Science.gov

Sample records for inspiratory muscle strength

  1. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  2. Determinants of inspiratory muscle strength in healthy humans.

    PubMed

    Brown, Peter I; Johnson, Michael A; Sharpe, Graham R

    2014-06-01

    We investigated (1) the relationship between the baseline and inspiratory muscle training (IMT) induced increase in maximal inspiratory pressure (P(I,max)) and (2) the relative contributions of the inspiratory chest wall muscles and the diaphragm (P(oes)/P(di)) to P(I,max) prior to and following-IMT. Experiment 1: P(I,max) was assessed during a Müeller manoeuvre before and after 4-wk IMT (n=30). Experiment 2: P(I,max) and the relative contribution of the inspiratory chest wall muscles to the diaphragm (P(oes)/P(di)) were assessed during a Müeller manoeuvre before and after 4-wk IMT (n=20). Experiment 1: P(I,max) increased 19% (P<0.01) post-IMT and was correlated with baseline P(I,max) (r=-0.373, P<0.05). Experiment 2: baseline P(I,max) was correlated with P(oe)/P(di) (r=0.582, P<0.05) and after IMT PI,max increased 22% and Poe/Pdi increased 5% (P<0.05). In conclusion, baseline P(I,max) and the contribution of the chest wall inspiratory muscles relative to the diaphragm affect, in part, baseline and IMT-induced P(I,max). Great care should be taken when designing future IMT studies to ensure parity in the between-subject baseline P(I,max). PMID:24598814

  3. Pre-operative inspiratory muscle training preserves postoperative inspiratory muscle strength following major abdominal surgery – a randomised pilot study

    PubMed Central

    Kulkarni, SR; Fletcher, E; McConnell, AK; Poskitt, KR; Whyman, MR

    2010-01-01

    INTRODUCTION The aim of this pilot study was to assess the effect of pre-operative inspiratory muscle training (IMT) on respiratory variables in patients undergoing major abdominal surgery. PATIENTS AND METHODS Respiratory muscle strength (maximum inspiratory [MIP] and expiratory [MEP] mouth pressure) and pulmonary functions were measured at least 2 weeks before surgery in 80 patients awaiting major abdominal surgery. Patients were then allocated randomly to one of four groups (Group A, control; Group B, deep breathing exercises; Group C, incentive spirometry; Group D, specific IMT). Patients in groups B, C and D were asked to train twice daily, each session lasting 15 min, for at least 2 weeks up to the day before surgery. Outcome measurements were made immediately pre-operatively and postop-eratively. RESULTS In groups A, B and C, MIP did not increase from baseline to pre-operative assessments. In group D, MIP increased from 51.5 cmH2O (median) pre-training to 68.5 cmH2O (median) post-training pre-operatively (P < 0.01). Postoperatively, groups A, B and C showed a fall in MIP from baseline (P < 0.01, P < 0.01) and P = 0.06, respectively). No such significant reduction in postoperative MIP was seen in group D (P = 0.36). CONCLUSIONS Pre-operative specific IMT improves MIP pre-operatively and preserves it postoperatively. Further studies are required to establish if this is associated with reduced pulmonary complications. PMID:20663275

  4. [Evaluation of the inspiratory muscle strength using the nasal pressure of the sniff].

    PubMed

    Fitting, J W; Héritier, F; Uldry, C

    1996-10-01

    The measurement of oesophageal pressure during maximal sniffs (Poes sniff) is useful to assess inspiratory muscle strength. The aim of this study was to develop a noninvasive test of inspiratory muscle strength based on the sniff manoeuvre. The sniff nasal inspiratory pressure (SNIP) was measured through a plug occluding one nostril during sniffs performed through the contralateral nostril. In 10 normal subjects and in 12 patients with neuromuscular or skeletal disorders, the SNIP reliably reflected the Poes sniff. Nasal mucosa congestion was induced in four normal subjects by nebulization of increasing doses of histamine. The SNIP accurately reflected Poes sniff when nasal congestion was moderate, but failed to do so when congestion was severe. Reference values of SNIP were established in a group of 160 healthy subjects aged 20-80 years. For both men and women, SNIP was negatively correlated with age, and was similar in the sitting and in the supine positions. SNIP was higher than maximal inspiratory pressure (P1 max) in most subjects, but the wide limits of agreement showed that these two methods are not interchangeable but complementary. The SNIP represents a useful noninvasive test of inspiratory muscle strength. PMID:8999474

  5. [The effects of pulmonary rehabilitation combined with inspiratory muscle training on pulmonary function and inspiratory muscle strength in elderly patients with chronic obstructive pulmonary disease].

    PubMed

    Sudo, E; Ohga, E; Matsuse, T; Teramoto, S; Nagase, T; Katayama, H; Takizawa, H; Tanaka, M; Kikuchi, N; Kakurai, S; Fukuchi, Y; Ouchi, Y

    1997-11-01

    It has been suggested that pulmonary rehabilitation compined with inspiratory muscle training (IMT) might improve pulmonary function and respiratory muscle strength in elderly patients with chronic obstructive pulmonary disease (COPD). To test this hypothesis, inspiratory muscle strength (PImax), expiratory muscle strength (PEmax) and resting pulmonary function were measured in 13 elderly patients with COPD (aged 70.3 +/- 2.7 years). Inspiratory muscle training (IMT) was performed for 15 min twice a day, using a pressure threshold device, for a total of 12 weeks. The inspiratory threshold was set at 15% of maximal inspiratory pressure (PImax) for each individual. Pulmonary rehabilitation was performed for 12-h sessions over a 12-week period. Patients with COPD were assigned randomly to two groups: pulmonary rehabilitation combined with IMT (group A) (n = 7), and conventional pulmonary rehabilitation only (group B) (n = 6). Functional residual capacity (FRC) decreased significantly from 4.3 +/- 0.4 L at baseline to 3.9 +/- 0.4 L after rehabilitation (p < 0.01), Vp significantly increased from 4.6 +/- 0.8 L/sec at baseline to 5.1 +/- 0.7 L/sec after rehabilitation (p < 0.05) and the PImax increased significantly from 51.5 +/- 5.4 cmH2O at baseline to 80.9 +/- 7.0 cmH2O after rehabilitation (p < 0.02) in group A. However, these variables did not change in group B. There was no improvement in the 10-minutes walking distance of group A, but there was a significant increase in that of group B. It can be concluded that pulmonary rehabilitation combined with IMT improves pulmonary function and inspiratory muscle strength in elderly patients with COPD. PMID:9483953

  6. Inspiratory muscle training: integrative review.

    PubMed

    Padula, Cynthia A; Yeaw, Evelyn

    2006-01-01

    This article provides a critical review of inspiratory muscle training (IMT) in chronic obstructive pulmonary disease (COPD). Although extensive research on IMT has accumulated, its benefits have been debated, primarily because of methodological limitations of studies. Using relevant key words, multiple databases were searched from 1966. Selected studies used PImax (maximal inspiratory pressure) as an outcome variable. Overall, research demonstrated that a standard protocol of 30% or higher for a duration of 20 to 30 minutes per day for 10 to 12 weeks improves dyspnea and inspiratory strength and endurance with either inspiratory resistive or inspiratory threshold training. Regardless of method, IMT protocols for people with COPD and inspiratory muscle weakness and dyspnea are generally safe, feasible, and effective. Patient selectivity and study of subgroups are recommended. PMID:17190116

  7. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial

    PubMed Central

    2011-01-01

    Introduction Most patients are readily liberated from mechanical ventilation (MV) support, however, 10% - 15% of patients experience failure to wean (FTW). FTW patients account for approximately 40% of all MV days and have significantly worse clinical outcomes. MV induced inspiratory muscle weakness has been implicated as a contributor to FTW and recent work has documented inspiratory muscle weakness in humans supported with MV. Methods We conducted a single center, single-blind, randomized controlled trial to test whether inspiratory muscle strength training (IMST) would improve weaning outcome in FTW patients. Of 129 patients evaluated for participation, 69 were enrolled and studied. 35 subjects were randomly assigned to the IMST condition and 34 to the SHAM treatment. IMST was performed with a threshold inspiratory device, set at the highest pressure tolerated and progressed daily. SHAM training provided a constant, low inspiratory pressure load. Subjects completed 4 sets of 6-10 training breaths, 5 days per week. Subjects also performed progressively longer breathing trials daily per protocol. The weaning criterion was 72 consecutive hours without MV support. Subjects were blinded to group assignment, and were treated until weaned or 28 days. Results Groups were comparable on demographic and clinical variables at baseline. The IMST and SHAM groups respectively received 41.9 ± 25.5 vs. 47.3 ± 33.0 days of MV support prior to starting intervention, P = 0.36. The IMST and SHAM groups participated in 9.7 ± 4.0 and 11.0 ± 4.8 training sessions, respectively, P = 0.09. The SHAM group's pre to post-training maximal inspiratory pressure (MIP) change was not significant (-43.5 ± 17.8 vs. -45.1 ± 19.5 cm H2O, P = 0.39), while the IMST group's MIP increased (-44.4 ± 18.4 vs. -54.1 ± 17.8 cm H2O, P < 0.0001). There were no adverse events observed during IMST or SHAM treatments. Twenty-five of 35 IMST subjects weaned (71%, 95% confidence interval (CI) = 55% to 84

  8. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD

    PubMed Central

    Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Demir, Yasemin Parlak; Dalkilinç, Murat; Bozkurt, Bülent

    2016-01-01

    Objective The objective of this study was to investigate the immediate effect of manual therapy (MT) on respiratory functions and inspiratory muscle strength in patients with COPD. Participants and methods Thirty patients with severe COPD (eight females and 22 males; mean age 62.4±6.8 years) referred to pulmonary physiotherapy were included in this study. The patients participated in a single session of MT to measure the short-term effects. The lung function was measured using a portable spirometer. An electronic pressure transducer was used to measure respiratory muscle strength. Heart rate, breathing frequency, and oxygen saturation were measured with a pulse oximeter. For fatigue and dyspnea perception, the modified Borg rating of perceived exertion scale was used. All measurements were taken before and immediately after the first MT session. The ease-of-breathing visual analog scale was used for rating patients’ symptoms subjectively during the MT session. Results There was a significant improvement in the forced expiratory volume in the first second, forced vital capacity, and vital capacity values (P<0.05). The maximal inspiratory pressure and maximal expiratory pressure values increased significantly after MT, compared to the pre-MT session (P<0.05). There was a significant decrease in heart rate, respiratory rate (P<0.05), and dyspnea and fatigue perception (P<0.05). Conclusion A single MT session immediately improved pulmonary function, inspiratory muscle strength, and oxygen saturation and reduced dyspnea, fatigue, and heart and respiratory rates in patients with severe COPD. MT should be added to pulmonary rehabilitation treatment as a new alternative that is fast acting and motivating in patients with COPD. PMID:27382271

  9. Inspiratory muscle training in Morquio's syndrome: a case study.

    PubMed

    Savci, Sema; Ozturk, Melda; Inal-Ince, Deniz; Gultekin, Zuhal; Arikan, Hulya; Sivri, H Serap Kalkanoglu

    2006-12-01

    We reported a case of MPS IV A presented with dyspnea on exertion and respiratory muscle weakness. The patient underwent inspiratory muscle training (IMT) using threshold loading for 18 weeks. After 6 weeks of initial IMT, aerobic exercise training consisting of walking was added to the treatment program. Inspiratory muscle strength increased 70%, and 6-minute walk test (6MWT) distance increased to 47 m. With the inclusion of aerobic exercise training, additional increases in inspiratory muscle strength (7%) and 6MWT distance (26.5 m) were obtained. Exertional dyspnea improved from severe to slight after 6 weeks of IMT, and to very slight after additional 12 weeks of combined aerobic training and IMT. Health-related quality of life improved especially in social function, emotional function, vitality, and physical role. In conclusion, inspiratory muscles can be trained with the improvement of muscle strength in a patient with Morquio's syndrome. PMID:16998925

  10. Effects of Inspiratory and Expiratory Muscle Training in Normal Subjects

    PubMed Central

    Kurosawa, Hajime; Kohzuki, Masahiro

    2005-01-01

    The present study aimed to clarify the effects of inspiratory muscle training (IMT) and expiratory muscle training (EMT) on ventilatory muscle strength, pulmonary function and responses during exercise testing. Young healthy women were randomly assigned to 3 groups: IMT (n=16); EMT (n=16); or untrained normal controls (NC, n=8). Subjects in the IMT and EMT groups trained for 15 minutes twice daily over 2 weeks at loads of 30% maximal inspiratory and expiratory muscle strength, respectively. Ventilatory muscle strength (maximal inspiratory and expiratory muscle strength; PImax and PEmax, respectively), pulmonary function and progressive exercise testing was performed. Both PImax and PEmax increased in the IMT group, and PEmax increased in the EMT group. Neither trained group demonstrated any change in pulmonary function or peak values during exercise testing. In the IMT group, exercise-induced increases in heart rate, oxygen uptake (VO2/kg) and rating of perceived exertion (RPE) decreased with training, as did increases in VO2/kg and RPE in the EMT group. The increased ventilatory muscle strength in both IMT and EMT groups might improve ventilatory efficacy during exercise, and increased inspiratory muscle strength might facilitate oxygen delivery through improved circulatory responses. PMID:25792941

  11. Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes.

    PubMed

    Ramirez-Sarmiento, Alba; Orozco-Levi, Mauricio; Guell, Rosa; Barreiro, Esther; Hernandez, Nuria; Mota, Susana; Sangenis, Merce; Broquetas, Joan M; Casan, Pere; Gea, Joaquim

    2002-12-01

    The present study was aimed at evaluating the effects of a specific inspiratory muscle training protocol on the structure of inspiratory muscles in patients with chronic obstructive pulmonary disease. Fourteen patients (males, FEV1, 24 +/- 7% predicted) were randomized to either inspiratory muscle or sham training groups. Supervised breathing using a threshold inspiratory device was performed 30 minutes per day, five times a week, for 5 consecutive weeks. The inspiratory training group was subjected to inspiratory loading equivalent to 40 to 50% of their maximal inspiratory pressure. Biopsies from external intercostal muscles and vastus lateralis (control muscle) were taken before and after the training period. Muscle samples were processed for morphometric analyses using monoclonal antibodies against myosin heavy chain isoforms I and II. Increases in both the strength and endurance of the inspiratory muscles were observed in the inspiratory training group. This improvement was associated with increases in the proportion of type I fibers (by approximately 38%, p < 0.05) and in the size of type II fibers (by approximately 21%, p < 0.05) in the external intercostal muscles. No changes were observed in the control muscle. The study demonstrates that inspiratory training induces a specific functional improvement of the inspiratory muscles and adaptive changes in the structure of external intercostal muscles. PMID:12406842

  12. The effect of exercise training with an additional inspiratory load on inspiratory muscle fatigue and time-trial performance.

    PubMed

    McEntire, Serina J; Smith, Joshua R; Ferguson, Christine S; Brown, Kelly R; Kurti, Stephanie P; Harms, Craig A

    2016-08-01

    The purpose was to determine the effect of moderate-intensity exercise training (ET) on inspiratory muscle fatigue (IMF) and if an additional inspiratory load during ET (ET+IL) would further improve inspiratory muscle strength, IMF, and time-trial performance. 15 subjects were randomly divided to ET (n=8) and ET+IL groups (n=7). All subjects completed six weeks of exercise training three days/week at ∼70%V̇O2peak for 30min. The ET+IL group breathed through an inspiratory muscle trainer (15% PImax) during exercise. 5-mile, and 30-min time-trials were performed pre-training, weeks three and six. Inspiratory muscle strength increased (p<0.05) for both groups to a similar (p>0.05) extent. ET and ET+IL groups improved (p<0.05) 5-mile time-trial performance (∼10% and ∼18%) and the ET+IL group was significantly faster than ET at week 6. ET and ET+IL groups experienced less (p<0.05) IMF compared to pre-training following the 5-mile time-trial. In conclusion, these data suggest ET leads to less IMF, ET+IL improves inspiratory muscle strength and IMF, but not different than ET alone. PMID:27195511

  13. Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise.

    PubMed

    Segizbaeva, M O; Timofeev, N N; Donina, Zh A; Kur'yanovich, E N; Aleksandrova, N P

    2015-01-01

    The aim of this study was to assess the effect of inspiratory muscle training (IMT) on resistance to fatigue of the diaphragm (D), parasternal (PS), sternocleidomastoid (SCM) and scalene (SC) muscles in healthy humans during exhaustive exercise. Daily inspiratory muscle strength training was performed for 3 weeks in 10 male subjects (at a pressure threshold load of 60% of maximal inspiratory pressure (MIP) for the first week, 70% of MIP for the second week, and 80% of MIP for the third week). Before and after training, subjects performed an incremental cycle test to exhaustion. Maximal inspiratory pressure and EMG-analysis served as indices of inspiratory muscle fatigue assessment. The before-to-after exercise decreases in MIP and centroid frequency (fc) of the EMG (D, PS, SCM, and SC) power spectrum (P<0.05) were observed in all subjects before the IMT intervention. Such changes were absent after the IMT. The study found that in healthy subjects, IMT results in significant increase in MIP (+18%), a delay of inspiratory muscle fatigue during exhaustive exercise, and a significant improvement in maximal work performance. We conclude that the IMT elicits resistance to the development of inspiratory muscles fatigue during high-intensity exercise. PMID:25248344

  14. Inspiratory muscle training in the patient with neuromuscular disease.

    PubMed

    McCool, F D; Tzelepis, G E

    1995-11-01

    Pulmonary complications due to respiratory muscle dysfunction are commonly a source of morbidity and mortality in patients with neuromuscular diseases. This review discusses the adverse effects of respiratory muscle weakness on pulmonary mechanics and examines the role that inspiratory muscle training may play in reversing pulmonary dysfunction in these individuals. In asymptomatic persons, it is well established that the inspiratory muscles can be trained to increase both force and endurance. In patients with neuromuscular diseases, the effects of training protocols on force and endurance are more controversial. This article reviews seven studies that have evaluated respiratory muscle training in a total of 75 patients with varied neuromuscular disorders. Training regimens included breathing through inspiratory resistive loads and isocapnic hyperpnea. Despite methodologic differences among studies, investigators have generally shown that the inspiratory muscles are similar to other skeletal muscle groups in that they can be trained for both force and endurance in these patients. The training-related improvements in inspiratory muscle performance are more pronounced in patients who are less severely affected by their disease. In those patients who have disease to the extent that they are already retaining carbon dioxide, there is little change in force or endurance with training. In these individuals, the inspiratory muscles may already be working at a level sufficiently severe to provide a training stimulus with each breath. No adverse effects of inspiratory muscle training were reported. Inspiratory muscle training can improve force and endurance in patients with neuromuscular weakness.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7480122

  15. High-intensity inspiratory muscle training in COPD.

    PubMed

    Hill, K; Jenkins, S C; Philippe, D L; Cecins, N; Shepherd, K L; Green, D J; Hillman, D R; Eastwood, P R

    2006-06-01

    The aim of the present study was to investigate the effects of an interval-based high-intensity inspiratory muscle training (H-IMT) programme on inspiratory muscle function, exercise capacity, dyspnoea and health-related quality of life (QoL) in subjects with chronic obstructive pulmonary disease. A double-blind randomised controlled trial was performed. Sixteen subjects (11 males, mean forced expiratory volume in one second (FEV(1)) 37.4+/-12.5%) underwent H-IMT performed at the highest tolerable inspiratory threshold load (increasing to 101% of baseline maximum inspiratory pressure). Seventeen subjects (11 males, mean FEV(1 )36.5+/-11.5%) underwent sham inspiratory muscle training (S-IMT) at 10% of maximum inspiratory pressure. Training took place three times a week for 8 weeks and was fully supervised. Pre- and post-training measurements of lung function, maximum inspiratory pressure, maximum threshold pressure, exercise capacity, dyspnoea and QoL (Chronic Respiratory Disease Questionnaire; CRDQ) were obtained. H-IMT increased maximum inspiratory pressure by 29%, maximum threshold pressure by 56%, 6-min walk distance by 27 m, and improved dyspnoea and fatigue (CRDQ) by 1.4 and 0.9 points per item, respectively. These changes were significantly greater than any seen following S-IMT. In conclusion, high-intensity inspiratory muscle training improves inspiratory muscle function in subjects with moderate-to-severe chronic obstructive pulmonary disease, yielding meaningful reductions in dyspnoea and fatigue. PMID:16772388

  16. Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.

    PubMed

    Özdal, Mustafa

    2016-06-15

    The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (p<0.05). These results show that inspiratory muscle warm-up improved the pulmonary functions. The mechanisms responsible for these improvements are probably associated with the concomitant increase in the inspiratory muscle strength, and the cooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates. PMID:26903486

  17. The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue

    PubMed Central

    McConnell, Alison K; Lomax, Michelle

    2006-01-01

    The purpose of this study was to assess the influence of the work history of the inspiratory muscles upon the fatigue characteristics of the plantar flexors (PF). We hypothesized that under conditions where the inspiratory muscle metaboreflex has been elicited, PF fatigue would be hastened due to peripheral vasoconstriction. Eight volunteers undertook seven test conditions, two of which followed 4 week of inspiratory muscle training (IMT). The inspiratory metaboreflex was induced by inspiring against a calibrated flow resistor. We measured torque and EMG during isometric PF exercise at 85% of maximal voluntary contraction (MVC) torque. Supramaximal twitches were superimposed upon MVC efforts at 1 min intervals (MVCTI); twitch interpolation assessed the level of central activation. PF was terminated (Tlim) when MVCTI was <50% of baseline MVC. PF Tlim was significantly shorter than control (9.93 ± 1.95 min) in the presence of a leg cuff inflated to 140 mmHg (4.89 ± 1.78 min; P = 0.006), as well as when PF was preceded immediately by fatiguing inspiratory muscle work (6.28 ± 2.24 min; P = 0.009). Resting the inspiratory muscles for 30 min restored the PF Tlim to control. After 4 weeks, IMT, inspiratory muscle work at the same absolute intensity did not influence PF Tlim, but Tlim was significantly shorter at the same relative intensity. The data are the first to provide evidence that the inspiratory muscle metaboreflex accelerates the rate of calf fatigue during PF, and that IMT attenuates this effect. PMID:16973699

  18. Inspiratory muscle training to enhance recovery from mechanical ventilation: a randomised trial

    PubMed Central

    Bissett, Bernie M; Leditschke, I Anne; Neeman, Teresa; Boots, Robert; Paratz, Jennifer

    2016-01-01

    Background In patients who have been mechanically ventilated, inspiratory muscles remain weak and fatigable following ventilatory weaning, which may contribute to dyspnoea and limited functional recovery. Inspiratory muscle training may improve inspiratory muscle strength and endurance following weaning, potentially improving dyspnoea and quality of life in this patient group. Methods We conducted a randomised trial with assessor-blinding and intention-to-treat analysis. Following 48 hours of successful weaning, 70 participants (mechanically ventilated ≥7 days) were randomised to receive inspiratory muscle training once daily 5 days/week for 2 weeks in addition to usual care, or usual care (control). Primary endpoints were inspiratory muscle strength and fatigue resistance index (FRI) 2 weeks following enrolment. Secondary endpoints included dyspnoea, physical function and quality of life, post-intensive care length of stay and in-hospital mortality. Results 34 participants were randomly allocated to the training group and 36 to control. The training group demonstrated greater improvements in inspiratory strength (training: 17%, control: 6%, mean difference: 11%, p=0.02). There were no statistically significant differences in FRI (0.03 vs 0.02, p=0.81), physical function (0.25 vs 0.25, p=0.97) or dyspnoea (−0.5 vs 0.2, p=0.22). Improvement in quality of life was greater in the training group (14% vs 2%, mean difference 12%, p=0.03). In-hospital mortality was higher in the training group (4 vs 0, 12% vs 0%, p=0.051). Conclusions Inspiratory muscle training following successful weaning increases inspiratory muscle strength and quality of life, but we cannot confidently rule out an associated increased risk of in-hospital mortality. Trial registration number ACTRN12610001089022, results. PMID:27257003

  19. Preoperative Ambulatory Inspiratory Muscle Training in Patients Undergoing Esophagectomy. A Pilot Study

    PubMed Central

    Agrelli, Taciana Freitas; de Carvalho Ramos, Marisa; Guglielminetti, Rachel; Silva, Alex Augusto; Crema, Eduardo

    2012-01-01

    A major decline in pulmonary function is observed on the first day after upper abdominal surgery. This decline can reduce vital and inspiratory capacity and can culminate in restrictive lung diseases that cause atelectasis, reduced diaphragm movement, and respiratory insufficiency. The objective of this study was to evaluate the efficacy of preoperative ambulatory respiratory muscle training in patients undergoing esophagectomy. The sample consisted of 20 adult patients (14 men [70%] and 6 women [30%]) with a diagnosis of advanced chagasic megaesophagus. A significant increase in maximum inspiratory pressure was observed after inspiratory muscle training when compared with baseline values (from −55.059 ± 18.359 to −76.286 ± 16.786). Preoperative ambulatory inspiratory muscle training was effective in increasing respiratory muscle strength in patients undergoing esophagectomy and contributed to the prevention of postoperative complications. PMID:23113846

  20. Preoperative ambulatory inspiratory muscle training in patients undergoing esophagectomy. A pilot study.

    PubMed

    Agrelli, Taciana Freitas; de Carvalho Ramos, Marisa; Guglielminetti, Rachel; Silva, Alex Augusto; Crema, Eduardo

    2012-01-01

    A major decline in pulmonary function is observed on the first day after upper abdominal surgery. This decline can reduce vital and inspiratory capacity and can culminate in restrictive lung diseases that cause atelectasis, reduced diaphragm movement, and respiratory insufficiency. The objective of this study was to evaluate the efficacy of preoperative ambulatory respiratory muscle training in patients undergoing esophagectomy. The sample consisted of 20 adult patients (14 men [70%] and 6 women [30%]) with a diagnosis of advanced chagasic megaesophagus. A significant increase in maximum inspiratory pressure was observed after inspiratory muscle training when compared with baseline values (from -55.059 ± 18.359 to -76.286 ± 16.786). Preoperative ambulatory inspiratory muscle training was effective in increasing respiratory muscle strength in patients undergoing esophagectomy and contributed to the prevention of postoperative complications. PMID:23113846

  1. [Inspiratory muscle training in patients with chronic obstructive pulmonary disease].

    PubMed

    Lisboa, C; Borzone, G; Cruz, E

    1998-05-01

    We analyze the effect of inspiratory muscle training (IMT) in patients with chronic obstructive pulmonary disease (COPD), with special emphasis on its effects on inspiratory muscle function and clinical outcomes. We reviewed only randomized, controlled studies that have either controlled both the load and the breathing pattern when using resistive training or have employed a threshold trainer in which the load is independent of the pattern of breathing, since methodological aspects may explain inconsistent results in the literature. In these circumstances, most of the studies demonstrated positive effects on inspiratory muscle function. Clinical effects were seldom evaluated; limited available data showed a reduction in dyspnea that was related to an increase in maximal inspiratory pressures (PIMax). When exercise capacity was evaluated through the distance the patients were able to walk in 6 or 12 minutes, most studies demonstrated a significant increase. Other reported positive effects were improvement in nocturnal SaO2, inspiratory muscle power output and maximal inspiratory flow rate. Based in this review, a recommended training regime appears to be an intermediate load (30-40% PIMax) using a threshold device for 30 minutes daily for at least 5 weeks. Although in the literature the criteria for selecting patients are not always well defined, we consider IMT as a helpful procedure for pulmonar rehabilitation in those patients with a moderately severe inspiratory muscle dysfunction presenting dyspnea during daily living activities despite optimal therapy. PMID:9731440

  2. Relative activity of respiratory muscles during prescribed inspiratory muscle training in healthy people

    PubMed Central

    Jung, Ju-hyeon; Kim, Nan-soo

    2016-01-01

    [Purpose] This study aimed to determine the effects of different intensities of inspiratory muscle training on the relative respiratory muscle activity in healthy adults. [Subjects and Methods] Thirteen healthy male volunteers were instructed to perform inspiratory muscle training (0%, 40%, 60%, and 80% maximal inspiratory pressure) on the basis of their individual intensities. The inspiratory muscle training was performed in random order of intensities. Surface electromyography data were collected from the right-side diaphragm, external intercostal, and sternocleidomastoid, and pulmonary functions (forced expiratory volume in 1 s, forced vital capacity, and their ratio; peak expiratory flow; and maximal inspiratory pressure) were measured. [Results] Comparison of the relative activity of the diaphragm showed significant differences between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. Furthermore, significant differences were found in sternocleidomastoid relative activity between the 60% and 80% maximal inspiratory pressure intensities and baseline during inspiratory muscle training. [Conclusion] During inspiratory muscle training in the clinic, the patients were assisted (verbally or through feedback) by therapists to avoid overactivation of their accessory muscles (sternocleidomastoid). This study recommends that inspiratory muscle training be performed at an accurate and appropriate intensity through the practice of proper deep breathing. PMID:27134409

  3. Effect of inspiratory muscle training with an intermediate load on inspiratory power output in COPD.

    PubMed

    Villafranca, C; Borzone, G; Leiva, A; Lisboa, C

    1998-01-01

    There is very little information about the effect of inspiratory muscle training on inspiratory flow (V'I) and thus on power output (PO) in patients with chronic obstructive pulmonary disease (COPD). In this study we aimed to evaluate the changes induced by training on the determinants of PO. Thirty one patients with severe COPD were randomly divided into: Group 1, trained with 30% maximal inspiratory pressure (PI,max); Group 2, with 10% PI,max; and Group 3 also trained with 30% PI,max, but the breathing pattern was evaluated while performing the training manoeuvres along inspiratory muscle training (IMT). All groups used a threshold device for 10 weeks. The PO for each of the loads during an incremental threshold test was evaluated prior to and after training. Maximal PO (POmax) increased in all groups, but the increment was higher in groups trained with 30% PI,max (p<0.005), mainly due to an increase in V'I. Group 3 showed a progressive increase in V'I (p<0.001) during the training manoeuvres in spite of an increase in load along IMT. In addition, the load after IMT was overcome with a shorter inspiratory time (tI) (p<0.02), a smaller tI/total duration of the respiratory cycle (t(tot)), (p<0.001) with no change in tidal volume or t(tot). The increment in POmax in this group correlated with the V'I generated while training (r=0.85; p<0.0001). We conclude that in patients with chronic obstructive pulmonary disease, the use of an intermediate threshold load for training improves power output mainly by increasing inspiratory flow, an effect consistent with an increase in shortening velocity of inspiratory muscles. PMID:9543266

  4. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: an update of a systematic review.

    PubMed

    Geddes, E Lynne; O'Brien, Kelly; Reid, W Darlene; Brooks, Dina; Crowe, Jean

    2008-12-01

    The purpose was to update an original systematic review to determine the effect of inspiratory muscle training (IMT) on inspiratory muscle strength and endurance, exercise capacity, dyspnea and quality of life for adults with chronic obstructive pulmonary disease (COPD). The original MEDLINE and CINAHL search to August 2003 was updated to January 2007 and EMBASE was searched from inception to January 2007. Randomized controlled trials, published in English, with adults with stable COPD, comparing IMT to sham IMT or no intervention, low versus high intensity IMT, and different modes of IMT were included. Nineteen of 274 articles in the original search met the inclusion criteria. The updated search revealed 17 additional articles; 6 met the inclusion criteria, all of which compared targeted, threshold or normocapneic hyperventilation IMT to sham IMT. An update of the sub-group analysis comparing IMT versus sham IMT was performed with 10 studies from original review and 6 from the update. Sixteen meta-analyses are reported. Results demonstrated significant improvements in inspiratory muscle strength (PI(max), PI(max) % predicted, peak inspiratory flow rate), inspiratory muscle endurance (RMET, inspiratory threshold loading, MVV), exercise capacity (Ve(max), Borg Score for Respiratory Effort, 6MWT), Transitional Dyspnea Index (focal score, functional impairment, magnitude of task, magnitude of effort), and the Chronic Respiratory Disease Questionnaire (quality of life). Results suggest that targeted, threshold or normocapneic hyperventilation IMT significantly increases inspiratory muscle strength and endurance, improves outcomes of exercise capacity and one measure of quality of life, and decreases dyspnea for adults with stable COPD. PMID:18708282

  5. Prophylactic inspiratory muscle training in patients undergoing coronary artery bypass graft.

    PubMed

    Weiner, P; Zeidan, F; Zamir, D; Pelled, B; Waizman, J; Beckerman, M; Weiner, M

    1998-05-01

    Pulmonary complications after cardiac surgery are a leading cause of postoperative morbidity and mortality. Respiratory muscle weakness may contribute to the postoperative pulmonary abnormalities. We hypothesized that: (1) there is a decrease in inspiratory muscle strength (PImax at residual volume) and endurance (Pmpeak/PImax) following coronary artery bypass graft (CABG); (2) this weakness is associated with reduced pulmonary function tests (PFTs), impaired gas exchange, and a higher rate of pulmonary complications; and (3) prophylactic inspiratory muscle training (IMT) can prevent those changes. Eighty-four candidates for CABG, with ages ranging from 33 to 82 years, were evaluated prior to operation and randomized into two groups: 42 patients underwent IMT using a threshold trainer for 30 min/day for 2 weeks, 1 month before operation (group A); 42 patients served as a control group and underwent sham training (group B). There was a significant decrease in respiratory muscle function, PFTs, and gas exchange in the control group following CABG, whereas these parameters remained similar to those before entering the study in the training group. The differences between the groups were statistically significant. In addition 11 (26%) patients in the control group but only 2 (5%) in the training group needed postsurgical mechanical ventilation longer than 24 hours, CABGs have a significant deteriorating effect on inspiratory muscle function, PFTs, and arterial blood gases. The decrease in these parameters can be prevented by prophylactic inspiratory muscle training, which may also prevent postsurgical pulmonary complications. PMID:9564282

  6. Recruitment of some respiratory muscles during three maximal inspiratory manoeuvres.

    PubMed Central

    Nava, S; Ambrosino, N; Crotti, P; Fracchia, C; Rampulla, C

    1993-01-01

    BACKGROUND--A study was undertaken to determine the level of recruitment of the muscles used in the generation of respiratory muscle force, and to ascertain whether maximal diaphragmatic force and maximal inspiratory muscle force need to be measured by separate tests. The level of activity of three inspiratory muscles and one expiratory muscle during three maximal respiratory manoeuvres was studied: (1) maximal inspiration against a closed airway (Muller manoeuvre or maximal inspiratory pressure (MIP)); (2) maximal inspired manoeuvre followed by a maximal expiratory effort (combined manoeuvre); and (3) maximal inspiratory sniff through the nose (sniff manoeuvre). METHODS--All the manoeuvres were performed from functional residual capacity. The gastric (PGA) and oesophageal (POES) pressures and their difference, transdiaphragmatic pressure (PDI), and the integrated EMG activity of the diaphragm (EDI), the sternomastoid (ESTR), the intercostal parasternals (ERIC), and the rectus abdominis muscles (ERA) were recorded. RESULTS--Mean (SD) PDI values for the Muller, combined, and sniff manoeuvres were: 127.6 (19.4), 162.7 (22.2), and 136.6 (24.8) cm H2O, respectively. The pattern of rib cage muscle recruitment (POES/PDI) was similar for the Muller and sniff manoeuvres (88% and 80% respectively), and was 58% in the combined manoeuvre, confirming data previously reported in the literature. Peak EDI amplitude was greater during the sniff manoeuvre in all subjects (100%) than during the combined (88.1%) and Muller (61.1%) manoeuvres. ESTR and EIC were more active in the Muller and the sniff manoeuvres. The contribution of the expiratory muscle (ERA) to the three manoeuvres was 100% in the combined, 26.1% for the sniff, and 11.5% for the Muller manoeuvre. CONCLUSIONS--Each of these three manoeuvres results in different mechanisms of inspiratory and expiratory muscle activation and the intrathoracic and intra-abdominal pressures generated are a reflection of the interaction

  7. Activity of latissimus dorsi muscle during inspiratory threshold loads.

    PubMed

    Orozco-Levi, M; Gea, J; Monells, J; Aran, X; Aguar, M C; Broquetas, J M

    1995-03-01

    The ability of the latissimus dorsi muscle (LD) to participate as an accessory inspiratory muscle has been the subject of controversy. Electromyographic (EGM) activity of LD was evaluated in 11 healthy subjects (aged 30 +/- 2 yrs; forced expiratory volume in one second (FEV1) 106 +/- 5% predicted; maximal inspiratory pressure (Pmax), 120 +/- 6 cmH2O) under different breathing conditions. The ipsilateral biceps brachii was chosen as the control muscle. The EMG was recorded from surface electrodes, but needle electrodes were also used for LD evaluation in a subset of three subjects. The EMG signal from both muscles was recorded simultaneously, rectified and integrated, with subtraction of the electrocardiographic signal. Situations evaluated were: 1) maximal voluntary contraction (MVC); 2) apnoea; and 3) breathing under progressive inspiratory threshold loads (20-100% Pmax, at 20% intervals). A close relationship was evident between LD recordings from surface and needle electrodes (r = 0.975). Activity of LD at baseline was 1.8 +/- 0.4% MVC, and showed a phasic increase during inspiration under loads. This change had a linear tendency and was significant for loads corresponding to 40, 60, 80 and 100% of Pmax when compared to the control muscle. At this latter level, LD activity was equivalent to 32 +/- 5% MVC (range 11-61%), whereas mean activity of the control muscle was less than 7.5% MVC.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7789491

  8. Inspiratory muscle training in adults with chronic obstructive pulmonary disease: a systematic review.

    PubMed

    Geddes, E Lynne; Reid, W Darlene; Crowe, Jean; O'Brien, Kelly; Brooks, Dina

    2005-11-01

    The purpose of this study was to conduct a systematic review to determine the effect of inspiratory muscle training (IMT) on inspiratory muscle strength and endurance, exercise capacity, dyspnea and quality of life for adults with chronic obstructive pulmonary disease (COPD). A systematic review of the literature was conducted according the Cochrane Collaboration protocol using Medline and CINAHL. Nineteen of 274 extracted articles met the inclusion criteria and addressed comparisons of interest which included: IMT versus sham; IMT versus no intervention; low- versus high-intensity IMT; and two different modes of IMT. Thirteen meta-analyses were reported. Results indicate that targeted resistive or threshold IMT was associated with significant improvements in some outcomes of inspiratory muscle strength (PI(max) (cm H2O)) and endurance (Inspiratory Threshold Loading (kPa)), exercise capacity (Borg Scale for Respiratory Effort (modified Borg scale), Work Rate maximum (Watts)), and dyspnea (Transition Dyspnea Index), whereas IMT without a target or not using threshold training did not show improvement in these variables. There was no conclusive evidence regarding quality of life measures. IMT is effective for adults with COPD when using threshold or targeted devices that control or provide a target for training intensity. PMID:15894478

  9. Systematic Review of Inspiratory Muscle Training After Cerebrovascular Accident.

    PubMed

    Martín-Valero, Rocío; De La Casa Almeida, Maria; Casuso-Holgado, Maria Jesus; Heredia-Madrazo, Alfonso

    2015-11-01

    This systematic review examines levels of evidence and recommendation grades of various therapeutic interventions of inspiratory muscle training in people who have had a stroke. Benefits from different levels of force and resistance in respiratory muscles are shown in this population. This review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) directives and was completed in November 2014. The search limits were studies published in English between 2004 and 2014. Relevant studies were searched for in MEDLINE, PEDro, OAIster, Scopus, PsycINFO, Web of Knowledge, CINAHL, SPORTDiscus, DOAJ, Cochrane, Embase, Academic Search Complete, Fuente Académica, and MedicLatina. Initially, 20 articles were identified. After analyzing all primary documents, 14 studies were excluded. Only 6 studies were relevant to this review. Three different types of interventions were found (maximum inspiratory training, controlled training, and nonintervention) in 3 different groups. One specific study compared 3 inspiratory muscle training groups with a group of breathing exercises (diaphragmatic exercises with pursed lips) and a control group. Future long-term studies with larger sample sizes are needed. It is necessary to apply respiratory muscle training as a service of the national health system and to consider its inclusion in the conventional neurological program. PMID:26493591

  10. Cycle ergometer and inspiratory muscle training in chronic obstructive pulmonary disease.

    PubMed

    Larson, J L; Covey, M K; Wirtz, S E; Berry, J K; Alex, C G; Langbein, W E; Edwards, L

    1999-08-01

    In patients with chronic obstructive pulmonary disease (COPD) the intensity of aerobic training is limited by dyspnea. Improving strength of the inspiratory muscles could enhance aerobic exercise training by reducing exercise-related dyspnea. We examined effects of home-based inspiratory muscle training (IMT) and cycle ergometry training (CET) in 53 patients with moderate to severe COPD (FEV(1)% pred, 50 +/- 17 [mean +/- SD]). Patients were randomly assigned to 4 mo of training in one of four groups: IMT, CET, CET + IMT, or health education (ED). Patients were encouraged to train to the limits of their dyspnea. Inspiratory muscle strength and endurance increased in IMT and CET + IMT groups compared with CET and ED groups (p < 0. 01). Peak oxygen uptake increased and heart rate, minute ventilation, dyspnea, and leg fatigue decreased at submaximal work rates in the CET and CET + IMT groups compared with the IMT and ED groups (p < 0. 01). There were no differences between the CET and CET + IMT groups. Home-based CET produced a physiological training effect and reduced exercise-related symptoms while IMT increased respiratory muscle strength and endurance. The combination of CET and IMT did not produce additional benefits in exercise performance and exercise-related symptoms. This is the first study to demonstrate a physiological training effect with home-based exercise training. PMID:10430720

  11. Inspiratory Muscle Training in Patients with Heart Failure: A Systematic Review

    PubMed Central

    Lin, Suh-Jen; McElfresh, Jessica; Hall, Benjamin; Bloom, Rachel; Farrell, Kellie

    2012-01-01

    Purpose The purpose of this review was to assess the quality of evidence on inspiratory muscle training (IMT) in patients with heart failure and to provide an overview on subject selection, training protocols, and outcome achieved with IMT. Methods Literature search was first performed via the PubMed database, and additional references were identified from the Scopus citation index. Articles of the review type and of clinical trials published in English were included. Quality of the articles was assessed using Sackett's levels of evidence and rigor of methodology was assessed using PEDro (Physiotherapy Evidence Database) criteria for randomized controlled trials and the Downs & Black tool for cohort studies. Results Twelve articles of clinical trials were included. Typical training protocols involved daily training with intensity greater than 30% of maximal inspiratory pressure (PImax), duration of 20 to 30 minutes (continuous or incremental) and using a pressure threshold muscle trainer. The effect sizes of PImax, walk test distance, and dyspnea were moderate to large across these studies. Effects on quality of life scores were inconsistent. Conclusion Inspiratory muscle training is beneficial for improving respiratory muscle strength, functional capacity, and dyspnea in patients with stable heart failure and respiratory muscle weakness. PMID:22993500

  12. Inspiratory muscle training for patients with chronic obstructive pulmonary disease: a practical guide for clinicians.

