects, suggesting that the origin of wings may have been earlier than previously believed. Regardless, Rhyniognatha indicates that insects originated in the Silurian period and were members of some of the earliest terrestrial faunas. PMID:14961119

  15. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  16. Insect prophenoloxidase: the view beyond immunity

    PubMed Central

    Lu, Anrui; Zhang, Qiaoli; Zhang, Jie; Yang, Bing; Wu, Kai; Xie, Wei; Luan, Yun-Xia; Ling, Erjun

    2014-01-01

    Insect prophenoloxidase (PPO) is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, β GRP, and C-type lectins), serine proteases, and serine protease inhibitors (serpins). Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO) oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F), can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects) and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review. PMID:25071597

  17. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  18. Prostaglandins and Their Receptors in Insect Biology

    PubMed Central

    Stanley, David; Kim, Yonggyun

    2011-01-01

    We treat the biological significance of prostaglandins (PGs) and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology. PMID:22654840

  19. An Automated Flying-Insect Detection System

    NASA Technical Reports Server (NTRS)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has

  20. FAQ: Insect Repellent Use and Safety

    MedlinePlus

    ... repellents? Always follow the recommendations appearing on the product label. EPA recommends the following when using insect repellents: ... skin and/or clothing (as directed on the product label). Do not apply repellents under your clothing. Never ...

  1. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  2. Microbiome influences on insect host vector competence

    PubMed Central

    Weiss, Brian

    2011-01-01

    Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes may influence their host’s ability to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector. PMID:21697014

  3. Selectivity of odorant receptors in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  4. Insect food aiming at Mars emigration

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Hashimoto, Hirofumi; Nagasaka, Sanako; Kuwayama, Akemi; Sofue, Megumi

    2012-07-01

    We study insect food aiming at Mars emigration.In space agriculture, insect is the important creature which we cannot miss.It is necessary for the pollination of the plant, and it is rich to protein and lipid as food.I reported that silkworm is an insect necessary for astroponics in particular last time.We make clothes using silk thread, and the pupa becomes the food.In addition, the clothes can make food as protein when we need not to use it. The bee is a very important insect in the space agriculture,too.We examined nutrition of silkworm, bee, grasshopper, snail and the white ant which are necessary for Mars emigration.We will introduce of good balance space foods.We will report many meal menu for Mars emigration.

  5. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  6. How to Find Insects Weathering the Winter.

    ERIC Educational Resources Information Center

    Brody, Jane

    1979-01-01

    Discusses how and where to find insects and other invertebrates in winter, as well as how to collect samples in order to watch those animals reappear in spring. Includes crickets, honey bees, mosquitoes, house flies, and butterflies and moths. (MA)

  7. A systematic nomenclature for the insect brain.

    PubMed

    Ito, Kei; Shinomiya, Kazunori; Ito, Masayoshi; Armstrong, J Douglas; Boyan, George; Hartenstein, Volker; Harzsch, Steffen; Heisenberg, Martin; Homberg, Uwe; Jenett, Arnim; Keshishian, Haig; Restifo, Linda L; Rössler, Wolfgang; Simpson, Julie H; Strausfeld, Nicholas J; Strauss, Roland; Vosshall, Leslie B

    2014-02-19

    Despite the importance of the insect nervous system for functional and developmental neuroscience, descriptions of insect brains have suffered from a lack of uniform nomenclature. Ambiguous definitions of brain regions and fiber bundles have contributed to the variation of names used to describe the same structure. The lack of clearly determined neuropil boundaries has made it difficult to document precise locations of neuronal projections for connectomics study. To address such issues, a consortium of neurobiologists studying arthropod brains, the Insect Brain Name Working Group, has established the present hierarchical nomenclature system, using the brain of Drosophila melanogaster as the reference framework, while taking the brains of other taxa into careful consideration for maximum consistency and expandability. The following summarizes the consortium's nomenclature system and highlights examples of existing ambiguities and remedies for them. This nomenclature is intended to serve as a standard of reference for the study of the brain of Drosophila and other insects. PMID:24559671

  8. How-to-Do-It: Insect Singularis.

    ERIC Educational Resources Information Center

    Brett, William J.

