Sample records for instrument suite onboard

  1. An innovative on-board processor for lightsats

    NASA Technical Reports Server (NTRS)

    Henshaw, R. M.; Ballard, B. W.; Hayes, J. R.; Lohr, D. A.

    1990-01-01

    The Applied Physics Laboratory (APL) has developed a flightworthy custom microprocessor that increases capability and reduces development costs of lightsat science instruments. This device, called the FRISC (FORTH Reduced Instruction Set Computer), directly executes the high-level language called FORTH, which is ideally suited to the multitasking control and data processing environment of a spaceborne instrument processor. The FRISC will be flown as the onboard processor in the Magnetic Field Experiment on the Freja satllite. APL has achieved a significant increase in onboard processing capability with no increase in cost when compared to the magnetometer instrument on Freja's predecessor, the Viking satellite.

  2. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  3. On-board data processing for the near infrared spectrograph and photometer instrument (NISP) of the EUCLID mission

    NASA Astrophysics Data System (ADS)

    Bonoli, Carlotta; Balestra, Andrea; Bortoletto, Favio; D'Alessandro, Maurizio; Farinelli, Ruben; Medinaceli, Eduardo; Stephen, John; Borsato, Enrico; Dusini, Stefano; Laudisio, Fulvio; Sirignano, Chiara; Ventura, Sandro; Auricchio, Natalia; Corcione, Leonardo; Franceschi, Enrico; Ligori, Sebastiano; Morgante, Gianluca; Patrizii, Laura; Sirri, Gabriele; Trifoglio, Massimo; Valenziano, Luca

    2016-07-01

    The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link.

  4. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  5. Outcrop-Scale Hyperspectral Studies of a Lacustrine-Volcanic Mars Analog: Examination with a Mars 2020-like Instrument Suite

    NASA Astrophysics Data System (ADS)

    Martin, P.; Ehlmann, B. L.; Blaney, D. L.; Bhartia, R.; Allwood, A.

    2015-12-01

    Using the recently developed Ultra Compact Imaging Spectrometer (UCIS) (0.4-2.5 μm) to generate outcrop-scale infrared images and compositional maps, a Mars-relevant field site near China Ranch in the Mojave Desert has been surveyed and sampled to analyze the synergies between instruments in the Mars 2020 rover instrument suite. The site is broadly comprised of large lacustrine gypsum beds with fine-grained gypsiferous mudstones and interbedded volcanic ashes deposited in the Pleistocene, with a carbonate unit atop the outcrop. Alteration products such as clays and iron oxides are pervasive throughout the sequence. Mineralogical mapping of the outcrop was performed using UCIS. As the 2020 rover will have an onboard multispectral camera and IR point spectrometer, Mastcam-Z and SuperCam, this process of spectral analysis leading to the selection of sites for more detailed investigation is similar to the process by which samples will be selected for increased scrutiny during the 2020 mission. The infrared image is resampled (spatially and spectrally) to the resolutions of Mastcam-Z and SuperCam to simulate data from the Mars 2020 rover. Hand samples were gathered in the field (guided by the prior infrared compositional mapping), capturing samples of spectral and mineralogical variance in the scene. After collection, a limited number of specimens were chosen for more detailed analysis. The hand samples are currently being analyzed using JPL prototypes of the Mars 2020 arm-mounted contact instruments, specifically PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman & Luminescence). The geologic story as told by the Mars 2020 instrument data will be analyzed and compared to the full suite of data collected by hyperspectral imaging and terrestrial techniques (e.g. XRD) applied to the collected hand samples. This work will shed light on the potential uses and synergies of the Mars 2020 instrument suite, especially

  6. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  7. The FIELDS Instrument Suite for Solar Probe Plus

    PubMed Central

    Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.

    2018-01-01

    NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144

  8. High-Speed On-Board Data Processing for Science Instruments

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  9. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Chris R.; Cabane, M.; Conrad, Pamela G.; Coll, Patrice; Atreya, Sushil K.; Arvey, Robert; Barciniak, Michael; Benna, Mehdi; Bleacher, L.; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm.

  10. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  11. Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku

    2018-05-01

    We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and

  12. The Sample Analysis at Mars Investigation and Instrument Suite

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  13. The instrument development status of hyper-spectral imager suite (HISUI)

    NASA Astrophysics Data System (ADS)

    Itoh, Yoshiyuki; Kawashima, Takahiro; Inada, Hitomi; Tanii, Jun; Iwasaki, Akira

    2012-11-01

    The hyper-multi spectral mission named HISUI (Hyper-spectral Imager SUIte) is the next Japanese earth observation project. This project is the follow up mission of the Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) and Advanced Land Imager (ALDS). HISUI is composed of hyperspectral radiometer with higher spectral resolution and multi-spectral radiometer with higher spatial resolution. The development of functional evaluation model was carried out to confirm the spectral and radiometric performance prior to the flight model manufacture phase. This model contains the VNIR and SWIR spectrograph, the VNIR and SWIR detector assemblies with a mechanical cooler for SWIR, signal processing circuit and on-board calibration source.

  14. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  15. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  16. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Virani, Shanil N.; Ford, Peter G.; DePasquale, Joseph M.; Plucinsky, Paul P.

    2002-12-01

    The Chandra X-ray Observatory (CXO), NASA's latest "Great Observatory", was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km × 10,000 km, and has a period of approximately 63.5 hours (≍2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of HTML and PERL scripts monitors the instrument hardware house-keeping electronics (i.e., voltages and currents) and temperatures during each contact. If a particular instrument component is performing either above or below pre- established operating parameters, a sequence of email and alert pages are spawned to the Science Operations Team of the Chandra X-ray Observatory Center so that the anomaly can be quickly investigated and corrective actions taken if necessary. We also briefly discuss the tools used to monitor the real-time science telemetry reported by the ACIS flight software. The authors acknowledge support for this research from NASA contract NAS8-39073.

  17. The Characterization of Biosignatures in Caves Using an Instrument Suite.

    PubMed

    Uckert, Kyle; Chanover, Nancy J; Getty, Stephanie; Voelz, David G; Brinckerhoff, William B; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J; Li, Xiang; McAdam, Amy; Glenar, David A; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.

  18. Performances of the Poseidon-2 altimeter instrument onboard Jason-1

    NASA Astrophysics Data System (ADS)

    Carayon, G.; Steunou, N.; Courrière, J. L.; Thibaut, P.; Zanife, O. Z.; Vincent, P.

    Since July 2003, Jason-1 is providing sea-level and sea-state altimetric data in a routine way, including near-real time and fully validated off-line geophysical products. The main mission of Jason-1 is to maintain the high accuracy altimeter service, provided by TOPEX/POSEIDON (T/P) since 1992, insuring the continuity in observing and monitoring the Ocean Dynamics (intra-seasonal to inter-annual changes, mean sea level, tides...). Successfully launched by a Boeing Delta 2 rocket from the Vandenberg site (CA, USA) on December 7, 2001, Jason-1 has been designed to follow on from T/P: its instruments and data processing systems have drawn extensively on the lessons learned from its predecessor. The Jason-1 altimetric payload is composed with four main elements: satellite tracking systems (a laser retro-reflector array, DORIS, and a Turbo-Rogue GPS receiver), a three-frequency water vapor radiometer and a dual-frequency altimeter that is named POSEIDON-2. The POSEIDON-2 altimeter inherits many characteristics from the experimental POSEIDON-1 that has been successfully operating since mid-1992 onboard T/P. This new generation altimeter radar is provided in full redundancy: It comprises high reliability components in order to achieve the 5 years expected lifetime. Ionospheric delay is removed through the introduction of an additional C-band measurement channel interleaved with Ku-band measurements. Each altimeter instrument exhibits a mass of 25 kg and a power consumption of 70 W. After summarizing the POSEIDON-2 design : technical characteristics, main operating modes, onboard algorithms, in flight performances will be presented more extensively: results from instrument internal calibrations, estimations of noise on the measured parameters. As a conclusion, more global results dealing with the calibration and validation of the Jason-1 altimetric measurements will be presented, and performance comparisons with T/P will be illustrated.

  19. Gas monitoring onboard ISS using FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  20. Onboard Image Registration from Invariant Features

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C

    2008-01-01

    This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.

  1. The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim

    2017-10-01

    Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and

  2. Design Through Integration of On-Board Calibration Device with Imaging Spectroscopy Instruments

    NASA Technical Reports Server (NTRS)

    Stange, Michael

    2012-01-01

    The main purpose of the Airborne Visible and Infrared Imaging Spectroscopy (AVIRIS) project is to "identify, measure, and monitor constituents of the Earth's surface and atmosphere based on molecular absorption and particle scattering signatures." The project designs, builds, and tests various imaging spectroscopy instruments that use On-Board Calibration devices (OBC) to check the accuracy of the data collected by the spectrometers. The imaging instrument records the spectral signatures of light collected during flight. To verify the data is correct, the OBC shines light which is collected by the imaging spectrometer and compared against previous calibration data to track spectral response changes in the instrument. The spectral data has the calibration applied to it based on the readings from the OBC data in order to ensure accuracy.

  3. Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System

    NASA Technical Reports Server (NTRS)

    Herrero, Federico; Jones, Hollis; Finne, Theodore; Nicholas, Andrew

    2012-01-01

    A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS).

  4. The Inelastic Instrument suite at the SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granroth, Garrett E; Abernathy, Douglas L; Ehlers, Georg

    2008-01-01

    Abstract The instruments in the extensive suite of spectrometers at the SNS are in various stages of installation and commissioning. The Back Scattering Spectrometer (BASIS) is installed and is in commissioning. It's near backscattering analyzer crystals provide the 3 eV resolution as expected. BASIS will enter the user program in the fall of 2007. The ARCS wide angular-range thermal to epithermal neutron spectrometer will come on line in the fall of 2007 followed shortly by the Cold Neutron Chopper Spectrometer. These two direct geometry instruments provide moderate resolution and the ability to trade resolution for flux. In addition both instrumentsmore » have detector coverage out to 140o to provide a large Q range. The SEQUOIA spectrometer, complete in 2008, is the direct geometry instrument that will provide fine resolution in the thermal to epithermal range. The Spin-Echo spectrometer, to be completed on a similar time scale, will provide the finest energy resolution worldwide. The HYSPEC spectrometer, available no later than 2011, will provide polarized capabilities and optimized flux in the thermal energy range. Finally, the Vision chemical spectrometer will use crystal analyzers to study energy transfers into the epithermal range« less

  5. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    NASA Astrophysics Data System (ADS)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  6. Instrumentation at Paranal Observatory: maintaining the instrument suite of five large telescopes and its interferometer alive

    NASA Astrophysics Data System (ADS)

    Gillet, Gordon; Alvarez, José Luis; Beltrán, Juan; Bourget, Pierre; Castillo, Roberto; Diaz, Álvaro; Haddad, Nicolás; Leiva, Alfredo; Mardones, Pedro; O'Neal, Jared; Ribes, Mauricio; Riquelme, Miguel; Robert, Pascal; Rojas, Chester; Valenzuela, Javier

    2010-07-01

    This presentation provides interesting miscellaneous information regarding the instrumentation activities at Paranal Observatory. It introduces the suite of 23 instruments and auxiliary systems that are under the responsibility of the Paranal Instrumentation group, information on the type of instruments, their usage and downtime statistics. The data is based on comprehensive data recorded in the Paranal Night Log System and the Paranal Problem Reporting System whose principles are explained as well. The work organization of the 15 team members around the high number of instruments is laid out, which includes: - Maintaining older instruments with obsolete components - Receiving new instruments and supporting their integration and commissioning - Contributing to future instruments in their developing phase. The assignments of the Instrumentation staff to the actual instruments as well as auxiliary equipment (Laser Guide Star Facility, Mask Manufacturing Unit, Cloud Observation Tool) are explained with respect to responsibility and scheduling issues. The essential activities regarding hardware & software are presented, as well as the technical and organizational developments within the group towards its present and future challenges.

  7. On-orbit stability and performance of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2014-09-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments onboard the Terra and Aqua spacecraft are part of the NASA Earth Observing System (EOS) constellation to make long-term observations of the earth. CERES measures the earth-reflected shortwave energy as well as the earth-emitted thermal energy, which are two components of the earth's radiation energy budget. These measurements are made by five instruments- Flight Models (FM) 1 and 2 onboard Terra, FMs 3 and 4 onboard Aqua and FM5 onboard Suomi NPP. Each instrument comprises three sensors that measure the radiances in different wavelength bands- a shortwave sensor that measures in the 0.3 to 5 micron band, a total sensor that measures all the incident energy (0.3-200 microns) and a window sensor that measures the water-vapor window region of 8 to 12 microns. The stability of the sensors is monitored through on-orbit calibration and validation activities. On-orbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for FM1-FM4 incorporate the latest corrections to the sensor responses using the calibration techniques. In this paper, we present the on-orbit performance stability as well as some validation studies used in deriving the CERES Edition-4 data products from all four instruments.

  8. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  9. A Software Suite for Testing SpaceWire Devices and Networks

    NASA Astrophysics Data System (ADS)

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  10. Plans for Selection and In-Situ Investigation of Return Samples by the Supercam Instrument Onboard the Mars 2020 Rover

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Maurice, S.; Mangold, N.; Anderson, R.; Beyssac, O.; Bonal, L.; Clegg, S.; Cousin, A.; DeFlores, L.; Dromart, G.; Fisher, W.; Forni, O.; Fouchet, T.; Gasnault, O.; Grotzinger, J.; Johnson, J.; Martinez-Frias, J.; McLennan, S.; Meslin, P.-Y.; Montmessin, F.; Poulet, F.; Rull, F.; Sharma, S.

    2018-04-01

    The SuperCam instrument onboard Rover 2020 still provides a complementary set of analyses with IR reflectance and Raman spectroscopy for mineralogy, LIBS for chemistry, and a color imager in order to investigate in-situ samples to return.

  11. The Characterization of Biosignatures in Caves Using an Instrument Suite

    NASA Astrophysics Data System (ADS)

    Uckert, Kyle; Chanover, Nancy J.; Getty, Stephanie; Voelz, David G.; Brinckerhoff, William B.; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J.; Li, Xiang; McAdam, Amy; Glenar, David A.; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques.

  12. Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) Sensor Suite

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Wright, Henry; Kuhl, Chris; Schoenenberger, Mark; White, Todd; Karlgaard, Chris; Mahzari, Milad; Oishi, Tomo; Pennington, Steve; Trombetta, Nick; hide

    2017-01-01

    The Mars 2020 Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite seeks to address the aerodynamic, aerothermodynamic, and thermal protection system (TPS) performance issues during atmospheric entry, descent, and landing of the Mars 2020 mission. Based on the highly successful instrumentation suite that flew on Mars Science Laboratory (MEDLI), the new sensor suite expands on the types of measurements and also seeks to answer questions not fully addressed by the previous mission. Sensor Package: MEDLI2 consists of 7 pressure transducers, 17 thermal plugs, 2 heat flux sensors, and one radiometer. The sensors are distributed across both the heatshield and backshell, unlike MEDLI (the first sensor suite), which was located solely on the heat-shield. The sensors will measure supersonic pressure on the forebody, a pressure measurement on the aftbody, near-surface and in-depth temperatures in the heatshield and backshell TPS materials, direct total heat flux on the aftbody, and direct radiative heating on the aftbody. Instrument Development: The supersonic pressure transducers, the direct heat flux sensors, and the radiometer all were tested during the development phase. The status of these sensors, including the piezo-resistive pressure sensors, will be presented. The current plans for qualification and calibration for all of the sensors will also be discussed. Post-Flight Data Analysis: Similar to MEDLI, the estimated flight trajectory will be reconstructed from the data. The aerodynamic parameters that will be reconstructed will be the axial force coefficient, freestream Mach number, base pressure, atmospheric density, and winds. The aerothermal quantities that will be determined are the heatshield and backshell aero-heating, turbulence transition across the heatshield, and TPS in-depth performance of PICA. By directly measuring the radiative and total heat fluxes on the back-shell, the convective portion of the heat flux will be estimated. The status

  13. High-Speed On-Board Data Processing for Science Instruments: HOPS

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  14. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    NASA Technical Reports Server (NTRS)

    Cao, Changyong; DeLuccia, Frank J.; Xiong, Xiaoxiong; Wolfe, Robert; Weng, Fuzhong

    2014-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.

  15. Capabilities, performance, and status of the SOFIA science instrument suite

    NASA Astrophysics Data System (ADS)

    Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, E. E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Smith, Erin C.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffery E.; Young, Erick T.; Zell, Peter T.

    2013-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 5-40 μm imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60-240 μm, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.3-1.1 μm imager, developed at Lowell Observatory. FLITECAM is a 1-5 μm wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42-210 μm integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 5-28 μm high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50-240 μm imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011.

  16. Study of the coma of comet 67P/Churyumov-Gerasimenko based on the ROSINA/RTOF instrument onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Hoang, M.; Garnier, P.; Rème, H.; Altwegg, K.; Balsiger, H.; Calmonte, U.; Fiethe, B.; Galli, A.; Gasc, S.; Jäckel, A.; Mall, U.; Le Roy, L.; Rubin, M.; Tzou, C.-Y.; Waite, J. H.; Wurz, P.

    2015-10-01

    The Rosetta ESA mission investigates the environment of the comet 67P / Churyumov- Gerasimenko since August 2014. Among the experiments onboard the satellite, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers (DFMS and RTOF) to analyze the composition of neutrals and ions, and an instrument (COPS) to monitor the density and velocity of neutrals in the coma [1]. We will here analyze and discuss the data of the ROSINA/RTOF instrument during the comet escort phase. A detailed description of the main volatiles (H2O, CO2, CO) dynamics and of the heterogeneities of the coma will be provided.

  17. MGGPOD: a Monte Carlo Suite for Modeling Instrumental Line and Continuum Backgrounds in Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Weidenspointner, G.; Harris, M. J.; Sturner, S.; Teegarden, B. J.; Ferguson, C.

    2004-01-01

    Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (approximately 50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition t o continuum backgrounds. The MGGPOD package and documentation are publicly available for download. We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

  18. The Lyman-alpha Imager onboard Solar Polar Orbit Telescope

    NASA Astrophysics Data System (ADS)

    Li, Baoquan; Li, Haitao; Zhou, Sizhong; Jiang, Bo

    2013-12-01

    Solar Polar ORbit Telescope (SPORT) was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. SPORT will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. The Lyman-alpha Imager (LMI) is one of the key remotesensing instruments onboard SPORT with 45arcmin FOV, 2000mm effective focal length and 1.4arcsec/pixel spatial resolution . The size of LMI is φ150×1000mm, and the weight is less than10kg, including the 7kg telescope tube and 3kg electronic box. There are three 121.6nm filters used in the LMI optical path, so the 98% spectral purity image of 121.6nm can be achieved. The 121.6nm solar Lyman-alpha line is produced in the chromosphere and very sensitive to plasma temperature, plasma velocity and magnetism variation in the chromosphere. Solar Lyman-alpha disk image is an ideal tracker for corona magnetism variation.

  19. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  20. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  1. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    NASA Technical Reports Server (NTRS)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  2. Autonomous onboard optical processor for driving aid

    NASA Astrophysics Data System (ADS)

    Attia, Mondher; Servel, Alain; Guibert, Laurent

    1995-01-01

    We take advantage of recent technological advances in the field of ferroelectric liquid crystal silicon back plane optoelectronic devices. These are well suited to perform massively parallel processing tasks. That choice enables the design of low cost vision systems and allows the implementation of an on-board system. We focus on transport applications such as road sign recognition. Preliminary in-car experimental results are presented.

  3. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  4. Onboard Monitoring and Reporting for Commercial Motor Vehicle Safety Final Report

    DOT National Transportation Integrated Search

    2008-02-01

    This Final Report describes the process and product from the project, Onboard Monitoring and Reporting for Commercial Motor Vehicle Safety (OBMS), in which a prototypical suite of hardware and software on a class 8 truck was developed and tested. The...

  5. The Aouda.X space suit simulator and its applications to astrobiology.

    PubMed

    Groemer, Gernot E; Hauth, Stefan; Luger, Ulrich; Bickert, Klaus; Sattler, Birgit; Hauth, Eva; Föger, Daniel; Schildhammer, Daniel; Agerer, Christian; Ragonig, Christoph; Sams, Sebastian; Kaineder, Felix; Knoflach, Martin

    2012-02-01

    We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.

  6. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes

  7. Cryo-Vacuum Testing of JWST's Integrated Telescope & Scientific Instrument Suite (OTIS)

    NASA Astrophysics Data System (ADS)

    Kimble, Randy; Apollo, Peter; Feinberg, Lee; Glazer, Stuart; Hanley, Jeffrey; Keski-Kuha, Ritva; Kirk, Jeffrey; Knight, J. Scott; Lambros, Scott; Lander, Juli; McGuffey, Douglas; Mehalick, Kimberly; Ohl, Raymond; Ousley, Wes; Reis, Carl; Reynolds, Paul; Begoña Vila, Maria; Waldman, Mark; Whitman, Tony

    2018-01-01

    A year ago we reported on the planning for a major test in the James Webb Space Telescope (JWST) program: cryo-vacuum testing of the combination of the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM). The cryo-vacuum testing of that scientific heart of the JWST observatory, known as OTIS (= OTE + ISIM), has now been completed in historic chamber A at NASA’s Johnson Space Center. From July through October 2017, the flight payload was cooled to its operating temperatures, put through a comprehensive suite of optical, thermal, and operational tests, and then safely warmed back to room temperature. We report here on the execution and top-level results from this milestone event in the JWST program.

  8. Onboard Processing and Autonomous Operations on the IPEX Cubesat

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi; hide

    2012-01-01

    IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.

  9. Onboard Autonomous Corrections for Accurate IRF Pointing.

    NASA Astrophysics Data System (ADS)

    Jorgensen, J. L.; Betto, M.; Denver, T.

    2002-05-01

    Over the past decade, the Noise Equivalent Angle (NEA) of onboard attitude reference instruments, has decreased from tens-of-arcseconds to the sub-arcsecond level. This improved performance is partly due to improved sensor-technology with enhanced signal to noise ratios, partly due to improved processing electronics which allows for more sophisticated and faster signal processing. However, the main reason for the increased precision, is the application of onboard autonomy, which apart from simple outlier rejection also allows for removal of "false positive" answers, and other "unexpected" noise sources, that otherwise would degrade the quality of the measurements (e.g. discrimination between signals caused by starlight and ionizing radiation). The utilization of autonomous signal processing has also provided the means for another onboard processing step, namely the autonomous recovery from lost in space, where the attitude instrument without a priori knowledge derive the absolute attitude, i.e. in IRF coordinates, within fractions of a second. Combined with precise orbital state or position data, the absolute attitude information opens for multiple ways to improve the mission performance, either by reducing operations costs, by increasing pointing accuracy, by reducing mission expendables, or by providing backup decision information in case of anomalies. The Advanced Stellar Compass's (ASC) is a miniature, high accuracy, attitude instrument which features fully autonomous operations. The autonomy encompass all direct steps from automatic health checkout at power-on, over fully automatic SEU and SEL handling and proton induced sparkle removal, to recovery from "lost in space", and optical disturbance detection and handling. But apart from these more obvious autonomy functions, the ASC also features functions to handle and remove the aforementioned residuals. These functions encompass diverse operators such as a full orbital state vector model with automatic cloud

  10. Dust Measurements Onboard the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  11. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  12. The Gaia On-Board Scientific Data Handling

    NASA Astrophysics Data System (ADS)

    Arenou, F.; Babusiaux, C.; Chéreau, F.; Mignot, S.

    2005-01-01

    Because Gaia will perform a continuous all-sky survey at a medium (Spectro) or very high (Astro) angular resolution, the on-board processing needs to cope with a high variety of objects and densities which calls for generic and adaptive algorithms at the detection level, but not only. Consequently, the Pyxis scientific algorithms developed for the on-board data handling cover a large range of application: detection and confirmation of astronomical objects, background sky estimation, classification of detected objects, Near-Earth Objects onboard detection, and window selection and positioning. Very dense fields, where the real-time computing requirements should remain within fixed bounds, are particularly challenging. Another constraint stems from the limited telemetry bandwidth and an additional compromise has to be found between scientific requirements and constraints in terms of the mass, volume and power budgets of the satellite. The rationale for the on-board data handling procedure is described here, together with the developed algorithms, the main issues and the expected scientific performances in the Astro and Spectro instruments.

  13. Cardiomed System for Medical Monitoring Onboard ISS

    NASA Astrophysics Data System (ADS)

    Lloret, J. C.; Aubry, P.; Nguyen, L.; Kozharinov, V.; Grachev, V.; Temnova, E.

    2008-06-01

    Cardiomed system was developed with two main objectives: (1) cardiovascular medical monitoring of cosmonauts onboard ISS together with LBNP countermeasure; (2) scientific study of the cardio-vascular system in micro-gravity. Cardiomed is an integrated end-to-end system, from the onboard segment operating different medical instruments, to the ground segment which provides real-time telemetry of on-board experiments and off-line analysis of physiological measurements. In the first part of the paper, Cardiomed is described from an architecture point of view together with some typical uses. In the second part, the most constraining requirements with respect to system design are introduced. Some requirements are generic; some are specific to medical follow-up, others to scientific objectives. In the last part, the main technical challenges which were addressed during the development and the qualification of Cardiomed and the lessons learnt are presented.

  14. Inter-instrument calibration using magnetic field data from Flux Gate Magnetometer (FGM) and Electron Drift Instrument (EDI) onboard Cluster

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2013-07-01

    We compare the magnetic field data obtained from the Flux-Gate Magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the Electron Drift Instrument (EDI) onboard Cluster to determine the spin axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 nT and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ~ 0.6 nT was observed between July and October 2003. Using multi-point multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  15. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel

    1995-01-01

    The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.

  16. MODIS On-Board Blackbody Function and Performance

    NASA Technical Reports Server (NTRS)

    Xiaoxiong, Xiong; Wenny, Brian N.; Wu, Aisheng; Barnes, William

    2009-01-01

    Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.

  17. Onboard Detection of Active Canadian Sulfur Springs: A Europa Analogue

    NASA Technical Reports Server (NTRS)

    Castano, Rebecca; Wagstaff, Kiri; Gleeson, Damhnait; Pappalardo, Robert; Chien, Steve; Tran, Daniel; Scharenbroich, Lucas; Moghaddam, Baback; Tang, Benyang; Bue, Brian; hide

    2008-01-01

    We discuss a current, ongoing demonstration of insitu onboard detection in which the Earth Observing-1 spacecraft detects surface sulfur deposits that originate from underlying springs by distinguishing the sulfur from the ice-rich glacial background, a good analogue for the Europan surface. In this paper, we describe the process of developing the onboard classifier for detecting the presence of sulfur in a hyperspectral scene, including the use of a training/testing set that is not exhaustively labeled, i.e.not all true positives are marked, and the selection of 12, out of 242, Hyperion instrument wavelength bands to use in the onboard detector. This study aims to demonstrate the potential for future missions to capture short-lived science events, make decisions onboard, identify high priority data for downlink and perform onboard change detection. In the future, such capability could help maximize the science return of downlink bandwidth-limited missions, addressing a significant constraint in all deep-space missions.

  18. The XGS instrument on-board THESEUS

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  19. The SAM Suite

    NASA Image and Video Library

    2013-04-08

    This illustration shows the instruments and subsystems of the Sample Analysis at Mars SAM suite on the Curiosity Rover of NASA Mars Science Laboratory Project. SAM analyzes the gases in the Martian atmosphere.

  20. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    American spaceflight participant Richard Garriott, left, Expedition 18 Flight Engineer Yuri V. Lonchakov and Expedition 18 Commander Michael Fincke, right, smile for the camera after they had their Russian Sokol suits pressure checked in preparation for launch onboard the Soyuz TMA-13 spacecraft, Sunday, Oct. 12, 2008 from the Baikonur Cosmodrome in Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  1. The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P.-A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Olsson, G.; Khotyaintsev, Y. V.; Eriksson, A.; Kletzing, C. A.; Bounds, S.; Anderson, B.; Baumjohann, W.; Steller, M.; Bromund, K.; Le, Guan; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Porter, J.; Lappalainen, K.

    2016-03-01

    The FIELDS instrumentation suite on the Magnetospheric Multiscale (MMS) mission provides comprehensive measurements of the full vector magnetic and electric fields in the reconnection regions investigated by MMS, including the dayside magnetopause and the night-side magnetotail acceleration regions out to 25 Re. Six sensors on each of the four MMS spacecraft provide overlapping measurements of these fields with sensitive cross-calibrations both before and after launch. The FIELDS magnetic sensors consist of redundant flux-gate magnetometers (AFG and DFG) over the frequency range from DC to 64 Hz, a search coil magnetometer (SCM) providing AC measurements over the full whistler mode spectrum expected to be seen on MMS, and an Electron Drift Instrument (EDI) that calibrates offsets for the magnetometers. The FIELDS three-axis electric field measurements are provided by two sets of biased double-probe sensors (SDP and ADP) operating in a highly symmetric spacecraft environment to reduce significantly electrostatic errors. These sensors are complemented with the EDI electric measurements that are free from all local spacecraft perturbations. Cross-calibrated vector electric field measurements are thus produced from DC to 100 kHz, well beyond the upper hybrid resonance whose frequency provides an accurate determination of the local electron density. Due to its very large geometric factor, EDI also provides very high time resolution (˜1 ms) ambient electron flux measurements at a few selected energies near 1 keV. This paper provides an overview of the FIELDS suite, its science objectives and measurement requirements, and its performance as verified in calibration and cross-calibration procedures that result in anticipated errors less than 0.1 nT in B and 0.5 mV/m in E. Summaries of data products that result from FIELDS are also described, as well as algorithms for cross-calibration. Details of the design and performance characteristics of AFG/DFG, SCM, ADP, SDP, and EDI

  2. Satellite instrument provides nighttime sensing capability

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  3. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  4. Solar Probe ANalyzer Ion Instrument - Demonstrated Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Livi, R.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.

    2016-12-01

    The Solar Probe Plus (SPP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 9.86 RS. SPP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. The SPAN-Ai instrument, the ion analyzer, is composed of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. The electronics consist of (1) an anode board, (2) a TDC digital board, (3) a low voltage power supply, and (4) two high voltage boards. The onboard FPGA will control electronics and event signals while sending variable digitial packets of said information to the SWEAP Electronics Module (SWEM). The majority of the components are built, assembled, and tested primarily at the University of California, Berkeley (UCB). SPAN-Ai's main objective is to measure ions with an energy range of 5 eV - 20 keV, a mass/q between 1-100 [amu/q] and a field of view of 240 x 120 degrees . This presentation will show preliminary calibration results over the past 6 months of these features performed at UCB.

  5. Software design for the VIS instrument onboard the Euclid mission: a multilayer approach

    NASA Astrophysics Data System (ADS)

    Galli, E.; Di Giorgio, A. M.; Pezzuto, S.; Liu, S. J.; Giusi, G.; Li Causi, G.; Farina, M.; Cropper, M.; Denniston, J.; Niemi, S.

    2014-07-01

    The Euclid mission scientific payload is composed of two instruments: a VISible Imaging Instrument (VIS) and a Near Infrared Spectrometer and Photometer instrument (NISP). Each instrument has its own control unit. The Instrument Command and Data Processing Unit (VI-CDPU) is the control unit of the VIS instrument. The VI-CDPU is connected directly to the spacecraft by means of a MIL-STD-1553B bus and to the satellite Mass Memory Unit via a SpaceWire link. All the internal interfaces are implemented via SpaceWire links and include 12 high speed lines for the data provided by the 36 focal plane CCDs readout electronics (ROEs) and one link to the Power and Mechanisms Control Unit (VI-PMCU). VI-CDPU is in charge of distributing commands to the instrument sub-systems, collecting their housekeeping parameters and monitoring their health status. Moreover, the unit has the task of acquiring, reordering, compressing and transferring the science data to the satellite Mass Memory. This last feature is probably the most challenging one for the VI-CDPU, since stringent constraints about the minimum lossless compression ratio, the maximum time for the compression execution and the maximum power consumption have to be satisfied. Therefore, an accurate performance analysis at hardware layer is necessary, which could delay too much the design and development of software. In order to mitigate this risk, in the multilayered design of software we decided to design a middleware layer that provides a set of APIs with the aim of hiding the implementation of the HW connected layer to the application one. The middleware is built on top of the Operating System layer (which includes the Real-Time OS that will be adopted) and the onboard Computer Hardware. The middleware itself has a multi-layer architecture composed of 4 layers: the Abstract RTOS Adapter Layer (AOSAL), the Speci_c RTOS Adapter Layer (SOSAL), the Common Patterns Layer (CPL), the Service Layer composed of two subgroups which

  6. The SpaceCube Family of Hybrid On-Board Science Data Processors: An Update

    NASA Astrophysics Data System (ADS)

    Flatley, T.

    2012-12-01

    SpaceCube is an FPGA based on-board hybrid science data processing system developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. The SpaceCube design strategy incorporates commercial rad-tolerant FPGA technology and couples it with an upset mitigation software architecture to provide "order of magnitude" improvements in computing power over traditional rad-hard flight systems. Many of the missions proposed in the Earth Science Decadal Survey (ESDS) will require "next generation" on-board processing capabilities to meet their specified mission goals. Advanced laser altimeter, radar, lidar and hyper-spectral instruments are proposed for at least ten of the ESDS missions, and all of these instrument systems will require advanced on-board processing capabilities to facilitate the timely conversion of Earth Science data into Earth Science information. Both an "order of magnitude" increase in processing power and the ability to "reconfigure on the fly" are required to implement algorithms that detect and react to events, to produce data products on-board for applications such as direct downlink, quick look, and "first responder" real-time awareness, to enable "sensor web" multi-platform collaboration, and to perform on-board "lossless" data reduction by migrating typical ground-based processing functions on-board, thus reducing on-board storage and downlink requirements. This presentation will highlight a number of SpaceCube technology developments to date and describe current and future efforts, including the collaboration with the U.S. Department of Defense - Space Test Program (DoD/STP) on the STP-H4 ISS experiment pallet (launch June 2013) that will demonstrate SpaceCube 2.0 technology on-orbit.; ;

  7. On-board Measurement of HCN and NH3 Emissions from Vehicles During Real-World Driving

    NASA Astrophysics Data System (ADS)

    Moss, J. A.; Baum, M. M.

    2013-12-01

    Emission control systems in light-duty motor vehicles have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts can, however, lead to emission of non-criteria pollutants such as ammonia (NH3) and hydrogen cyanide (HCN). A pair of spectrometers based on tunable diode lasers (TDL) emitting in the near-infrared (1529 nm) and mid-infrared (2975 nm) have been developed for determination of HCN and acetylene (C2H2) emission rates from light-duty motor vehicles in real-time, while driving. Both spectrometers have been evaluated extensively using standard gas mixtures in the laboratory and exhaust from idling and moving vehicles. The TDL spectrometers were incorporated into an on-board instrument suite containing instrumentation for measurement of CO2, HCN, C2H2, NH3 and amines, and exhaust flow rate. On-board measurements were carried out on a fleet of ten vehicles driving a 30 minute circuit representative of real-world urban driving conditions. These measurements afforded emission factors for NH3 (194 × 147 mg km-1) and HCN (3.33 × 3.61 mg km-1), as well as the first report of methylamine emission factors, 0.70 × 0.61 mg km-1. Emissions of both amines were highly correlated (R2 = 0.95). The temporally-resolved TDL spectrometer measurements indicate that the highest HCN and C2H2 emissions occur during specific emission modes that are a function of driving conditions.