    PubMed

    Hill, Kylie; Cecins, Nola M; Eastwood, Peter R; Jenkins, Sue C

    2010-09-01

    Reduced inspiratory muscle strength is common in people with chronic obstructive pulmonary disease (COPD) and is associated with dyspnea and decreased exercise capacity. Most studies of inspiratory muscle training (IMT) in COPD have demonstrated increased inspiratory muscle strength. Many have also shown improvements in dyspnea and exercise capacity. However, a persisting challenge when translating and applying the findings of these studies in clinical practice is the disparity in training loads, modalities, and outcomes measures used in the different studies. This commentary summarizes our clinical and research experience with a threshold IMT device with the aim of providing clinicians interested in prescribing IMT in this population with practical recommendations regarding patient selection, assessment, and implementation of training. We propose using an interval-based high-intensity threshold IMT program for people who are unable to participate fully in whole-body exercise training because of comorbidities such as severe musculoskeletal problems. Initial training loads equivalent to at least 30% of a person's maximum inspiratory pressure (PImax) are required for all people undertaking IMT. Supervision, which includes monitoring of oxygen saturation throughout the first training session, is recommended, and patients are warned to expect transient delayed-onset muscle soreness, a consequence of muscle adaptation to an unaccustomed activity. We recommend training be undertaken 3 times a week for 8 weeks, with loads progressively increased as symptoms permit. It is prudent to exclude people at risk of pneumothorax or spontaneous rib fracture. Evaluation of IMT should include measures of PImax, dyspnea, health-related quality of life, and exercise capacity. PMID:20801269

  13. Tonic activity in inspiratory muscles during continuous negative airway pressure.

    PubMed

    Meessen, N E; van der Grinten, C P; Folgering, H T; Luijendijk, S C

    1993-05-01

    We studied tonic inspiratory activity (TIA) induced by continuous negative airway pressure (CNAP) in anaesthetized, spontaneously breathing cats. TIA in the diaphragm and parasternal intercostal muscles (ICM) was quantified in response to tracheal pressure (PTR) = -0.3 to -1.2 kPa. To differentiate between reflexes from rapidly adapting receptors (RARs), slowly adapting receptors (SARs) and C-fiber endings different temperatures of the vagus nerves (TVG) were used between 4 and 37 degrees C. At PTR = -1.2 kPa mean TIA values were 41% and 62% of peak inspiratory EMG activity of control breaths for the diaphragm and ICM, respectively. After vagotomy and for TVG < 6 degrees C CNAP did not induce TIA anymore. Changes in inspiratory and expiratory time during vagal cooling down to 4 degrees C confirmed the selective block of conductance in vagal afferents of the three types of lung receptors. We conclude that CNAP-induced TIA results from stimulation of RARs. Our data strongly indicate that stimulation of SARs suppresses TIA, whereas C-fiber endings are not involved in TIA at all. The results suggest that part of the hyperinflation in bronchial asthma may be caused by TIA in response to mechanical stimulation of RARs. PMID:8327788

  14. The effect of inspiratory muscle fatigue on breathing pattern and ventilatory response to CO2.

    PubMed Central

    Mador, M J; Tobin, M J

    1992-01-01

    1. The effects of inducing inspiratory muscle fatigue on the subsequent breathing pattern were examined during resting unstimulated breathing and during CO2 rebreathing. In addition, we examined whether induction of inspiratory muscle fatigue alters CO2 responsiveness. 2. Global inspiratory muscle fatigue and diaphragmatic fatigue were achieved by having subjects breathe against an inspiratory resistive load while generating a predetermined fraction of either their maximal mouth pressure or maximal transdiaphragmatic pressure until they were unable to generate the target pressure. 3. Induction of inspiratory muscle fatigue had no effect on the subsequent breathing pattern during either unstimulated breathing or during CO2 rebreathing. 4. Following induction of inspiratory muscle fatigue, the slope of the ventilatory response to CO2 was significantly decreased from 18.8 +/- 3.3 during control to 13.8 +/- 2.1 l min-1 (% end-tidal CO2 concentration)-1 with fatigue (P < 0.02). PMID:1484352

  15. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans

    PubMed Central

    Romer, Lee M; Lovering, Andrew T; Haverkamp, Hans C; Pegelow, David F; Dempsey, Jerome A

    2006-01-01

    The work of breathing required during maximal exercise compromises blood flow to limb locomotor muscles and reduces exercise performance. We asked if force output of the inspiratory muscles affected exercise-induced peripheral fatigue of locomotor muscles. Eight male cyclists exercised at ≥ 90% peak O2 uptake to exhaustion (CTRL). On a separate occasion, subjects exercised for the same duration and power output as CTRL (13.2 ± 0.9 min, 292 W), but force output of the inspiratory muscles was reduced (−56% versus CTRL) using a proportional assist ventilator (PAV). Subjects also exercised to exhaustion (7.9 ± 0.6 min, 292 W) while force output of the inspiratory muscles was increased (+80% versus CTRL) via inspiratory resistive loads (IRLs), and again for the same duration and power output with breathing unimpeded (IRL-CTRL). Quadriceps twitch force (Qtw), in response to supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz), was assessed pre- and at 2.5 through to 70 min postexercise. Immediately after CTRL exercise, Qtw was reduced −28 ± 5% below pre-exercise baseline and this reduction was attenuated following PAV exercise (−20 ± 5%; P < 0.05). Conversely, increasing the force output of the inspiratory muscles (IRL) exacerbated exercise-induced quadriceps muscle fatigue (Qtw=−12 ± 8% IRL-CTRL versus −20 ± 7% IRL; P < 0.05). Repeat studies between days showed that the effects of exercise per se, and of superimposed inspiratory muscle loading on quadriceps fatigue were highly reproducible. In conclusion, peripheral fatigue of locomotor muscles resulting from high-intensity sustained exercise is, in part, due to the accompanying high levels of respiratory muscle work. PMID:16373384

  16. Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea.

    PubMed

    Brown, Peter I; Sharpe, Graham R; Johnson, Michael A

    2008-09-01

    Although reduced blood lactate concentrations ([lac(-)](B)) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac(-)](B) caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (.V(E) max) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% .V(E) max. The IMT group performed 6 weeks of pressure-threshold IMT; the control group performed no IMT. Maximal inspiratory mouth pressure increased (mean +/- SD) 31 +/- 22% following IMT and was unchanged in the control group. Prior to the intervention in the control group, [lac(-)](B) increased from 0.76 +/- 0.24 mmol L(-1) at rest to 1.50 +/- 0.60 mmol L(-1) (P < 0.05) following 10 min volitional hyperpnoea. In the IMT group, [lac(-)](B) increased from 0.85 +/- 0.40 mmol L(-1) at rest to 2.02 +/- 0.85 mmol L(-1) following 10 min volitional hyperpnoea (P < 0.05). After 6 weeks, increases in [lac(-)](B) during volitional hyperpnoea were unchanged in the control group. Conversely, following IMT the increase in [lac(-)](B) during volitional hyperpnoea was reduced by 17 +/- 37% and 25 +/- 34% following 8 and 10 min, respectively (P < 0.05). In conclusion, increases in [lac(-)](B) during volitional hyperpnoea at 85% .V(E) max were attenuated following IMT. These findings suggest that the inspiratory muscles were the source of at least part of this reduction, and provide a possible explanation for some of the IMT-mediated reductions in [lac(-)](B), often observed during whole-body exercise. PMID:18560878

  17. The effect of progressive high-intensity inspiratory muscle training and fixed high-intensity inspiratory muscle training on the asymmetry of diaphragm thickness in stroke patients

    PubMed Central

    Jung, Ju-hyeon; Kim, Nan-soo

    2015-01-01

    [Purpose] This study investigated the effects of progressive load and fixed load high-intensity inspiratory muscle training on the asymmetry of diaphragm thickness in stroke patients. [Subjects] Twenty-one stroke patients were assigned to one of three groups: progressive load high-intensity inspiratory muscle training (n = 8), fixed load high-intensity inspiratory muscle training (n = 6), and controls (n = 7). [Methods] The progressive load and fixed load high-intensity inspiratory muscle training participants undertook an exercise program for 20 minutes, three times weekly, for 6 weeks. After each session, diaphragm thickness was measured using ultrasonography. The diaphragm asymmetry ratio and diaphragm thickening ratio were standardized using a formula. [Results] After intervention, the diaphragm asymmetry ratio significantly differed among the three groups, and the diaphragm asymmetry ratio significantly increased in the control group. A significant increase was identified in the diaphragm thickening ratio within the progressive load and fixed load high-intensity inspiratory muscle training groups. [Conclusion] Progressive load and fixed load high-intensity inspiratory muscle training decreased the asymmetry of diaphragm thickness in stroke patients; this effect, in turn, increased the diaphragm thickening ratio in stroke patients. The two interventions examined here should be selectively applied to individuals in the clinical field. PMID:26644689

  18. Effects of inspiratory muscle training on exercise responses in Paralympic athletes with cervical spinal cord injury.

    PubMed

    West, C R; Taylor, B J; Campbell, I G; Romer, L M

    2014-10-01

    We asked whether specific inspiratory muscle training (IMT) improves respiratory structure and function and peak exercise responses in highly trained athletes with cervical spinal cord injury (SCI). Ten Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) were paired by functional classification then randomly assigned to an IMT or placebo group. Diaphragm thickness (B-mode ultrasonography), respiratory function [spirometry and maximum static inspiratory (PI ,max ) and expiratory (PE ,max ) pressures], chronic activity-related dyspnea (Baseline and Transition Dyspnea Indices), and physiological responses to incremental arm-crank exercise were assessed before and after 6 weeks of pressure threshold IMT or sham bronchodilator treatment. Compared to placebo, the IMT group showed significant increases in diaphragm thickness (P = 0.001) and PI ,max (P = 0.016). There was a significant increase in tidal volume at peak exercise in IMT vs placebo (P = 0.048) and a strong trend toward an increase in peak work rate (P = 0.081, partial eta-squared = 0.33) and peak oxygen uptake (P = 0.077, partial eta-squared = 0.34). No other indices changed post-intervention. In conclusion, IMT resulted in significant diaphragmatic hypertrophy and increased inspiratory muscle strength in highly trained athletes with cervical SCI. The strong trend, with large observed effect, toward an increase in peak aerobic performance suggests IMT may provide a useful adjunct to training in this population. PMID:23530708

  19. Inspiratory muscle training improves 100 and 200 m swimming performance.

    PubMed

    Kilding, Andrew E; Brown, Sarah; McConnell, Alison K

    2010-02-01

    Inspiratory muscle training (IMT) has been shown to improve time trial performance in competitive athletes across a range of sports. Surprisingly, however, the effect of specific IMT on surface swimming performance remains un-investigated. Similarly, it is not known whether any ergogenic influence of IMT upon swimming performance is confined to specific race distances. To determine the influence of IMT upon swimming performance over 3 competitive distances, 16 competitive club-level swimmers were assigned at random to either an experimental (pressure threshold IMT) or sham IMT placebo control group. Participants performed a series of physiological and performance tests, before and following 6 weeks of IMT, including (1) an incremental swim test to the limit of tolerance to determine lactate, heart rate and perceived exertion responses; (2) standard measures of lung function (forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow) and maximal inspiratory pressure (MIP); and (3) 100, 200 and 400 m swim time trials. Training utilised a hand-held pressure threshold device and consisted of 30 repetitions, twice per day. Relative to control, the IMT group showed the following percentage changes in swim times: 100 m, -1.70% (90% confidence limits, +/-1.4%), 200 m, -1.5% (+/-1.0), and 400 m, 0.6% (+/-1.2). Large effects were observed for MIP and rates of perceived exertion. In conclusion, 6 weeks of IMT has a small positive effect on swimming performance in club-level trained swimmers in events shorter than 400 m. PMID:19841931

  20. Respiratory Muscle Activity During Simultaneous Stationary Cycling and Inspiratory Muscle Training.

    PubMed

    Hellyer, Nathan J; Folsom, Ian A; Gaz, Dan V; Kakuk, Alynn C; Mack, Jessica L; Ver Mulm, Jacyln A

    2015-12-01

    Inspiratory muscle training (IMT) strengthens the muscles of respiration, improves breathing efficiency, and increases fitness. The IMT is generally performed independently of aerobic exercise; however, it is not clear whether there is added benefit of performing the IMT while simultaneously performing aerobic exercise in terms of activating and strengthening inspiratory muscles. The purpose of our study was to determine the effect of IMT on respiratory muscle electromyography (EMG) activity during stationary cycling in the upright and drops postures as compared with that when the IMT was performed alone. Diaphragm and sternocleidomastoid EMG activity was measured under different resting and cycling postures, with and without the use of the IMT at 40% maximal inspiratory pressure (n = 10; mean age 37). Cycling in an upright posture while simultaneously performing the IMT resulted in a significantly greater diaphragm EMG activity than while performing the IMT at rest in upright or drops postures (p ≤ 0.05). Cycling in drops postures while performing the IMT had a significantly greater diaphragm EMG activity than when performing the IMT at rest in either upright or drops postures (p ≤ 0.05). Sternocleidomastoid muscle activity increased with both cycling and IMT, although posture had little effect. These results support our hypothesis in that the IMT while cycling increases respiratory EMG activity to a significantly greater extent than when performing the IMT solely at rest, suggesting that the combination of IMT and cycling may provide an additive training effect. PMID:26584054

  1. The Role of Inspiratory Muscle Training in Sickle Cell Anemia Related Pulmonary Damage due to Recurrent Acute Chest Syndrome Attacks

    PubMed Central

    Camcıoğlu, Burcu; Boşnak-Güçlü, Meral; Karadallı, Müşerrefe Nur; Akı, Şahika Zeynep; Türköz-Sucak, Gülsan

    2015-01-01

    Background. The sickling of red blood cells causes a constellation of musculoskeletal, cardiovascular, and pulmonary manifestations. A 32-year-old gentleman with sickle cell anemia (SCA) had been suffering from recurrent acute chest syndrome (ACS). Aim. To examine the effects of inspiratory muscle training (IMT) on pulmonary functions, respiratory and peripheral muscle strength, functional exercise capacity, and quality of life in this patient with SCA. Methods. Functional exercise capacity was evaluated using six-minute walk test, respiratory muscle strength using mouth pressure device, hand grip strength using hand-held dynamometer, pain using Visual Analogue Scale, fatigue using Fatigue Severity Scale, dyspnea using Modified Medical Research Council Scale, and health related quality of life using European Organization for Research and Treatment of Cancer QOL measurement. Results. A significant improvement has been demonstrated in respiratory muscle strength, functional exercise capacity, pain, fatigue, dyspnea, and quality of life. There was no admission to emergency department due to acute chest syndrome in the following 12 months after commencing regular erythrocytapheresis. Conclusion. This is the first report demonstrating the beneficial effects of inspiratory muscle training on functional exercise capacity, respiratory muscle strength, pain, fatigue, dyspnea, and quality of life in a patient with recurrent ACS. PMID:26060589

  2. The Role of Inspiratory Muscle Training in Sickle Cell Anemia Related Pulmonary Damage due to Recurrent Acute Chest Syndrome Attacks.

    PubMed

    Camcıoğlu, Burcu; Boşnak-Güçlü, Meral; Karadallı, Müşerrefe Nur; Akı, Şahika Zeynep; Türköz-Sucak, Gülsan

    2015-01-01

    Background. The sickling of red blood cells causes a constellation of musculoskeletal, cardiovascular, and pulmonary manifestations. A 32-year-old gentleman with sickle cell anemia (SCA) had been suffering from recurrent acute chest syndrome (ACS). Aim. To examine the effects of inspiratory muscle training (IMT) on pulmonary functions, respiratory and peripheral muscle strength, functional exercise capacity, and quality of life in this patient with SCA. Methods. Functional exercise capacity was evaluated using six-minute walk test, respiratory muscle strength using mouth pressure device, hand grip strength using hand-held dynamometer, pain using Visual Analogue Scale, fatigue using Fatigue Severity Scale, dyspnea using Modified Medical Research Council Scale, and health related quality of life using European Organization for Research and Treatment of Cancer QOL measurement. Results. A significant improvement has been demonstrated in respiratory muscle strength, functional exercise capacity, pain, fatigue, dyspnea, and quality of life. There was no admission to emergency department due to acute chest syndrome in the following 12 months after commencing regular erythrocytapheresis. Conclusion. This is the first report demonstrating the beneficial effects of inspiratory muscle training on functional exercise capacity, respiratory muscle strength, pain, fatigue, dyspnea, and quality of life in a patient with recurrent ACS. PMID:26060589

  3. Inspiratory muscle training with threshold or incentive spirometry: Which is the most effective?

    PubMed

    Paiva, Dulciane Nunes; Assmann, Laíse Bender; Bordin, Diogo Fanfa; Gass, Ricardo; Jost, Renan Trevisan; Bernardo-Filho, Mario; França, Rodrigo Alves; Cardoso, Dannuey Machado

    2015-01-01

    Inspiratory muscular training (IMT) increases the respiratory muscle strength, however, there is no data demonstrating its superiority over the incentive spirometry (IS) in doing so. Values of muscle strength after IMT (Threshold IMT(®)) and by the IS (Voldyne(®)) in healthy females was compared. Subjects (n=40) were randomly divided into control group (CG, n=14), IS group (ISG, n=13) and threshold group (TG, n=13). PImax was measured before (pre-IMT), at 15 and 30 days of IMT. There was an increase in PImax of the TG at 15 days (p<0.001) and 30 days of IMT (p<0.001). The same occurred with the ISG, which increased the PImax at 15 days (p<0.001) and 30 days of training (p<0.001). After 30 days of IMT, the TG presented a PImax which was significantly higher than ISG and the CG (p=0.045 and p<0.001, respectively). It can be concluded that IMT by threshold was more effective in increasing muscle strength than the Voldyne. PMID:25926370

  4. Assessment of respiratory muscle function and strength.

    PubMed Central

    Syabbalo, N.

    1998-01-01

    Measurement of respiratory muscle strength is useful in order to detect respiratory muscle weakness and to quantify its severity. In patients with severe respiratory muscle weakness, vital capacity is reduced but is a non-specific and relatively insensitive measure. Conventionally, inspiratory and expiratory muscle strength has been assessed by maximal inspiratory and expiratory mouth pressures sustained for 1 s (PImax and PEmax) during maximal static manoeuvre against a closed shutter. However, PImax and PEmax are volitional tests, and are poorly reproducible with an average coefficient of variation of 25%. The sniff manoeuvre is natural and probably easier to perform. Sniff pressure, and sniff transdiaphragmatic pressure are more reproducible and useful measure of diaphragmatic strength. Nevertheless, the sniff manoeuvre is also volition-dependent, and submaximal efforts are most likely to occur in patients who are ill or breathless. Non-volitional tests include measurements of twitch oesophageal, gastric and transdiaphragmatic pressure during bilateral electrical and magnetic phrenic nerve stimulation. Electrical phrenic nerve stimulation is technically difficult and is also uncomfortable and painful. Magnetic phrenic nerve stimulation is less painful and transdiaphragmatic pressure is reproducible in normal subjects. It is a relatively easy test that has the potential to become a widely adopted method for the assessment of diaphragm strength. The development of a technique to measure diaphragmatic sound (phonomyogram) during magnetic phrenic nerve stimulation opens the way for noninvasive assessment of diaphragmatic function. PMID:9683973

  5. Effects of a 10-Week Inspiratory Muscle Training Program on Lower-Extremity Mobility in People with Multiple Sclerosis

    PubMed Central

    Fry, Donna

    2011-01-01

    Pulmonary muscle weakness is common in ambulatory people with multiple sclerosis (MS) and may lead to deficits in mobility function. The purpose of this study was to examine the effect of a 10-week home-based exercise program using an inspiratory muscle threshold trainer (IMT) on the results of four lower-extremity physical performance tests in people with MS. The study design was a two-group (experimental-control), pretest-posttest study. Outcome measures consisted of pulmonary function measures including maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and maximal voluntary ventilation (MVV), and the following lower-extremity physical performance measures: the 6-Minute Walk (6MW) distance, gait velocity (GV), the Sit-to-Stand Test (SST), the Functional Stair Test (FST), and a balance test (BAL). A total of 46 ambulatory participants (Expanded Disability Status Scale [EDSS] score, 2.0–6.5) with MS were randomly assigned to an intervention group (mean EDSS score, 4.1) that received 10 weeks of home-based inspiratory muscle training or a nontreatment control group (mean EDSS score, 3.2). Of the original 46 participants, 20 intervention group participants and 19 control group participants completed the study. Compared with the control group, the intervention group made significantly greater gains in inspiratory muscle strength (P = .003) and timed balance scores (P = .008). A nonsignificant improvement in 6MW distance (P = .086) was also noted in the IMT-trained group as compared with the control group. This is the first study directly linking improvement in respiratory function to improvement in physical performance function in people with mild-to-moderate disability due to MS. PMID:24453703

  6. Comparison of incremental and constant load tests of inspiratory muscle endurance in COPD.

    PubMed

    Hill, K; Jenkins, S C; Philippe, D L; Shepherd, K L; Hillman, D R; Eastwood, P R

    2007-09-01

    The aim of the present study was to determine the relative value of incremental and constant load tests in detecting changes in inspiratory muscle endurance following high-intensity inspiratory muscle training (H-IMT) in chronic obstructive pulmonary disease. In total, 16 subjects (11 males; forced expiratory volume in one second (FEV(1)) 37.4+/-12.5%) underwent H-IMT. In addition, 17 subjects (11 males; FEV(1) 36.5+/-11.5%) underwent sham inspiratory muscle training (S-IMT). Training took place three times a week for 8 weeks. Baseline and post-training measurements were obtained of maximum threshold pressure sustained during an incremental load test (P(th,max)) and time breathing against a constant load (t(lim)). Breathing pattern was unconstrained. H-IMT increased P(th,max) and t(lim) relative to baseline and to any change seen following S-IMT. The effect size for P(th,max) was greater than for t(lim). Post-training tests were accompanied by changes in breathing pattern, including decreased duty cycle, which may have served to decrease inspiratory work and thereby contribute to the increase in P(th,max) and t(lim) in both groups. When assessing inspiratory muscle function in chronic obstructive pulmonary disease via tests in which the pattern of breathing is unconstrained, the current authors recommend incremental load tests be used in preference to constant load tests. However, to attribute changes in these tests to improvements in inspiratory muscle endurance, breathing pattern should be controlled. PMID:17504795

  7. Forced respiration during the deeper water immersion causes the greater inspiratory muscle fatigue in healthy young men.

    PubMed

    Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-01-01

    [Purpose] The purpose of the present study was to evaluate the effect of water immersion at different water depths on respiratory function and the effect of inspiratory load breathing (ILB) during water immersion at different water depths on respiratory muscle strength evaluated by maximum inspiratory and expiratory pressures (PImax and PEmax, respectively). [Subjects] Eight healthy men participated randomly in three trials. [Methods] All sessions were conducted with the participants in a sitting position immersed in a water bath. We evaluated respiratory function, PImax and PEmax during submersion at three different levels of water depth (umbilicus; 4th-rib; or clavicle, CL) and after subsequent 15-min ILB. [Results] Decreases in vital capacity and expiratory reserve volume from baseline by water immersion were significantly greater in the CL trial than those in the other trials. In the CL trial, PImax was immediately reduced after ILB compared to that at baseline, and the reduction was significantly greater than those in the other trials. PEmax was not affected by ILB in any of the trials. [Conclusion] Forced respiration during deeper water immersion caused greater inspiratory muscle fatigue in healthy young men. PMID:27064401

  8. Forced respiration during the deeper water immersion causes the greater inspiratory muscle fatigue in healthy young men

    PubMed Central

    Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-01-01

    [Purpose] The purpose of the present study was to evaluate the effect of water immersion at different water depths on respiratory function and the effect of inspiratory load breathing (ILB) during water immersion at different water depths on respiratory muscle strength evaluated by maximum inspiratory and expiratory pressures (PImax and PEmax, respectively). [Subjects] Eight healthy men participated randomly in three trials. [Methods] All sessions were conducted with the participants in a sitting position immersed in a water bath. We evaluated respiratory function, PImax and PEmax during submersion at three different levels of water depth (umbilicus; 4th-rib; or clavicle, CL) and after subsequent 15-min ILB. [Results] Decreases in vital capacity and expiratory reserve volume from baseline by water immersion were significantly greater in the CL trial than those in the other trials. In the CL trial, PImax was immediately reduced after ILB compared to that at baseline, and the reduction was significantly greater than those in the other trials. PEmax was not affected by ILB in any of the trials. [Conclusion] Forced respiration during deeper water immersion caused greater inspiratory muscle fatigue in healthy young men. PMID:27064401

  9. 'Functional' inspiratory and core muscle training enhances running performance and economy.

    PubMed

    Tong, Tomas K; McConnell, Alison K; Lin, Hua; Nie, Jinlei; Zhang, Haifeng; Wang, Jiayuan

    2014-08-26

    We compared the effects of two 6-week high-intensity interval training interventions. Under the control condition (CON), only interval training was undertaken, whilst under the intervention condition (ICT), interval training sessions were followed immediately by core training, which was combined with simultaneous inspiratory muscle training - 'functional' IMT. Sixteen recreational runners were allocated to either ICT or CON groups. Prior to the intervention phase, both groups undertook a 4-week programme of 'foundation' IMT to control for the known ergogenic effect of IMT [30 inspiratory efforts at 50% maximal static inspiratory pressure (P0) per set, 2 sets.d, 6 d.wk]. The subsequent 6-week interval running training phase, consisted of 3-4 sessions.wk. In addition, the ICT group undertook four inspiratory-loaded core exercises [10 repetitions.set, 2 sets.d, inspiratory load set at 50% post-IMT P0] immediately after each interval training session. The CON group received neither core training nor functional IMT. Following the intervention phase, global inspiratory and core muscle functions increased in both groups (P<0.05), as evidenced by P0 and a sport-specific endurance plank test performance (SEPT), respectively. Compared to CON, the ICT group showed larger improvements in SEPT, running economy at the speed of the OBLA, and 1-hr running performance (3.04% vs 1.57%, P<0.05). The changes in these variables were inter-individually correlated (r≥0.57, n=16, P<0.05). Such findings suggest that the addition of inspiratory-loaded core conditioning into a high-intensity interval training program augments the influence of the interval program upon endurance running performance, and that this may be underpinned by an improvement in running economy. PMID:25162653

  10. Training the inspiratory muscles improves running performance when carrying a 25 kg thoracic load in a backpack.

    PubMed

    Faghy, Mark A; Brown, Peter I

    2016-08-01

    Load carriage (LC) exercise in physically demanding occupations is typically characterised by periods of low-intensity steady-state exercise and short duration, high-intensity exercise while carrying an external mass in a backpack; this form of exercise is also known as LC exercise. This induces inspiratory muscle fatigue and reduces whole-body performance. Accordingly we investigated the effect of inspiratory muscle training (IMT, 50% maximal inspiratory muscle pressure (PImax) twice daily for six week) upon running time-trial performance with thoracic LC. Nineteen healthy males formed a pressure threshold IMT (n = 10) or placebo control group (PLA; n = 9) and performed 60 min LC exercise (6.5 km h(-1)) followed by a 2.4 km running time trial (LCTT) either side of a double-blind six week intervention. Prior to the intervention, PImax was reduced relative to baseline, post-LC and post-LCTT in both groups (pooled data: 13 ± 7% and 16 ± 8%, respectively, p < .05) and similar changes were observed post-PLA. Post-IMT only, resting PImax increased +31% (p < .05) and relative to pre-IMT was greater post-LC (+19%) and post-LCTT (+18%, p < .05), however, the relative reduction in PImax at each time point was unchanged (13 ± 11% and 17 ± 9%, respectively, p > .05). In IMT only, heart rate and perceptual responses were reduced post-LC (p < .05). Time-trial performance was unchanged post-PLA and improved 8 ± 4% after IMT (p < .05). In summary, when wearing a 25 kg backpack, IMT attenuated the cardiovascular and perceptual responses to steady-state exercise and improved high-intensity time-trial performance which we attribute in part to reduced relative work intensity of the inspiratory muscles due to improved inspiratory muscle strength. These findings have real-world implications for occupational contexts. PMID:26274785

  11. Impact of a Behavioral-Based Intervention on Inspiratory Muscle Training Prescription by a Multidisciplinary Team

    ERIC Educational Resources Information Center

    Simms, Alanna M.; Li, Linda C.; Geddes, E. Lynne; Brooks, Dina; Hoens, Alison M.; Reid, W. Darlene

    2012-01-01

    Introduction: Our goal was to compare behavioral- and information-based interventions aimed at increasing prescription of inspiratory muscle training (IMT) for people with chronic obstructive pulmonary disease (COPD) by interdisciplinary teams during pulmonary rehabilitation (PR). Methods: Six hospital PR programs were randomly assigned to a…

  12. [Measurement of the reserve function of inspiratory muscle and its clinical significance].

    PubMed

    Xiao, X; Luo, Y; Chen, W; Yuan, Y; He, T; Zeng, J

    1995-06-01

    The principles of measuring inspiratory muscle tension-time index (TTim) and the ratio of the works of inspiration over the maximal works of inspiration (Wi/Wi(max)) were investigated and their formulae were deduced, i.e. TTim = (Pi x Ti)/(MIP x Ttot) and Wi/Wi(max) = (Pi x VT)/(MIP x IC). The importance of the inspiratory pressure and the maximal inspiratory pressure (MIP) measured at function residual capacity (FRC) level was emphasized. Both TTim and Wi/Wi(max) were measured in 35 normal subjects and 89 patients with chronic obstructive pulmonary disease (COPD). The results showed that normal value of TTim was 0.0253 +/- 0.0055 which corresponds to the normal value of the diaphragm tension-time index (TTdi = 0.02-0.03) reported by Bellemare. Patients with COPD had a mean TTim much higher than that of normals (P < 0.01). The works of inspiration (Wi) in patients with COPD increased, while the maximal works of inspiration (Wi(max)) declined, so Wi/Wi(max) became significantly greater than that of normals (P < 0.01). The results also showed that there was a linear relationship between Pi/Pimax and TTim or Wi/Wimax (r = 0.7891, 0.9738, 0.6459, 0.9327, P < 0.01). Therefore, we suggest that both TTim and Wi/Wimax can be used as clinical indices to reflect the reserve function of inspiratory muscles. PMID:7490035

  13. Target-flow inspiratory muscle training: breathing patterns and metabolic costs.

    PubMed

    Dekhuijzen, P N; Hopman, M T; Binkhorst, R A; Folgering, H T

    1991-01-01

    In target-flow inspiratory muscle training (TF-IMT), the generated inspiratory mouth pressure and the duration of the inspiration and expiration are standardized to given an adequate training stimulus to the inspiratory muscles. The acute effects of TF-IMT on the efficiency of breathing were studied in a group of 12 COPD patients with a ventilatory limitation of their exercise capacity (mean age 58, mean FEV1 46.2% of predicted) and in 15 normal subjects (mean age 30). Also, the effect of a 10 week period of TF-IMT on the maximal inspiratory mouth pressure (PImax) in the COPD patients was measured. After an unloaded baseline period, the subjects started to inspire through a target-flow device during 15 min, followed by a recovery phase of 5 min. During TF-IMT minute ventilation (VE) decreased only in the COPD group. The ventilatory equivalent for O2 (VE/VO2) and the dead space to tidal volume ratio (VD/VT) decreased in both groups. During recovery, VE, VE/VO2 and VD/VT remained below baseline values in the COPD group, but not in the control group. PCO2 and lactate concentrations did not change during TF-IMT. After the 10 week training period, PImax [means) (SD] increased from 5.7(2.2) to 8.2(2.7) kPa (p less than 0.05). The results indicate that with standardized TF-IMT, the inspiratory muscles can be trained effectively in COPD patients with a ventilatory limitation. The persistence of the decrease in VE, VE/VO2 and VD/VT after a training session may be an additional beneficial effect of TF-IMT. PMID:1783476

  14. Effects of inspiratory muscle training on exercise capacity and spontaneous physical activity in elderly subjects: a randomized controlled pilot trial.

    PubMed

    Aznar-Lain, S; Webster, A L; Cañete, S; San Juan, A F; López Mojares, L M; Pérez, M; Lucia, A; Chicharro, J L

    2007-12-01

    Inspiratory muscle training (IMT) has been shown to improve exercise capacity in diseased populations. We chose to examine the effects of eight weeks of IMT on exercise capacity and spontaneous physical activity in elderly individuals. Eighteen moderately active elderly subjects (68.1 +/- 6.8 years [mean +/- SD]; range 58 - 78 years) were randomly assigned to either an experimental group (n = 9) or a control group (n = 9) in a double-blind manner. All subjects underwent inspiratory muscle testing, treadmill exercise testing and a four-day measurement period of spontaneous physical activity (using accelerometry) both pre- and post-intervention. The experimental group underwent eight weeks of incremental IMT using a pressure threshold device, while the control group underwent sham training using identical devices. After IMT training, inspiratory muscle strength (mean + 21.5 cm H (2)O; 95 % CI: 9.3, 33.7; p = 0.002), V.O (2peak) (+ 2.8 ml x min (-1) x kg (-1); 95 % CI: 0.5, 5.2; p = 0.022), time to exhaustion during a fixed workload treadmill test (+ 7.1 min; 95 % CI: 1.8, 2.4; p = 0.013) and time engaged in moderate-to-vigorous physical activity (+ 59 min; 95 % CI: 15, 78; p = 0.008) improved. Except for a decline in moderate-to-vigorous physical activity, no significant changes were seen in the control group. Therefore, IMT may be a useful technique for positively influencing exercise capacity and physical activity in elderly individuals. PMID:17534784

  15. Effects of Exercise Training and Inspiratory Muscle Training in Spinal Cord Injury: A Systematic Review

    PubMed Central

    Sheel, A. William; Reid, Wendy Darlene; Townson, Andrea F; Ayas, Najib T; Konnyu, Kristin J

    2008-01-01

    Objective: To provide a systematic review of the studies assessing exercise training and inspiratory muscle training (IMT) in individuals for the improved respiratory function of patients with spinal cord injury (SCI). Methods: Thirteen studies (5 exercise training, 8 IMT) were identified. Articles were scored for their methodological quality using the Physiotherapy Evidence Database scores and Downs and Black tools for randomized and nonrandomized studies, respectively. Conclusions were based on the most rigorously executed studies using Sackett's levels of evidence. Results: Study comparison was compromised by diverse research designs; small sample sizes; and heterogeneity of studied populations, protocols, and outcome measures. Based on current literature, there is level 2 evidence supporting exercise training as an intervention to improve respiratory strength and endurance and level 4 evidence to support exercise training as an intervention that might improve resting and exercising respiratory function in people with SCI. There is level 4 evidence to support IMT as an intervention that might decrease dyspnea and improve respiratory function in people with SCI. Conclusions: There are insufficient data to strongly support the use of exercise training or IMT for improved respiratory function in people with SCI. There is some evidence of efficacy of both regimens; however, the evidence is not of the best possible quality. PMID:19086707

  16. Inspiratory muscle performance in endurance-trained elderly males during incremental exercise.

    PubMed

    Chlif, Mehdi; Keochkerian, David; Temfemo, Abdou; Choquet, Dominique; Ahmaidi, Said

    2016-07-01

    The aim of this study was to compare the inspiratory muscle performance during an incremental exercise of twelve fit old endurance-trained athletes (OT) with that of fit young athletes (YT) and healthy age-matched controls (OC). The tension-time index (TT0.1) was determined according to the equation TT0.1=P0.1/PImax×ti/ttot, where P0.1 is the mouth occlusion pressure, PImax the maximal inspiratory pressure and ti/ttot the duty cycle. For a given VCO2, OT group displayed P0.1, P0.1/PImax ratio, TT0.1 and effective impedance of the respiratory muscle values which were lower than OC group and higher than YT group. At maximal exercise, P0.1/PImax ratio and TT0.1 was still lower in the OT group than OC group and higher than YT group. This study showed lower inspiratory muscle performance attested by a higher (TT0.1) during exercise in the OT group than YT group, but appeared to be less marked in elderly men having performed lifelong endurance training compared with sedentary elderly subjects. PMID:26994757

  17. Maximal inspiratory mouth pressure in Japanese elite male athletes.

    PubMed

    Ohya, Toshiyuki; Hagiwara, Masahiro; Chino, Kentaro; Suzuki, Yasuhiro

    2016-08-01

    Maximal inspiratory mouth pressure (MIP) is a common measurement of inspiratory muscle strength, which is often used in a variety of exercises to evaluate the effects of inspiratory muscle training. An understanding of elite athletes' MIP characteristics is needed to guide sport-specific inspiratory muscle training programs. The purpose of this study was to investigate and better understand the MIP characteristics of elite athletes from a variety of sports. A total of 301 Japanese elite male athletes participated in this study. MIP was assessed using a portable autospirometer with a handheld mouth pressure meter. Athletes with higher body mass tended to have stronger MIP values, in absolute terms. In relative terms, however, athletes who regularly experienced exercise-induced inspiratory muscle fatigue tended to have stronger MIP values. Our findings suggest that athletes could benefit from prescribed, sport-specific, inspiratory muscle training or warm-ups. PMID:27181330

  18. Inspiratory muscle training during pulmonary rehabilitation in chronic obstructive pulmonary disease: A randomized trial.