    1989-01-01

    Presents an exercise which was designed to help students read material and follow directions more appropriately when performing laboratory activities. Provides a list of materials, instructions, comments, vocabulary words, and a diagrammatical sketch of an insect. (RT)

  9. Principles of Insect Identification. MP-20.

    ERIC Educational Resources Information Center

    Lawson, Fred A.; Burkhardt, Chris C.

    This document provides information for the complete classification of members of the phylum Arthropoda. Both major and minor insect orders are discussed relative to their anatomical characteristics and importance. (CS)

  10. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  11. PRACTICAL SYNTHESES OF SELECTED INSECT PHEROMONES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practical examples of insect pheromone synthesis, from our laboratory will be presented. Examples of key reactions in synthetic pathways include: Regiospecific epoxidation (cereal leaf beetle), kinetic vs. thermodynamic control of cycloheptanone dimethylation (Aphthona flea beetles), in situ oxida...

  12. Odorant-binding proteins in insects.

    PubMed

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  13. Improving Cold Storage of Insects with Dietary Changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining healthy insect colonies is costly regardless of whether those insects are for research or commercial use. To reduce cost, it is highly desirable to preserve insects at reduced temperatures for short- and long-term periods with a minimal negative impact on insect quality. Recent investi...

  14. Genetics and Biochemistry of Insect Resistance in Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are a major concern for maize production worldwide. Host plant resistance to insects involves a number of chemical and biochemical factors that limit but rarely eliminate insect damage. Most chemical and many biochemical factors involved in resistance to insects are synthesized independent...

  15. Insect cell culture and applications to research and pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building on earlier research, insect cell culture began with the successful establishment of one cell line from pupal ovarian tissue. The field has grown to the extent that now over 500 insect cell lines have been established from many insect species representing numerous insect Orders and from seve...

  16. IMp: The customizable LEGO® Pinned Insect Manipulator

    PubMed Central

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  17. Intraspecific body size frequency distributions of insects.

    PubMed

    Gouws, E Jeanne; Gaston, Kevin J; Chown, Steven L

    2011-01-01

    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n ≥ 100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa. PMID:21479214

  18. Intraspecific Body Size Frequency Distributions of Insects

    PubMed Central

    Gouws, E. Jeanne; Gaston, Kevin J.; Chown, Steven L.

    2011-01-01

    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n≥100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa. PMID:21479214

  19. Factors affecting the sticking of insects on modified aircraft wings

    NASA Technical Reports Server (NTRS)

    Yi, O.; Chan, R.; Eiss, N. S.; Pingali, U.; Wightman, J. P.

    1988-01-01

    The adhesion of insects to aircraft wings is studied. Insects were collected in road tests in past studies and a large experimental error was introduced caused by the variability of insect flux. The presence of such errors has been detected by studying the insect distribution across an aluminum-strip covered half-cylinder mounted on the top of a car. After a nonuniform insect distribution (insect flux) was found from three road tests, a new arrangement of samples was developed. The feasibility of coating aircraft wing surfaces with polymers to reduce the number of insects sticking onto the surfaces was studied using fluorocarbon elastomers, styrene butadiene rubbers, and Teflon.

  20. Linking energetics and overwintering in temperate insects.

    PubMed

    Sinclair, Brent J

    2015-12-01

    Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment. PMID:26615721

  1. Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs

    PubMed Central

    Garwood, Russell; Ross, Andrew; Sotty, Daniel; Chabard, Dominique; Charbonnier, Sylvain; Sutton, Mark; Withers, Philip J.

