Science.gov

Sample records for instrument voor het

  1. The Mechanism of Toxicity in HET-S/HET-s Prion Incompatibility

    PubMed Central

    Seuring, Carolin; Greenwald, Jason; Wasmer, Christian; Wepf, Roger; Saupe, Sven J.; Meier, Beat H.; Riek, Roland

    2012-01-01

    The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the β-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ∼34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins. PMID:23300377

  2. HET Spectroscopy of Extragalactic Novae

    NASA Astrophysics Data System (ADS)

    Shafter, Allen W.; Coelho, E. A.; Misselt, K. A.; Bode, M. F.; Darnley, M. J.

    2006-12-01

    We are currently involved in a multifaceted campaign to study extragalactic novae in the optical and IR using a variety of instruments: The Mount Laguna 1m, the Steward 2.3m, and the Liverpool 2m telescopes for optical imaging, the Hobbey-Eberly Telescope (HET) for optical spectroscopy, and the Spitzer Space Telescope for IR photometry and spectroscopy. Here, we report the initial results from our program of spectroscopic observations obtained with the LRS on the HET. Thus far, we have obtained spectra of three novae: Nova M31-2006#9 (ATEL 887), Nova M32-2006#1 (CBET 591), and Nova M33-2006#1 (CBET 655), which were taken on 24-Sep-2006 UT, 30-Sep-2006 UT, and 02-Oct-2006 UT, approximately 6, 65, and 4 days post discovery, for the three novae respectively. The spectra of Nova M31-2006#9 and Nova M33-2006#1 revealed prominent Balmer (FWHM 1600 km/s) and Fe II emission lines typical of the "Fe II" class in the classification system of Williams (1992 AJ, 104, 725). The spectrum of Nova M32-2006#1, which was obtained much longer after eruption, showed strong H-alpha (FWHM 1300 km/s), along with weaker H-beta, Fe II, and [N II] 5755, indicating that this nova is also a member of the Fe II class, and that it had entered the nebular phase at the time of our observations. In addition to these three novae, we also attempted to obtain a spectrum of Nova M31-2006#7 (CBET 615) on 23-Sep-2006 UT, approximately three weeks after discovery. However, by the time of our observations, the nova had faded to invisibility. An 1800s integration at the reported position reveled no trace of the nova. It is likely that this optical transient was an unusually fast nova, possibly of the "He/N" class. This work is being supported in part by NSF grant AST-0607682.

  3. Interacting with the HET Queue

    NASA Astrophysics Data System (ADS)

    Gaffney, N. I.; Cornell, M. E.

    1998-12-01

    The Hobby*Eberly telescope (HET) is a 9.2m effective aperture telescope located at McDonald Observatory in West Texas. The HET is operated by McDonald Observatory on behalf of the University of Texas, Pennsylvania State University, Stanford University, Ludsiwg--Maximilians--Universitat Muchen, and Georg-August-Universitat Gotingen. The fixed elevation of the HET restricts its sky coverage. Because the HET cannot point to all objects above the horizon at a given time, it is usually inefficient to schedule observations by awarding entire nights to a single PI. To maximize scientific output, we have developed a queued observing system to allow PIs to instruct resident astronomers at the HET how, when, and what to observe. Our system uses the now familiar Phase I/II architecture for requesting and submitting remote observations with a real time scheduling system for scheduling and executing observations. During Phase I, the PI uses simple planning tools to determine if and how a project may be done. Once projects are approved by a TAC at a partner institution, the PI creates a detailed plan for their observations. Plans are submitted electronically to the HET operations staff. Upon receipt, the plans are integrated into the HET's observing database. Resident astronomers use this database and the current and forecasted conditions to schedule observations. PIs are informed of new data by e-mail and may retrieve data to verify its quality in semi-realtime. PIs may make changes to their plans based on this data. In this poster we will discuss the flow of information from the initial proposal phase through the delivery of data and plan revision. We will talk about some of the details of the planning and scheduling software developed for this project. We will also discuss the results of our initial experience with our system in the Fall and Winter of 1998.

  4. Theme and variations: evolutionary diversification of the HET-s functional amyloid motif

    PubMed Central

    Daskalov, Asen; Dyrka, Witold; Saupe, Sven J.

    2015-01-01

    In mammals and fungi, Nod-like receptors (NLR) activate downstream cell death execution proteins by a prion-like mechanism. In Podospora anserina, the NWD2 NLR activates the HET-S Helo-domain pore-forming protein by converting its prion-forming domain into a characteristic β-solenoid amyloid fold. The amyloid forming region of HET-S/s comprises two repetitions of a 21 amino acid motif. Herein, we systematically analyze the sequences of C-terminal regions of fungal HeLo and HeLo-like domain proteins to identify HET-s-related amyloid motifs (HRAM). We now identify four novel HRAM subfamilies in addition to the canonical HET-S/s subfamily. These novel motifs share the pseudo-repeat structure of HET-S/s and a specific pattern of distribution of hydrophobic and polar residues. Sequence co-variance analyses predict parallel in-register β-stacking of the two repeats and residue-residue interactions compatible with the β-solenoid fold. As described for HET-S, most genes encoding the HeLo proteins are adjacent to genes encoding NLRs also displaying HRAMs. The motifs of the NLRs are similar to those of their cognate HeLo-domain protein, indicating concerted evolution between repeats. This study shows that HET-s-related amyloid motifs are more common than anticipated and that they have diversified into discrete subfamilies that apparently share a common overall fold. PMID:26219477

  5. Op weg naar een didactiek voor natuurkunde-experimenten op afstand : Ontwerp en evaluatie van een via internet uitvoerbaar experiment voor leerlingen uit het voortgezet onderwijs

    NASA Astrophysics Data System (ADS)

    Engelbarts, M. B. A.

    2009-02-01

    The subject of this thesis is a developmental study on “remote experimenting” in education. It concerns the development of a remote experiment that enables pre-university students to carry out a physics experiment at a distance via the internet. Remote experiments can offer several (practical) benefits when compared to conventional experiments but the desire to exploit these benefits put special demands on the design of the experiment, since the students might be conducting the experiment without a teacher in the vicinity. As a consequence of these demands it was decided to focus on exploring the possibilities and problems of remote experiments conducted in the absence of a teacher. The research was carried out in two cycles and focused on the development of a remote experiment that could be conducted autonomously by pre-university students to measure the speed of light in several media. This should answer the global question: What should a technically, as well as didactically, well-functioning remote experiment look like? The first cycle had an explorative character. It showed that technically the experiment already functioned quite well. However, many problems were observed concerning the content, and the way the students were tackling it. This led to two categories of recommendations. Concerning the content, the material should aim at making the students more aware of what they are doing and why they are doing it and several content related problems needed to be avoided. The second category of recommendations concerned the format of the material: the design and the working method. Special attention should be paid to designing a clear structure for the website and adding interaction and control, (feedback- and reflection facilities) to activate the students and guide them through the material. In the second research cycle these recommendations were followed by designing the material within the theoretical framework of the problem posing theory. A didactical structure was designed before writing the actual lesson material for the website describing the inter-related conceptual and content-related motivational pathway of the intended teaching-learning process. The lesson material was set up in such a way that the students are repeatedly confronted with a practical problem to solve and they play an active role in developing the method of measurement. Secondly, in an attempt to compensate for the absence of the teacher and support the teaching-learning process some format elements were developed and deployed like an automated question-, and feedback system that supported the students, activated them and gave them insight into their learning process and a ‘Where-am-I’-window that showed their current position within the material. This all had led to a technically as well as didactically well functioning remote experiment in which, at a global level, the line of reasoning was made explicit and recognizable for the students, and ad a local level was build up out of well connected successive activities and required the students to adopt an active attitude.