    PubMed

    Beaumont, M; Mialon, P; Le Ber-Moy, C; Lochon, C; Péran, L; Pichon, R; Gut-Gobert, C; Leroyer, C; Morelot-Panzini, C; Couturaud, F

    2015-11-01

    Although recommended by international guidelines, the benefit of inspiratory muscle training (IMT) in addition to rehabilitation remains uncertain. The objective was to demonstrate the effectiveness of IMT on dyspnea using Borg scale and multidimensional dyspnea profile questionnaire at the end of a 6-minute walk test (6MWT) in patients with chronic obstructive pulmonary disease (COPD) with preserved average maximum inspiratory pressure (PImax) of 85 cm H2O (95% of predicted (pred.) value) and admitted for a rehabilitation program in a dedicated center. In a randomized trial, comparing IMT versus no IMT in 32 COPD patients without inspiratory muscle weakness (PImax >60 cm H2O) who were admitted for pulmonary rehabilitation (PR) for 3 weeks, we evaluated the effect of IMT on dyspnea, using both Borg scale and multidimensional dyspnea profile (MDP) at the end of the 6MWT, and on functional parameters included inspiratory muscle function (PImax) and 6MWT. All testings were performed at the start and the end of PR. In unadjusted analysis, IMT was not found to be associated with an improvement of either dyspnea or PImax. After adjustment on confounders (initial Borg score) and variables of interaction (forced expiratory volume in 1 second (FEV1)), we found a trend toward an improvement of "dyspnea sensory intensity", items from MDP and a significant improvement on the variation in the 2 items of MDP ("tight or constricted" and "breathing a lot"). In the subgroup of patients with FEV1 < 50% pred., 5 items of MDP were significantly improved, whereas no benefit was observed in patients with FEV1 > 50% pred. IMT did not significantly improve dyspnea or functional parameter in COPD patients with PImax > 60 cm H2O. However, in the subgroup of patients with FEV1 < 50% pred., MDP was significantly improved. PMID:26170421

  19. Inspiratory muscle training in chronic airflow limitation: comparison of two different training loads with a threshold device.

    PubMed

    Lisboa, C; Muñoz, V; Beroiza, T; Leiva, A; Cruz, E

    1994-07-01

    The usefulness of inspiratory muscle training (IMT) in chronic airflow limitation (CAL) patients is a controversial issue, mainly due to differences in the training load. To further evaluate this aspect, we studied the effect of the magnitude of the load using a threshold pressure trainer. Ten CAL patients (5 males, 5 females) 67 +/- 2 yrs (mean +/- SEM) and forced expiratory volume in one second (FEV1) 36 +/- 2% pred, were trained for 30 min a day using a load of 30% of their maximal inspiratory mouth pressure (PImax) (Group 1). Another 10 CAL patients (5 males, 5 females), 73 +/- 2 yrs and FEV1 37 +/- 2% pred), were trained using only 12% of their PImax (Group 2). Training was assessed by PImax, inspiratory muscle power output (IMPO), sustainable inspiratory pressure (SIP), maximal inspiratory flow rate (VImax), pattern of breathing during loaded breathing, Mahler's dyspnoea score, and the 6 min walking distance (6MWD). After 5 weeks of training, Group 1 exhibited significant increments in: PImax (34 +/- 11%); IMPO (92 +/- 16%); SIP (36 +/- 9%); and VImax (34 +/- 13%). Dyspnoea was also reduced, and the 6MWD increased by 48 +/- 22 m. We observed no significant changes in Group 2. During loaded breathing, Group 1 showed a significant increment in tidal volume (VT) and mean inspiratory flow (VT/TI), and a reduction in inspiratory time (TI). In Group 2, VT and VT/TI also increased significantly, but the breathing frequency increased with a reduction of expiratory time.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7925905

  20. Inspiratory muscle training compared with other rehabilitation interventions in adults with chronic obstructive pulmonary disease: a systematic literature review and meta-analysis.

    PubMed

    Crowe, Jean; Reid, W Darlene; Geddes, E Lynne; O'Brien, Kelly; Brooks, Dina

    2005-09-01

    The purpose of this systematic review was to determine the effect of inspiratory muscle training (IMT) (alone or combined with exercise and/or pulmonary rehabilitation) compared to other rehabilitation interventions such as: exercise, education, other breathing techniques or exercise and/or pulmonary rehabilitation among adults with chronic obstructive pulmonary disease (COPD). A systematic review of the literature on IMT and COPD was conducted according to the Cochrane Collaboration protocol. Inclusion criteria for the review included randomized controlled trials, published in English, comparing IMT or combined IMT and exercise/pulmonary rehabilitation with other rehabilitation interventions such as general exercise, education, other breathing techniques or exercise/pulmonary rehabilitation among adults with COPD. 274 articles were retrieved, and 16 met the inclusion criteria. Seven meta-analyses were performed that compared targeted or threshold IMT to exercise (n = 3) or to education (n = 4). Results showed significant improvements in inspiratory muscle strength and endurance, and in the dyspnea scale on a quality of life measure, for participants in the IMT versus education group. In other instances where meta-analyses could not be performed, a qualitative review was performed. IMT results in improved inspiratory muscle strength and endurance compared to education. Further trials are required to investigate the effect of IMT (or combined IMT) compared to other rehabilitation inventions for outcomes such as dyspnea, exercise tolerance, and quality of life. PMID:17146997

  1. The value of multiple tests of respiratory muscle strength

    PubMed Central

    Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John

    2007-01-01

    Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when

  2. [Effect of methylphenidatum on inspiratory muscles function in patients with chronic obstructive pulmonary disease and its mechanism].

    PubMed

    Wang, Y; Luo, Y; Chen, W; Yuan, Y; He, T; Zeng, J

    1997-03-01

    To have a better understanding of the effect of methylphenidatum on inspiratory muscles function, we studied the respiratory force parameters of 70 patients with chronic obstructive pulmonary disease by intravenous infusion methylphenidatum in a randomized controlled clinical trial. The indices of respiratory force parameter included maximal inspiratory mouth pressure (MIP), maximal midinspiratory flow (MMIF), forced inspiratory capacity (FIC), maximal works of inspiration (Wimax) and airway occlusion pressure (P0.1), etc. Aminophylline and Nikethamidi were chosen as controls. The results showed that MIP, MMIF, FIC, Wimax, P0.1 and minute ventilation (Vr) were significantly increased after administration of methylphenidatum and aminophylline. There were no significant differences in MIP, MMIF, FIC and Wimax after administration of Nikethamidi, but P0.1 was significantly increased and the increase was higher than that after administration of methylphenidatum and aminophylline groups. We conclude that methylphenidatum can significantly improve the function of inspiratory muscles as aminophylline can do. PMID:10684069

  3. Inspiratory muscle performance relative to the anaerobic threshold in patients with COPD.

    PubMed

    Wanke, T; Formanek, D; Lahrmann, H; Merkle, M; Rauscher, H; Zwick, H

    1993-09-01

    Rehabilitation programmes in chronic obstructive pulmonary disease (COPD) require exercise training above the anaerobic threshold. However, not all COPD patients develop metabolic acidosis during exercise. The hypothesis of this study was that non-exercise variables, characterizing the mechanical load on the inspiratory muscles during breathing at rest, can be used to reliably predict which patients with COPD are not able to develop metabolic acidosis during exercise. Thirty participants with COPD performed a symptom-limited cycle ergometer test. The oesophageal pressure/time index (PTIoes: the product of pressure magnitude and duration), the mean rate of pressure development during inspiration (Poes/TI), and the mean airway resistance (Raw)/maximal oesophageal pressure (Poesmax) ratio served as indices for the mechanical load on the inspiratory muscles. The oxygen uptake (VO2) at which plasma standard bicarbonate was seen to decrease from its baseline value was taken as the anaerboic threshold (AT). Mean Raw was significantly higher in those patients in whom the AT could not be detected. No other lung function parameters measured at rest allowed the accurate selection of those patients who did or did not develop exercise metabolic acidosis. On the other hand, Raw/Poesmax, PTIoes and Poes/TI were significantly different in the two patient groups. Additionally, whereas in the patient group with identifiable AT exercise hyperpnoea produced a non-linear increase of Poes/TI with respect to PTIoes above the AT, in the patient group without identifiable AT there was a linear relationship between Poes/TI and PTIoes throughout exercise. We conclude that the determination of inspiratory muscle load indices at rest may be useful in pulmonary rehabilitation programmes, for identifying those patients with COPD who do not develop exercise induced metabolic acidosis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8224135

  4. Pulmonary Rehabilitation Using Modified Threshold Inspiratory Muscle Trainer (IMT) in Patients with Tetraplegia.

    PubMed

    Yasar, Funda; Tasci, Canturk; Savci, Sema; Tozkoparan, Ergun; Deniz, Omer; Balkan, Arzu; Bilgic, Hayati

    2012-01-01

    It is aimed to present the usefulness of inspiratory muscle trainer (IMT) in treatment of a 20-year-old male patient with diaphragmatic paralysis and tetraplegia due to spinal cord injury (SCI), and supporting effect of IMT in recovering from respiratory failure by rendering his diaphragm functions. The treatment was applied through the tracheostomy cannula by a modified IMT device. After applying IMT for three weeks, it was observed that the diaphragm recovered its functions in electromyography (EMG) test. As a result, in this study, we present a case where a patient could live without any respiratory device for the rest of his life with the help of modified IMT. PMID:22536264

  5. Effects of Abdominal Stimulation during Inspiratory Muscle Training on Respiratory Function of Chronic Stroke Patients

    PubMed Central

    Jung, Ju-hyeon; Shim, Je-myung; Kwon, Hae-yeon; Kim, Ha-roo; Kim, Bo-in

    2014-01-01

    [Purpose] The purpose of the present study was to verify a new method for improving respiratory functions by applying both abdominal stimulation and inspiratory muscle training (IMT) to train the inspiratory muscle and the expiratory muscle simultaneously, to improve the efficiency of IMT of chronic stroke patients. [Subjects] Eighteen stroke patients were randomly assigned to an experimental group (n = 9) and a control group (n = 9). [Methods] The experimental group was administered IMT with abdominal stimulation, and the control group was administered only IMT. During the intervention period, the experimental group and control group received training 20 min/day, 3 times/wk, for 4 weeks. To examine the lung functions of the subjects, FVC, FEV1, PEF, and FEF25–75 were measured using an electronic spirometer. The diaphragm thickness ratio was calculated from measurements made with a 7.5-MHz linear probe ultrasonic imaging system. [Result] The experimental group and the control group showed significant increases in diaphragm thickness ratio on the paretic side, but not on the non-paretic side. With regard to lung function, the experimental group showed significant increases in FEV1, PEF, and FEF25–75. The changes between before and after the intervention in the two groups were compared with each other, and the results showed significant differences in FEV1 and PEF. [Conclusion] The present study identified that IMT accompanied by abdominal stimulation improved the pulmonary function of chronic stroke patients. PMID:24567679

  6. Protocol: inspiratory muscle training for promoting recovery and outcomes in ventilated patients (IMPROVe): a randomised controlled trial

    PubMed Central

    Leditschke, I Anne; Paratz, Jennifer D; Boots, Robert J

    2012-01-01

    Introduction Inspiratory muscle weakness is a known consequence of mechanical ventilation and a potential contributor to difficulty in weaning from ventilatory support. Inspiratory muscle training (IMT) reduces the weaning period and increases the likelihood of successful weaning in some patients. However, it is not known how this training affects the residual inspiratory muscle fatigability following successful weaning nor patients' quality of life or functional outcomes. Methods and analysis This dual centre study includes two concurrent randomised controlled trials of IMT in adult patients who are either currently ventilator-dependent (>7 days) (n=70) or have been recently weaned from mechanical ventilation (>7 days) in the past week (n=70). Subjects will be stable, alert and able to actively participate and provide consent. There will be concealed allocation to either treatment (IMT) or usual physiotherapy (including deep breathing exercises without a resistance device). Primary outcomes are inspiratory muscle fatigue resistance and maximum inspiratory pressures. Secondary outcomes are quality of life (Short Form-36v2, EQ-5D), functional status (Acute Care Index of Function), rate of perceived exertion (Borg Scale), intensive care length of stay (days), post intensive care length of stay (days), rate of reintubation (%) and duration of ventilation (days). Ethics and dissemination Ethics approval has been obtained from relevant institutions, and results will be published with a view to influencing physiotherapy practice in the management of long-term ventilator-dependent patients to accelerate weaning and optimise rehabilitation outcomes. Trial registration number ACTRN12610001089022. PMID:22389363

  7. Effects of a 10-week inspiratory muscle training program on lower-extremity mobility in people with multiple sclerosis: a randomized controlled trial.

    PubMed

    Pfalzer, Lucinda; Fry, Donna

    2011-01-01

    Pulmonary muscle weakness is common in ambulatory people with multiple sclerosis (MS) and may lead to deficits in mobility function. The purpose of this study was to examine the effect of a 10-week home-based exercise program using an inspiratory muscle threshold trainer (IMT) on the results of four lower-extremity physical performance tests in people with MS. The study design was a two-group (experimental-control), pretest-posttest study. Outcome measures consisted of pulmonary function measures including maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and maximal voluntary ventilation (MVV), and the following lower-extremity physical performance measures: the 6-Minute Walk (6MW) distance, gait velocity (GV), the Sit-to-Stand Test (SST), the Functional Stair Test (FST), and a balance test (BAL). A total of 46 ambulatory participants (Expanded Disability Status Scale [EDSS] score, 2.0-6.5) with MS were randomly assigned to an intervention group (mean EDSS score, 4.1) that received 10 weeks of home-based inspiratory muscle training or a nontreatment control group (mean EDSS score, 3.2). Of the original 46 participants, 20 intervention group participants and 19 control group participants completed the study. Compared with the control group, the intervention group made significantly greater gains in inspiratory muscle strength (P = .003) and timed balance scores (P = .008). A nonsignificant improvement in 6MW distance (P = .086) was also noted in the IMT-trained group as compared with the control group. This is the first study directly linking improvement in respiratory function to improvement in physical performance function in people with mild-to-moderate disability due to MS. PMID:24453703

  8. Evaluation of the THRESHOLD trainer for inspiratory muscle endurance training: comparison with the weighted plunger method.

    PubMed

    Johnson, P H; Cowley, A J; Kinnear, W J

    1996-12-01

    Inspiratory muscle training (IMT) has been shown to enhance exercise performance. The weighted plunger (WP) system of inspiratory threshold loading is the most commonly used method of IMT, but is expensive and cumbersome. We have evaluated a commercially available portable spring-loaded IMT device, the THRESHOLD trainer. The WP and THRESHOLD trainer devices were evaluated with their opening pressures set, in random order, at 10, 20, 30 and 40 cmH2O. Using an airpump, pressure at the valve inlet was recorded at the point at which the valve opened, and at airflow rates of 20, 40, 60, 80 and 100 L.min-1. Ten THRESHOLD trainers were then compared using the same opening pressures and airflow rates. Finally, 10 patients with stable chronic heart failure (CHF) inspired, in random order, through the WP and THRESHOLD trainer for 4 min each. The pressure-time product (PTP) was calculated for each 4 min period, to compare the work performed on inspiring through each device. The mean measured opening pressures for the WP set at 10, 20, 30 and 40 cmH2O, were 9.0, 19.3, 27.9 and 39.2 cmH2O, respectively, and there was little change over the range of flow tested. Corresponding values for the THRESHOLD trainer were 7.5, 16.9, 26.2 and 39.1 cmH2O, with the pressure being closer to the set pressure as flow increased to that seen in clinical practice. The 10 different trainers tested performed very similarly to one another. Work performed (as measured by PTP) on inspiring through the WP and THRESHOLD trainer was not significantly different. Although less accurate than the weighted plunger, the THRESHOLD trainer is an inexpensive device of consistent quality. In a clinical setting it would be a satisfactory option for inspiratory muscle training in most patients, but less so in patients with very low inspiratory flow rates. PMID:8980985

  9. [Clinical effects of inspiratory muscle training in patients with chronic airflow limitation].

    PubMed

    Lisboa, C; Villafranca, C; Pertuzé, J; Leiva, A; Repetto, P

    1995-09-01

    The clinical role of inspiratory muscle training (IMT) in chronic obstructive pulmonary disease (COPD) has not been established, because data on its clinical effect is scarce and controversial. To further investigate these aspects we studied 20 COPD patients (FEV1 37 +/- 3% P) who were randomly and double blindly trained for 30 minutes a day during 10 weeks using a threshold inspiratory trainer with either 30% (group 1) or 10% (group 2) of PIMax as a training load. The training load was crossed after each patient completed 10 weeks of training. Effects were assessed through changes in PIMax, dyspnea through the transition dyspnea index (ITD) and the respiratory effort with Borg's score. Walking capacity was measured with the six minutes walking distance test (6WD) and depression symptoms with Beck's score. Daily life activities were also assessed. Results showed that after 10 weeks of IMT, PIMax increased in both groups (p < 0.05), dyspnea improved in group 1 as compared to group 2 (p < 0.04), 6WD increased significantly in patients of group 1, who also complained of less dyspnea (p < 0.05). Depression scores fell significantly in group 2. Daily activities improved more in group 1. After the crossover patients in group 1 disclosed a significant deterioration in PIMax whereas group 2 disclosed significant improvements in PIMax, dyspnea and 6WD. We conclude that IMT using a threshold device with 30% PIMax is a useful procedure for the treatment of severe COPD patients. PMID:8728734

  10. In normal subjects bracing impairs the function of the inspiratory muscles.

    PubMed

    Prandi, E; Couture, J; Bellemare, F

    1999-05-01

    Normal subjects can increase their capacity to sustain hyperpnoea by bracing their arms on fixed objects, a procedure which is also known to reduce dyspnoea in patients with chronic obstructive pulmonary disease (COPD). In the present study, it was tested whether bracing per se could improve the function of the diaphragm. The effect of bracing on diaphragm function was studied in six normal subjects by recording changes in oesophageal (delta Poes) and transdiaphragmatic (delta Pdi) pressure during inspiratory capacity (IC) manoeuvres in the seated and upright postures, and in the seated posture, also during bilateral phrenic nerve stimulation (BPNS) at functional residual capacity (FRC). The pattern of ribcage motion and deformation associated with bracing and with diaphragm contraction was also evaluated using inductance plethysmography and magnetometers. Bracing increased FRC by >300 mL and reduced IC by approximately 200 mL, in both postures. Delta Pdi during BPNS decreased on average by 15% indicating an impaired diaphragmatic function. The ribcage was deformed with bracing and was more distortable during BPNS. In conclusion, in normal subjects, bracing impairs the function of the inspiratory muscles and reduces ribcage stability. These negative effects cannot explain the improved capacity to sustain hyperpnoea when the arms are braced. PMID:10414407

  11. Effect of Simulated Microgravity and Lunar Gravity on Human Inspiratory Muscle Function: 'Selena-T' 2015 Study.

    PubMed

    Segizbaeva, M O; Aleksandrova, N P; Donina, Z A; Baranova, E V; Katuntsev, V P; Tarasenkov, G G; Baranov, V M

    2016-01-01

    As a part of the multi-disciplinary "SELENA-T"-2015 Bed Rest Study, we investigated the pattern of inspiratory muscles fatigue in 22 healthy male subjects during incremental exercise test to exhaustion before and after 21 days of hypokinesia evoked by bed rest. Hypokinesia consisted of head-down bed rest (HDBR) at a minus 6° angle, simulating microgravity present on orbiting spacecraft, in 10 subjects. The remaining 12 subjects spent the first 5 days of hypokinesia in HDBR position and the subsequent 16 days in head-up bed rest (HUBR) at a plus 9.6° angle, as a presumed analog of lunar gravity that is six times less than Earth's gravity. Maximal inspiratory pressure (MIP) and electromyograms (EMG) of the diaphragm (D), parasternal (PS), sternocleidomastoid (SCM), and scalene (S) muscles served as indices of inspiratory muscle function. Before both HDBR and HUBR, exercise decreased MIP and centroid frequency (fc) of EMG (D, PS, SCM, and S) power spectrum (p < 0.05). After 3 weeks of HDBR, but not HUBR, inspiratory muscles fatigue was more expressed compared with control (p < 0.05). We conclude that HDBR lowers inspiratory muscles resistance to fatigue during high-intensity exercise while HUBR has no such effect. These changes may limit maximal ventilation and may contribute to exercise intolerance observed after prolonged simulated microgravity. The physiological mechanisms of respiratory muscle dysfunction after HDBR consist primarily of postural effects, and are not due only to hypokinesia. PMID:27241510

  12. Diaphragmatic amplitude and accessory inspiratory muscle activity in nasal and mouth-breathing adults: a cross-sectional study.

    PubMed

    Trevisan, Maria Elaine; Boufleur, Jalusa; Soares, Juliana Corrêa; Haygert, Carlos Jesus Pereira; Ries, Lilian Gerdi Kittel; Corrêa, Eliane Castilhos Rodrigues

    2015-06-01

    The purpose of this study was to evaluate the electromyographic activity of the accessory inspiratory muscles and the diaphragmatic amplitude (DA) in nasal and mouth-breathing adults. The study evaluated 38 mouth-breathing (MB group) and 38 nasal-breathing (NB group) adults, from 18 to 30years old and both sexes. Surface electromyography (sEMG) was used to evaluate the amplitude and symmetry (POC%) of the sternocleidomastoid (SCM) and upper trapezius (UT) muscles at rest, during nasal slow inspiration at Lung Total Capacity (LTC) and, during rapid and abrupt inspiration: Sniff, Peak Nasal Inspiratory Flow (PNIF) and Maximum Inspiratory Pressure (MIP). M-mode ultrasonography assessed the right diaphragm muscle amplitude in three different nasal inspirations: at tidal volume (TV), Sniff and inspiration at LTC. The SCM activity was significantly lower in the MB group during Sniff, PNIF (p<0.01, Mann-Whitney test) and MIP (p<0.01, t-test). The groups did not differ during rest and inspiration at LTC, regarding sEMG amplitude and POC%. DA was significantly lower in the MB group at TV (p<0.01, Mann-Whitney) and TLC (p=0.03, t-test). Mouth breathing reflected on lower recruitment of the accessory inspiratory muscles during fast inspiration and lower diaphragmatic amplitude, compared to nasal breathing. PMID:25900327

  13. The effect of inspiratory muscle training upon maximum lactate steady-state and blood lactate concentration.

    PubMed

    McConnell, Alison K; Sharpe, Graham R

    2005-06-01

    Several studies have reported that improvements in endurance performance following respiratory muscle training (RMT) are associated with a decrease in blood lactate concentration ([Lac](B)). The present study examined whether pressure threshold inspiratory muscle training (IMT) elicits an increase in the cycling power output corresponding to the maximum lactate steady state (MLSS). Using a double-blind, placebo-controlled design, 12 healthy, non-endurance-trained male participants were assigned in equal numbers to an experimental (IMT) or sham training control (placebo) group. Cycling power output at MLSS was initially identified using a lactate minimum protocol followed by a series of constant power output rides (2.5% increments) of 29.5 min duration; MLSS was reassessed following six weeks of IMT or sham IMT. Maximum inspiratory mouth pressure increased significantly (26%) in the IMT group, but remained unchanged in the placebo group. The cycling power output corresponding to MLSS remained unchanged in both groups after the intervention. After IMT, [Lac](B) decreased significantly at MLSS power in the IMT group [-1.17 (1.01) mmol l(-1) after 29.5 min of cycling; mean (SD)], but remained unchanged in the placebo group [+0.37 (1.66) mmol l(-1)]. These data support previous observations that IMT results in a decrease in [Lac](B )at a given intensity of exercise. That such a decrease in [Lac](B) was not associated with a substantial (>2.5%) increase in MLSS power is a new finding suggesting that RMT-induced increases in exercise tolerance and reductions in [Lac](B) are not ascribable to a substantial increase in the 'lactate threshold'. PMID:15765241

  14. The influence of inspiratory and expiratory muscle training upon rowing performance.

    PubMed

    Griffiths, Lisa A; McConnell, Alison K

    2007-03-01

    We investigated the effect of 4 week of inspiratory (IMT) or expiratory muscle training (EMT), as well as the effect of a subsequent 6 week period of combined IMT/EMT on rowing performance in club-level oarsmen. Seventeen male rowers were allocated to either an IMT (n = 10) or EMT (n = 7) group. The groups underwent a 4 week IMT or EMT program; after interim testing, both groups subsequently performed a 6 week program of combined IMT/EMT. Exercise performance and physiological responses to exercise were measured at 4 and 10 week during an incremental rowing ergometer 'step-test' and a 6 min all-out (6MAO) effort. Pressure threshold respiratory muscle training was undertaken at the 30 repetition maximum load (approximately 50% of the peak inspiratory and expiratory mouth pressure, P (Imax) or P (Emax), respectively). P (Imax) increased during the IMT phase of the training in the IMT group (26%, P < 0.001) and was accompanied by an improvement in mean power during the 6MAO (2.7%, P = 0.015). Despite an increase in P (Emax) by the end of the intervention (31%, P = 0.03), the EMT group showed no significant changes in any performance parameters during either the 'step-test' or 6MAO. There were no significant changes in breathing pattern or the metabolic response to the 6MAO test in either group, but the IMT group showed a small decrease in HR (2-5%, P = 0.001). We conclude that there were no significant additional changes following combined IMT/EMT. IMT improved rowing performance, but EMT and subsequent combined IMT/EMT did not. PMID:17186299

  15. Airway occlusion pressure and diaphragm global electromyogram analysis for evaluation of inspiratory muscle drive and neuromechanical coupling in cattle.

    PubMed

    Desmecht, D J; Linden, A S; Rollin, F A; Lekeux, P M

    1994-06-01

    Although healthy and diseased bovine respiratory tracts have been intensively studied during the last years, to the authors' knowledge, there have been no attempts to objectively examine the inspiratory drive from the brain to the nerves and muscles and its transformation in pressure. Such technique would be useful in assessing the possibility of altered ventilatory drive or inspiratory muscle fatigue in the context of an animal with ventilatory failure. The relation among ventilation, airway opening occlusion pressure generated 100 milliseconds after onset of inspiration (Pawo100ms) and 6 indexes describing diaphragmatic electromyographic activity (EMGdi) recorded via implanted fishhooks was evaluated during free and impeded CO2 rebreathing in 6 young bulls. The best significant linear correlations (r > 0.8) with inspiratory center afferent stimulation, as judged by end-tidal CO2 concentration in expired air, were found for Pawo100ms, peak moving time average or variance EMGdi, and mean integrated EMGdi, whatever had been the respiratory impedance. However, with an inspiratory load, Pawo100ms responses systematically had greater increase for a given change in the driving EMGdi, implying dependence of the former not only on neural input, but also on configurational factors that determine inspiratory muscle excitation-pressure generation couplings. The reproducibility of EMGdi absolute values and changes was satisfactory up to 10 hours, but could not be repeated from one day to the other. It was concluded that, provided the constancy of the electrical coupling of the recording system to the tissue being studied is ensured, specific EMGdi and Pawo100ms values correlate reliably with amount of CO2 during free and loaded breathing.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7944009

  16. The 400- and 800-m Track Running Induces Inspiratory Muscle Fatigue in Trained Female Middle-Distance Runners.

    PubMed

    Ohya, Toshiyuki; Yamanaka, Ryo; Hagiwara, Masahiro; Oriishi, Marie; Suzuki, Yasuhiro

    2016-05-01

    Inspiratory muscle fatigue (IMF) may limit exercise performance. A few studies have reported that IMF occurs after short-duration swimming exercise, but whether short-duration running can induce IMF remains unclear. Intra-abdominal pressure is increased during running through diaphragmatic activation to stabilize the spine during movements of the upper limbs. This occurs along with the increased inspiratory muscle effort associated with increased respirations during exercise; thus, we hypothesized that short-duration running exercise would induce IMF. To test this hypothesis, we measured maximal inspiratory pressure (MIP) before and after 400- and 800-m track running sessions. Eight female middle-distance (400, 800 m) runners performed a 400- and 800-m running test. Maximal inspiratory pressure was measured before and after each test using a portable autospirometer. The mean MIPs were significantly lower after running than before running; values obtained were 107 ± 25 vs. 97 ± 27 cmH2O (p = 0.01, effect size [ES] = 0.65) and 108 ± 26 vs. 92 ± 27 cmH2O (p = 0.01, ES = 0.74) before vs. after the 400- and 800-m tests, respectively. The mean MIP after the 800-m test was significantly lower than after the 400-m test (p = 0.04, ES = 0.48). There was no correlation between IMF value and running time (r = 0.53 and r = -0.28 for either the 400- and 800-m tests, respectively; p > 0.05). In conclusion, IMF occurs after short-duration running exercise. Coaches could consider prescribing inspiratory muscle training or warm-up in an effort to reduce the inevitable IMF associated with maximal effort running. PMID:26422611

  17. Sniff and Muller manoeuvres to measure diaphragmatic muscle strength.

    PubMed

    Prigent, Hélène; Orlikowski, David; Fermanian, Christophe; Lejaille, Michèle; Falaize, Line; Louis, Alain; Fauroux, Brigitte; Lofaso, Frédéric

    2008-12-01

    We hypothesized that peak values of oesophageal (Poes) and transdiaphragmatic pressure (Pdi) swings during a maximal sniff manoeuvre and a maximal static inspiratory manoeuvre (Muller manoeuvre) are comparable or give complementary information for assessing diaphragmatic and global inspiratory muscle strength. We studied 98 patients with suspected diaphragmatic dysfunction. Poes and Pdi swings were measured during maximal sniff manoeuvres (sniff), maximal Muller manoeuvres (max), and cervical magnetic phrenic nerve stimulation (cervical Tw). Eighty eight patients were able to perform both volitional manoeuvres. Among them, mean Poes sniff was significantly higher than mean Poes max (48.7+/-28.7 cm H(2)O vs. 42.9+/-27.4 cm H(2)O, p<0.05) and mean Pdi sniff was higher than mean Pdi max (49.2+/-35.1cm H(2)O vs. 42.9+/-33.3 cm H(2)O, respectively, p=0.05). Cervical Pdi Tw correlated better with Pdi sniff (p<0.0001, r=0.62) than with Pdi max (p<0.0001, r=0.44). Poes and Pdi swings were greatest during the sniff manoeuvre in 42 patients (48%) and during the Muller manoeuvre in 29 patients (33%). Among the 17 remaining patients, nine had the greatest Poes swing during a maximal sniff manoeuvre and the greatest Pdi swing during a maximal static inspiratory manoeuvre; the opposite occurred in the other eight patients. The combination of Muller manoeuvre and sniff manoeuvre increased the diagnosis of normal diaphragmatic strength from 18 patients (20%) to 21 patients (24%), and the additional analysis of cervical Pdi Tw further increased the diagnosis of normal diaphragmatic strength to 27 patients (31%). In conclusion, though sniff manoeuvre gave significantly higher values than Muller manoeuvre, both volitional manoeuvres and cervical Pdi Tw are complementary and should be used in combination to evaluate diaphragmatic muscle strength. PMID:18708281

  18. The Pilates Method increases respiratory muscle strength and performance as well as abdominal muscle thickness.

    PubMed

    Giacomini, Mateus Beltrame; da Silva, Antônio Marcos Vargas; Weber, Laura Menezes; Monteiro, Mariane Borba

    2016-04-01

    The aim of this study was to verify the effects of the Pilates Method (PM) training program on the thickness of the abdominal wall muscles, respiratory muscle strength and performance, and lung function. This uncontrolled clinical trial involved 16 sedentary women who were assessed before and after eight weeks of PM training. The thickness of the transversus abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles was assessed. The respiratory muscle strength was assessed by measuring the maximum inspiratory (MIP) and expiratory (MEP) pressure. The lung function and respiratory muscle performance were assessed by spirometry. An increase was found in MIP (p = 0.001), MEP (p = 0.031), maximum voluntary ventilation (p = 0.020) and the TrA (p < 0.001), IO (p = 0.002) and EO (p < 0.001) thickness after the PM program. No alterations in lung function were found. These findings suggest that the PM program promotes abdominal wall muscle hypertrophy and an increase in respiratory muscle strength and performance, preventing weakness in abdominal muscles and dysfunction in ventilatory mechanics, which could favor the appearance of illnesses. PMID:27210841

  19. Medicinal clays improve the endurance of loaded inspiratory muscles in COPD: a randomized clinical trial of nonpharmacological treatment

    PubMed Central

    Baldi, Simonetta; Pinna, Gian Domenico; Bruschi, Claudio; Caldara, Fabrizio; Maestri, Roberto; Dacosto, Elena; Rezzani, Antonella; Popovich, Ermanno; Bellinzona, Ezio; Crotti, Paola; Montemartini, Silvia; Fracchia, Claudio

    2015-01-01

    Background Inspiratory resistive breathing (IRB) challenges affect respiratory muscle endurance in healthy individuals, which is considered to be an interleukin 6 (IL-6)–dependent mechanism. Whether nonpharmacological thermal therapies promote the endurance of loaded inspiratory muscles in chronic obstructive pulmonary disease (COPD) is unclear. The objectives of this study were to compare the effects of two thermal interventions on endurance time (ET) and plasma IL-6 concentration following an IRB challenge. Methods This study was a randomized, parallel-group, unblinded clinical trial in a single-center setting. Forty-two patients (aged 42–76 years) suffering from mild to severe COPD participated in this study. Both groups completed 12 sessions of the mud bath therapy (MBT) (n=22) or leisure thermal activity (LTA) (n=19) in a thermal spa center in Italy. Pre- and postintervention spirometry, maximum inspiratory pressure, and plasma mediators were obtained and ET and endurance oxygen expenditure (VO2Endur) were measured following IRB challenge at 40% of maximum inspiratory pressure. Results There was no difference in ΔIL-6 between the intervention groups. But, IRB challenge increased cytokine IL-6 plasma levels systematically. The effect size was small. A statistically significant treatment by IRB challenge effect existed in ET, which significantly increased in the MBT group (P=0.003). In analysis of covariance treatment by IRB challenge analysis with LnVO2Endur as the dependent variable, ΔIL-6 after intervention predicted LnVO2Endur in the MBT group, but not in the LTA group. Adverse events occurred in two individuals in the MBT group, but they were mainly transient. One patient in the LTA group dropped out. Conclusion MBT model improves ET upon a moderate IRB challenge, indicating the occurrence of a training effect. The LnVO2Endur/ΔIL-6 suggests a physiologic adaptive mechanism in respiratory muscles of COPD patients allocated to treatment. Both thermal

  20. Inspiratory muscle training enhances pulmonary O(2) uptake kinetics and high-intensity exercise tolerance in humans.

    PubMed

    Bailey, Stephen J; Romer, Lee M; Kelly, James; Wilkerson, Daryl P; DiMenna, Fred J; Jones, Andrew M

    2010-08-01

    Fatigue of the respiratory muscles during intense exercise might compromise leg blood flow, thereby constraining oxygen uptake (Vo(2)) and limiting exercise tolerance. We tested the hypothesis that inspiratory muscle training (IMT) would reduce inspiratory muscle fatigue, speed Vo(2) kinetics and enhance exercise tolerance. Sixteen recreationally active subjects (mean + or - SD, age 22 + or - 4 yr) were randomly assigned to receive 4 wk of either pressure threshold IMT [30 breaths twice daily at approximately 50% of maximum inspiratory pressure (MIP)] or sham treatment (60 breaths once daily at approximately 15% of MIP). The subjects completed moderate-, severe- and maximal-intensity "step" exercise transitions on a cycle ergometer before (Pre) and after (Post) the 4-wk intervention period for determination of Vo(2) kinetics and exercise tolerance. There were no significant changes in the physiological variables of interest after Sham. After IMT, baseline MIP was significantly increased (Pre vs. Post: 155 + or - 22 vs. 181 + or - 21 cmH(2)O; P < 0.001), and the degree of inspiratory muscle fatigue was reduced after severe- and maximal-intensity exercise. During severe exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.60 + or - 0.20 vs. 0.53 + or - 0.24 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 765 + or - 249 vs. 1,061 + or - 304 s; P < 0.01). Similarly, during maximal exercise, the Vo(2) slow component was reduced (Pre vs. Post: 0.28 + or - 0.14 vs. 0.18 + or - 0.07 l/min; P < 0.05) and exercise tolerance was enhanced (Pre vs. Post: 177 + or - 24 vs. 208 + or - 37 s; P < 0.01). Four weeks of IMT, which reduced inspiratory muscle fatigue, resulted in a reduced Vo(2) slow-component amplitude and an improved exercise tolerance during severe- and maximal-intensity exercise. The results indicate that the enhanced exercise tolerance observed after IMT might be related, at least in part, to improved Vo(2) dynamics, presumably as a

  1. Relationship Between Respiratory Muscle Strength and Conventional Sarcopenic Indices in Young Adults: A Preliminary Study

    PubMed Central

    Ro, Hee Joon; Lee, Sang Yoon; Seo, Kyung Mook; Kang, Si Hyun; Suh, Hoon Chang

    2015-01-01

    Objective To investigate the relationships between respiratory muscle strength and conventional sarcopenic indices such as skeletal muscle mass and limb muscle strength. Methods Eighty-nine young adult volunteers who had no history of medical or musculoskeletal disease were enrolled. Skeletal muscle mass was measured by bioelectrical impedance analysis and expressed as a skeletal muscle mass index (SMI). Upper and lower limb muscle strength were evaluated by hand grip strength (HGS) and isometric knee extensor muscle strength, respectively. Peak expiratory flow (PEF), maximal inspiratory pressure (MIP), and maximal expiratory pressure (MEP) were evaluated using a spirometer to demonstrate respiratory muscle strength. The relationships between respiratory muscle strength and sarcopenic indices were investigated using Pearson correlation coefficients and multiple linear regression analysis adjusted by age, height, and body mass index. Results MIP showed positive correlations with SMI (r=0.457 in men, r=0.646 in women; both p<0.01). MIP also correlated with knee extensor strength (p<0.01 in both sexes) and HGS (p<0.05 in men, p<0.01 in women). However, PEF and MEP had no significant correlations with these sarcopenic variables. In multivariate regression analysis, MIP was the only independent factor related to SMI (p<0.01). Conclusion Among the respiratory muscle strength variables, MIP was the only value associated with skeletal muscle mass. PMID:26798601

  2. Extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training: a randomized clinical trial

    PubMed Central

    Cader, Samária Ali; de Souza Vale, Rodrigo Gomes; Zamora, Victor Emmanuel; Costa, Claudia Henrique; Dantas, Estélio Henrique Martin

    2012-01-01

    Background The purpose of this study was to evaluate the extubation process in bed-ridden elderly intensive care patients receiving inspiratory muscle training (IMT) and identify predictors of successful weaning. Methods Twenty-eight elderly intubated patients in an intensive care unit were randomly assigned to an experimental group (n = 14) that received conventional physiotherapy plus IMT with a Threshold IMT® device or to a control group (n = 14) that received only conventional physiotherapy. The experimental protocol for muscle training consisted of an initial load of 30% maximum inspiratory pressure, which was increased by 10% daily. The training was administered for 5 minutes, twice daily, 7 days a week, with supplemental oxygen from the beginning of weaning until extubation. Successful extubation was defined by the ventilation time measurement with noninvasive positive pressure. A vacuum manometer was used for measurement of maximum inspiratory pressure, and the patients’ Tobin index values were measured using a ventilometer. Results The maximum inspiratory pressure increased significantly (by 7 cm H2O, 95% confidence interval [CI] 4–10), and the Tobin index decreased significantly (by 16 breaths/ min/L, 95% CI −26 to 6) in the experimental group compared with the control group. The Chi-squared distribution did not indicate a significant difference in weaning success between the groups (χ2 = 1.47; P = 0.20). However, a comparison of noninvasive positive pressure time dependence indicated a significantly lower value for the experimental group (P = 0.0001; 95% CI 13.08–18.06). The receiver-operating characteristic curve showed an area beneath the curve of 0.877 ± 0.06 for the Tobin index and 0.845 ± 0.07 for maximum inspiratory pressure. Conclusion The IMT intervention significantly increased maximum inspiratory pressure and significantly reduced the Tobin index; both measures are considered to be good extubation indices. IMT was associated with a

  3. Respiratory muscle strength in asthmatic children

    PubMed Central

    Marcelino, Alessandra Maria Farias Cavalcante; da Cunha, Daniele Andrade; da Cunha, Renata Andrade; da Silva, Hilton Justino

    2012-01-01

    Summary Introduction: Changes in the respiratory system of asthmatics are also due to the mechanical disadvantage caused by the increased airway resistance. Objective: The study aims to evaluate the respiratory muscle strength and nutritional status of asthmatic children. Method: This is a prospective descriptive and transversal study with 50 children aged 7 to 12 years, who were placed into 2 groups, asthmatic and non-asthmatic. Respiratory muscle strength was evaluated on the basis of maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). The nutritional status was evaluated by measuring the anthropometric data, including height, weight, and body mass index (BMI). The findings were subjected to analysis of variance, chi-square, and Student's t test, and p-values < 0.05 was considered statistically significant. Results: In our comparisons, we observed statistically significantly lower values for age, weight, and height in asthmatic patients: 8.52 ± 1.49 years, 30.62 ± 7.66 kg, and 129.85 ± 10.24 cm, respectively, vs. non-asthmatic children(9.79 ± 1.51 years, 39.92 ± 16.57 kg, and 139.04 ± 11.62 cm, respectively). There was no significant increase in MIP and MEP between the groups: MIP was -84.96 ± 27.52 cmH2O for the asthmatic group and -88.56 ± 26.50 cmH2O for the non-asthmatic group, and MEP was 64.48 ± 19.23 cmH2O for asthmatic children and +66.72 ± 16.56 cmH2O for non-asthmatics. Conclusion: There was no statistically significant difference between groups, but we observed that MIP and MEP were slightly higher in the non-asthmatic group than in the asthmatic group. PMID:25991978

  4. Preoperative inspiratory muscle training to prevent postoperative pulmonary complications in patients undergoing esophageal resection (PREPARE study): study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Esophageal resection is associated with a high incidence of postoperative pneumonia. Respiratory complications account for almost half of the readmissions to the critical care unit. Postoperative complications can result in prolonged hospital stay and consequently increase healthcare costs. In cardiac surgery a preoperative inspiratory muscle training program has shown to prevent postoperative pneumonia and reduce length of hospital stay. While in some surgical centers inspiratory muscle training is already used in the preoperative phase in patients undergoing esophageal resection, the added value of this intervention on the reduction of pulmonary complications has not yet been investigated in large surgical populations other than cardiac surgery in a randomized and controlled study design. Methods/Design The effect of a preoperative inspiratory muscle training program on the incidence of postoperative pneumonia in patients undergoing esophageal resection will be studied in a single blind multicenter randomized controlled trial (the PREPARE study). In total 248 patients (age >18 years) undergoing esophageal resection for esophageal cancer will be included in this study. They are randomized to either usual care or usual care with an additional inspiratory muscle training intervention according to a high-intensity protocol which is performed with a tapered flow resistive inspiratory loading device. Patients have to complete 30 dynamic inspiratory efforts twice daily for 7 days a week until surgery with a minimum of 2 weeks. The starting training load will be aimed to be 60% of maximal inspiratory pressure and will be increased based on the rate of perceived exertion. The main study endpoint is the incidence of postoperative pneumonia. Secondary objectives are to evaluate the effect of preoperative inspiratory muscle training on length of hospital stay, duration of mechanical ventilation, incidence of other postoperative (pulmonary) complications

  5. The effect of home-based inspiratory muscle training on exercise capacity, exertional dyspnea and pulmonary function in COPD patients

    PubMed Central

    Bavarsad, Maryam Bakhshandeh; Shariati, Abdolali; Eidani, Esmaeil; Latifi, Mahmud

    2015-01-01

    Background: Chronic obstructive pulmonary disease (COPD) is currently the fourth cause of mortality worldwide. Patients with COPD experience periods of dyspnea, fatigue, and disability, which impact on their life. The objective of this study was to investigate the effect of short-term inspiratory muscle training on exercise capacity, exertional dyspnea, and pulmonary lung function. Materials and Methods: A randomized, controlled trial was performed. Thirty patients (27 males, 3 females) with mild to very severe COPD were randomly assigned to a training group (group T) or to a control group (group C). Patients in group T received training for 8 weeks (15 min/day for 6 days/week) with flow-volumetric inspiratory exerciser named (Respivol). Each patient was assessed before and after 8 weeks of training for the following clinical parameters: exercise capacity by 6-min walking test (6MWT), exertional dyspnea by Borg scale, and pulmonary lung function by spirometry. Patients used training together with medical treatment. The data were analyzed using paired t-test and independent t-test. Results: Results showed statistically significant increase in 6MWT at the end of the training from 445.6 ± 22.99 to 491.06 ± 17.67 meters? (P < 0.001) and statistically significant decrease in dyspnea from 3.76 ± 0.64 to 1.13 ± 0.36 (P = 0.0001) in the training group but not in the control group. The values for exercise capacity and dyspnea improved after 8 weeks in group T in comparison with group C (P = 0.001 and P = 0.0001, respectively). No changes were observed in any measure of pulmonary function in both groups. Conclusions: Short-term inspiratory muscle training has beneficial effects on exercise capacity and exertional dyspnea in COPD patients. PMID:26457101

  6. Inspiratory muscle fatigue affects latissimus dorsi but not pectoralis major activity during arms only front crawl sprinting.