  8. Design and Development of a Miniaturized Double Latching Solenoid Valve for the Sample Analysis at Mars Instrument Suite

    NASA Technical Reports Server (NTRS)

    Smith, James T.

    2008-01-01

    The development of the in-house Miniaturized Double Latching Solenoid Valve, or Microvalve, for the Gas Processing System (GPS) of the Sample Analysis at Mars (SAM) instrument suite is described. The Microvalve is a double latching solenoid valve that actuates a pintle shaft axially to hermetically seal an orifice. The key requirements and the design innovations implemented to meet them are described.

  9. BASKET on-board software library

    NASA Astrophysics Data System (ADS)

    Luntzer, Armin; Ottensamer, Roland; Kerschbaum, Franz

    2014-07-01

    The University of Vienna is a provider of on-board data processing software with focus on data compression, such as used on board the highly successful Herschel/PACS instrument, as well as in the small BRITE-Constellation fleet of cube-sats. Current contributions are made to CHEOPS, SAFARI and PLATO. The effort was taken to review the various functions developed for Herschel and provide a consolidated software library to facilitate the work for future missions. This library is a shopping basket of algorithms. Its contents are separated into four classes: auxiliary functions (e.g. circular buffers), preprocessing functions (e.g. for calibration), lossless data compression (arithmetic or Rice coding) and lossy reduction steps (ramp fitting etc.). The "BASKET" has all functionality that is needed to create an on-board data processing chain. All sources are written in C, supplemented by optimized versions in assembly, targeting popular CPU architectures for space applications. BASKET is open source and constantly growing

  10. Gamma-Radiation Background Onboard Russian Orbital Stations

    NASA Astrophysics Data System (ADS)

    Dmitrenko, V. V.; Galper, A. M.; Gratchev, V. M.; Kirillov-Ugryumov, V. G.; Krivov, S. V.; Moiseev, A. A.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.; Yurkin, Yn. T.

    Large manned space flight missions have several advantages for carrying out astrophysical and cosmic ray experiments, including the ability to install heavy instruments with large dimensions, increased electrical power and telemetry capacity, and the operation of fixed instruments by qualified personnel (astronauts). The main disadvantage in the use of heavy orbital stations for these experiments is the high level of background radiation generated by the interaction of station material with primary cosmic rays, high energy particles that exist in the magnetosphere of Earth, and albedo radiation from Earth. In some cases, additional radiation may originate from man-made radiation sources installed at the stations. For many years MEPhI have maintained experiments onboard manned Russian space flight missions to study primary gamma-rays at two energy intervals: 0.1 - 8 MeV and 30-600 MeV and electrons with energy more than 30 MeV. During these experiments significant time was spent investigating high energy background radiation onboard the stations. To measure 30-600 MeV gamma-rays, the gas-Cherenkov-scintillation telescope Elena was used. The angular view of this telescope was 10 deg, with a geometrical factor of 0.5 cm2sr. This telescope was operated onboard the orbital stations Salyut-6 and Salyut-7. Usually these stations were operated together with the space missions Soyuz and Progress. For background measurements, cosmonauts installed the telescope at various locations on Salyut, Soyuz and Progress, and oriented it in various directions respectively to the station's axes. During these experiments, the orbital stations were not oriented.

  11. NASA Tropospheric Emission Spectrometer TES Instrument Onboard Aura

    NASA Image and Video Library

    2004-04-01

    Technicians install NASA's Tropospheric Emission Spectrometer (TES) instrument on NASA's Aura spacecraft prior to launch. Launched in July 2004 and designed to fly for two years, the TES mission is currently in an extended operations phase. Mission managers at NASA's Jet Propulsion Laboratory, Pasadena, California, are evaluating an alternate way to collect and process science data from the Tropospheric Emission Spectrometer (TES) instrument on NASA's Aura spacecraft following the age-related failure of a critical instrument component. TES is an infrared sensor designed to study Earth's troposphere, the lowermost layer of Earth's atmosphere, which is where we live. The remainder of the TES instrument, and the Aura spacecraft itself, are operating as expected, and TES continues to collect science data. TES is one of four instruments on Aura, three of which are still operating. http://photojournal.jpl.nasa.gov/catalog/PIA15608

  12. Onboard Systems Record Unique Videos of Space Missions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ecliptic Enterprises Corporation, headquartered in Pasadena, California, provided onboard video systems for rocket and space shuttle launches before it was tasked by Ames Research Center to craft the Data Handling Unit that would control sensor instruments onboard the Lunar Crater Observation and Sensing Satellite (LCROSS) spacecraft. The technological capabilities the company acquired on this project, as well as those gained developing a high-speed video system for monitoring the parachute deployments for the Orion Pad Abort Test Program at Dryden Flight Research Center, have enabled the company to offer high-speed and high-definition video for geosynchronous satellites and commercial space missions, providing remarkable footage that both informs engineers and inspires the imagination of the general public.

  13. Scanning sky monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar

    2017-10-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.

  14. Animation of MARDI Instrument

    NASA Image and Video Library

    2008-09-30

    This frame from an animation shows a zoom into the Mars Descent Imager MARDI instrument onboard NASA Phoenix Mars Lander. The Phoenix team will soon attempt to use a microphone on the MARDI instrument to capture sounds of Mars.

  15. Impact of advanced onboard processing concepts on end-to-end data system

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1978-01-01

    An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.

  16. Onboard Data Compression of Synthetic Aperture Radar Data: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew A.; Moision, Bruce

    2008-01-01

    Synthetic aperture radar (SAR) instruments on spacecraft are capable of producing huge quantities of data. Onboard lossy data compression is commonly used to reduce the burden on the communication link. In this paper an overview is given of various SAR data compression techniques, along with an assessment of how much improvement is possible (and practical) and how to approach the problem of obtaining it. Synthetic aperture radar (SAR) instruments on spacecraft are capable of acquiring huge quantities of data. As a result, the available downlink rate and onboard storage capacity can be limiting factors in mission design for spacecraft with SAR instruments. This is true both for Earth-orbiting missions and missions to more distant targets such as Venus, Titan, and Europa. (Of course for missions beyond Earth orbit downlink rates are much lower and thus potentially much more limiting.) Typically spacecraft with SAR instruments use some form of data compression in order to reduce the storage size and/or downlink rate necessary to accommodate the SAR data. Our aim here is to give an overview of SAR data compression strategies that have been considered, and to assess the prospects for additional improvements.

  17. Soft gamma-ray detector (SGD) onboard the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yasushi; Tajima, Hiroyasu; Watanabe, Shin; Blandford, Roger; Hayashi, Katsuhiro; Harayama, Atsushi; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shin'ya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2014-07-01

    The Soft Gamma-ray Detector (SGD) is one of observational instruments onboard the ASTRO-H, and will provide 10 times better sensitivity in 60{600 keV than the past and current observatories. The SGD utilizes similar technologies to the Hard X-ray Imager (HXI) onboard the ASTRO-H. The SGD achieves low background by constraining gamma-ray events within a narrow field-of-view by Compton kinematics, in addition to the BGO active shield. In this paper, we will present the results of various tests using engineering models and also report the flight model production and evaluations.

  18. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  19. The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.

    PubMed

    Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  20. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  1. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  2. Autonomous Instrument Placement for Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Leger, P. Chris; Maimone, Mark

    2009-01-01

    Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.

  3. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source.

    PubMed

    Lefmann, Kim; Klenø, Kaspar H; Birk, Jonas Okkels; Hansen, Britt R; Holm, Sonja L; Knudsen, Erik; Lieutenant, Klaus; von Moos, Lars; Sales, Morten; Willendrup, Peter K; Andersen, Ken H

    2013-05-01

    We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

  4. Scheduling Onboard Processing for the Proposed HyspIRI Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Rabideau, Gregg; Mandl, Daniel; Hengemihle, Jerry

    2011-01-01

    The proposed Hyspiri mission is evaluating a X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However the HyspIRI VSWIR and TIR instruments will produce 1 Gbps data while the DB capability is 15 M bps for a 60x oversubscription. In order to address this data volume mismatch a DB concept has been developed thatdetermines which data to downlink based on both: 1. The type of surface the spacecraft is overflying and 2. Onboard processing of the data to detect events. For example when the spacecraft is overflying polar regions it might downlink a snow/ice product. Additionally the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected. The process of determining which products to generate when, based on request prioritization and onboard processing and downlink constraints is inherently a prioritized scheduling problem - we describe work to develop an automated solution to this problem.

  5. Techniques in Altitude Registration for Limb Scatter Instruments

    NASA Astrophysics Data System (ADS)

    Moy, L.; Jaross, G.; Bhartia, P. K.; Kramarova, N. A.

    2017-12-01

    One of the largest constraints to the retrieval of accurate ozone profiles from limb sounding sensors is altitude registration. As described in Moy et al. (2017) two methods applicable to UV limb scattering, the Rayleigh Scattering Attitude Sensing (RSAS) and Absolute Radiance Residual Method (ARRM), have been used to determine altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances and are independent of onboard tracking devices. RSAS determines absolute altitude errors but, because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosol contamination. ARRM, a new technique using wavelengths near 300 nm, can be applied across all seasons and altitudes, but its sensitivity to accurate instrument calibration means it may be inappropriate for anything but monitoring change. These characteristics make the two techniques complementary. Both methods have been applied to Limb Profiler instrument measurements from the Ozone Mapping and Profiler Suite (OMPS) onboard the Suomi NPP (SNPP) satellite. The results from RSAS and ARRM differ by as much as 500 m over orbital and seasonal time scales, but long-term pointing trends derived from the two indicate changes within 100 m over the 5 year data record. In this paper we further discuss what these methods are revealing about the stability of LP's altitude registration. An independent evaluation of pointing errors using VIIRS, another sensor onboard the Suomi NPP satellite, indicates changes of as much as 80 m over the course of the mission. The correlations between VIIRS and the ARRM time series suggest a high degree of precision in this limb technique. We have therefore relied upon ARRM to evaluate error sources in more widespread altitude registration techniques such as RSAS and lunar observations. These techniques can be more readily applied to other limb scatter

  6. Early In-orbit Performance of Scanning Sky Monitor Onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Singh, Brajpal; Jain, Anand; Yadav, Reena; Agarwal, Anil; Babu, V. Chandra; Kumar; Kushwaha, Ankur; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Seetha, S.; Bhattacharya, Dipankar; Balaji, K.; Kumar, Manoj; Kulshresta, Prashanth

    2017-06-01

    We report the in-orbit performance of Scanning Sky Monitor (SSM) onboard AstroSat. The SSM operates in the energy range 2.5 to 10 keV and scans the sky to detect and locate transient X-ray sources. This information of any interesting phenomenon in the X-ray sky as observed by SSM is provided to the astronomical community for follow-up observations. Following the launch of AstroSat on 28th September, 2015, SSM was commissioned on October 12th, 2015. The first power ON of the instrument was with the standard X-ray source, Crab in the field-of-view. The first orbit data revealed the basic expected performance of one of the detectors of SSM, SSM1. Following this in the subsequent orbits, the other detectors were also powered ON to find them perform in good health. Quick checks of the data from the first few orbits revealed that the instrument performed with the expected angular resolution of 12' × 2.5° and effective area in the energy range of interest. This paper discusses the instrument aspects along with few on-board results immediately after power ON.

  7. Smart Payload Development for High Data Rate Instrument Systems

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Norton, Charles D.

    2007-01-01

    This slide presentation reviews the development of smart payloads instruments systems with high data rates. On-board computation has become a bottleneck for advanced science instrument and engineering capabilities. In order to improve the computation capability on board, smart payloads have been proposed. A smart payload is a Localized instrument, that can offload the flight processor of extensive computing cycles, simplify the interfaces, and minimize the dependency of the instrument on the flight system. This has been proposed for the Mars mission, Mars Atmospheric Trace Molecule Spectroscopy (MATMOS). The design of this system is discussed; the features of the Virtex-4, are discussed, and the technical approach is reviewed. The proposed Hybrid Field Programmable Gate Array (FPGA) technology has been shown to deliver breakthrough performance by tightly coupling hardware and software. Smart Payload designs for instruments such as MATMOS can meet science data return requirements with more competitive use of available on-board resources and can provide algorithm acceleration in hardware leading to implementation of better (more advanced) algorithms in on-board systems for improved science data return

  8. Heating of the quiet solar corona from measurements of the FET/TESIS instrument on-board the KORONAS-FOTON satellite

    NASA Astrophysics Data System (ADS)

    Rybák, J.; Gömöry, P.; Benz, A.; Bogachev, P.; Brajša, R.

    2010-12-01

    The paper presents the first results of the observations of time evolution of the quiet solar corona brightenings obtained due to very rapid photography of the corona with full-disk EUV telescopes of the FET/TESIS instrument onboard the KORONA FOTON satellite. The measurements were performed simultaneously in the emission of the Fe IX / X 17.1 and Fe VIII 13.1 spectral lines with 10 second temporal cadence and spatial scale of 1.7 arc seconds within one hour. This test observation, carried out on 15 July 2009, was analyzed in order to determine whether this type of observation can be used to identify individual microevents in the solar corona heating that are above the tresholds of spatial and temporal resolutions of the observations of non-active regions in the solar atmosphere. For this purpose, a simple method was used involving cross-correlation of the plasma emission time evolution at different temperatures, each time from observations of identical elements. The results obtained are confronted with the expected observable manifestations of the corona heating via nanoflares. TESIS is a set of instruments for the Sun photography developed in the Lebedev Physics Institute of the Russian Academy of Sciences that was launched into orbit in January 2009.

  9. Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.

    2012-01-01

    Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.

  10. MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter

    NASA Astrophysics Data System (ADS)

    Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry

    2017-11-01

    The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.

  11. Postlaunch Assessment of the Response Versus Scan Angle for the Thermal Emissive Bands of Visible Infrared Imaging Radiometer Suite On-Board the Suomi National Polar-Orbiting Partnership Satellite

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xiong, Xiaoxiong; Chiang, Kwofu

    2017-01-01

    The visible infrared imaging radiometer suite (VIIRS) is a key sensor carried on the Suomi national polar-orbiting partnership (S-NPP) satellite, which was launched in October 2011. It has several on-board calibration components, including a solar diffuser and a solar diffuser stability monitor for the reflective solar bands, a V-groove blackbody for the thermal emissive bands (TEB), and a space view port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to characterize the on-orbit response for all scan angles relative to the calibrator scan angle. Since the RVS is vitally important to the quality of calibrated radiance products, several independent studies were performed to analyze the prelaunch RVS measurement data. A spacecraft level pitch maneuver was scheduled during the first 3 months of intensive Cal/Val. The S-NPP pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire range of Earth view scan angles, which can be used to characterize the TEB RVS. This study provides our analysis of the pitch maneuver data and assessment of the derived TEB RVS by comparison with prelaunch results. In addition, the stability of the RVS after the first 5 years of operation is examined using observed brightness temperatures (BT) over a clear ocean at various angles of incidence (AOI). To reduce the impact of variations in the BT measurements, the daily overpasses collected over the ocean are screened for cloud contamination, normalized to the results obtained at the blackbody AOI, and averaged each year.

  12. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  13. Development of the Kiel sensors for the EPD instrument on-board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Martin, Cesar; Wimmer-Schweingruber, Robert F.; Kulkarni, Shrinivasrao R.; Tammen, Jan; Terasa, Christoph; Yu, Jia; Boden, Sebastian; Steinhagen, Jan; Panitzsch, Lauri; Ravanbakhsh, Ali; Boettcher, Stephan; Hamann, Christian; Seimetz, Lars; Rodriguez-Pacheco, Javier

    2015-04-01

    Solar Orbiter is ESA's next solar and heliospheric mission, planned for launch in January 2017 and approaching the Sun as close as 0.28 AU. One of the Solar Orbiter's scientific questions is "How do the solar eruptions produce energetic particle radiation that fills the heliosphere?". The Energetic Particle Detector (EPD) will provide key measurements for this and the other Solar Orbiter science objectives. The EPD suite consists of four sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV/n up to 200 MeV/n. The EPD sensors are: SupraThermal Electrons and Protons(STEP), Suprathermal Ion Spectrograph (SIS), Electron Proton Telescope (EPT) and High Energy Telescope (HET). Besides, the EPD sensors share the Instrument Control Unit (ICU). The University of Kiel in Germany is responsible for developing the EPT-HET, STEP and SIS sensors. Here we present the development status of the EPT-HET and STEP sensors focusing on the activities planned for the current phase C. Those activities include results of the integration and EMC tests on the EPT-HET and STEP Engineering Model (EM) and the assembly of the Proto Qualification Model (PQM).

  14. Development of the Kiel sensors for the EPD instrument on-board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Martin, Cesar; Wimmer-Schweingruber, Robert F.; Kulkarni, Shrinivasrao R.; Tammen, Jan; Terasa, Christoph; Yu, Jia; Boden, Sebastian; Steinhagen, Jan; Panitzsch, Lauri; Ravanbakhsh, Ali; Boettcher, Stephan; Hamann, Christian; Seimetz, Lars; Rodriguez-Pacheco, Javier

    2014-05-01

    Solar Orbiter is ESA's next solar and heliospheric mission, planned for launch in January 2017 and approaching the Sun as close as 0.28 AU. One of the Solar Orbiter's scientific questions is "How do the solar eruptions produce energetic particle radiation that fills the heliosphere?". The Energetic Particle Detector (EPD) will provide key measurements for this and the other Solar Orbiter science objectives. The EPD suite consists of four sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV/n up to 200 MeV/n. The EPD sensors are: SupraThermal Electrons and Protons(STEP), Suprathermal Ion Spectrograph (SIS), Electron Proton Telescope (EPT) and High Energy Telescope (HET). Besides, the EPD sensors share the Instrument Control Unit (ICU). The University of Kiel in Germany is responsible for developing the EPT-HET, STEP and SIS sensors. Here we present the development status of the EPT-HET and STEP sensors focusing on the activities planned for the current phase C. Those activities include results of the environmental tests on the EPT-HET Structural Thermal Model (STM) and the assembly of the Engineering Model (EM).

  15. Nadir Measurements of Carbon Monoxide Distributions by the Tropospheric Emission Spectrometer Instrument Onboard the Aura Spacecraft: Overview of Analysis Approach and Examples of Initial Results

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Luo, Ming; Logan, Jennifer A.; Beer, Reinhard; Worden, Helen; Kulawik, Susan S.; Rider, David; Osterman, Greg; Gunson, Michael; Eldering, Annmarie; hide

    2006-01-01

    We provide an overview of the nadir measurements of carbon monoxide (CO) obtained thus far by the Tropospheric Emission Spectrometer (TES). The instrument is a high resolution array Fourier transform spectrometer designed to measure infrared spectral radiances from low Earth orbit. It is one of four instruments successfully launched onboard the Aura platform into a sun synchronous orbit at an altitude of 705 km on July 15, 2004 from Vandenberg Air Force Base, California. Nadir spectra are recorded at 0.06/cm spectral resolution with a nadir footprint of 5 x 8 km. We describe the TES retrieval approach for the analysis of the nadir measurements, report averaging kernels for typical tropical and polar ocean locations, characterize random and systematic errors for those locations, and describe instrument performance changes in the CO spectral region as a function of time. Sample maps of retrieved CO for the middle and upper troposphere from global surveys during December 2005 and April 2006 highlight the potential of the results for measurement and tracking of global pollution and determining air quality from space.

  16. Nadir measurements of carbon monoxide distributions by the Tropospheric Emission Spectrometer instrument onboard the Aura Spacecraft: Overview of analysis approach and examples of initial results

    NASA Astrophysics Data System (ADS)

    Rinsland, Curtis P.; Luo, Ming; Logan, Jennifer A.; Beer, Reinhard; Worden, Helen; Kulawik, Susan S.; Rider, David; Osterman, Greg; Gunson, Michael; Eldering, Annmarie; Goldman, Aaron; Shephard, Mark; Clough, Shepard A.; Rodgers, Clive; Lampel, Michael; Chiou, Linda

    2006-11-01

    We provide an overview of the nadir measurements of carbon monoxide (CO) obtained thus far by the Tropospheric Emission Spectrometer (TES). The instrument is a high resolution array Fourier transform spectrometer designed to measure infrared spectral radiances from low Earth orbit. It is one of four instruments successfully launched onboard the Aura platform into a sun synchronous orbit at an altitude of 705 km on July 15, 2004 from Vandenberg Air Force Base, California. Nadir spectra are recorded at 0.06-cm-1 spectral resolution with a nadir footprint of 5 × 8 km. We describe the TES retrieval approach for the analysis of the nadir measurements, report averaging kernels for typical tropical and polar ocean locations, characterize random and systematic errors for those locations, and describe instrument performance changes in the CO spectral region as a function of time. Sample maps of retrieved CO for the middle and upper troposphere from global surveys during December 2005 and April 2006 highlight the potential of the results for measurement and tracking of global pollution and determining air quality from space.

  17. On-Board Software Reference Architecture for Payloads

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Rugina, Ana; Trcka, Adam

    2016-08-01

    The goal of the On-board Software Reference Architecture for Payloads (OSRA-P) is to identify an architecture for payload software to harmonize the payload domain, to enable more reuse of common/generic payload software across different payloads and missions and to ease the integration of the payloads with the platform.To investigate the payload domain, recent and current payload instruments of European space missions have been analyzed. This led to a Payload Catalogue describing 12 payload instruments as well as a Capability Matrix listing specific characteristics of each payload. In addition, a functional decomposition of payload software was prepared which contains functionalities typically found in payload systems. The definition of OSRA-P was evaluated by case studies and a dedicated OSRA-P workshop to gather feedback from the payload community.

  18. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  19. Knowledge representation by connection matrices: A method for the on-board implementation of large expert systems

    NASA Technical Reports Server (NTRS)

    Kellner, A.

    1987-01-01

    Extremely large knowledge sources and efficient knowledge access characterizing future real-life artificial intelligence applications represent crucial requirements for on-board artificial intelligence systems due to obvious computer time and storage constraints on spacecraft. A type of knowledge representation and corresponding reasoning mechanism is proposed which is particularly suited for the efficient processing of such large knowledge bases in expert systems.

  20. Data processing in Software-type Wave-Particle Interaction Analyzer onboard the Arase satellite

    NASA Astrophysics Data System (ADS)

    Hikishima, Mitsuru; Kojima, Hirotsugu; Katoh, Yuto; Kasahara, Yoshiya; Kasahara, Satoshi; Mitani, Takefumi; Higashio, Nana; Matsuoka, Ayako; Miyoshi, Yoshizumi; Asamura, Kazushi; Takashima, Takeshi; Yokota, Shoichiro; Kitahara, Masahiro; Matsuda, Shoya

    2018-05-01

    The software-type wave-particle interaction analyzer (S-WPIA) is an instrument package onboard the Arase satellite, which studies the magnetosphere. The S-WPIA represents a new method for directly observing wave-particle interactions onboard a spacecraft in a space plasma environment. The main objective of the S-WPIA is to quantitatively detect wave-particle interactions associated with whistler-mode chorus emissions and electrons over a wide energy range (from several keV to several MeV). The quantity of energy exchanges between waves and particles can be represented as the inner product of the wave electric-field vector and the particle velocity vector. The S-WPIA requires accurate measurement of the phase difference between wave and particle gyration. The leading edge of the S-WPIA system allows us to collect comprehensive information, including the detection time, energy, and incoming direction of individual particles and instantaneous-wave electric and magnetic fields, at a high sampling rate. All the collected particle and waveform data are stored in the onboard large-volume data storage. The S-WPIA executes calculations asynchronously using the collected electric and magnetic wave data, data acquired from multiple particle instruments, and ambient magnetic-field data. The S-WPIA has the role of handling large amounts of raw data that are dedicated to calculations of the S-WPIA. Then, the results are transferred to the ground station. This paper describes the design of the S-WPIA and its calculations in detail, as implemented onboard Arase.[Figure not available: see fulltext.

  1. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by

  2. Real-Time On-Board Processing Validation of MSPI Ground Camera Images

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.

    2010-01-01

    The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.

  3. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Revercomb, Henry E.; Knuteson, Robert O.; Tobin, David C.; Ellington, Scott D.; Werner, Mark W.; Adler, Douglas P.; Garcia, Raymond K.; Taylor, Joseph K.; Ciganovich, Nick N.; Smith, William L., Sr.; Bingham, Gail E.; Elwell, John D.; Scott, Deron K.

    2005-01-01

    The NASA New Millennium Program's Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument provides enormous advances in water vapor, wind, temperature, and trace gas profiling from geostationary orbit. The top-level instrument calibration requirement is to measure brightness temperature to better than 1 K (3 sigma) over a broad range of atmospheric brightness temperatures, with a reproducibility of +/-0.2 K. For in-flight radiometric calibration, GIFTS uses views of two on-board blackbody sources (290 K and 255 K) along with cold space, sequenced at regular programmable intervals. The blackbody references are cavities that follow the UW Atmospheric Emitted Radiance Interferometer (AERI) design, scaled to the GIFTS beam size. The cavity spectral emissivity is better than 0.998 with an absolute uncertainty of less than 0.001. Absolute blackbody temperature uncertainties are estimated at 0.07 K. This paper describes the detailed design of the GIFTS on-board calibration system that recently underwent its Critical Design Review. The blackbody cavities use ultra-stable thermistors to measure temperature, and are coated with high emissivity black paint. Monte Carlo modeling has been performed to calculate the cavity emissivity. Both absolute temperature and emissivity measurements are traceable to NIST, and detailed uncertainty budgets have been developed and used to show the overall system meets accuracy requirements. The blackbody controller is housed on a single electronics board and provides precise selectable set point temperature control, thermistor resistance measurement, and the digital interface to the GIFTS instrument. Plans for the NIST traceable ground calibration of the on-board blackbody system have also been developed and are presented in this paper.

  4. Observations of whistler mode waves in the Jovian system and their consequences for the onboard processing within the RPWI instrument for JUICE

    NASA Astrophysics Data System (ADS)

    Santolik, O.; Soucek, J.; Kolmasova, I.; Grison, B.; Wahlund, J.-E.; Bergmann, J.

    2013-09-01

    Evidence for a magnetosphere at Ganymede has been found in 1996 using measurements of plasma waves onboard the Galileo spacecraft (fig. 1). This discovery demonstrates the importance of measurements of waves in plasmas around Jovian moons [1]. Galileo also observed whistler-mode waves in the magnetosphere of Ganymede similar to important classes of waves in the Earth magnetosphere: chorus and hiss [2]. Data from the Galileo spacecraft have therefore shown the importance of measurements of waves in plasmas around Jovian moons, especially in the light of recent advances in analysis of whistler-mode waves in the Earth magnetosphere and their importance for acceleration of radiation belt electrons to relativistic energies. Multicomponent measurements of the fluctuating magnetic and electric fields are needed for localization and characterization of source regions of these waves. Radio & Plasma Waves Investigation (RPWI) experiment will be implemented on the JUICE (JUpiter ICy moon Explorer) spacecraft. RPWI is a highly integrated instrument package that provides a comprehensive set of plasma and fields measurements. Proposed measurement modes for the low frequency receiver subsystem of RPWI include onboard processing which will be suitable for analysis of whistler-mode waves: (1) Polarization and propagation analysis based on phase relations to identify wave modes and propagation directions (2) Poynting vector to determine source regions (3) Detailed frequency-time structure, polarization, wave vector directions to identify linear or nonlinear source mechanisms

  5. Onboard Science and Applications Algorithm for Hyperspectral Data Reduction

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Davies, Ashley G.; Silverman, Dorothy; Mandl, Daniel

    2012-01-01

    An onboard processing mission concept is under development for a possible Direct Broadcast capability for the HyspIRI mission, a Hyperspectral remote sensing mission under consideration for launch in the next decade. The concept would intelligently spectrally and spatially subsample the data as well as generate science products onboard to enable return of key rapid response science and applications information despite limited downlink bandwidth. This rapid data delivery concept focuses on wildfires and volcanoes as primary applications, but also has applications to vegetation, coastal flooding, dust, and snow/ice applications. Operationally, the HyspIRI team would define a set of spatial regions of interest where specific algorithms would be executed. For example, known coastal areas would have certain products or bands downlinked, ocean areas might have other bands downlinked, and during fire seasons other areas would be processed for active fire detections. Ground operations would automatically generate the mission plans specifying the highest priority tasks executable within onboard computation, setup, and data downlink constraints. The spectral bands of the TIR (thermal infrared) instrument can accurately detect the thermal signature of fires and send down alerts, as well as the thermal and VSWIR (visible to short-wave infrared) data corresponding to the active fires. Active volcanism also produces a distinctive thermal signature that can be detected onboard to enable spatial subsampling. Onboard algorithms and ground-based algorithms suitable for onboard deployment are mature. On HyspIRI, the algorithm would perform a table-driven temperature inversion from several spectral TIR bands, and then trigger downlink of the entire spectrum for each of the hot pixels identified. Ocean and coastal applications include sea surface temperature (using a small spectral subset of TIR data, but requiring considerable ancillary data), and ocean color applications to track

  6. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  7. Onboard Processing on PWE OFA/WFC (Onboard Frequency Analyzer/Waveform Capture) aboard the ERG (ARASE) Satellite

    NASA Astrophysics Data System (ADS)

    Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.

  8. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  9. Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Kuhn, Olga; Edwards, Michelle L.; Hill, John M.; Thompson, David; Veillet, Christian; Wagner, R. Mark

    2016-07-01

    The current status of the facility instrumentation for the Large Binocular Telescope (LBT) is reviewed. The LBT encompasses two 8.4 meter primary mirrors on a single mount yielding an effective collecting area of 11.8 meters or 23 meters when interferometrically combined. The three facility instruments at LBT include: 1) the Large Binocular Cameras (LBCs), each with a 23'× 25' field of view (FOV). The blue optimized and red optimized optical wavelength LBCs are mounted at the prime focus of the SX (left) and DX (right) primary mirrors, respectively. Combined, the filter suite of the two LBCs cover 0.3-1.1 μm, including the addition of new medium-band filters centered on TiO (0.78 μm) and CN (0.82 μm) 2) the Multi-Object Double Spectrograph (MODS), two identical optical spectrographs each mounted at the straight through f/15 Gregorian focus of the primary mirrors. The capabilities of MODS-1 and -2 include imaging with Sloan filters (u, g, r, i, and z) and medium resolution (R ˜ 2000) spectroscopy, each with 24 interchangeable masks (multi-object or longslit) over a 6'× 6' FOV. Each MODS is capable of blue (0.32-0.6 μm) and red (0.5-1.05 μm) wavelength only spectroscopy coverage or both can employ a dichroic for 0.32-1.05 μm wavelength coverage (with reduced coverage from 0.56- 0.57 μm) and 3) the two LBT Utility Camera in the Infrared instruments (LUCIs), are each mounted at a bent-front Gregorian f/15 focus of a primary mirror. LUCI-1 and 2 are designed for seeing-limited (4'× 4' FOV) and active optics using thin-shell adaptive secondary mirrors (0.5'× 0.5' FOV) imaging and spectroscopy over the wavelength range of 0.95-2.5 μm and spectroscopic resolutions of 400 <= R <= 11000 (depending on the combination of grating, slits, and cameras used). The spectroscopic capabilities also include 32 interchangeable multi-object or longslit masks which are cryogenically cooled. Currently all facility instruments are in-place at the LBT and, for the first time

  10. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  11. Cosmic gamma-ray bursts detected in the RELEC experiment onboard the Vernov satellite

    NASA Astrophysics Data System (ADS)

    Bogomolov, A. V.; Bogomolov, V. V.; Iyudin, A. F.; Kuznetsova, E. A.; Minaev, P. Yu.; Panasyuk, M. I.; Pozanenko, A. S.; Prokhorov, A. V.; Svertilov, S. I.; Chernenko, A. M.

    2017-08-01

    The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of 500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of 2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS-Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.

  12. Improving multispectral satellite image compression using onboard subpixel registration

    NASA Astrophysics Data System (ADS)

    Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin

    2013-09-01

    Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.

  13. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  14. Lunar Reference Suite to Support Instrument Development and Testing

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge I.; Winterhalter, Daniel; Farmer, Jack

    2010-01-01

    Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples - to select the highest value samples for transport to Earth - and to leave others on the Moon. Instruments that may be useful for such high-grading are under development. Instruments are also being developed for possible use on future lunar robotic landers, for lunar field work, and for more sophisticated analyses at a lunar outpost. The Johnson Space Center Astromaterials acquisition and Curation Office (JSC Curation) wll support such instrument testing by providing lunar sample "ground truth".

  15. Raman Laser Spectrometer (RLS) on-board data processing and compression

    NASA Astrophysics Data System (ADS)

    Diaz, C.; Lopez, G.; Hermosilla, I.; Catalá, A.; Rodriguez, J. A.; Perez, C.; Diaz, E.

    2013-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Particularly, the RLS scientific objectives are as follows: identify organic compound and search for life; identify the mineral products and indicators of biologic activities; characterize mineral phases produced by water-related processes; characterize igneous minerals and their alteration products; characterise water/geochemical environment as a function of depth in the shallow subsurface. The straightforward approach of operating the instrument would result in a vast amount of spectrum images. A flexible on-board data processing concept has been designed to accommodate scientific return to the sample nature and data downlink bandwidth.

  16. Onboard data processing and compression for a four-sensor suite: the SERENA experiment.

    NASA Astrophysics Data System (ADS)

    Mura, A.; Orsini, S.; Di Lellis, A.; Lazzarotto, F.; Barabash, S.; Livi, S.; Torkar, K.; Milillo, A.; De Angelis, E.

    2013-09-01

    SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO). SERENA instrument includes four units: ELENA (Emitted Low Energy Neutral Atoms), a neutral particle analyzer/imager to detect ion sputtering and backscattering from Mercury's surface; STROFIO (Start from a Rotating FIeld mass spectrometer), a mass spectrometer to identify atomic masses released from the surface; MIPA (Miniature Ion Precipitation Analyzer) and PICAM (Planetary Ion Camera), two ion spectrometers to monitor the precipitating solar wind and measure the plasma environment around Mercury. The System Control Unit architecture is such that all four sensors are connected to a high resolution FPGA, which dialogs with a dedicated high-performance data processing unit. The unpredictability of the data rate, due to the peculiarities of these investigations, leads to several possible scenarios for the data compression and handling. In this study we first discuss about the predicted data volume that comes from the optimized operation strategy, and then we report on the instrument data processing and compression.