  6. Origins and Evolution of the HET-s Prion-Forming Protein: Searching for Other Amyloid-Forming Solenoids

    PubMed Central

    Gendoo, Deena M. A.; Harrison, Paul M.

    2011-01-01

    The HET-s prion-forming domain from the filamentous fungus Podospora anserina is gaining considerable interest since it yielded the first well-defined atomic structure of a functional amyloid fibril. This structure has been identified as a left-handed beta solenoid with a triangular hydrophobic core. To delineate the origins of the HET-s prion-forming protein and to discover other amyloid-forming proteins, we searched for all homologs of the HET-s protein in a database of protein domains and fungal genomes, using a combined application of HMM, psi-blast and pGenThreader techniques, and performed a comparative evolutionary analysis of the N-terminal alpha-helical domain and the C-terminal prion-forming domain of HET-s. By assessing the tandem evolution of both domains, we observed that the prion-forming domain is restricted to Sordariomycetes, with a marginal additional sequence homolog in Arthroderma otae as a likely case of horizontal transfer. This suggests innovation and rapid evolution of the solenoid fold in the Sordariomycetes clade. In contrast, the N-terminal domain evolves at a slower rate (in Sordariomycetes) and spans many diverse clades of fungi. We performed a full three-dimensional protein threading analysis on all identified HET-s homologs against the HET-s solenoid fold, and present detailed structural annotations for identified structural homologs to the prion-forming domain. An analysis of the physicochemical characteristics in our set of structural models indicates that the HET-s solenoid shape can be readily adopted in these homologs, but that they are all less optimized for fibril formation than the P. anserina HET-s sequence itself, due chiefly to the presence of fewer asparagine ladders and salt bridges. Our combined structural and evolutionary analysis suggests that the HET-s shape has “limited scope” for amyloidosis across the wider protein universe, compared to the ‘generic’ left-handed beta helix. We discuss the implications of

  7. HET Spectra of Three Recent Extragalactic Novae

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.; Coelho, E. A.; Misselt, K. A.; Bode, M. F.; Darnley, M. J.; Quimby, R.

    2006-10-01

    We report optical spectroscopic observations (4280Å - 7280Å) obtained with the HET of three extragalactic novae: Nova M31 2006 No. 9 (ATEL #887), Nova M32 2006 No. 1 (CBET #591), and Nova M33 2006 No. 1 (CBET #655). The spectra were obtained on 24 Sep 2006 UT, 30 Sep 2006 UT, and 02 Oct 2006 UT, corresponding to approximately 6, 65, and 4 days post discovery, for the three novae respectively.

  8. A yeast toxic mutant of HET-s amyloid disrupts membrane integrity.

    PubMed

    Ta, Ha Phuong; Berthelot, Karine; Coulary-Salin, Bénédicte; Castano, Sabine; Desbat, Bernard; Bonnafous, Pierre; Lambert, Olivier; Alves, Isabel; Cullin, Christophe; Lecomte, Sophie

    2012-09-01

    Many studies have pointed out the interaction between amyloids and membranes, and their potential involvement in amyloid toxicity. Previously, we generated a yeast toxic amyloid mutant (M8) from the harmless amyloid protein by changing a few residues of the Prion Forming Domain of HET-s (PFD HET-s(218-289)) and clearly demonstrated the complete different behaviors of the non-toxic Wild Type (WT) and toxic amyloid (called M8) in terms of fiber morphology, aggregation kinetics and secondary structure. In this study, we compared the interaction of both proteins (WT and M8) with membrane models, as liposomes or supported bilayers. We first demonstrated that the toxic protein (M8) induces a significant leakage of liposomes formed with negatively charged lipids and promotes the formation of microdomains inside the lipid bilayer (as potential "amyloid raft"), whereas the non-toxic amyloid (WT) only binds to the membrane without further perturbations. The secondary structure of both amyloids interacting with membrane is preserved, but the anti-symmetric PO(2)(-) vibration is strongly shifted in the presence of M8. Secondly, we established that the presence of membrane models catalyzes the amyloidogenesis of both proteins. Cryo-TEM (cryo-transmission electron microscopy) images show the formation of long HET-s fibers attached to liposomes, whereas a large aggregation of the toxic M8 seems to promote a membrane disruption. This study allows us to conclude that the toxicity of the M8 mutant could be due to its high propensity to interact and disrupt lipid membranes. PMID:22562024

  9. Natural Variation of Heterokaryon Incompatibility Gene het-c in Podospora anserina Reveals Diversifying Selection

    PubMed Central

    Bastiaans, Eric; Debets, Alfons J.M.; Aanen, Duur K.; van Diepeningen, Anne D.; Saupe, Sven J.; Paoletti, Mathieu

    2014-01-01

    In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition. PMID:24448643

  10. Natural variation of heterokaryon incompatibility gene het-c in Podospora anserina reveals diversifying selection.

    PubMed

    Bastiaans, Eric; Debets, Alfons J M; Aanen, Duur K; van Diepeningen, Anne D; Saupe, Sven J; Paoletti, Mathieu

    2014-04-01

    In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina. The het-c locus determines an allogenic incompatibility reaction together with two unlinked loci termed het-d and het-e. Each het-c allele is incompatible with a specific subset of the het-d and het-e alleles. We analyzed variability at the het-c locus in a population of 110 individuals, and in additional isolates from various localities. We identified a total of 11 het-c alleles, which define 7 distinct incompatibility specificity classes in combination with the known het-d and het-e alleles. We found that the het-c allorecognition gene of P. anserina is under diversifying selection. We find a highly unequal allele distribution of het-c in the population, which contrasts with the more balanced distribution of functional groups of het-c based on their allorecognition function. One explanation for the observed het-c diversity in the population is its function in allorecognition. However, alleles that are most efficient in allorecognition are rare. An alternative and not exclusive explanation for the observed diversity is that het-c is involved in pathogen recognition. In Arabidopsis thaliana, a homolog of het-c is a pathogen effector target, supporting this hypothesis. We hypothesize that the het-c diversity in P. anserina results from both its functions in pathogen-defense, and allorecognition. PMID:24448643

  11. Performance verification testing for HET wide-field upgrade tracker in the laboratory

    NASA Astrophysics Data System (ADS)

    Good, John; Hayes, Richard; Beno, Joseph; Booth, John; Cornell, Mark E.; Hill, Gary J.; Lee, Hanshin; Mock, Jason; Rafal, Marc; Savage, Richard; Soukup, Ian

    2010-07-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the McDonald Observatory (MDO) and the Center for Electro-mechanics (CEM) at the University of Texas at Austin are developing a new HET tracker in support of the Wide-Field Upgrade (WFU) and the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). The precision tracker is required to maintain the position of a 3,100 kg payload within ten microns of its desired position relative to the telescope's primary mirror. The hardware system to accomplish this has ten precision controlled actuators. Prior to installation on the telescope, full performance verification is required of the completed tracker in CEM's lab, without a primary mirror or the telescope's final instrument package. This requires the development of a laboratory test stand capable of supporting the completed tracker over its full range of motion, as well as means of measurement and methodology that can verify the accuracy of the tracker motion over full travel (4m diameter circle, 400 mm deep, with 9 degrees of tip and tilt) at a cost and schedule in keeping with the HET WFU requirements. Several techniques have been evaluated to complete this series of tests including: photogrammetry, laser tracker, autocollimator, and a distance measuring interferometer, with the laser tracker ultimately being identified as the most viable method. The design of the proposed system and its implementation in the lab is presented along with the test processes, predicted accuracy, and the basis for using the chosen method*.