    PubMed

    Lomax, Mitch; Tasker, Louise; Bostanci, Ozgur

    2014-08-01

    The purpose of this study was to determine whether inspiratory muscle fatigue (IMF) affects the muscle activity of the latissimus dorsi and pectoralis major during maximal arms only front crawl swimming. Eight collegiate swimmers were recruited to perform 2 maximal 20-second arms only front crawl sprints in a swimming flume. Both sprints were performed on the same day, and IMF was induced 30 minutes after the first (control) sprint. Maximal inspiratory and expiratory mouth pressures (PImax and PEmax, respectively) were measured before and after each sprint. The median frequency (MDF) of the electromyographic signal burst was recorded from the latissimus dorsi and pectoralis major during each 20-second sprint along with stroke rate and breathing frequency. Median frequency was assessed in absolute units (Hz) and then referenced to the start of the control sprint for normalization. After IMF inducement, stroke rate increased from 56 ± 4 to 59 ± 5 cycles per minute, and latissimus dorsi MDF fell from 67 ± 11 Hz at the start of the sprint to 61 ± 9 Hz at the end. No change was observed in the MDF of the latissimus dorsi during the control sprint. Conversely, the MDF of the pectoralis major shifted to lower frequencies during both sprints but was unaffected by IMF. As the latter induced fatigue in the latissimus dorsi, which was not otherwise apparent during maximal arms only control sprinting, the presence of IMF affects the activity of the latissimus dorsi during front crawl sprinting. PMID:24402450

  7. Asymmetry of Muscle Strength in Elite Athletes

    ERIC Educational Resources Information Center

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  8. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power.

    PubMed

    Johnson, Michael A; Sharpe, Graham R; Brown, Peter I

    2007-12-01

    We examined whether inspiratory muscle training (IMT) improved cycling time-trial performance and changed the relationship between limit work (W (lim)) and limit time (T (lim)), which is described by the parameters critical power (CP) and anaerobic work capacity (AWC). Eighteen male cyclists were assigned to either a pressure-threshold IMT or sham hypoxic-training placebo (PLC) group. Prior to and following a 6 week intervention subjects completed a 25-km cycling time-trial and three constant-power tests to establish the W (lim)-T (lim) relationship. Constant-power tests were prescribed to elicit exercise intolerance within 3-10 (Ex1), 10-20 (Ex2), and 20-30 (Ex3) min. Maximal inspiratory mouth pressure increased by (mean +/- SD) 17.1 +/- 12.2% following IMT (P < 0.01) and was accompanied by a 2.66 +/- 2.51% improvement in 25-km time-trial performance (P < 0.05); there were no changes following PLC. Constant-power cycling endurance was unchanged following PLC, as was CP (pre vs. post: 249 +/- 32 vs. 250 +/- 32 W) and AWC (30.7 +/- 12.7 vs. 30.1 +/- 12.5 kJ). Following IMT Ex1 and Ex3 cycling endurance improved by 18.3 +/- 15.1 and 15.3 +/- 19.1% (P < 0.05), respectively, CP was unchanged (264 +/- 62 vs. 263 +/- 61 W), but AWC increased from 24.8 +/- 5.6 to 29.0 +/- 8.4 kJ (P < 0.05). In conclusion, these data provide novel evidence that improvements in constant-power and cycling time-trial performance following IMT in cyclists may be explained, in part, by an increase in AWC. PMID:17874123

  9. Impact of backpack type on respiratory muscle strength and lung function in children.

    PubMed

    Vieira, Ana Christina; Ribeiro, Fernando

    2015-01-01

    We examine the influence of backpack type on lung function and respiratory muscle strength in children. Thirty-seven children were assessed for lung function and inspiratory and expiratory muscle strength under four randomly determined conditions: unloaded erect standing and three conditions carrying 15% of the child's body weight. In these three conditions, children carried the weight on a backpack with bilateral shoulder straps carried over both shoulders, on a backpack with bilateral shoulder straps carried over one shoulder and on a backpack with a mono shoulder strap. Significantly lower forced vital capacity, forced expiratory volume in one second and maximal expiratory pressure were observed when children carried a backpack with a mono shoulder strap compared to the unloaded standing position. In conclusion, the restrictive effect and the decrease in expiratory muscle strength were more pronounced for the backpack with a mono shoulder strap, suggesting that a double strap backpack is preferable to a mono shoulder strap backpack. Practitioner summary: There is little known about the effect of schoolbags on respiratory muscle function. We investigated the influence of backpack type on lung function and respiratory muscle strength. A backpack with a mono shoulder strap created a restrictive effect and a decrease in strength, suggesting that a double strap backpack is preferable to a mono shoulder strap backpack. PMID:25584722

  10. Sniff nasal inspiratory pressure in patients with chronic obstructive pulmonary disease.

    PubMed

    Uldry, C; Janssens, J P; de Muralt, B; Fitting, J W

    1997-06-01

    In subjects with normal lung mechanics, inspiratory muscle strength can be reliably and easily assessed by the sniff nasal inspiratory pressure (SNIP), which is the pressure measured in an occluded nostril during a maximal sniff performed through the contralateral nostril. The aim of this study was to assess the validity of the SNIP in patients with chronic obstructive pulmonary disease (COPD), where pressure transmission from alveoli to upper airways is likely to be dampened. Twenty eight patients with COPD were studied (mean forced expiratory volume in one second (FEV1) = 36% of predicted). The SNIP and the sniff oesophageal pressure (sniff Poes) were measured simultaneously during maximal sniffs, and were compared to the maximal inspiratory pressure obtained against an occlusion (MIP). All measurements were performed from functional residual capacity in the sitting position. The ratio SNIP/sniff Poes was 0.80, and did not correlate with the degree of airflow limitation. The ratio MIP/sniff Poes was 0.87, and the ratio SNIP/MIP was 0.97. Inspiratory muscle weakness, as defined by a low sniff Poes, was present in 17 of the 28 patients. A false diagnosis of weakness was made in eight patients when MIP was considered alone, in four when SNIP was considered alone, and in only three patients when MIP and SNIP were combined. We conclude that both the sniff nasal inspiratory pressure and the maximal inspiratory pressure moderately underestimate sniff oesophageal pressure in chronic obstructive pulmonary disease. Although suboptimal in this condition, the sniff nasal inspiratory pressure appears useful to complement the maximal inspiratory pressure for assessing inspiratory muscle strength in patients with chronic obstructive pulmonary disease. PMID:9192931

  11. Importance and challenges of measuring intrinsic foot muscle strength

    PubMed Central

    2012-01-01

    Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles

  12. Respiratory muscle strength test: is it realistic in young children?

    PubMed Central

    Heinzmann-Filho, João Paulo; Donadio, Márcio Vinícius Fagundes

    2015-01-01

    Objective: To determine the success rate of the manovacuometry test in children between 4 and 12 years of age. Methods: Cross-sectional study involving children and adolescents from 4 to 12 years of age, enrolled in three basic education schools. All subjects had the anthropometric and respiratory muscle strength (maximum inspiratory pressure and maximum expiratory pressure) data measured. Students whose parents did not authorize participation or who did not want to undergo the test were excluded. The test was considered successful when the subject reached acceptability (no air leaks) and reproducibility (variation <10% between the two major maneuvers) criteria established by guidelines. Failure was defined when subjects did not meet the above criteria. Data were expressed as mean and standard deviation and the categorical variables in absolute and relative frequency. The comparison between proportions was performed using the chi-square test. Results: We included 196 children and adolescents, mean age of 8.4±2.5 years, 53.1% female. The success rate of the manovacuometry test in children and adolescents evaluated was 92.3%. When comparing the differences between the success rates of preschool children with those children and adolescents of school age, there was a significantly lower success rate in the pre-school (85.1%) group compared to the school group (94.6%) (p=0.032). However, no significant differences (p=0.575) were found when gender comparisons were performed. Conclusions: The manovacuometry test showed a high success rate in both preschool and school population assessed. Furthermore, the rate of success appears to be related to aging. PMID:26137867

  13. Autism Severity and Muscle Strength: A Correlation Analysis

    ERIC Educational Resources Information Center

    Kern, Janet K.; Geier, David A.; Adams, James B.; Troutman, Melissa R.; Davis, Georgia; King, Paul G.; Young, John L.; Geier, Mark R.

    2011-01-01

    The current study examined the relationship between muscle strength, as measured by hand grip strength, and autism severity, as measured by the Childhood Autism Rating Scale (CARS). Thirty-seven (37) children with a diagnosis of autism spectrum disorder (ASD) were evaluated using the CARS and then tested for hand muscle strength using a hand grip…

  14. Differences in muscle strength after ACL reconstruction do not influence cardiorespiratory responses to isometabolic exercise

    PubMed Central

    Andrade, Marília S.; Lira, Claudio A. B.; Vancini, Rodrigo L.; Nakamoto, Fernanda P.; Cohen, Moisés; Silva, Antonio C.

    2014-01-01

    Objectives To investigate whether the muscle strength decrease that follows anterior cruciate ligament (ACL) reconstruction would lead to different cardiorespiratory adjustments during dynamic exercise. Method Eighteen active male subjects were submitted to isokinetic evaluation of knee flexor and extensor muscles four months after ACL surgery. Thigh circumference was also measured and an incremental unilateral cardiopulmonary exercise test was performed separately for both involved and uninvolved lower limbs in order to compare heart rate, oxygen consumption, minute ventilation, and ventilatory pattern (breath rate, tidal volume, inspiratory time, expiratory time, tidal volume/inspiratory time) at three different workloads (moderate, anaerobic threshold, and maximal). Results There was a significant difference between isokinetic extensor peak torque measured in the involved (116.5±29.1 Nm) and uninvolved (220.8±40.4 Nm) limbs, p=0.000. Isokinetic flexor peak torque was also lower in the involved limb than in the uninvolved limb (107.8±15.4 and 132.5±26.3 Nm, p=0.004, respectively). Lower values were also found in involved thigh circumference as compared with uninvolved limb (46.9±4.3 and 48.5±3.9 cm, p=0.005, respectively). No differences were found between the lower limbs in any of the variables of the incremental cardiopulmonary tests at all exercise intensities. Conclusions Our findings indicate that, four months after ACL surgery, there is a significant deficit in isokinetic strength in the involved limb, but these differences in muscle strength requirement do not produce differences in the cardiorespiratory adjustments to exercise. Based on the hypotheses from the literature which explain the differences in the physiological responses to exercise for different muscle masses, we can deduce that, after 4 months of a rehabilitation program after an ACL reconstruction, individuals probably do not present differences in muscle oxidative and peripheral

  15. Oxygen uptake kinetics and maximal aerobic power are unaffected by inspiratory muscle training in healthy subjects where time to exhaustion is extended.

    PubMed

    Edwards, A M; Cooke, C B

    2004-10-01

    The aim of this study was to determine whether 4 weeks of inspiratory muscle training (IMT) would be accompanied by alteration in cardiopulmonary fitness as assessed through moderate intensity oxygen uptake (V(.)O(2)) kinetics and maximal aerobic power (V(.)O(2max)). Eighteen healthy males agreed to participate in the study [training group (Tra) n=10, control group (Con) n=8]. Measurements of spirometry and maximal static inspiratory mouth pressure ( PI(max)) were taken pre- and post-training in addition to: (1) an incremental test to volitional exhaustion, (2) three square-wave transitions from walking to running at a moderate intensity (80% ventilatory threshold) and (3) a maximal aerobic constant-load running test to volitional fatigue for the determination of time to exhaustion ( T(lim)). Training was performed using an inspiratory muscle trainer (Powerbreathe). There were no significant differences in spirometry either between the two groups or when comparing the post- to pre-training results within each group. Mean PI(max) increased significantly in Tra ( P<0.01) and showed a trend for improvement ( P<0.08) in Con. Post-training T(lim) was significantly extended in both Tra [232.4 (22.8) s and 242.8 (20.1) s] ( P<0.01) and Con [224.5 (19.6) and 233.5 (12.7) s] ( P<0.05). Post-training T(lim) was significantly extended in Tra compared to Con ( P<0.05). In conclusion, the most plausible explanation for the stability in V(.)O(2) kinetics and V(.)O(2max) following IMT is that it is due to insufficient whole-body stress to elicit either central or peripheral cardiopulmonary adaptation. The extension of post-training T(lim) suggests that IMT might be useful as a stratagem for producing greater volumes of endurance work at high ventilatory loads, which in turn could improve cardiopulmonary fitness. PMID:15322855

  16. Effects of muscle extension strength exercise on trunk muscle strength and stability of patients with lumbar herniated nucleus pulposus.

    PubMed

    Jeon, Kyoungkyu; Kim, Taeyoung; Lee, Sang-Ho

    2016-05-01

    [Purpose] The purpose of this study was to provide the data for constructing an integrated exercise program to help restore muscle strength and stability through extension strength exercise in adult females with lumbar disc herniation. [Subjects and Methods] An 8-week exercise program for lumbar muscle extension strength and stabilization was performed by 26 females older than 20 with lumbar disc herniation findings. [Results] Significant differences were found in lumbar extension muscle strength at every angle of lumbar flexion after participation in the 8-week stabilization exercise program; but there was no significant difference in the weight distribution index. [Conclusion] An integrated exercise program aiming to strengthen lumbar spine muscles, reduce pain and stabilize the trunk can help to maintain muscle strength and balance. In addition, improvement in extension strength is expected to be helpful in daily life by securing the range of joint motion and improving the strength and stability. PMID:27313342

  17. Effects of muscle extension strength exercise on trunk muscle strength and stability of patients with lumbar herniated nucleus pulposus

    PubMed Central

    Jeon, Kyoungkyu; Kim, Taeyoung; Lee, Sang-Ho

    2016-01-01

    [Purpose] The purpose of this study was to provide the data for constructing an integrated exercise program to help restore muscle strength and stability through extension strength exercise in adult females with lumbar disc herniation. [Subjects and Methods] An 8-week exercise program for lumbar muscle extension strength and stabilization was performed by 26 females older than 20 with lumbar disc herniation findings. [Results] Significant differences were found in lumbar extension muscle strength at every angle of lumbar flexion after participation in the 8-week stabilization exercise program; but there was no significant difference in the weight distribution index. [Conclusion] An integrated exercise program aiming to strengthen lumbar spine muscles, reduce pain and stabilize the trunk can help to maintain muscle strength and balance. In addition, improvement in extension strength is expected to be helpful in daily life by securing the range of joint motion and improving the strength and stability. PMID:27313342

  18. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity.

    PubMed

    Prisk, G Kim; Fine, Janelle M; Cooper, Trevor K; West, John B

    2006-08-01

    Extended exposure to microgravity (microG) is known to reduce strength in weight-bearing muscles and was also reported to reduce respiratory muscle strength. Short- duration exposure to microG reduces vital capacity (VC), a surrogate measure for respiratory muscle strength, for the first few days, with little change in O2 uptake, ventilation, or end-tidal partial pressures. Accordingly we measured VC, maximum inspiratory and expiratory pressures, and indexes of pulmonary gas exchange in 10 normal subjects (9 men, 1 woman, 39-52 yr) who lived on the International Space Station for 130-196 days in a normoxic, normobaric atmosphere. Subjects were studied four times in the standing and supine postures preflight at sea level at 1 G, approximately monthly in microG, and multiple times postflight. VC in microG was essentially unchanged compared with preflight standing [5.28 +/- 0.08 liters (mean +/- SE), n = 187; 5.24 +/- 0.09, n = 117, respectively; P = 0.03] and considerably greater than that measured supine in 1G (4.96 +/- 0.10, n = 114, P < 0.001). There was a trend for VC to decrease after the first 2 mo of microG, but there were no changes postflight. Maximum respiratory pressures in microG were generally intermediate to those standing and supine in 1G, and importantly they showed no decrease with time spent in microG. O2 uptake and CO2 production were reduced (approximately 12%) in extended microG, but inhomogeneity in the lung was not different compared with short-duration exposure to microG. The results show that VC is essentially unchanged and respiratory muscle strength is maintained during extended exposure to microG, and metabolic rate is reduced. PMID:16601306

  19. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  20. Comparative effects of plasma exchange and pyridostigmine on respiratory muscle strength and breathing pattern in patients with myasthenia gravis.

    PubMed Central

    Goti, P.; Spinelli, A.; Marconi, G.; Duranti, R.; Gigliotti, F.; Pizzi, A.; Scano, G.

    1995-01-01

    BACKGROUND--Pyridostigmine, an acetylcholinesterase antagonist, is useful in improving respiratory function in patients with myasthenia gravis. More recently, plasma exchange has been employed in myasthenia gravis because it acts presumably by removal of circulating antibodies against acetylcholine receptors. Surprisingly, comparative data on the effects of pyridostigmine and plasma exchange on lung volumes, respiratory muscle strength, and ventilatory control system in patients with myasthenia gravis are lacking. METHODS--Nine consecutive patients with grade IIb myasthenia gravis were studied under control conditions and after a therapeutic dose of pyridostigmine. In a second study the patients were re-evaluated a few days after a cycle of plasma exchange, before taking pyridostigmine. In each subject pulmonary volumes, inspiratory (MIP) and expiratory (MEP) muscle force, and respiratory muscle strength, calculated as average MIP and MEP as percentages of their predicted values, were measured. The ventilatory control system was evaluated in terms of volume (tidal volume, VT) and time (inspiratory time, TI, and total time, TTOT) components of the respiratory cycle. Mean inspiratory flow (VT/TI)--that is, the "driving"--and TI/TTOT--that is, the "timing"--components of ventilation were also measured. RESULTS--In each patient treatment relieved weakness and tiredness, and dyspnoea grade was reduced with plasma exchange. Following treatment, vital capacity (VC) increased on average by 9.7% with pyridostigmine and by 14% with plasma exchange, and MIP increased by 18% and 26%, respectively. In addition, with plasma exchange but not with pyridostigmine forced expiratory volume in one second (FEV1) increased by 16% and MEP increased by 24.5%, while functional residual capacity (FRC) decreased a little (6.8%). The change in respiratory muscle strength was related to change in VC (r2 = 0.48). With plasma exchange, VT increased by 18.6% and VT/TI increased by 13.5%, while

  1. Knee muscle strength in multiple sclerosis: relationship with gait characteristics

    PubMed Central

    Güner, Senem; Hagharı, Sema; Inanıcı, Fatma; Alsancak, Serap; Aytekın, Gokhan

    2015-01-01

    [Purpose] To investigate the relationship between isokinetic knee muscle strength and kinematic, kinetic and spatiotemporal gait parameters of patients with multiple sclerosis (MS). [Subjects and Methods] Twenty-nine MS patients (mean age 31.5±6.5) were investigated in this study. The isokinetic knee muscle strength and gait parameters of MS patients with moderate and severe disability, as determined by the expanded disability status scale (EDSS): EDSS=1–4.5 (n=22, moderate disability) and EDSS>4.5 (n=7, severe disability) were measured. [Results] Isokinetic knee muscle strength, kinematic, kinetic and spatiotemporal gait parameters differed between moderate (EDSS=1–4.5, n=22) and severe disability (EDSS>4.5, n=7). The correlation between each of gait speed, stride length, total range of knee joint movement and the four strength parameters (minimum and maximum quadriceps and hamstring muscle strengths) were significant for the MS group as a whole. Within subgroups, the correlation between minimum hamstring strength and total range of knee movement was significant only in group EDSS>4.5; minimum hamstring correlated with peak knee extensor moment in group EDSS=1–4.5, but at a reduced level of significance. [Conclusion] The present study revealed significant correlations between gait characteristics and isokinetic strength parameters of the quadriceps and hamstring muscles. Our study suggests that rehabilitation protocols for MS patients should include a critical strength training programme particularly for the hamstring and quadriceps muscles. PMID:25931736

  2. Arginylation of myosin heavy chain regulates skeletal muscle strength

    PubMed Central

    Cornachione, Anabelle S.; Leite, Felipe S.; Wang, Junling; Leu, Nicolae A.; Kalganov, Albert; Volgin, Denys; Han, Xuemei; Xu, Tao; Cheng, Yu-Shu; Yates, John R. R.; Rassier, Dilson E.; Kashina, Anna

    2014-01-01

    Protein arginylation is a post-translational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 knockout driven by skeletal muscle-specific creatine kinase (Ckmm) promoter. Such Ckmm-Ate1 mice were viable and outwardly normal, however their skeletal muscle strength was significantly reduced compared to the control. Mass spectrometry of the isolated skeletal myofibrils showed a limited set of proteins arginylated on specific sites, including myosin heavy chain. Atomic force microscopy measurements of the contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of the myosin filaments could be fully rescued by re-arginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in the muscle and exerts a direct effect on muscle strength through arginylation of myosin. PMID:25017061

  3. [Development of Muscle Strength Evaluating System Based on Mobile Platform].

    PubMed

    Xu, Xiulin; Yao, Xiaoming; Xu, Xijiao; Hu, Xiaohui

    2015-08-01

    The development of muscle strength evaluating system based on Android system was developed in this research. The system consists of a lower unit and an intelligent mobile terminal. The pressure sensor of the lower unit was used to collect muscle strength parameters. And the parameters were sent to the Android device through the wireless Bluetooth serial port. Then the Android device would send the parameters to the doctor monitored platform through the Internet. The system realized analyzing the muscle strength parameters and real-time displaying them. After it ran on the Android mobile phones, it showed an effective result which proved that the system combined with mobile platform could make more convenient for the patients to assess their own muscle strength. It also provided reliable data references for doctors to know the patients' rehabilitation condition and to make the next rehabilitation plan. PMID:26710452

  4. Hormone Therapy and Skeletal Muscle Strength: A Meta-Analysis

    PubMed Central

    Greising, Sarah M.; Baltgalvis, Kristen A.; Warren, Gordon L.

    2009-01-01

    Background Our objective was to perform a systematic review and meta-analysis of the research literature that compared muscle strength in postmenopausal women who were and were not on estrogen-based hormone therapy (HT). Methods Twenty-three relevant studies were found. Effect sizes (ESs) were calculated as the standardized mean difference, and meta-analyses were completed using a random effects model. Results HT was found to result in a small beneficial effect on muscle strength in postmenopausal women (overall ES = 0.23; p = .003) that equated to an ∼5% greater strength for women on HT. Among the 23 studies, various muscle groups were assessed for strength, and those that benefitted the most were the thumb adductors (ES = 1.14; p < .001). Ten studies that compared muscle strength in rodents that were and were not estradiol deficient were also analyzed. The ES for absolute strength was moderate but not statistically significant (ES = 0.44; p = .12), whereas estradiol had a large effect on strength normalized to muscle size (ES = 0.66; p = .03). Conclusion Overall, estrogen-based treatments were found to beneficially affect strength. PMID:19561145

  5. Development of a Theory-Based Intervention to Increase Prescription of Inspiratory Muscle Training by Health Professionals in the Management of People with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Li, Linda C.; Reid, W. Darlene

    2011-01-01

    ABSTRACT Purpose: The purpose of this paper is twofold: (1) to provide an overview of the literature on barriers to evidence-based practice (EBP) and the effectiveness of implementation interventions in health care; and (2) to outline the development of an implementation intervention for improving the prescription of inspiratory muscle training (IMT) by physical therapists and other health professionals for people with chronic obstructive pulmonary disease (COPD). Summary of Key Points: Individuals, organizations, and the research itself present barriers to EBP in physical therapy. Despite the evidence supporting the use of IMT, this treatment continues to be under-used in managing COPD. Current health services research shows that traditional information-based approaches to implementation, such as didactic lectures, do not adequately address the challenges health professionals face when trying to make changes in practice. We propose the development of a theory-based intervention to improve health professionals' use of IMT in the management of COPD. It is postulated that a behavioural intervention, based on the theory of planned behaviour (TPB), may be more effective than an information-based strategy in increasing the prescription of IMT by health professionals. Conclusion: TPB may be used to understand the antecedents of health professionals' behaviour and to guide the development of implementation interventions. Further research is needed to evaluate the effectiveness of this proposed intervention in the management of people with COPD. PMID:22654237

  6. Examination of Strength Training and Detraining Effects in Expiratory Muscles

    ERIC Educational Resources Information Center

    Baker, Susan; Davenport, Paul; Sapienza, Christine

    2005-01-01

    Purpose: The purpose of this study was to determine strength gains following expiratory muscle strength training (EMST) and to determine detraining effects when the training stimulus is removed. Method: Thirty-two healthy participants were enrolled in an EMST program. Sixteen participants trained for 4 weeks (Group 1) and 16 participants trained…

  7. Muscle Strength And Golf Performance: A Critical Review

    PubMed Central

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J.

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More

  8. Muscle strength and golf performance: a critical review.

    PubMed

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More

  9. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    PubMed Central

    Man, W; Hopkinson, N; Harraf, F; Nikoletou, D; Polkey, M; Moxham, J

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pressure is a recently described technique that assesses abdominal muscle (and hence expiratory muscle) strength more accurately than traditional techniques. A study was undertaken to test the hypothesis that more severe weakness exists in the quadriceps than in the abdominal muscles of patients with COPD compared with healthy elderly controls. Methods: Maximum cough gastric pressure and quadriceps isometric strength were measured in 43 patients with stable COPD and 25 healthy elderly volunteers matched for anthropometric variables. Results: Despite a significant reduction in mean quadriceps strength (29.9 kg v 41.2 kg; 95% CI –17.9 to –4.6; p = 0.001), cough gastric pressure was preserved in patients with COPD (227.3 cm H2O v 204.8 cm H2O; 95% CI –5.4 to 50.6; p = 0.11). Conclusions: Abdominal muscle strength is preserved in stable COPD outpatients in the presence of quadriceps weakness. This suggests that anatomical location and fibre type cannot explain quadriceps weakness in COPD. By inference, we conclude that disuse and consequent deconditioning are important factors in the development of quadriceps muscle weakness in COPD patients, or that activity protects the abdominal muscles from possible systemic myopathic processes. PMID:15923239

  10. Evaluation of Respiratory Muscle Strength in Mouth Breathers: Clinical Evidences

    PubMed Central

    Andrade da Cunha, Renata; Andrade da Cunha, Daniele; Assis, Roberta Borba; Bezerra, Luciana Ângelo; Justino da Silva, Hilton

    2013-01-01

    Introduction The child who chronically breathes through the mouth may develop a weakness of the respiratory muscles. Researchers and clinical are seeking for methods of instrumental evaluation to gather complementary data to clinical evaluations. With this in mind, it is important to evaluate breathing muscles in the child with Mouth Breathing. Objective To develop a review to investigate studies that used evaluation methods of respiratory muscle strength in mouth breathers. Data Synthesis  The authors were unanimous in relation to manovacuometry method as a way to evaluate respiratory pressures in Mouth Breathing children. Two of them performed with an analog manovacuometer and the other one, digital. The studies were not evaluated with regard to the method efficacy neither the used instruments. Conclusion There are few studies evaluating respiratory muscle strength in Mouth Breathing people through manovacuometry and the low methodological rigor of the analyzed studies hindered a reliable result to support or refuse the use of this technique. PMID:25992108

  11. Lower limb muscle strength is associated with functional performance and quality of life in patients with systemic sclerosis

    PubMed Central

    Lima, Tatiana R. L.; Guimarães, Fernando S.; Carvalho, Mara N.; Sousa, Thaís L. M.; Menezes, Sara L. S.; Lopes, Agnaldo J.

    2015-01-01

    Background: Complaints of peripheral muscle weakness are quite common in patients with systemic sclerosis (SSc). It is likely that the muscle impairments may reduce the patients' exercise performance, which in turn may decrease their functional capacity and exert a direct impact on their quality of life. Objectives: To assess the peripheral and respiratory muscle strength in individuals with SSc and to investigate their correlation with the 6-min walk distance (6MWD) and quality of life measurements. Moreover, we aimed to characterize their nutritional status, pulmonary function, functional capacity, and quality of life compared to the controls. Method: The present cross-sectional study included 20 patients with SSc and 20 control subjects. All of the participants were subjected to isometric dynamometry, surface electromyography, bioelectrical impedance analysis, pulmonary function testing, and the 6-min walk test. Patients with SSc also responded to the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) and the Health Assessment Questionnaire Disability Index (HAQ-DI). Results: The individuals with SSc exhibited a reduction in quadriceps strength (p=0.0001), increased quadriceps fatigability (p=0.034), impaired pulmonary function, and a reduced 6MWD (p=0.0001) compared to the controls. Quadriceps strength was significantly correlated with the 6MWD (Rho=0.719; p=0.0004) and the HAQ-DI (Rho=-0.622; p=0.003). We also found significant correlations between quadriceps fatigability and maximal inspiratory (Rho=0.684; p=0.0009) and maximal expiratory (Rho=0.472; p=0.035) pressure. Conclusions: Patients with SSc exhibited reduced respiratory muscle and quadriceps strength and an increase in its fatigability. In these individuals, there was a relationship between quadriceps strength, functional capacity, and quality of life. PMID:25789555

  12. Thigh Muscle Strength in Senior Athletes and Healthy Controls

    PubMed Central

    McCrory, Jean L; Salacinski, Amanda J; Hunt, Sarah E; Greenspan, Susan L

    2016-01-01

    Exercise is commonly recommended to counteract aging-related muscle weakness. While numerous exercise intervention studies on the elderly have been performed, few have included elite senior athletes, such as those who participate in the National Senior Games. The extent to which participation in highly competitive exercise affects muscle strength is unknown, as well as the extent to which such participation mitigates any aging-related strength losses. The purpose of this study was to examine isometric thigh muscle strength in selected athletes of the National Senior Games and healthy noncompetitive controls of similar age, as well as to investigate strength changes with aging in both groups. In all, 95 athletes of the Games and 72 healthy controls participated. Of the senior athletes, 43 were runners, 12 cyclists, and 40 swimmers. Three trials of isometric knee flexion and extension strength were collected using a load cell affixed to a custom-designed chair. Strength data were normalized to dual-energy x-ray absorptiometry-obtained lean mass of the leg. A 3-factor multivariate analysis of variance (group × gender × age group) was performed, which included both the extension and flexion variables ([alpha] = 0.05). Athletes exhibited 38% more extension strength and 66% more flexion strength than the controls (p < 0.001). Strength did not decrease with advancing age in either the athletes or the controls (p = 0.345). In conclusion, senior athletes who participate in highly competitive exercise have greater strength than healthy aged-matched individuals who do not. Neither group displayed the expected strength losses with aging. Our subject cohorts, however, were not typical of those over age 65 years because individuals with existing health conditions were excluded from the study. PMID:19972628

  13. Muscle strength and endurance following lowerlimb suspension in man

    NASA Technical Reports Server (NTRS)

    Tesch, Per A.; Berg, Hans E.; Haggmark, Tom; Ohlsen, Hans; Dudley, Gary A.

    1991-01-01

    The effect of lower-limb suspension on the muscle strength and muscle endurance was investigated in six men subjected to four weeks of unilateral unloading of a lower limb (using of a harness attached to a modified shoe), followed by seven weeks of weight-bearing recovery. Results showed a decrease in the cross-sectional area (CSA) of the thigh muscle and in the average peak torque (APT) during three bouts of 30 concentric knee extensions. While the the thigh muscle CSA returned to normal after seven weeks of recovery, the APT recovery was still reduced by 11 percent, suggesting that muscle metabolic function was severely affected by unloading and was not restored by ambulation.

  14. Reference Range of Respiratory Muscle Strength and Its Clinical Application in Amyotrophic Lateral Sclerosis: A Single-Center Study

    PubMed Central

    Park, Kee Hong; Kim, Rock Bum; Yang, Jiwon; Oh, Jung-Hwan; Park, Su-Yeon; Kim, Dong-Gun; Shin, Je-Young

    2016-01-01

    Background and Purpose Evaluating respiratory function is important in neuromuscular diseases. This study explored the reference ranges of the maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), and sniff nasal inspiratory pressure (SNIP) in healthy adults, and applied them to amyotrophic lateral sclerosis (ALS) patients. Methods MIP, MEP, and SNIP were measured in 67 healthy volunteers aged from 21 to 82 years. Reference ranges were evaluated by multivariate regression analysis using the generalized additive modeling of location, scale, and shape method. Thirty-six ALS patients were reviewed retrospectively, and abnormal values of MIP, MEP, and SNIP were determined according to the reference ranges. Results MIP, MEP, and SNIP were abnormal in 57.1%, 51.4%, and 25.7% of the ALS patients, respectively. MIP and SNIP were significantly correlated with the degree of restrictive pattern and respiratory symptoms. The ALS Functional Rating Scale-Revised score was correlated with SNIP. Conclusions This study has provided the reference range of respiratory muscle strength in healthy adults. This range is suitable for evaluating respiratory function in ALS patients. PMID:27449914

  15. Assessment of respiratory muscle strength in children according to the classification of body mass index

    PubMed Central

    da Rosa, George Jung; Schivinski, Camila Isabel S.

    2014-01-01

    OBJECTIVE: To assess and compare the respiratory muscle strength among eutrophic, overweight and obese school children, as well as to identify anthropometric and respiratory variables related to the results. METHODS: Cross-sectional survey with healthy schoolchildren aged 7-9 years old, divided into three groups: Normal weight, Overweight and Obese. The International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was applied. The body mass index (BMI) was evaluated, as well as the forced expiratory volume in one second (FEV1) with a portable digital device. The maximal inspiratory and expiratory pressures (MIP and MEP) were measured by a digital manometer. Comparisons between the groups were made by Kruskal-Wallis test. Spearman's correlation coefficient was used to analyze the correlations among the variables. RESULTS: MIP of eutrophic school children was higher than MIP found in overweight (p=0.043) and obese (p=0.013) children. MIP was correlated with BMI percentile and weight classification (r=-0.214 and r=-0.256) and MEP was correlated with height (r=0.328). Both pressures showed strong correlation with each other in all analyses (r≥0.773), and less correlation with FEV1 (MIP - r=0.362 and MEP - r=0.494). FEV1 correlated with MEP in all groups (r: 0.429 - 0.569) and with MIP in Obese Group (r=0.565). Age was correlated with FEV1 (r=0.578), MIP (r=0.281) and MEP (r=0.328). CONCLUSIONS: Overweight and obese children showed lower MIP values, compared to eutrophic ones. The findings point to the influence of anthropometric variables on respiratory muscle strength in children. PMID:25119758

  16. Age at spinal cord injury determines muscle strength

    PubMed Central

    Thomas, Christine K.; Grumbles, Robert M.

    2014-01-01

    As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643

  17. Daily acute intermittent hypoxia elicits functional recovery of diaphragm and inspiratory intercostal muscle activity after acute cervical spinal injury

    PubMed Central

    Navarrete-Opazo, A.; Vinit, S; Dougherty, B.J.; Mitchell, G.S.