  17. Rapid Onboard Data Product Generation with Multicore Processors and FPGA

    NASA Astrophysics Data System (ADS)

    Mandl, D.; Sohlberg, R. A.; Cappelaere, P. G.; Frye, S. W.; Ly, V.; Handy, M.; Ambrosia, V. G.; Sullivan, D. V.; Bland, G.; Pastor, E.; Crago, S.; Flatley, C.; Shah, N.; Bronston, J.; Creech, T.

    2012-12-01

    The Intelligent Payload Module (IPM) is an experimental testbed with multicore processors and Field Programmable Gate Array (FPGA). This effort is being funded by the NASA Earth Science Technology Office as part of an Advanced Information Systems Technology (AIST) 2011 research grant to investigate the use of high performance onboard processing to create an onboard data processing pipeline that can rapidly process a subset of onboard imaging spectrometer data (1) through radiance to reflectance conversion (2) atmospheric correction (3) geolocation and co-registration and (4) level 2 data product generation. The requirements are driven by the mission concept for the HyspIRI NASA Decadal mission, although other NASA Decadal missions could use the same concept. The system is being set up to make use of the same ground and flight software being used by other satellites at NASA/GSFC. Furthermore, a Web Coverage Processing Service (WCPS) is installed as part of the flight software which enables a user on the ground to specify the desired algorithm to run onboard against the data in realtime. Benchmark demonstrations are being run and will be run through the three year effort on various platforms including a helicopter and various airplane platforms with various instruments to demonstrate various configurations that would be compatible with the HyspIRI mission and other similar missions. This presentation will lay out the demonstrations conducted to date along with any benchmark performance metrics and future demonstration efforts and objectives.Initial IPM Test Box

  18. HypsIRI On-Board Science Data Processing

    NASA Technical Reports Server (NTRS)

    Flatley, Tom

    2010-01-01

    Topics include On-board science data processing, on-board image processing, software upset mitigation, on-board data reduction, on-board 'VSWIR" products, HyspIRI demonstration testbed, and processor comparison.

  19. Scaling functional status within the interRAI suite of assessment instruments

    PubMed Central

    2013-01-01

    Background As one ages, physical, cognitive, and clinical problems accumulate and the pattern of loss follows a distinct progression. The first areas requiring outside support are the Instrumental Activities of Daily Living and over time there is a need for support in performing the Activities of Daily Living. Two new functional hierarchies are presented, an IADL hierarchical capacity scale and a combination scale integrating both IADL and ADL hierarchies. Methods A secondary analyses of data from a cross-national sample of community residing persons was conducted using 762,023 interRAI assessments. The development of the new IADL Hierarchy and a new IADL-ADL combined scale proceeded through a series of interrelated steps first examining individual IADL and ADL item scores among persons receiving home care and those living independently without services. A factor analysis demonstrated the overall continuity across the IADL-ADL continuum. Evidence of the validity of the scales was explored with associative analyses of factors such as a cross-country distributional analysis for persons in home care programs, a count of functional problems across the categories of the hierarchy, an assessment of the hours of informal and formal care received each week by persons in the different categories of the hierarchy, and finally, evaluation of the relationship between cognitive status and the hierarchical IADL-ADL assignments. Results Using items from interRAI’s suite of assessment instruments, two new functional scales were developed, the interRAI IADL Hierarchy Scale and the interRAI IADL-ADL Functional Hierarchy Scale. The IADL Hierarchy Scale consisted of 5 items, meal preparation, housework, shopping, finances and medications. The interRAI IADL-ADL Functional Hierarchy Scale was created through an amalgamation of the ADL Hierarchy (developed previously) and IADL Hierarchy Scales. These scales cover the spectrum of IADL and ADL challenges faced by persons in the community

  20. Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Plaschke, F.; Teubenbacher, R.; Giner, L.; Baumjohann, W.; Magnes, W.; Steller, M.; Torbert, R. B.; Vaith, H.; Chutter, M.; Fornaçon, K.-H.; Glassmeier, K.-H.; Carr, C.

    2014-01-01

    We compare the magnetic field data obtained from the flux-gate magnetometer (FGM) and the magnetic field data deduced from the gyration time of electrons measured by the electron drift instrument (EDI) onboard Cluster to determine the spin-axis offset of the FGM measurements. Data are used from orbits with their apogees in the magnetotail, when the magnetic field magnitude was between about 20 and 500 nT. Offset determination with the EDI-FGM comparison method is of particular interest for these orbits, because no data from solar wind are available in such orbits to apply the usual calibration methods using the Alfvén waves. In this paper, we examine the effects of the different measurement conditions, such as direction of the magnetic field relative to the spin plane and field magnitude in determining the FGM spin-axis offset, and also take into account the time-of-flight offset of the EDI measurements. It is shown that the method works best when the magnetic field magnitude is less than about 128 nT and when the magnetic field is aligned near the spin-axis direction. A remaining spin-axis offset of about 0.4 ∼ 0.6 nT was observed for Cluster 1 between July and October 2003. Using multipoint multi-instrument measurements by Cluster we further demonstrate the importance of the accurate determination of the spin-axis offset when estimating the magnetic field gradient.

  1. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection.

    PubMed

    Ling, F; Halabi, S; Jones, C

    2018-07-01

    Periprosthetic joint infection is a major complication of total joint replacement surgery and is associated with significant morbidity, mortality and financial burden. Surgical body suits (space suits), originally designed to reduce the incidence of infection, have paradoxically been implicated in increased periprosthetic joint infection rates recently. Air exhausted from space suits may contribute to this increased rate of periprosthetic joint infection. To investigate the flow of air exhausted from space suits commonly used in modern operating theatres. The exhaust airflow patterns of four commercially available space suit systems were compared using a fog machine and serial still photographs. The space suit systems tested all air exhausted into the operating room. The single fan systems with a standard surgical gown exhausted air laterally from the posterior gown fold at approximately the level of the surgical field. The single fan system with a dedicated zippered suit exhausted air at a level below the surgical field. The dual fan system exhausted air out of the top of the helmet at a level above the surgical field. Space suit systems currently in use in joint replacement surgery differ significantly from traditional body exhaust systems; rather than removing contaminated air from the operating environment, modern systems exhaust this air into the operating room, in some cases potentially towards the sterile instrument tray and the surgical field. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  2. Science Benefits of Onboard Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    Primitive bodies (asteroids and comets), which have remained relatively unaltered since their formation, are important targets for scientific missions that seek to understand the evolution of the solar system. Often the first step is to fly by these bodies with robotic spacecraft. The key to maximizing data returns from these flybys is to determine the spacecraft trajectory relative to the target body-in short, navigate the spacecraft- with sufficient accuracy so that the target is guaranteed to be in the instruments' field of view. The most powerful navigation data in these scenarios are images taken by the spacecraft of the target against a known star field (onboard astrometry). Traditionally, the relative trajectory of the spacecraft must be estimated hours to days in advance using images collected by the spacecraft. This is because of (1)!the long round-trip light times between the spacecraft and the Earth and (2)!the time needed to downlink and process navigation data on the ground, make decisions based on the result, and build and uplink instrument pointing sequences from the results. The light time and processing time compromise navigation accuracy considerably, because there is not enough time to use more accurate data collected closer to the target-such data are more accurate because the angular capability of the onboard astrometry is essentially constant as the distance to the target decreases, resulting in better "plane-of- sky" knowledge of the target. Excellent examples of these timing limitations are high-speed comet encounters. Comets are difficult to observe up close; their orbits often limit scientists to brief, rapid flybys, and their coma further restricts viewers from seeing the nucleus in any detail, unless they can view the nucleus at close range. Comet nuclei details are typically discernable for much shorter durations than the roundtrip light time to Earth, so robotic spacecraft must be able to perform onboard navigation. This onboard

  3. Comparison of Tropical Ozone from SHADOZ with Remote Sensing Retrievals from Suomi-npp Ozone Mapping Profile Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof

    2014-01-01

    The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.

  4. The on-board tailpipe emissions measurement system (TOTEMS) : proof\\0x2010 of\\0x2010concept.

    DOT National Transportation Integrated Search

    2009-06-03

    An on-board tailpipe emissions instrumentation system was designed, assembled and tested as proof-of-concept : for the University of Vermonts Transportation Research Center (TRC) Signature Project #2 real-world vehicle : emissions data colle...

  5. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  6. Improvement of the extravehicular activity suit for the MIR orbiting station program.

    PubMed

    Severin, G; Abramov, I; Svertshek, V; Stoklitsky, A

    1996-09-01

    Since 1977, EVA suits of the semi-rigid type have been used to support sorties from Russian orbiting stations. Currently, within the MIR station program, the Orlan-DMA, the latest modification of the Orlan semi-rigid EVA suit is used by crewmembers. Quite some experience has been gained by Russia in operations of the Orlan type suits. It has proved the advantages of the EVA suit of a semi-rigid configuration, featuring donning/doffing through a hinged backpack door with a built-in life support system. Meanwhile there were some wishes and comments from the crewmembers addressed to the enclosure design and some LSS components. Currently a number of ways and methods are being developed to improve operational characteristics of the suit as well as to enhance its reliability and lifetime. The forthcoming EVAs to be performed by the STS-MIR crewmembers and future EVAs from the common airlock of the International Space Station Alpha make implementation of the planned improvements even more consistent. The paper analyzes the experience gained in the Orlan-DMA operation and discusses planned improvements in light of the forthcoming activities. In particular the Orlan enhancement program is aimed to make the donning/doffing easier, enhance enclosure mobility, improve the condensate removal unit, increase the CCC (Contamination Control Cartridge) operation time and simplify the onboard subsystem design concept.

  7. STS-45 crewmembers during zero gravity activities onboard KC-135 NASA 930

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, crewmembers and backup payload specialist participate in zero gravity activities onboard KC-135 NASA 930. The crewmembers, wearing flight suits, float and tumble around an inflated globe during the few seconds of microgravity created by parabolic flight. With his hand on the fuselage ceiling is Payload Specialist Dirk D. Frimout. Clockwise from his position are Mission Specialist (MS) C. Michael Foale, Pilot Brian Duffy, backup Payload Specialist Charles R. Chappell, MS and Payload Commander (PLC) Kathryn D. Sullivan (with eye glasses), Commander Charles F. Bolden, and Payload Specialist Byron K. Lichtenberg.

  8. An on-board processing satellite payload for European mobile communications

    NASA Astrophysics Data System (ADS)

    Evans, B. G.; Casewell, I. E.; Craig, A. D.

    1987-06-01

    An examination of the use of satellite on-board processing (OBP) for land mobile applications shows the feasibility of designing an OBP payload to satisfy the functional requirements of the land mobile system projected for the 1990s. Following a discussion of the proposed land mobile system, advantages of OBP over conventional transport payloads are considered. The use of digital signal processing techniques is shown to provide a solution for the merging of the routing and transmultiplexing functions into a single element, and such techniques are ideally suited to space applications. It is suggested that the projected power, mass, and size estimates are compatible with the payload capacity of one of the large Olympus satellites.

  9. On-orbit degradation of recent space-based solar instruments and understanding of the degradation processes

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Dominique, M.; BenMoussa, A.; Dammasch, I. E.; Bolsée, D.; Pereira, N.; Damé, L.; Bekki, S.; Hauchecorne, A.

    2017-05-01

    The space environment is considered hazardous to spacecraft, resulting in materials degradation. Understanding the degradation of space-based instruments is crucial in order to achieve the scientific objectives, which are derived from these instruments. This paper discusses the on-orbit performance degradation of recent spacebased solar instruments. We will focus on the instruments of three space-based missions such as the Project for On-Board Autonomy 2 (PROBA2) spacecraft, the Solar Monitoring Observatory (SOLAR) payload onboard the Columbus science Laboratory of the International Space Station (ISS) and the PICARD spacecraft. Finally, this paper intends to understand the degradation processes of these space-based solar instruments.

  10. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.; ,

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  11. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    NASA Astrophysics Data System (ADS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R. C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-03-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  12. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  13. Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite Polarization Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Waluschka, Eugene; Wang, Menghua

    2016-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of five instruments onboard the Suomi National Polar-Orbiting Partnership (SNPP) satellite that launched from Vandenberg Air Force Base, California, on October 28, 2011. It is a whiskbroom radiometer that provides +/-56.28deg scans of the Earth view. It has 22 bands, among which 14 are reflective solar bands (RSBs). The RSBs cover a wavelength range from 410 to 2250 nm. The RSBs of a remote sensor are usually sensitive to the polarization of incident light. For VIIRS, it is specified that the polarization factor should be smaller than 3% for 410 and 862 nm bands and 2.5% for other RSBs for the scan angle within +/-45deg. Several polarization sensitivity tests were performed prelaunch for SNPP VIIRS. The first few tests either had large uncertainty or were less reliable, while the last one was believed to provide the more accurate information about the polarization property of the instrument. In this paper, the measured data in the last polarization sensitivity test are analyzed, and the polarization factors and phase angles are derived from the measurements for all the RSBs. The derived polarization factors and phase angles are band, detector, and scan angle dependent. For near-infrared bands, they also depend on the half-angle mirror side. Nevertheless, the derived polarization factors are all within the specification, although the strong detector dependence of the polarization parameters was not expected. Compared to the Moderate Resolution Imaging Spectroradiometer on both Aqua and Terra satellites, the polarization effect on VIIRS RSB is much smaller.

  14. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  15. Onboard Radar Processing Development for Rapid Response Applications

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  16. Validation of On-board Cloud Cover Assessment Using EO-1

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Miller, Jerry; Griffin, Michael; Burke, Hsiao-hua

    2003-01-01

    The purpose of this NASA Earth Science Technology Office funded effort was to flight validate an on-board cloud detection algorithm and to determine the performance that can be achieved with a Mongoose V flight computer. This validation was performed on the EO-1 satellite, which is operational, by uploading new flight code to perform the cloud detection. The algorithm was developed by MIT/Lincoln Lab and is based on the use of the Hyperion hyperspectral instrument using selected spectral bands from 0.4 to 2.5 microns. The Technology Readiness Level (TRL) of this technology at the beginning of the task was level 5 and was TRL 6 upon completion. In the final validation, an 8 second (0.75 Gbytes) Hyperion image was processed on-board and assessed for percentage cloud cover within 30 minutes. It was expected to take many hours and perhaps a day considering that the Mongoose V is only a 6-8 MIP machine in performance. To accomplish this test, the image taken had to have level 0 and level 1 processing performed on-board before the cloud algorithm was applied. For almost all of the ground test cases and all of the flight cases, the cloud assessment was within 5% of the correct value and in most cases within 1-2%.

  17. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas

    2017-04-01

    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  18. Fault-tolerant NAND-flash memory module for next-generation scientific instruments

    NASA Astrophysics Data System (ADS)

    Lange, Tobias; Michel, Holger; Fiethe, Björn; Michalik, Harald; Walter, Dietmar

    2015-10-01

    Remote sensing instruments on today's space missions deliver a high amount of data which is typically evaluated on ground. Especially for deep space missions the telemetry downlink is very limited which creates the need for the scientific evaluation and thereby a reduction of data volume already on-board the spacecraft. A demanding example is the Polarimetric and Helioseismic Imager (PHI) instrument on Solar Orbiter. To enable on-board offline processing for data reduction, the instrument has to be equipped with a high capacity memory module. The module is based on non-volatile NAND-Flash technology, which requires more advanced operation than volatile DRAM. Unlike classical mass memories, the module is integrated into the instrument and allows readback of data for processing. The architecture and safe operation of such kind of memory module is described in the following paper.

  19. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2015-01-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of approximately 100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SOC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and 'Scientist-in-the-Loop' (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  20. Magnetospheric Multiscale Instrument Suite Operations and Data System

    NASA Astrophysics Data System (ADS)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  1. The Canadian space agency planetary analogue materials suite

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Mann, Paul; Izawa, Matthew R. M.; Applin, Daniel M.; Samson, Claire; Kruzelecky, Roman; Glotch, Timothy D.; Mertzman, Stanley A.; Mertzman, Karen R.; Haltigin, Timothy W.; Fry, Christopher

    2015-12-01

    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25 μm. Thermal infrared emission spectra were collected from 5 to 50 μm. Raman spectra with 532 nm excitation, and laser-induced fluorescence spectra with 405 nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples. The CSA intends to make available sample powders (<45 μm and 45-1000 μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community. Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the

  2. Development Status of Optical and Electromagnetic Instruments onboard JEM-GLIMS

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuteru; Ushio, Tomoo; Morimoto, Takeshi; Suzuki, Makoto; Yamazaki, Atsushi; Ishida, Ryohei; Takahashi, Yukihiro; Hobara, Yasuhide; Sakamoto, Yuji; Yoshita, Kengo

    In order to study the generation mechanism of Transient Luminous Events (TLEs), global oc-currence rates and distributions of lightning and TLEs, and the relationship between lightning, TLEs and Terrestrial Gamma-ray Flashes (TGFs), we will carry out the lightning and TLE observation at Exposed Facility of Japanese Experiment Module (JEM-EF) of International Space Station (ISS). In this mission named JEM-GLIMS (Global Lightning and sprIte Mea-surementS on JEM-EF) two kinds of optical instruments and two sets of radio receivers will be integrated into the Multi mission Consolidated Equipment (MCE) which is the bus system and will be installed at JEM-EF. The optical instruments consist of two wide FOV CMOS cameras and six wide FOV photometers, and all these optical instruments are pointed to the nadir direction. CMOS cameras named LSI (Lightning and Sprite Imager) use the STAR-250 device as a detector, which has 512x512 pixels and 25x25 µm pixel size, and have 28.3x28.3 deg. FOV. One CMOS camera with a wide band filter (730-830 nm) mainly measures lightning emission, while another camera with a narrowband filter (766+/-6 nm) mainly measures TLE emission. Five of six photometers named as PH have 42.7 deg. FOV and use photomultiplier tube (PMT) as a photon detector. They equip band-pass filters (150-280 nm, 316+/-5 nm, 337+/-5 nm, 392+/-5 nm, and 762+/-5 nm) for the absolute intensity measurement of the TLE emission. One of six photometers equips a wide-band filter (600-900 nm) to detect light-ning occurring within 86.8 deg. FOV. These output signals will be recorded with the sampling frequency of 20 kHz with a 12-bit resolution. One of two electromagnetic instruments is a VLF receiver (VLFR), which measures electromagnetic waves in the frequency range of 1-40 kHz with 16-bit resolution. Another instrument is VHF interferometer (VITF), which measures VHF pulses generated lightning discharge in the frequency range of 70-100 MHz. JEM-GIMS will be launched in 2011. We

  3. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  4. Reconfigurable modular computer networks for spacecraft on-board processing

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.

  5. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    gamma ray events and the problem is to detect and reject the much more voluminous cosmic ray projections, so that the remaining science data can be telemetered to the ground over the constrained communication link. The state-of-the-art in cosmic rays detection and rejection does not provide an adequate computational solution. This paper presents a novel approach to the AdEPT on-board data processing burdened with the CR detection top pole bottleneck problem. This paper is introducing the data processing object, demonstrates object segmentation and distribution for processing among many processing elements (PEs) and presents solution algorithm for the processing bottleneck - the CR-Algorithm. The algorithm is based on the a priori knowledge that a CR pierces the entire instrument pressure vessel. This phenomenon is also the basis for a straightforward CR simulator, allowing the CR-Algorithm performance testing. Parallel processing of the readout image's (2(N+M) - 4) peripheral voxels is detecting all CRs, resulting in O(n) computational complexity. This algorithm near real-time performance is making AdEPT class spaceflight instruments feasible.

  6. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  7. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  8. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  9. Laser tracker orientation in confined space using on-board targets

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Kyle, Stephen; Lin, Jiarui; Yang, Linghui; Ren, Yu; Zhu, Jigui

    2016-08-01

    This paper presents a novel orientation method for two laser trackers using on-board targets attached to the tracker head and rotating with it. The technique extends an existing method developed for theodolite intersection systems which are now rarely used. This method requires only a very narrow space along the baseline between the instrument heads, in order to establish the orientation relationship. This has potential application in environments where space is restricted. The orientation parameters can be calculated by means of two-face reciprocal measurements to the on-board targets, and measurements to a common point close to the baseline. An accurate model is then applied which can be solved through nonlinear optimization. Experimental comparison has been made with the conventional orientation method, which is based on measurements to common intersection points located off the baseline. This requires more space and the comparison has demonstrated the feasibility of the more compact technique presented here. Physical setup and testing suggest that the method is practical. Uncertainties estimated by simulation indicate good performance in terms of measurement quality.

  10. The soft gamma-ray detector (SGD) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  11. Testing of the on-board attitude determination and control algorithms for SAMPEX

    NASA Technical Reports Server (NTRS)

    Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-01-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  12. Using a Multiwavelength Suite of Microwave Instruments to Investigate the Microphysical Structure of Deep Convective Cores

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.

    2016-01-01

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 2324 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 gcm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).

  13. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    NASA Astrophysics Data System (ADS)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  14. Evaluation of the Sensor Data Record from the Nadir Instruments of the Ozone Mapping Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Wu, Xiangqian; Liu, Quanhua; Zeng, Jian; Grotenhuis, Michael; Qian, Haifeng; Caponi, Maria; Flynn, Larry; Jaross, Glen; Sen, Bhaswar; Buss, Richard H., Jr.; hide

    2014-01-01

    This paper evaluates the first 15 months of the Ozone Mapping and Profiler Suite (OMPS) Sensor Data Record (SDR) acquired by the nadir sensors and processed by the National Oceanic and Atmospheric Administration Interface Data Processing Segment. The evaluation consists of an inter-comparison with a similar satellite instrument, an analysis using a radiative transfer model, and an assessment of product stability. This is in addition to the evaluation of sensor calibration and the Environment Data Record product that are also reported in this Special Issue. All these are parts of synergetic effort to provide comprehensive assessment at every level of the products to ensure its quality. It is found that the OMPS nadir SDR quality is satisfactory for the current Provisional maturity. Methods used in the evaluation are being further refined, developed, and expanded, in collaboration with international community through the Global Space-based Inter-Calibration System, to support the upcoming long-term monitoring.

  15. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  16. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    NASA Technical Reports Server (NTRS)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  17. The New Cloud Absorption Radiometer (CAR) Software: One Model for NASA Remote Sensing Virtual Instruments

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rapchun, David A.; Jones, Hollis H.

    2001-01-01

    The Cloud Absorption Radiometer (CAR) instrument has been the most frequently used airborne instrument built in-house at NASA Goddard Space Flight Center, having flown scientific research missions on-board various aircraft to many locations in the United States, Azores, Brazil, and Kuwait since 1983. The CAR instrument is capable of measuring scattered light by clouds in fourteen spectral bands in UV, visible and near-infrared region. This document describes the control, data acquisition, display, and file storage software for the new version of CAR. This software completely replaces the prior CAR Data System and Control Panel with a compact and robust virtual instrument computer interface. Additionally, the instrument is now usable for the first time for taking data in an off-aircraft mode. The new instrument is controlled via a LabVIEW v5. 1.1-developed software interface that utilizes, (1) serial port writes to write commands to the controller module of the instrument, and (2) serial port reads to acquire data from the controller module of the instrument. Step-by-step operational procedures are provided in this document. A suite of other software programs has been developed to complement the actual CAR virtual instrument. These programs include: (1) a simulator mode that allows pretesting of new features that might be added in the future, as well as demonstrations to CAR customers, and development at times when the instrument/hardware is off-location, and (2) a post-experiment data viewer that can be used to view all segments of individual data cycles and to locate positions where 'start' and stop' byte sequences were incorrectly formulated by the instrument controller. The CAR software described here is expected to be the basis for CAR operation for many missions and many years to come.

  18. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  19. [STS-31 Onboard 16mm Photography Quick Release]. [Onboard Activities

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This video features scenes shot by the crew of onboard activities including Hubble Space Telescope deploy, remote manipulator system (RMS) checkout, flight deck and middeck experiments, and Earth and payload bay views.

  20. Fully EMU suited MS Peterson and MS Musgrave in airlock

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Fully extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson (wearing glasses) and MS Musgrave with service and cooling umbilical (SCU) connected to their displays and control modules (DCMs) participate in airlock prebreathe procedures. Three-fourths of the STS-6 astronaut crew appear in this unusual 35mm frame exposed in the airlock of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099. Musgrave's helmet visor encompasses all the action in the frame. Peterson is reflected on the right side of Musgrave's visor with Pilot Bobko, wearing conventional onboard clothing and photographing, the activity appearing at the center of the frame. The reversed numbers (1 and 2) in the mirrored image represents the extravehicular activity (EVA) designations for the two mission specialists.

  1. Automated calibration of the Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands

    NASA Astrophysics Data System (ADS)

    Rausch, Kameron; Houchin, Scott; Cardema, Jason; Moy, Gabriel; Haas, Evan; De Luccia, Frank J.

    2013-12-01

    National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective bands are currently calibrated via weekly updates to look-up tables (LUTs) utilized by operational ground processing in the Joint Polar Satellite System Interface Data Processing Segment (IDPS). The parameters in these LUTs must be predicted ahead 2 weeks and cannot adequately track the dynamically varying response characteristics of the instrument. As a result, spurious "predict-ahead" calibration errors of the order of 0.1% or greater are routinely introduced into the calibrated reflectances and radiances produced by IDPS in sensor data records (SDRs). Spurious calibration errors of this magnitude adversely impact the quality of downstream environmental data records (EDRs) derived from VIIRS SDRs such as Ocean Color/Chlorophyll and cause increased striping and band-to-band radiometric calibration uncertainty of SDR products. A novel algorithm that fully automates reflective band calibration has been developed for implementation in IDPS in late 2013. Automating the reflective solar band (RSB) calibration is extremely challenging and represents a significant advancement over the manner in which RSB calibration has traditionally been performed in heritage instruments such as the Moderate Resolution Imaging Spectroradiometer. The automated algorithm applies calibration data almost immediately after their acquisition by the instrument from views of space and on-onboard calibration sources, thereby eliminating the predict-ahead errors associated with the current offline calibration process. This new algorithm, when implemented, will significantly improve the quality of VIIRS reflective band SDRs and consequently the quality of EDRs produced from these SDRs.

  2. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  3. 40 CFR 85.2223 - On-board diagnostic test report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false On-board diagnostic test report. 85... Tests § 85.2223 On-board diagnostic test report. (a) Motorists whose vehicles fail the on-board diagnostic test described in § 85.2222 shall be provided with the on-board diagnostic test results, including...

  4. 40 CFR 85.2223 - On-board diagnostic test report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false On-board diagnostic test report. 85... Tests § 85.2223 On-board diagnostic test report. (a) Motorists whose vehicles fail the on-board diagnostic test described in § 85.2222 shall be provided with the on-board diagnostic test results, including...

  5. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2010-10-01 2010-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  6. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2012-10-01 2012-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  7. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2011-10-01 2011-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  8. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2014-10-01 2014-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  9. 47 CFR 80.413 - On-board station equipment records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... identification of the on-board station; (2) The number and type of repeater and mobile units used on-board the... 47 Telecommunication 5 2013-10-01 2013-10-01 false On-board station equipment records. 80.413... SERVICES STATIONS IN THE MARITIME SERVICES Station Documents § 80.413 On-board station equipment records...

  10. Planck focal plane instruments: advanced modelization and combined analysis

    NASA Astrophysics Data System (ADS)

    Zonca, Andrea; Mennella, Aniello

    2012-08-01

    This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.

  11. SOFIA Science Instruments: Commissioning, Upgrades and Future Opportunities

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.

    2014-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter telescope housed in the aft section of a Boeing 747sp aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 µm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1 micron imager built by Lowell Observatory; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 micron wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-210 micron IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross- Echelle Spectrograph), a 5-28 micron high-resolution spectrometer being completed by UC Davis and NASA Ames. A second generation instrument, HAWC+ (Highresolution Airborne Wideband Camera), is a 50-240 micron imager being upgraded at JPL to add polarimetry and new detectors developed at GSFC. SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details instrument capabilities and status as well as plans for future instrumentation, including the call for proposals for 3rd generation SOFIA science instruments.

  12. AstroBus On-Board Software

    NASA Astrophysics Data System (ADS)

    Biscarros, D.; Cantenot, C.; Séronie-Vivien, J.; Schmidt, G.

    AstroBus on-board software is a customisable software for ERC32 based avionics implementing standard ESA Packet Utilization Standard functions. Its architecture based on generic design templates and relying on a library providing standard PUS TC, TM and event services enhances its reusability on various programs. Finally, AstroBus on-board software development and validation environment is based on last generation tools providing an optimised customisation environment.

  13. The Calibration of the DSCOVR EPIC Multiple Visible Channel Instrument Using MODIS and VIIRS as a Reference

    NASA Technical Reports Server (NTRS)

    Haney, Conor; Doeling, David; Minnis, Patrick; Bhatt, Rajendra; Scarino, Benjamin; Gopalan, Arun

    2016-01-01

    The Deep Space Climate Observatory (DSCOVR), launched on 11 February 2015, is a satellite positioned near the Lagrange-1 (L1) point, carrying several instruments that monitor space weather, and Earth-view sensors designed for climate studies. The Earth Polychromatic Imaging Camera (EPIC) onboard DSCOVR continuously views the sun-illuminated portion of the Earth with spectral coverage in the UV, VIS, and NIR bands. Although the EPIC instrument does not have any onboard calibration abilities, its constant view of the sunlit Earth disk provides a unique opportunity for simultaneous viewing with several other satellite instruments. This arrangement allows the EPIC sensor to be inter-calibrated using other well-characterized satellite instrument reference standards. Two such instruments with onboard calibration are MODIS, flown on Aqua and Terra, and VIIRS, onboard Suomi-NPP. The MODIS and VIIRS reference calibrations will be transferred to the EPIC instrument using both all-sky ocean and deep convective clouds (DCC) ray-matched EPIC and MODIS/VIIRS radiance pairs. An automated navigation correction routine was developed to more accurately align the EPIC and MODIS/VIIRS granules. The automated navigation correction routine dramatically reduced the uncertainty of the resulting calibration gain based on the EPIC and MODIS/VIIRS radiance pairs. The SCIAMACHY-based spectral band adjustment factors (SBAF) applied to the MODIS/ VIIRS radiances were found to successfully adjust the reference radiances to the spectral response of the specific EPIC channel for over-lapping spectral channels. The SBAF was also found to be effective for the non-overlapping EPIC channel 10. Lastly, both ray-matching techniques found no discernable trends for EPIC channel 7 over the year of publically released EPIC data.

  14. An educational laboratory virtual instrumentation suite assisted experiment for studying fundamentals of series resistance-inductance-capacitance circuit

    NASA Astrophysics Data System (ADS)

    Rana, K. P. S.; Kumar, Vineet; Mendiratta, Jatin

    2017-11-01

    One of the most elementary concepts in freshmen Electrical Engineering subject comprises the Resistance-Inductance-Capacitance (RLC) circuit fundamentals, that is, their time and frequency domain responses. For a beginner, generally, it is difficult to understand and appreciate the step and the frequency responses, particularly the resonance. This paper proposes a student-friendly teaching and learning approach by inculcating the multifaceted versatile software LabVIEWTM along with the educational laboratory virtual instrumentation suite hardware, for studying the RLC circuit time and frequency domain responses. The proposed approach has offered an interactive laboratory experiment where students can model circuits in simulation and hardware circuits on prototype board, and then compare their performances. The theoretical simulations and the obtained experimental data are found to be in very close agreement, thereby enhancing the conviction of students. Finally, the proposed methodology was also subjected to the assessment of learning outcomes based on student feedback, and an average score of 8.05 out of 10 with a standard deviation of 0.471 was received, indicating the overall satisfaction of the students.

  15. Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; McLaren, David A.; Rabideau, Gregg R.; Mandl, Daniel; Hengemihle, Jerry

    2013-01-01

    A set of automated planning algorithms is the current operations baseline approach for the Intelligent Payload Module (IPM) of the proposed Hyper spectral Infrared Imager (HyspIRI) mission. For this operations concept, there are only local (e.g. non-depletable) operations constraints, such as real-time downlink and onboard memory, and the forward sweeping algorithm is optimal for determining which science products should be generated onboard and on ground based on geographical overflights, science priorities, alerts, requests, and onboard and ground processing constraints. This automated planning approach was developed for the HyspIRI IPM concept. The HyspIRI IPM is proposed to use an X-band Direct Broadcast (DB) capability that would enable data to be delivered to ground stations virtually as it is acquired. However, the HyspIRI VSWIR and TIR instruments will produce approximately 1 Gbps data, while the DB capability is 15 Mbps for a approx. =60X oversubscription. In order to address this mismatch, this innovation determines which data to downlink based on both the type of surface the spacecraft is overflying, and the onboard processing of data to detect events. For example, when the spacecraft is overflying Polar Regions, it might downlink a snow/ice product. Additionally, the onboard software will search for thermal signatures indicative of a volcanic event or wild fire and downlink summary information (extent, spectra) when detected, thereby reducing data volume. The planning system described above automatically generated the IPM mission plan based on requested products, the overflight regions, and available resources.

  16. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  17. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  18. Dust Observations by Faraday Cups Onboard Spektr-R

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Kociscak, S.; Safrankova, J.; Nemecek, Z.; Prech, L.

    2017-12-01

    Dust of both interstellar and interplanetary origins was reported in many in-situ experiments devoted to dust detection during past tens of years. Recently, a number of reports employed unintended devices to observe dust (Voyager, Cassini, STEREO …). Most of such observations is based on impact ionization occurring when hypervelocity grains hit a surface being vaporized together with a portion of the surface material. The thermal ionization generates a plasma plume and the dust detection is based on collection of plasma particles by, e.g., antennas. In this contribution, we apply a similar approach to dust impact detection using the multi Faraday cup instrument (BMSW) onboard the Spektr-R spacecraft. It is orbiting the Earth along the highly elliptical trajectory with perigee of 2 and apogee of 50 Re. The BMSW instrument consists of 6 Faraday cups measuring local environmental properties with a rate as high as 30 Hz, i.e., high enough to detect aforementioned plasma plumes. The advantages of the multiple Faraday cup instrument include an easy recognition of dust impacts among plasma disturbances/solitons — dust grain impact can be detected only by one Faraday cup at a given time. We analyze Faraday cup waveforms applying simple criteria on impact spike shape and find a number of dust impact candidates. Based on this experience, we suggest a modification of future devices with a similar detection system.

  19. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  20. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  1. Rapid Diagnostics of Onboard Sequences

    NASA Technical Reports Server (NTRS)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  2. On-board processing architectures for satellite B-ISDN services

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris

    1991-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  3. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  4. Onboard hydrogen generation for automobiles

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J.

    1976-01-01

    Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.

  5. NASA's Black Marble Nighttime Lights Product Suite

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Sun, Qingsong; Seto, Karen C.; Oda, Tomohiro; Wolfe, Robert E.; Sarkar, Sudipta; Stevens, Joshua; Ramos Gonzalez, Olga M.; Detres, Yasmin; Esch, Thomas; hide

    2018-01-01

    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 meters resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF (Bidirectional Reflectance Distribution Function) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.

  6. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...

  7. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...