  12. Design, testing, and performance of the Hobby Eberly Telescope prime focus instrument package

    NASA Astrophysics Data System (ADS)

    Vattiat, Brian; Hill, Gary J.; Lee, Hanshin; Perry, Dave M.; Rafal, Marc D.; Rafferty, Tom; Savage, Richard; Taylor, Charles A.; Moreira, Walter; Smith, Michael

    2012-09-01

    The Hobby-Eberly Telescope (HET) is undergoing an upgrade to increase the field of view to 22 arc-minutes with the dark energy survey HETDEX the initial science goal [1]. Here we report on the engineering development of a suite of instruments located at prime focus of the upgraded HET. The Prime Focus Instrument Package (PFIP) contains acquisition, guiding, and wave front sensing instrumentation [2], the fiber feeds for the facility spectrographs (VIRUS, HRS, MRS, LRS2), and ancillary hardware. This paper reviews the design and functions of the PFIP and presents details of the mechanical design, integration and testing.

  13. A Yeast Toxic Mutant of HET-s(218-289) Prion Displays Alternative Intermediates of Amyloidogenesis

    PubMed Central

    Berthelot, Karine; Lecomte, Sophie; Géan, Julie; Immel, Françoise; Cullin, Christophe

    2010-01-01

    Amyloids are thought to be involved in various types of neurodegenerative disorders. Several kinds of intermediates, differing in morphology, size, and toxicity, have been identified in the multistep amyloidogenesis process. However, the mechanisms explaining amyloid toxicity remain unclear. We previously generated a toxic mutant of the nontoxic HET-s(218-289) amyloid in yeast. Here we report that toxic and nontoxic amyloids differ not only in their structures but also in their assembling process. We used multiple and complementary methods to investigate the intermediates formed by these two amyloids. With the methods used, no intermediates were observed for the nontoxic amyloid; however, under the same experimental conditions, the toxic mutant displayed visible oligomeric and fibrillar intermediates. PMID:20713008

  14. LRS2: A New Integral Field Spectrograph for the HET

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  15. Fiber Diffraction of the Prion-Forming Domain HET-s(218-289) Shows Dehydration-Induced Deformation of a Complex Amyloid Structure

    SciTech Connect

    Wan, William; Stubbs, Gerald

    2014-05-01

    Amyloids are filamentous protein aggregates that can be formed by many different proteins and are associated with both disease and biological functions. The pathogenicities or biological functions of amyloids are determined by their particular molecular structures, making accurate structural models a requirement for understanding their biological effects. One potential factor that can affect amyloid structures is hydration. Previous studies of simple stacked β-sheet amyloids have suggested that dehydration does not impact structure, but other studies indicated dehydration-related structural changes of a putative water-filled nanotube. Our results show that dehydration significantly affects the molecular structure of the fungal prion-forming domain HET-s(218–289), which forms a β-solenoid with no internal solvent-accessible regions. The dehydration-related structural deformation of HET-s(218–289) indicates that water can play a significant role in complex amyloid structures, even when no obvious water-accessible cavities are present.

  16. Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family.

    PubMed

    Chevanne, Damien; Bastiaans, Eric; Debets, Alfons; Saupe, Sven J; Clavé, Corinne; Paoletti, Mathieu

    2009-02-01

    In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class. HET-D and HET-E proteins comprise an N-terminal HET effector domain, a central GTP binding site and a C-terminal WD repeat domain constituted of tandem repeats of highly conserved WD40 repeat units that define the specificity of alleles during incompatibility. The WD40 repeat units of the members of this HNWD family are undergoing concerted evolution. By combining genetic analysis and gain of function experiments, we demonstrate that an additional member of this family, HNWD2, corresponds to the het-r non-allelic incompatibility gene. As for het-d and het-e, allele specificity at the het-r locus is determined by the WD repeat domain. Natural isolates show allelic variation for het-r. PMID:19137300

  17. Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria.

    SciTech Connect

    Kim, Y.; Joachimiak, G.; Ye, Z.; Binkowski, T; Zhang, R.; Gornicki, P.; Callahan, S.; Hess, W.; Haselkorn, R.; Joachimiak, A.

    2011-06-21

    HetR is an essential regulator of heterocyst development in cyanobacteria. HetR binds to a DNA palindrome upstream of the hetP gene. We report the crystal structure of HetR from Fischerella at 3.0 {angstrom}. The protein is a dimer comprised of a central DNA-binding unit containing the N-terminal regions of the two subunits organized with two helix-turn-helix motifs; two globular flaps extending in opposite directions; and a hood over the central core formed from the C-terminal subdomains. The flaps and hood have no structural precedent in the protein database, therefore representing new folds. The structural assignments are supported by site-directed mutagenesis and DNA-binding studies. We suggest that HetR serves as a scaffold for assembly of transcription components critical for heterocyst development.

  18. Heterogeneous Seeding of a Prion Structure by a Generic Amyloid Form of the Fungal Prion-forming Domain HET-s(218-289)

    SciTech Connect

    Wan, William; Bian, Wen; McDonald, Michele; Kijac, Aleksandra; Wemmer, David E.; Stubbs, Gerald

    2013-11-13

    The fungal prion-forming domain HET-s(218–289) forms infectious amyloid fibrils at physiological pH that were shown by solid-state NMR to be assemblies of a two-rung β-solenoid structure. Under acidic conditions, HET-s(218–289) has been shown to form amyloid fibrils that have very low infectivity in vivo, but structural information about these fibrils has been very limited. We show by x-ray fiber diffraction that the HET-s(218–289) fibrils formed under acidic conditions have a stacked β-sheet architecture commonly found in short amyloidogenic peptides and denatured protein aggregates. At physiological pH, stacked β-sheet fibrils nucleate the formation of the infectious β-solenoid prions in a process of heterogeneous seeding, but do so with kinetic profiles distinct from those of spontaneous or homogeneous (seeded with infectious β-solenoid fibrils) fibrillization. Several serial passages of stacked β-sheet-seeded solutions lead to fibrillization kinetics similar to homogeneously seeded solutions. Our results directly show that structural mutation can occur between substantially different amyloid architectures, lending credence to the suggestion that the processes of strain adaptation and crossing species barriers are facilitated by structural mutation.

  19. Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice

    NASA Technical Reports Server (NTRS)

    Jones, S. M.; Erway, L. C.; Bergstrom, R. A.; Schimenti, J. C.; Jones, T. A.

    1999-01-01

    Vestibular evoked potentials (VsEPs) were measured in normal mice and in mice homozygous for the head tilt mutation (het/het, abbr. het). The het mice lack otoconia, the inertial mass critical for natural stimulation of inner ear gravity receptors. Our findings demonstrate that vestibular neural responses to pulsed linear acceleration are absent in het mice. The results: (1) confirm that adequate sensory stimuli fail to activate gravity receptors in the het model; and (2) serve as definitive evidence that far-field vestibular responses to pulsed linear acceleration depend critically on otolith end organs. The C57BL/6JEi-het mouse may be an excellent model of gravity receptor sensory deprivation.

  20. Expanding the Direct HetR Regulon in Anabaena sp. Strain PCC 7120

    PubMed Central

    Videau, Patrick; Ni, Shuisong; Rivers, Orion S.; Ushijima, Blake; Feldmann, Erik A.; Cozy, Loralyn M.; Kennedy, Michael A.