    2015-01-01

    A major cause of mortality after spinal cord injury is respiratory failure. In normal rats, acute intermittent hypoxia (AIH) induces respiratory motor plasticity, expressed as diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF). Dia (not T2 EIC) LTF is enhanced by systemic adenosine 2A (A2a) receptor inhibition in normal rats. We investigated the respective contributions of Dia and T2 EIC to daily AIH-induced functional recovery of breathing capacity with/without A2a receptor antagonist (KW6002, i.p.) following C2 hemisection (C2HS). Rats received daily AIH (dAIH: 10, 5-min episodes, 10.5% O2; 5-min normoxic intervals; 7 successive days beginning 7 days post-C2HS) or daily normoxia (dNx) with/without KW6002, followed by weekly (reminder) presentations for 8 weeks. Ventilation and EMGs from bilateral diaphragm and T2 EIC muscles were measured with room air breathing (21% O2) and maximum chemoreceptor stimulation (MCS: 7% CO2, 10.5% O2). dAIH increased tidal volume (Vt) in C2HS rats breathing room air (dAIH + vehicle: 0.47 ± 0.02, dNx + vehicle: 0.40 ± 0.01ml/100 g; p<0.05) and MCS (dAIH + vehicle: 0.83 ± 0.01, dNx + vehicle: 0.73 ± 0.01ml/100g; p<0.001); KW6002 had no significant effect. dAIH enhanced contralateral (uninjured) diaphragm EMG activity, an effect attenuated by KW6002, during room air breathing and MCS (p<0.05). Although dAIH enhanced contralateral T2 EIC EMG activity during room air breathing, KW6002 had no effect. dAIH had no statistically significant effects on diaphragm or T2 EIC EMG activity ipsilateral to injury. Thus, two weeks post-C2HS: 1) dAIH enhances breathing capacity by effects on contralateral diaphragm and T2 EIC activity; and 2) dAIH-induced recovery is A2a dependent in diaphragm, but not T2 EIC. Daily AIH may be a useful in promoting functional recovery of breathing capacity after cervical spinal injury, but A2a receptor antagonists (eg. caffeine) may undermine its effectiveness shortly after

  18. Myotonometry as a Surrogate Measure of Muscle Strength

    NASA Technical Reports Server (NTRS)

    Ang, B. S.; Feeback, D. L.; Leonard, C. T.; Sykes, J.; Kruger, E.; Clarke, M. S. F.

    2007-01-01

    Space flight-induced muscle atrophy/neuromuscular degradation and the consequent decrements in crew-member performance are of increasing concern as mission duration lengthens, and planetary exploration after extended space flight is planned. Pre- to post-flight strength measures have demonstrated that specific countermeasures, such as resistive exercise, are effective at countering microgravity-induced muscle atrophy and preventing decrements in muscle strength. However, in-flight assessment/monitoring of exercise countermeasure effectiveness will be essential during exploration class missions due to their duration. The ability to modify an exercise countermeasure prescription based on such real-time information will allow each individual crew member to perform the optimal amount and type of exercise countermeasure to maintain performance. In addition, such measures can be used to determine if a crew member is physically capable of performing a particular mission-related task during exploration class missions. The challenges faced in acquiring such data are those common to all space operations, namely the requirement for light-weight, low power, mechanically reliable technologies that make valid measurements in microgravity, in this case of muscle strength/neuromuscular function. Here we describe a simple, light-weight, low power, non-invasive device, known as the Myotonometer, that measures tissue stiffness as an indirect measure of muscle contractile state and muscle force production. Repeat myotonometer measurements made at the same location on the surface of the rectis femoris muscle (as determined using a 3D locator device, SEM plus or minus 0.34 mm) were shown to be reproducible over time at both maximal voluntary contraction (MVC) and at rest in a total of 17 sedentary subjects assessed three times over a period of seven days. In addition, graded voluntary isometric force production (i.e. 20%, 40%, 60%, 80% & 100% of MVC) during knee extension was shown to

  19. Levator plate upward lift and levator muscle strength

    PubMed Central

    Rostaminia, Ghazaleh; Peck, Jennifer; Quiroz, Lieschen; Shobeiri, S. Abbas

    2016-01-01

    Objective The aim of study was to compare digital palpation with the levator plate lift measured by endovaginal and transperineal dynamic ultrasound. Methods Dynamic transperineal and endovaginal ultrasound were performed as part of multicompartmental pelvic floor functional assessment. Patients were instructed to perform Kegels while a probe captured the video clip of the levator plate movement at rest and during contraction in 2D mid-sagittal posterior view. We measured the distance between the levator plate and the probe on endovaginal ultrasound as well as the distance between the levator plate and the gothic arch of the pubis in transperineal ultrasound. The change in diameter (lift) and a levator plate lift ratio (lift / rest) x 100) were calculated. Pelvic floor muscle strength was assessed by digital palpation and divided into functional and non-functional groups using the Modified Oxford Scale (MOS). Mean differences in levator plate upward lifts were compared by MOS score using student t-tests and analysis of variance (ANOVA). Results 74 women were available for analysis. The mean age was 55 (SD±11.9). When measured by vaginal dynamic ultrasound, mean values of the lift and lift/rest ratio increased with increasing MOS score (ANOVA p=0.09 and p=0.04, respectively). When MOS scores were categorized to represent non-functional (MOS 0-1) and functional (MOS 2-5) muscle strength groups, the mean values of the lift (3.2 mm vs. 4.6 mm, p=0.03) and lift/rest ratio (13% vs 20%, p=0.01) were significantly higher in women with functional muscle strength. All patients with ≥ 30% lift detected by vaginal ultrasound had functional muscle strength. Conclusions Greater levator plate lift ratio detected by dynamic endovaginal ultrasound was associated with higher muscle strength as determined by MOS. This novel measurement can be incorporated into ultrasound evaluation of the levator ani function. PMID:26333568

  20. Effect of expiratory muscle strength training on elderly cough function.

    PubMed

    Kim, Jaeock; Davenport, Paul; Sapienza, Christine

    2009-01-01

    Age-related loss of muscle strength, known as sarcopenia, in the expiratory muscles, along with reductions in lung elastic recoil and chest wall compliance decreases the intrathoacic airway pressure as well as expiratory flow rates and velocity, greatly impacting an elderly person's ability to generate the forces essential for cough. This study examined the effects of a 4-week expiratory muscle strength training (EMST) program on maximum expiratory pressure (MEP) and cough function in 18 healthy but sedentary elderly adults. MEP significantly increased after the EMST program from 77.14+/-20.20 to 110.83+/-26.11cmH(2)O. Parameters measured during reflexive coughs produced by capsaicin challenge, indicated that compression phase duration significantly decreased (from 0.35+/-0.19 to 0.16+/-0.17s), peak expiratory flow rate decreased (from 4.98+/-2.18 to 8.00+/-3.05l/s) and post-peak plateau integral amplitude significantly increased (from 3.49+/-2.46 to 6.83+/-4.16l/ss) with the EMST program. EMST seems to be an effective program to increase the expiratory muscle strength in the sedentary elderly, which contribute to an enhanced cough function. PMID:18457885

  1. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength.

    PubMed

    Yao, Wan X; Ranganathan, Vinoth K; Allexandre, Didier; Siemionow, Vlodek; Yue, Guang H

    2013-01-01

    The purpose of this study was to compare the effect of training using internal imagery (IMI; also known as kinesthetic imagery or first person imagery) with that of external imagery (EMI; also known as third-person visual imagery) of strong muscle contractions on voluntary muscle strengthening. Eighteen young, healthy subjects were randomly assigned to one of three groups (6 in each group): internal motor imagery (IMI), external motor imagery (EMI), or a no-practice control (CTRL) group. Training lasted for 6 weeks (~15 min/day, 5 days/week). The participants' right arm elbow-flexion strength, muscle electrical activity, and movement-related cortical potential (MRCP) were evaluated before and after training. Only the IMI group showed significant strength gained (10.8%) while the EMI (4.8%) and CTRL (-3.3%) groups did not. Only the IMI group showed a significant elevation in MRCP on scalp locations over both the primary motor (M1) and supplementary motor cortices (EMI group over M1 only) and this increase was significantly greater than that of EMI and CTRL groups. These results suggest that training by IMI of forceful muscle contractions was effective in improving voluntary muscle strength without physical exercise. We suggest that the IMI training likely strengthened brain-to-muscle (BTM) command that may have improved motor unit recruitment and activation, and led to greater muscle output. Training by IMI of forceful muscle contractions may change the activity level of cortical motor control network, which may translate into greater descending command to the target muscle and increase its strength. PMID:24133427

  2. Correlation between muscle electrophysiology and strength after fibular nerve injury.

    PubMed

    Won, Yu Hui; Kim, Kang-Won; Choi, Jun Tak; Ko, Myoung-Hwan; Park, Sung-Hee; Seo, Jeong-Hwan

    2016-08-01

    Muscle strength measurement is important when evaluating the degree of impairment in patients with nerve injury. However, accurate and objective evaluation may be difficult in patients with severe pain or those who intentionally try to avoid full exertion. We investigated the usefulness of the affected-to-unaffected side electrophysiological parameter ratios as a measure of objective ankle dorsiflexion (ADF) strength in patients with unilateral fibular nerve injury (FNI). ADF strength was measured in patients with FNI via handheld dynamometer and manual muscle test (MMT). Fibular nerve compound muscle action potential (CMAP) amplitude and latency and ADF strength of the affected side were presented as ratios to the corresponding measurements of the unaffected side. We analysed the correlation of the CMAP ratio with the ADF strength ratio using a dynamometer and compared the CMAP ratios according to MMT grade. Fifty-two patients with FNI were enrolled. The mean CMAP latency ratio did not differ between MMT groups (p = 0.573). The CMAP amplitude ratio proportionally increased with the quantified ADF strength ratio via dynamometer increase (ρ = 0.790; p < 0.001), but the CMAP latency ratio and the quantified ADF strength ratio did not significantly correlate (ρ = 0.052; p = 0.713). The average CMAP amplitude ratio significantly differed between MMT groups (p < 0.001), and post hoc tests showed significant differences in all paired comparisons except of Fair and Good grades (p = 0.064). Electrophysiological parameter ratio, such as the affected-to-unaffected side CMAP amplitude ratio, might be sensitive parameters for ADF power estimation after FNI. PMID:27142447

  3. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Muscle Strength and Flexibility without and with Visual Impairments Judoka's

    ERIC Educational Resources Information Center

    Karakoc, Onder

    2016-01-01

    The aim of this study was to examine muscle strength and flexibility of judoka with and without visual impairments. A total of 32 male national judoka volunteered to participate in this study. There were 20 male judoka without visual impairments (mean ± SD; age: 19.20 ± 5.76 years, body weight: 66.45 ± 11.09 kg, height: 169.60 ± 7.98 cm, sport…

  5. Measurements of muscle strength and performance in children with normal and diseased muscle.

    PubMed Central

    Hosking, J P; Bhat, U S; Dubowitz, V; Edwards, R H

    1976-01-01

    A study has been made of two simple means of measuring muscle power in children with normal and diseased muscle. In one the length of time that the leg and the head could be held at 45 degrees above the horizontal was measured with the child supine. In the second, measurements were made of the isometric strength of six muscle groups with the newly developed Hammersmith Myometer. In the timed performance tests only 5 (8%) of a group of 61 children known to have muscle disease achieved the minimum expected values for their ages. Myometer readings of the isometric power of the children with muscle disease also have values which were below those of a comparable group of normal children. The reproducibility of muscle strength measurements in young children has been shown to be good, whereas the timed performance tests, though able to differentiate normal children from children with muscle disease, did not show sufficient reporducibility for this test to be recommended for sequential measurements. Images FIG. 1 PMID:1015849

  6. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery

    PubMed Central

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-01-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  7. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery.

    PubMed

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-06-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  8. A comparison of respiratory and peripheral muscle strength, functional exercise capacity, activities of daily living and physical fitness in patients with cystic fibrosis and healthy subjects.

    PubMed

    Arikan, Hulya; Yatar, İlker; Calik-Kutukcu, Ebru; Aribas, Zeynep; Saglam, Melda; Vardar-Yagli, Naciye; Savci, Sema; Inal-Ince, Deniz; Ozcelik, Ugur; Kiper, Nural

    2015-01-01

    There are limited reports that compare muscle strength, functional exercise capacity, activities of daily living (ADL) and parameters of physical fitness of cystic fibrosis (CF) patients with healthy peers in the literature. The purpose of this study was to assess and compare respiratory and peripheral muscle strength, functional exercise capacity, ADL and physical fitness in patients with CF and healthy subjects. Nineteen patients with CF (mean forced expiratory volume in one second-FEV1: 86.56±18.36%) and 20 healthy subjects were included in this study. Respiratory (maximal inspiratory pressure-MIP and maximal expiratory pressure-MEP) and peripheral muscle strength (quadriceps, shoulder abductors and hand grip strength) were evaluated. Functional exercise capacity was determined with 6min walk test (6MWT). ADL was assessed with Glittre ADL test and physical fitness was assessed with Munich fitness test (MFT). There were not any statistically significant difference in MIP, %MIP, MEP and %MEP values between two groups (p>0.05). %Peripheral muscle strength (% quadriceps and shoulder abductors strength), 6MWT distance and %6MWT distance were significantly lower in patients with CF than those of healthy subjects (p<0.05). Glittre ADL-test time was significantly longer in patients with CF than healthy subjects (p<0.05). According to Munich fitness test, the number of bouncing a ball, hanging score, distance of standing vertical jumping and standing vertical jumping score were significantly lower in patients with CF than those of healthy subjects (p<0.05). Peripheral muscle strength, functional exercise capacity, ADL performance and speed, coordination, endurance and power components of physical fitness are adversely affected in mild-severe patients with CF compared to healthy peers. Evaluations must be done in comprehensive manner in patients with CF with all stages. PMID:26241869

  9. Prevalence of reduced muscle strength in older U.S. adults: United States, 2011-2012.

    PubMed

    Looker, Anne C; Wang, Chia-Yih

    2015-01-01

    Five percent of adults aged 60 and over had weak muscle strength and 13% had intermediate muscle strength, as defined by the new FNIH criteria. Weak muscle strength is clinically relevant because it is associated with slow gait speed, an important mobility impairment. It is also linked to an increased risk of death. The prevalence of reduced muscle strength increased with age and was higher in non-Hispanic Asian and Hispanic persons than in non-Hispanic white or non-Hispanic black persons. Decreasing muscle strength was linked with increased difficulty in rising from an armless chair, which is another important type of mobility impairment. PMID:25633238

  10. Associations of Sarcopenia and Sarcopenic Obesity With Metabolic Syndrome Considering Both Muscle Mass and Muscle Strength

    PubMed Central

    2016-01-01

    Objectives: We investigated the associations of sarcopenia-defined both in terms of muscle mass and muscle strength-and sarcopenic obesity with metabolic syndrome. Methods: Secondary data pertaining to 309 subjects (85 men and 224 women) were collected from participants in exercise programs at a health center in a suburban area. Muscle mass was measured using bioelectrical impedance analysis, and muscle strength was measured via handgrip strength. Sarcopenia based on muscle mass alone was defined as a weight-adjusted skeletal muscle mass index more than two standard deviations below the mean of a sex-specific young reference group (class II sarcopenia). Two cut-off values for low handgrip strength were used: the first criteria were <26 kg for men and <18 kg for women, and the second criteria were the lowest quintile of handgrip strength among the study subjects. Sarcopenic obesity was defined as the combination of class II sarcopenia and being in the two highest quintiles of total body fat percentage among the subjects. The associations of sarcopenia and sarcopenic obesity with metabolic syndrome were evaluated using logistic regression models. Results: The age-adjusted risk ratios (RRs) of metabolic syndrome being compared in people with or without sarcopenia defined in terms of muscle mass were 1.25 (95% confidence interval [CI], 1.06 to 1.47, p=0.008) in men and 1.12 (95% CI, 1.06 to 1.19, p<0.001) in women, which were found to be statistically significant relationships. The RRs of metabolic syndrome being compared in people with or without sarcopenic obesity were 1.31 in men (95% CI, 1.10 to 1.56, p=0.003) and 1.17 in women (95% CI, 1.10 to 1.25, p<0.001), which were likewise found to be statistically significant relationships. Conclusions: The associations of sarcopenia defined in terms of muscle mass and sarcopenic obesity with metabolic syndrome were statistically significant in both men and women. Therefore, sarcopenia and sarcopenic obesity must be

  11. Vitamin D and skeletal muscle strength and endurance in COPD.

    PubMed

    Jackson, Abigail S; Shrikrishna, Dinesh; Kelly, Julia L; Kemp, Samuel V; Hart, Nicholas; Moxham, John; Polkey, Michael I; Kemp, Paul; Hopkinson, Nicholas S

    2013-02-01

    It is not known whether vitamin D levels make a significant contribution to muscle dysfunction in chronic obstructive pulmonary disease (COPD). In 104 COPD patients (mean±sd forced expiratory volume in 1 s 44±22 % predicted) and 100 age- and sex-matched controls, serum 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D (1,25(OH)(2)D) and parathyroid hormone (PTH) levels were measured and related to quadriceps strength and endurance. In a subset of 26 patients and 13 controls, quadriceps biopsy was performed and mRNA expression of myogenic regulatory factors (mrf) and fibre-specific myosin heavy chains (MHC) was determined. COPD patients were weaker and less physically active than controls. 25(OH)D levels were similar in both groups (48.5±25.5 nmol·L(-1) COPD versus 55.4±28.3 nmol·L(-1) control, p=0.07) but PTH levels were significantly higher in patients (5.2±2.3 pmol·mL(-1) versus 4.4±2.0 pmol·L(-1), p=0.01). 1,25(OH)D was significantly correlated with strength in controls, but not in COPD patients and not with quadriceps endurance assessed using repetitive magnetic stimulation in COPD (n=35) or control (n=35) subjects. In controls, but not COPD patients, muscle biopsy analysis showed a negative relationship between 25(OH)D and MHCIIa expression (r(2)=0.5, p=0.01) and a positive relationship between mrf4 and MHCIIa expression (r(2)=0.5, p=0.009), and myogenic regulatory factor myf5 and MHCI expression (r(2)=0.72, p=0.004). In contrast with healthy controls, muscle strength is not associated with vitamin D levels in COPD, which may represent vitamin D resistance. PMID:22556020

  12. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    PubMed

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated. PMID:26667010

  13. Factors affecting isokinetic muscle strength before and after anterior cruciate ligament reconstruction.

    PubMed

    Yüksel, Halil Yalçin; Erkan, Serkan; Uzun, Macit

    2011-06-01

    The purpose of this study was to evaluate the factors affecting muscle strength of ACL-deficient knees before and after ACL reconstruction. The study included 122 male patients who underwent primary ACL reconstruction with a bone-patellar tendon-bone autograft. Preoperative loss and change in muscle strength in both extensor and flexor muscle groups after ACL reconstruction were calculated separately at 60 degrees/sec and 180 degrees/sec angular velocities. We evaluated the effect of surgical delay on the preoperative deficit and on its change after surgery. Muscle strength change after ACL reconstruction was also evaluated in relation to patient compliance to treatment. The longer the delay of ACL reconstruction the more the muscle strength deficit of flexor and extensor muscles increased. In the ACL deficient knees with high strength deficit, improvement in muscle strength was higher after ACL reconstruction for both muscle groups. When delay of ACL reconstruction was short and the patient was compliant to treatment, flexor muscle strength recovery was early. Shortening the delay to reconstruction had a positive influence on muscle strength after ACL reconstruction when preoperative muscle strength deficit was high. PMID:21846002

  14. Traditional versus functional strength training: effects on muscle strength and power in the elderly.

    PubMed

    Lohne-Seiler, Hilde; Torstveit, Monica K; Anderssen, Sigmund A

    2013-01-01

    The aim was to determine whether strength training with machines vs. functional strength training at 80% of one-repetition maximum improves muscle strength and power among the elderly. Sixty-three subjects (69.9 ± 4.1 yr) were randomized to a high-power strength group (HPSG), a functional strength group (FSG), or a nonrandomized control group (CG). Data were collected using a force platform and linear encoder. The training dose was 2 times/wk, 3 sets × 8 reps, for 11 wk. There were no differences in effect between HPSG and FSG concerning sit-to-stand power, box-lift power, and bench-press maximum force. Leg-press maximum force improved in HPSG (19.8%) and FSG (19.7%) compared with CG (4.3%; p = .026). Bench-press power improved in HPSG (25.1%) compared with FSG (0.5%, p = .02) and CG (2%, p = .04). Except for bench-press power there were no differences in the effect of the training interventions on functional power and maximal body strength. PMID:22832419

  15. Influence of noninvasive ventilation by BiPAP on exercise tolerance and respiratory muscle strength in chronic obstructive pulmonary disease patients (COPD).

    PubMed

    Costa, Dirceu; Toledo, Andreza; Silva, Audrey Borghi E; Sampaio, Luciana Maria Malosá

    2006-01-01

    This study aimed to assess the effect of BiPAP, by nasal mask, on exercise tolerance and respiratory muscle strength in patients with a clinical and spirometric diagnosis of moderate/severe COPD (FEV1 < 60% of predicted). Ten patients of 59.4+/-8.9 years old, with FEV1/FVC <70% of predicted level, were treated with 30 minutes of BiPAP (IPAP:10 and 15 cmH2O; EPAP:4 cmH2O), three days per week, during two months. Before and after the treatment, spirometry, inspiratory (MIP) and expiratory (MEP) muscle strength and the distance walked in six minutes (6MWT) were measured. We observed a significant increase (Wilcoxon, p<0.05) in the mean values of MIP (from -55+/-17 to -77+/-19, respectively), MEP (from 75+/-20 to 109+/-36, respectively) and walking distance (from 349+/-67 to 448+/-75). Based on these results, we concluded that BiPAP improves respiratory muscle strength and exercise tolerance in these COPD patients. PMID:16926994

  16. Ankle muscle strength discriminates fallers from non-fallers

    PubMed Central

    Cattagni, Thomas; Scaglioni, Gil; Laroche, Davy; Van Hoecke, Jacques; Gremeaux, Vincent; Martin, Alain

    2014-01-01

    It is well known that center of pressure (CoP) displacement correlates negatively with the maximal isometric torque (MIT) of ankle muscles. This relationship has never been investigated in elderly fallers (EF). The purpose of this study was thus to analyze the relationship between the MIT of ankle muscles and CoP displacement in upright stance in a sample aged between 18 and 90 years old that included EF. The aim was to identify a threshold of torque below which balance is compromised. The MIT of Plantar flexors (PFs) and dorsal flexors (DFs) and CoP were measured in 90 volunteers: 21 healthy young adults (YA) (age: 24.1 ± 5.0), 12 healthy middle-aged adults (MAA) (age: 50.2 ± 4.5), 27 healthy elderly non-fallers (ENF) (age: 75.5 ± 7.0) and 30 EF (age: 78.8 ± 6.7). The MIT of PF and DF were summed to obtain the overall maximal ankle muscle strength. Body weight and height were used to normalize MIT (nMIT) and CoP (nCoP), respectively. nCoP correlated negatively with nMIT. 90% of EF generated an nMIT <3.1 N·m·kg−1, whereas 85% of non-fallers generated an nMIT >3.1 N·m·kg−1. The relationship between nMIT and nCoP implies that ankle muscle weakness contributes to increased postural instability and the risk of falling. We observed that below the threshold of 3.1 N·m·kg−1, postural stability was dramatically diminished and balance was compromised. Our results suggest that measuring ankle torque could be used in routine clinical practice to identify potential fallers. PMID:25566068

  17. Respiratory muscle strength effect on linear and nonlinear heart rate variability parameters in COPD patients

    PubMed Central

    Goulart, Cássia Da Luz; Simon, Julio Cristiano; Schneiders, Paloma De Borba; San Martin, Elisabete Antunes; Cabiddu, Ramona; Borghi-Silva, Audrey; Trimer, Renata; da Silva, Andréa Lúcia Gonçalves

    2016-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) is recognized as a multisystemic inflammatory disease associated with extrapulmonary comorbidities, including respiratory muscle weakness and cardiovascular and cardiac autonomic regulation disorders. We investigated whether alterations in respiratory muscle strength (RMS) would affect cardiac autonomic modulation in COPD patients. Methods This study was a cross-sectional study done in ten COPD patients affected by moderate to very severe disease. The heart rate variability (HRV) signal was recorded using a Polar cardiofrequencimeter at rest in the sitting position (10 minutes) and during a respiratory sinus arrhythmia maneuver (RSA-M; 4 minutes). Linear analysis in the time and frequency domains and nonlinear analysis were performed on the recorded signals. RMS was assessed using a digital manometer, which provided the maximum inspiratory pressure (PImax) and the maximum expiratory pressure (PEmax). Results During the RSA-M, patients presented an HRV power increase in the low-frequency band (LFnu) (46.9±23.7 vs 75.8±27.2; P=0.01) and a decrease in the high-frequency band (HFnu) (52.8±23.5 vs 24.0±27.0; P=0.01) when compared to the resting condition. Significant associations were found between RMS and HRV spectral indices: PImax and LFnu (r=−0.74; P=0.01); PImax and HFnu (r=0.74; P=0.01); PEmax and LFnu (r=−0.66; P=0.01); PEmax and HFnu (r=0.66; P=0.03); between PEmax and sample entropy (r=0.83; P<0.01) and between PEmax and approximate entropy (r=0.74; P=0.01). Using a linear regression model, we found that PImax explained 44% of LFnu behavior during the RSA-M. Conclusion COPD patients with impaired RMS presented altered cardiac autonomic control, characterized by marked sympathetic modulation and a reduced parasympathetic response; reduced HRV complexity was observed during the RSA-M. PMID:27555757

  18. Electrical Muscle Stimulation: An Effective Form of Exercise and Early Mobilization to Preserve Muscle Strength in Critically Ill Patients

    PubMed Central

    Karatzanos, Eleftherios; Gerovasili, Vasiliki; Zervakis, Dimitrios; Tripodaki, Elli-Sophia; Apostolou, Kleovoulos; Vasileiadis, Ioannis; Papadopoulos, Emmanouil; Mitsiou, Georgios; Tsimpouki, Dimitra; Routsi, Christina; Nanas, Serafim

    2012-01-01

    Purpose. This is a secondary analysis of previously published data to investigate the effects of electrical muscle stimulation (EMS) on strength of various muscle groups in critically ill patients. Methods. One hundred forty-two consecutive patients, with APACHE II score ≥ 13, were randomly assigned to the EMS or the control group. EMS sessions were applied daily on vastus lateralis, vastus medialis, and peroneus longus of both lower extremities. Various muscle groups were evaluated with the Medical Research Council (MRC) scale for muscle strength. Handgrip strength assessment was also employed. Results. Twenty four patients in the EMS group and 28 patients in the control group were finally evaluated. EMS patients achieved higher MRC scores than controls (P ≤ 0.05) in wrist flexion, hip flexion, knee extension, and ankle dorsiflexion. Collectively, the EMS group performed higher (P < 0.01) in the legs and overall. Handgrip strength correlated (P ≤ 0.01) with the upper and lower extremities' muscle strength and the overall MRC scores. Conclusions. EMS has beneficial effects on the strength of critically ill patients mainly affecting muscle groups stimulated, while it may also affect muscle groups not involved presenting itself as a potential effective means of muscle strength preservation and early mobilization in this patient population. PMID:22545212

  19. Inspiratory High Frequency Airway Oscillation Attenuates Resistive Loaded Dyspnea and Modulates Respiratory Function in Young Healthy Individuals

    PubMed Central

    Morris, Theresa; Sumners, David Paul; Green, David Andrew

    2014-01-01

    Direct chest-wall percussion can reduce breathlessness in Chronic Obstructive Pulmonary Disease and respiratory function may be improved, in health and disease, by respiratory muscle training (RMT). We tested whether high-frequency airway oscillation (HFAO), a novel form of airflow oscillation generation can modulate induced dyspnoea and respiratory strength and/or patterns following 5 weeks of HFAO training (n = 20) compared to a SHAM-RMT (conventional flow-resistive RMT) device (n = 15) in healthy volunteers (13 males; aged 20–36 yrs). HFAO causes oscillations with peak-to-peak amplitude of 1 cm H2O, whereas the SHAM-RMT device was identical but created no pressure oscillation. Respiratory function, dyspnoea and ventilation during 3 minutes of spontaneous resting ventilation, 1 minute of maximal voluntary hyperventilation and 1 minute breathing against a moderate inspiratory resistance, were compared PRE and POST 5-weeks of training (2×30 breaths at 70% peak flow, 5 days a week). Training significantly reduced NRS dyspnoea scores during resistive loaded ventilation, both in the HFAO (p = 0.003) and SHAM-RMT (p = 0.005) groups. Maximum inspiratory static pressure (cm H2O) was significantly increased by HFAO training (vs. PRE; p<0.001). Maximum inspiratory dynamic pressure was increased by training in both the HFAO (vs. PRE; p<0.001) and SHAM-RMT (vs. PRE; p = 0.021) groups. Peak inspiratory flow rate (L.s−1) achieved during the maximum inspiratory dynamic pressure manoeuvre increased significantly POST (vs. PRE; p = 0.001) in the HFAO group only. HFAO reduced inspiratory resistive loading–induced dyspnoea and augments static and dynamic maximal respiratory manoeuvre performance in excess of flow-resistive IMT (SHAM-RMT) in healthy individuals without the respiratory discomfort associated with RMT. PMID:24651392

  20. Physical activity compensates for increased mortality risk among older people with poor muscle strength.

    PubMed

    Portegijs, E; Rantanen, T; Sipilä, S; Laukkanen, P; Heikkinen, E

    2007-10-01

    The aim of the study was to determine whether habitual physical activity can compensate for the increased mortality risk among older people with poor muscle strength. Mortality was followed up for 10 years after laboratory examination in 558 community dwelling 75- and 80-year-old men and women. Maximal isometric strength of five muscle groups was measured and tertile cut-off points were used to categorize participants. Participants, who reported moderate physical activity for at least 4 h a week, were categorized as physically active and the others as sedentary. High muscle strength and physical activity both protected from mortality, but their effect was not additive. Within each muscle strength tertile, physically active people had a lower mortality risk than sedentary people, the effect being most pronounced among those with lower strength in all muscle groups. A high level of physical activity may thus compensate for the increased mortality associated with low muscle strength. PMID:17166169

  1. Muscle Size Not Density Predicts Variance in Muscle Strength and Neuromuscular Performance in Healthy Adult Men and Women.

    PubMed

    Weeks, Benjamin K; Gerrits, Tom A J; Horan, Sean A; Beck, Belinda R

    2016-06-01

    Weeks, BK, Gerrits, TAJ, Horan, SA, and Beck, BR. Muscle size not density predicts variance in muscle strength and neuromuscular performance in healthy adult men and women. J Strength Cond Res 30(6): 1577-1584, 2016-The purpose of this study was to determine the relationships between peripheral quantitative computed tomography (pQCT)-derived measures of muscle area and density and markers of muscle strength and performance in men and women. Fifty-two apparently healthy adults (26 men, 26 women; age 33.8 ± 12.0 years) volunteered to participate. Dual-energy x-ray absorptiometry (XR-800; Norland Medical Systems, Inc., Trumbull, CT, USA) was used to determine whole body and regional lean and fat tissue mass, whereas pQCT (XCT-3000; Stratec, Pforzheim, Germany) was used to determine muscle cross-sectional area (MCSA) and muscle density of the leg, thigh, and forearm. Ankle plantar flexor and knee extensor strengths were examined using isokinetic dynamometry, and grip strength was examined with dynamometry. Impulse generated during a maximal vertical jump was used as an index of neuromuscular performance. Thigh, forearm, and leg MCSA strongly predicted variance in knee extensor (R = 0.77, p < 0.001) and grip strength (R = 0.77, p < 0.001) and weakly predicted variance in ankle plantar flexor strength (R = 0.20, p < 0.001), respectively, whereas muscle density was only a weak predictor of variance in knee extensor strength (R = 0.18, p < 0.001). Thigh and leg MCSA accounted for 79 and 69% of the variance in impulse generated from a maximal vertical jump (p < 0.001), whereas thigh muscle density predicted only 18% of the variance (p < 0.002). In conclusion, we found that pQCT-derived muscle area is more strongly related to strength and neuromuscular performance than muscle density in adult men and women. PMID:26473521

  2. A NEW CLINICAL MUSCLE FUNCTION TEST FOR ASSESSMENT OF HIP EXTERNAL ROTATION STRENGTH: AUGUSTSSON STRENGTH TEST

    PubMed Central

    2016-01-01

    ABSTRACT Introduction Dynamic clinical tests of hip strength applicable on patients, non–athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Methods Fifty–three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test–retest reliability. Results No significant test–retest differences were observed. Intra–class correlation coefficients ranged 0.93–0.94 and coefficients of variation 2.76–4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). Conclusions The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip

  3. Effects of Growth Hormone Administration on Muscle Strength in Men over 50 Years Old

    PubMed Central

    Tavares, A. B. W.; Micmacher, E.; Biesek, S.; Assumpção, R.; Redorat, R.; Veloso, U.; Vaisman, M.; Farinatti, P. T. V.; Conceição, F.

    2013-01-01

    Growth hormone (GH) use has been speculated to improve physical capacity in subjects without GH deficiency (GHD) through stimulation of collagen synthesis in the tendon and skeletal muscle, which leads to better exercise training and increased muscle strength. In this context, the use of GH in healthy elderly should be an option for increasing muscle strength. Our aim was to evaluate the effect of GH therapy on muscle strength in healthy men over 50 years old. Fourteen healthy men aged 50–70 years were evaluated at baseline for body composition and muscle strength (evaluated by leg press and bench press exercises, which focus primarily on quadriceps—lower body part and pectoralis major—upper body part—muscles, resp.). Subjects were randomised into 2 groups: GH therapy (7 subjects) and placebo (7 subjects) and reevaluated after 6 months of therapy. Thirteen subjects completed the study (6 subjects in the placebo group and 7 subjects in the GH group). Subjects of both groups were not different at baseline. After 6 months of therapy, muscle strength in the bench press responsive muscles did not increase in both groups and showed a statistically significant increase in the leg press responsive muscles in the GH group. Our study demonstrated an increase in muscle strength in the lower body part after GH therapy in healthy men. This finding must be considered and tested in frail older populations, whose physical incapacity is primarily caused by proximal muscle weakness. The trial was registered with NCT01853566. PMID:24382963

  4. Strength Training for the Intrinsic Flexor Muscles of the Foot: Effects on Muscle Strength, the Foot Arch, and Dynamic Parameters Before and After the Training

    PubMed Central

    Hashimoto, Takayuki; Sakuraba, Keishoku

    2014-01-01

    [Purpose] The purpose of the present study was to verify the effects of intrinsic foot flexor strength training. [Subjects] The subjects were 12 healthy males without motor system disease. [Methods] A training method that involved flexion of all toe interphalangeal and metatarsophalangeal joints against a 3-kg load was implemented and was performed for 200 repetitions once per day, three times per week, for a period of eight weeks. [Results] Significant changes were observed for intrinsic foot flexor strength scores, foot arches, vertical jumping, 1-legged long jumping, and 50-m dash time. [Conclusion] This muscle strength training method significantly improved muscle strength scores, foot arch shape, and movement performance. PMID:24707086

  5. Impact on nutrition on muscle strength and performance in older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has rec...

  6. Impact of nutrition on muscle mass, strength, and performance in older adults.

    PubMed

    Mithal, A; Bonjour, J-P; Boonen, S; Burckhardt, P; Degens, H; El Hajj Fuleihan, G; Josse, R; Lips, P; Morales Torres, J; Rizzoli, R; Yoshimura, N; Wahl, D A; Cooper, C; Dawson-Hughes, B

    2013-05-01

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has recently received increased attention. A review of the literature was undertaken to identify nutritional factors that contribute to loss of muscle mass. The role of protein, acid-base balance, vitamin D/calcium, and other minor nutrients like B vitamins was reviewed. Muscle wasting is a multifactorial process involving intrinsic and extrinsic alterations. A loss of fast twitch fibers, glycation of proteins, and insulin resistance may play an important role in the loss of muscle strength and development of sarcopenia. Protein intake plays an integral part in muscle health and an intake of 1.0-1.2 g/kg of body weight per day is probably optimal for older adults. There is a moderate [corrected] relationship between vitamin D status and muscle strength. Chronic ingestion of acid-producing diets appears to have a negative impact on muscle performance, and decreases in vitamin B12 and folic acid intake may also impair muscle function through their action on homocysteine. An adequate nutritional intake and an optimal dietary acid-base balance are important elements of any strategy to preserve muscle mass and strength during aging. PMID:23247327

  7. Serial Changes of Quadriceps and Hamstring Muscle Strength Following Total Knee Arthroplasty: A Meta-Analysis

    PubMed Central

    Ahn, Hyeong-Sik; Lee, Dae-Hee

    2016-01-01

    This meta-analysis was performed to analyze serial changes in thigh muscles, including quadriceps and hamstring muscles, from before to one year after total knee arthroplasty (TKA). All studies sequentially comparing isokinetic quadriceps and hamstring muscle strengths between the TKA side and the contralateral uninjured limb were included in this meta-analysis. Five studies with 7 cohorts were included in this meta-analysis. The mean differences in the strengths of quadriceps and hamstring muscles between the TKA and uninjured sides were greatest three months after surgery (26.8 N∙m, 12.8 N∙m, P<0.001), but were similar to preoperative level at six months (18.4 N∙m, 7.4 N∙m P<0.001) and were maintained for up to one year (15.9 N∙m, 4.1 N∙m P<0.001). The pooled mean differences in changes in quadriceps and hamstring strengths relative to preoperative levels were 9.2 N∙m and 4.9 N∙m, respectively, three months postoperatively (P = 0.041), but were no longer significant after six months and one year. During the year after TKA, quadriceps and hamstring muscle strengths were lowest after 3 months, recovering to preoperative level after six months, but not reaching the muscle strength on the contralateral side. Relative to preoperative levels, the difference in muscle strength between the TKA and contralateral knees was only significant at three months. Because decrease of strength of the quadriceps was significantly greater than decrease in hamstring muscle strength at postoperative three months, early rehabilitation after TKA should focus on recovery of quadriceps muscle strength. PMID:26849808

  8. Relation between systemic inflammatory markers, peripheral muscle mass, and strength in limb muscles in stable COPD patients

    PubMed Central

    Ferrari, Renata; Caram, Laura MO; Faganello, Marcia M; Sanchez, Fernanda F; Tanni, Suzana E; Godoy, Irma

    2015-01-01

    The aim of this study was to investigate the association between systemic inflammatory mediators and peripheral muscle mass and strength in COPD patients. Fifty-five patients (69% male; age: 64±9 years) with mild/very severe COPD (defined as forced expiratory volume in the first second [FEV1] =54%±23%) were evaluated. We evaluated serum concentrations of IL-8, CRP, and TNF-α. Peripheral muscle mass was evaluated by computerized tomography (CT); midthigh cross-sectional muscle area (MTCSA) and midarm cross-sectional muscle area (MACSA) were obtained. Quadriceps, triceps, and biceps strength were assessed through the determination of the one-repetition maximum. The multiple regression results, adjusted for age, sex, and FEV1%, showed positive significant association between MTCSA and leg extension (0.35 [0.16, 0.55]; P=0.001), between MACSA and triceps pulley (0.45 [0.31, 0.58]; P=0.001), and between MACSA and biceps curl (0.34 [0.22, 0.47]; P=0.001). Plasma TNF-α was negatively associated with leg extension (−3.09 [−5.99, −0.18]; P=0.04) and triceps pulley (−1.31 [−2.35, −0.28]; P=0.01), while plasma CRP presented negative association with biceps curl (−0.06 [−0.11, −0.01]; P=0.02). Our results showed negative association between peripheral muscle mass (evaluated by CT) and muscle strength and that systemic inflammation has a negative influence in the strength of specific groups of muscles in individuals with stable COPD. This is the first study showing association between systemic inflammatory markers and strength in upper limb muscles. PMID:26345641

  9. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    ERIC Educational Resources Information Center

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  10. Measurement of muscle strength with handheld dynamometer in Intensive Care Unit

    PubMed Central

    Samosawala, Nidhi R.; Vaishali, K.; Kalyana, B. Chakravarthy

    2016-01-01

    Background: Intensive Care Unit (ICU) acquired weakness is a common complication in critically ill patients affecting their prognosis. The handheld dynamometry is an objective method in detecting minimum muscle strength change, which has an impact on the physical function of ICU survivors. The minimal change in the force can be measured in units of weight such as pounds or kilograms. Aim of the Study: To detect the changes in peripheral muscle strength with handheld dynamometer in the early stage of ICU stay and to observe the progression of muscle weakness. Methodology: Three upper and three lower limb muscles force measured with handheld dynamometer during ICU stay. Data were analyzed using repeated measures ANOVA to detect changes in force generated by muscle on alternate days of ICU stay. Results: There was a reduction in peripheral muscle strength from day 3 to day 5 as well from day 5 to day 7 of ICU stay (P < 0.01). The average reduction in peripheral muscle strength was 11.8% during ICU stay. Conclusion: This study showed a progressive reduction in peripheral muscle strength as measured by handheld dynamometer during early period of ICU stay. PMID:26955213

  11. Effect of trapezius muscle strength on three-dimensional scapular kinematics

    PubMed Central

    Turgut, Elif; Duzgun, Irem; Baltaci, Gul

    2016-01-01

    [Purpose] This study aimed to investigate the effect of trapezius muscle isometric strength on three-dimensional scapular kinematics in asymptomatic shoulders. [Subjects and Methods] Thirty asymptomatic subjects were included to the study. Isometric strengths of the upper, middle, and lower trapezius muscle were measured using a handheld dynamometer. Three-dimensional scapular kinematics was recorded by an electromagnetic tracking device during frontal and sagittal plane elevation. For each muscle, the cut-off value for muscle strength was determined with the upper bound of the 95% confidence interval, and Student’s t-test was used to compare the scapular kinematics between subjects with relatively weaker or stronger trapezius muscles. [Results] Shoulders with stronger upper trapezius muscles showed greater upward scapular rotation at 30°, 60°, 90°, and 120° of elevation in the frontal plane. Shoulders with stronger middle trapezius had greater scapular upward rotation at 90° of elevation in the frontal plane. Shoulders with stronger lower trapezius showed greater scapular posterior tilt at 90° of elevation in the sagittal plane. [Conclusion] This study’s findings showed that isometric strength of the trapezius muscle affects upward scapular rotation and posterior tilt in asymptomatic shoulders. Therefore, trapezius muscle strength should be assessed and potential weakness should be addressed in shoulder rehabilitation programs. PMID:27390435

  12. Relationship Between Intensity of Quadriceps Muscle Neuromuscular Electrical Stimulation and Strength Recovery After Total Knee Arthroplasty

    PubMed Central

    Balter, Jaclyn E.; Wolfe, Pamela; Eckhoff, Donald G.; Schwartz, Robert S.; Schenkman, Margaret; Kohrt, Wendy M.