  8. 40 CFR 85.2222 - On-board diagnostic test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false On-board diagnostic test procedures... Warranty Short Tests § 85.2222 On-board diagnostic test procedures. The test sequence for the inspection of on-board diagnostic systems on 1996 and newer light-duty vehicles and light-duty trucks shall consist...

  9. SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Flatley, Thomas; Godfrey, John; Geist, Alessandro; Espinosa, Daniel; Petrick, David

    2011-01-01

    The SpaceCube 2.0 is a compact, high performance, low-power onboard processing system that takes advantage of cutting-edge hybrid (CPU/FPGA/DSP) processing elements. The SpaceCube 2.0 design concept includes two commercial Virtex-5 field-programmable gate array (FPGA) parts protected by gradiation hardened by software" technology, and possesses exceptional size, weight, and power characteristics [5x5x7 in., 3.5 lb (approximately equal to 12.7 x 12.7 x 17.8 cm, 1.6 kg) 5-25 W, depending on the application fs required clock rate]. The two Virtex-5 FPGA parts are implemented in a unique back-toback configuration to maximize data transfer and computing performance. Draft computing power specifications for the SpaceCube 2.0 unit include four PowerPC 440s (1100 DMIPS each), 500+ DSP48Es (2x580 GMACS), 100+ LVDS high-speed serial I/Os (1.25 Gbps each), and 2x190 GFLOPS single-precision (65 GFLOPS double-precision) floating point performance. The SpaceCube 2.0 includes PROM memory for CPU boot, health and safety, and basic command and telemetry functionality; RAM memory for program execution; and FLASH/EEPROM memory to store algorithms and application code for the CPU, FPGA, and DSP processing elements. Program execution can be reconfigured in real time and algorithms can be updated, modified, and/or replaced at any point during the mission. Gigabit Ethernet, Spacewire, SATA and highspeed LVDS serial/parallel I/O channels are available for instrument/sensor data ingest, and mission-unique instrument interfaces can be accommodated using a compact PCI (cPCI) expansion card interface. The SpaceCube 2.0 can be utilized in NASA Earth Science, Helio/Astrophysics and Exploration missions, and Department of Defense satellites for onboard data processing. It can also be used in commercial communication and mapping satellites.

  10. Calibration of the radiation monitor onboard Akebono using Geant4

    NASA Astrophysics Data System (ADS)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  11. 20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL

  12. IASI instrument onboard Metop-A: lessons learned after almost two years in orbit

    NASA Astrophysics Data System (ADS)

    Buffet, Laurence; Pequignot, Eric; Blumstein, Denis; Fjørtoft, Roger; Lonjou, Vincent; Millet, Bruno; Larigauderie, Carole

    2017-11-01

    The Infrared Atmospheric Sounding Interferometer (IASI) is a key element of the MetOp payload, dedicated to operational meteorology. IASI measurements allow to retrieve temperature and humidity profiles at a 1 km vertical resolution with an accuracy of respectively 1 K and 10%. The aim of this paper is to give a status of the instrument and to present some lessons learned after almost two years in orbit. As the first European infrared sounder, the IASI instrument has demonstrated its operational capability and its adequacy to user needs, with highly meaningful contributions to meteorology, climate and atmospheric chemistry studies. The in-flight performance of IASI is fully satisfactory. The sensitivity to radiative environment seems to be higher than expected: several SEU related anomalies were recorded, without any consequence on the instrument's health. The first decontamination since the commissioning phase was successfully performed in March 2008. The instrument globally shows a stable behaviour.

  13. The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.

    2013-01-01

    The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).

  14. Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan Q.

    2014-01-01

    NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.

  15. MODIS Instrument Operation and Calibration Improvements

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  16. Software Suite to Support In-Flight Characterization of Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross

    2014-01-01

    A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of

  17. The New Instrument Suite of the TSU/Fairborn 2m Automatic Spectroscopic Telescope

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Maxwell, T.; Williamson, M. W.; Fekel, F. C.; Ge, J.; Kelly, J.; Ghasempour, A.; Powell, S.; Zhao, B.; Varosi, F.; Schofield, S.; Liu, J.; Warner, C.; Jakeman, H.; Avner, L.; Swihart, S.; Harrison, C.; Fishler, D.

    2014-01-01

    Tied with the Liverpool Telescope as the world's largest fully robotic optical research telescope, Tennessee State University's (TSU) 2m Automatic Spectroscopic Telescope (AST) has recently been upgraded to improve performance and increase versatility by supporting multiple instruments. Its second-generation instrument head enables us to rapidly switch between any of up to twelve fibers optics, each of which can supply light to a different instrument. In 2013 construction was completed on a new temperature-controlled guest instrument building, and two new high resolution spectrographs were commissioned. The current set of instrumentation includes (1) the telescope's original R=30,000 echelle spectrograph (0.38--0.83 microns simultaneous), (2) a single order R=7,000 spectrograph centered at Ca H&K features, (3) a single-mode-fiber fed miniature echelle spectrograph (R=100,000; 0.48--0.62 microns simultaneous), (4) the University of Florida's EXPERT-3 spectrograph (R=100,000; 0.38--0.9 microns simultaneous; vacuum and temperature controlled) and (5) the University of Florida's FIRST spectrograph (R=70,000$; 0.8--1.35 or 1.4--1.8 microns simultaneous; vacuum and temperature controlled). Future instruments include the Externally Dispersed Interferometry (EDI) Testbed, a combination low resolution dispersed spectrograph and Fourier Transform Spectrograph. We welcome inquiries from the community in regards to observing access and/or proposals for future guest instruments.

  18. Orion ECLSS/Suit System - Ambient Pressure Integrated Suit Test

    NASA Technical Reports Server (NTRS)

    Barido, Richard A.

    2012-01-01

    The Ambient Pressure Integrated Suit Test (APIST) phase of the integrated system testing of the Orion Vehicle Atmosphere Revitalization System (ARS) technology was conducted for the Multipurpose Crew Vehicle (MPCV) Program within the National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate. Crew and Thermal Systems Division performed this test in the eleven-foot human-rated vacuum chamber at the NASA Johnson Space Center. This testing is the first phase of suit loop testing to demonstrate the viability of the Environmental Control and Life Support System (ECLSS) being developed for Orion. APIST is the first in a series, which will consist of testing development hardware including the Carbon dioxide and Moisture Removal Amine Swing-bed (CAMRAS) and the air revitalization loop fan with human test subjects in pressure suits at varying suit pressures. Follow-on testing, to be conducted in 2013, will utilize the CAMRAS and a development regulator with human test subjects in pressure suits at varying cabin and suit pressures. This paper will discuss the results and findings of APIST and will also discuss future testing.

  19. An Onboarding Program for the CT Department.

    PubMed

    Baldwin, Brandi

    2016-01-01

    Healthcare organizations compete for employees in the same way television networks compete for new talent. Organizations also compete over experience, knowledge, and skills new employees bring with them. Organizations that can acclimate a new employee into the social and performance aspects of a new job the quickest create a substantial competitive advantage. Onboarding is the term used for orientation or organizational socialization where new employees acquire the necessary knowledge, skills, and behaviors to fit in with a new company. Computed tomography (CT) department specific onboarding programs increase the comfort level of new employees by informing them of the supervisor's and the department's expectations. Although this article discusses CT, specifically, an onboarding program could apply to all of imaging. With the high costs that employee turnover incurs, all departments should have an orientation program that helps retain employees as well as prepare new employees for employment. Current personnel are valuable resources for offering appropriate information for successful employment in specific departments. A structured, department specific onboarding program with the full participation and support of current staff will enhance staff retention.

  20. An Experiment in Radiation Measurement Using the Depron Instrument

    NASA Astrophysics Data System (ADS)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  1. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  2. New Mobile Atmospheric Lidar Systems for Spaceborne Instrument Validation

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Raut, J.-C.; Sanak, J.; Berthier, S.; Dulac, F.; Kim, S. W.; Royer, P.

    2009-04-01

    We present an overview of our different approaches using lidar systems as a tool to validate and develop the new generation of spaceborne missions. We have developed several mini-lidars in order to study the vertical structure, the clouds and the particulate composition of the atmosphere from mobile platforms. Here we focus on three mobile instrumental platforms including a backscatter lidar instrument developed for validation of the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO and of the Interféromètre Atmosphérique de Sondage Infrarouge (IASI) onboard METOP. The first system is operated onboard an ultra-light aircraft (ULA) (Chazette et al., Environ. Sci. Technol., 2007). The second one is operated onboard a stratospheric balloon to study the interest of the measurement synergy with the Infrared Atmospheric Sounding Interferometer (IASI). The third one is part of a truck/car mobile station to be positioned close to the satellite ground-track (e.g. CALIPSO) or inside the area delimitated by the instrumental swath (e.g. IASI). CALIPSO was inserted in the A-Train constellation behind Aqua on 28 April, 2006 (http://www-calipso.larc.nasa.gov/about/atrain.php). One of the main objectives of the scientific mission is the study of atmospheric aerosols. Before the CALIOP lidar profiles could be used in an operational way, it has been necessary to validate both the raw and geophysical data of the instrument. For this purpose, we carried out an experiment in south-eastern France in summer 2007 to validate the aerosol product of CALIOP by operating both the ground-based and the airborne mobile lidars in coincidence with CALIOP. The synergy between the new generation of spaceborne passive and active instruments is promising to assess the concentration of main pollutants as aerosol, O3 and CO, and greenhouse gases as CO2 and CH4 within the planetary boundary layer (PBL) and to increase the accuracy on the vertical profile of temperature. IASI is

  3. On-Board Mining in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.; Conover, H.; Graves, S.; Ramachandran, R.; Rushing, J.

    2004-12-01

    On-board data mining can contribute to many research and engineering applications, including natural hazard detection and prediction, intelligent sensor control, and the generation of customized data products for direct distribution to users. The ability to mine sensor data in real time can also be a critical component of autonomous operations, supporting deep space missions, unmanned aerial and ground-based vehicles (UAVs, UGVs), and a wide range of sensor meshes, webs and grids. On-board processing is expected to play a significant role in the next generation of NASA, Homeland Security, Department of Defense and civilian programs, providing for greater flexibility and versatility in measurements of physical systems. In addition, the use of UAV and UGV systems is increasing in military, emergency response and industrial applications. As research into the autonomy of these vehicles progresses, especially in fleet or web configurations, the applicability of on-board data mining is expected to increase significantly. Data mining in real time on board sensor platforms presents unique challenges. Most notably, the data to be mined is a continuous stream, rather than a fixed store such as a database. This means that the data mining algorithms must be modified to make only a single pass through the data. In addition, the on-board environment requires real time processing with limited computing resources, thus the algorithms must use fixed and relatively small amounts of processing time and memory. The University of Alabama in Huntsville is developing an innovative processing framework for the on-board data and information environment. The Environment for On-Board Processing (EVE) and the Adaptive On-board Data Processing (AODP) projects serve as proofs-of-concept of advanced information systems for remote sensing platforms. The EVE real-time processing infrastructure will upload, schedule and control the execution of processing plans on board remote sensors. These plans

  4. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; hide

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic

  5. Orienting and Onboarding Clinical Nurse Specialists: A Process Improvement Project.

    PubMed

    Garcia, Mayra G; Watt, Jennifer L; Falder-Saeed, Karie; Lewis, Brennan; Patton, Lindsey

    Clinical nurse specialists (CNSs) have a unique advanced practice role. This article describes a process useful in establishing a comprehensive orientation and onboarding program for a newly hired CNS. The project team used the National Association of Clinical Nurse Specialists core competencies as a guide to construct a process for effectively onboarding and orienting newly hired CNSs. Standardized documents were created for the orientation process including a competency checklist, needs assessment template, and professional evaluation goals. In addition, other documents were revised to streamline the orientation process. Standardizing the onboarding and orientation process has demonstrated favorable results. As of 2016, 3 CNSs have successfully been oriented and onboarded using the new process. Unique healthcare roles require special focus when onboarding and orienting into a healthcare system. The use of the National Association of Clinical Nurse Specialists core competencies guided the project in establishing a successful orientation and onboarding process for newly hired CNSs.

  6. Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry

    2015-01-01

    NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.

  7. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  8. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  9. Advanced Hybrid On-Board Science Data Processor - SpaceCube 2.0

    NASA Technical Reports Server (NTRS)

    Flatley, Tom

    2010-01-01

    Topics include an overview of On-board science data processing, software upset mitigation, on-board data reduction, on-board products, HyspIRI demonstration testbed, SpaceCube 2.0 block diagram, and processor comparison.

  10. A space station onboard scheduling assistant

    NASA Technical Reports Server (NTRS)

    Brindle, A. F.; Anderson, B. H.

    1988-01-01

    One of the goals for the Space Station is to achieve greater autonomy, and have less reliance on ground commanding than previous space missions. This means that the crew will have to take an active role in scheduling and rescheduling their activities onboard, perhaps working from preliminary schedules generated on the ground. Scheduling is a time intensive task, whether performed manually or automatically, so the best approach to solving onboard scheduling problems may involve crew members working with an interactive software scheduling package. A project is described which investigates a system that uses knowledge based techniques for the rescheduling of experiments within the Materials Technology Laboratory of the Space Station. Particular attention is paid to: (1) methods for rapid response rescheduling to accommodate unplanned changes in resource availability, (2) the nature of the interface to the crew, (3) the representation of the many types of data within the knowledge base, and (4) the possibility of applying rule-based and constraint-based reasoning methods to onboard activity scheduling.

  11. Space shuttle onboard navigation console expert/trainer system

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Bochsler, Dan

    1987-01-01

    A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.

  12. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Wenwen; Shi, Chuang; Jiang, Kecai; Guo, Xiang; Dai, Xiaolei; Meng, Xiangguang; Yang, Zhongdong; Yang, Guanglin; Liao, Mi

    2017-11-01

    The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month's worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in 2{°}× 2{°} grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions.

  13. Instruments for measuring the amount of moisture in the air

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1978-01-01

    A summarization and discussion of the many systems available for measuring moisture in the atmosphere is presented. Conventional methods used in the field of meteorology and methods used in the laboratory are discussed. Performance accuracies, and response of the instruments were reviewed as well as the advantages and disadvantages of each. Methods of measuring humidity aloft by instrumentation onboard aircraft and balloons are given, in addition to the methods used to measure moisture at the Earth's surface.

  14. Use of Aquaporins to Achieve Needed Water Purity on the International Space Station for the Extravehicular Mobility Unit Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2012-01-01

    With the retirement of the U.S. Space Shuttle fleet, the supply of extremely high quality water required for the Extravehicular Mobility Unit (EMU) space suit cooling on the International Space Station (ISS) will become a significant operational hardware challenge in the very near future. One proposed solution is the use of a filtration system consisting of a semipermeable membrane embedded with aquaporin proteins, a special class of transmembrane proteins that facilitate passive, selective transport of water in vivo. The specificity of aquaporins is such that only water is allowed through the protein structure, and it is this novel property that invites their adaptation for use in water filtration systems, specifically those onboard the ISS for the EMU space suit system. These proteins are also currently being developed for use in terrestrial filtration systems.

  15. Laboratory measurements of on-board subsystems

    NASA Technical Reports Server (NTRS)

    Nuspl, P. P.; Dong, G.; Seran, H. C.

    1991-01-01

    Good progress was achieved on the test bed for on-board subsystems for future satellites. The test bed is for subsystems developed previously. Four test setups were configured in the INTELSAT technical labs: (1) TDMA on-board modem; (2) multicarrier demultiplexer demodulator; (3) IBS/IDR baseband processor; and (4) baseband switch matrix. The first three series of tests are completed and the tests on the BSM are in progress. Descriptions of test setups and major test results are included; the format of the presentation is outlined.

  16. Low-energy particle experiments-ion mass analyzer (LEPi) onboard the ERG (Arase) satellite

    NASA Astrophysics Data System (ADS)

    Asamura, K.; Kazama, Y.; Yokota, S.; Kasahara, S.; Miyoshi, Y.

    2018-05-01

    Low-energy ion experiments-ion mass analyzer (LEPi) is one of the particle instruments onboard the ERG satellite. LEPi is an ion energy-mass spectrometer which covers the range of particle energies from < 0.01 to 25 keV/q. Species of incoming ions are discriminated by a combination of electrostatic energy-per-charge analysis and the time-of-flight technique. The sensor has a planar field-of-view, which provides 4π steradian coverage by using the spin motion of the satellite. LEPi started its nominal observation after the initial checkout and commissioning phase in space. [Figure not available: see fulltext.

  17. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking

  18. Walking a mile in another's shoes: The impact of wearing an Age Suit.

    PubMed

    Lavallière, Martin; D'Ambrosio, Lisa; Gennis, Angelina; Burstein, Arielle; Godfrey, Kathryn M; Waerstad, Hilde; Puleo, Rozanne M; Lauenroth, Andreas; Coughlin, Joseph F

    2017-01-01

    The "Age Suit" described in this article was developed to enable future designers, business leaders, and engineers to experience navigating the world as many older adults must. Tools such as this Age Suit offer the opportunity to "walk a mile" in another's shoes to develop empathy that can result in better design of spaces, goods, and services to meet the needs of a rapidly growing older population. This work first examined, through a series of clinical tests, whether younger adults' physical capacities were reduced in a direction consistent with aging by wearing a suit developed by the MIT AgeLab. An experiential learning task was then completed with the suit to understand its impact on completion of an instrumental activity of daily living. Results showed that younger adults wearing the suit experienced changes in task performance consistent with expected changes associated with aging. Participants' self-reports from the experiential learning task indicated that they were able to empathize with older adults regarding some issues they face while completing a grocery shopping task. Future research with the suit should involve a wider range of individuals from the population and examine what effect participants' levels of fitness have on the experience of wearing the suit.

  19. The VLF Wave and Particle Precipitation Mapper (VPM) Cubesat Payload Suite

    NASA Astrophysics Data System (ADS)

    Inan, U.; Linscott, I.; Marshall, R. A.; Lauben, D.; Starks, M. J.; Doolittle, J. H.

    2012-12-01

    The VLF Wave and Particle Precipitation Mapper (VPM) payload is under development at Stanford University for a Cubesat mission that is planned to fly in low-earth-orbit in 2015. The VPM payload suite includes a 2-meter electric-field dipole antenna; a single-axis magnetic search coil; and a two-channel relativistic electron detector, measuring both trapped and loss-cone electrons. VPM will measure waves and relativistic electrons with the following primary goals: i) develop an improved climatology of plasmaspheric hiss in the L-shell range 1 < L < 3 at all local times; ii) detect VLF waves launched by space-based VLF transmitters, as well as energetic electrons scattered by those in-situ injected waves; iii) develop an improved climatology of lightning-generated whistlers and lightning-induced electron precipitation; iv)measure waves and electron precipitation produced by ground-based VLF transmitters; and v) validate propagation and wave-particle interaction models. In this paper we outline these science objectives of the VPM payload instrument suite, and describe the payload instruments and data products that will meet these science goals.

  20. Exoplanetary Science: Instrumentation, Observations, and Expectations

    NASA Technical Reports Server (NTRS)

    McElwain, Michael

    2011-01-01

    More than 700 exoplanets have been discovered and studied using indirect techniques, leading our field into the exciting new era of comparative exoplanetology. However, the direct detection of exoplanetary systems still remains at the sensitivity limits of both ground- and space-based observatories. The development of new technologies for adaptive optics systems and high contrast instruments continues to increase the ability to directly study exoplanets. The scientific impact of these developments has promising prospects for both short and long timescales. In my talk, I will discuss recent highlights from the SEEDS survey and the current instrumentation in use at the Subaru telescope. SEEDS is a high contrast imaging strategic observing program with 120 nights of time allocated at the NAOJ's flagship optical and infrared telescope. I will also describe new instrumentation I designed to improve the SEEDS capabilities and efficiency. Finally, I will briefly discuss the conceptual design of a transiting planet camera to fly as a potential second generation instrument on-board NASA's SOFIA observatory.

  1. Defense Threat Reduction Agency > Careers > Onboarding > Special Programs

    Science.gov Websites

    , programs, and practices to help our employees and Service members balance work and family responsibilities . We have put in place family-friendly Work/Life programs and policies designed to create a more Children and Family Leave Programs Work/Life Resources Onboarding Home Onboarding Overview Before You

  2. Music Education Suites.

    ERIC Educational Resources Information Center

    Kemp, Wayne

    This publication describes options for designing and equipping middle and high school music education suites and suggests means of gaining community support for including full service music suites in new and renovated facilities. It covers the basic music suite, practice rooms, small ensemble rehearsal rooms, recording/MIDI (musical instrument…

  3. SOFIA science instruments: commissioning, upgrades and future opportunities

    NASA Astrophysics Data System (ADS)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  4. 47 CFR 80.1175 - Scope of communications of on-board stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Scope of communications of on-board stations. 80.1175 Section 80.1175 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Communications § 80.1175 Scope of communications of on-board stations. (a) On-board stations communicate: (1...

  5. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination

  6. Emergency Egress Drill On-Board Training (OBT)

    NASA Image and Video Library

    2015-03-17

    ISS043E019025 (03/18/2015) --- Safety training never ends onboard the International Space Station. This photo in the U.S. Laboratory on Mar. 18, 2015 was taken during Emergency Egress Drill On-Board Training (OBT) with the Expedition 43 crew. Russian cosmonaut Mikhail Kornienko (rear) and ESA (European Space Agency) astronaut Samantha Cristoforetti (middle), both flight engineers, are shown with astronaut Terry Virts, Commander (front) during the important emergency drill.

  7. Music Education Suites

    ERIC Educational Resources Information Center

    Kemp, Wayne

    2009-01-01

    This publication describes options for designing and equipping middle and high school music education suites, and suggests ways of gaining community support for including full service music suites in new and renovated school facilities. In addition to basic music suites, and practice rooms, other options detailed include: (1) small ensemble…

  8. Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Wilquet, V.; Fedorova, A.; Montmessin, F.; Drummond, R.; Mahieux, A.; Vandaele, A. C.; Villard, E.; Korablev, O.; Bertaux, J.-L.

    2009-07-01

    The Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus/Solar Occultation at Infrared (SPICAV/SOIR) suite of instruments onboard the Venus Express spacecraft comprises three spectrometers covering a wavelength range from ultraviolet to midinfrared and an altitude range from 70 to >100 km. However, it is only recently (more than 1 year after the beginning of the mission) that the three spectrometers can operate simultaneously in the solar occultation mode. These observations have enabled the study of the properties of the Venusian mesosphere over a broad spectral range. In this manuscript, we briefly describe the instrument characteristics and the method used to infer haze microphysical properties from a data set of three selected orbits. Discussion focuses on the wavelength dependence of the continuum, which is primarily shaped by the extinction caused by the aerosol particles of the upper haze. This wavelength dependence is directly related to the effective particle radius (cross section weighted mean radius) of the particles. Through independent analyses for the three channels, we demonstrate the potential to characterize the aerosols in the mesosphere of Venus. The classical assumption that the upper haze is only composed of submicron particles is not sufficient to explain the observations. We find that at high northern latitudes, two types of particles coexist in the upper haze of Venus: mode 1 of mean radius 0.1 ≤ r g ≤ 0.3 μm and mode 2 of 0.4 ≤ r g ≤ 1.0 μm. An additional population of micron-sized aerosols seems, therefore, needed to reconcile the data of the three spectrometers. Moreover, we observe substantial temporal variations of aerosol extinction over a time scale of 24 h.

  9. Astronaut Ronald Evans is suited up for EVA training

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Ronald E. Evans, command module pilot of the Apollo 17 lunar landing mission, is assisted by technicians in suiting up for extravehicular activity (EVA) training in a water tank in bldg 5 at the Manned Spacecraft Center (49970); Evans participates in EVA training in a water tank in bldg 5 at the Manned Spacecraft Center. The structure in the picture simulates the Scientific Instrument Module (SIM) bay of the Apollo 17 Service Module (49971).

  10. The Projects for Onboard Autonomy (PROBA2) Science Centre: Sun Watcher Using APS Detectors and Image Processing (SWAP) and Large-Yield Radiometer (LYRA) Science Operations and Data Products

    NASA Astrophysics Data System (ADS)

    Zender, J.; Berghmans, D.; Bloomfield, D. S.; Cabanas Parada, C.; Dammasch, I.; De Groof, A.; D'Huys, E.; Dominique, M.; Gallagher, P.; Giordanengo, B.; Higgins, P. A.; Hochedez, J.-F.; Yalim, M. S.; Nicula, B.; Pylyser, E.; Sanchez-Duarte, L.; Schwehm, G.; Seaton, D. B.; Stanger, A.; Stegen, K.; Willems, S.

    2013-08-01

    The PROBA2 Science Centre (P2SC) is a small-scale science operations centre supporting the Sun observation instruments onboard PROBA2: the EUV imager Sun Watcher using APS detectors and image Processing (SWAP) and Large-Yield Radiometer (LYRA). PROBA2 is one of ESA's small, low-cost Projects for Onboard Autonomy (PROBA) and part of ESA's In-Orbit Technology Demonstration Programme. The P2SC is hosted at the Royal Observatory of Belgium, co-located with both Principal Investigator teams. The P2SC tasks cover science planning, instrument commanding, instrument monitoring, data processing, support of outreach activities, and distribution of science data products. PROBA missions aim for a high degree of autonomy at mission and system level, including the science operations centre. The autonomy and flexibility of the P2SC is reached by a set of web-based interfaces allowing the operators as well as the instrument teams to monitor quasi-continuously the status of the operations, allowing a quick reaction to solar events. In addition, several new concepts are implemented at instrument, spacecraft, and ground-segment levels allowing a high degree of flexibility in the operations of the instruments. This article explains the key concepts of the P2SC, emphasising the automation and the flexibility achieved in the commanding as well as the data-processing chain.

  11. Virtualizing Super-Computation On-Board Uas

    NASA Astrophysics Data System (ADS)

    Salami, E.; Soler, J. A.; Cuadrado, R.; Barrado, C.; Pastor, E.

    2015-04-01

    Unmanned aerial systems (UAS, also known as UAV, RPAS or drones) have a great potential to support a wide variety of aerial remote sensing applications. Most UAS work by acquiring data using on-board sensors for later post-processing. Some require the data gathered to be downlinked to the ground in real-time. However, depending on the volume of data and the cost of the communications, this later option is not sustainable in the long term. This paper develops the concept of virtualizing super-computation on-board UAS, as a method to ease the operation by facilitating the downlink of high-level information products instead of raw data. Exploiting recent developments in miniaturized multi-core devices is the way to speed-up on-board computation. This hardware shall satisfy size, power and weight constraints. Several technologies are appearing with promising results for high performance computing on unmanned platforms, such as the 36 cores of the TILE-Gx36 by Tilera (now EZchip) or the 64 cores of the Epiphany-IV by Adapteva. The strategy for virtualizing super-computation on-board includes the benchmarking for hardware selection, the software architecture and the communications aware design. A parallelization strategy is given for the 36-core TILE-Gx36 for a UAS in a fire mission or in similar target-detection applications. The results are obtained for payload image processing algorithms and determine in real-time the data snapshot to gather and transfer to ground according to the needs of the mission, the processing time, and consumed watts.

  12. Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument

    NASA Technical Reports Server (NTRS)

    Moore, Alvah S., Jr.; Brown, Kevin E.; Hall, William M.; Barnes, James C.; Edwards, William C.; Petway, Larry B.; Little, Alan D.; Luck, William S., Jr.; Jones, Irby W.; Antill, Charles W., Jr.

    1997-01-01

    The Lidar Atmospheric Sensing Experiment (LASE) Instrument is the first fully-engineered, autonomous Differential Absorption Lidar (DIAL) System for the measurement of water vapor in the troposphere (aerosol and cloud measurements are included). LASE uses a double-pulsed Ti:Sapphire laser for the transmitter with a 30 ns pulse length and 150 mJ/pulse. The laser beam is "seeded" to operate on a selected water vapor absorption line in the 815-nm region using a laser diode and an onboard absorption reference cell. A 40 cm diameter telescope collects the backscattered signals and directs them onto two detectors. LASE collects DIAL data at 5 Hz while onboard a NASA/Ames ER-2 aircraft flying at altitudes from 16-21 km. LASE was designed to operate autonomously within the environment and physical constraints of the ER-2 aircraft and to make water vapor profile measurements across the troposphere to better than 10% accuracy. LASE has flown 19 times during the development of the instrument and the validation of the science data. This paper describes the design, operation, and reliability of the LASE Instrument.

  13. Comparison of MODIS and VIIRS On-board Blackbody Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Jack; Butler, Jim; Wu, Aisheng; Chiang, Vincent; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    MODIS has 16 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 14.4 microns. MODIS TEBs are calibrated on-orbit by a v-grooved blackbody (BB) on a scan-by-scan basis. The BB temperatures are measured by a set of 12 thennistors. As expected, the BB temperature uncertainty and stability have direct impact on the quality of TEB calibration and, therefore, the quality of the science products derived from TEB observations. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively. Their on-board BB performance has been satisfactory in meeting the TEB calibration requirements. The first VIIRS, launched on-board the Suomi NPP spacecraft on October 28, 2011, has successfully completed its initial Intensive Calibration and Validation (ICV) phase. VIIRS has 7 thermal emissive bands (TEBs), covering wavelengths from 3.7 to 12.4 microns. Designed with strong MODIS heritage, VIIRS uses a similar BB for its TEB calibration. Like MODIS, VIIRS BB is nominally controlled at a pre-determined temperature (set point). Periodically, a BB Warm-Up and Cool-Down (WUCD) operation is performed, during which the BB temperatures vary from instrument ambient (temperature) to 315K. This paper examines NPP VIIRS BB on-orbit performance. It focuses on its BB temperature scan-to-scan variations at nominally controlled temperature as well as during its WUCD operation and their impact on TEB calibration uncertainty. Comparisons of VIIRS (NPP) and MODIS (Terra and Aqua) BB on-orbit performance and lessons learned for future improvements are also presented in this paper.

  14. Onboard Autonomy and Ground Operations Automation for the Intelligent Payload Experiment (IPEX) CubeSat Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas

    2012-01-01

    The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.

  15. Onboard photo:Astro-1 in Cargo Bay

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against dark space. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  16. Automation of On-Board Flightpath Management

    NASA Technical Reports Server (NTRS)

    Erzberger, H.

    1981-01-01

    The status of concepts and techniques for the design of onboard flight path management systems is reviewed. Such systems are designed to increase flight efficiency and safety by automating the optimization of flight procedures onboard aircraft. After a brief review of the origins and functions of such systems, two complementary methods are described for attacking the key design problem, namely, the synthesis of efficient trajectories. One method optimizes en route, the other optimizes terminal area flight; both methods are rooted in optimal control theory. Simulation and flight test results are reviewed to illustrate the potential of these systems for fuel and cost savings.

  17. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based

  18. CCSDS Time-Critical Onboard Networking Service

    NASA Technical Reports Server (NTRS)

    Parkes, Steve; Schnurr, Rick; Marquart, Jane; Menke, Greg; Ciccone, Massimiliano

    2006-01-01

    The Consultative Committee for Space Data Systems (CCSDS) is developing recommendations for communication services onboard spacecraft. Today many different communication buses are used on spacecraft requiring software with the same basic functionality to be rewritten for each type of bus. This impacts on the application software resulting in custom software for almost every new mission. The Spacecraft Onboard Interface Services (SOIS) working group aims to provide a consistent interface to various onboard buses and sub-networks, enabling a common interface to the application software. The eventual goal is reusable software that can be easily ported to new missions and run on a range of onboard buses without substantial modification. The system engineer will then be able to select a bus based on its performance, power, etc and be confident that a particular choice of bus will not place excessive demands on software development. This paper describes the SOIS Intra-Networking Service which is designed to enable data transfer and multiplexing of a variety of internetworking protocols with a range of quality of service support, over underlying heterogeneous data links. The Intra-network service interface provides users with a common Quality of Service interface when transporting data across a variety of underlying data links. Supported Quality of Service (QoS) elements include: Priority, Resource Reservation and Retry/Redundancy. These three QoS elements combine and map into four TCONS services for onboard data communications: Best Effort, Assured, Reserved, and Guaranteed. Data to be transported is passed to the Intra-network service with a requested QoS. The requested QoS includes the type of service, priority and where appropriate, a channel identifier. The data is de-multiplexed, prioritized, and the required resources for transport are allocated. The data is then passed to the appropriate data link for transfer across the bus. The SOIS supported data links may

  19. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  20. Space-borne survey instrument operations: lessons learned and new concepts for the Euclid NISP instrument

    NASA Astrophysics Data System (ADS)

    Valenziano, L.; Gregorio, A.; Butler, R. C.; Amiaux, J.; Bonoli, C.; Bortoletto, F.; Burigana, C.; Corcione, L.; Ealet, A.; Frailis, M.; Jahnke, K.; Ligori, S.; Maiorano, E.; Morgante, G.; Nicastro, L.; Pasian, F.; Riva, M.; Scaramella, R.; Schiavone, F.; Tavagnacco, D.; Toledo-Moreo, R.; Trifoglio, M.; Zacchei, A.; Zerbi, F. M.; Maciaszek, T.

    2012-09-01

    Euclid is the future ESA mission, mainly devoted to Cosmology. Like WMAP and Planck, it is a survey mission, to be launched in 2019 and injected in orbit far away from the Earth, for a nominal lifetime of 7 years. Euclid has two instruments on-board, the Visible Imager (VIS) and the Near- Infrared Spectro-Photometer (NISP). The NISP instrument includes cryogenic mechanisms, active thermal control, high-performance Data Processing Unit and requires periodic in-flight calibrations and instrument parameters monitoring. To fully exploit the capability of the NISP, a careful control of systematic effects is required. From previous experiments, we have built the concept of an integrated instrument development and verification approach, where the scientific, instrument and ground-segment expertise have strong interactions from the early phases of the project. In particular, we discuss the strong integration of test and calibration activities with the Ground Segment, starting from early pre-launch verification activities. We want to report here the expertise acquired by the Euclid team in previous missions, only citing the literature for detailed reference, and indicate how it is applied in the Euclid mission framework.

  1. On-board demux/demod

    NASA Technical Reports Server (NTRS)

    Sayegh, S.; Kappes, M.; Thomas, J.; Snyder, J.; Eng, M.; Poklemba, John J.; Steber, M.; House, G.

    1991-01-01

    To make satellite channels cost competitive with optical cables, the use of small, inexpensive earth stations with reduced antenna size and high powered amplifier (HPA) power will be needed. This will necessitate the use of high e.i.r.p. and gain-to-noise temperature ratio (G/T) multibeam satellites. For a multibeam satellite, onboard switching is required in order to maintain the needed connectivity between beams. This switching function can be realized by either an receive frequency (RF) or a baseband unit. The baseband switching approach has the additional advantage of decoupling the up-link and down-link, thus enabling rate and format conversion as well as improving the link performance. A baseband switching satellite requires the demultiplexing and demodulation of the up-link carriers before they can be switched to their assigned down-link beams. Principles of operation, design and implementation issues of such an onboard demultiplexer/demodulator (bulk demodulator) that was recently built at COMSAT Labs. are discussed.