    2014-01-01

    In response to a lack of environmental combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocyst cells in a periodic pattern. HetR is a transcription factor that coordinates the regulation of this developmental program. An inverted repeat-containing sequence in the hepA promoter required for proheterocyst-specific transcription was identified based on sequence similarity to a previously characterized binding site for HetR in the promoter of hetP. The binding affinity of HetR for the hepA site is roughly an order of magnitude lower than that for the hetP binding site. A BLAST search of the Anabaena genome identified 166 hepA-like sites that occur as single or tandem sites (two binding sites separated by 13 bp). The vast majority of these sites are present in predicted intergenic regions. HetR bound five representative single binding sites in vitro, and binding was abrogated by transversions in the binding sites that conserved the inverted repeat nature of the sites. Binding to four representative tandem sites was not observed. Transcriptional fusions of the green fluorescent protein gene gfp with putative promoter regions associated with the representative binding sites indicated that HetR could function as either an activator or repressor and that activation was cell-type specific. Taken together, we have expanded the direct HetR regulon and propose a model in which three categories of HetR binding sites, based on binding affinity and nucleotide sequence, contribute to three of the four phases of differentiation. PMID:24375104

  1. SALT/HET cooperation in education and public outreach

    NASA Astrophysics Data System (ADS)

    Hemenway, Mary Kay; Preston, Sandra

    The "Science with SALT" meeting in March 1998 opened avenues of cooperation between SAAO and the University of Texas at Austin in education and public outreach. This paper will review past interactions and future plans. SAAO personnel have visited the HET and McDonald Observatory and have taken part in planning meetings for the Texas Astronomy Education Center museum area and educational programming. Discussions concerning the extension of the daily radio show StarDate (English), Universo (Spanish) and Sternzeit (German) versions to a southern hemisphere version are underway. In addition, we are cooperatively planning a workshop to discuss an international collaborative for educational outreach for state-of-the-art telescopes for which a regional collaborative in southwestern U.S. (SCOPE) serves as a model. The towns of Sutherland and Fort Davis are discussing forming a "twin-town" relationship. Projects and plans that link cutting-edge astronomical research to classrooms and the public will be reviewed.

  2. Escape from Het-6 Incompatibility in Neurospora Crassa Partial Diploids Involves Preferential Deletion within the Ectopic Segment

    PubMed Central

    Smith, M. L.; Yang, C. J.; Metzenberg, R. L.; Glass, N. L.

    1996-01-01

    Self-incompatible het-6(OR)/het-6(PA) partial diploids of Neurospora crassa were selected from a cross involving the translocation strain, T(IIL -> IIIR)AR18, and a normal sequence strain. About 25% of the partial diploids exhibited a marked increase in growth rate after 2 weeks, indicating that ``escape'' from het-6 incompatibility had occurred. Near isogenic tester strains with different alleles (het-6(OR) and het-6(PA)) were constructed and used to determine that 80 of 96 escape strains tested were het-6(PA), retaining the het-6 allele found in the normal-sequence LGII position; 16 were het-6(OR), retaining the allele in the translocated position. Restriction fragment length polymorphisms in 45 escape strains were examined with probes made from cosmids that spanned the translocated region. Along with electrophoretic analysis of chromosomes from three escape strains, RFLPs showed that escape is associated with deletion of part of one or the other of the duplicated DNA segments. Deletions ranged in size from ~70 kbp up to putatively the entire 270-kbp translocated region but always included a 35-kbp region wherein we hypothesize het-6 is located. The deletion spectrum at het-6 thus resembles other cases where mitotic deletions occur such as of tumor suppressor genes and of the hprt gene (coding for hypoxanthine-guanine phosphoribosyl-transferase) in humans. PMID:8889517

  3. [Manic episode in a patient with Beçhet's disease].

    PubMed

    Bozikas, V; Ramnalis, A; Dittopoulos, J; Iakovou, J; Garyfallos, G; Fokas, K

    2015-01-01

    Beçhet's disease (BD) is a chronic, heterogeneous, multisystem disease that affects young males and females around the Mediterranean region, as well as from Far and Middle East. Its etiology is vague with vasculitis being its main pathological feature. International diagnostic criteria have been established and they require the presence of recurrent oral ulcerations plus two of the following: Recurrent genital ulceration, eye lesions, skin lesions and positive pathergy test. A significant number of patients with Beçhet's disease suffers from symptoms from the central nervous system (CNS), while the most common clinical symptoms are pyramidal signs, mental-behavioral changes, hemiparesis and brain stem syndrome. The existence of mental-behavioral changes seems to be one of the most common findings in patients with Neuro-Beçhet (N-BD). These changes seem to be related with memory and attention deficits, and the process of deterioration continues even in attack-free periods, suggesting a continuously active disease process in the CNS. The prevalence of anxiety, depression and general psychiatric symptoms is higher among patients with BD compared to healthy individuals. However, the association between psychiatric symptoms and BD is not clearly understood. On the other hand, syndromes like psychosis or bipolar disorder appear to be less frequent, especially in attack-free periods. We describe the case of a 52-year old woman with Beçhet's disease who developed a single manic episode 13 years after the onset of Beçhet's disease. A 52-year old woman, suffering from Beçhet's disease since the age of 39, developed manic symptoms, namely elevated mood, pressured speech, flight of ideas, distractibility and decreased need for sleep. The above symptoms developed during a period that no other symptoms of Beçhet's disease were present. Moreover there was no other manifestation from the nervous system. A brain MRI was unremarkable, while a brain SPECT study revealed severe

  4. Structural insights into HetR−PatS interaction involved in cyanobacterial pattern formation

    PubMed Central

    Hu, Hai-Xi; Jiang, Yong-Liang; Zhao, Meng-Xi; Cai, Kun; Liu, Sanling; Wen, Bin; Lv, Pei; Zhang, Yonghui; Peng, Junhui; Zhong, Hui; Yu, Hong-Mei; Ren, Yan-Min; Zhang, Zhiyong; Tian, Changlin; Wu, Qingfa; Oliveberg, Mikael; Zhang, Cheng-Cai; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model. PMID:26576507

  5. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  6. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast.

    PubMed

    Mathur, Vidhu; Taneja, Vibha; Sun, Yidi; Liebman, Susan W

    2010-05-01

    Various proteins, like the infectious yeast prions and the noninfectious human Huntingtin protein (with expanded polyQ), depend on a Gln or Asn (QN)-rich region for amyloid formation. Other prions, e.g., mammalian PrP and the [Het-s] prion of Podospora anserina, although still able to form infectious amyloid aggregates, do not have QN-rich regions. Furthermore, [Het-s] and yeast prions appear to differ dramatically in their amyloid conformation. Despite these differences, a fusion of the Het-s prion domain to GFP (Het-sPrD-GFP) can propagate in yeast as a prion called [Het-s](y). We analyzed the properties of two divergent prions in yeast: [Het-s](y) and the native yeast prion [PSI(+)] (prion form of translational termination factor Sup35). Curiously, the induced appearance and transmission of [PSI(+)] and [Het-s](y) aggregates is remarkably similar. Overexpression of tagged prion protein (Sup35-GFP or Het-sPrD-GFP) in nonprion cells gives rise to peripheral, and later internal, ring/mesh-like aggregates. The cells with these ring-like aggregates give rise to daughters with one (perivacuolar) or two (perivacuolar and juxtanuclear) dot-like aggregates per cell. These line, ring, mesh, and dot aggregates are not really the transmissible prion species and should only be regarded as phenotypic markers of the presence of the prions. Both [PSI(+)] and [Het-s](y) first appear in daughters as numerous tiny dot-like aggregates, and both require the endocytic protein, Sla2, for ring formation, but not propagation. PMID:20219972

  7. Relationships between the ABC-Exporter HetC and Peptides that Regulate the Spatiotemporal Pattern of Heterocyst Distribution in Anabaena