    2012-01-01

    Background Neuromuscular electrical stimulation (NMES) can facilitate the recovery of quadriceps muscle strength after total knee arthroplasty (TKA), yet the optimal intensity (dosage) of NMES and its effect on strength after TKA have yet to be determined. Objective The primary objective of this study was to determine whether the intensity of NMES application was related to the recovery of quadriceps muscle strength early after TKA. A secondary objective was to quantify quadriceps muscle fatigue and activation immediately after NMES to guide decisions about the timing of NMES during rehabilitation sessions. Design This study was an observational experimental investigation. Methods Data were collected from 30 people who were 50 to 85 years of age and who received NMES after TKA. These people participated in a randomized controlled trial in which they received either standard rehabilitation or standard rehabilitation plus NMES to the quadriceps muscle to mitigate strength loss. For the NMES intervention group, NMES was applied 2 times per day at the maximal tolerable intensity for 15 contractions beginning 48 hours after surgery over the first 6 weeks after TKA. Neuromuscular electrical stimulation training intensity and quadriceps muscle strength and activation were assessed before surgery and 3.5 and 6.5 weeks after TKA. Results At 3.5 weeks, there was a significant association between NMES training intensity and a change in quadriceps muscle strength (R2=.68) and activation (R2=.22). At 6.5 weeks, NMES training intensity was related to a change in strength (R2=.25) but not to a change in activation (R2=.00). Furthermore, quadriceps muscle fatigue occurred during NMES sessions at 3.5 and 6.5 weeks, whereas quadriceps muscle activation did not change. Limitations Some participants reached the maximal stimulator output during at least 1 treatment session and might have tolerated more stimulation. Conclusions Higher NMES training intensities were associated with

  13. Description of Peripheral Muscle Strength Measurement and Correlates of Muscle Weakness in Patients Receiving Prolonged Mechanical Ventilatory Support

    PubMed Central

    Chlan, Linda L.; Tracy, Mary Fran; Guttormson, Jill; Savik, Kay

    2015-01-01

    Background Intensive Care Unit Acquired Weakness (ICUAW) is a frequent complication of critical illness due to immobility and prolonged mechanical ventilatory support. Objectives To describe daily peripheral muscle strength measurement in ventilated patients and explore relationships among factors that influence ICUAW. Methods Peripheral muscle strength of 120 ventilated ICU patients (mean age 59.8 ± 15.1; 51% female; APACHE III 61.3 ± 20.7; ICU stay 10.6 ± 8.6 days) was measured daily using a standardized hand grip dynamometry protocol. Three grip measurements for each hand were recorded in pounds-force; the mean of these three assessments was used in the analysis. Correlates of ICUAW were analyzed with mixed models to explore their relationship to grip strength (age, gender, illness severity, length of ventilatory support, medications). Results Median baseline grip strength was variable yet diminished (7.7; 0-102) with either a pattern of diminishing grip strength or maintenance of the baseline low grip strength over time. Controlling for days on protocol, female gender [β = −10.4(2.5); p = <.001], age [= −.24(.08); p = .004], and days receiving ventilatory support [= −.34(.12); p = .005] explained a significant amount of variance in grip strength over time. Conclusions Patients receiving prolonged periods of mechanical ventilatory support in this sample show marked decrements in grip strength measured by hand dynamometry, a marker for peripheral muscle strength. Hand dynamometry is a reliable method to measure muscle strength in cooperative ICU patients and can be used in future research to ultimately develop interventions to prevent ICUAW. PMID:26523017

  14. Reduced Neck Muscle Strength and Altered Muscle Mechanical Properties in Cervical Dystonia Following Botulinum Neurotoxin Injections: A Prospective Study

    PubMed Central

    Mustalampi, Sirpa; Ylinen, Jari; Korniloff, Katariina; Weir, Adam; Häkkinen, Arja

    2016-01-01

    Objective To evaluate changes in the strength and mechanical properties of neck muscles and disability in patients with cervical dystonia (CD) during a 12-week period following botulinum neurotoxin (BoNT) injections. Methods Eight patients with CD volunteered for this prospective clinical cohort study. Patients had received BoNT injections regularly in neck muscles at three-month intervals for several years. Maximal isometric neck strength was measured by a dynamometer, and the mechanical properties of the splenius capitis were evaluated using two myotonometers. Clinical assessment was performed using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) before and at 2, 4, 8, and 12 weeks after the BoNT injections. Results Mean maximal isometric neck strength at two weeks after the BoNT injections decreased by 28% in extension, 25% in rotation of the affected side and 17% in flexion. At four weeks, muscle stiffness of the affected side decreased by 17% and tension decreased by 6%. At eight weeks, the muscle elasticity on the affected side increased by 12%. At two weeks after the BoNT injections, the TWSTRS-severity and TWSTRS-total scores decreased by 4.3 and 6.4, respectively. The strength, muscle mechanical properties and TWSTRS scores returned to baseline values at 12 weeks. Conclusions Although maximal neck strength and muscle tone decreased after BoNT injections, the disability improved. The changes observed after BoNT injections were temporary and returned to pre-injection levels within twelve weeks. Despite having a possible negative effect on function and decreasing neck strength, the BoNT injections improved the patients reported disability. PMID:26828215

  15. Protein Intake and Muscle Strength in Older Persons: Does Inflammation Matter?

    PubMed Central

    Bartali, Benedetta; Frongillo, Edward A.; Stipanuk, Martha H.; Bandinelli, Stefania; Salvini, Simonetta; Palli, Domenico; Morais, Jose A.; Volpato, Stefano; Guralnik, Jack M.; Ferrucci, Luigi

    2011-01-01

    BACKGROUND/OBJECTIVES The effect of dietary protein intake on muscle strength in older persons is unknown. The objective of this study was to examine whether protein intake is associated with change in muscle strength in older persons. Because systemic inflammation has been associated with protein catabolism, we also evaluated whethera synergistic effect exists between protein intake and inflammatory markers on change in muscle strength using a longitudinal study of community-dwelling persons aged 65 years or older. DESIGN Longitudinal. SETTING The InCHIANTI Study. PARTICIPANTS Five hundred and ninety-eight persons. MEASUREMENTS Knee extension strength was measured at baseline (1998–2000) and during 3-year follow-up (2001–2003) using a hand-held dynamometer. Protein intake was assessed using a very detailed food frequency questionnaire. The inflammatory markers included in this study were C-reactive protein (CRP), Interleukin-6 (IL-6), and Tumor Necrosis Factor-α (TNF-α). RESULTS The main effect of protein intake on change in muscle strength was not significant, but we found a significant interaction between protein intake and CRP, IL-6 and TNF-α (p=0.003, p=0.049 and p=0.019, respectively), indicating thata lower protein intake was associated with a greater decline in muscle strength in persons with high levels of inflammatory markers. CONCLUSION Selectively in older persons with a pro-inflammatory state, low protein intake was associated with accelerated decline in muscle strength. These results may help to understand the factors contributing to decline in muscle strength and to identify the target population of older persons who may benefit from nutritional interventions aimed at preventing or reducing age-associated muscle impairments and its detrimental consequences. PMID:22283208

  16. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury.

    PubMed

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-04-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  17. The effect of hip joint muscle exercise on muscle strength and balance in the knee joint after meniscal injury

    PubMed Central

    Park, Sun Ja; Kim, Young Mi; Kim, Ha Roo

    2016-01-01

    [Purpose] This study aimed to evaluate the effect of hip muscle strengthening on muscle strength and balance in the knee joint after a meniscal injury. [Subjects and Methods] This randomized control study enrolled 24 patients who had undergone arthroscopic treatment after a meniscal injury and began a rehabilitative exercise program 8 weeks after surgery. Subjects were divided into 2 groups of 12 subjects each: gluteus medius resistance exercise group and control group. This study investigated muscle strength and balance in the knee joint flexor, extensor, and abductor during an 8-week period. [Results] Measurements of knee extensor muscle strength revealed no significant difference between the control group and the experimental group. Measurements of abductor muscle strength, however, identified a significant difference between the 2 groups. The groups did not differ significantly with regard to balance measurements. [Conclusion] The results of this study suggest that this subject should be approached in light of the correlation between the hip abductor and injury to the lower extremities. PMID:27190461

  18. Strength training improves muscle quality and insulin sensitivity in older Hispanics with type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hispanics have an increased risk of morbidity and mortality due to their high prevalence of diabetes. Body composition, particularly skeletal muscle, plays an important role in glycemic control and lipid metabolism. Strength training is the most effective means to increase muscle mass but limited ...

  19. Changes in the muscle strength and functional performance of healthy women with aging

    PubMed Central

    Mousavikhatir, Roghayeh

    2012-01-01

    Background Lower limbs antigravity muscles weakness and decreased functional ability have significant role in falling. The aim of this study was to find the effects of aging on muscle strength and functional ability, determining the range of decreasing strength and functional ability and relationship between them in healthy women. Methods Across-section study was performed on 101 healthy women aged 21-80 years. The participants were divided into six age groups. The maximum isometric strength of four muscle groups was measured using a hand-held dynamometer bilaterally. The functional ability was measured with functional reach (FR), timed get up and go (TGUG), single leg stance (SLS), and stairs walking (SW) tests. Results Muscle strength changes were not significant between 21-40 years of age, but decreased significantly thereafter. Also, there was a significant relationship between muscle strength and functional ability in age groups. Conclusion Both muscle strength and functional ability is reduced as a result of aging, but the decrease in functional ability can be detected earlier. PMID:23482911

  20. Effect of yoga training and detraining on respiratory muscle strength in pre-pubertal children: A randomized trial

    PubMed Central

    D'Souza, Crystal Dalia; Avadhany, Sandhya T

    2014-01-01

    Objective: To evaluate the effect of yoga on forced vital capacity (FVC), forced expiratory volume in Ist second (FEV1), peak expiratory flow rate (PEFR), FEVI/FVC ratio, and pulmonary pressures [maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP) at the end of 3 months yoga training and the detraining effect on the above parameters in 7-9-years-old school going children. Materials and Methods: A total of 100 participants were recruited from a school in Bangalore. After baseline assessments, the participants were randomly allocated to either yoga or physical activity group. Intervention was given for 3 months, and measures of pulmonary function and pulmonary pressures were determined immediately post-intervention and at 3-months follow-up. Results: Although significant increase was observed in FVC, FEV1, PEFR, FEV1/FVC, MIP, and MEP at post-intervention, there were no significant differences between the two study groups after adjusting for height and age post training . However, MIP increased significantly in both the groups post-intervention, but the yoga group performed significantly higher than the PE group. The effects of training did not fade off even after 3 months of detraining. In fact, the FVC and FEV1 continued to increase significantly. A trend of decrease was observed in PEFR, MIP, and MEP. However, the values did not regress to the baseline value. Conclusions: This study suggests that practice of yoga for a short duration (3 months) of time can significantly improve respiratory muscle strength in pediatric population. PMID:25035606

  1. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT

    PubMed Central

    Thorsen, L; Kirkegaard, C; Ugelstad, I; Fosså, S D; Raastad, T

    2016-01-01

    Background Androgen deprivation therapy (ADT) for prostate cancer (PCa) is associated with several side effects, including loss of muscle mass. Muscle atrophy is associated with reduced mitochondrial function and increased muscle cellular stress that may be counteracted by strength training. Thus, the aim of this study was to investigate the effect of strength training on mitochondrial proteins and indicators of muscle cellular stress in PCa patients on ADT. Methods Men diagnosed with locally advanced PCa receiving ADT were randomised to a strength training group (STG) (n=16) or a control group (CG) (n=15) for 16 weeks. Muscle biopsies were collected pre- and post-intervention from the vastus lateralis muscle, and analysed for mitochondrial proteins (citrate synthase, cytochrome c oxidase subunit IV (COXIV), HSP60) and indicators of muscle cellular stress (heat shock protein (HSP) 70, alpha B-crystallin, HSP27, free ubiquitin, and total ubiquitinated proteins) using Western blot and ELISA. Results No significant intervention effects were observed in any of the mitochondrial proteins or indicators of muscle cellular stress. However, within-group analysis revealed that the level of HSP70 was reduced in the STG and a tendency towards a reduction in citrate synthase levels was observed in the CG. Levels of total ubiquitinated proteins were unchanged in both groups. Conclusion Although reduced HSP70 levels indicated reduced muscle cellular stress in the STG, the lack of an intervention effect precluded any clear conclusions. PMID:27169606

  2. Patterns of expiratory and inspiratory activation for thoracic motoneurones in the anaesthetized and the decerebrate rat

    PubMed Central

    de Almeida, Anoushka T R; Al-Izki, Sarah; Denton, Manuel Enríquez; Kirkwood, Peter A

    2010-01-01

    The nervous control of expiratory muscles is less well understood than that of the inspiratory muscles, particularly in the rat. The patterns of respiratory discharges in adult rats were therefore investigated for the muscles of the caudal intercostal spaces, with hypercapnia and under either anaesthesia or decerebration. With neuromuscular blockade and artificial ventilation, efferent discharges were present for both inspiration and expiration in both external and internal intercostal nerves. This was also the case for proximal internal intercostal nerve branches that innervate only internal intercostal and subcostalis muscles. If active, this region of muscle in other species is always expiratory. Here, inspiratory bursts were almost always present. The expiratory activity appeared only gradually and intermittently, when the anaesthesia was allowed to lighten or as the pre-decerebration anaesthesia wore off. The intermittent appearance is interpreted as the coupling of a slow medullary expiratory oscillator with a faster inspiratory one. The patterns of nerve discharges, in particular the inspiratory or biphasic activation of the internal and subcostalis layers, were confirmed by observations of equivalent patterns of EMG discharges in spontaneously breathing preparations, using denervation procedures to identify which muscles generated the signals. Some motor units were recruited in both inspiratory and expiratory bursts. These patterns of activity have not previously been described and have implications both for the functional role of multiple respiratory oscillators in the adult and for the mechanical actions of the muscles of the caudal intercostal spaces, including subcostalis, which is a partly bisegmental muscle. PMID:20530111

  3. The effects of kinesio taping on architecture, strength and pain of muscles in delayed onset muscle soreness of biceps brachii

    PubMed Central

    Lee, Yong Sin; Bae, Sea Hyun; Hwang, Jin Ah; Kim, Kyung Yoon

    2015-01-01

    [Purpose] This study aimed to confirm the effects of kinesio taping (KT) on muscle function and pain due to delayed onset muscle soreness (DOMS) of the biceps brachii. [Subjects and Methods] Thirty-seven subjects with induced DOMS were randomized into either Group I (control, n=19) or Group II (KT, n=18). Outcome measures were recorded before the intervention (application of KT) and at 24, 48, and 72 hours after the intervention. DOMS was induced, and muscle thickness was measured using ultrasonic radiography. Maximal voluntary isometric contraction (%MVIC) was measured via electromyography (EMG). Subjective pain was measured using a visual analogue scale (VAS). [Results] Group I exhibited a positive correlation between muscle thickness and elapsed time from intervention (24, 48, and 72 hours post induction of DOMS); they also showed a significant decrease in MVIC(%). Group II showed significant increases in muscle thickness up to the 48-hour interval post induction of DOMS, along with a significant decrease in MVIC (%). However, in contrast to Group I, Group II did not show a significant difference in muscle thickness or MVIC (%) at the 72-hour interval in comparison with the values prior to DOMS induction. [Conclusion] In adults with DOMS, activation of muscles by applying KT was found to be an effective and faster method of recovering muscle strength than rest alone. PMID:25729190

  4. The effects of kinesio taping on architecture, strength and pain of muscles in delayed onset muscle soreness of biceps brachii.

    PubMed

    Lee, Yong Sin; Bae, Sea Hyun; Hwang, Jin Ah; Kim, Kyung Yoon

    2015-02-01

    [Purpose] This study aimed to confirm the effects of kinesio taping (KT) on muscle function and pain due to delayed onset muscle soreness (DOMS) of the biceps brachii. [Subjects and Methods] Thirty-seven subjects with induced DOMS were randomized into either Group I (control, n=19) or Group II (KT, n=18). Outcome measures were recorded before the intervention (application of KT) and at 24, 48, and 72 hours after the intervention. DOMS was induced, and muscle thickness was measured using ultrasonic radiography. Maximal voluntary isometric contraction (%MVIC) was measured via electromyography (EMG). Subjective pain was measured using a visual analogue scale (VAS). [Results] Group I exhibited a positive correlation between muscle thickness and elapsed time from intervention (24, 48, and 72 hours post induction of DOMS); they also showed a significant decrease in MVIC(%). Group II showed significant increases in muscle thickness up to the 48-hour interval post induction of DOMS, along with a significant decrease in MVIC (%). However, in contrast to Group I, Group II did not show a significant difference in muscle thickness or MVIC (%) at the 72-hour interval in comparison with the values prior to DOMS induction. [Conclusion] In adults with DOMS, activation of muscles by applying KT was found to be an effective and faster method of recovering muscle strength than rest alone. PMID:25729190

  5. [Use of pulmonary rehabilitation in the treatment of decreased respiratory muscle strength].

    PubMed

    Neumannová, Kateřina

    2015-01-01

    Decreased respiratory muscle strength could lead to other health problems, which can decrease the quality of life of those patients. Ineffective expectoration and dyspnoea during physical activities and during activity of daily living are the most frequent disorders associated with decreased respiratory muscle strength. Multidisciplinary treatment including pulmonary rehabilitation programme is very important for those patients. Ventilatory muscle training (strength and endurance type of training), airway clearance techniques - active (e.g. autogenic drainage, instrumental techniques) and passive (e.g. manual thoracic compression, mechanical insufflator/exsufflator machine) and exercise training are the most frequent used techniques in these patients. Assessment of all respiratory muscles function - especially their respiratory and postural function - is important at the beginning of rehabilitation treatment. PMID:25994909

  6. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  7. Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons.

    PubMed

    Pilling, L C; Joehanes, R; Kacprowski, T; Peters, M; Jansen, R; Karasik, D; Kiel, D P; Harries, L W; Teumer, A; Powell, J; Levy, D; Lin, H; Lunetta, K; Munson, P; Bandinelli, S; Henley, W; Hernandez, D; Singleton, A; Tanaka, T; van Grootheest, G; Hofman, A; Uitterlinden, A G; Biffar, R; Gläser, S; Homuth, G; Malsch, C; Völker, U; Penninx, B; van Meurs, J B J; Ferrucci, L; Kocher, T; Murabito, J; Melzer, D

    2016-01-01

    Lower muscle strength in midlife predicts disability and mortality in later life. Blood-borne factors, including growth differentiation factor 11 (GDF11), have been linked to muscle regeneration in animal models. We aimed to identify gene transcripts associated with muscle strength in adults. Meta-analysis of whole blood gene expression (overall 17,534 unique genes measured by microarray) and hand-grip strength in four independent cohorts (n = 7,781, ages: 20-104 yr, weighted mean = 56), adjusted for age, sex, height, weight, and leukocyte subtypes. Separate analyses were performed in subsets (older/younger than 60, men/women). Expression levels of 221 genes were associated with strength after adjustment for cofactors and for multiple statistical testing, including ALAS2 (rate-limiting enzyme in heme synthesis), PRF1 (perforin, a cytotoxic protein associated with inflammation), IGF1R, and IGF2BP2 (both insulin like growth factor related). We identified statistical enrichment for hemoglobin biosynthesis, innate immune activation, and the stress response. Ten genes were associated only in younger individuals, four in men only and one in women only. For example, PIK3R2 (a negative regulator of PI3K/AKT growth pathway) was negatively associated with muscle strength in younger (<60 yr) individuals but not older (≥ 60 yr). We also show that 115 genes (52%) have not previously been linked to muscle in NCBI PubMed abstracts. This first large-scale transcriptome study of muscle strength in human adults confirmed associations with known pathways and provides new evidence for over half of the genes identified. There may be age- and sex-specific gene expression signatures in blood for muscle strength. PMID:26487704

  8. Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons

    PubMed Central

    Joehanes, R.; Kacprowski, T.; Peters, M.; Jansen, R.; Karasik, D.; Kiel, D. P.; Harries, L. W.; Teumer, A.; Powell, J.; Levy, D.; Lin, H.; Lunetta, K.; Munson, P.; Bandinelli, S.; Henley, W.; Hernandez, D.; Singleton, A.; Tanaka, T.; van Grootheest, G.; Hofman, A.; Uitterlinden, A. G.; Biffar, R.; Gläser, S.; Homuth, G.; Malsch, C.; Völker, U.; Penninx, B.; van Meurs, J. B. J.; Ferrucci, L.; Kocher, T.; Murabito, J.

    2015-01-01

    Lower muscle strength in midlife predicts disability and mortality in later life. Blood-borne factors, including growth differentiation factor 11 (GDF11), have been linked to muscle regeneration in animal models. We aimed to identify gene transcripts associated with muscle strength in adults. Meta-analysis of whole blood gene expression (overall 17,534 unique genes measured by microarray) and hand-grip strength in four independent cohorts (n = 7,781, ages: 20–104 yr, weighted mean = 56), adjusted for age, sex, height, weight, and leukocyte subtypes. Separate analyses were performed in subsets (older/younger than 60, men/women). Expression levels of 221 genes were associated with strength after adjustment for cofactors and for multiple statistical testing, including ALAS2 (rate-limiting enzyme in heme synthesis), PRF1 (perforin, a cytotoxic protein associated with inflammation), IGF1R, and IGF2BP2 (both insulin like growth factor related). We identified statistical enrichment for hemoglobin biosynthesis, innate immune activation, and the stress response. Ten genes were associated only in younger individuals, four in men only and one in women only. For example, PIK3R2 (a negative regulator of PI3K/AKT growth pathway) was negatively associated with muscle strength in younger (<60 yr) individuals but not older (≥60 yr). We also show that 115 genes (52%) have not previously been linked to muscle in NCBI PubMed abstracts. This first large-scale transcriptome study of muscle strength in human adults confirmed associations with known pathways and provides new evidence for over half of the genes identified. There may be age- and sex-specific gene expression signatures in blood for muscle strength. PMID:26487704

  9. Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy

    PubMed Central

    Goddard, Melissa A.; Mack, David L.; Czerniecki, Stefan M.; Kelly, Valerie E.; Snyder, Jessica M.; Grange, Robert W.; Lawlor, Michael W.; Smith, Barbara K.; Beggs, Alan H.

    2015-01-01

    Background Loss-of-function mutations in the myotubularin (MTM1) gene cause X-linked myotubular myopathy (XLMTM), a fatal, inherited pediatric disease that affects the entire skeletal musculature. Labrador retriever dogs carrying an MTM1 missense mutation exhibit strongly reduced synthesis of myotubularin, the founder member of a lipid phosphatase required for normal skeletal muscle function. The resulting canine phenotype resembles that of human patients with comparably severe mutations, and survival does not normally exceed 4 months. Methods We studied MTM1 mutant dogs (n=7) and their age-matched control littermates (n=6) between the ages of 10 and 25 weeks. Investigators blinded to the animal identities sequentially measured limb muscle pathology, fore- and hind limb strength, walking gait, respiratory function and neurological impairment. Results MTM1-mutant puppies display centrally-nucleated myofibers of reduced size and disrupted sarcotubular architecture progressing until the end of life, an average of 17 weeks. In-life measures of fore- and hind limb strength establish the rate at which XLMTM muscles weaken, and their corresponding decrease in gait velocity and stride length. Pulmonary function tests in affected dogs reveal a right-shifted relationship between peak inspiratory flow (PIF) and inspiratory time (TI); neurological assessments indicate that affected puppies as young as 10 weeks show early signs of neurological impairment (neurological severity score, NSS =8.6±0.9) with progressive decline (NSS =5.6±1.7 at 17 weeks-of-age). Conclusions Our findings document the rate of disease progression in a large animal model of XLMTM and lay a foundation for preclinical studies. PMID:26605308

  10. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men.

    PubMed

    Schoenfeld, Brad J; Pope, Zachary K; Benik, Franklin M; Hester, Garrett M; Sellers, John; Nooner, Josh L; Schnaiter, Jessica A; Bond-Williams, Katherine E; Carter, Adrian S; Ross, Corbin L; Just, Brandon L; Henselmans, Menno; Krieger, James W

    2016-07-01

    Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Nooner, JL, Schnaiter, JA, Bond-Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res 30(7): 1805-1812, 2016-The purpose of this study was to investigate the effects of short rest intervals normally associated with hypertrophy-type training versus long rest intervals traditionally used in strength-type training on muscular adaptations in a cohort of young, experienced lifters. Twenty-one young resistance-trained men were randomly assigned to either a group that performed a resistance training (RT) program with 1-minute rest intervals (SHORT) or a group that employed 3-minute rest intervals (LONG). All other RT variables were held constant. The study period lasted 8 weeks with subjects performing 3 total body workouts a week comprised 3 sets of 8-12 repetition maximum (RM) of 7 different exercises per session. Testing was performed prestudy and poststudy for muscle strength (1RM bench press and back squat), muscle endurance (50% 1RM bench press to failure), and muscle thickness of the elbow flexors, triceps brachii, and quadriceps femoris by ultrasound imaging. Maximal strength was significantly greater for both 1RM squat and bench press for LONG compared to SHORT. Muscle thickness was significantly greater for LONG compared to SHORT in the anterior thigh, and a trend for greater increases was noted in the triceps brachii (p = 0.06) as well. Both groups saw significant increases in local upper body muscle endurance with no significant differences noted between groups. This study provides evidence that longer rest periods promote greater increases in muscle strength and hypertrophy in young resistance-trained men. PMID:26605807

  11. Effects of increasing physical activity on foot structure and ankle muscle strength in adults with obesity

    PubMed Central

    Zhao, Xiaoguang; Tsujimoto, Takehiko; Kim, Bokun; Katayama, Yasutomi; Wakaba, Kyousuke; Wang, Zhennan; Tanaka, Kiyoji

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of increasing physical activity on foot structure and ankle muscle strength in adults with obesity and to verify whether the rate of change in foot structure is related to that in ankle muscle strength. [Subjects and Methods] Twenty-seven adults with obesity completed a 12-week program in which the intensity of physical activity performed was gradually increased. Physical activity was monitored using a three-axis accelerometer. Foot structure was assessed using a three-dimensional foot scanner, while ankle muscle strength was measured using a dynamometry. [Results] With the increasing physical activity, the participants’ feet became thinner (the rearfoot width, instep height, and girth decreased) and the arch became higher (the arch height index increased) and stiffer (the arch stiffness index increased); the ankle muscle strength also increased after the intervention. Additionally, the changes in the arch height index and arch stiffness index were not associated with changes in ankle muscle strength. [Conclusion] Increasing physical activity may be one possible approach to improve foot structure and function in individuals with obesity.

  12. Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy.

    PubMed

    Nilsen, T S; Thorsen, L; Fosså, S D; Wiig, M; Kirkegaard, C; Skovlund, E; Benestad, H B; Raastad, T

    2016-09-01

    Androgen deprivation therapy (ADT) improves life expectancy in prostate cancer (PCa) patients, but is associated with adverse effects on muscle mass. Here, we investigated the effects of strength training during ADT on muscle fiber cross-sectional area (CSA) and regulators of muscle mass. PCa patients on ADT were randomized to 16 weeks of strength training (STG) (n = 12) or a control group (CG; n = 11). Muscle biopsies were obtained from m. vastus lateralis and analyzed by immunohistochemistry and western blot. Muscle fiber CSA increased with strength training (898 μm(2) , P = 0.04), with the only significant increase observed in type II fibers (1076 μm(2) , P = 0.03). There was a trend toward a difference in mean change between groups myonuclei number (0.33 nuclei/fiber, P = 0.06), with the only significant increase observed in type I fibers, which decreased the myonuclear domain size of type I fibers (P = 0.05). Satellite cell numbers and the content of androgen receptor and myostatin remained unchanged. Sixteen weeks of strength training during ADT increased type II fiber CSA and reduced myonuclear domain in type I fibers in PCa patients. The increased number of satellite cells normally seen following strength training was not observed. PMID:26282343

  13. Effects of Massage on Muscular Strength and Proprioception After Exercise-Induced Muscle Damage.

    PubMed

    Shin, Mal-Soon; Sung, Yun-Hee

    2015-08-01

    Exercise-induced muscle damage (EIMD), which is commonly associated with eccentric exercise, unaccustomed exercise, and resistance training, may lead to delayed onset muscle soreness, swelling, decreased muscle strength, and range of motion. Many researchers have evaluated various interventions to treat the signs and symptoms of EIMD. However, the effects of massage after EIMD are unclear. Here, we investigated the effect of massage on muscle strength and proprioception after EIMD. All subjects randomly were divided into an EIMD-treated control group (n = 10) and a massage-treated after EIMD experimental group (n = 11). Exercise-induced muscle damage was induced by repeated exercise. Massage treatment was provided by physiotherapist for 15 minutes. It consists of light stroking, milking, friction, and skin rolling. Lactate was evaluated by Lactate Pro analyzer in pre- and postexercise. Surface electromyography (muscle activity) and sonography (muscle thickness) were used to confirm the muscular characteristics. Proprioception was investigated by dual inclinometer. As a result, massage treatment on the gastrocnemius after EIMD increased activation of the medial gastrocnemius during contraction (p ≤ 0.05). In the lateral and medial gastrocnemius, the θs, which is the angle between muscle fibers and superficial aponeurosis, showed a significant change (p ≤ 0.05). However, there are no differences in the θd, which is the angle between muscle fibers and deep aponeurosis. We also found that proprioceptive acuity in the ankle joint was significantly greater in the massage-treated experimental group compared with that in the control group (p ≤ 0.05). These findings suggest that massage of the gastrocnemius after EIMD can improve muscle strength and proprioception by influencing the superficial layer of the gastrocnemius. PMID:25226328

  14. Inspiratory flow dynamics during phrenic nerve stimulation in awake normals during nasal breathing.

    PubMed

    Sériès, F; Demoule, A; Marc, I; Sanfaçon, C; Derenne, J P; Similowski, T

    1999-08-01

    The loss of upper airway (UA) dilators preactivation before inspiratory muscle contraction is an important determinant of the pathophysiology of obstructive sleep apnea. We hypothetized that phrenic nerve stimulation could provide a practical way to explore the effects of the dissociation between UA dilators and inspiratory muscles, and possibly to determine UA critical closing pressure during wakefulness. The pattern of inspiratory airflow was therefore studied in normal awake subjects during diaphragm twitches induced by either electrical phrenic stimulation (ES) or cervical magnetic stimulation (CMS) (n = 9) and with and without a nasal stent during ES (n = 7). End-expiratory stimulations applied during exclusive nasal breathing induced 200 to 300 ms twitch inspiratory flow. The average maximal twitch flow of flow-limited twitches was higher during CMS than ES (1.18 +/- 0.29 L. PMID:10430737

  15. Muscle strength as a predictor of onset of ADL dependence in people aged 75 years.

    PubMed

    Rantanen, Taina; Avlund, Kirsten; Suominen, Harri; Schroll, Marianne; Frändin, Kerstin; Pertti, Era

    2002-06-01

    The aim of this prospective study over 5 years was to examine maximal isometric strength of multiple muscle groups as a predictor of losing independence in activities of daily living (ADL). The participants were from the Nordic Research on Aging (NORA75). These analyses are restricted to 567 people who at baseline were independent in ADL and participated in strength tests, and who five years later participated in follow-up ADL assessments. Tests on maximal isometric strength of hand grip, elbow flexion, knee extension and trunk flexion and extension were done using adjustable dynamometers. For each muscle group tested, three equal groups were formed for men and women separately based on distributions of results. Those who reported being unable or needing help for eating, dressing, bathing, toileting, walking indoors or transferring from a bed or a chair were rated as ADL dependent. Of the 227 initially ADL independent men, 21 (9.3%) became dependent in ADL. In women, the figures were 30 (8.8%) of 340. Multiple logistic regression models were used to predict the risk of ADL dependence in groups based on strength tertiles. After confirming that the association of muscle strength and incident ADL-dependence was similar in men and women, both genders were included in the same analyses adjusted for body weight and height, gender and research locality. Gender specific cut-offs were used for strength tertiles. All the strength tests predicted ADL dependence, with those being in the lowest tertile having two to three times greater risks than those in the highest tertile of strength. Further adjustments for chronic diseases did not materially change the results. Strength tests could be used to identify people who are still independent in ADL but who are at increased risk of becoming dependent because of poor muscle strength, and who could reduce their risk by strengthening exercises. PMID:12475129

  16. The reliability of evaluation of hip muscle strength in rehabilitation robot walking training.

    PubMed

    Huang, Qiuchen; Zhou, Yue; Yu, Lili; Gu, Rui; Cui, Yao; Hu, Chunying

    2015-10-01

    [Purpose] The primary purpose of this study was to evaluate the intraclass correlation coefficient in obtaining the torque of the hip muscle strength during a robot-assisted rehabilitation treatment. [Subjects] Twenty-four patients (15 males, 9 females) with spinal cord injury participated in the study. [Methods] The subjects were asked to walk during robot-assisted rehabilitation, and the torque of the muscle strength which was measured at hip joint flexion angles of -15, -10, -5, 0, 5, 10, 15, 20, 25, and 30 degrees. [Results] The intraclass correlation coefficient of the torque of the hip muscle strength measured by the rehabilitation training robot was excellent. [Conclusion] Our results show that measurement of torque can be used as an objective assessment of treatment with RAT. PMID:26644646

  17. Weight loss may be a better approach for managing musculoskeletal conditions than increasing muscle mass and strength

    PubMed Central

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Suzuki, Shun; Kim, Taeho; Tanaka, Kiyoji

    2015-01-01

    To prevent or remedy musculoskeletal conditions, the relationship between obesity and the characteristics of muscle mass and strength need to be clarified. [Subjects and Methods] A total of 259 Japanese males aged 30–64 years were classified into 4 groups according to the Japanese obesity criteria. Body composition was evaluated, and handgrip strength and knee extensor strength were measured for the upper and lower extremities, respectively. Physical performance was evaluated with a jump test. [Results] Obesity was positively correlated with skeletal muscle mass index, percentage of whole-body fat, and leg muscle strength and negatively correlated with the percentage of muscle mass index, body weight-normalized handgrip strength, and knee extensor strength, and the jump test results. [Conclusion] Weight loss may be a better approach than increasing muscle mass and strength to improve musculoskeletal conditions in obese adult males. PMID:26834353

  18. LOWER ESOPHAGEAL SPHINCTER PRESSURE MEASUREMENT UNDER STANDARDIZED INSPIRATORY MANEUVEURS

    PubMed Central

    RIBEIRO, Jeany Borges e Silva; DIÓGENES, Esther Cristina Arruda Oliveira; BEZERRA, Patrícia Carvalho; COUTINHO, Tanila Aguiar Andrade; de ALMEIDA, Cícera Geórgia Félix; SOUZA, Miguel Ângelo Nobre e

    2015-01-01

    Background: Through rhythmic variations, the diaphragm influence lower esophageal sphincter (LES) pressure acting as an external sphincter. LES pressure recording is characterized by increased pressure in inspiration due to contraction of the diaphragmatic crura that involves the sphincter. Aim: To describe a method of measuring LES pressure during standardized inspiratory maneuvers with increasing loads. Methods: The study population comprised of eight healthy female volunteers (average age of 31.5 years). An esophageal high-resolution manometry and impedance system was used for measuring the LES pressure during 3-second inspiratory efforts under 12, 24 and 48 cm H2O loads (Threshold maneuvers). Results: There was a significant difference between the average maximum LES pressure and the average maximum basal LES pressure during the first (76.19±17.92 difference, p=0.0008), second (86.92±19.01 difference, p=0.0004), and third seconds of the maneuver (90.86±17.93 difference, p=0.0002), with 12, 24 and 48 cmH2O loads. Conclusion: This maneuver is a standardization of the inspiratory LES pressure and may better differentiate patients with reflux disease from healthy individuals, and may also be useful for monitoring the treatment of these patients through inspiratory muscle training. PMID:26537140

  19. Relationships of ultrasound measures of intrinsic foot muscle cross-sectional area and muscle volume with maximum toe flexor muscle strength and physical performance in young adults

    PubMed Central

    Abe, Takashi; Tayashiki, Kota; Nakatani, Miyuki; Watanabe, Hironori

    2016-01-01

    [Purpose] To investigate the relationships between toe flexor muscle strength with (TFS-5-toes) and without (TFS-4-toes) the contribution of the great toe, anatomical and physiological muscle cross-sectional areas (CSA) of intrinsic toe flexor muscle and physical performance were measured. [Subjects] Seventeen men (82% sports-active) and 17 women (47% sports-active), aged 20 to 35 years, volunteered. [Methods] Anatomical CSA was measured in two intrinsic toe flexor muscles (flexor digitorum brevis [FDB] and abductor hallucis) by ultrasound. Muscle volume and muscle length of the FDB were also estimated, and physiological CSA was calculated. [Results] Both TFS-5-toes and TFS-4-toes correlated positively with walking speed in men (r=0.584 and r=0.553, respectively) and women (r=0.748 and r=0.533, respectively). Physiological CSA of the FDB was significantly correlated with TFS-5-toes (r=0.748) and TFS-4-toes (r=0.573) in women. In men, physiological CSA of the FDB correlated positively with TFS-4-toes (r=0.536), but not with TFS-5-toes (r=0.333). [Conclusion] Our results indicate that physiological CSA of the FDB is moderately associated with TFS-4-toes while toe flexor strength correlates with walking performance. PMID:26957721

  20. Effect of Expiratory Resistive Loading in Expiratory Muscle Strength Training on Orbicularis Oris Muscle Activity

    PubMed Central

    Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Horiuchi, Noriaki

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the effect of expiratory resistive loading on orbicularis oris muscle activity. [Subjects] Subjects were 23 healthy individuals (11 males, mean age 25.5±4.3 years; 12 females, mean age 25.0±3.0 years). [Methods] Surface electromyography was performed to measure the activity of the orbicularis oris muscle during maximum lip closure and resistive loading at different expiratory pressures. Measurement was performed at 10%, 30%, 50%, and 100% of maximum expiratory pressure (MEP) for all subjects. The t-test was used to compare muscle activity between maximum lip closure and 100% MEP, and analysis of variance followed by multiple comparisons was used to compare the muscle activities observed at different expiratory pressures. [Results] No significant difference in muscle activity was observed between maximum lip closure and 100% MEP. Analysis of variance with multiple comparisons revealed significant differences among the different expiratory pressures. [Conclusion] Orbicularis oris muscle activity increased with increasing expiratory resistive loading. PMID:24648644

  1. Motor effort training with low exercise intensity improves muscle strength and descending command in aging.

    PubMed

    Jiang, Changhao; Ranganathan, Vinoth K; Zhang, Junmei; Siemionow, Vlodek; Yue, Guang H

    2016-06-01

    This study explored the effect of high mental effort training (MET) and conventional strength training (CST) on increasing voluntary muscle strength and brain signal associated with producing maximal muscle force in healthy aging. Twenty-seven older adults (age: 75 ± 7.9 yr, 8 women) were assigned into 1 of 3 groups: MET group-trained with low-intensity (30% maximal voluntary contraction [MVC]) physical exercise combined with MET, CST group-trained with high-intensity muscle contractions, or control (CTRL) group-no training of any kind. MET and CST lasted for 12 weeks (5 sessions/week). The participants' elbow flexion strength of the right arm, electromyography (EMG), and motor activity-related cortical potential (MRCP) directly related to the strength production were measured before and after training. The CST group had the highest strength gain (17.6%, P <0.001), the MET group also had significant strength gain (13.8%, P <0.001), which was not statistically different from that of the CST group even though the exercise intensity for the MET group was only at 30% MVC level. The CTRL group did not have significant strength changes. Surprisingly, only the MET group demonstrated a significant augmentation in the MRCP (29.3%, P <0.001); the MRCP increase in CST group was at boarder-line significance level (12.11%, P = 0.061) and that for CTRL group was only 4.9% (P = 0.539). These results suggest that high mental effort training combined with low-intensity physical exercise is an effective method for voluntary muscle strengthening and this approach is especially beneficial for those who are physically weak and have difficulty undergoing conventional strength training. PMID:27310942

  2. Motor effort training with low exercise intensity improves muscle strength and descending command in aging

    PubMed Central

    Jiang, Changhao; Ranganathan, Vinoth K.; Zhang, Junmei; Siemionow, Vlodek; Yue, Guang H.