  2. Satellite on-board applications of expert systems

    NASA Astrophysics Data System (ADS)

    Ciarlo, A.; Donzelli, P.; Katzenbelsser, R.; Moller, B. A.

    The article discusses some aspects of the on-board application of expert systems (ES) in artificial satellites. The implementation of two prototypes on a dedicated AI machine are described. Consideration is given to: (1) the interrelationship between the ES and the architecture of the satellite and its impact on the mission-definition phase of the satellite life-cycle; (2) the identification of those tasks that at the current stage seem most likely to be delegated to on-board ES; and (3) the main obstacles that need to be overcome before operational use of ES on-board can take place, and particularly the matters of testing, knowledge collection, and availability of computing resources. Finally, the activities that are currently planned or that appear to be required in the near future to prepare the way for the full exploitation of this technology for satellite autonomy are briefly outlined.

  3. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  4. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  5. A Long Range Science Rover For Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1997-01-01

    This paper describes the design and implementation currently underway at the Jet Propulsion Laboratory of a long range science rover for future missions to Mars. The small rover prototype, called Rocky 7, is capable of long traverse. autonomous navigation. and science instrument control, carries three science instruments, and can be commanded from any computer platform and any location using the World Wide Web. In this paper we describe the mobility system, the sampling system, the sensor suite, navigation and control, onboard science instruments. and the ground command and control system.

  6. On-orbit performance of the Compact Infrared Camera (CIRC) onboard ALOS-2

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Katayama, Haruyoshi; Kato, Eri; Nakajima, Yasuhiro; Kimura, Toshiyoshi; Nakau, Koji

    2015-10-01

    Compact Infrared Camera (CIRC) is a technology demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. Microbolometers have an advantage of not requiring cooling system such as a mechanical cooler and are suitable for resource-limited sensor systems. Another characteristic of the CIRC is its use of an athermal optical system and a shutterless system. The CIRC is small in size (approximately 200 mm), is light weight (approximately 3 kg), and has low electrical power consumption (<20 W) owing to these characteristics. The main objective of CIRC is to detect wildfires, which are major and chronic disasters affecting various countries of Southeast Asia, particularly considering the effects of global warming and climate change. One of the CIRCs was launched in May 24, 2014 as a technology demonstration payload of the Advanced Land Observation Satellite-2 (ALOS- 2). Since the initial functional verification phase (July 4-14, 2014), the CIRC has demonstrated functions according to its intended design. We also confirmed that the noise equivalent differential temperature of the CIRC observation data is less than 0.2 K, the temperature accuracy is within ±4 K, and the spatial resolution is less than 210 m in the calibration validation phase after the initial functional verification phase. The CIRC also detects wildfires in various areas and observes volcano activities and urban heat islands in the operational phase. The other CIRC will be launched in 2015 onboard the CALorimetric Electron Telescope (CALET) of the Japanese Experiment Module (JEM) of the International Space Station. Installation of the CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase the observation frequency. In this study, we present the on-orbit performance including observational results of the CIRC onboard the ALOS-2 and the current status of the CIRC onboard the JEM/CALET.

  7. The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities.

    PubMed

    Josset, Jean-Luc; Westall, Frances; Hofmann, Beda A; Spray, John; Cockell, Charles; Kempe, Stephan; Griffiths, Andrew D; De Sanctis, Maria Cristina; Colangeli, Luigi; Koschny, Detlef; Föllmi, Karl; Verrecchia, Eric; Diamond, Larryn; Josset, Marie; Javaux, Emmanuelle J; Esposito, Francesca; Gunn, Matthew; Souchon-Leitner, Audrey L; Bontognali, Tomaso R R; Korablev, Oleg; Erkman, Suren; Paar, Gerhard; Ulamec, Stephan; Foucher, Frédéric; Martin, Philippe; Verhaeghe, Antoine; Tanevski, Mitko; Vago, Jorge L

    The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instrument's planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.

  8. Using Onboard Telemetry for MAVEN Orbit Determination

    NASA Technical Reports Server (NTRS)

    Lam, Try; Trawny, Nikolas; Lee, Clifford

    2013-01-01

    Determination of the spacecraft state has been traditional done using radiometric tracking data before and after the atmosphere drag pass. This paper describes our approach and results to include onboard telemetry measurements in addition to radiometric observables to refine the reconstructed trajectory estimate for the Mars Atmosphere and Volatile Evolution Mission (MAVEN). Uncertainties in the Mars atmosphere models, combined with non-continuous tracking degrade navigation accuracy, making MAVEN a key candidate for using onboard telemetry data to help complement its orbit determination process.

  9. SAW chirp filter technology for satellite on-board processing applications

    NASA Astrophysics Data System (ADS)

    Shaw, M. D.; Miller, N. D. J.; Malarky, A. P.; Warne, D. H.

    1989-11-01

    Market growth in the area of thin route satellite communications services has led to consideration of nontraditional system architectures requiring sophisticated on-board processing functions. Surface acoustic wave (SAW) technology exists today which can provide implementation of key on-board processing subsystems by using multicarrier demodulators. This paper presents a review of this signal processing technology, along with a brief review of dispersive SAW device technology as applied to the implementation of multicarrier demodulators for on-board signal processing.

  10. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  11. On-Board Training for US Payloads

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin; Meacham, Steven (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) crew follows a training rotation schedule that puts them in the United States about every three months for a three-month training window. While in the US, the crew receives training on both ISS systems and payloads. Crew time is limited, and system training takes priority over payload training. For most flights, there is sufficient time to train all systems and payloads. As more payloads are flown, training time becomes a more precious resource. Less training time requires payload developers (PDs) to develop alternatives to traditional ground training. To ensure their payloads have sufficient training to achieve their scientific goals, some PDs have developed on-board trainers (OBTs). These OBTs are used to train the crew when no or limited ground time is available. These lessons are also available on-orbit to refresh the crew about their ground training, if it was available. There are many types of OBT media, such as on-board computer based training (OCBT), video/photo lessons, or hardware simulators. The On-Board Training Working Group (OBTWG) and Courseware Development Working Group (CDWG) are responsible for developing the requirements for the different types of media.

  12. Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic

    2016-01-01

    This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.

  13. Urey onboard Exomars: Searching for life

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale

    Exomars is the flagship mission of the European exploration program Aurora. The main goal of the Exomars mission is to further characterize the environment on Mars and to search for life. Data from recent Mars missions indicate the presence of liquid water for a geologically relevant period of time. If life arose during that period, evidence in the form of organic compounds might still be present on Mars today. A fundamental challenge ahead for the Exomars mission is to search for extinct and extant life using a sophisticated drill and innovative life detection instruments. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload and is considered a key instrument to achieve the mission's scientific objectives. Urey will target several key classes of organic molecules such as amino acids, nucleobases, aminosugars as well as polycyclic aromatic hydrocrabon (PAHs) using state-of-the-art analytical methods. The sensitivity of Urey to detect organic compounds in the Martian regolith is unprecedented (part-per-trillions). Efficient extraction of organic molecules using a sub-critical water extractor and subsequent concentration through sublimation renders a sample that is best suited to be analyzed by the sensitive mµCE system. The capability of the mµCE component to distinguish chiral amino acids will give direct evidence for abiotic or biotic compound origin. Another Urey component, the Mars Oxidation Instument, will deploy chemoresistor oxidant sensors to take complementary measurements evaluating the survival potential of organic compounds in the environment. We report on the progress of instrument development and related field tests in the Atacama desert.

  14. 49 CFR 395.15 - Automatic on-board recording devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... information concerning on-board system sensor failures and identification of edited data. Such support systems... driving today; (iv) Total hours on duty for the 7 consecutive day period, including today; (v) Total hours...-driver operation; (7) The on-board recording device/system identifies sensor failures and edited data...

  15. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  16. The Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal plasma (ECT) Suite: Upcoming Opportunties for Testing Radiation Belt Acceleration Mechanisms

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoffrey

    2012-07-01

    The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.

  17. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  18. Compact Ocean Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Compact Ocean Models Enable Onboard AUV Autonomy and...transmitted onboard an AUV . 3. Develop algorithms for adaptive planning of AUV surveys. 4. Demonstrate use of compact ocean models onboard a long...range AUV during a field deployment. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  19. Defense Threat Reduction Agency > Careers > Onboarding > Before You Report

    Science.gov Websites

    Development Work/Life Programs Onboarding Onboarding Overview Before You Report Sponsor Program Getting Here , you may be eligible to enroll in health, dental and vision, life insurance, and flexible spending and Mass Transit Benefit Program. Health/Dental/Vision/Life for Civilian Employees Health/Dental/Life

  20. Automatic control in planetary exploration in the 1980s. [onboard spacecraft

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1973-01-01

    Based on an examination of the planetary missions in the 1980s and their related objectives, a broad assessment of the automatic control capabilities required for these missions is presented. The ten outer-planet, terrestrial-planet, and small-body missions considered involve various operations encompassing a complex series of modes including cruise, maneuver, and powered flight control. In addition to routine navigation and attitude control, onboard control is required to point scientific instruments and antennas with respect to the vehicle and to maneuver the spacecraft in time-constrained or hazardous environments. These 1980 missions aimed at exploring new areas of the solar system will be more demanding. New design philosophies and increased performance capabilities will be required to meet the constraints imposed by science requirements and mission-cost effectiveness.

  1. Modified Advanced Crew Escape Suit Intravehicular Activity Suit for Extravehicular Activity Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an intravehicular activity (IVA) suit for a spacewalk or extravehicular activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Laboratory (NBL) environment at the Sonny Carter Training Facility near NASA Johnson Space Center in Houston, Texas. The Space Shuttle Advanced Crew Escape Suit was modified to integrate with the Orion spacecraft. The first several missions of the Orion Multi-Purpose Crew Vehicle will not have mass available to carry an EVA-specific suit; therefore, any EVA required will have to be performed by the Modified Advanced Crew Escape Suit (MACES). Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or whether a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects, including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, tool carrying, body stabilization, equipment handling, and tool usage. Hardware configurations included with and without Thermal Micrometeoroid Garment, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on International Space Station mock-ups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstrating the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determining critical sizing factors, and need for adjusting suit work envelope. Early testing demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight-like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission-specific modifications for umbilical management or Primary Life Support System integration

  2. Onboard autonomous mineral detectors for Mars rovers

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  3. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    USGS Publications Warehouse

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  4. Study of the coma of comet 67P/Churyumov-Gerasimenko based on the ROSINA/RTOF instrument onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Hoang, M.; Garnier, P.; Lasue, J.; Reme, H.; Altwegg, K.; Balsiger, H. R.; Bieler, A. M.; Calmonte, U.; Fiethe, B.; Galli, A.; Gasc, S.; Gombosi, T. I.; Jäckel, A.; Mall, U.; Le Roy, L.; Rubin, M.; Tzou, C. Y.; Waite, J. H., Jr.; Wurz, P.

    2015-12-01

    The ROSETTA spacecraft of ESA is in the environment of comet 67P/Churyumov-Gerasimenko since August 2014. Among the experiments onboard the spacecraft, the ROSINA experiment (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) includes two mass spectrometers (DFMS and RTOF) to analyze the composition of neutrals and ions, and a pressure sensor (COPS) to monitor the density and velocity of neutrals in the coma [1]. We will here analyze and discuss the data of the ROSINA/RTOF instrument during the comet escort phase. The Reflectron-type Time-Of-Flight (RTOF) mass spectrometer possesses a wide mass range and a high temporal resolution [1,2]. It was designed to measure cometary neutral gas as well as cometary ions. A detailed description of the main volatiles (H2O, CO2, CO) dynamics and of the heterogeneities of the coma will then be provided. The influence of various parameters on the coma measurements is investigated on a statistical basis, with the parameters being distance to the comet, heliocentric distance, longitude and latitude of nadir point. Our analysis of the northern hemisphere summer season shows the presence of water vapor mostly in the illuminated northern hemisphere near the neck region with cyclic diurnal variations whereas CO2 was confined to the cold southern hemisphere with a more spatially homogeneous composition, in agreement with previous observations of 67P [2] or Hartley 2 [3]. A comparison will also be provided with the COPS total density and DFMS abundance measurements. [1] Balsiger et al., "ROSINA - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis", Space Sci. Rev., 2007. [2] Scherer et al., "A novel principle for an ion mirror design in time-of-flight mass spectrometry," Int. Jou. Mass Spectr., 2006. [3] Hässig et al., "Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko", Science, 2015. [4] A'Hearn et al., "EPOXI at comet Hartley 2", Science, 2011.

  5. A custom multi-modal sensor suite and data analysis pipeline for aerial field phenotyping

    NASA Astrophysics Data System (ADS)

    Bartlett, Paul W.; Coblenz, Lauren; Sherwin, Gary; Stambler, Adam; van der Meer, Andries

    2017-05-01

    Our group has developed a custom, multi-modal sensor suite and data analysis pipeline to phenotype crops in the field using unpiloted aircraft systems (UAS). This approach to high-throughput field phenotyping is part of a research initiative intending to markedly accelerate the breeding process for refined energy sorghum varieties. To date, single rotor and multirotor helicopters, roughly 14 kg in total weight, are being employed to provide sensor coverage over multiple hectaresized fields in tens of minutes. The quick, autonomous operations allow for complete field coverage at consistent plant and lighting conditions, with low operating costs. The sensor suite collects data simultaneously from six sensors and registers it for fusion and analysis. High resolution color imagery targets color and geometric phenotypes, along with lidar measurements. Long-wave infrared imagery targets temperature phenomena and plant stress. Hyperspectral visible and near-infrared imagery targets phenotypes such as biomass and chlorophyll content, as well as novel, predictive spectral signatures. Onboard spectrometers and careful laboratory and in-field calibration techniques aim to increase the physical validity of the sensor data throughout and across growing seasons. Off-line processing of data creates basic products such as image maps and digital elevation models. Derived data products include phenotype charts, statistics, and trends. The outcome of this work is a set of commercially available phenotyping technologies, including sensor suites, a fully integrated phenotyping UAS, and data analysis software. Effort is also underway to transition these technologies to farm management users by way of streamlined, lower cost sensor packages and intuitive software interfaces.

  6. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  7. On-board computer progress in development of A 310 flight testing program

    NASA Technical Reports Server (NTRS)

    Reau, P.

    1981-01-01

    Onboard computer progress in development of an Airbus A 310 flight testing program is described. Minicomputers were installed onboard three A 310 airplanes in 1979 in order to: (1) assure the flight safety by exercising a limit check of a given set of parameters; (2) improve the efficiency of flight tests and allow cost reduction; and (3) perform test analysis on an external basis by utilizing onboard flight types. The following program considerations are discussed: (1) conclusions based on simulation of an onboard computer system; (2) brief descriptions of A 310 airborne computer equipment, specifically the onboard universal calculator (CUB) consisting of a ROLM 1666 system and visualization system using an AFIGRAF CRT; (3) the ground system and flight information inputs; and (4) specifications and execution priorities for temporary and permanent programs.

  8. On Convergence of Development Costs and Cost Models for Complex Spaceflight Instrument Electronics

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar D.; Kasa, Robert L.; Hestnes, Phyllis; Brown, Tammy; Vootukuru, Madhavi

    2008-01-01

    Development costs of a few recent spaceflight instrument electrical and electronics subsystems have diverged from respective heritage cost model predictions. The cost models used are Grass Roots, Price-H and Parametric Model. These cost models originated in the military and industry around 1970 and were successfully adopted and patched by NASA on a mission-by-mission basis for years. However, the complexity of new instruments recently changed rapidly by orders of magnitude. This is most obvious in the complexity of representative spaceflight instrument electronics' data system. It is now required to perform intermediate processing of digitized data apart from conventional processing of science phenomenon signals from multiple detectors. This involves on-board instrument formatting of computational operands from row data for example, images), multi-million operations per second on large volumes of data in reconfigurable hardware (in addition to processing on a general purpose imbedded or standalone instrument flight computer), as well as making decisions for on-board system adaptation and resource reconfiguration. The instrument data system is now tasked to perform more functions, such as forming packets and instrument-level data compression of more than one data stream, which are traditionally performed by the spacecraft command and data handling system. It is furthermore required that the electronics box for new complex instruments is developed for one-digit watt power consumption, small size and that it is light-weight, and delivers super-computing capabilities. The conflict between the actual development cost of newer complex instruments and its electronics components' heritage cost model predictions seems to be irreconcilable. This conflict and an approach to its resolution are addressed in this paper by determining the complexity parameters, complexity index, and their use in enhanced cost model.

  9. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments

    PubMed Central

    Goesmann, Fred; Brinckerhoff, William B.; Raulin, François; Danell, Ryan M.; Getty, Stephanie A.; Siljeström, Sandra; Mißbach, Helge; Steininger, Harald; Arevalo, Ricardo D.; Buch, Arnaud; Freissinet, Caroline; Grubisic, Andrej; Meierhenrich, Uwe J.; Pinnick, Veronica T.; Stalport, Fabien; Szopa, Cyril; Vago, Jorge L.; Lindner, Robert; Schulte, Mitchell D.; Brucato, John Robert; Glavin, Daniel P.; Grand, Noel; Li, Xiang; van Amerom, Friso H. W.

    2017-01-01

    Abstract The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars—Mass spectrometry—Life detection—Planetary instrumentation. Astrobiology 17, 655–685.

  10. Instrument performance and simulation verification of the POLAR detector

    NASA Astrophysics Data System (ADS)

    Kole, M.; Li, Z. H.; Produit, N.; Tymieniecka, T.; Zhang, J.; Zwolinska, A.; Bao, T. W.; Bernasconi, T.; Cadoux, F.; Feng, M. Z.; Gauvin, N.; Hajdas, W.; Kong, S. W.; Li, H. C.; Li, L.; Liu, X.; Marcinkowski, R.; Orsi, S.; Pohl, M.; Rybka, D.; Sun, J. C.; Song, L. M.; Szabelski, J.; Wang, R. J.; Wang, Y. H.; Wen, X.; Wu, B. B.; Wu, X.; Xiao, H. L.; Xiong, S. L.; Zhang, L.; Zhang, L. Y.; Zhang, S. N.; Zhang, X. F.; Zhang, Y. J.; Zhao, Y.

    2017-11-01

    POLAR is a new satellite-born detector aiming to measure the polarization of an unprecedented number of Gamma-Ray Bursts in the 50-500 keV energy range. The instrument, launched on-board the Tiangong-2 Chinese Space lab on the 15th of September 2016, is designed to measure the polarization of the hard X-ray flux by measuring the distribution of the azimuthal scattering angles of the incoming photons. A detailed understanding of the polarimeter and specifically of the systematic effects induced by the instrument's non-uniformity are required for this purpose. In order to study the instrument's response to polarization, POLAR underwent a beam test at the European Synchrotron Radiation Facility in France. In this paper both the beam test and the instrument performance will be described. This is followed by an overview of the Monte Carlo simulation tools developed for the instrument. Finally a comparison of the measured and simulated instrument performance will be provided and the instrument response to polarization will be presented.

  11. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  12. Enhanced Microbial Detection Capabilities by a Rapid Portable Instrument

    NASA Technical Reports Server (NTRS)

    Morris, Heather; Monaco, Lisa; Wainwright, Norm; Steele, Andrew; Damon, Michael; Schenk, Alison; Stimpson, Eric; Maule, Jake; Effinger, Michael

    2010-01-01

    We present data describing a progression of continuing technology development - from expanding the detection capabilities of the current PTS unit to re-outfitting the instrument with a protein microarray increasing the number of detectable compounds. To illustrate the adaptability of the cartridge format, on-orbit operations data from the ISS demonstrate the detection of the fungal cell wall compound beta-glucan using applicable LOCAD-PTS cartridges. LOCAD-PTS is a handheld device consisting of a spectrophotometer, an onboard pumping mechanism, and data storage capabilities. A suite of interchangeable cartridges lined with four distinct capillaries allow a hydrated sample to mix with necessary reagents in the channels before being pumped to the optical well for spectrophotometric analysis. The reagents housed in one type of cartridge trigger a reaction based on the Limulus Amebocyte Lysate (LAL) assay, which results in the release of paranitroaniline dye. The dye is measured using a 395 nm filter. The LAL assay detects the Gram-negative bacterial cell wall molecule, endotoxin or lipopolysaccharide (LPS). The more dye released, the greater the concentration of endotoxin in the sample. Sampling, quantitative analysis, and data retrieval require less than 20 minutes. This is significantly faster than standard culture-based methods, which require at least a 24 hour incubation period.Using modified cartridges, we demonstrate the detection of Gram negative bacteria with protein microarray technology. Additionally, we provide data from multiple field tests where both standard and advanced PTS technologies were used. These tests investigate the transfer of target microbial molecules from one surface to another. Collectively, these data demonstrate that the new cartridges expand the number of compounds detected by LOCAD-PTS, while maintaining the rapid, in situ analysis characteristic of the instrument. The unit provides relevant data for verifying sterile sample collection

  13. Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite

    NASA Astrophysics Data System (ADS)

    Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Strangeway, R. J.; Runov, A.; Turner, D.; Caron, R.; Cruce, P.; Leneman, D.; Michaelis, I.; Petrov, V.; Panasyuk, M.; Yashin, I.; Drozdov, A.; Russell, C. L.; Kalegaev, V.; Nazarkov, I.; Clemmons, J. H.

    2018-02-01

    The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite (ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF- and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.

  14. Management of the Space Station Freedom onboard local area network

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.; Mitchell, Randy C.

    1991-01-01

    An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.

  15. Band-to-Band Misregistration of the Images of MODIS Onboard Calibrators and Its Impact on Calibration

    NASA Technical Reports Server (NTRS)

    Wang, Zhipeng; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are radiometrically calibrated on-orbit with a set of onboard calibrators (OBCs), including a solar diffuser, a blackbody, and a space view port through which the detectors can view the dark space. As a whisk-broom scanning spectroradiometer, thirty-six MODIS spectral bands are assembled in the along-scan direction on four focal plane assemblies (FPAs). These bands capture images of the same target sequentially with the motion of a scan mirror. Then the images are coregistered onboard by delaying the appropriate band-dependent amount of time, depending on the band locations on the FPA. While this coregistration mechanismis functioning well for the far-field remote targets such as earth view scenes or the moon, noticeable band-to-band misregistration in the along-scan direction has been observed for near field targets, particularly in OBCs. In this paper, the misregistration phenomenon is presented and analyzed. It is concluded that the root cause of the misregistration is that the rotating element of the instrument, the scan mirror, is displaced from the focus of the telescope primary mirror. The amount of the misregistrationis proportional to the band location on the FPA and is inversely proportional to the distance between the target and the scan mirror. The impact of this misregistration on the calibration of MODIS bands is discussed. In particular, the calculation of the detector gain coefficient m1of bands 8-16 (412 nm 870 nm) is improved by up to 1.5% for Aqua MODIS.

  16. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  17. Selected Measurements of Total Arctic Column Ozone Amounts from Aura Ozone Monitoring Instrument, 2004-2005 Arctic Winter

    NASA Image and Video Library

    2005-06-02

    Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.

  18. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  19. Enhancing Science and Automating Operations using Onboard Autonomy

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Tran, Daniel; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Mandl, Dan; Szwaczkowski, Joseph; Frye, Stuart; Shulman, Seth

    2006-01-01

    In this paper, we will describe the evolution of the software from prototype to full time operation onboard Earth Observing One (EO-1). We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions...

  20. Results of TLE and TGF Observation in RELEC Experiment onboard "Vernov" Mission

    NASA Astrophysics Data System (ADS)

    Klimov, Pavel; Garipov, Gali; Klimov, Stanislav; Rothkaehl, Hanna; Khrenov, Boris; Pozanenko, Alexei; Morozenko, Violetta; Iyudin, Anatoly; Bogomolov, Vitalij V.; Svertilov, Sergey; Panasyuk, Mikhail; Saleev, Kirill; Kaznacheeva, Margarita; Maximov, Ivan

    2016-07-01

    "Vernov" satellite with RELEC experiment onboard was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DUV ultraviolet and red photometer and DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors. Both instruments directed to the atmosphere. Total area of DRGE detectors is ˜500 cm ^{2}. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ˜15 μs. Several TGF candidates with 10-40 gammas in a burst with duration <1 ms were detected. Analysis of data from other instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with a world wide lightning location network (WWLLN) data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of TGF candidates with electron precipitations is discussed. Observations of transient luminous events (TLEs) were made in UV (240-400 nm) and IR (>610 nm) wavelength bands. More than 8 thousands of flashes with duration between 1 and 128 ms were detected from the atmosphere. Time profiles of detected flashes are very diverse. There are single peak events with significant UV and IR signal, multi-peak structures visible in the both UV and IR channels and very complicated events mixed from UV and IR signals and UV flashes which can continue even during the whole waveform. In addition, there are flashes of various temporal duration and structure measured only in UV wavelength range. Number of UV photons released in the atmosphere varies in a wide range from 10 ^{20} to 10 ^{26}. Apart from the events detected in the thunderstorm regions over the continents, many flashes were observed outside of thunderstorm areas, above the ocean and even at rather high latitudes. Such events are not associated with the thunderstorm and lightning activity measured by WWLLN. Various types of UV and IR

  1. Progress along the E-ELT instrumentation roadmap

    NASA Astrophysics Data System (ADS)

    Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.

    2016-08-01

    A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.

  2. Astronomical Video Suites

    NASA Astrophysics Data System (ADS)

    Francisco Salgado, Jose

    2010-01-01

    Astronomer and visual artist Jose Francisco Salgado has directed two astronomical video suites to accompany live performances of classical music works. The suites feature awe-inspiring images, historical illustrations, and visualizations produced by NASA, ESA, and the Adler Planetarium. By the end of 2009, his video suites Gustav Holst's The Planets and Astronomical Pictures at an Exhibition will have been presented more than 40 times in over 10 countries. Lately Salgado, an avid photographer, has been experimenting with high dynamic range imaging, time-lapse, infrared, and fisheye photography, as well as with stereoscopic photography and video to enhance his multimedia works.

  3. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    2002-01-01

    to state and environment and in general can terminate the execution of a decomposition and attempt a new decomposition at any level in the hierarchy. This goal decomposition system is suitable for workstation, microprocessor and fpga implementation and thus is able to support the full range of prototyping activities, from mission design in the laboratory to development of the fpga firmware for the flight system. This approach is based on previous artificial intelligence work including (1) Brooks' subsumption architecture for robot control, (2) Firby's Reactive Action Package System (RAPS) for mediating between high level automated planning and low level execution and (3) hierarchical task networks for automated planning. Reactive goal decomposition hierarchies can be used for a wide variety of on-board autonomy applications including automating low level operation sequences (such as scheduling prerequisite operations, e.g., heaters, warm-up periods, monitoring power constraints), coordinating multiple spacecraft as in formation flying and constellations, robot manipulator operations, rendez-vous, docking, servicing, assembly, on-orbit maintenance, planetary rover operations, solar system and interstellar probes, intelligent science data gathering and disaster early warning. Goal decomposition hierarchies can support high level fault tolerance. Given models of on-board resources and goals to accomplish, the decomposition hierarchy could allocate resources to goals taking into account existing faults and in real-time reallocating resources as new faults arise. Resources to be modeled include memory (e.g., ROM, FPGA configuration memory, processor memory, payload instrument memory), processors, on-board and interspacecraft network nodes and links, sensors, actuators (e.g., attitude determination and control, guidance and navigation) and payload instruments. A goal decomposition hierarchy could be defined to map mission goals and tasks to available on-board resources. As

  4. Detecting Organic Compounds Released from Iron Oxidizing Bacteria using Sample Analysis at Mars (SAM)-like Instrument Protocols

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Popa, R.; Martin, M. G.; Freissinet, C.; Fisk, M. R.; Dworkin, J. P.; Mahaffy, P. R.

    2012-12-01

    Mars is a planet of great interest for Astrobiology since its past environmental conditions are thought to have been favourable for the emergence life. At present, the Red Planet is extremely cold and dry and the surface is exposed to intense UV and ionizing radiation, conditions generally considered to be incompatible with life as we know it on Earth. It was proposed that the shallow subsurface of Mars, where temperatures can be above freezing and liquid water can exist on rock surfaces, could harbor chemolithoautotrophic bacteria such as the iron oxidizing microorganism Pseudomonas sp. HerB [Popa et al. 2012]. The Mars Science Laboratory (MSL) mission will provide the next opportunity to carry out in situ measurements for organic compounds of possible biological origin on Mars. One instrument onboard MSL, called the Sample Analysis at Mars (SAM) instrument suite, will carry out a broad and sensitive search for organic compounds in surface samples using either high temperature pyrolysis or chemical extraction followed by gas chromatography mass spectrometry [Mahaffy et al. 2012]. We present gas chromatograph mass spectrometer (GC/MS) data on crushed olivine rock powders that have been inoculated with Pseudomonas sp. HerB at different concentrations ranging from ~102 to 107 cells per gram. The inoculated olivine samples were heated under helium carrier gas flow at 500°C and the pyrolysis products concentrated using a SAM-like hydrocarbon trap set at -20°C followed by trap heating and analysis by GC/MS. In addition, the samples were also extracted using a low temperature "one-pot" chemical extraction technique using N-methyl, N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) as the silylating agent prior to GC/MS analysis [Stalport et al. 2012]. We identified several aldehydes, thiols, and alkene nitriles after pyrolysis GC/MS analysis of the bacteria that were not found in the olivine control samples that had not been inoculated with bacteria. The

  5. Flight model performances of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2016-10-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared region. The sensor system is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of an flight model of HISUI hyperspectral sensor is being carried out. Simultaneously, the development of JEM-External Facility (EF) Payload system for the instrument started. The system includes the structure, the thermal control system, the electrical system and the pointing mechanism. The development status and the performances including some of the tests results of Instrument flight model, such as optical performance, optical distortion and radiometric performance are reported.

  6. First laparoscopic hernia repair onboard an aircraft carrier at sea.

    PubMed

    Cubano, M A; Luther, J H; Antosek, L E

    1997-03-01

    To report the first known and documented laparoscopic hernia repair onboard an aircraft carrier (USS Abraham Lincoln). We present a case report of a 23-year-old healthy male seen in our Medical Department in pain with a clear mass on the right groin area. The sailor was scheduled for elective repair using a single-chip, 0 degree laparoscope from Stryker Company. Laparoscopic hernia repair was performed with complete recovery and immediate return to his usual duties onboard the aircraft carrier. Laparoscopy is not a new concept in surgery, but the performance of this surgical modality onboard a nuclear warship is a landmark event that will maximize naval operational readiness.

  7. Onboard Safety Systems/Trucking Industry Demographics.

    DOT National Transportation Integrated Search

    2016-11-01

    Research sponsored by the Federal Motor Carrier Safety Administration (FMCSA) in 2008 documented discrete : safety technology investment differences that exist across motor carrier fleet sizes. In response, this research : analyzed the use of onboard...

  8. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia (STS-87) mid-deck, Leonid Kadenyuk, Ukrainian payload specialist, works with the Brassica rapa plants being grown for the Collaborative Ukrainian Experiment (CUE). Kadenyuk joined five astronauts for 16-days in Earth-orbit in support of the United States Microgravity Payload 4 (USMP-4) mission.

  9. Extension Agents' Perceptions of a Blended Approach to Onboarding

    ERIC Educational Resources Information Center

    Harder, Amy; Zelaya, Priscilla; Roberts, T. Grady

    2016-01-01

    Extension organizations are challenged to provide onboarding to new employees that is comprehensive and high quality, yet cost-effective. The purpose of this study was to explore Extension agents' perceptions of participating in an onboarding program that used a blended approach involving face-to-face and online learning components. The objectives…

  10. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  11. 40 CFR 85.2231 - On-board diagnostic test equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false On-board diagnostic test equipment... Warranty Short Tests § 85.2231 On-board diagnostic test equipment requirements. (a) The test system interface to the vehicle shall include a plug that conforms to SAE J1962 “Diagnostic Connector.” The...

  12. 40 CFR 85.2231 - On-board diagnostic test equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false On-board diagnostic test equipment... Warranty Short Tests § 85.2231 On-board diagnostic test equipment requirements. (a) The test system interface to the vehicle shall include a plug that conforms to SAE J1962 “Diagnostic Connector.” The...

  13. 40 CFR 85.2231 - On-board diagnostic test equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false On-board diagnostic test equipment... Warranty Short Tests § 85.2231 On-board diagnostic test equipment requirements. (a) The test system interface to the vehicle shall include a plug that conforms to SAE J1962 “Diagnostic Connector.” The...

  14. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Hasan, Mohammed; Seetha, S.; Bhattacharya, Dipankar

    2018-02-01

    Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5-10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.

  15. Wave Probe - New Instrument For Space Research

    NASA Astrophysics Data System (ADS)

    Korepanov, V.; Dudkin, F.

    2007-12-01

    The dispersion relations are very important for the wave activity study in space plasmas. One of the most efficient methods for their analysis is the simultaneous measurements of spatial current density and magnetic field fluctuations during such a wave process. Whereas the measurement of the magnetic field is a routine task realized onboard practically every spacecraft (SC), the direct measurement of spatial current density (SCD) still remains a complicated scientific and technological problem. First attempt to solve it was executed in late 60-ties by a group headed by F. Mozer. They proposed and launched in a rocket experiment the device named "Split Langmuir Probe" (SLP) - two conducting plates separated by a thin insulated split. Unfortunately this experiment failed what diverted the attention of experimenters in space branch from this instrument for many years, practically till now. But the importance to know the SCD stimulated the development of new principles and devices to measure it. A short review of known versions is discussed. The newly evoked interest to this problem caused next attempt to improve the SLP construction and methodology of its application for SCD measurements, which resulted in first successful attempt in 1985: the measured SCD onboard Prognos-10 SC in the bow shock region was in rather good agreement with the calculated value. This attempt was continued onboard Interball-Tail SC (1995-2000) where again a qualitatively good coincidence of measured and calculated values was observed. The obtained experience and further theoretical research allowed developing a new instrument - Wave Probe - which is a combination of induction magnetometer and SLP in one body. Both on-ground tests in plasma chamber and the spatial experiment executed onboard Ukrainian "Sich-1M" SC (2004) showed that the combined in-situ simultaneous measurements of SCD and magnetic field fluctuations allowed obtaining the wave number of the whistler wave. The same wave

  16. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  17. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  18. On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.

  19. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  20. Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, A.; Walkowicz, K.

    In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices ormore » existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations. Based on the results of these analyses, high, low, and average vehicle dynamics requirements were determined, resulting in the selection of representative standard chassis dynamometer test cycles for each condition. In this paper, the methodology and accompanying results of the large-scale duty-cycle statistical analysis are presented, including graphical and tabular representations of a number of relationships between key duty-cycle metrics observed within the larger data set. In addition to presenting the results of this analysis, conclusions are drawn and presented regarding potential applications of advanced vehicle technology as it relates specifically to school buses.« less

  1. Low-cost human motion capture system for postural analysis onboard ships

    NASA Astrophysics Data System (ADS)

    Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore

    2011-07-01

    The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.