    PubMed Central

    Corrales-Guerrero, Laura; Flores, Enrique; Herrero, Antonia

    2014-01-01

    In the model cyanobacterium Anabaena sp. PCC 7120, cells called heterocysts that are specialized in the fixation of atmospheric nitrogen differentiate from vegetative cells of the filament in the absence of combined nitrogen. Heterocysts follow a specific distribution pattern along the filament, and a number of regulators have been identified that influence the heterocyst pattern. PatS and HetN, expressed in the differentiating cells, inhibit the differentiation of neighboring cells. At least PatS appears to be processed and transferred from cell to cell. HetC is similar to ABC exporters and is required for differentiation. We present an epistasis analysis of these regulatory genes and of genes, hetP and asr2819, successively downstream from hetC, and we have studied the localization of HetC and HetP by use of GFP fusions. Inactivation of patS, but not of hetN, allowed differentiation to proceed in a hetC background, whereas inactivation of hetC in patS or patS hetN backgrounds decreased the frequency of contiguous proheterocysts. A HetC-GFP protein is localized to the heterocysts and especially near their cell poles, and a putative HetC peptidase domain was required for heterocyst differentiation but not for HetC-GFP localization. hetP is also required for heterocyst differentiation. A HetP-GFP protein localized mostly near the heterocyst poles. ORF asr2819, which we denote patC, encodes an 84-residue peptide and is induced upon nitrogen step-down. Inactivation of patC led to a late spreading of the heterocyst pattern. Whereas HetC and HetP appear to have linked functions that allow heterocyst differentiation to progress, PatC may have a role in selecting sites of differentiation, suggesting that these closely positioned genes may be functionally related. PMID:25121608

  8. Relationships between the ABC-exporter HetC and peptides that regulate the spatiotemporal pattern of heterocyst distribution in Anabaena.

    PubMed

    Corrales-Guerrero, Laura; Flores, Enrique; Herrero, Antonia

    2014-01-01

    In the model cyanobacterium Anabaena sp. PCC 7120, cells called heterocysts that are specialized in the fixation of atmospheric nitrogen differentiate from vegetative cells of the filament in the absence of combined nitrogen. Heterocysts follow a specific distribution pattern along the filament, and a number of regulators have been identified that influence the heterocyst pattern. PatS and HetN, expressed in the differentiating cells, inhibit the differentiation of neighboring cells. At least PatS appears to be processed and transferred from cell to cell. HetC is similar to ABC exporters and is required for differentiation. We present an epistasis analysis of these regulatory genes and of genes, hetP and asr2819, successively downstream from hetC, and we have studied the localization of HetC and HetP by use of GFP fusions. Inactivation of patS, but not of hetN, allowed differentiation to proceed in a hetC background, whereas inactivation of hetC in patS or patS hetN backgrounds decreased the frequency of contiguous proheterocysts. A HetC-GFP protein is localized to the heterocysts and especially near their cell poles, and a putative HetC peptidase domain was required for heterocyst differentiation but not for HetC-GFP localization. hetP is also required for heterocyst differentiation. A HetP-GFP protein localized mostly near the heterocyst poles. ORF asr2819, which we denote patC, encodes an 84-residue peptide and is induced upon nitrogen step-down. Inactivation of patC led to a late spreading of the heterocyst pattern. Whereas HetC and HetP appear to have linked functions that allow heterocyst differentiation to progress, PatC may have a role in selecting sites of differentiation, suggesting that these closely positioned genes may be functionally related. PMID:25121608

  9. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments.

    PubMed

    Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel

    2015-04-01

    Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these

  10. Spatial Fluctuations in Expression of the Heterocyst Differentiation Regulatory Gene hetR in Anabaena Filaments

    PubMed Central

    Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel

    2015-01-01

    Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these

  11. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  12. Monitoring Instruments

    ERIC Educational Resources Information Center

    Environmental Science and Technology (Environmental Control Issue), 1977

    1977-01-01

    This section contains a listing of the manufacturers of environmental monitoring instruments. The manufacturers are listed alphabetically under product headings. Addresses are included in a different section. (MA)

  13. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  14. Measuring space radiation with ADIS instruments

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McKibben, R. B.; Merk, J.

    2010-09-01

    Measurements of radiation in space, cosmic rays and Solar energetic particles, date back to the dawn of space flight. Solid state detectors, the basis of most modern high energy charged particle instruments, first flew in space in the 1960's. Modern particle spectrometers, such as ACE/CRIS, ACE/SIS and Ulysses/HET, can measure the elemental and isotopic composition of ions through the iron peak. This is achieved by using position sensing detectors (PSD's) arranged into hodoscopes to measure particle trajectories through the instrument, allowing for pathlength corrections to energy loss measurements. The Angle Detecting Inclined Sensor (ADIS) technique measures particle angle of incidence using a simple system of detectors inclined to the instrument axis. It achieves elemental resolution well beyond iron, and isotopic resolution for moderate mass elements without the complexity of position sensing detectors. An ADIS instrument was selected to fly as the High Energy Particle Sensor (HEPS) on NPOESS, but was de-scoped with the rest of the space weather suite. Another ADIS instrument, the Energetic Heavy Ion Sensor (EHIS), is being developed for GOES-R. UNH has built and tested a engineering unit of the EHIS. Applications for manned dosimetery on the Crew Exploration Vehicle (CEV) are also being explored. The basic ADIS technique is explained and accelerator data for heavy ions shown.

  15. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  16. Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production.

    PubMed Central

    Saupe, S; Descamps, C; Turcq, B; Bégueret, J

    1994-01-01

    The het-c locus contains different alleles that elicit nonallelic vegetative incompatibility through specific interactions with alleles of the unlinked loci het-e and het-d. The het-c2 allele has been cloned. It encodes a 208-amino acid polypeptide that is similar to a glycolipid transfer protein purified from pig brain. Disruption of this gene drastically impairs ascospore production in homozygous crosses, and some mutants exhibit abnormal branching of apical hyphae. The protein encoded by het-c2 is essential in the biology of the fungus and may be involved in cell-wall biosynthesis. Images PMID:8016091

  17. Astronomical instruments.

    NASA Astrophysics Data System (ADS)

    Rai, R. N.

    Indian astronomers have devised a number of instruments and the most important of these is the armillary sphere. The earliest armillary spheres were very simple instruments. Ptolemy in his Almagest enumerates at least three. The simplest of all was the equinoctial armilla. They had also the solstitial armilla which was a double ring, erected in the plane of the meridian with a rotating inner circle. This was used to measure the solar altitude.

  18. Oceanographic Instrument

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Developed under NASA contract, the Fast Repetition Rate (FRR) fluorometer is a computer-controlled instrument for measuring the fluorescence of phytoplankton, microscopic plant forms that provide sustenance for animal life in the oceans. The fluorometer sensor is towed by ship through the water and the resulting printouts are compared with satellite data. The instrument is non-destructive and can be used in situ, providing scientific information on ocean activity and productivity.

  19. Characterization of flow in the HET enclosure following ventilation and application of low-emissive coatings

    NASA Astrophysics Data System (ADS)

    Good, John M.

    2004-10-01

    In 2002 the method of thermal control within the HET enclosure was dramatically changed by the installation of 300 square meters of ventilated area to the stationary walls below the rotating dome. During the month of July 2003 a nightly study of the airflow was undertaken at the HET. While dome seeing has shown substantial improvement, this study revealed a number of counter intuitive flow modes which indicate that additional seeing improvements can be achieved by selective ventilation of the HET dome above the ring-wall. Additional study of dome seeing revealed substantial sub-cooling of the dome skin. Measurements of the skin temperature of the un-insulated dome revealed night-time cooling of local ambient air by as much as 3.6° C. An investigation of coating alternatives resulted in the application of aluminum foil tape, which reduced the temperature drop to 0.3° C. Presently, the performance of the HET (as low as EE50=0.8 arc-seconds) is not thought to be limited by dome seeing.