    2016-01-01

    Abstract This study explored the effect of high mental effort training (MET) and conventional strength training (CST) on increasing voluntary muscle strength and brain signal associated with producing maximal muscle force in healthy aging. Twenty-seven older adults (age: 75 ± 7.9 yr, 8 women) were assigned into 1 of 3 groups: MET group—trained with low-intensity (30% maximal voluntary contraction [MVC]) physical exercise combined with MET, CST group—trained with high-intensity muscle contractions, or control (CTRL) group—no training of any kind. MET and CST lasted for 12 weeks (5 sessions/week). The participants’ elbow flexion strength of the right arm, electromyography (EMG), and motor activity-related cortical potential (MRCP) directly related to the strength production were measured before and after training. The CST group had the highest strength gain (17.6%, P <0.001), the MET group also had significant strength gain (13.8%, P <0.001), which was not statistically different from that of the CST group even though the exercise intensity for the MET group was only at 30% MVC level. The CTRL group did not have significant strength changes. Surprisingly, only the MET group demonstrated a significant augmentation in the MRCP (29.3%, P <0.001); the MRCP increase in CST group was at boarder-line significance level (12.11%, P = 0.061) and that for CTRL group was only 4.9% (P = 0.539). These results suggest that high mental effort training combined with low-intensity physical exercise is an effective method for voluntary muscle strengthening and this approach is especially beneficial for those who are physically weak and have difficulty undergoing conventional strength training. PMID:27310942

  3. Comparison of pelvic floor muscle strength evaluations in nulliparous and primiparous women: a prospective study

    PubMed Central

    Gameiro, Mônica Orsi; Sousa, Vanessa Oliveira; Gameiro, Luiz Felipe; Muchailh, Rosana Carneiro; Padovani, Carlos Roberto; Amaro, João Luiz

    2011-01-01

    OBJECTIVE: This study aimed to compare the pelvic floor muscle strength of nulliparous and primiparous women. METHODS: A total of 100 women were prospectively distributed into two groups: Group 1 (G1) (n = 50) included healthy nulliparous women, and Group 2 (G2) (n = 50) included healthy primiparous women. Pelvic floor muscle strength was subjectively evaluated using transvaginal digital palpation. Pelvic floor muscle strength was objectively assessed using a portable perineometer. All of the parameters were evaluated simultaneously in G1 and were evaluated in G2 during the 20th and 36th weeks of pregnancy and 45 days after delivery. RESULTS: In G2, 14 women were excluded because they left the study before the follow-up evaluation. The median age was 23 years in G1 and 22 years in G2; there was no significant difference between the groups. The average body mass index was 21.7 kg/m2 in G1 and 25.0 kg/m2 in G2; there was a significant difference between the groups (p = 0.0004). In G2, transvaginal digital palpation evaluation showed significant impairments of pelvic floor muscle strength at the 36th week of pregnancy (p = 0.0006) and 45 days after vaginal delivery (p = 0.0001) compared to G1. Objective evaluations of pelvic floor muscle strength in G2 revealed a significant decrease 45 days after vaginal delivery compared to nulliparous patients. CONCLUSION: Pregnancy and vaginal delivery may cause weakness of the pelvic floor muscles. PMID:21915489

  4. Respiratory muscle activity and oxygenation during sleep in patients with muscle weakness.

    PubMed

    White, J E; Drinnan, M J; Smithson, A J; Griffiths, C J; Gibson, G J

    1995-05-01

    Patients with respiratory muscle weakness show nocturnal hypoventilation, with oxygen desaturation particularly during rapid eye movement (REM) sleep, but evidence in individuals with isolated bilateral diaphragmatic paresis (BDP) is conflicting. The effect of sleep on relative activity of the different respiratory muscles of such patients and, consequently, the precise mechanisms causing desaturation have not been clarified. We have studied eight patients, four with generalized muscle weakness and four with isolated BDP during nocturnal sleep with measurements including oxygen saturation and surface electromyographic (EMG) activity of various respiratory muscle groups. Nocturnal oxygenation correlated inversely with postural fall in vital capacity, an index of diaphragmatic strength. During REM sleep, hypopnoea and desaturation occurred particularly during periods of rapid eye movements (phasic REM sleep). In most subjects, such events were "central" in type and associated with marked suppression of intercostal muscle activity, but two subjects had recurrent desaturation due to "obstructive" hypopnoea and/or apnoea. Expiratory activity of the external oblique muscle was present whilst awake and during non-rapid eye movement (NREM) sleep in seven of the eight subjects in the semirecumbent posture. This probably represents an "accessory inspiratory" effect, which aids passive caudal diaphragmatic motion as the abdominal muscles relax at the onset of inspiration. Expiratory abdominal muscle activity was suppressed in phasic REM sleep, suggesting that loss of this "accessory inspiratory" effect may contribute to "central" hypopnoea. We conclude that, in patients with muscle weakness, nocturnal oxygenation correlates with diaphragmatic strength.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7656954

  5. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  6. MMP(-2) expression in skeletal muscle after strength training.

    PubMed

    Deus, A P L; Bassi, D; Simões, R P; Oliveira, C R; Baldissera, V; Marqueti, R de Cássia; Araujo, H S S; Arena, R; Borghi-Silva, A

    2012-02-01

    The aim of this study was to assess the effects of resistance training on ladders (RTL) on MMP(-2) expression and blood lactate concentration [La-]. 30 male (3 months of age), albino rats were divided into 3 groups: sedentary control (SC, n=10), low resistance exercise training (Low-IntRT, n=10) and high-intensive exercise training (High-IntRT, n=10). Animals of High-IntRT were submitted to a progressively increasing overload in relation to body weight until exhaustion, while the Low-IntRT group performed the same exercise regimen with no external load. The program had a frequency of 3 times per week over 8 weeks. MMP(-2) expression of tibialis anterior muscle and [La-] were measured. While there was a significant increase of MMP(-2) (pro-form) in both groups, only High-IntRT significantly increased MMP(-2) in active-form (p<0.05). Both trained groups exhibited an increase in [La-] when compared to controls, however, the increase in [La-] was significantly higher in the High-IntRT compared to Low-IntRT (p<0.05). Strong correlation was found between MMP(-2) (active form) and [La-] in High-IntRT (r=0.91). RTL in using low and high-intensity exercise can serve as a model to demonstrate different responses of MMP(-2) expression in an animal model. It appears active form expression of MMP(-2) is modulated by exercise intensity. PMID:22095325

  7. Respiration in man affected by TVR contractions elicited in inspiratory and expiratory intercostal muslces.

    PubMed

    Homma, I; Eklund, G; Hagbarth, K E

    1978-12-01

    Vibration-induced effects on respiration in man were studied by recording the electrical activity (EMG) from the intercostal muscles and the diaphragm. The vibration was applied in an upper thoracic region where inspiratory muscle activity prevailed or in a lower thoracic region where expiratory muscle activity prevailed. The effects were also studied by recording the movements of the thorax and the respiratory air flow. Sustained vibration in the upper region enhanced the activity of the underlying inspiratory muscles and caused an expansion of the rib cage whereas it had little or weak effects on diaphragm-activity or on expiratory intercostal muscles. Sustained vibration in the lower region enhanced the activity of the underlying expiratory muscles, often inhibited the inspiratory activity and caused a depression of the rib cage. It also tended to inhibit the diaphragm activity. It was also found that bilateral vibration, timed by the respiratory movements and alternating between upper and lower regions could aid or counteract the ventilation if it was applied respectively 'in phase' or 'out of phase' with the rhythmical contractions in the underlying muscles. The motor responses described are largely explicable in terms of tonic vibration reflexes (TVR) arising in the inspiratory and expiratory intercostal muscles underlying the vibrators. PMID:741110

  8. Physical characteristics as predictors of quadriceps muscle isometric strength: a pilot study.

    PubMed

    Hamzat, T K

    2001-09-01

    This one-group experimental study was carried out to investigate the relationship between isometric strength of quadriceps femoris muscle group and physical characteristics of subjects namely: age; weight; and height. Prediction equations were also derived for quadriceps isometric strength from these physical characteristics. Fifty volunteer, right-legged healthy normal male subjects participated in the study. They were aged between 19 and 27 years. The subjects had no previous history of neuromuscular and skeletal injuries to the lower limbs. Their ages, height and weight were measured in years, centimeters and kilograms, respectively. Quadriceps isometric strength was measured using an adapted cable tensiometer (ACT) and recorded in kilogramforce (kgf). Pearson's product correlation co-efficient (r) was used to study the relationship between quadriceps strength and each of age, height and weight. Linear and multiple regression analyses were also carried out. The result showed a high and positive Pearson's moment correlation coefficient (r) between quadriceps isometric strength and each of weight and height. A positive but low correlation (r) was also found between age and quadriceps isometric strength. Prediction equations were also derived from the linear and regression analyses. The study concluded that there was linear relationship between the physical characteristics and quadriceps isometric strength. It was recommended that the prediction equation be employed to estimate quadriceps strength while setting muscle strengthening goals in the clinics during medical rehabilitation for patients within the age range used in this study. PMID:14510124

  9. Effects of muscle strength asymmetry between left and right on isokinetic strength of the knee and ankle joints depending on athletic performance level

    PubMed Central

    Jeon, Kyoungkyu; Chun, Sungyung; Seo, Byoungdo

    2016-01-01

    [Purpose] The aim of this study was to collect basic data on the effect of asymmetry on the muscle strength of the left and right knee and ankle joints of soccer players at varying athletic performance levels, to guide the development of improved exercise programs. [Subjects and Methods] Forty-nine soccer players at three athletic performance levels participated: 15 professional, 16 amateur, and 18 college. Knee extensor and flexor strength were measured at 60°/sec and 180°/sec, and ankle plantar flexor and dorsiflexor strength were measured at 30°/sec and at 120°/sec. Variables were analyzed by one-way ANOVA. [Results] College soccer players showed greater muscle strength at 60°/sec and 180°/sec in the knee extension muscles of both the right and the left sides, lower muscle strength at 30°/sec and 120°/sec in the dorsiflexor of the right ankle, and similar levels of asymmetry between left and right. The maximum muscle strength on the same side significantly differed in the right ankle joint, with asymmetry between left and right at 30°/sec and 120°/sec. [Conclusion] These findings suggest that muscle strength asymmetry in the ankle joint may lead to counterbalancing muscle strengthening of the knee joint to maintain the center of body mass. PMID:27190469

  10. Effects of muscle strength asymmetry between left and right on isokinetic strength of the knee and ankle joints depending on athletic performance level.

    PubMed

    Jeon, Kyoungkyu; Chun, Sungyung; Seo, Byoungdo

    2016-04-01

    [Purpose] The aim of this study was to collect basic data on the effect of asymmetry on the muscle strength of the left and right knee and ankle joints of soccer players at varying athletic performance levels, to guide the development of improved exercise programs. [Subjects and Methods] Forty-nine soccer players at three athletic performance levels participated: 15 professional, 16 amateur, and 18 college. Knee extensor and flexor strength were measured at 60°/sec and 180°/sec, and ankle plantar flexor and dorsiflexor strength were measured at 30°/sec and at 120°/sec. Variables were analyzed by one-way ANOVA. [Results] College soccer players showed greater muscle strength at 60°/sec and 180°/sec in the knee extension muscles of both the right and the left sides, lower muscle strength at 30°/sec and 120°/sec in the dorsiflexor of the right ankle, and similar levels of asymmetry between left and right. The maximum muscle strength on the same side significantly differed in the right ankle joint, with asymmetry between left and right at 30°/sec and 120°/sec. [Conclusion] These findings suggest that muscle strength asymmetry in the ankle joint may lead to counterbalancing muscle strengthening of the knee joint to maintain the center of body mass. PMID:27190469

  11. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae.

    PubMed

    Martin, Brit L; Gallagher, Thomas L; Rastogi, Neha; Davis, Jonathan P; Beattie, Christine E; Amacher, Sharon L; Janssen, Paul M L

    2015-10-01

    The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input. PMID:26251513

  12. Effects of 5 weeks of lower limb suspension on muscle size and strength

    NASA Technical Reports Server (NTRS)

    Tesch, P. A.; Ploutz, L. L.; Dudley, G. A.

    1994-01-01

    Lack of weight-bearing, as occurs in space, appears to be associated with reductions in strength and mass of skeletal muscle. Very limited data, however, is at hand describing changes in skeletal muscle size and function following manned space missions. Our current knowledge therefore is mainly based on studies of space flown rats. It is obvious though that this information, only in part can be extrapolated to humans. A few bed rest studies have demonstrated that decreases in strength and muscle size are substantial. At this time, however, the magnitude or time course of such changes either in response to space flight or simulations of microgravity have not been defined. In the last few years we have employed a human model to simulate unloading of lower limb skeletal muscles that occurs in microgravity. This model was essentially adopted from the rat hindlimb suspension technique. The purpose of this study was to assess the magnitude of decreases in muscle strength and size as a result of five weeks of unilateral lower limb suspension.

  13. The Effects of a 10-Kilometer Run on Muscle Strength and Power.

    ERIC Educational Resources Information Center

    Gomez, Ana L.; Radzwich, Robert J.; Denegar, Craig R.; Volek, Jeff S.; Rubin, Martyn R.; Bush, Jill A.; Doan, Brandon K.; Wickham, Robbin B.; Mazzetti, Scott A.; Newton, Robert U.; French, Duncan N.; Hakkinen, Keijo; Ratamess, Nicholas A.; Kraemer, William J.

    2002-01-01

    Investigated recovery of maximal force and power following a 10-km race. Data collected on 10 healthy male distance runners pre-race, immediately post-race, and 48 hours later indicated that strength and power capabilities of these 10-km runners were for the most part restored 48 hours after the race. Only the hamstring muscle group was not fully…

  14. Reliability of Maximal Voluntary Muscle Strength and Power Testing in Older Men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Maximal voluntary muscle strength (MVMS) and leg power are important measures of physical function in older adults. We hypothesized that performing these measures twice within 7-10 days would demonstrate a >5% increase due to learning and familiarization of the testing procedures. Methods...

  15. Relationships between Respiratory Muscle Strength and Daily Living Function in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Wang, Hui-Yi; Chen, Chien-Chih; Hsiao, Shih-Fen

    2012-01-01

    Cerebral palsy (CP) is a common childhood disorder characterized by motor disability. Children with CP are at risk of developing significant respiratory problems associated with insufficient respiratory muscle strength. It is crucial to identify important factors which are associated with the limitations in daily living function in such children.…

  16. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults

    PubMed Central

    Coelho, Vinícius A.; Probst, Vanessa S.; Nogari, Bruna M.; Teixeira, Denilson C.; Felcar, Josiane M.; Santos, Denis C.; Gomes, Marcus Vinícius M.; Andraus, Rodrigo A. C.; Fernandes, Karen B. P.

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group − individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength. PMID:27065543

  17. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults

    PubMed Central

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m2) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults. PMID:25642034

  18. Influence of Body Composition on Lung Function and Respiratory Muscle Strength in Children With Obesity

    PubMed Central

    Costa Junior, Dirceu; Peixoto-Souza, Fabiana S.; Araujo, Poliane N.; Barbalho-Moulin, Marcela C.; Alves, Viviane C.; Gomes, Evelim L. F. D.; Costa, Dirceu

    2016-01-01

    Background Obesity affects lung function and respiratory muscle strength. The aim of the present study was to assess lung function and respiratory muscle strength in children with obesity and determine the influence of body composition on these variables. Methods A cross-sectional study was conducted involving 75 children (40 with obesity and 35 within the ideal weight range) aged 6 - 10 years. Body mass index, z score, waist circumference, body composition (tetrapolar bioimpedance), respiratory muscle strength and lung function (spirometry) were evaluated. Results Children with obesity exhibited larger quantities of both lean and fat mass in comparison to those in the ideal weight range. No significant differences were found between groups regarding the respective reference values for respiratory muscle strength. Male children with obesity demonstrated significantly lower lung function values (forced expiratory volume in the first second % (FEV1%) and FEV1/forced vital capacity % (FVC%) : 93.76 ± 9.78 and 92.29 ± 3.8, respectively) in comparison to males in the ideal weight range (99.87 ± 9.72 and 96.31 ± 4.82, respectively). The regression models demonstrated that the spirometric variables were influenced by all body composition variables. Conclusion Children with obesity demonstrated a reduction in lung volume and capacity. Thus, anthropometric and body composition characteristics may be predictive factors for altered lung function. PMID:26767078

  19. Wii balance board exercise improves balance and lower limb muscle strength of overweight young adults.

    PubMed

    Siriphorn, Akkradate; Chamonchant, Dannaovarat

    2015-01-01

    [Purpose] The potential health benefits of the Nintendo Wii balance board exercise have been widely investigated. However, no study has been conducted to examine the benefits of Wii exercise for overweight young adults. The aim of this study was to investigate the effect of exercise performed on a Nintendo Wii balance board on the balance and lower limb muscle strength in overweight young adults. [Subjects and Methods] Within-subject repeated measures analysis was used. Sixteen young adults (aged 21.87±1.13 years, body mass index 24.15 ± 0.50 kg/m(2)) were recruited. All subjects performed an exercise program on a Wii balance board for 8 weeks (30 min/session, twice a week for 8 weeks). A NeuroCom Balance Master and a hand-held dynamometer were used to measure balance performance and lower limb muscle strength. [Results] According to the comparison of pre- and post-intervention measurements, the Wii balance board exercise program significantly improved the limit of stability parameters. There was also a significant increase in strength of four lower-limb muscle groups: the hip flexor, knee flexor, ankle dorsiflexor and ankle plantarflexor. [Conclusion] These findings suggest that a Wii balance board exercise program can be used to improve the balance and lower limb muscle strength of overweight young adults. PMID:25642034

  20. Low muscle strength in late adolescence and Parkinson disease later in life

    PubMed Central

    Gustafsson, Helena; Aasly, Jan; Stråhle, Stefan; Nordström, Anna

    2015-01-01

    Objective: To evaluate maximal isometric muscle force at 18 years of age in relation to Parkinson disease (PD) later in life. Methods: The cohort consisted of 1,317,713 men who had their muscle strength measured during conscription (1969–1996). Associations between participants' muscle strength at conscription and PD diagnoses, also in their parents, were examined using multivariate statistical models. Results: After adjustment for confounders, the lowest compared to the highest fifth of handgrip strength (hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.06–1.79), elbow flexion strength (HR 1.34, 95% CI 1.02–1.76), but not knee extension strength (HR 1.24, 95% CI 0.94–1.62) was associated with an increased risk of PD during follow-up. Furthermore, men whose parents were diagnosed with PD had reduced handgrip (fathers: mean difference [MD] −5.7 N [95% CI −7.3 to −4.0]; mothers: MD −5.0 N [95% CI −7.0 to −2.9]) and elbow flexion (fathers: MD −4.3 N [95% CI −5.7 to −2.9]; mothers: MD −3.9 N [95% CI −5.7 to −2.2]) strength, but not knee extension strength (fathers: MD −1.1 N [95% CI −2.9 to 0.8]; mothers: MD −0.7 N [95% CI −3.1 to 1.6]), than those with no such familial history. Conclusions: Maximal upper extremity voluntary muscle force was reduced in late adolescence in men diagnosed with PD 30 years later. The findings suggest the presence of subclinical motor deficits 3 decades before the clinical onset of PD. PMID:25841033

  1. Muscle strength and bone density in patients with different rheumatic conditions: cross-sectional study

    PubMed Central

    Cvijetić, Selma; Grazio, Simeon; Gomzi, Milica; Krapac, Ladislav; Nemčić, Tomislav; Uremović, Melita; Bobić, Jasminka

    2011-01-01

    Aim To explore the relationship between muscle strength and bone density in patients with different rheumatic diseases and to examine whether inflammatory arthritis was more harmful for muscle strength and bone loss than degenerative joint diseases. Methods The study included 361 men and women with a mean ± standard deviation age of 60.5 ± 11.4 years and different rheumatic conditions: regional syndromes, osteoarthritis of the hands, shoulders, knees, and hips, and inflammatory arthritis. Maximum voluntary back strength was measured by isometric dynamometry. Bone mineral density (BMD; g/cm2) of the lumbar spine, femoral neck, and distal radius was measured by dual-energy x-ray absorptiometry. Anthropometry and lifestyle characteristics were also assessed. Results Back strength was lowest in patients with hand and shoulder osteoarthritis (20.0 ± 17.9 kg), followed by patients with inflammatory arthritis (24.8 ± 19.2 kg). Patients with inflammatory arthritis had the lowest BMD at the mid-radius (0.650 ± 0.115 g/cm2) and femoral neck (0.873 ± 0.137 g/cm2), while patients with hand and shoulder osteoarthritis had the lowest BMD at the mid-radius (0.660 ± 0.101). In both sexes, muscle strength was significantly lower in patients who had lower BMD (T score<-1.0). Multiple regression analysis identified significant predictors of back strength to be spine BMD (P = 0.024) and body mass index (P = 0.004) in men and femoral neck BMD in women (P = 0.004). Conclusion Muscle strength decline may be connected to bone loss in patients with rheumatic conditions, especially those with inflammatory joint diseases. PMID:21495199

  2. Muscle strength, endurance and recovery in the post-infection fatigue syndrome.

    PubMed Central

    Lloyd, A R; Hales, J P; Gandevia, S C

    1988-01-01

    A test of muscle strength and "fatiguability" was administered to 20 normal subjects and 20 patients suffering from post-infection fatigue syndrome. Maximal isometric torque for the elbow flexors was measured before, during and after an endurance sequence of 18 maximal static contractions (10 s duration, 10 s rest interval). The maximal isometric strength was not significantly different between the patient and control groups. The relative torque produced at the end of the series of 18 static contractions did not differ significantly between patients and normal subjects. In the patients with post-infection fatigue syndrome there was impairment of the recovery of peak torque at 10 minutes after the endurance sequence (p less than 0.02). The prominent subjective complaint of muscle fatigue in patients with post-infection fatigue syndrome contrasts with the relatively normal behaviour of their muscles during a controlled test of fatigue. The syndrome may include a disordered perception of achieved force and exertion. PMID:2852211

  3. Test-retest reliability of isometric shoulder muscle strength measurement with a handheld dynamometer and belt

    PubMed Central

    Katoh, Munenori

    2015-01-01

    [Purpose] The aim of this study was to develop a method of measuring isometric shoulder joint muscle strength using a handheld dynamometer with a belt and investigate its test-retest reliability. [Subjects] The subjects comprised 40 healthy adults. [Methods] Six types of isometric shoulder muscle strength were measured twice, and reliability was assessed. [Results] The intraclass correlation coefficient (1, 1) values ranged from 0.976 to 0.902. The result of a Bland-Altman analysis showed differences in the types of errors between measurement items. [Conclusion] The relative reliability of isometric shoulder muscle measurement using a handheld dynamometer with a belt was high. However, analysis of absolute reliability revealed errors that may affect interpretation of values; therefore, it was considered that adapting the greater of two measurement values is appropriate. PMID:26180305

  4. The Effect of Stage II Posterior Tibial Tendon Dysfunction on Deep Compartment Muscle Strength: A New Strength Test

    PubMed Central

    Houck, Jeff R.; Nomides, Candace; Neville, Christopher Glenn; Flemister, Adolph Samuel

    2010-01-01

    Background The purpose of this study was to compare isometric subtalar inversion and forefoot adduction strength in subjects with Stage II posterior tibial tendon dysfunction (PTTD) to controls. Materials and Methods Twenty four subjects with Stage II PTTD and fifteen matched controls volunteered for this study. A force transducer (Model SML-200, Interface, Scottsdale, AZ) was connected with a resistance plate and oscilloscope (TDS 410A, Tektronix, Beaverton, OR) to the foot. Via the oscilloscope, subjects were given feedback on the amount of force produced and muscle activation of the anterior tibialis (AT) muscle. Subjects were instructed to maintain a plantar flexion force while performing a maximal voluntary subtalar inversion and forefoot adduction effort. A two-way ANOVA model with the factors including, side (involved/uninvolved) and group (control/PTTD) was used. Results The PTTD group on the involved side showed significantly decreased subtalar inversion and foot adduction strength (0.70 ± 0.24 N/Kg) compared to the uninvolved side (0.94 ± 0.24 N/Kg) and controls (involved side = 0.99 ± 0.24 N/Kg, uninvolved side = 0.97 ± 0.21 N/Kg). The average AT activation was between 11–17% for both groups, however, showing considerable variability in subjects with PTTD. Conclusion These data confirm a subtalar inversion and forefoot adduction strength deficit by 20% to 30% in subjects with Stage II PTTD. Although isolating the PT muscle is difficult, a test specific to subtalar inversion and forefoot adduction demonstrated the weakness in this population. PMID:18778667

  5. Skeletal muscle fat content is inversely associated with bone strength in young girls.

    PubMed

    Farr, Joshua N; Funk, Janet L; Chen, Zhao; Lisse, Jeffrey R; Blew, Robert M; Lee, Vinson R; Laudermilk, Monica; Lohman, Timothy G; Going, Scott B

    2011-09-01

    Childhood obesity is an established risk factor for metabolic disease. The influence of obesity on bone development, however, remains controversial and may depend on the pattern of regional fat deposition. Therefore, we examined the associations of regional fat compartments of the calf and thigh with weight-bearing bone parameters in girls. Data from 444 girls aged 9 to 12 years from the Jump-In: Building Better Bones study were analyzed. Peripheral quantitative computed tomography (pQCT) was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia along with subcutaneous adipose tissue (SAT, mm(2) ) and muscle density (mg/cm(3) ), an index of skeletal muscle fat content. As expected, SAT was positively correlated with total-body fat mass (r = 0.87-0.89, p < .001), and muscle density was inversely correlated with total-body fat mass (r = -0.24 to -0.28, p < .001). Multiple linear regression analyses with SAT, muscle density, muscle cross-sectional area, bone length, maturity, and ethnicity as independent variables showed significant associations between muscle density and indices of bone strength at metaphyseal (β = 0.13-0.19, p < .001) and diaphyseal (β = 0.06-0.09, p < .01) regions of the femur and tibia. Associations between SAT and indices of bone strength were nonsignificant at all skeletal sites (β = 0.03-0.05, p > .05), except the distal tibia (β = 0.09, p = .03). In conclusion, skeletal muscle fat content of the calf and thigh is inversely associated with weight-bearing bone strength in young girls. PMID:21544865

  6. Strength and muscle activity of shoulder external rotation of subjects with and without scapular dyskinesis

    PubMed Central

    Uga, Daisuke; Nakazawa, Rie; Sakamoto, Masaaki

    2016-01-01

    [Purpose] This study aimed to clarify the relationship between scapular dyskinesis and shoulder external rotation strength and muscle activity. [Subjects and Methods] Both shoulders of 20 healthy males were evaluated. They were classified into 19 normal, 8 subtly abnormal, and 13 obviously abnormal shoulders using the scapular dyskinesis test. Subtly abnormal shoulders were subsequently excluded from the analysis. Shoulder external rotation strength and muscle activity (infraspinatus, serratus anterior, upper, middle, and lower trapezius) were measured in 2 positions using a handheld dynamometer and surface electromyography while sitting in a chair with shoulder 0° abduction and flexion (1st position), and while lying prone on the elbows with the shoulders elevated in the zero position (zero position). The strength ratio was calculated to quantify the change in strength between the positions (zero position / 1st position). [Results] In the obviously abnormal shoulder group, the strength in the 1st position was significantly stronger, the strength ratio was significantly smaller, and the serratus anterior in the zero position showed significantly lower activity than the normal shoulder group. [Conclusion] In shoulder external rotation in the zero position, in obviously abnormal shoulders, the serratus anterior is poorly recruited, weakening the shoulder external rotation strength. PMID:27190434

  7. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice

    PubMed Central

    Camporez, João-Paulo G.; Petersen, Max C.; Abudukadier, Abulizi; Moreira, Gabriela V.; Jurczak, Michael J.; Friedman, Glenn; Haqq, Christopher M.; Petersen, Kitt Falk; Shulman, Gerald I.

    2016-01-01

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease. PMID:26858428

  8. Effects of Training Attendance on Muscle Strength of Young Men after 11 Weeks of Resistance Training

    PubMed Central

    Gentil, Paulo; Bottaro, Martim

    2013-01-01

    Purpose Training attendance is an important variable for attaining optimal results after a resistance training (RT) program, however, the association of attendance with the gains of muscle strength is not well defined. Therefore, the purpose of the present study is to verify if attendance would affect muscle strength gains in healthy young males. Methods Ninety two young males with no previous RT experience volunteered to participate in the study. RT was performed 2 days a week for 11 weeks. One repetition maximum (1RM) in the bench press and knee extensors peak torque (PT) were measured before and after the training period. After the training period, a two step cluster analysis was used to classify the participants in accordance to training attendance, resulting in three groups, defined as high (92 to 100%), intermediate (80 to 91%) and low (60 to 79%) training attendance. Results According to the results, there were no significant correlations between strength gains and training attendance, however, when attendance groups were compared, the low training attendance group showed lower increases in 1RM bench press (8.8%) than the other two groups (17.6% and 18.0% for high and intermediate attendance, respectively). Conclusions Although there is not a direct correlation between training attendance and muscle strength gains, it is suggested that a minimum attendance of 80% is necessary to ensure optimal gains in upper body strength. PMID:23802051

  9. Association of Muscle Mass, Area, and Strength With Incident Diabetes in Older Adults: The Health ABC Study.

    PubMed

    Larsen, Britta A; Wassel, Christina L; Kritchevsky, Stephen B; Strotmeyer, Elsa S; Criqui, Michael H; Kanaya, Alka M; Fried, Linda F; Schwartz, Ann V; Harris, Tamara B; Ix, Joachim H

    2016-04-01

    The role of muscle in development of metabolic conditions is poorly understood. The authors show that, while there was no overall association between muscle mass, area, and strength and incident diabetes in older adults, more muscle at baseline was protective against incident diabetes for normal weight women. PMID:26930180

  10. Indoor mobility-related fatigue and muscle strength in nonagenarians: a prospective longitudinal study

    PubMed Central

    Ekmann, Anette; Thinggaard, Mikael; Christensen, Kaare; Avlund, Kirsten

    2014-01-01

    Background and aims Mobility-related fatigue is an important indicator of functional decline in old age, however, very little is known about fatigue in the oldest old population segment. The aim of this study was to examine the association between indoor mobility-related fatigue and muscle strength decline in nonagenarians. Methods The study is based on a prospective longitudinal study of all Danes born in 1905 and assessed in 1998, 2000 and 2003, and includes 92- to 93-year-old persons who were independent of help in basic indoor mobility at baseline (n = 1,353). Fatigue was assessed at baseline and defined as a subjective feeling of fatigue when transferring or walking indoors. The outcome measure, maximum grip strength, was measured at each measurement point. Results Grip strength declined throughout the study in participants with and without fatigue, but those reporting fatigue had significantly (P < .001) lower muscle strength during the entire study period. Longitudinal analyses indicated slightly slower decline in muscle strength among participants with fatigue compared to those without; however, observed selective dropout of participants with fatigue and poor performance at baseline needs to be considered when interpreting the results. Accordingly, participants without fatigue had significantly higher chances of being alive and having muscle strength above gender-specific median at first (RR 1.32, 95 % CI 1.07–1.58), second (RR 1.51, 1.06–1.96) and third (RR 1.39, 1.01–1.97) measurement points. Conclusions Indoor mobility-related fatigue in advanced later life should not merely be considered as an unpleasant symptom, but rather an indicator of physical impairment, and consequently declined physiological reserve. PMID:24297217

  11. Effects of Kinesio Tape application to quadriceps muscles on isokinetic muscle strength, gait, and functional parameters in patients with stroke.

    PubMed

    Ekiz, Timur; Aslan, Meryem Doğan; Özgirgin, Neşe

    2015-01-01

    The aim of this study was to evaluate the effects of Kinesio Tape (KT) application to quadriceps muscles on isokinetic muscle strength, gait, and functional parameters in patients with stroke. Twenty-four patients were allocated into KT and control groups. All patients participated in the same conventional rehabilitation program 5 times/wk for 4 wk. In addition, KT was applied to quadriceps muscles bilaterally to the patients in the KT group. Compared with baseline, peak torque levels increased significantly in both groups (all p < 0.05). However, change levels were significantly higher in the KT group than the control group at 60 degrees/second angular velocity (AV) in extension (p = 0.04) and 60 and 180 degrees/second AV in flexion (both p = 0.02) on the paretic side. Moreover, the change levels were more prominent in the KT group at 60 and 180 degrees/second AV in extension (p = 0.03 and p = 0.04, respectively) on the nonparetic side. Gait, balance, mobility, and quality of life values improved significantly in both groups (all p < 0.05), yet the change levels between the groups did not reach significance (p > 0.05). KT application to quadriceps muscles in addition to conventional exercises for 4 wk is effective on isokinetic but not functional parameters. PMID:26220179

  12. Test-retest reliability of innovated strength tests for hip muscles.

    PubMed

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  13. Side-Alternating Vibration Training for Balance and Ankle Muscle Strength in Untrained Women

    PubMed Central

    Spiliopoulou, Styliani I.; Amiridis, Ioannis G.; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Context: Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. Objective: To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. Intervention(s): The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91–16.3g). The control group did not participate in any form of exercise over the 9-week period. Main Outcome Measure(s): We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. Results: After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater

  14. The relationship between femoral cartilage thickness and muscle strength in knee osteoarthritis.

    PubMed

    Tuna, Serpil; Balcı, Nilüfer; Özçakar, Levent

    2016-08-01

    To explore whether femoral cartilage thickness is related (and changes) with muscle strength in subjects with knee osteoarthritis (OA). Forty patients (27 F, 13 M) with knee OA-who were under quadriceps muscle strengthening program-were enrolled in the study. Isokinetic/isometric knee muscle strength measurements (at 30-60° angles and 60-180° velocity) were performed at baseline, end of the muscle strengthening program, and third month control visit using a biodex dynamometer. Femoral cartilage thicknesses (at medial/lateral condyle and intercondylar area) were measured using ultrasonography. Seventy-nine knees of 40 patients (27 F, 13 M) aged 52.03 ± 11.72 years (range, 26-71) were analyzed. Mean VAS scores on the first and third months were significantly lower than the initial values (p < 0.001, p = 0.049). Isometric peak torque and total work values at 180 °/s were significantly higher than the baseline measurements at first and third month controls (all p < 0.05). Cartilage thicknesses (at three sites) were significantly higher than the baseline measurements (all p < 0.05) on the third month but not on the first month (all p > 0.05). Femoral cartilage thicknesses were positively correlated with isometric strength values at baseline and third month. We propose that femoral cartilage thicknesses increase on the third month of strengthening therapy. Since this late-phase thickening parallels the earlier increase in muscle strength (starting, on the first month), we speculate that regeneration rather than edema might be the primary underlying cause. PMID:27091650

  15. Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women.

    PubMed

    Levinger, Itamar; Scott, David; Nicholson, Geoffrey C; Stuart, Amanda L; Duque, Gustavo; McCorquodale, Thomas; Herrmann, Markus; Ebeling, Peter R; Sanders, Kerrie M

    2014-07-01

    We investigated the association between undercarboxylated osteocalcin (ucOC) and lower-limb muscle strength in women over the age of 70years. The study also aims to confirm the association between bone turnover markers and heel ultrasound measures. A post-hoc analysis using data collected as part of a randomized placebo-controlled trial of vitamin D supplementation. An immunoassay was used to quantify total OC (tOC), with hydroxyapatite pre-treatment for ucOC. We determined associations of absolute and relative (ucOC/tOC; ucOC%) measures of ucOC with lower-limb muscle strength, heel ultrasound measures of speed of sound (SOS) and broadband ultrasound attenuation (BUA), bone turnover markers (BTMs; P1NP and CTx) and the acute phase protein alpha-1-antichymotrypsin (α-ACT). ucOC%, but not absolute ucOC concentration, was positively associated with hip flexor, hip abductor and quadriceps muscle strength (all p<0.05). ucOC% was negatively associated with α-ACT (β-coefficient=-0.24, p=0.02). tOC was positively associated with both P1NP and CTx (p<0.001). For each per unit increase in tOC (μg/L) there was a corresponding lower BUA, SOS and SI (β-coefficient = -0.28; -0.23 and -0.23, respectively; all p<0.04). In conclusion, ucOC% is positively associated with muscle strength and negatively associated with α-ACT. These data support a role for ucOC in musculoskeletal interactions in humans. Whilst tOC is associated with bone health, ucOC% and ucOC may also be linked to falls and fracture risk by influencing muscle function. PMID:24662619

  16. Exercise effect on strength and range of motion of hand intrinsic muscles and joints.

    PubMed

    Less, M; Krewer, S E; Eickelberg, W W

    1977-08-01

    The intrinsic muscles of the hand are largely neglected in training, mainly because certain biomechanical principles must be applied in order for these muscles to be involved in hand exercises. Following these principles, a system of stretching and isometric exercises was developed. Twelve men exercised for four weeks, three times daily. Significant improvement in seven out of the 12 strength measurements was noted. Exercise seemed to affect just the metacarpophalangeal joints range of motion, while distal and proximal interphalangeal joints remained largely unaffected. PMID:880015

  17. Characteristics of Body Composition and Muscle Strength of North Korean Refugees during South Korean Stay

    PubMed Central

    Cho, Sun Wook; Koh, Eun Sil; Kim, Si Eun; Kim, Seok Joong

    2015-01-01

    Background The aim of this study was to investigate the changes of body composition and muscle strength of North Korean refugees (NKRs) according to their duration of stay in South Korea. Methods NKRs who volunteered and were living in South Korea, aged 20 to 75 years were recruited. Body compositions were analyzed by bioelectrical impedance analysis. Muscle strength was measured with the hand grip test. Demographic and migration information was obtained with a questionnaire. Results A total of 158 volunteers were recruited at a mean age of 48.3±11.4 years. The mean time from when they escaped from North Korea and arrived in South Korea was 5.8±4.3 years. Height, weight, and body surface area were significantly smaller in all NKRs compared to South Korean controls, except for women aged over 50 years. In females of younger ages (<50 years), NKRs with more than a 4-year stay in South Korea had a higher weight and fat mass than that of those who had a shorter stay (less than 4 years) in South Korea. All NKRs had a weaker grip strength than that of the age-matched controls from South Korea. Conclusion The NKRs showed relatively smaller physiques and weaker muscle strength than that of the South Korean controls. In younger female NKRs, shorter South Korean stay group showed small body weight and fat mass than that of longer South Korean stay group. Specific health support programs might be needed. PMID:26485471

  18. Muscle Strength, Physical Activity, and Functional Limitations in Older Adults with Central Obesity

    PubMed Central

    Germain, Cassandra M.; Batsis, John A.; Vasquez, Elizabeth; McQuoid, Douglas R.