  2. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, B.; Chalmers, H.

    1987-01-01

    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model.

  3. On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight

    NASA Technical Reports Server (NTRS)

    Lu, Ping; Shen, Zuojun

    2003-01-01

    A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.

  4. Social Learning as Approach for Teacher Professional Development; How Well Does It Suit Them?

    ERIC Educational Resources Information Center

    Meijs, Celeste; Prinsen, Fleur R.; de Laat, Maarten F.

    2016-01-01

    Learning from others has been reported as a productive approach for teacher Professional Development (PD) and is seen as a valuable addition to formal PD. Specific insights into whether social learning suits teachers is still lacking. Therefore, the aim of the current study was to develop and apply an instrument to assess social learning…

  5. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  6. The eXtra Small Analyzer for Neutrals (XSAN) instrument on-board of the Lunar-Glob lander

    NASA Astrophysics Data System (ADS)

    Wieser, Martin; Barabash, Stas

    A large fraction of up to 20 precent of the solar wind impinging onto the lunar surface is reflected back to space as energetic neutral atoms. The SARA instrument on the Chandrayaan-1 mission provided a comprehensive coverage of the lunar surface of this interaction by mapping it from a 100 - 200 km orbit. The micro-physics of this reflection process is unexplored however. With the eXtra Small Analyzer for Neutrals instrument (XSAN) placed on the Lunar-Glob lander, we will directly investigate the production process of energetic neutral atoms from a vantage point of only meters from the surface for the first time. The XSAN design is based on the Solar Wind Monitor (SWIM) family of instruments originally flown on the Indian Chandrayaan-1 mission and with derivatives built e.g. for ESA's BepiColombo Mission to Mercury or for Phobos-Grunt. XSAN extends the functionality of this instrument family by adding a neutral atom to ion conversion surface in its entrance system. This will make it possible to measure detailed energy spectra and mass composition of the energetic neutral atoms originating from the lunar surface. We present an overview of the XSAN instrument and its science and report on latest developments.

  7. Construction and Resource Utilization Explorer: Regolith Characterization Using a Modular Instrument Suite and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Johnson, Jerome B.; Boynton, William V.; Davis, Keil; Elphic, Richard; Glass, Brian; Haldemann, Albert F. C.; Adams, Frederick W.

    2005-01-01

    The Construction Resource Utilization Explorer (CRUX) is a technology maturation project for the U.S. National Aeronautics and Space Administration to provide enabling technology for lunar and planetary surface operations (LPSO). The CRUX will have 10 instruments, a data handling function (Mapper - with features of data subscription, fusion, interpretation, and publication through geographical information system [GIs] displays), and a decision support system DSS) to provide information needed to plan and conduct LPSO. Six CRUX instruments are associated with an instrumented drill to directly measure regolith properties (thermal, electrical, mechanical, and textural) and to determine the presence of water and other hydrogen sources to a depth of about 2 m (Prospector). CRUX surface and geophysical instruments (Surveyor) are designed to determine the presence of hydrogen, delineate near subsurface properties, stratigraphy, and buried objects over a broad area through the use of neutron and seismic probes, and ground penetrating radar. Techniques to receive data from existing space qualified stereo pair cameras to determine surface topography will also be part of the CRUX. The Mapper will ingest information from CRUX instruments and other lunar and planetary data sources, and provide data handling and display features for DSS output. CRUX operation will be semi-autonomous and near real-time to allow its use for either planning or operations purposes.

  8. Suited crewmember productivity

    NASA Astrophysics Data System (ADS)

    Barer, A. S.; Filipenkov, S. N.

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: —space suit microclimate (gas composition, pressure and temperature); —limitation of motion activity and perception, imposed by the space suit; —good crewmember training in the ground training program; —level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; —individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; —concrete EVA duration and work rate; —EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  9. Suited crewmember productivity.

    PubMed

    Barer, A S; Filipenkov, S N

    1994-01-01

    Analysis of the extravehicular activity (EVA) sortie experience gained in the former Soviet Union and physiologic hygienic aspect of space suit design and development shows that crewmember productivity is related to the following main factors: -space suit microclimate (gas composition, pressure and temperature); -limitation of motion activity and perception, imposed by the space suit; -good crewmember training in the ground training program; -level of crewmember general physical performance capabilities in connection with mission duration and intervals between sorties; -individual EVA experience (with accumulation) at which workmanship improves, while metabolism, physical and emotional stress decreases; -concrete EVA duration and work rate; -EVA bioengineering, including selection of tools, work station, EVA technology and mechanization.

  10. Onboard Experiment Data Support Facility

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An onboard array structure has been devised for end to end processing of data from multiple spaceborne sensors. The array constitutes sets of programmable pipeline processors whose elements perform each assigned function in 0.25 microseconds. This space shuttle computer system can handle data rates from a few bits to over 100 megabits per second.

  11. Onboard Image Processing System for Hyperspectral Sensor

    PubMed Central

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  12. Onboard Classification of Hyperspectral Data on the Earth Observing One Mission

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Tran, Daniel; Schaffer, Steve; Rabideau, Gregg; Davies, Ashley Gerard; Doggett, Thomas; Greeley, Ronald; Ip, Felipe; Baker, Victor; Doubleday, Joshua; hide

    2009-01-01

    Remote-sensed hyperspectral data represents significant challenges in downlink due to its large data volumes. This paper describes a research program designed to process hyperspectral data products onboard spacecraft to (a) reduce data downlink volumes and (b) decrease latency to provide key data products (often by enabling use of lower data rate communications systems). We describe efforts to develop onboard processing to study volcanoes, floods, and cryosphere, using the Hyperion hyperspectral imager and onboard processing for the Earth Observing One (EO-1) mission as well as preliminary work targeting the Hyperspectral Infrared Imager (HyspIRI) mission.

  13. Onboard Photo:Astro-1 Ultraviolet Telescope in Cargo Bay

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against a blue and white Earth. Parts of the Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  14. Onboard photo: Astronauts at work

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  15. Onboard processor technology review

    NASA Technical Reports Server (NTRS)

    Benz, Harry F.

    1990-01-01

    The general need and requirements for the onboard embedded processors necessary to control and manipulate data in spacecraft systems are discussed. The current known requirements are reviewed from a user perspective, based on current practices in the spacecraft development process. The current capabilities of available processor technologies are then discussed, and these are projected to the generation of spacecraft computers currently under identified, funded development. An appraisal is provided for the current national developmental effort.

  16. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  17. On-board Attitude Determination System (OADS). [for advanced spacecraft missions

    NASA Technical Reports Server (NTRS)

    Carney, P.; Milillo, M.; Tate, V.; Wilson, J.; Yong, K.

    1978-01-01

    The requirements, capabilities and system design for an on-board attitude determination system (OADS) to be flown on advanced spacecraft missions were determined. Based upon the OADS requirements and system performance evaluation, a preliminary on-board attitude determination system is proposed. The proposed OADS system consists of one NASA Standard IRU (DRIRU-2) as the primary attitude determination sensor, two improved NASA Standard star tracker (SST) for periodic update of attitude information, a GPS receiver to provide on-board space vehicle position and velocity vector information, and a multiple microcomputer system for data processing and attitude determination functions. The functional block diagram of the proposed OADS system is shown. The computational requirements are evaluated based upon this proposed OADS system.

  18. Spacecraft on-board SAR image generation for EOS-type missions

    NASA Technical Reports Server (NTRS)

    Liu, K. Y.; Arens, W. E.; Assal, H. M.; Vesecky, J. F.

    1987-01-01

    Spacecraft on-board synthetic aperture radar (SAR) image generation is an extremely difficult problem because of the requirements for high computational rates (usually on the order of Giga-operations per second), high reliability (some missions last up to 10 years), and low power dissipation and mass (typically less than 500 watts and 100 Kilograms). Recently, a JPL study was performed to assess the feasibility of on-board SAR image generation for EOS-type missions. This paper summarizes the results of that study. Specifically, it proposes a processor architecture using a VLSI time-domain parallel array for azimuth correlation. Using available space qualifiable technology to implement the proposed architecture, an on-board SAR processor having acceptable power and mass characteristics appears feasible for EOS-type applications.

  19. VLF and X-ray Instruments for Stratospheric Balloons: ABOVE2 and EPEx

    NASA Astrophysics Data System (ADS)

    Cully, C. M.; Galts, D.; Patrick, M.; Duffin, C.; Jang, A. C.; Pitzel, J.; Trumpour, T.; McCarthy, M.; Milling, D. K.

    2017-12-01

    The ABOVE2 (2016) and EPEx (2018) stratospheric balloon missions are designed to study energetic electrons precipitating from the radiation belts into the atmosphere. The payloads include instruments that measure Very Low Frequency (VLF) magnetic and electric fields, and bremsstrahlung X-rays. The ABOVE2 VLF instrument is an FPGA-based design with >200 kHz sampling rates, sub-microsecond timing accuracy and onboard spectral processing, designed in a Cubesat-friendly format. The EPEx X-ray instrument is a hard X-ray imaging system, also in a Cubesat-friendly format, incorporating a commercially-available Cadmium-Zinc-Telluride module. The imager is sufficiently lightweight that we can launch it on-demand with low-volume latex balloons. I will discuss the design and performance of both instruments, and present data from the ABOVE2 flights.

  20. Ozone Mapping and Profiler Suite: using mission performance data to refine predictive contamination modeling

    NASA Astrophysics Data System (ADS)

    Devaud, Genevieve; Jaross, Glen

    2014-09-01

    On October 28, 2011, the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite launched at Vandenberg Air Force base aboard a United Launch Alliance Delta II rocket. Included among the five instruments was the Ozone Mapping and Profiler Suite (OMPS), an advanced suite of three hyperspectral instruments built by Ball Aerospace and Technologies Corporation (BATC) for the NASA Goddard Space Flight Center. Molecular transport modeling is used to predict optical throughput changes due to contaminant accumulation to ensure performance margin to End Of Life. The OMPS Nadir Profiler, operating at the lowest wavelengths of 250 - 310 nm, is most sensitive to contaminant accumulation. Geometry, thermal profile and material properties must be accurately modeled in order to have confidence in the results, yet it is well known that the complex chemistry and process dependent variability of aerospace materials presents a substantial challenge to the modeler. Assumptions about the absorption coefficients, desorption and diffusion kinetics of outgassing species from polymeric materials dramatically affect the model predictions, yet it is rare indeed that on-mission data is analyzed at a later date as a means to compare with modeling results. Optical throughput measurements for the Ozone and Mapping Profiler Suite on the Suomi NPP Satellite indicate that optical throughput degradation between day 145 and day 858 is less than 0.5%. We will show how assumptions about outgassing rates and desorption energies, in particular, dramatically affect the modeled optical throughput and what assumptions represent the on-orbit data.

  1. Latest NASA Instrument Cost Model (NICM): Version VI

    NASA Technical Reports Server (NTRS)

    Mrozinski, Joe; Habib-Agahi, Hamid; Fox, George; Ball, Gary

    2014-01-01

    The NASA Instrument Cost Model, NICM, is a suite of tools which allow for probabilistic cost estimation of NASA's space-flight instruments at both the system and subsystem level. NICM also includes the ability to perform cost by analogy as well as joint confidence level (JCL) analysis. The latest version of NICM, Version VI, was released in Spring 2014. This paper will focus on the new features released with NICM VI, which include: 1) The NICM-E cost estimating relationship, which is applicable for instruments flying on Explorer-like class missions; 2) The new cluster analysis ability which, alongside the results of the parametric cost estimation for the user's instrument, also provides a visualization of the user's instrument's similarity to previously flown instruments; and 3) includes new cost estimating relationships for in-situ instruments.

  2. Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Counter, Douglas D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.

  3. Earth remote sensing with NPOESS: instruments and environmental data products

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Cunningham, John D.; Nelson, Craig S.

    2004-02-01

    The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).

  4. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both

  5. The DCU: the detector control unit of the SAFARI instrument onboard SPICA

    NASA Astrophysics Data System (ADS)

    Clénet, A.; Ravera, L.; Bertrand, B.; Cros, A.; Hou, R.; Jackson, B. D.; van Leeuwen, B. J.; Van Loon, D.; Parot, Y.; Pointecouteau, E.; Sournac, A.; Ta, N.

    2012-09-01

    The SpicA FAR infrared Instrument (SAFARI) is a European instrument for the infrared domain telescope SPICA, a JAXA space mission. The SAFARI detectors are Transistor Edge Sensors (TES) arranged in 3 matrixes. The TES front end electronic is based on Superconducting Quantum Interference Devices (SQUIDs) and it does the readout of the 3500 detectors with Frequency Division Multiplexing (FDM) type architecture. The Detector Control Unit (DCU), contributed by IRAP, manages the readout of the TES by computing and providing the AC-bias signals (1 - 3 MHz) to the TES and by computing the demodulation of the returning signals. The SQUID being highly non-linear, the DCU has also to provide a feedback signal to increase the SQUID dynamic. Because of the propagation delay in the cables and the processing time, a classic feedback will not be stable for AC-bias frequencies up to 3 MHz. The DCU uses a specific technique to compensate for those delays: the BaseBand FeedBack (BBFB). This digital data processing is done for the 3500 pixels in parallel. Thus, to keep the DCU power budget within its allocation we have to specifically optimize the architecture of the digital circuit with respect to the power consumption. In this paper we will mainly present the DCU architecture. We will particularly focus on the BBFB technique used to linearize the SQUID and on the optimization done to reduce the power consumption of the digital processing circuit.

  6. The Interaction of the Space Shuttle Launch and Entry Suits and Sustained Weightless on Astronaut Egress Locomotion

    NASA Technical Reports Server (NTRS)

    Greenisen, M. C.; Bishop, P. A.; Sothmann, M.

    2008-01-01

    The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.

  7. FTS: Fourier transform spectrometer onboard ASTRO-F/FIS

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Kawada, Mitsunobu; Murakami, Noriko; Ozawa, Keita; Shibai, Hiroshi; Nakagawa, Takao

    2003-03-01

    Far-Infrared Surveyor (FIS) is one of the two focal plane instruments of ASTRO-F which is a Japanese infrared astronomical satellite and is planned to launch in 2004. The FIS has spectroscopic capability by a Fourier transform spectrometer (FTS) covering 50-200cm-1 with spectral resolution of 0.2-0.33 cm-1 in addition to the primary purpose of FIS (an all-sky photometric survey). The Martin-Puplett interferometer is adopted as the method for spectroscopy in order to achieve high optical efficiency in a wide wavelength range. The most important issue of the FTS is the development of driving mechanism in order to scan a moving mirror with high optical performances. By the present we succeed to develop the driving mechanism satisfying a lot of limitations and requirements as a instrument onboard satellite. Furthermore the wire-grid polarizers are evaluated in optical performance, these are usable for polarized interferomter. We also measure FIR spectrum using Spectroscopy mode of FIS, and many absorption lines of H2O are detected on continuum spectrum of atmosphere. And the interferogram and spectrum are derived at low temperature (2K) that is practically used in space. The spectrum resembles expected one which are considered with optical components for flight model. The detection limit are estimated combining performances of optical components and detectors, the FISP has sufficient performance to archive objective sciences. FTS will provide a lot of astronomical information; determination of the SED in high-z objects detected by the survey observation of ASTRO-F, the redshift of such objects, and the physical conditions that are hard to be derived by optical/NIR-MIR observations, from FIR lines.

  8. On-board error correction improves IR earth sensor accuracy

    NASA Astrophysics Data System (ADS)

    Alex, T. K.; Kasturirangan, K.; Shrivastava, S. K.

    1989-10-01

    Infra-red earth sensors are used in satellites for attitude sensing. Their accuracy is limited by systematic and random errors. The sources of errors in a scanning infra-red earth sensor are analyzed in this paper. The systematic errors arising from seasonal variation of infra-red radiation, oblate shape of the earth, ambient temperature of sensor, changes in scan/spin rates have been analyzed. Simple relations are derived using least square curve fitting for on-board correction of these errors. Random errors arising out of noise from detector and amplifiers, instability of alignment and localized radiance anomalies are analyzed and possible correction methods are suggested. Sun and Moon interference on earth sensor performance has seriously affected a number of missions. The on-board processor detects Sun/Moon interference and corrects the errors on-board. It is possible to obtain eight times improvement in sensing accuracy, which will be comparable with ground based post facto attitude refinement.

  9. Onboard autonomous mission re-planning for multi-satellite system

    NASA Astrophysics Data System (ADS)

    Zheng, Zixuan; Guo, Jian; Gill, Eberhard

    2018-04-01

    This paper presents an onboard autonomous mission re-planning system for Multi-Satellites System (MSS) to perform onboard re-planing in disruptive situations. The proposed re-planning system can deal with different potential emergency situations. This paper uses Multi-Objective Hybrid Dynamic Mutation Genetic Algorithm (MO-HDM GA) combined with re-planning techniques as the core algorithm. The Cyclically Re-planning Method (CRM) and the Near Real-time Re-planning Method (NRRM) are developed to meet different mission requirements. Simulations results show that both methods can provide feasible re-planning sequences under unforeseen situations. The comparisons illustrate that using the CRM is average 20% faster than the NRRM on computation time. However, by using the NRRM more raw data can be observed and transmitted than using the CRM within the same period. The usability of this onboard re-planning system is not limited to multi-satellite system. Other mission planning and re-planning problems related to autonomous multiple vehicles with similar demands are also applicable.

  10. MS Dunbar works onboard Spacehab

    NASA Image and Video Library

    1998-03-04

    S89-E-5285 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows mission specialist Bonnie J. Dunbar, payload commander, working in the Spacehab Module onboard the Space Shuttle Endeavour. Dunbar is working with RME-1326, a Risk Mitigation Experiment (RME) at the Volatile Removal Assembly (VRA). This ESC view was taken on January 25, 1998 at 13:16:22 GMT.

  11. A guide to onboard checkout. Volume 1: Guidance, navigation and control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.

  12. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  13. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.; hide

    2014-01-01

    The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.

  14. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  15. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  16. DAN instrument for NASA`s MSL mission: fast science data processing and instrument commanding for Mars surface operations and for field tests

    NASA Astrophysics Data System (ADS)

    Vostrukhin, A.; Kozyrev, A.; Litvak, M.; Malakhov, A.; Mitrofanov, I.; Mokrousov, M.; Sanin, A.; Tretyakov, V.

    2009-04-01

    The Dynamic Albedo of Neutrons (DAN) instrument is contributed by Russian Space Agency to NASA for Mars Science Laboratory mission which was originally scheduled for 2009 and now is shifted to 2011. The design of DAN instrument is partially inherited from HEND instrument for NASA's Mars Odyssey, which now successfully operates providing global mapping of martian neutron albedo, searching the distribution of martian water and observing the martian seasonal cycles. DAN is specially designed as an active neutron instrument for surface operations onboard mobile platforms. It is able to focus science investigations on local surface area around rover with horizontal resolution about 1 meter and vertical penetration about 0.5 m. The primary goal of DAN is the exploration of the hydrogen content of the bulk Martian subsurface material. This data will be used to estimate the content of chemically bound water in the hydrated minerals. The concept of DAN operations is based on combination of neutron activation analysis and neutron well logging tequnique, which are commonly used in the Earth geological applications. DAN consists blocks of Detectors and Electronics (DE) and Pulse Neutron Generator (PNG). The last one is used to irradiate the martian subsurface by pulses of 14MeV neutrons with changeable frequency up to 10 Hz. The first one detects post-pulse afterglow of neutrons, as they were thermalized down to epithermal and thermal energies within the martian subsurface. The result of detections are so called die away curves of neutrons afterglow, which show flux and time profile of thermalized neutrons and bring to us the observational signature of layering structure of martian regolith in part of depth distribution of Hydrogen (most effective element for thermalization of neutrons). In this study we focus on the development, verification and validation of DAN fast data processing and commanding. It is necessary to perform deconvolution from counting statistic in DAN

  17. Onboarding Experiences: An Examination of Early Institutional Advancement Professionals' Decisions

    ERIC Educational Resources Information Center

    Radosh, Meghan E.

    2013-01-01

    Onboarding is a new employee orientation process that is designed to formalize and socialize new hires to an organization, or in this case higher education institutions. The onboarding experience that many new employees have can shape employee views and first impressions of their new employer, and shape their early career path to stay or leave…

  18. Hubble Space Telescope: High speed photometer instrument handbook. Version 2.0

    NASA Technical Reports Server (NTRS)

    White, Richard L. (Editor)

    1990-01-01

    This manual is a guide for astronomers who intend to use the High Speed Photometer (HSP), one of the scientific instruments onboard the Hubble Space Telescope (HST). All the information needed for ordinary uses of the HSP is presented, including: (1) an overview of the instrument; (2) a detailed description of some details of the HSP-ST system that may be important for some observations; (3) tables and figures describing the sensitivity and limitations of the HSP; (4) how to go about planning an observation with the HSP; and (5) a description of the standard calibration to be applied to HSP data and the resulting data products.

  19. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  20. Sample Analysis at Mars Instrument, Side Panels Off

    NASA Image and Video Library

    2012-08-27

    An instrument suite that will analyze the chemical ingredients in samples of Martian atmosphere, rocks and soil during the mission of NASA Mars rover Curiosity, is shown here during assembly at NASA Goddard Space Flight Center, Greenbelt, Md., in 2010.

  1. The Mini-Calorimeter on-board AGILE: The first year in space

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.; Trois, A.

    2009-04-01

    AGILE, the Italian space mission dedicated to gamma-ray and hard-X astrophysics, was successfully launched on 23rd April 2007 and is currently fully operative. The Mini-Calorimeter (MCAL) on-board the AGILE satellite is a scintillation detector made of 20 kg of segmented CsI(Tl) scintillator with photodiode readout with a total geometrical area of 1400 cm2. MCAL can work both as a slave of the AGILE Silicon tracker and as an independent detector for gamma-ray bursts (GRB) detection in the 300 keV - 100 MeV energy range. Despite its limited thickness, due to weight constraints, MCAL has proven to successfully self-trigger GRBs at MeV energies providing photon-by-photon data with less than 2 μs time resolution and almost all-sky detection capabilities. The instrument design and characteristics, as well as the in-flight performance after one year of operation in space and the scientific results obtained so far are reviewed and discussed.

  2. On-board ephemeris representation for Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Salama, Ahmed H.

    1990-01-01

    The Topex/Poseidon satellite requires real-time on-board knowledge of the satellite and TDRS ephemeris for attitude determination and control and High-Gain Antenna (HGA) pointing. The ephemeris representation concept for the MMS (Multimission Modular Spacecraft) satellites has shown that compressing the predicted ephemeris in a Fourier Power Series (FPS) before uplinking in conjunction with the On-Board Computer (OBC) ephemeris reconstruction algorithms is an efficient technique for ephemeris representation. As an MMS-based satellite, Topex/Poseidon has inherited the Landsat ephemeris representation concept including a daily FPS upload. This paper presents the Topex/Poseidon concept, analysis, and results including the conclusion that the ephemeris representation duration could be extended to 10 days or more and convenient weekly uploading is adopted without an increase in OBC memory requirements.

  3. Control and acquisition system of a space instrument for cosmic ray measurement

    NASA Astrophysics Data System (ADS)

    Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.

    2000-04-01

    The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.

  4. Flight model of HISUI hyperspectral sensor onboard ISS (International Space Station)

    NASA Astrophysics Data System (ADS)

    Tanii, Jun; Kashimura, Osamu; Ito, Yoshiyuki; Iwasaki, Akira

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a next-generation Japanese sensor that will be mounted on Japanese Experiment Module (JEM) of ISS (International Space Station) in 2019 as timeframe. HISUI hyperspectral sensor obtains spectral images of 185 bands with the ground sampling distance of 20x31 meter from the visible to shortwave-infrared wavelength region. The sensor is the follow-on mission of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) in the visible to shortwave infrared region. The critical design review of the instrument was accomplished in 2014. Integration and tests of a Flight Model (FM) of HISUI hyperspectral sensor have been completed in the beginning of 2017. Simultaneously, the development of JEMExternal Facility (EF) Payload system for the instrument is being carried out. The system includes the structure, the thermal control sub-system and the electrical sub-system. The tests results of flight model, such as optical performance, optical distortion and radiometric performance are reported.

  5. Instrumentation and control system for an F-15 stall/spin

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.

    1974-01-01

    An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.

  6. Cavity-Enhanced Quantum-Cascade Laser-Based Instrument for Trace gas Measurements

    NASA Astrophysics Data System (ADS)

    Provencal, R.; Gupta, M.; Owano, T.; Baer, D.; Ricci, K.; O'Keefe, A.

    2005-12-01

    An autonomous instrument based on Off-Axis Integrated Cavity Output Spectroscopy has been successfully deployed for measurements of CO in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument consists of a measurement cell comprised of two high reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data acquisition electronics, and data analysis software. The instrument reports CO mixing ratio at a 1-Hz rate based on measured absorption, gas temperature and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41000 ft, the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights. We will also present recent development efforts to extend the instrument's capabilities for the measurements of CH4, N2O and CO in real time.

  7. Detection of the plasma density irregularities in the topside ionosphere with GPS measurements onboard Swarm satellites

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Cherniak, Iurii

    2016-07-01

    We present new results on the detection of the topside ionospheric irregularities/plasma bubbles using GPS measurements from Precise Orbit Determination (POD) GPS antenna onboard Low Earth Orbit (LEO) satellites. For this purpose we analyze the GPS measurements onboard the ESA's constellation mission Swarm, consisted of three identical satellites with orbit altitude of 450-550 km. We demonstrate that LEO GPS can be an effective tool for monitoring the occurrence of the topside ionospheric irregularities and may essentially contribute to the multi-instrumental analysis of the ground-based and in situ data. In the present study we analyze the occurrence and global distribution of the equatorial ionospheric irregularities during post-sunset period. To support our observations and conclusions, we involve into our analysis in situ plasma density provided by Swarm constellation. Joint analysis of the Swarm GPS and in situ measurements allows us to estimate the occurrence rate of the topside ionospheric irregularities during 2014-2015. The obtained results demonstrate a high degree of similarities in the occurrence pattern of the seasonal and longitudinal distribution of the topside ionospheric irregularities derived on both types of the satellite observations. This work was partially funded by RFBR according to the research project No.16-05-01077 a.

  8. A Comprehensive Onboarding and Orientation Plan for Neurocritical Care Advanced Practice Providers.

    PubMed

    Langley, Tamra M; Dority, Jeremy; Fraser, Justin F; Hatton, Kevin W

    2018-06-01

    As the role of advanced practice providers (APPs) expands to include increasingly complex patient care within the intensive care unit, the educational needs of these providers must also be expanded. An onboarding process was designed for APPs in the neurocritical care service line. Onboarding for new APPs revolved around 5 specific areas: candidate selection, proctor assignment, 3-phased orientation process, remediation, and mentorship. To ensure effective training for APPs, using the most time-conscious approach, the backbone of the process is a structured curriculum. This was developed and integrated within the standard orientation and onboarding process. The curriculum design incorporated measurable learning goals, objective assessments of phased goal achievements, and opportunities for remediation. The neurocritical care service implemented an onboarding process in 2014. Four APPs (3 nurse practitioners and 1 physician assistant) were employed by the department before the implementation of the orientation program. The length of employment ranged from 1 to 4 years. Lack of clinical knowledge and/or sufficient training was cited as reasons for departure from the position in 2 of the 4 APPs, as either self-expression or peer evaluation. Since implementation of this program, 12 APPs have completed the program, of which 10 remain within the division, creating an 83% retention rate. The onboarding process, including a 3-phased, structured orientation plan for neurocritical care, has increased APP retention since its implementation. The educational model, along with proctoring and mentorship, has improved clinical knowledge and increased nurse practitioner retention. A larger-scale study would help to support the validity of this onboarding process.

  9. On-boarding the Middle Manager.

    PubMed

    OʼConnor, Mary

    The trend of promoting clinical experts into management roles continues. New middle managers need a transitional plan that includes support, mentoring, and direction from senior leaders, including the chief nursing officer (CNO). This case study demonstrates how the CNO of one organization collaborated with a faculty member colleague to develop and implement a yearlong personalized on-boarding program for a group of new nurse middle managers.

  10. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  11. Comparison of the frequency estimation of the DORIS/Jason2 oscillator thanks to the onboard DIODE and Time Transfer by Laser Link experiment

    NASA Astrophysics Data System (ADS)

    Jayles, C.; Exertier, P.; Martin, N.; Chauveau, J. P.; Samain, E.; Tourain, C.; Auriol, A.; Guillemot, P.

    2016-12-01

    The main applications for DORIS are precise orbit determination, and precise Geodesy. Onboard Jason-2 for instance, the DORIS tracking component is the French contribution to the precise orbit determination capability, a key capability for altimetry product scientific result accuracy. T2L2 is a time transfer technique based on the propagation of light pulses for synchronization between two clocks. Hosting T2L2 on-board Jason-2 was to allow for very fine DORIS USO (Ultra-Stable Oscillator) frequency monitoring, and for this purpose T2L2 was connected to the DORIS USO. Thanks to the continuous tracking of T2L2/Jason-2 by the Laser Ranging network it is possible to monitor the USO for several days, weeks, and even much longer, and thus to also compare with the DIODE (the DORIS on-board orbit determination software) frequency bias estimates. The DORIS USO frequency biases estimate comparison between two independent systems, T2L2 and DIODE, can be of benefit to both, allowing the accuracies of both systems to be better understood, and for improvements to be made to both systems. Such comparison is the central topic of the present paper. T2L2 monitors the DORIS on-board USO frequency with an accuracy of much better than 10-12 which is the specification for the Doppler instrumentation. The paper investigates the limits of the DORIS-DIODE frequency bias estimates using T2L2, showing that USO frequency compliance accuracy of 10-12 has been reached.

  12. Onboard Safety Technology Survey Synthesis - Final Report

    DOT National Transportation Integrated Search

    2008-01-01

    The Federal Motor Carrier Safety Administration (FMCSA) funded this project to collect, merge, and conduct an assessment of onboard safety system surveys and resulting data sets that may benefit commercial vehicle operations safety and future researc...

  13. Medical instrument data exchange.

    PubMed

    Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M

    2008-01-01

    Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.

  14. Technology Readiness Level (TRL) Advancement of the MSPI On-Board Processing Platform for the ACE Decadal Survey Mission

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.; Wilson, Thor O.

    2011-01-01

    The Xilinx Virtex-5QV is a new Single-event Immune Reconfigurable FPGA (SIRF) device that is targeted as the spaceborne processor for the NASA Decadal Survey Aerosol-Cloud-Ecosystem (ACE) mission's Multiangle SpectroPolarimetric Imager (MSPI) instrument, currently under development at JPL. A key technology needed for MSPI is on-board processing (OBP) to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's ESTO1 AIST2 Program, JPL is demonstrating how signal data at 95 Mbytes/sec over 16 channels for each of the 9 multi-angle cameras can be reduced to 0.45 Mbytes/sec, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information. This is done via a least-squares fitting algorithm implemented on the Virtex-5 FPGA operating in real-time on the raw video data stream.

  15. Agile deployment and code coverage testing metrics of the boot software on-board Solar Orbiter's Energetic Particle Detector

    NASA Astrophysics Data System (ADS)

    Parra, Pablo; da Silva, Antonio; Polo, Óscar R.; Sánchez, Sebastián

    2018-02-01

    In this day and age, successful embedded critical software needs agile and continuous development and testing procedures. This paper presents the overall testing and code coverage metrics obtained during the unit testing procedure carried out to verify the correctness of the boot software that will run in the Instrument Control Unit (ICU) of the Energetic Particle Detector (EPD) on-board Solar Orbiter. The ICU boot software is a critical part of the project so its verification should be addressed at an early development stage, so any test case missed in this process may affect the quality of the overall on-board software. According to the European Cooperation for Space Standardization ESA standards, testing this kind of critical software must cover 100% of the source code statement and decision paths. This leads to the complete testing of fault tolerance and recovery mechanisms that have to resolve every possible memory corruption or communication error brought about by the space environment. The introduced procedure enables fault injection from the beginning of the development process and enables to fulfill the exigent code coverage demands on the boot software.

  16. Towards Onboard Orbital Tracking of Seasonal Polar Volatiles on Mars

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Castano, Rebecca; Chien, Steve; Ivanov, anton B.; Titus, Timothy N.

    2005-01-01

    Current conditions on Mars support both a residual polar cap, composed mainly of water ice, and a seasonal cap, composed of CO2, which appears and disappears each winter. Kieffer and Titus characterized the recession of the seasonal south polar cap using an arctangent curve fit based on data from the Thermal Emission Spectrometer on Mars Global Surveyor [1]. They also found significant interannual deviations, at the regional scale, in the recession rate [2]. Further observations will enable the refinement of our models of polar cap evolution in both hemispheres. We have developed the Bimodal Image Temperature (BIT) Histogram Analysis method for the automated detection and tracking of the seasonal polar ice caps on Mars. It is specifically tailored for possible use onboard a spacecraft. We have evaluated BIT on uncalibrated data collected by the Thermal Emission Imaging System (THEMIS) instrument [3] on the Mars Odyssey spacecraft. In this paper, we focus on the northern seasonal cap, but our approach is directly applicable to the future analysis of the southern seasonal ice cap as well.

  17. The hard x-ray imager onboard IXO

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Takahashi, Tadayuki; Limousin, Olivier; Kokubun, Motohide; Watanabe, Shin; Laurent, Philippe; Arnaud, Monique; Tajima, Hiroyasu

    2010-07-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard International X-ray Observatory (IXO), to be launched into orbit in 2020s. It covers the energy band of 10-40 keV, providing imaging-spectroscopy with a field of view of 8 x 8 arcmin2. The HXI is attached beneath the Wide Field Imager (WFI) covering 0.1-15 keV. Combined with the super-mirror coating on the mirror assembly, this configuration provides observation of X-ray source in wide energy band (0.1-40.0 keV) simultaneously, which is especially important for varying sources. The HXI sensor part consists of the semiconductor imaging spectrometer, using Si in the medium energy detector and CdTe in the high energy detector as its material, and an active shield covering its back to reduce background in orbit. The HXI technology is based on those of the Japanese-lead new generation X-ray observatory ASTRO-H, and partly from those developed for Simbol-X. Therefore, the technological development is in good progress. In the IXO mission, HXI will provide a major assets to identify the nature of the object by penetrating into thick absorbing materials and determined the inherent spectral shape in the energy band well above the structure around Fe-K lines and edges.

  18. Digital signal conditioning for flight test instrumentation

    NASA Technical Reports Server (NTRS)

    Bever, Glenn A.

    1991-01-01

    An introduction to digital measurement processes on aircraft is provided. Flight test instrumentation systems are rapidly evolving from analog-intensive to digital intensive systems, including the use of onboard digital computers. The topics include measurements that are digital in origin, as well as sampling, encoding, transmitting, and storing data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Examples of data extraction techniques are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.