  20. The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation.

    PubMed

    Valladares, Ana; Flores, Enrique; Herrero, Antonia

    2016-02-01

    Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS. PMID:26552991

  1. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  2. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  3. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  4. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  5. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  6. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  7. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  8. VIRUS: a massively replicated integral-field spectrograph for HET

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; MacQueen, Phillip J.; Tufts, Joseph R.; Kelz, Andreas; Roth, Martin M.; Altmann, Werner; Segura, Pedro; Gebhardt, Karl; Palunas, Povilas

    2006-06-01

    We present the design of, and the science drivers for, the Visible Integral-field Replicable Unit Spectrograph (VIRUS). This instrument is made up of 145 individually small and simple spectrographs, each fed by a fiber integral field unit. The total VIRUS-145 instrument covers ~30 sq. arcminutes per observation, providing integral field spectroscopy from 340 to 570 nm, simultaneously, of 35,670 spatial elements, each 1 sq. arcsecond on the sky. This corresponds to 15 million resolution elements per exposure. VIRUS-145 will be mounted on the Hobby-Eberly Telescope and fed by a new wide-field corrector with 22 arcminutes diameter field of view. VIRUS represents a new approach to spectrograph design, offering the science multiplex advantage of huge sky coverage for an integral field spectrograph, coupled with the engineering multiplex advantage of >100 spectrographs making up a whole. VIRUS is designed for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) which will use baryonic acoustic oscillations imprinted on the large-scale distribution of Lyman-α emitting galaxies to provide unique constraints on the expansion history of the universe that can constrain the properties of dark energy.

  9. OMEGACAM and Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Christen, Fabrice Frédéric Thiébaut

    2007-04-01

    Het proefschrift van Fabrice Christen gaat over de ontwikkeling van nieuwe methoden voor het corrigeren van (digitale) foto's van melkwegstelsels. Met deze methoden kunnen de beelden uit het heelal beter worden geanalyseerd. Het eerste gedeelte is gewijd aan het werk dat bij ESO is uitgevoerd aan de CCD's van de OmegaCAM camera, het enige instrument van de VST. OmegaCAM is een optische groothoekcamera met een beeldveld van een vierkante graad, opgebouwd uit een mozaiek van 8 bij 4 CCD's. Van elk onderdeel moeten alle kenmerken volledig bekend zijn voordat het in het CCD mozaiek geplaatst kan worden. In het tweede deel van dit proefschrift wordt de ontwikkeling van een nieuwe methode voor het corrigeren van de ``point-spread function'' (PSF) en schatten van de ellipticiteit van de melkwegstelsels besproken. De nieuwe techniek wordt getest en vergeleken met een door sterrenkundigen algemeen gebruikte methode in het veld van zwaartekrachtslenzen, de Kaiser, Squire en Broadhurst (KSB) methode. De nieuwe methode, gebaseerd op shapelet ontleding (vergelijkbaar met wavelet ontleding), gaat verder, en is sneller en theoretisch preciezer dan de KSB methode. Door gebruik te maken van de gecorrigeerde ellipticiteit, kunnen we een statistische analyse uitvoeren om er een kosmisch vervormingssignaal uit te halen. De licht vervormde beelden van de melkwegstelsels bewij zen dat de niet-homogene massaverdeling op megaparsec-schaal voornamelijk bestaat uit grote hoeveelheden donkere materie. Verder vergelijken we de schattingen van de ellipticiteit van de shapelet en KSB methode. Bovendien voeren we ook nog een melkwegstelsel-melkwegstelsel lens analyse uit op de 50 VLT Fors1 afbeeldingen en slagen we erin de belangrijkste eigenschappen van de halo's van de stelsels, die zich op een afstand van een- tot tweeduizend megaparsec (1 parsec = 3,26 lichtjaar = 3,085 x 10^16 meter) bevinden, te bepalen door gebruik te maken van twee modellen van melkwegstelselhalo's. Vergeleken met andere

  10. Optical Instruments

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  11. The Homologue of het-c of Neurospora crassa Lacks Vegetative Compatibility Function in Fusarium proliferatum†

    PubMed Central

    Kerényi, Zoltán; Oláh, Brigitta; Jeney, Apor; Hornok, László; Leslie, John F.

    2006-01-01

    For two fungal strains to be vegetatively compatible and capable of forming a stable vegetative heterokaryon they must carry matching alleles at a series of loci variously termed het or vic genes. Cloned het/vic genes from Neurospora crassa and Podospora anserina have no obvious functional similarity and have various cellular functions. Our objective was to identify the homologue of the Neurospora het-c gene in Fusarium proliferatum and to determine if this gene has a vegetative compatibility function in this economically important and widely dispersed fungal pathogen. In F. proliferatum and five other closely related Fusarium species we found a few differences in the DNA sequence, but the changes were silent and did not alter the amino acid sequence of the resulting protein. Deleting the gene altered sexual fertility as the female parent, but it did not alter male fertility or existing vegetative compatibility interactions. Replacement of the allele-specific portion of the coding sequence with the sequence of an alternate allele in N. crassa did not result in a vegetative incompatibility response in transformed strains of F. proliferatum. Thus, the fphch gene in Fusarium appears unlikely to have the vegetative compatibility function associated with its homologue in N. crassa. These results suggest that the vegetative compatibility phenotype may result from convergent evolution. Thus, the genes involved in this process may need to be identified at the species level or at the level of a group of species and could prove to be attractive targets for the development of antifungal agents. PMID:17021201

  12. Radiological instrument

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-12-23

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material.

  13. Spectroscopic Instruments

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    The selection of a spectrographic system including the detector is governed by several aspects: - Wavelength region of interest - Low or high-resolution studies, survey spectra, line intensities only or detailed line profiles - Weak or strong emitter, which usually is equivalent to having a plasma of low or high density - Low or high time resolution, which basically determines the detector and only to a lesser degree the throughput of the system - Stigmatic or astigmatic image of the plasma in the exit plane Spectrometers with the exception of instruments for the X-ray region typically consist of: - An entrance slit (width w en, area A E) - A dispersive element - An optical system, which forms a spectrally dispersed image of the entrance slit in the exit plane - A detector in the exit plane Figure 3.1 illustrates a schematic layout. Dispersing elements are prisms, gratings, interferometers, and crystals. The imaging system consists usually of a lens L1 (or mirror M1) collimating the radiation from the entrance slit, and a lens L2 (or mirror M2) focusing the radiation in the exit (image) plane. Mirrors have the advantage of no chromatic aberration and can also be used at shorter wavelengths where glasses, quartz, and crystals absorb the radiation. Unfortunately, their reflectivity decreases at short wavelengths; this can be remedied to some degree by reducing the number of reflecting surfaces and employing spherical or even toroidal gratings which combine focusing and dispersing properties. The optical system (L1, L2) or (M1, M2) becomes unnecessary.

  14. Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation

    PubMed Central

    Khudyakov, Ivan Y.; Golden, James W.