    2012-01-01

    Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One–Anebos phrixos gen. et sp. nov.–is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles’ palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work. PMID:23049858

  2. Tomographic reconstruction of neopterous carboniferous insect nymphs.

    PubMed

    Garwood, Russell; Ross, Andrew; Sotty, Daniel; Chabard, Dominique; Charbonnier, Sylvain; Sutton, Mark; Withers, Philip J

    2012-01-01

    Two new polyneopteran insect nymphs from the Montceau-les-Mines Lagerstätte of France are presented. Both are preserved in three dimensions, and are imaged with the aid of X-ray micro-tomography, allowing their morphology to be recovered in unprecedented detail. One-Anebos phrixos gen. et sp. nov.-is of uncertain affinities, and preserves portions of the antennae and eyes, coupled with a heavily spined habitus. The other is a roachoid with long antennae and chewing mouthparts very similar in form to the most generalized mandibulate mouthparts of extant orthopteroid insects. Computer reconstructions reveal limbs in both specimens, allowing identification of the segments and annulation in the tarsus, while poorly developed thoracic wing pads suggest both are young instars. This work describes the morphologically best-known Palaeozoic insect nymphs, allowing a better understanding of the juveniles' palaeobiology and palaeoecology. We also consider the validity of evidence from Palaeozoic juvenile insects in wing origin theories. The study of juvenile Palaeozoic insects is currently a neglected field, yet these fossils provide direct evidence on the evolution of insect development. It is hoped this study will stimulate a renewed interest in such work. PMID:23049858

  3. Insect Pathogenic Fungi as Endophytes.

    PubMed

    Moonjely, S; Barelli, L; Bidochka, M J

    2016-01-01

    In this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF. The discussion of the evolution of EIPF challenges a view that these fungi were first and foremost insect pathogens that eventually evolved to colonize plants. Phylogenetic evidence shows that the lineages of EIPF are most closely related to grass endophytes that diverged c. 100MYA. We discuss the relationship between genes involved in "insect pathogenesis" and those involved in "endophytism" and provide examples of genes with potential importance in lifestyle transitions toward insect pathogenicity. That is, some genes for insect pathogenesis may have been coopted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. The interactions of EIPF with their host plants are discussed in some detail. The genetic basis for rhizospheric competence, plant communication, and nutrient exchange is examined and we highlight, with examples, the benefits of EIPF to plants, and the potential reservoir of secondary metabolites hidden within these beneficial symbioses. PMID:27131324

  4. 75 FR 47592 - Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ..., 2007 (72 FR 32647) (FRL-8135-9), of national experts in which the revisions made in June 2006, were... AGENCY Final Test Guideline; Product Performance of Skin-applied Insect Repellents of Insect and Other... Product Performance of Skin-applied Insect Repellents of Insect and Other Arthropods Test...

  5. Tn5 as an insect gene vector.

    PubMed

    Rowan, Kathryn H; Orsetti, Jamison; Atkinson, Peter W; O'Brochta, David A

    2004-07-01

    The purpose of this study was to explore alternatives to insect-derived transposable elements as insect gene vectors with the intention of improving existing insect transgenesis methods. The mobility properties of the bacterial transposon, Tn5, were tested in mosquitoes using a transient transposable element mobility assay and by attempting to create transgenic insects. Tn5 synaptic complexes were assembled in vitro in the absence of Mg(2+) and co-injected with a target plasmid into developing yellow fever mosquito, Aedes aegypti, embryos. Target plasmids recovered from embryos a day later were screened for the presence of Tn5. Recombinants (transposition events) were found at a frequency of 1.2 x 10(-3). Some transposition events did not appear to be associated with canonical 9 bp direct duplications at the site of insertion and also were associated with either deletions or rearrangements. A Tn5 element containing the brain-specific transgene, 3 x P3DsRed, was assembled into synaptic complexes in vitro and injected into pre-blastoderm embryos of Ae. aegypti. Of the approximately 900 embryos surviving injection and developing into adults, two produced transgenic progeny. Both transgenic events involved the co-integrations of approximately five elements resulting in nested and tandem arrayed Tn5::3 x P3DsRed elements. This study extends the known host range of Tn5 to insects and makes available to insect biologists and others another eukaryotic genome-manipulation tool. The hyperactivity of synaptic complexes may be responsible for the unusual clustering of elements and managing this aspect of the element's behavior will be important in future applications of this technology to insects. PMID:15242711

  6. Quantifying the movement of multiple insects using an optical insect counter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image processing software to count numbers of flying insects crossing a vertical plane defined by the light sheet. The system also allows ...