  19. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph; Kilston, Steve; Kendrick, Steve

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA's New Worlds Observer program are presented. First order parameters are derived from the science requirements, and estimated performance metrics are shown using optical models. A four meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror anastigmat telescope design. Planet finding and characterization would use a separate channel which is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  20. TDRSS Onboard Navigation System (TONS) experiment for the Explorer Platform (EP)

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hornstein, R. S.; Long, A. C.; Samii, M. V.; Elrod, B. D.

    A TDRSS Onboard Navigation System (TONS) is currently being developed by NASA to provide a high-accuracy autonomous spacecraft navigation capability for users of TDRSS and its successor, the Advanced TDRSS. A TONS experiment will be performed in conjunction with the Explorer Platform (EP)/EUV Explorer mission to flight-qualify TONS Block I. This paper presents an overview of TDRSS on-board navigation goals and plans and the technical objectives of the TONS experiment. The operations concept of the experiment is described, including the characteristics of the ultrastable oscillator, the Doppler extractor, the signal-acquisition process, the TONS ground-support system, and the navigation flight software. A description of the on-board navigation algorithms and the rationale for their selection is also presented.

  1. Characterization of an Electroanalytical Instrument Suite Searching for Water and Life on Mars

    NASA Technical Reports Server (NTRS)

    Bostic, Heidi E.

    2005-01-01

    Seeking the existence of life on other planets is an essential part of NASA's research. Our terrestrial experience suggests that water is a mandatory resource for life to exist and thrive. However, instruments capable of detecting water at the levels likely to be present on Mars are lacking. This project tests the possibility of using electrical measurements of soils, at variable frequencies, as a water detector. Generally, the electrical resistance of soils can be described as a combination of resistance and capacitance, which can be described by a vector including a magnitude and (phase) angle. By specifically studying the impedance measurements and phase angles of different types of soil, spiked with varying concentrations of dissolved ions, measurements can be taken to provide an idea of the behavior of dry Martian soils. The presentation will describe the experimental technique, apparatus and procedures, as well as results conducted to calibrate the instrument and to establish sample preparation protocols.

  2. Volatile Organic Compounds (VOCs) onboard the HALO research aircraft during OMO-ASIA

    NASA Astrophysics Data System (ADS)

    Safadi, Layal; Neumaier, Marco; Fischbeck, Garlich; Zahn, Andreas

    2016-04-01

    We report on first results of VOC measurements during the OMO-Asia campaign that took place in summer 2015 on Cyprus and on the island of Gan (Maldives) to study the free-radical chemistry at higher altitudes during the Asian summer monsoon. The deployed instrument (KMS = Karlsruhe Mass Spectrometer) is based on a commercial PTRMS from Ionicon and was strongly modified for the use onboard the research aircraft HALO (a modified Gulfstream GV-550 having a ceiling altitude of ~15.5 km). By the construction of an aluminum vacuum system, the development of largely custom-made electronics and the use of light-weight pumps, the weight was reduced to ~55 kg compared to 120-130 kg of the commercial instrument. The KMS is in addition very robust and field-compliant. Before OMO-Asia the HALO payload was tested first during a technical field campaign OMO-EU which took place in Oberpfaffenhofen (Germany) in winter 2015. During OMO-Asia the instrument was calibrated before and after each flight by diluting an external gas standard (Apel-Riemer Environmental, Inc. Denver, Colorado) containing ~1 ppm of 10 VOCs. The determined sensitivity for acetone was ~380 cps/ppb showing a variation of ±5% over a period of 8 weeks. The detection limit amounted to ~35 ppt for acetone at an integration time of 6 s. The measurements during all together 17 flights took place over a wide range of Asia, including Saudi Arabia, Bahrain, Oman and Sri Lanka. Referring to the meteorological forecasts of carbon monoxide (CO), remnant of the Asia monsoon outflow was measured during some flights (e.g. over Oman). Acetone mixing ratios of up to ~1500 ppt and up to ~100 ppt of benzene were measured in the outflow of the plume. The gathered data shows a good correlation with the measurements taken with other instruments (e.g. CO measurements by Max Planck Institute for Chemistry). The poster will describe the instrument and the main features derived.

  3. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2012-01-01

    The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.

  4. Realtime Decision Making on EO-1 Using Onboard Science Analysis

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Chien, Steve; Davies, Ashley; Mandl, Dan; Frye, Stu

    2004-01-01

    Recent autonomy experiments conducted on Earth Observing 1 (EO-1) using the Autonomous Sciencecraft Experiment (ASE) flight software has been used to classify key features in hyperspectral images captured by EO-1. Furthermore, analysis is performed by this software onboard EO-1 and then used to modify the operational plan without interaction from the ground. This paper will outline the overall operations concept and provide some details and examples of the onboard science processing, science analysis, and replanning.

  5. On-board landmark navigation and attitude reference parallel processor system

    NASA Technical Reports Server (NTRS)

    Gilbert, L. E.; Mahajan, D. T.

    1978-01-01

    An approach to autonomous navigation and attitude reference for earth observing spacecraft is described along with the landmark identification technique based on a sequential similarity detection algorithm (SSDA). Laboratory experiments undertaken to determine if better than one pixel accuracy in registration can be achieved consistent with onboard processor timing and capacity constraints are included. The SSDA is implemented using a multi-microprocessor system including synchronization logic and chip library. The data is processed in parallel stages, effectively reducing the time to match the small known image within a larger image as seen by the onboard image system. Shared memory is incorporated in the system to help communicate intermediate results among microprocessors. The functions include finding mean values and summation of absolute differences over the image search area. The hardware is a low power, compact unit suitable to onboard application with the flexibility to provide for different parameters depending upon the environment.

  6. Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.

    2017-12-01

    NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite

  7. EVA Suits Arrival

    NASA Image and Video Library

    2002-01-01

    Extravehicular Activity (EVA) suits packed inside containers arrive at the Space Station Processing Facility from Johnson Space Center in Texas. The suits will be used by STS-117 crew members to perform several spacewalks during the mission. The mission payload aboard Space Shuttle Atlantis is the S3/S4 integrated truss structure, along with a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the International Space Station.

  8. Using Instruments as Applied Science, Multipurpose Tools During Human Exploration: An XRD/XRF Demonstration Strategy for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.

    2018-02-01

    Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.

  9. Detection and Quantification of Nitrogen Compounds in the First Drilled Martian Solid Samples by the Sample Analysis at Mars (SAM) Instrument Suite on the Mars Science Laboratory (MSL)

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.

  10. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  11. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  12. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...

  13. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...

  14. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...

  15. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...

  16. 14 CFR 382.65 - What are the requirements concerning on-board wheelchairs?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What are the requirements concerning on-board wheelchairs? 382.65 Section 382.65 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Accessibility of Aircraft § 382.65 What are the requirements concerning on-board wheelchairs? (a...

  17. Executive onboarding: ensuring the success of the newly hired department chair.

    PubMed

    Ross, Warren E; Huang, Karen H C; Jones, Greg H

    2014-05-01

    The success of newly recruited medical school department chairs has become increasingly important for achievement of organizational goals. An effective onboarding program for these chairs can greatly facilitate early success, as well as satisfaction of the new hire with the position and the school. Onboarding programs can include traditional orientation items such as payroll signup and parking details, but should focus heavily on sharing organizational structure, culture, and how things get done. The goals of onboarding will be well served by implementation of three roles in the process. An Orientation Navigator can assist the new chair in the orientation phase, completing new employee documents and navigating the day-to-day challenges of working at the location. A Peer Mentor, generally a sitting chair, serves as both "buddy" and mentor, providing moral support as well as ensuring that the new chair gains an understanding of the people and processes important for getting things done. A Transition Mentor serves over a longer term as a sounding board and coach outside the peer group, assisting in a variety of ways to promote the chair's growth, development, and success as a leader. Finally, any onboarding process is significantly compromised without the active participation of the dean, meeting regularly with the chair to clarify expectations, promote assimilation, and solve problems. Successful onboarding begins with a mindfulness of the needs of the newly hired chair, and a well-designed and well-implemented plan will have wide-ranging benefits for the chair and the organization.

  18. Energy Spectra of Geomagnetically Trapped Light Isotopes Measured by NINA-2 Instrument

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Voronov, S.; Bidoli, V.; Caoslino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvincini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    This paper reports about the energy spectrum of geomagnetically trapped protons, deuterons, tritons and He isotop es measured by the instrument NINA2 at the low boundary of the South Atlantic Anomaly. NINA-2 on board the satellite MITA has been in orbit from 15 July 2000 to 10 August 2001, flying with circular polar orbit (87° inclination), at an altitude between 300-440 km. Differential energy spectra were measured at L-shell ˜ 1.2 and local magnetic field b< 0.22 G. Data from NINA-2 are compared with measurements made onboard Resurs-01 N4 satellite with NINA instrument. Possible solar modulation effects are discussed.

  19. Heat exchanges in wet suits.

    PubMed

    Wolff, A H; Coleshaw, S R; Newstead, C G; Keatinge, W R

    1985-03-01

    Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.

  20. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  1. A guide to onboard checkout. Volume 4: Propulsion

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The propulsion system for a space station is considered with respect to onboard checkout requirements. Failure analysis, reliability, and maintenance features are presented. Computer analysis techniques are also discussed.

  2. On-Board Chemical Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    2004-01-01

    On-board propulsion functions include orbit insertion, orbit maintenance, constellation maintenance, precision positioning, in-space maneuvering, de-orbiting, vehicle reaction control, planetary retro, and planetary descent/ascent. This paper discusses on-board chemical propulsion technology, including bipropellants, monopropellants, and micropropulsion. Bipropellant propulsion has focused on maximizing the performance of Earth storable propellants by using high-temperature, oxidation-resistant chamber materials. The performance of bipropellant systems can be increased further, by operating at elevated chamber pressures and/or using higher energy oxidizers. Both options present system level difficulties for spacecraft, however. Monopropellant research has focused on mixtures composed of an aqueous solution of hydroxl ammonium nitrate (HAN) and a fuel component. HAN-based monopropellants, unlike hydrazine, do not present a vapor hazard and do not require extraordinary procedures for storage, handling, and disposal. HAN-based monopropellants generically have higher densities and lower freezing points than the state-of-art hydrazine and can higher performance, depending on the formulation. High-performance HAN-based monopropellants, however, have aggressive, high-temperature combustion environments and require advances in catalyst materials or suitable non-catalytic ignition options. The objective of the micropropulsion technology area is to develop low-cost, high-utility propulsion systems for the range of miniature spacecraft and precision propulsion applications.

  3. 14 CFR 382.115 - What requirements apply to on-board safety briefings?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What requirements apply to on-board safety briefings? 382.115 Section 382.115 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Services on Aircraft § 382.115 What requirements apply to on-board safety briefings? As a carrier...

  4. 14 CFR 382.115 - What requirements apply to on-board safety briefings?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What requirements apply to on-board safety briefings? 382.115 Section 382.115 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Services on Aircraft § 382.115 What requirements apply to on-board safety briefings? As a carrier...

  5. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  6. 14 CFR 382.115 - What requirements apply to on-board safety briefings?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false What requirements apply to on-board safety briefings? 382.115 Section 382.115 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Services on Aircraft § 382.115 What requirements apply to on-board safety briefings? As a carrier...

  7. 14 CFR 382.115 - What requirements apply to on-board safety briefings?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false What requirements apply to on-board safety briefings? 382.115 Section 382.115 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Services on Aircraft § 382.115 What requirements apply to on-board safety briefings? As a carrier...

  8. 14 CFR 382.115 - What requirements apply to on-board safety briefings?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false What requirements apply to on-board safety briefings? 382.115 Section 382.115 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... TRAVEL Services on Aircraft § 382.115 What requirements apply to on-board safety briefings? As a carrier...

  9. A study on the real-time reliability of on-board equipment of train control system

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Li, Shiwei

    2018-05-01

    Real-time reliability evaluation is conducive to establishing a condition based maintenance system for the purpose of guaranteeing continuous train operation. According to the inherent characteristics of the on-board equipment, the connotation of reliability evaluation of on-board equipment is defined and the evaluation index of real-time reliability is provided in this paper. From the perspective of methodology and practical application, the real-time reliability of the on-board equipment is discussed in detail, and the method of evaluating the realtime reliability of on-board equipment at component level based on Hidden Markov Model (HMM) is proposed. In this method the performance degradation data is used directly to realize the accurate perception of the hidden state transition process of on-board equipment, which can achieve a better description of the real-time reliability of the equipment.

  10. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  11. [STS-41 Onboard 16mm Photography Quick Release

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This videotape features scenes of onboard activities. The videotape was shot by the crew. The scenes include the following: Ulysses' deployment, middeck experiments, computer workstations, and Earth payload bay views.

  12. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  13. Evaluating Suit Fit Using Performance Degradation

    NASA Technical Reports Server (NTRS)

    Margerum, Sarah E.; Cowley, Matthew; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar

    2011-01-01

    The Mark III suit has multiple sizes of suit components (arm, leg, and gloves) as well as sizing inserts to tailor the fit of the suit to an individual. This study sought to determine a way to identify the point an ideal suit fit transforms into a bad fit and how to quantify this breakdown using mobility-based physical performance data. This study examined the changes in human physical performance via degradation of the elbow and wrist range of motion of the planetary suit prototype (Mark III) with respect to changes in sizing and as well as how to apply that knowledge to suit sizing options and improvements in suit fit. The methods implemented in this study focused on changes in elbow and wrist mobility due to incremental suit sizing modifications. This incremental sizing was within a range that included both optimum and poor fit. Suited range of motion data was collected using a motion analysis system for nine isolated and functional tasks encompassing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm only. The results were then compared across sizing configurations. The results of this study indicate that range of motion may be used as a viable parameter to quantify at what stage suit sizing causes a detriment in performance; however the human performance decrement appeared to be based on the interaction of multiple joints along a limb, not a single joint angle. The study was able to identify a preliminary method to quantify the impact of size on performance and to develop a means to gauge tolerances around optimal size. More work is needed to improve the assessment of optimal fit and to compensate for multiple joint interactions.

  14. On-Board Switching and Routing Advanced Technology Study

    NASA Technical Reports Server (NTRS)

    Yegenoglu, F.; Inukai, T.; Kaplan, T.; Redman, W.; Mitchell, C.

    1998-01-01

    Future satellite communications is expected to be fully integrated into National and Global Information Infrastructures (NII/GII). These infrastructures will carry multi gigabit-per-second data rates, with integral switching and routing of constituent data elements. The satellite portion of these infrastructures must, therefore, be more than pipes through the sky. The satellite portion will also be required to perform very high speed routing and switching of these data elements to enable efficient broad area coverage to many home and corporate users. The technology to achieve the on-board switching and routing must be selected and developed specifically for satellite application within the next few years. This report presents evaluation of potential technologies for on-board switching and routing applications.

  15. Modeling the Influences of Electrostatic Discharge in Materials on a Failures of Onboard Electronic Equipment in under Microgcrogravity

    NASA Astrophysics Data System (ADS)

    Grichshenko, Valentina; Zhantayev, Zhumabek; Mukushev, Acemhan

    2016-07-01

    It is known, that during SV exploitation failures of automated systems happens as the result of complex influence of Space leading to SV's shorter life span, sometimes to their lose. All of the SV, functioning in the near-Earth Space (NES), subjected to influence of different Space factors. Causes and character of failure onboard equipment are different. Many researchers think that failures of onboard electronics connected to changing solar activity level. However, by the numerous onboard experiments established that even in the absence of solar burst in magnetostatic days there are registered failures of onboard electronics. In this paper discussed the results of modeling the impact of electrostatic discharge (ESD), occurring in the materials, on a failures of electronic onboard equipment in microgravity. The paper discusses the conditions of formation and influence of electrostatic discharge in microgravity on the elements of the onboard electronics in Space. Developed technique using circuit simulation in ISIS Proteus environment is discussed. Developed the recommendations for noise immunity of on-board equipment from ESD in Space. The results are used to predict the failure rate on-board electronics with the long term of space mission. Key words: microgravity, materials, failures, onboard electronics, Space

  16. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  17. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  18. Technical feasibility of an ROV with on-board power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayer, P.; Bo, L.

    1994-12-31

    An ROI`s electric power, control and communication signals are supplied from a surface ship or platform through an umbilical cable. Though cable design has evolved steadily, there are still severe limitations such as heavy weight and cost. It is well known that the drag imposed by the cable limits the operational range of the ROV in deep water. On the other hand, a cable-free AUV presents problems in control, communication and transmission of data. Therefore, an ROV with on-board and small-diameter cable could offer both a large operating range (footprint) and real-time control. This paper considers the feasibility of suchmore » an ROV with on-board power, namely a Self-Powered ROV (SPROV). The selection of possible power sources is first discussed before comparing the operational performance of an SPROV against a conventional ROV. It is demonstrated how an SPROV with a 5mm diameter tether offers a promising way forward, with on-board power of up to 40 kW over 24 hours. In water depths greater than 50m the reduced drag of the SPROV tether is very advantageous.« less

  19. The Spin-Plane Double Probe Electric Field Instrument for MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P.-A.; Olsson, G.; Torbert, R. B.; King, B.; Granoff, M.; Rau, D.; Needell, G.; Turco, S.; Dors, I.; Beckman, P.; Macri, J.; Frost, C.; Salwen, J.; Eriksson, A.; Åhlén, L.; Khotyaintsev, Y. V.; Porter, J.; Lappalainen, K.; Ergun, R. E.; Wermeer, W.; Tucker, S.

    2016-03-01

    The Spin-plane double probe instrument (SDP) is part of the FIELDS instrument suite of the Magnetospheric Multiscale mission (MMS). Together with the Axial double probe instrument (ADP) and the Electron Drift Instrument (EDI), SDP will measure the 3-D electric field with an accuracy of 0.5 mV/m over the frequency range from DC to 100 kHz. SDP consists of 4 biased spherical probes extended on 60 m long wire booms 90∘ apart in the spin plane, giving a 120 m baseline for each of the two spin-plane electric field components. The mechanical and electrical design of SDP is described, together with results from ground tests and calibration of the instrument.

  20. Constellation Space Suit System Development Status

    NASA Technical Reports Server (NTRS)

    Ross, Amy; Aitchison, Lindsay; Daniel, Brian

    2007-01-01

    The Constellation Program has initiated the first new flight suit development project since the Extravehicular Mobility Unit (EMU) was developed for the Space Shuttle Program in the 1970s. The Constellation suit system represents a significant challenge to designers in that the system is required to address all space suit functions needed through all missions and mission phases. This is in marked contrast to the EMU, which was designed specifically for micro-gravity space walks. The Constellation suit system must serve in all of the following scenarios: launch, entry and abort crew survival; micro-gravity extravehicular activity (EVA); and lunar (1/6th-gravity) surface EVA. This paper discusses technical efforts performed from May 2006 through February 2007 for the Constellation space suit system pressure garment.

  1. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    NASA Astrophysics Data System (ADS)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  2. Conceptual design of an on-board optical processor with components

    NASA Technical Reports Server (NTRS)

    Walsh, J. R.; Shackelford, R. G.

    1977-01-01

    The specification of components for a spacecraft on-board optical processor was investigated. A space oriented application of optical data processing and the investigation of certain aspects of optical correlators were examined. The investigation confirmed that real-time optical processing has made significant advances over the past few years, but that there are still critical components which will require further development for use in an on-board optical processor. The devices evaluated were the coherent light valve, the readout optical modulator, the liquid crystal modulator, and the image forming light modulator.

  3. Satellite on-board processing for earth resources data

    NASA Technical Reports Server (NTRS)

    Bodenheimer, R. E.; Gonzalez, R. C.; Gupta, J. N.; Hwang, K.; Rochelle, R. W.; Wilson, J. B.; Wintz, P. A.

    1975-01-01

    Results of a survey of earth resources user applications and their data requirements, earth resources multispectral scanner sensor technology, and preprocessing algorithms for correcting the sensor outputs and for data bulk reduction are presented along with a candidate data format. Computational requirements required to implement the data analysis algorithms are included along with a review of computer architectures and organizations. Computer architectures capable of handling the algorithm computational requirements are suggested and the environmental effects of an on-board processor discussed. By relating performance parameters to the system requirements of each of the user requirements the feasibility of on-board processing is determined for each user. A tradeoff analysis is performed to determine the sensitivity of results to each of the system parameters. Significant results and conclusions are discussed, and recommendations are presented.

  4. STS-34 Onboard 16mm Photography Quick Release

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This video features scenes shot by the crew of onboard activities including Galileo deploy, Shuttle Solar Backscatter Ultraviolet (SSBUV) student experiments, other activities on the flight deck and middeck, and Earth and payload bay views.

  5. STS-107 Crew Interviews: Laurel Clark, Mission Specialist

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Mission Specialist 4 Laurel Clark is seen during this preflight interview, where she gives a quick overview of the mission before answering questions about her inspiration to become an astronaut and her career path. Clark outlines her role in the mission in general, and specifically in conducting onboard science experiments. She discusses the following suite of experiments and instruments in detail: ARMS (Advanced Respiratory Monitoring System) and the European Space Agency's Biopack. Clark also mentions on-board activities and responsibilities during launch and reentry, mission training, and microgravity research. In addition, she touches on the use of crew members as research subjects including pre and postflight monitoring activities, the emphasis on crew safety and the value of international cooperation.

  6. 76 FR 13121 - Electronic On-Board Recorders and Hours of Service Supporting Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration 49 CFR Parts 385, 390, and 395 [Docket No. FMCSA-2010-0167] RIN 2126-AB20 Electronic On-Board Recorders and Hours of Service... comment period for the Electronic On-Board Recorder and Hours of Service Supporting Documents Notice of...

  7. Learning without Onboarding: How Assessing and Evaluating Learning Benefits New Information Technology Hires

    ERIC Educational Resources Information Center

    Morris, Dory L.

    2013-01-01

    Onboarding ensures learning success through sharing and acquiring knowledge to remain competitive. However, little is known about new Information Technology (IT) hires' learning needs in the absence of onboarding; therefore, the purpose of this case study was to examine, increase, and retain their technical knowledge at the Unified Communications…

  8. Nickel release from surgical instruments and operating room equipment.

    PubMed

    Boyd, Anne H; Hylwa, Sara A

    2018-04-15

    Background There has been no systematic study assessing nickel release from surgical instruments and equipment used within the operating suite. This equipment represents important potential sources of exposure for nickel-sensitive patients and hospital staff. To investigate nickel release from commonly used surgical instruments and operating room equipment. Using the dimethylglyoxime nickel spot test, a variety of surgical instruments and operating room equipment were tested for nickel release at our institution. Of the 128 surgical instruments tested, only 1 was positive for nickel release. Of the 43 operating room items tested, 19 were positive for nickel release, 7 of which have the potential for direct contact with patients and/or hospital staff. Hospital systems should be aware of surgical instruments and operating room equipment as potential sources of nickel exposure.

  9. Functional requirements for onboard management of space shuttle consumables, volume 2.

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to develop the functional requirements for onboard management of space shuttle consumables. A specific consumables management concept for the space shuttle vehicle was developed and the functional requirements for the onboard portion of the concept were generated. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The subsystems considered in the study are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  10. On-board fault management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne

    1991-01-01

    The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.

  11. STS-65 onboard: IML-2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Onboard Space Shuttle Columbia (STS-65) Mission specialist Leroy Chiao is seen in the International Microgravity Laboratory 2 (IML-2) spacelab science moduel in front of Rack 3 and above center aisle equipment. Chiao has just made an observation of the goldfish container (silver apparatus on left beween his right hand and knee) . The Rack 3 Aquatic Animal Experiment Unit (AAEU) also contains Medaka and newts. Chiao joined five other NASA astronauts and a Japanese payload specialist for two weeks of experimenting.

  12. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  13. 77 FR 7562 - Electronic On-Board Recorders and Hours of Service Supporting Documents

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ..., and 395 [Docket No. FMCSA-2010-0167] RIN 2126-AB20 Electronic On-Board Recorders and Hours of Service... intent. SUMMARY: FMCSA announces its intent to move forward with the Electronic On-Board Recorders and... Appeals for the Seventh Circuit. OOIDA raised several concerns relating to EOBRs and their potential use...

  14. The wide field imager instrument for Athena

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Eder, Josef; Eraerds, Tanja; Nandra, Kirpal; Pietschner, Daniel; Plattner, Markus; Rau, Arne; Strecker, Rafael

    2016-07-01

    The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 amin x 40 amin together with excellent count rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 7 keV will be <= 170 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec half energy width (HEW) of the mirror system. Each DEPFET pixel is a combined sensor-amplifier structure with a MOSFET integrated onto a fully depleted 450 μm thick silicon bulk. Two detectors are planned for the WFI instrument: A large-area detector comprising four sensors with a total of 1024 x 1024 pixels and a fast detector optimized for high count rate observations. This high count rate capable detector permits for bright point sources with an intensity of 1 Crab a throughput of more than 80% and a pile-up of less than 1%. The fast readout of the DEPFET pixel matrices is facilitated by an ASIC development, called VERITAS-2. Together with the Switcher-A, a control ASIC that allows for operation of the DEPFET in rolling shutter mode, these elements form the key components of the WFI detectors. The detectors are surrounded by a graded-Z shield, which has in particular the purpose to avoid fluorescence lines that would contribute to the instrument background. Together with ultra-thin coating of the sensor and particle identification by the detector itself, the particle induced background shall be minimized in order to achieve the scientific requirement of a total instrumental background value smaller than 5 x 10-3 cts/cm2/s/keV. Each detector has its dedicated detector electronics

  15. Near Real Time Review of Instrument Performance using the Airborne Data Processing and Analysis Software Package

    NASA Astrophysics Data System (ADS)

    Delene, D. J.

    2014-12-01

    Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.

  16. Influence of musical instruments on tooth positions.

    PubMed

    Herman, E

    1981-08-01

    A 2-year longitudinal investigation was conducted at five New York City junior high schools on 11- to 13-year-old children starting instrumental music education to determine what tooth movement, if any, resulted from the playing of certain musical instruments. Questionnaires, interviews, oral examinations, and dental casts were used at the start of instrumental study, after one year, and then after a second year. Statistically significant anterior tooth movements occurred in an overwhelming majority of the instrumentalists, while negligible movements were recorded for the controls over this period. As a result of this study, certain recommendations can be made by dentists when they are asked to suggest instruments which are dentally suited for children. In most cases they can suggest more than one instrument which would be of benefit dentally to the individual child, especially in the increase or reduction of overjet and overbite. The playing of the correct musical instrument can serve as an adjunct to the dentist or orthodontist in trying to accomplish certain tooth movements.

  17. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  18. 76 FR 31362 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Versatile Onboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Production Act of 1993--Versatile Onboard Traffic Embedded Roaming Sensors (Formerly Joint Venture To Perform Project Entitled Versatile Onboard Traffic Embedded Roaming Sensors) Notice is hereby given that, on April..., 15 U.S.C. 4301 et seq. (``the Act''), Versatile Onboard Traffic Embedded Roaming Sensors (formerly...

  19. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    NASA Astrophysics Data System (ADS)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  20. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  1. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  2. Hyperspectral Sulfur Detection Using an SVM with Extreme Minority Positive Examples Onboard EO-1

    NASA Astrophysics Data System (ADS)

    Mandrake, Lukas; Wagstaff, Kiri L.; Gleeson, Damhnait; Rebbapragada, Umaa; Tran, Daniel; Castano, Rebecca; Chien, Steven; Pappalardo, Robert T.

    2009-09-01

    Onboard classification of remote sensing data is of general interest given that it can be used as a trigger to initiate alarms, data download, additional higher- resolution scans, or more frequent scans of an area without ground interaction. In our case, we study the sulfur-rich Borup-Fiord glacial springs in Canada utilizing the Hyperion instrument aboard the EO-1 spacecraft. This system consists of naturally occurring sulfur-rich springs emerging from glacial ice, which are a known environment for microbial life. The biological activity of the spring is associated with sulfur compounds that can be detected remotely via spectral analysis. This system may offer an analog to far more exotic locales such as Europa where remote sensing of biogenic indicators is of considerable interest. Unfortunately, spacecraft processing power and memory is severely limited which places strong constraints on the algorithms available. Previous work has been performed in the generation and execution of an onboard SVM (support vector machine) classifier to autonomously identify the presence of sulfur compounds associated with the activity of microbial life. However, those results were limited in the number of positive examples available to be labeled. In this paper we extend the sample size from 1 to 7 example scenes between 2006 and 2008, corresponding to a change from 18 to 235 positive labels. Of key interest is our assessment of the classifier's behavior on non-sulfur-bearing imagery far from the training region. Selection of the most relevant spectral bands and parameters for the SVM are also explored.

  3. NASA/GSFC Onboard Autonomy For The Swift Mission

    NASA Technical Reports Server (NTRS)

    Ong, John

    2005-01-01

    This viewgraph presentation reviews the work that NASA Goddard Space Flight Center is currently doing and has been involved in in developing onboard autonomy and automation. Emphasis is given to the work being done for the Swift observatory

  4. Best Practices for Onboarding New Nursing Faculty: The Role of the Nurse Administrator

    ERIC Educational Resources Information Center

    Lee, Antwinett O.

    2017-01-01

    This study explored best practices for onboarding new faculty in nursing programs in Washington State of the United States. The purpose of this study was to examine, (a) onboarding practices to orient new faculty currently used at nursing programs that provide an Associate Degree, (b) the perceived nurse administrator's role in providing…

  5. Anthropometric Accommodation in Space Suit Design

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Thaxton, Sherry

    2007-01-01

    Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.

  6. Spacecraft Onboard Interface Services: Current Status and Roadmap

    NASA Astrophysics Data System (ADS)

    Prochazka, Marek; Lopez Trescastro, Jorge; Krueger, Sabine

    2016-08-01

    Spacecraft Onboard Interface Services (SOIS) is a set of CCSDS standards defining communication stack services to interact with hardware equipment onboard spacecraft. In 2014 ESA kicked off three parallel activities to critically review the SOIS standards, use legacy spacecraft flight software (FSW), make it compliant to a preselected subset of SOIS standards and make performance and architecture assessment. As a part of the three parallel activities, led by Airbus DS Toulouse, OHB Bremen and Thales Alenia Space Cannes respectively, it was to provide feedback back to ESA and CCSDS and also to propose a roadmap of transition towards an operational FSW system fully compliant to applicable SOIS standards. The objective of the paper is twofold: Firstly it is to summarise main results of the three parallel activities and secondly, based on the results, to propose a roadmap for the future.

  7. A guide to onboard checkout. Volume 3: Electrical power

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The baseline electrical power subsystem for a space station is considered. The subsystem was anlayzed in order to define onboard checkout requirements. Reliability, failure effects, and maintenance are discussed.

  8. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    A full suite of instruments are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The various instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  9. An onboard data analysis method to track the seasonal polar caps on Mars

    USGS Publications Warehouse

    Wagstaff, K.L.; Castano, R.; Chien, S.; Ivanov, A.B.; Pounders, E.; Titus, T.N.; ,

    2005-01-01

    The Martian seasonal CO2 ice caps advance and retreat each year. They are currently studied using instruments such as the THermal EMission Imaging System (THEMIS), a visible and infra-red camera on the Mars Odyssey spacecraft [1]. However, each image must be downlinked to Earth prior to analysis. In contrast, we have developed the Bimodal Image Temperature (BIT) histogram analysis method for onboard detection of the cap edge, before transmission. In downlink-limited scenarios when the entire image cannot be transmitted, the location of the cap edge can still be identified and sent to Earth. In this paper, we evaluate our method on uncalibrated THEMIS data and find 1) agreement with manual cap edge identifications to within 28.2 km, and 2) high accuracy even with a smaller analysis window, yielding large reductions in memory requirements. This algorithm is currently being considered as a capability enhancement for the Odyssey second extended mission, beginning in fall 2006.

  10. Clinical utility of an automated instrument for gram staining single slides.

    PubMed

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-06-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis.

  11. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  12. The Calar Alto Observatory: current status and future instrumentation

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Thiele, U.; Aceituno, J.; Pedraz, S.; Sánchez, S. F.; Aguirre, A.; Alises, M.; Bergond, G.; Galadí, D.; Guijarro, A.; Hoyo, F.; Mast, D.; Montoya, L.; Sengupta, Ch.; de Guindos, E.; Solano, E.

    2011-11-01

    The Calar Alto Observatory, located at 2168 m height above the sea level in continental Europe, holds a significant number of astronomical telescopes and experiments, covering a large range of the electromagnetic domain, from gamma-ray to near-infrared. It is a very well characterized site, with excellent logistics. Its main telescopes includes a large suite of instruments. At the present time, new instruments, namely CAFE, PANIC and Carmenes, are under development. We are also planning a new operational scheme in order to optimize the observatory resources.

  13. Advanced Crew Escape Suit.

    PubMed

    1995-09-01

    Design of the S1032 Launch Entry Suit (LES) began following the Challenger loss and NASA's decision to incorporate a Shuttle crew escape system. The LES (see Figure 1) has successfully supported Shuttle missions since NASA's Return to Flight with STS-26 in September 1988. In 1990, engineers began developing the S1035 Advanced Crew Escape Suit (ACES) to serve as a replacement for the LES. The ACES was designed to be a simplified, lightweight, low-bulk pressure suit which aided self donning/doffing, provided improved comfort, and enhanced overall performance to reduce crew member stress and fatigue. Favorable crew member evaluations of a prototype led to full-scale development and qualification of the S1035 ACES between 1990 and 1992. Production of the S1035 ACES began in February 1993, with the first unit delivered to NASA in May 1994. The S1035 ACES first flew aboard STS-68 in August 1994 and will become the primary crew escape suit when the S1032 LES ends its service life in late 1995. The primary goal of the S1035 development program was to provide improved performance over that of the S1032 to minimize the stress and fatigue typically experienced by crew members. To achieve this, five fundamental design objectives were established, resulting in various material/configuration changes.

  14. On-board data management study for EOPAP

    NASA Technical Reports Server (NTRS)

    Davisson, L. D.

    1975-01-01

    The requirements, implementation techniques, and mission analysis associated with on-board data management for EOPAP were studied. SEASAT-A was used as a baseline, and the storage requirements, data rates, and information extraction requirements were investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility, and an infrared/visible very high resolution radiometer (VHRR). Rate distortion theory was applied to determine theoretical minimum data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model. The results of the preceding investigations were used to recommend an on-board data management system for (1) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering, and data selection under command or as a function of data activity, (2) for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring.

  15. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    NASA Technical Reports Server (NTRS)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  16. Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

    NASA Astrophysics Data System (ADS)

    Trumbauer, Eric Michael

    This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.

  17. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  18. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  19. Design Trade-off Between Performance and Fault-Tolerance of Space Onboard Computers

    NASA Astrophysics Data System (ADS)

    Gorbunov, M. S.; Antonov, A. A.

    2017-01-01

    It is well known that there is a trade-off between performance and power consumption in onboard computers. The fault-tolerance is another important factor affecting performance, chip area and power consumption. Involving special SRAM cells and error-correcting codes is often too expensive with relation to the performance needed. We discuss the possibility of finding the optimal solutions for modern onboard computer for scientific apparatus focusing on multi-level cache memory design.