    2004-01-01

    The HetR protein has long been recognized as a key player in the regulation of heterocyst development. HetR is known to possess autoproteolytic and DNA-binding activities. During a search for mutants of Anabaena sp. PCC 7120 that can overcome heterocyst suppression caused by overexpression of the patS gene, which encodes a negative regulator of differentiation, a bypass mutant strain, S2-45, was isolated that produced a defective pattern (Pat phenotype) of irregularly spaced single and multiple contiguous heterocysts (Mch phenotype) in combined nitrogen-free medium. Analysis of the S2-45 mutant revealed a R223W mutation in HetR, and reconstruction in the wild-type background showed that this mutation was responsible for the Mch phenotype and resistance not only to overexpressed patS, but also to overexpressed hetN, another negative regulator of differentiation. Ectopic overexpression of the hetRR223W allele in the hetRR223W background resulted in a conditionally lethal (complete differentiation) phenotype. Analysis of the heterocyst pattern in the hetRR223W mutant revealed that heterocysts differentiate essentially randomly along filaments, indicating that this mutation results in an active protein that is insensitive to the major signals governing heterocyst pattern formation. These data provide genetic evidence that, apart from being an essential activator of differentiation, HetR plays a central role in the signaling pathway that controls the heterocyst pattern. PMID:15520378

  15. Delta excitations in heavy nuclei induced by (3He,t) and (p,n) reactions

    NASA Astrophysics Data System (ADS)

    Esbensen, H.; Lee, T.-S. H.

    1985-12-01

    Delta excitations in heavy nuclei, induced by charge exchange reactions, are studied using the surface response model. The residual pion-exchange interaction and the self-energy of the delta in a nuclear medium is included in the random-phase-approximation response. The peak position observed in (3He,t) reactions can be explained by the self-energy of the delta extracted from pion-nucleus scattering, and the magnitude of the cross section is consistent with Glauber theory. The comparison to (p,n) data is reasonable; contributions from neutron decay of the delta, which are left out in the calculations, constitute a substantial experimental background.

  16. Improving the RV Precision of HET/HRS - The Tale of Two Iodine Atlases

    NASA Astrophysics Data System (ADS)

    Wang, Sharon Xuesong, Sharon; Wright, J.; Zhao, M.

    2014-01-01

    The absorption spectrum of an Iodine cell provided by a Fourier Transform Spectrometer (FTS) is considered the 'ground' truth in precise radial velocity (RV) work. Modeling the observed Iodine lines with the FTS scan spectrum anchors the absolute wavelength solution and spectrograph response function when extracting RVs from the stellar spectrum. As we continue our efforts in improving the RV precision of the Hobby-Eberly Telescope (HET) High Resolution Spectrograph (HRS), we discovered that errors and uncertainties associated with the FTS scan may comprise the RV precision. We have two FTS scans for the HET/HRS cell from two different FTS machines - from KPNO and NIST. The two scans differ in terms of absolute wavelength solution, wavelength dispersion scale, line depth, and line depth ratio. These two FTS scans provide us with an unusual and valuable opportunity to diagnose the effect on RV precision brought in by the Iodine FTS scan uncertainties. Furthermore, to diagnose the KPNO FTS scan quality, we obtained a 400,000 echelle spectrum (at a comparable resolution with the FTS scan) of the McDonald 2.7m telescope Iodine cell using the Tull Spectrograph, and compared it against the FTS scan of this cell. There are clear differences between the two spectra, which reveals the difficulties in obtaining the 'ground truth' Iodine spectrum in the precise RV work.

  17. Harvesting the noncirculating pool of polymorphonuclear leukocytes in rats by hetastarch exchange transfusion (HET): yield and functional assessment

    SciTech Connect

    Williams, J.H. Jr.; Moser, K.M.; Ulich, T.; Cairo, M.S.

    1987-11-01

    Isolation of polymorphonuclear leukocytes (PMN) provides an opportunity to study PMN activity in vitro and to label PMN for study of in vivo kinetics. However, simple phlebotomy (SP) of a small animal frequently yields too few PMN for in vitro handling, while PMN harvested from an induced-peritonitis may not accurately reflect PMN in a less stimulated state. We report a novel method of harvesting PMN from the circulation of rats, using hetastarch exchange transfusion (HET), which is both time and animal sparing. HET harvested 8-fold more PMN than SP. In vitro cell function was examined with assays of adherence, chemotaxis, bacterial killing, and superoxide generation. No significant (p less than 0.05) difference was found between PMN obtained by HET and pooled-PMN obtained by SP. In vivo function was examined following labeling with indium 111-oxine. The kinetics pattern described suggested normal migratory activity when compared to previous reports. The data demonstrate that rats possess a relatively large, noncirculating pool of PMN which is readily accessible by HET.

  18. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive.

    PubMed

    Lamming, Dudley W; Ye, Lan; Astle, Clinton M; Baur, Joseph A; Sabatini, David M; Harrison, David E

    2013-08-01

    Rapamycin, an inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, extends the life span of yeast, worms, flies, and mice. Interventions that promote longevity are often correlated with increased insulin sensitivity, and it therefore is surprising that chronic rapamycin treatment of mice, rats, and humans is associated with insulin resistance (J Am Soc Nephrol., 19, 2008, 1411; Diabetes, 00, 2010, 00; Science, 335, 2012, 1638). We examined the effect of dietary rapamycin treatment on glucose homeostasis and insulin resistance in the genetically heterogeneous HET3 mouse strain, a strain in which dietary rapamycin robustly extends mean and maximum life span. We find that rapamycin treatment leads to glucose intolerance in both young and old HET3 mice, but in contrast to the previously reported effect of injected rapamycin in C57BL/6 mice, HET3 mice treated with dietary rapamycin responded normally in an insulin tolerance test. To gauge the overall consequences of rapamycin treatment on average blood glucose levels, we measured HBA1c. Dietary rapamycin increased HBA1c over the first 3 weeks of treatment in young animals, but the effect was lost by 3 months, and no effect was detected in older animals. Our results demonstrate that the extended life span of HET3 mice on a rapamycin diet occurs in the absence of major changes in insulin sensitivity and highlight the importance of strain background and delivery method in testing effects of longevity interventions. PMID:23648089

  19. Low activated incore instrument

    DOEpatents

    Ekeroth, D.E.

    1994-04-19

    Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

  20. Evaluating musical instruments

    SciTech Connect

    Campbell, D. Murray

    2014-04-01

    Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

  1. High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports

    SciTech Connect

    Geller, C.B.; Murray, C.S.; Riley, D.R.; Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S.

    1996-04-01

    This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

  2. IOT Overview: IR Instruments

    NASA Astrophysics Data System (ADS)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  3. Astronomical Instruments in India

    NASA Astrophysics Data System (ADS)

    Sarma, Sreeramula Rajeswara

    The earliest astronomical instruments used in India were the gnomon and the water clock. In the early seventh century, Brahmagupta described ten types of instruments, which were adopted by all subsequent writers with minor modifications. Contact with Islamic astronomy in the second millennium AD led to a radical change. Sanskrit texts began to lay emphasis on the importance of observational instruments. Exclusive texts on instruments were composed. Islamic instruments like the astrolabe were adopted and some new types of instruments were developed. Production and use of these traditional instruments continued, along with the cultivation of traditional astronomy, up to the end of the nineteenth century.

  4. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  5. Subcellular Localization and Clues for the Function of the HetN Factor Influencing Heterocyst Distribution in Anabaena sp. Strain PCC 7120

    PubMed Central

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J.; Elhai, Jeff; Mullineaux, Conrad W.; Flores, Enrique

    2014-01-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide. PMID:25049089

  6. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120.