    2016-01-01

    Background. Obesity and muscle weakness are independently associated with increased risk of physical and functional impairment in older adults. It is unknown whether physical activity (PA) and muscle strength combined provide added protection against functional impairment. This study examines the association between muscle strength, PA, and functional outcomes in older adults with central obesity. Methods. Prevalence and odds of physical (PL), ADL, and IADL limitation were calculated for 6,388 community dwelling adults aged ≥ 60 with central obesity. Individuals were stratified by sex-specific hand grip tertiles and PA. Logistic models were adjusted for age, education, comorbidities, and body-mass index and weighted. Results. Overall prevalence of PL and ADL and IADL limitations were progressively lower by grip category. Within grip categories, prevalence was lower for individuals who were active than those who were inactive. Adjusted models showed significantly lower odds of PL OR 0.42 [0.31, 0.56]; ADL OR 0.60 [0.43, 0.84], and IADL OR 0.46 [0.35, 0.61] for those in the highest grip strength category as compared to those in the lowest grip category. Conclusion. Improving grip strength in obese elders who are not able to engage in traditional exercise is important for reducing odds of physical and functional impairment. PMID:27034833

  19. Effects of Vibration Training and Detraining on Balance and Muscle Strength in Older Adults

    PubMed Central

    Marín, Pedro J.; Martín-López, Aurora; Vicente-Campos, Davinia; Angulo-Carrere, MT; García-Pastor, Teresa; Garatachea, Nuria; Chicharro, José L.

    2011-01-01

    The purpose of this study was to analyze the effects of 2 days/week versus 4 days/week of Whole Body Vibration (WBV) during eight weeks of WBV training on health-related quality of life (SF-36), balance and lower body strength, as well as short-term detraining (3 weeks) on balance and lower body strength among older adults. Thirty-four older adults were randomly assigned to a control group (Control; n = 11) or to one of the vibration training groups: WBV 2 days/week (WBV_2d; n = 11) or WBV 4 days/week (WBV_4d; n = 12). The WBV groups exercised for 8 weeks, following 3 weeks of detraining. Lower body strength increased significantly (p < 0.05) for both groups, WBV_2d and WBV_4d, after 8-week training. A significant reduction in strength was observed following 3 weeks of detraining only in WBV_2d group (p < 0.05). All variables of the SF-36 and the balance test did not change after intervention in any group. 2 days/week and 4 days/week of WBV during 8 weeks showed the same improvements on muscle strength. 3 weeks of detraining did not reverse the gains in strength made during 32 sessions of WBV. Key points 2 days and 4 days per week of WBV training during 8 weeks showed the same improvements on muscle strength. 3 weeks of detraining did not reverse the gains in strength made during 32 sessions of WBV exercise. 3 weeks of detraining did reverse the gains in strength made during 16 sessions of WBV exercise. PMID:24150633

  20. Influence of recreational activity and muscle strength on ulnar bending stiffness in men

    NASA Technical Reports Server (NTRS)

    Myburgh, K. H.; Charette, S.; Zhou, L.; Steele, C. R.; Arnaud, S.; Marcus, R.

    1993-01-01

    Bone bending stiffness (modulus of elasticity [E] x moment of inertia [I]), a measure of bone strength, is related to its mineral content (BMC) and geometry and may be influenced by exercise. We evaluated the relationship of habitual recreational exercise and muscle strength to ulnar EI, width, and BMC in 51 healthy men, 28-61 yr of age. BMC and width were measured by single photon absorptiometry and EI by mechanical resistance tissue analysis. Maximum biceps strength was determined dynamically (1-RM) and grip strength isometrically. Subjects were classified as sedentary (S) (N = 13), moderately (M) (N = 18), or highly active (H) (N = 20) and exercised 0.2 +/- 0.2; 2.2 +/- 1.3; and 6.8 +/- 2.3 h.wk-1 (P < 0.001). H had greater biceps (P < 0.0005) and grip strength (P < 0.05), ulnar BMC (P < 0.05), and ulnar EI (P = 0.01) than M or S, who were similar. Amount of activity correlated with grip and biceps strength (r = 0.47 and 0.49; P < 0.001), but not with bone measurements, whereas muscle strength correlated with both EI and BMC (r = 0.40-0.52, P < 0.005). EI also correlated significantly with both BMC and ulnar width (P < 0.0001). Ulnar width and biceps strength were the only independent predictors of EI (r2 = 0.67, P < 0.0001). We conclude that levels of physical activity sufficient to increase arm strength influence ulnar bending stiffness.

  1. Angiotensin-Converting Enzyme Genotype Affects Skeletal Muscle Strength In Elite Athletes

    PubMed Central

    Costa, Aldo Matos; Silva, António José; Garrido, Nuno; Louro, Hugo; Marinho, Daniel Almeida; Cardoso Marques, Mário; Breitenfeld, Luiza

    2009-01-01

    Previous studies have associated angiotensin-converting enzyme (ACE) D allele with variability in the skeletal muscle baseline strength, though conclusions have been inconsistent across investigations. The purpose of this study was to examine the possible association between ACE genotype and skeletal muscle baseline strength in elite male and female athletes involved in different event expertise. A group of 58 elite athletes, designated as Olympic candidates, were studied: 35 swimmers (19 males and 16 females, 18.8 ± 3.2 years) and 23 triathletes (15 males and 8 females, 18.7 ± 3.0 years). The athletes were classified as: short (≤ 200m) and middle (400m to 1500m) distance athletes, respectively. For each subject the grip strength in both hands was measure using an adjustable mechanical hand dynamometer. The maximum height in both squat jump (SJ) and counter movement jump (CMJ) were also assessed, using a trigonometric carpet (Ergojump Digitime 1000; Digitest, Jyvaskyla, Finland). DNA extraction was obtained with Chelex 100® and genotype determination by PCR-RFLP methods. Both males and females showed significantly higher right grip strength in D allele carriers compared to II homozygote’s. We found that allelic frequency differs significantly by event distance specialization in both genders (p < 0.05). In fact, sprinter D allele carriers showed the superior scores in nearly all strength measurements (p < 0.05), in both genders. Among endurance athletes, the results also demonstrated that female D allele carriers exhibited the higher performance right grip and CMJ scores (p < 0.05). In conclusion, the ACE D allele seems associated with skeletal muscle baseline strength in elite athletes, being easily identified in females. Key points DD homozygote’s and D allele carriers from both genders shows significantly higher right grip strength. Right grip strength remains significantly higher in the D allele carrier’s female endurance group. Female’s D allele

  2. Apple Pomace Extract Improves Endurance in Exercise Performance by Increasing Strength and Weight of Skeletal Muscle.

    PubMed

    Jeong, Ji-Woong; Shim, Jae-Jung; Choi, Il-Dong; Kim, Sung-Hwan; Ra, Jehyeon; Ku, Hyung Keun; Lee, Dong Eun; Kim, Tae-Youl; Jeung, Woonhee; Lee, Jung-Hee; Lee, Ki Won; Huh, Chul-Sung; Sim, Jae-Hun; Ahn, Young-Tae

    2015-12-01

    Ursolic acid is a lipophilic pentacyclic triterpenoid found in many fruits and herbs and is used in several herbal folk medicines for diabetes. In this study, we evaluated the effects of apple pomace extract (APE; ursolic acid content, 183 mg/g) on skeletal muscle atrophy. To examine APE therapeutic potential in muscle atrophy, we investigated APE effects on the expression of biomarkers associated with muscle atrophy and hypertrophy. We found that APE inhibited atrophy, while inducing hypertrophy in C2C12 myotubes by decreasing the expression of atrophy-related genes and increasing the expression of hypertrophy-associated genes. The in vivo experiments using mice fed a diet with or without APE showed that APE intake increased skeletal muscle mass, as well as grip strength and exercise capacity. In addition, APE significantly improved endurance in the mice, as evidenced by increased exhaustive running time and muscle weight, and reduced the expression of the genes involved in the development of muscle atrophy. APE also decreased the concentration of serum lactate and lactate dehydrogenase, inorganic phosphate, and creatinine, the indicators of accumulated fatigue and exercise-induced stress. These results suggest that APE may be useful as an ergogenic functional food or dietary supplement. PMID:26331671

  3. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    PubMed Central

    Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15

  4. Quantitative muscle strength testing: a comparison of job strength requirements and actual worker strength among military technicians.

    PubMed

    Pedersen, D M; Clark, J A; Johns, R E; White, G L; Hoffman, S

    1989-01-01

    In this study the authors investigate the percentage of mismatch between job demands and worker physical capacity in Utah National Guard mechanics. This population had demonstrated a higher incidence of low back trouble than other job descriptions reviewed. The authors utilized onsite still and videotape photography and a computerized biomechanical strength prediction model to assess loads on the lumbosacral spine due to various job tasks. Job demands were then compared to the actual physical capacity of the individual workers based on static strength testing in job-related positions. A load cell on the testing apparatus entered the force generated into a computer which averaged the force of the last three seconds of a five-second lift. It was determined that as much as a 38% mismatch existed within this population for some job tasks which these workers were exposed to. Suggestions for preventing job-related low back cumulative trauma disorders are presented, including: engineering redesign, worker selection programs, work hardening, and others. PMID:2522169

  5. Multimedia-Based Therapy Model for Non-Pharmacological Stroke with Decrease Impaired Muscle Strength

    NASA Astrophysics Data System (ADS)

    Hajar Puji Sejati, Rr; Muhimmah, Izzati; Mahtarami, Affan

    2016-01-01

    Stroke patients who experience a decrease in muscle strength need to do exercises so that they can increase their muscle strength. In order to enable the patient does exercise independently the multimedia-based stroke therapy model is needed. These exercises can be done independently, with supervision of the family member at home. So, we develop prototype of the multimedia-based therapy for the family member so that they can assist patients performing exercises without attending therapy session in hospital. This model was built according to the advices from physiotherapist and a medical rehabilitation doctor. This model has been evaluated through focused group discussion by physiotherapists. And they gave positive responses to this proposed model.

  6. Behavioural changes and muscle strength in Rattus norvegicus experimentally infected with Toxocara cati and T. canis.

    PubMed

    Santos, S V; Moura, J V L; Lescano, S A Z; Castro, J M; Ribeiro, M C S A; Chieffi, P P

    2015-07-01

    Toxocara canis and Toxocara cati are nematode parasites in dogs and cats, respectively, transmitted by ingestion of embryonated eggs, transmammary and transplacental (T. canis) routes and paratenic host predation. Many parasites use mechanisms that change the behaviour of their hosts to ensure continued transmission. Several researchers have demonstrated behavioural changes in mouse models as paratenic hosts for T. canis. However, there have been no studies on behavioural changes in laboratory rats (Rattus norvegicus) experimentally infected with T. cati. This study investigated behavioural changes and muscle strength in male and female rats experimentally infected with T. cati or T. canis in acute and chronic phases of infection. Regardless of sex, rats infected with T. cati showed a greater decrease in muscle strength 42 days post infection compared to rats infected with T. canis. However, behavioural changes were only observed in female rats infected with T. canis. PMID:24725503

  7. Improved Knee Extensor Strength with Resistance Training Associates with Muscle Specific miRNAs in Older Adults

    PubMed Central

    Zhang, Tan; Birbrair, Alexander; Wang, Zhong-Min; Messi, María L.; Marsh, Anthony P.; Leng, Iris; Nicklas, Barbara J.; Delbono, Osvaldo

    2015-01-01

    Regular exercise, particularly resistance training (RT), is the only therapy known to consistently improve muscle strength and quality (force per unit of mass) in older persons, but there is considerable variability in responsiveness to training. Identifying sensitive diagnostic biomarkers of responsiveness to RT may inform the design of a more efficient exercise regimen to improve muscle strength in older adults. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. We quantified six muscle specific miRNAs (miR-1, -133a, -133b, -206, -208b and -499) in both muscle tissue and blood plasma, and their relationship with knee extensor strength in seven older (age = 70.5 ± 2.5 years) adults before and after 5 months of RT. MiRNAs differentially responded to RT; muscle miR-133b decreased, while all plasma miRNAs tended to increase. Percent changes in knee extensor strength with RT showed strong positive correlations with percent changes in muscle miR-133a, -133b, -206 and with percent changes in plasma and plasma/muscle miR-499 ratio. Baseline level of plasma or plasma/muscle miR-499 ratio further predicts muscle response to RT, while changes in muscle miR-133a, -133b, -206 may correlate with muscle TNNT1gene alternative splicing in response to RT. Our results indicate that RT alters muscle specific miRNAs in muscle and plasma, and that these changes account for some of the variation in strength responses to RT in older adults. PMID:25560803

  8. Muscle Strength Enhancement Following Home-Based Virtual Cycling Training in Ambulatory Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Chen, Chia-Ling; Hong, Wei-Hsien; Cheng, Hsin-Yi Kathy; Liaw, Mei-Yun; Chung, Chia-Ying; Chen, Chung-Yao

    2012-01-01

    This study is the first well-designed randomized controlled trial to assess the effects of a novel home-based virtual cycling training (hVCT) program for improving muscle strength in children with spastic cerebral palsy (CP). Twenty-eight ambulatory children with spastic CP aged 6-12 years were randomly assigned to an hVCT group (n = 13) or a…

  9. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes.

    PubMed

    Paradis-Deschênes, Pénélope; Joanisse, Denis R; Billaut, François

    2016-09-01

    Muscle ischemia and reperfusion induced by ischemic preconditioning (IPC) can improve performance in various activities. However, the underlying mechanisms are still poorly understood. The purpose of this study was to examine the effects of IPC on muscle hemodynamics and oxygen (O2) uptake during repeated maximal contractions. In a cross-over, randomized, single-blind study, 10 strength-trained men performed 5 sets of 5 maximal voluntary knee extensions of the right leg on an isokinetic dynamometer, preceded by either IPC of the right lower limb (3×5-min compression/5-min reperfusion cycles at 200 mm Hg) or sham (20 mm Hg). Changes in deoxyhemoglobin, expressed as a percentage of arterial occlusion, and total hemoglobin ([THb]) concentrations of the vastus lateralis muscle were monitored continuously by near-infrared spectroscopy. Differences between IPC and sham were analyzed using Cohen's effect size (ES) ± 90% confidence limits, and magnitude-based inferences. Compared with sham, IPC likely increased muscle blood volume at rest (↑[THb], 46.5%; ES, 0.56; 90% confidence limits for ES, -0.21, 1.32). During exercise, peak force was almost certainly higher (11.8%; ES, 0.37; 0.27, 0.47), average force was very likely higher (12.6%; ES, 0.47; 0.29, 0.66), and average muscle O2 uptake was possibly increased (15.8%; ES, 0.36; -0.07, 0.79) after IPC. In the recovery periods between contractions, IPC also increased blood volume after sets 1 (23.6%; ES, 0.30; -0.05, 0.65) and 5 (25.1%; ES, 0.32; 0.09, 0.55). Three cycles of IPC immediately increased muscle perfusion and O2 uptake, conducive to higher repeated force capacity in strength-trained athletes. This maneuver therefore appears relevant to enhancing exercise training stimulus. PMID:27574913

  10. Respiratory muscle and pulmonary function in polymyositis and other proximal myopathies.

    PubMed Central

    Braun, N M; Arora, N S; Rochester, D F

    1983-01-01

    We studied 53 patients with proximal myopathy to determine at what level of muscle weakness hypercapnic respiratory failure is likely, and which tests of pulmonary function or respiratory muscle strength would best suggest this development. Respiratory muscle strength was determined from maximal static efforts and in half the patients, both inspiratory and expiratory muscle strengths were less than 50% of normal. In the 37 patients without lung disease respiratory muscle weakness was accompanied by significant decreases in vital capacity, total lung capacity, and maximum voluntary ventilation; by significant increases in residual volume and arterial carbon dioxide tension (PaCO2); and greater likelihood of dependence on ventilators, atelectasis, and pneumonia. Hypercapnia was particularly likely when respiratory muscle strength was less than 30% of normal in uncomplicated myopathy, and when vital capacity was less than 55% of the predicted value in any patient. PMID:6412385

  11. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations

    PubMed Central

    Hida, Azumi; Hasegawa, Yuko; Mekata, Yuko; Usuda, Mika; Masuda, Yasunobu; Kawano, Hitoshi; Kawano, Yukari

    2012-01-01

    The aim of this study was to evaluate the effects of egg white protein compared to carbohydrate intake prior to exercise on fat free mass (FFM), one repetition maximum (1RM) muscle strength and blood biochemistry in female athletes. Thirty healthy female collegiate athletes were recruited for this study and matched by sport type, body fat percentage and 1RM leg curl muscle strength. Participants were randomly divided into two groups: protein group (15.0 g egg white protein; 75 kcal) and carbohydrate group (17.5 g maltodextrin, 78 kcal). Supplements were administered daily at the same time in a double-blind manner prior to training during an 8-week period. Measurements were performed before and after the 8-week regimen. The mean dietary energy intake did not change throughout the study period. FFM and 1RM assessments (i.e., leg curl, leg extension, squat, and bench press) increased in both groups. Furthermore, serum urea and serum citrulline levels after the 8-week regimen increased significantly only in the protein group. Our findings indicated that compared to the carbohydrate supplement, the protein supplement was associated with some changes in protein metabolites but not with changes in body composition or muscle strength. PMID:23201768

  12. The power of the mind: the cortex as a critical determinant of muscle strength/weakness.

    PubMed

    Clark, Brian C; Mahato, Niladri K; Nakazawa, Masato; Law, Timothy D; Thomas, James S

    2014-12-15

    We tested the hypothesis that the nervous system, and the cortex in particular, is a critical determinant of muscle strength/weakness and that a high level of corticospinal inhibition is an important neurophysiological factor regulating force generation. A group of healthy individuals underwent 4 wk of wrist-hand immobilization to induce weakness. Another group also underwent 4 wk of immobilization, but they also performed mental imagery of strong muscle contractions 5 days/wk. Mental imagery has been shown to activate several cortical areas that are involved with actual motor behaviors, including premotor and M1 regions. A control group, who underwent no interventions, also participated in this study. Before, immediately after, and 1 wk following immobilization, we measured wrist flexor strength, voluntary activation (VA), and the cortical silent period (SP; a measure that reflect corticospinal inhibition quantified via transcranial magnetic stimulation). Immobilization decreased strength 45.1 ± 5.0%, impaired VA 23.2 ± 5.8%, and prolonged the SP 13.5 ± 2.6%. Mental imagery training, however, attenuated the loss of strength and VA by ∼50% (23.8 ± 5.6% and 12.9 ± 3.2% reductions, respectively) and eliminated prolongation of the SP (4.8 ± 2.8% reduction). Significant associations were observed between the changes in muscle strength and VA (r = 0.56) and SP (r = -0.39). These findings suggest neurological mechanisms, most likely at the cortical level, contribute significantly to disuse-induced weakness, and that regular activation of the cortical regions via imagery attenuates weakness and VA by maintaining normal levels of inhibition. PMID:25274345

  13. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis

    PubMed Central

    2013-01-01

    Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy involves consuming protein in and around a training session in an effort to facilitate muscular repair and remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the apparent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has been decidedly mixed. The purpose of this paper therefore was to conduct a multi-level meta-regression of randomized controlled trials to determine whether protein timing is a viable strategy for enhancing post-exercise muscular adaptations. The strength analysis comprised 478 subjects and 96 ESs, nested within 41 treatment or control groups and 20 studies. The hypertrophy analysis comprised 525 subjects and 132 ESs, nested with 47 treatment or control groups and 23 studies. A simple pooled analysis of protein timing without controlling for covariates showed a small to moderate effect on muscle hypertrophy with no significant effect found on muscle strength. In the full meta-regression model controlling for all covariates, however, no significant differences were found between treatment and control for strength or hypertrophy. The reduced model was not significantly different from the full model for either strength or hypertrophy. With respect to hypertrophy, total protein intake was the strongest predictor of ES magnitude. These results refute the commonly held belief that the timing of protein intake in and around a training session is critical to muscular adaptations and indicate that consuming adequate protein in combination with resistance exercise is the key factor for maximizing muscle protein accretion. PMID:24299050

  14. Vitamin D: A Review on Its Effects on Muscle Strength, the Risk of Fall, and Frailty

    PubMed Central

    Halfon, Matthieu; Phan, Olivier; Teta, Daniel

    2015-01-01

    Vitamin D is the main hormone of bone metabolism. However, the ubiquitary nature of vitamin D receptor (VDR) suggests potential for widespread effects, which has led to new research exploring the effects of vitamin D on a variety of tissues, especially in the skeletal muscle. In vitro studies have shown that the active form of vitamin D, calcitriol, acts in myocytes through genomic effects involving VDR activation in the cell nucleus to drive cellular differentiation and proliferation. A putative transmembrane receptor may be responsible for nongenomic effects leading to rapid influx of calcium within muscle cells. Hypovitaminosis D is consistently associated with decrease in muscle function and performance and increase in disability. On the contrary, vitamin D supplementation has been shown to improve muscle strength and gait in different settings, especially in elderly patients. Despite some controversies in the interpretation of meta-analysis, a reduced risk of falls has been attributed to vitamin D supplementation due to direct effects on muscle cells. Finally, a low vitamin D status is consistently associated with the frail phenotype. This is why many authorities recommend vitamin D supplementation in the frail patient. PMID:26000306

  15. Live strong and prosper: the importance of skeletal muscle strength for healthy ageing.

    PubMed

    McLeod, Michael; Breen, Leigh; Hamilton, D Lee; Philp, Andrew

    2016-06-01

    Due to improved health care, diet and infrastructure in developed countries, since 1840 life expectancy has increased by approximately 2 years per decade. Accordingly, by 2050, a quarter of Europe's population will be over 65 years, representing a 10 % rise in half a century. With this rapid rise comes an increased prevalence of diseases of ageing and associated healthcare expenditure. To address the health consequences of global ageing, research in model systems (worms, flies and mice) has indicated that reducing the rate of organ growth, via reductions in protein synthetic rates, has multi-organ health benefits that collectively lead to improvements in lifespan. In contrast, human pre-clinical, clinical and large cohort prospective studies demonstrate that ageing leads to anabolic (i.e. growth) impairments in skeletal muscle, which in turn leads to reductions in muscle mass and strength, factors directly associated with mortality rates in the elderly. As such, increasing muscle protein synthesis via exercise or protein-based nutrition maintains a strong, healthy muscle mass, which in turn leads to improved health, independence and functionality. The aim of this review is to critique current literature relating to the maintenance of muscle mass across lifespan and discuss whether maintaining or reducing protein synthesis is the most logical approach to support musculoskeletal function and by extension healthy human ageing. PMID:26791164

  16. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  17. Lower extremity muscle function after strength or power training in older adults.

    PubMed

    Marsh, Anthony P; Miller, Michael E; Rejeski, W Jack; Hutton, Stacy L; Kritchevsky, Stephen B

    2009-10-01

    It is unclear whether strength training (ST) or power training (PT) is the more effective intervention at improving muscle strength and power and physical function in older adults. The authors compared the effects of lower extremity PT with those of ST on muscle strength and power in 45 older adults (74.8 +/- 5.7 yr) with self-reported difficulty in common daily activities. Participants were randomized to 1 of 3 treatment groups: PT, ST, or wait-list control. PT and ST trained 3 times/wk for 12 wk using knee-extension (KE) and leg-press (LP) machines at approximately 70% of 1-repetition maximum (1RM). For PT, the concentric phase of the KE and LP was completed "as fast as possible," whereas for ST the concentric phase was 2-3 s. Both PT and ST paused briefly at the midpoint of the movement and completed the eccentric phase of the movement in 2-3 s. PT and ST groups showed significant improvements in KE and LP 1RM compared with the control group. Maximum KE and LP power increased approximately twofold in PT compared with ST. At 12 wk, compared with control, maximum KE and LP power were significantly increased for the PT group but not for the ST group. In older adults with compromised function, PT leads to similar increases in strength and larger increases in power than ST. PMID:19940322

  18. Muscle Activation and Performance During Trunk Strength Testing in High-Level Female and Male Football Players.

    PubMed

    Roth, Ralf; Donath, Lars; Zahner, Lukas; Faude, Oliver

    2016-06-01

    For performance and injury prevention in sport, core strength and endurance are focused prerequisites. Therefore we evaluated characteristics of trunk muscle activation and performance during strength-endurance related trunk field tests. Strength-endurance ability, as total time to failure, and activation of trunk muscles was measured in 39 football players of the highest German female football league (Bundesliga) (N = 18, age: 20.7 y [SD 4.4]) and the highest national male under-19 league (N = 21, age: 17.9 y [0.7]) in prone plank, side plank, and dorsal position. Maximal isometric force was assessed during trunk extension and flexion, rotation, and lateral flexion to normalize EMG and to compare with the results of strength-endurance tests. For all positions of endurance strength tests, a continuous increase in normalized EMG activation was observed (P < .001). Muscle activation of the rectus abdominis and external oblique in prone plank position exceeded the maximal voluntary isometric contraction activation, with a significantly higher activation in females (P = .02). We conclude, that in the applied strength-endurance testing, the activation of trunk muscles was high, especially in females. As high trunk muscle activation can infer fatigue, limb strength can limit performance in prone and side plank position, particularly during high trunk muscle activation. PMID:26671894

  19. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health

    PubMed Central

    Park, Song-Young; Son, Won-Mok; Kwon, Oh-Sung

    2015-01-01

    Whole body vibration training (WBVT) has been used as a supplement to conventional exercise training such as resistance exercise training to improve skeletal muscle strength, specifically, in rehabilitation field. Recently, this exercise modality has been utilized by cardiovascular studies to examine whether WBVT can be a useful exercise modality to improve cardiovascular health. These studies reported that WBVT has not only beneficial effects on muscular strength but also cardiovascular health in elderly and disease population. However, its mechanism underlying the beneficial effects of WBVT in cardiovascular health has not been well documented. Therefore, this review highlighted the impacts of WBVT on cardiovascular health, and its mechanisms in conjunction with the improved muscular strength and body composition in various populations. PMID:26730378

  20. p75NTR-mediated signaling promotes the survival of myoblasts and influences muscle strength.

    PubMed

    Reddypalli, Shailaja; Roll, Kristin; Lee, Hyung-Kook; Lundell, Martha; Barea-Rodriguez, Edwin; Wheeler, Esther F

    2005-09-01

    During muscle development, the p75(NTR) is expressed transiently on myoblasts. The temporal expression pattern of the receptor raises the possibility that the receptor is influencing muscle development. To test this hypothesis, p75(NTR)-deficient mutant mice were tested for muscle strength by using a standard wire gripe strength test and were found to have significantly decreased strength relative to that of normal mice. When normal mybolasts were examined in vivo for expression of NGF receptors, p75(NTR) was detected on myoblasts but the high affinity NGF receptor, trk A, was not co-expressed with p75(NTR). In vitro, proliferating C2C12 and primary myoblasts co-expressed the p75(NTR) and MyoD, but immunofluorescent analysis of primary myoblasts and RT-PCR analysis of C2C12 mRNA revealed that myoblasts were devoid of trk A. In contrast to the cell death functions that characterize the p75(NTR) in neurons, p75(NTR)-positive primary and C2C12 myoblasts did not differentiate or undergo apoptosis in response to neurotrophins. Rather, myoblasts survived and even proliferated when grown at subconfluent densities in the presence of the neurotrophins. Furthermore, when myoblasts treated with NGF were lysed and immunoprecipitated with antibodies against phosphorylated I-kappaB and AKT, the cells contained increased levels of both phospho-proteins, both of which promote cell survival. By contrast, neurotrophin-treated myoblasts did not induce phosphorylation of Map Kinase p42/44 or p38, indicating the survival was not mediated by the trk A receptor. Taken together, the data indicate that the p75(NTR) mediates survival of myoblasts prior to differentiation and that the activity of this receptor during myogenesis is important for developing muscle. PMID:15754321

  1. CNTF 1357 G → A polymorphism and the muscle strength response to resistance training

    PubMed Central

    Walsh, Sean; Kelsey, Bethany K.; Angelopoulos, Theodore J.; Clarkson, Priscilla M.; Gordon, Paul M.; Moyna, Niall M.; Visich, Paul S.; Zoeller, Robert F.; Seip, Richard L.; Bilbie, Steve; Thompson, Paul D.; Hoffman, Eric P.; Price, Thomas B.; Devaney, Joseph M.

    2009-01-01

    The present study examined associations between the ciliary neurotrophic factor (CNTF) 1357 G → A polymorphism and the muscle strength response to a unilateral, upper arm resistance-training (RT) program among healthy, young adults. Subjects were 754 Caucasian men (40%) and women (60%) who were genotyped and performed a training program of the nondominant (trained) arm with the dominant (untrained) arm as a comparison. Peak elbow flexor strength was measured with one repetition maximum, isometric strength with maximum voluntary contraction, and bicep cross-sectional area with MRI in the trained and untrained arms before and after training. Women with the CNTF GG genotype gained more absolute isometric strength, as measured by MVC (6.5 ± 0.3 vs. 5.2 ± 0.5 kg), than carriers of the CNTF A1357 allele in the trained arm pre- to posttraining (P < 0.05). No significant associations were seen in men. Women with the CNTF GG genotype gained more absolute dynamic (1.0 ± 0.1 vs. 0.6 ± 0.1 kg) and allometric (0.022 ± 0.0 vs. 0.015 ± 0.0 kg/kg−0.67) strength, as measured by 1 RM, than carriers of the CNTF A1357 allele in the untrained arm pre- to posttraining (P < 0.05). No significant associations were seen in men. No significant associations, as measured by cross-sectional area, were seen in men or women. The CNTF 1357 G → A polymorphism explains only a small portion of the variability in the muscle strength response to training in women. PMID:19628720

  2. The effects of gluteus muscle strengthening exercise and lumbar stabilization exercise on lumbar muscle strength and balance in chronic low back pain patients

    PubMed Central

    Jeong, Ui-Cheol; Sim, Jae-Heon; Kim, Cheol-Yong; Hwang-Bo, Gak; Nam, Chan-Woo

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of exercise to strengthen the muscles of the hip together with lumbar segmental stabilization exercise on the lumbar disability index, lumbar muscle strength, and balance. [Subjects and Methods] This study randomly and equally assigned 40 participants who provided written consent to participate in this study to a lumbar segmental stabilization exercise plus exercise to strengthen the muscles of the gluteus group (SMG + LES group) and a lumbar segmental stabilization exercise group. [Results] Each evaluation item showed a statistically significant effect. [Conclusion] Clinical application of exercise in this study showed that lumbar segmental stabilization exercise plus exercise to strengthen the muscles of the gluteus resulted in a greater decrease in low back pain disability index and increase in lumbar muscle strength and balance ability than lumbar segmental stabilization exercise in chronic low back pain patients receiving the exercise treatments during the same period. PMID:26834359

  3. Discharge properties and recruitment of human diaphragmatic motor units during voluntary inspiratory tasks

    PubMed Central

    Butler, J E; McKenzie, D K; Gandevia, S C

    1999-01-01

    The behaviour of inspiratory motoneurones is poorly understood in humans and even for limb muscles there are few studies of motoneurone behaviour under concentric conditions. The current study assessed the discharge properties of the human phrenic motoneurones during a range of non-isometric voluntary contractions. We recorded activity from 60 motor units in the costal diaphragm of four subjects using an intramuscular electrode while subjects performed a set of voluntary inspiratory contractions. These included a range of inspiratory efforts above and below the usual tidal range: breaths of different sizes (5-40% vital capacity, VC) at a constant inspiratory flow (5% VC s−1) and breaths of a constant size (20% VC) at different inspiratory flows (2.5-20% VC s−1). For all the voluntary tasks, motor units were recruited throughout inspiration. For the various tasks, half-way through inspiration, 61-87% of the sampled motor units had been recruited. When the inspiratory task was deliberately altered, most single motor units began their discharge at a particular volume even when the rate of contraction had altered. The initial firing frequency (median, 6.5 Hz) was consistent for tasks with a constant flow regardless of the size of the breath. However, for breaths of a constant size the initial firing frequencies increased as the inspiratory flow increased (range across tasks, 4.8-9.3 Hz). The ‘final’ firing frequency at the end of inspiration increased significantly above the initial frequency for each task (by 0.8-5.2 Hz) and was higher for those tasks with higher final lung volumes and higher inspiratory flows (range across tasks, 7.8-11.0 Hz). There was no correlation within a task between the time of recruitment and the initial or final firing frequency for each motor unit. However, for each inspiratory task, initial and final firing frequencies were positively correlated. Because the discharge of three to four units could be recorded simultaneously in a

  4. Resistance training and timed amino acid supplementation protects against the loss of muscle mass and strength with disuse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Space flight and ground-based models of weightlessness result in loss of muscle mass and strength. Amino acid supplementation and resistance training reverse these losses but their optimal combination is not known. We examined the effect of an amino acid supplement and resistance training on muscl...

  5. Age associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SUMMARY: This 3 year longitudinal study among older adults showed that declining muscle mass, strength, power, and physical performance are independent contributing factors to increased fear of falling, while declines of muscle mass and physical performance contribute to deterioration of quality of ...

  6. How Effective Is Sun Salutation in Improving Muscle Strength, General Body Endurance and Body Composition?

    PubMed Central

    Bhutkar, Milind V.; Bhutkar, Pratima M.; Taware, Govind B.; Surdi, Anil D.

    2011-01-01

    Purpose The purpose of the present study was to evaluate effects of regular practice of sun salutation on muscle strength, general body endurance and body composition. Methods Subjects (49 male and 30 female) performed 24 cycles of sun salutation, 6 days a week for 24 weeks. Upper body muscle strength was determined by 1 repetition maximum (1RM) for bench press and shoulder press technique. Back and leg dynamometry was used to assess strength of back and leg muscles. General body endurance was evaluated by push-up and sit-up tests. Body composition was assessed by noting% body fat by using bioelectric impedance analysis. Perceived intensity of exercise by subjects was noted by Borg scale. Results Muscle strength by bench press showed significant increase in male (29.49±9.70 to 36.12±9.09 Kg, P<0.001) and female (10.5±4.42 to 13.16±4.44 Kg, P<0.001) subjects. Strength by shoulder press also increased (males; 22.96±9.57 Kg to 26.53±11.05 Kg, P<0.001, females; 6.83±2.78 to 8.83±3.87, P<0.001). Endurance by push-ups & sit-ups showed similar findings in male (19.0±9.58 to 21.98±8.98, P<0.001 and 24.92±10.41 to 29.84±12.64, P<0.001 respectively) and female (14.66±6.80 to 18.56±6.97 and 13.16±7.75 to 19.23±8.25, P<0.001 respectively) subjects. A significant decrease in body fat percent was observed only in female (27.68±5.46 to 25.76±4.72, P<0.001) but not in male subjects. BMI significantly decreased in both the groups (z=4.37, P<001 and t=5.41, P<0.001 respectively). Conclusion From our observations we conclude that sun salutation can be an ideal exercise to keep oneself in optimum level of fitness. PMID:22375247

  7. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes.

    PubMed

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-10-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy. PMID:26644679

  8. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes

    PubMed Central

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy. PMID:26644679

  9. Growth of specific muscle strength between 6 and 18 years in contrasting socioeconomic conditions.

    PubMed

    Henneberg, M; Brush, G; Harrison, G A

    2001-05-01

    The influence of sex, age, and socioeconomic conditions on specific grip strength of 6-18-year-old individuals was studied among 1,704 males and 1,956 females belonging to the so-called "Cape Coloured" community in the western part of South Africa. Half of the participants of both sexes came from communities in the Greater Cape Town area where living conditions are comparable to those of middle-class First World communities (high SES). The other half came from the poorest rural communities of Klein Karoo (low SES). Arm circumferences, triceps skinfold thickness, and grip strength of the right and of the left hand were greater in individuals from high SES at all ages. Females within each SES group had skinfolds thicker than males, especially at older ages, and were weaker. Specific grip strength (SS), estimated as grip strength per unit area of cross section of the fat-free arm, increased with age in each group, was greater in males, and was significantly lower in low SES groups, than in the high SES ones, especially during and after puberty. It seems that SES difference in SS will persist into adulthood. Sexual differences in SS can be attributed to hormonal differences; while the SS increase with age and the difference between SES groups find no clear explanation in current theories of muscle growth and development. Since the speed of neuromuscular reaction observed in our participants is slower among low SES individuals, it seems that the difference in neuromuscular control of strength may be responsible for our findings. Differences in muscle metabolism and hormonal regulation must also be considered. PMID:11309751

  10. Unidirectional Expiratory Valve Method to Assess Maximal Inspiratory Pressure in Individuals without Artificial Airway

    PubMed Central

    Grams, Samantha Torres; Kimoto, Karen Yumi Mota; Azevedo, Elen Moda de Oliveira; Lança, Marina; de Albuquerque, André Luis Pereira; de Brito, Christina May Moran; Yamaguti, Wellington Pereira

    2015-01-01

    Introduction Maximal Inspiratory Pressure (MIP) is considered an effective method to estimate strength of inspiratory muscles, but still leads to false positive diagnosis. Although MIP assessment with unidirectional expiratory valve method has been used in patients undergoing mechanical ventilation, no previous studies investigated the application of this method in subjects without artificial airway. Objectives This study aimed to compare the MIP values assessed by standard method (MIPsta) and by unidirectional expiratory valve method (MIPuni) in subjects with spontaneous breathing without artificial airway. MIPuni reproducibility was also evaluated. Methods This was a crossover design study, and 31 subjects performed MIPsta and MIPuni in a random order. MIPsta measured MIP maintaining negative pressure for at least one second after forceful expiration. MIPuni evaluated MIP using a unidirectional expiratory valve attached to a face mask and was conducted by two evaluators (A and B) at two moments (Tests 1 and 2) to determine interobserver and intraobserver reproducibility of MIP values. Intraclass correlation coefficient (ICC[2,1]) was used to determine intraobserver and interobserver reproducibility. Results The mean values for MIPuni were 14.3% higher (-117.3 ± 24.8 cmH2O) than the mean values for MIPsta (-102.5 ± 23.9 cmH2O) (p<0.001). Interobserver reproducibility assessment showed very high correlation for Test 1 (ICC[2,1] = 0.91), and high correlation for Test 2 (ICC[2,1] = 0.88). The assessment of the intraobserver reproducibility showed high correlation for evaluator A (ICC[2,1] = 0.86) and evaluator B (ICC[2,1] = 0.77). Conclusions MIPuni presented higher values when compared with MIPsta and proved to be reproducible in subjects with spontaneous breathing without artificial airway. PMID:26360255