  7. Residual efficacy of the insect growth regulator pyriproxyfen for control of stored product insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The insect growth regulator pyriproxyfen is registered in the USA as an aerosol and as a surface treatment to control stored product insects. Field trials with the aerosol show that residues from an application of pyrethrin + pyriproxyfen gave residual control of the red flour beetle, Tribolium cast...

  8. Quantifying the movement of multiple insects using an optical insect counter.

    PubMed

    Hoffmann, Wesley C; Jank, Philip C; Klun, Jerome A; Fritz, Bradley K

    2010-06-01

    An optical insect counter (OIC) was designed and tested. The new system integrated a line-scan camera and a vertical light sheet along with data collection and image-processing software to count flying insects crossing a vertical plane defined by the light sheet. The system also discriminates each insect by its position along the horizontal length defined by the light sheet. The system was successfully tested with a preliminary experimental protocol for determining whether groups of flying mosquitoes preferred or avoided attractants and repellents in a flight tunnel. The OIC counted the number of mosquitoes that crossed the light sheet and recorded the horizontal position and time each insect passed through the light sheet. The system provides a straightforward and reliable method for measuring and recording spatial and temporal information for insects that pass through an established plane. PMID:20649126

  9. Naturally occurring insect growth regulators. II. Screening of insect and plant extracts as insect juvenile hormone mimics.

    PubMed

    Jacobson, M; Redfern, R E; Mills, G D

    1975-01-01

    Ethereal extracts prepared from the larvae, pupae, or eggs of 10 species of insects and from various parts of 343 species of higher plants were screened for juvenilizing effects against Tenebrio molitor and Oncopeltus fasciatus. Activity in both species was shown by an extract of the larvae of the stable fly, Stomoxys calcitrans, whereas an extract of the pupae was active in O. fasiatus only. Extracts of two plant species (Echinacea angustifolia roots and Chamaecyparis lawsoniana seeds) showed high juvenilizing activity in T. MOLITOR, AND EXtracts of five plant species (Clethra alnifolia stems, leaves, and fruits, Sassafras albidum roots and root bark, Eucalyptus camaldulensis stems and bark, Pinus rigida twigs and leaves, and Iris douglasiana roots, stems, and fruits) were highly active in O. fasciatus an extract of Tsuga canadensis leaves showed lower activity in this insect. Extracts of 16 species of plants showed high insecticidal activity (mortality) in O. fasciatus but lacked juvenilizing properties in both species of test insects. PMID:1221244

  10. Magnetoreception in eusocial insects: an update

    PubMed Central

    Wajnberg, Eliane; Acosta-Avalos, Daniel; Alves, Odivaldo Cambraia; de Oliveira, Jandira Ferreira; Srygley, Robert B.; Esquivel, Darci M. S.

    2010-01-01

    Behavioural experiments for magnetoreception in eusocial insects in the last decade are reviewed. Ants and bees use the geomagnetic field to orient and navigate in areas around their nests and along migratory paths. Bees show sensitivity to small changes in magnetic fields in conditioning experiments and when exiting the hive. For the first time, the magnetic properties of the nanoparticles found in eusocial insects, obtained by magnetic techniques and electron microscopy, are reviewed. Different magnetic oxide nanoparticles, ranging from superparamagnetic to multi-domain particles, were observed in all body parts, but greater relative concentrations in the abdomens and antennae of honeybees and ants have focused attention on these segments. Theoretical models for how these specific magnetosensory apparatuses function have been proposed. Neuron-rich ant antennae may be the most amenable to discovering a magnetosensor that will greatly assist research into higher order processing of magnetic information. The ferromagnetic hypothesis is believed to apply to eusocial insects, but interest in a light-sensitive mechanism is growing. The diversity of compass mechanisms in animals suggests that multiple compasses may function in insect orientation and navigation. The search for magnetic compasses will continue even after a magnetosensor is discovered in eusocial insects. PMID:20106876