  20. 40 CFR 86.1806-17 - Onboard diagnostics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Onboard diagnostics. 86.1806-17... § 86.1844-01(d)(8) applies with regard to the leak monitoring requirement. We may ask you to provide.... (F) Include the SAE J1979 test results (e.g., Mode/Service $06) corresponding to the DTCs that were...

  1. A profile of public transportation passenger demographics and travel characteristics reported in on-board surveys

    DOT National Transportation Integrated Search

    2007-05-01

    Data from 150 on-board vehicle passenger surveys conducted by public transportation agencies from : 2000 through 2005 were compiled. This is the largest ever on-board survey study about the public : transportation industry. These surveys summarized t...

  2. CAPs-IDD: Characteristics of Assessment Instruments for Psychiatric Disorders in Persons with Intellectual Developmental Disorders

    ERIC Educational Resources Information Center

    Zeilinger, E. L.; Nader, I. W.; Brehmer-Rinderer, B.; Koller, I.; Weber, G.

    2013-01-01

    Background: Assessment of psychiatric disorders in persons with an intellectual developmental disorder (IDD) can be performed with a variety of greatly differing instruments. This makes the choice of an instrument best suited for the intended purpose challenging. In this study, we developed a comprehensive set of characteristics for the evaluation…

  3. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  4. An overview of CAFE credits and incorporation of the benefits of on-board carbon capture.

    DOT National Transportation Integrated Search

    2014-05-01

    This report discusses the application of Corporate Average Fuel Economy (CAFE) : credits that are currently available to vehicle manufacturers in the U.S., and the implications of : on-board carbon capture and sequestration (on-board CCS) on fu...

  5. Veg-03D Experiment Onboard the International Space Station

    NASA Image and Video Library

    2017-10-17

    Veg-03D Experiment Onboard the International Space Station. First time three different plant varieties are being grown simultaneously in the Veggie chamber -- Mizuna mustard, Waldmann's green lettuce and Outredgeous Red Romaine lettuce.

  6. Longitudinal Study Transformed Onboarding Nurse Graduates.

    PubMed

    Slate, Kimberly A; Stavarski, Debra H; Romig, Barbara J; Thacker, Karen S

    The outcomes of a longitudinal research study on a nurse residency program indicated improvement in the onboarding experience for new graduate nurses. Practice changes and implications for nursing professional development practitioners resulting from the study include the number and orientation of preceptors, program length standardization, and improvement of emergency clinical response education. Additional research studies were implemented to further explore issues novice nurses and their proficient registered nurse colleagues experience throughout the organization.

  7. Staying connected: Service-specific orientation can be successfully achieved using a mobile application for onboarding care providers

    PubMed Central

    Chreiman, Kristen M; Prakash, Priya S; Kim, Patrick K; Mehta, Samir; McGinnis, Kelly; Gallagher, John J; Reilly, Patrick M

    2017-01-01

    everyday tasks (16, 53.3%). Fifteen (50%) of the respondents stated that the app made the transition to the trauma service easier. Twenty-five (83.3%) stated it was valuable knowing about departmental events and announcements, and 17 (56.7%) felt more connected to the division. The evolution of mobile technology is rapidly becoming fundamental in medical education and training. We found that integrating a service-specific mobile application improved the learner's experience when transitioning to a new service and was a valuable onboarding instrument. Level of evidence IV. PMID:29766089

  8. Staying connected: Service-specific orientation can be successfully achieved using a mobile application for onboarding care providers.

    PubMed

    Chreiman, Kristen M; Prakash, Priya S; Martin, Niels D; Kim, Patrick K; Mehta, Samir; McGinnis, Kelly; Gallagher, John J; Reilly, Patrick M

    2017-01-01

    everyday tasks (16, 53.3%). Fifteen (50%) of the respondents stated that the app made the transition to the trauma service easier. Twenty-five (83.3%) stated it was valuable knowing about departmental events and announcements, and 17 (56.7%) felt more connected to the division. The evolution of mobile technology is rapidly becoming fundamental in medical education and training. We found that integrating a service-specific mobile application improved the learner's experience when transitioning to a new service and was a valuable onboarding instrument. Level of evidence IV.

  9. On-Board Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1997-01-01

    NASA Lewis Research Center's On-Board Propulsion program (OBP) is developing low-thrust chemical propulsion technologies for both satellite and vehicle reaction control applications. There is a vigorous international competition to develop new, highperformance bipropellant engines. High-leverage bipropellant systems are critical to both commercial competitiveness in the international communications market and to cost-effective mission design in government sectors. To significantly improve bipropellant engine performance, we must increase the thermal margin of the chamber materials. Iridium-coated rhenium (Ir/Re) engines, developed and demonstrated under OBP programs, can operate at temperatures well above the constraints of state-of-practice systems, providing a sufficient margin to maximize performance with the hypergolic propellants used in most satellite propulsion systems.

  10. Validation of double Langmuir probe in-orbit performance onboard a nano-satellite

    NASA Astrophysics Data System (ADS)

    Tejumola, Taiwo Raphael; Zarate Segura, Guillermo Wenceslao; Kim, Sangkyun; Khan, Arifur; Cho, Mengu

    2018-03-01

    Many plasma measurement systems have been proposed and used onboard different satellites to characterize space plasma. Most of these systems employed the technique of Langmuir probes either using the single or double probes methods. Recent growth of lean satellites has positioned it on advantage to be used for space science missions using Langmuir probes because of its simplicity and convenience. However, single Langmuir probes are not appropriate to be used on lean satellites because of their limited conducting area which leads to spacecraft charging and drift of the instrument's electrical ground during measurement. Double Langmuir probes technique can overcome this limitation, as a measurement reference in relation to the spacecraft is not required. A double Langmuir probe measurement system was designed and developed at Kyushu Institute of Technology for HORYU-IV satellite, which is a 10 kg, 30 cm cubic class lean satellite launched into Low Earth Orbit on 17th February 2016. This paper presents the on-orbit performance and validation of the double Langmuir probe measurement using actual on-orbit measured data and computer simulations.

  11. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation

  12. Space Suit Spins

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Space is a hostile environment where astronauts combat extreme temperatures, dangerous radiation, and a near-breathless vacuum. Life support in these unforgiving circumstances is crucial and complex, and failure is not an option for the devices meant to keep astronauts safe in an environment that presents constant opposition. A space suit must meet stringent requirements for life support. The suit has to be made of durable material to withstand the impact of space debris and protect against radiation. It must provide essential oxygen, pressure, heating, and cooling while retaining mobility and dexterity. It is not a simple article of clothing but rather a complex modern armor that the space explorers must don if they are to continue exploring the heavens

  13. High-Speed On-Board Data Processing Platform for LIDAR Projects at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, J.; Ng, T. K.; Davis, M. J.; Adams, J. K.; Lin, B.

    2015-12-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 - April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  14. Enabling interoperability in Geoscience with GI-suite

    NASA Astrophysics Data System (ADS)

    Boldrini, Enrico; Papeschi, Fabrizio; Santoro, Mattia; Nativi, Stefano

    2015-04-01

    GI-suite is a brokering framework targeting interoperability of heterogeneous systems in the Geoscience domain. The framework is composed by different brokers each one focusing on a specific functionality: discovery, access and semantics (i.e. GI-cat, GI-axe, GI-sem). The brokering takes place between a set of heterogeneous publishing services and a set of heterogeneous consumer applications: the brokering target is represented by resources (e.g. coverages, features, or metadata information) required to seamlessly flow from the providers to the consumers. Different international and community standards are now supported by GI-suite, making possible the successful deployment of GI-suite in many international projects and initiatives (such as GEOSS, NSF BCube and several EU funded projects). As for the publisher side more than 40 standards and implementations are supported (e.g. Dublin Core, OAI-PMH, OGC W*S, Geonetwork, THREDDS Data Server, Hyrax Server, etc.). The support for each individual standard is provided by means of specific GI-suite components, called accessors. As for the consumer applications side more than 15 standards and implementations are supported (e.g. ESRI ArcGIS, Openlayers, OGC W*S, OAI-PMH clients, etc.). The support for each individual standard is provided by means of specific profiler components. The GI-suite can be used in different scenarios by different actors: - A data provider having a pre-existent data repository can deploy and configure GI-suite to broker it and making thus available its data resources through different protocols to many different users (e.g. for data discovery and/or data access) - A data consumer can use GI-suite to discover and/or access resources from a variety of publishing services that are already publishing data according to well-known standards. - A community can deploy and configure GI-suite to build a community (or project-specific) broker: GI-suite can broker a set of community related repositories and

  15. 77 FR 70172 - Lifesaving and Fire-Fighting Equipment, Training and Drills Onboard Offshore Facilities and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Equipment, Training and Drills Onboard Offshore Facilities and Mobile Offshore Drilling Units (MODUs... lifesaving and fire-fighting equipment, training and drills on board offshore facilities and MODUs operating... guidance concerning lifesaving and fire-fighting equipment, training, and drills onboard manned offshore...

  16. Concepts for on-board satellite image registration, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.; Daluge, D. R.; Aanstoos, J. V.

    1980-01-01

    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite.

  17. An on-board near-optimal climb-dash energy management

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path.

  18. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    NASA Astrophysics Data System (ADS)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  19. 40 CFR 86.1806-01 - On-board diagnostics.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... The emission control diagnostic system shall record and store in computer memory diagnostic trouble... or system, “freeze frame” engine conditions present at the time shall be stored in computer memory... equipped with an onboard diagnostic (OBD) system capable of monitoring, for each vehicle's useful life, all...

  20. 40 CFR 86.1806-01 - On-board diagnostics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... The emission control diagnostic system shall record and store in computer memory diagnostic trouble... or system, “freeze frame” engine conditions present at the time shall be stored in computer memory... equipped with an onboard diagnostic (OBD) system capable of monitoring, for each vehicle's useful life, all...

  1. 40 CFR 86.1806-01 - On-board diagnostics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... The emission control diagnostic system shall record and store in computer memory diagnostic trouble... or system, “freeze frame” engine conditions present at the time shall be stored in computer memory... equipped with an onboard diagnostic (OBD) system capable of monitoring, for each vehicle's useful life, all...

  2. Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2

    NASA Technical Reports Server (NTRS)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.

  3. Validation of Radiometric Standards for the Laboratory Calibration of Reflected-Solar Earth Observing Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.

    2007-01-01

    Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.

  4. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    NASA Technical Reports Server (NTRS)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  5. Clinical Utility of an Automated Instrument for Gram Staining Single Slides ▿

    PubMed Central

    Baron, Ellen Jo; Mix, Samantha; Moradi, Wais

    2010-01-01

    Gram stains of 87 different clinical samples were prepared by the laboratory's conventional methods (automated or manual) and by a new single-slide-type automated staining instrument, GG&B AGS-1000. Gram stains from either heat- or methanol-fixed slides stained with the new instrument were easy to interpret, and results were essentially the same as those from the methanol-fixed slides prepared as a part of the routine workflow. This instrument is well suited to a rapid-response laboratory where Gram stain requests are commonly received on a stat basis. PMID:20410348

  6. Strontium Iodide Radiation Instrumentation (SIRI)

    NASA Astrophysics Data System (ADS)

    Mitchell, Lee J.; Phlips, Bernard F.; Woolf, Richard S.; Finne, Theodore T.; Johnson, W. Neil; Jackson, Emily G.

    2017-08-01

    The Strontium Iodide Radiation Instrumentation (SIRI) is designed to space-qualify new gamma-ray detector technology for space-based astrophysical and defense applications. This new technology offers improved energy resolution, lower power consumption and reduced size compared to similar systems. The SIRI instrument consists of a single europiumdoped strontium iodide (SrI2:Eu) scintillation detector. The crystal has an energy resolution of 3% at 662 keV compared to the 6.5% of traditional sodium iodide and was developed for terrestrial-based weapons of mass destruction (WMD) detection. SIRI's objective is to study the internal activation of the SrI2:Eu material and measure the performance of the silicon photomultiplier (SiPM) readouts over a 1-year mission. The combined detector and readout measure the gammaray spectrum over the energy range of 0.04 - 4 MeV. The SIRI mission payoff is a space-qualified compact, highsensitivity gamma-ray spectrometer with improved energy resolution relative to previous sensors. Scientific applications in solar physics and astrophysics include solar flares, Gamma Ray Bursts, novae, supernovae, and the synthesis of the elements. Department of Defense (DoD) and security applications are also possible. Construction of the SIRI instrument has been completed, and it is currently awaiting integration onto the spacecraft. The expected launch date is May 2018 onboard STPSat-5. This work discusses the objectives, design details and the STPSat-5 mission concept of operations of the SIRI spectrometer.

  7. High resolution middle infrared spectrometer, a part of atmospheric chemistry suite (ACS) for EXOMARS 2016 trace gas orbiter

    NASA Astrophysics Data System (ADS)

    Trokhimovskiy, Alexander; Korablev, Oleg; Ivanov, Yurii; Syniavskyi, Ivan; Montmessin, Franck; Fedorova, Anna

    2017-11-01

    The Atmospheric Chemistry Suite (ACS) package is a part of Russian contribution to ExoMars ESARoscosmos mission for studies of the Martian atmosphere and climate. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. The mid-infrared (MIR) channel is a cross-dispersion high resolution echelle instrument dedicated to solar occultation measurements and sensitive studies of trace gases. The MIR channel is a spectrometer working in 2.3-4.2 μm spectral range, covering simultaneously up to almost 300 nm per exposure, targeting the resolving power of 50,000. A crossdispersion concept on echelle and ordinary diffraction grating allows acquisition of the wide wavelength domain at once. That provides a strategic advantage for maximizing the number of gaseous species detected simultaneously and good special resolution of measurements during fast occultation sessions. Moving the second grating allows to switch from one group of the diffraction orders to another prior to a series of measurements, or desired positions during one measurement sequence. The concept of the cross-dispersion echelle instrument, which is widely accepted in astronomy, has been already employed in planetary missions with VIRTIS-H instrument presently in flight on Rosetta and Venus Express missions. Targeting very high spectral resolution the MIR channel operates in solar occultation only. A telescope with relative aperture of 1∶3 forms the image of the solar disk on the slit. The FOV is determined by the slit and it consists 0.1×2.9 mrad. The spectral resolution of the spectrometer is fully slit-limited, and the resolving power of λ/Δλ >= 50000 at 3.3 μm is supported. Two secondary cross-dispersion diffraction gratings (plain, 180 and 361 grooves per mm) are mounted back-to-back on a stepper motor to change observed echelle orders. We have chosen two secondary gratings philosophy to switch between them depending on the long or short

  8. Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Arruego, I.; Apéstigue, V.; Jiménez, J. J.; Gómez, L.; Yela, M.; Rannou, P.; Pommereau, J.-P.

    2017-04-01

    The solar irradiance sensor (SIS) was included in the DREAMS package onboard the ExoMars 2016 Entry Descent and Landing Demonstrator Module, and has been selected in the METEO meteorological station onboard the ExoMars 2020 Lander. This instrument is designed to measure at different time intervals the scattered flux or the sum of direct flux and scattered flux in UVA (315-400 nm) and NIR (700-1100 nm) bands. For SIS'16, these measurements are performed by a total of 3 sensors per band placed at the faces of a truncated tetrahedron with face inclination angles of 60°. The principal goal of SIS'16 design is to perform measurements of the dust opacity in UVA and NIR wavelengths ranges, crucial parameters in the understanding of the Martian dust cycle. The retrieval procedure is based on the use of radiative transfer simulations to reproduce SIS observations acquired during daytime as a function of dust opacity. Based on different sensitivity analysis, the retrieval procedure also requires to include as free parameters (1) the dust effective radius; (2) the dust effective variance; and (3) the imaginary part of the refractive index of dust particles in UVA band. We found that the imaginary part of the refractive index of dust particles does not have a big impact on NIR signal, and hence we can kept constant this parameter in the retrieval of dust opacity at this channel. In addition to dust opacity measurements, this instrument is also capable to detect and characterize clouds by looking at the time variation of the color index (CI), defined as the ratio between the observations in NIR and UVA channels, during daytime or twilight. By simulating CI signals with a radiative transfer model, the cloud opacity and cloud altitude (only during twilight) can be retrieved. Here the different retrieval procedures that are used to analyze SIS measurements, as well as the results obtained in different sensitivity analysis, are presented and discussed.

  9. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  10. DC and AC Electric Field Measurements by Spin-Plane Double Probes Onboard MMS

    NASA Astrophysics Data System (ADS)

    Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Ergun, R. E.; Goodrich, K.; Torbert, R. B.; Argall, M. R.; Nakamura, R.

    2015-12-01

    The four spacecraft of the NASA Magnetospheric Multiscale mission (MMS) were launched on 12 March 2015 into a 1.2 x 12 Re equatorial orbit to study energy conversion processes in Earth's magnetosphere. After a 5-month commissioning period the first scientific phase starts on 1 September as the orbit enters the dusk magnetopause region. The Spin-plane Double Probe electric field instrument (SDP), part of the electric and magnetic fields instrument suite FIELDS, measures the electric field in the range 0.3 - 500 mV/m with a continuous time resolution up to 8192 samples/s. The instrument features adjustable bias currents and guard voltages to optimize the measurement performance. SDP also measures the spacecraft potential, which can be controlled by the Active Spacecraft Potential Control (ASPOC) ion emitter, and under certain conditions can be used to determine plasma density. We present observations of DC and AC electric fields in different plasma regions covered by MMS since launch including the night side flow braking region, reconnection regions at the dusk and dayside magnetopause, and in the magnetosheath. We compare the electric field measurements by SDP to other, independent determinations of the electric field, in particular by the Electron Drift Instrument (EDI), in order to assess the accuracy of the electric field measurement under different plasma conditions. We also study the influence of the currents emitted by ASPOC and EDI on the SDP measurements.

  11. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  12. Analysis of Noise Exposure Measurements Acquired Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Limardo, Jose G.; Allen, Christopher S.

    2011-01-01

    The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements were made onboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2001). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn dosimeters during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers onboard the ISS.

  13. Magnetometer instrument team studies for the definition phase of the outer planets grand tour

    NASA Technical Reports Server (NTRS)

    Coleman, P. J., Jr.

    1972-01-01

    The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.

  14. Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Lara, L. M.; Lowry, S.; Vincent, J.-B.; Gutiérrez, P. J.; Rożek, A.; La Forgia, F.; Oklay, N.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; Auger, A.-T.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Besse, S.; Bodewits, D.; Cremonese, G.; Davidsson, B.; Da Deppo, V.; Debei, S.; De Cecco, M.; El-Maarry, M. R.; Ferri, F.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez-Marques, P.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lin, Z.-Y.; López-Moreno, J. J.; Magrin, S.; Marzari, F.; Michalik, H.; Moissl-Fraund, R.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Thomas, N.; Sabau, M. D.; Tubiana, C.

    2015-11-01

    Context. During the most recent perihelion passage in 2009 of comet 67P/Churyumov-Gerasimenko (67P), ground-based observations showed an anisotropic dust coma where jet-like features were detected at ~ 1.3 AU from the Sun. The current perihelion passage is exceptional as the Rosetta spacecraft is monitoring the nucleus activity since March 2014, when a clear dust coma was already surrounding the nucleus at 4.3 AU from the Sun. Subsequently, the OSIRIS camera also witnessed an outburst in activity between April 27 and 30, and since mid-July, the dust coma at rh ~ 3.7-3.6 AU preperihelion is clearly non-isotropic, pointing to the existence of dust jet-like features. Aims: We aim to ascertain on the nucleus surface the origin of the dust jet-like features detected as early as in mid-July 2014. This will help to establish how the localized comet nucleus activity compares with that seen in previous apparitions and will also help following its evolution as the comet approaches its perihelion, at which phase most of the jets were detected from ground-based observations. Determining these areas also allows locating them in regions on the nucleus with spectroscopic or geomorphological distinct characteristics. Methods: Three series of dust images of comet 67P obtained with the Wide Angle Camera (WAC) of the OSIRIS instrument onboard the Rosetta spacecraft were processed with different enhancement techniques. This was made to clearly show the existence of jet-like features in the dust coma, whose appearance toward the observer changed as a result of the rotation of the comet nucleus and of the changing observing geometry from the spacecraft. The position angles of these features in the coma together with information on the observing geometry, nucleus shape, and rotation, allowed us to determine the most likely locations on the nucleus surface where the jets originate from. Results: Geometrical tracing of jet sources indicates that the activity of the nucleus of 67P gave rise

  15. Intelligent Sensors and Components for On-Board ISHM

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; Morris, Jon; Nickles, Donald; Schmalzel, Jorge; Rauth, David; Mahajan, Ajay; Utterbach, L.; Oesch, C.

    2006-01-01

    A viewgraph presentation on the development of intelligent sensors and components for on-board Integrated Systems Health Health Management (ISHM) is shown. The topics include: 1) Motivation; 2) Integrated Systems Health Management (ISHM); 3) Intelligent Components; 4) IEEE 1451; 5)Intelligent Sensors; 6) Application; and 7) Future Directions

  16. Livermore Compiler Analysis Loop Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermoremore » Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  17. TDRSS Onboard Navigation System (TONS) flight qualification experiment

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.

  18. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  19. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  20. Extravehicular Space Suit Bearing Technology Development Research

    NASA Astrophysics Data System (ADS)

    Pang, Yan; Liu, Xiangyang; Guanghui, Xie

    2017-03-01

    Pressure bearing has been acting an important role in the EVA (extravehicular activity) suit as a main mobility component. EVA suit bearing has its unique traits on the material, dustproof design, seal, interface, lubrication, load and performance. This paper states the peculiarity and development of the pressure bearing on the construction design element, load and failure mode, and performance and test from the point view of structure design. The status and effect of EVA suit pressure bearing is introduced in the paper. This analysis method can provide reference value for our country’s EVA suit pressure bearing design and development.

  1. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J.; Graham, H. V.; Archer, P. D.; Brunner, A.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precision measurements of the abundance and carbon isotopic composition (delta C-13) of the evolved CO2 and hydrogen isotopic composition (delta D) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx. 550 C and above approx. 550 C.

  2. Ocean Drilling Program: Public Information: Life Onboard JOIDES Resolution

    Science.gov Websites

    2002) Leg 200 (Dec 2001-Jan 2002) Legs 190-199 Legs 176-189 Life Onboard JOIDES Resolution The reports hope that they provide a better understanding of the research activities and lifestyle of the

  3. Defense Threat Reduction Agency > Careers > Onboarding > Sponsor Program

    Science.gov Websites

    critical role in the Onboarding Program. In addition to the traditional supervisory roles and explain expectations to ensure a smooth transition, and help you become successful in your new role. While will quickly become productive and effective in your new role. Reasonable Accommodations DTRA provides

  4. Use MACES IVA Suit for EVA Mobility Evaluations

    NASA Technical Reports Server (NTRS)

    Watson, Richard D.

    2014-01-01

    The use of an Intra-Vehicular Activity (IVA) suit for a spacewalk or Extra-Vehicular Activity (EVA) was evaluated for mobility and usability in the Neutral Buoyancy Lab (NBL) environment. The Space Shuttle Advanced Crew Escape Suit (ACES) has been modified (MACES) to integrate with the Orion spacecraft. The first several missions of the Orion MPCV spacecraft will not have mass available to carry an EVA specific suit so any EVA required will have to be performed by the MACES. Since the MACES was not designed with EVA in mind, it was unknown what mobility the suit would be able to provide for an EVA or if a person could perform useful tasks for an extended time inside the pressurized suit. The suit was evaluated in multiple NBL runs by a variety of subjects including crewmembers with significant EVA experience. Various functional mobility tasks performed included: translation, body positioning, carrying tools, body stabilization, equipment handling, and use of tools. Hardware configurations included with and without TMG, suit with IVA gloves and suit with EVA gloves. Most tasks were completed on ISS mockups with existing EVA tools. Some limited tasks were completed with prototype tools on a simulated rocky surface. Major findings include: demonstration of the ability to weigh-out the suit, understanding the need to have subjects perform multiple runs prior to getting feedback, determination of critical sizing factors, and need for adjustment of suit work envelop. The early testing has demonstrated the feasibility of EVA's limited duration and limited scope. Further testing is required with more flight like tasking and constraints to validate these early results. If the suit is used for EVA, it will require mission specific modifications for umbilical management or PLSS integration, safety tether attachment, and tool interfaces. These evaluations are continuing through calendar year 2014.

  5. Performance assessment of an onboard monitoring system for commercial motor vehicle drivers : a field operational test.

    DOT National Transportation Integrated Search

    2016-11-01

    The onboard monitoring system (OBMS) field operational test (FOT) was conducted to determine whether onboard monitoring systems that provide real-time performance feedback to commercial truck and motorcoach drivers could reduce the number of safety-c...

  6. Expedition 18 Suit-up

    NASA Image and Video Library

    2008-10-11

    A Russian Sokol suit technician prepares to help American spaceflight participant Richard Garriott don his flight suit prior to the Soyuz TMA-13 launch with Expedition 18 Commander Michael Fincke and Flight Engineer Yuri V. Lonchakov, Sunday, Oct. 12, 2008 in Baikonur, Kazakhstan. The three crew members are scheduled to dock with the International Space Station on Oct. 14. Fincke and Lonchakov will spend six months on the station, while Garriott will return to Earth Oct. 24 with two of the Expedition 17 crew members currently on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  7. Assessment of the possible contribution of space ties on-board GNSS satellites to the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Bruni, Sara; Rebischung, Paul; Zerbini, Susanna; Altamimi, Zuheir; Errico, Maddalena; Santi, Efisio

    2018-04-01

    The realization of the international terrestrial reference frame (ITRF) is currently based on the data provided by four space geodetic techniques. The accuracy of the different technique-dependent materializations of the frame physical parameters (origin and scale) varies according to the nature of the relevant observables and to the impact of technique-specific errors. A reliable computation of the ITRF requires combining the different inputs, so that the strengths of each technique can compensate for the weaknesses of the others. This combination, however, can only be performed providing some additional information which allows tying together the independent technique networks. At present, the links used for that purpose are topometric surveys (local/terrestrial ties) available at ITRF sites hosting instruments of different techniques. In principle, a possible alternative could be offered by spacecrafts accommodating the positioning payloads of multiple geodetic techniques realizing their co-location in orbit (space ties). In this paper, the GNSS-SLR space ties on-board GPS and GLONASS satellites are thoroughly examined in the framework of global reference frame computations. The investigation focuses on the quality of the realized physical frame parameters. According to the achieved results, the space ties on-board GNSS satellites cannot, at present, substitute terrestrial ties in the computation of the ITRF. The study is completed by a series of synthetic simulations investigating the impact that substantial improvements in the volume and quality of SLR observations to GNSS satellites would have on the precision of the GNSS frame parameters.

  8. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    PubMed

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  9. MOBS - A modular on-board switching system

    NASA Astrophysics Data System (ADS)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  10. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE PAGES

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; ...

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  11. An on-board pedestrian detection and warning system with features of side pedestrian

    NASA Astrophysics Data System (ADS)

    Cheng, Ruzhong; Zhao, Yong; Wong, ChupChung; Chan, KwokPo; Xu, Jiayao; Wang, Xin'an

    2012-01-01

    Automotive Active Safety(AAS) is the main branch of intelligence automobile study and pedestrian detection is the key problem of AAS, because it is related with the casualties of most vehicle accidents. For on-board pedestrian detection algorithms, the main problem is to balance efficiency and accuracy to make the on-board system available in real scenes, so an on-board pedestrian detection and warning system with the algorithm considered the features of side pedestrian is proposed. The system includes two modules, pedestrian detecting and warning module. Haar feature and a cascade of stage classifiers trained by Adaboost are first applied, and then HOG feature and SVM classifier are used to refine false positives. To make these time-consuming algorithms available in real-time use, a divide-window method together with operator context scanning(OCS) method are applied to increase efficiency. To merge the velocity information of the automotive, the distance of the detected pedestrian is also obtained, so the system could judge if there is a potential danger for the pedestrian in the front. With a new dataset captured in urban environment with side pedestrians on zebra, the embedded system and its algorithm perform an on-board available result on side pedestrian detection.

  12. Calibration sources and filters of the soft x-ray spectrometer instrument on the Hitomi spacecraft

    NASA Astrophysics Data System (ADS)

    de Vries, Cor P.; Haas, Daniel; Yamasaki, Noriko Y.; Herder, Jan-Willem den; Paltani, Stephane; Kilbourne, Caroline; Tsujimoto, Masahiro; Eckart, Megan E.; Leutenegger, Maurice A.; Costantini, Elisa; Dercksen, Johannes P. C.; Dubbeldam, Luc; Frericks, Martin; Laubert, Phillip P.; van Loon, Sander; Lowes, Paul; McCalden, Alec J.; Porter, Frederick S.; Ruijter, Jos; Wolfs, Rob

    2018-01-01

    The soft x-ray spectrometer was designed to operate onboard the Japanese Hitomi (ASTRO-H) satellite. In the beam of this instrument, there was a filter wheel containing x-ray filters and active calibration sources. This paper describes this filter wheel. We show the purpose of the filters and the preflight calibrations performed. In addition, we present the calibration source design and measured performance. Finally, we conclude with prospects for future missions.

  13. RELEC Mission: Relativistic Electron Precipitation and TLE study on-board small spacecraft

    NASA Astrophysics Data System (ADS)

    Svertilov, Sergey

    The main goal of RELEC mission is studying of magnetosphere relativistic electron precipitation and its acting on the upper Atmosphere as well as transient luminous events (TLE) observation in wide range of electromagnetic spectrum. The RELEC set of instruments includes two identical detectors of X- and gamma-rays of high temporal resolution and sensitivity (DRGE-1 & DRGE-2), three axe directed detectors of energetic electrons and protons DRGE-3, UV TLE imager MTEL, UV detector DUV, low-frequency analyser LFA, radio-frequency analyser RFA, module of electronics intended for commands and data collection BE. During the RELEC mission following experiments will be provided: - simultaneous observations of energetic electron & proton flux (energy range ~0.1-10.0 MeV and low-frequency (~0.1-10 kHz) electromagnetic wave field intensity variations with high temporal resolution (~1 ms); - fine time structure (~1 mcs) measurements of transient atmospheric events in UV, X- and gamma rays with a possibility of optical imaging with resolution of ~km in wide FOV; - measurements of electron flux pitch-angle distribution in dynamical range from ~0.1 up to 105 part/cm2s; - monitoring of charge and neutral background particles in different areas of near-Earth space. Now the all RELEC instruments are installed on-board small spacecraft manufactured by Lavochkin space corporation. The launch is scheduled on May, 2014 as by-pass mission with Meteor spacecraft. The RELEC mission orbit is planned to be quasi-circular solar-synchronous with about 700 km height. The total volume of transmitted data is about 1.2 Gbyte per day.

  14. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  15. The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration.

    PubMed

    Duda, Kevin R; Vasquez, Rebecca A; Middleton, Akil J; Hansberry, Mitchell L; Newman, Dava J; Jacobs, Shane E; West, John J

    2015-01-01

    The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long-duration space exploration missions. The V2Suit system leverages wearable kinematic monitoring technology and uses inertial measurement units (IMUs) and control moment gyroscopes (CMGs) within miniaturized modules placed on body segments to provide a "viscous resistance" during movements against a specified direction of "down"-initially as a countermeasure to the sensorimotor adaptation performance decrements that manifest themselves while living and working in microgravity and during gravitational transitions during long-duration spaceflight, including post-flight recovery and rehabilitation. Several aspects of the V2Suit system concept were explored and simulated prior to developing a brassboard prototype for technology demonstration. This included a system architecture for identifying the key components and their interconnects, initial identification of key human-system integration challenges, development of a simulation architecture for CMG selection and parameter sizing, and the detailed mechanical design and fabrication of a module. The brassboard prototype demonstrates closed-loop control from "down" initialization through CMG actuation, and provides a research platform for human performance evaluations to mitigate sensorimotor adaptation, as well as a tool for determining the performance requirements when used as a musculoskeletal deconditioning countermeasure. This type of countermeasure system also has Earth benefits, particularly in gait or movement stabilization and rehabilitation.

  16. Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.

    2003-12-01

    The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.

  17. Type II Radio Bursts Observed by STEREO/Waves and Wind/Waves instruments

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Magdalenic, J.; Zhukov, A.; Rodriguez, L.; Mierla, M.; Maksimovic, M.; Cecconi, B.; Santolik, O.

    2013-12-01

    Type II radio bursts are slow-drift emissions triggered by suprathermal electrons accelerated on shock fronts of propagating CMEs. We present several events at kilometric wavelengths observed by radio instruments onboard the STEREO and Wind spacecraft. The STEREO/Waves and Wind/Waves have goniopolarimetric (GP, also referred to as direction finding) capabilities that allow us to triangulate radio sources when an emission is observed by two or more spacecraft. As the GP inversion has high requirements on the signal-to-noise ratio we only have a few type II radio bursts with sufficient intensity for this analysis. We have compared obtained radio sources with white-light observations of STEREO/COR and STEREO/HI instruments. Our preliminary results indicate that radio sources are located at flanks of propagating CMEs.

  18. Analytical Tools for Space Suit Design

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2011-01-01

    As indicated by the implementation of multiple small project teams within the agency, NASA is adopting a lean approach to hardware development that emphasizes quick product realization and rapid response to shifting program and agency goals. Over the past two decades, space suit design has been evolutionary in approach with emphasis on building prototypes then testing with the largest practical range of subjects possible. The results of these efforts show continuous improvement but make scaled design and performance predictions almost impossible with limited budgets and little time. Thus, in an effort to start changing the way NASA approaches space suit design and analysis, the Advanced Space Suit group has initiated the development of an integrated design and analysis tool. It is a multi-year-if not decadal-development effort that, when fully implemented, is envisioned to generate analysis of any given space suit architecture or, conversely, predictions of ideal space suit architectures given specific mission parameters. The master tool will exchange information to and from a set of five sub-tool groups in order to generate the desired output. The basic functions of each sub-tool group, the initial relationships between the sub-tools, and a comparison to state of the art software and tools are discussed.

  19. Semantic Information Extraction of Lanes Based on Onboard Camera Videos

    NASA Astrophysics Data System (ADS)

    Tang, L.; Deng, T.; Ren, C.

    2018-04-01

    In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.

  20. Real-Time Onboard Global Nonlinear Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Morelli, Eugene A.

    2014-01-01

    Flight test and modeling techniques were developed to accurately identify global nonlinear aerodynamic models onboard an aircraft. The techniques were developed and demonstrated during piloted flight testing of an Aermacchi MB-326M Impala jet aircraft. Advanced piloting techniques and nonlinear modeling techniques based on fuzzy logic and multivariate orthogonal function methods were implemented with efficient onboard calculations and flight operations to achieve real-time maneuver monitoring and analysis, and near-real-time global nonlinear aerodynamic modeling and prediction validation testing in flight. Results demonstrated that global nonlinear aerodynamic models for a large portion of the flight envelope were identified rapidly and accurately using piloted flight test maneuvers during a single flight, with the final identified and validated models available before the aircraft landed.