    PubMed

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J; Elhai, Jeff; Mullineaux, Conrad W; Flores, Enrique; Herrero, Antonia

    2014-10-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide. PMID:25049089

  7. Afterword: Instruments as media, media as instruments.

    PubMed

    Rheinberger, Hans-Jörg

    2016-06-01

    The collection of essays comes under the heading of two catchwords: instruments and media. This Afterword looks at their interaction and roles in exploring the characteristics of living beings throughout history, especially their melding and gliding into each other. Before turning to the papers, I will make some more general remarks on instruments and media in scientific, and in particular, biological research. PMID:27053536

  8. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  9. Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR and 16S rRNA sequences.

    PubMed

    Foster, Rachel A; Zehr, Jonathan P

    2006-11-01

    Richelia intracellularis is a symbiotic heterocystous cyanobacterium that is capable of forming associations with several genera of diatoms. nifH, 16S rRNA and hetR sequences were amplified and cloned from field populations of Richelia associated with Hemiaulus hauckii (N. Atlantic), with Rhizosolenia clevei (N. Pacific), and from a cultivated isolate of Calothrix associated with Chaetoceros from station ALOHA (N. Pacific). Sequence identity was highest (98.2%) among the 16S rRNA sequences, and more divergent for the hetR (83.8%) and nifH (91.1%) sequences. The hetR and nifH DNA and amino acid sequences obtained from the symbionts associated with the three different diatom genera diverged into three separate lineages supported by high bootstrap values. The data indicate that symbionts in the different hosts are distinct species or strains. Furthermore, three previously unidentified heterocystous-like nifH sequence groups recently reported from station ALOHA in the subtropical Pacific, het-1, het-2 and het-3, were linked to Richelia associated with R. clevei, H. hauckii and the Calothrix symbiont of Chaetoceros sp. respectively. PMID:17014491

  10. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  11. Woodwind Instrument Maintenance.

    ERIC Educational Resources Information Center

    Sperl, Gary

    1980-01-01

    The author presents a simple maintenance program for woodwind instruments which includes the care of tendon corks, the need for oiling keys, and methods of preventing cracks in woodwind instruments. (KC)

  12. Instrument Modeling and Synthesis

    NASA Astrophysics Data System (ADS)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  13. A new control system hardware architecture for the Hobby-Eberly Telescope prime focus instrument package

    NASA Astrophysics Data System (ADS)

    Ramiller, Chuck; Taylor, Trey; Rafferty, Tom H.; Cornell, Mark E.; Rafal, Marc; Savage, Richard

    2010-07-01

    The Hobby-Eberly Telescope (HET) will be undergoing a major upgrade as a precursor to the HET Dark Energy Experiment (HETDEX‡). As part of this upgrade, the Prime Focus Instrument Package (PFIP) will be replaced with a new design that supports the HETDEX requirements along with the existing suite of instruments and anticipated future additions. This paper describes the new PFIP control system hardware plus the physical constraints and other considerations driving its design. Because of its location at the top end of the telescope, the new PFIP is essentially a stand-alone remote automation island containing over a dozen subsystems. Within the PFIP, motion controllers and modular IO systems are interconnected using a local Controller Area Network (CAN) bus and the CANOpen messaging protocol. CCD cameras that are equipped only with USB 2.0 interfaces are connected to a local Ethernet network via small microcontroller boards running embedded Linux. Links to ground-level systems pass through a 100 m cable bundle and use Ethernet over fiber optic cable exclusively; communications are either direct or through Ethernet/CAN gateways that pass CANOpen messages transparently. All of the control system hardware components are commercially available, designed for rugged industrial applications, and rated for extended temperature operation down to -10 °C.

  14. The Instrumental Model

    ERIC Educational Resources Information Center

    Yeates, Devin Rodney

    2011-01-01

    The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…

  15. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine

    PubMed Central

    Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to

  16. The G Protein-Coupled Receptor Heterodimer Network (GPCR-HetNet) and Its Hub Components

    PubMed Central

    Borroto-Escuela, Dasiel O.; Brito, Ismel; Romero-Fernandez, Wilber; Di Palma, Michael; Oflijan, Julia; Skieterska, Kamila; Duchou, Jolien; Van Craenenbroeck, Kathleen; Suárez-Boomgaard, Diana; Rivera, Alicia; Guidolin, Diego; Agnati, Luigi F.; Fuxe, Kjell

    2014-01-01

    G protein-coupled receptors (GPCRs) oligomerization has emerged as a vital characteristic of receptor structure. Substantial experimental evidence supports the existence of GPCR-GPCR interactions in a coordinated and cooperative manner. However, despite the current development of experimental techniques for large-scale detection of GPCR heteromers, in order to understand their connectivity it is necessary to develop novel tools to study the global heteroreceptor networks. To provide insight into the overall topology of the GPCR heteromers and identify key players, a collective interaction network was constructed. Experimental interaction data for each of the individual human GPCR protomers was obtained manually from the STRING and SCOPUS databases. The interaction data were used to build and analyze the network using Cytoscape software. The network was treated as undirected throughout the study. It is comprised of 156 nodes, 260 edges and has a scale-free topology. Connectivity analysis reveals a significant dominance of intrafamily versus interfamily connections. Most of the receptors within the network are linked to each other by a small number of edges. DRD2, OPRM, ADRB2, AA2AR, AA1R, OPRK, OPRD and GHSR are identified as hubs. In a network representation 10 modules/clusters also appear as a highly interconnected group of nodes. Information on this GPCR network can improve our understanding of molecular integration. GPCR-HetNet has been implemented in Java and is freely available at http://www.iiia.csic.es/~ismel/GPCR-Nets/index.html. PMID:24830558

  17. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  18. Status of the Instrument Control Unit for EPD on-board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sánchez Prieto, Sebastián; Da Silva, Antonio; Rodriguez Polo, Oscar; Parra Espada, Pablo; Gutierrez Molina, Oscar; Fernandez Salgado, Javier

    Solar Orbiter is the next heliospheric mission sponsored by ESA. The launch is planned for 2017 and it will be as close as 0.28 AU from the Sun. One of the instruments for Solar Orbiter is the Energetic Particle Detector (EPD) responsible for measuring energies from 2 keV to 200 MeV/n. EPD consists of four detectors, Electron Proton Telescope (EPT), High Energy Telescope (HET), SupraThermal Electrons, Ions, & Neutrals (STEIN), and Suprathermal Ion Spectrograph (SIS), plus the Instrument Control Unit called ICU. The Space Research Group of the University of Alcalá in Spain is the responsible for developing the ICU. In this work we present the development status of the ICU after the Critical Design Review. We also address the planned activities for the next year including the development of the Engineering and Qualification Model (EQM) and Flight Model (PM). Special focus is paid to the software and verification & validation activities.

  19. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed.

  20. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  1. Wet chemistry instrument prototype

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A wet chemistry instrument prototype for detecting amino acids in planetary soil samples was developed. The importance of amino acids and their condensation products to the development of life forms is explained. The characteristics of the instrument and the tests which were conducted to determine the materials compatibility are described. Diagrams are provided to show the construction of the instrument. Data obtained from the performance tests are reported.

  2. Instrument performance evaluation

    SciTech Connect

    Swinth, K.L.

    1993-03-01

    Deficiencies exist in both the performance and the quality of health physics instruments. Recognizing the implications of such deficiencies for the protection of workers and the public, in the early 1980s the DOE and the NRC encouraged the development of a performance standard and established a program to test a series of instruments against criteria in the standard. The purpose of the testing was to establish the practicality of the criteria in the standard, to determine the performance of a cross section of available instruments, and to establish a testing capability. Over 100 instruments were tested, resulting in a practical standard and an understanding of the deficiencies in available instruments. In parallel with the instrument testing, a value-impact study clearly established the benefits of implementing a formal testing program. An ad hoc committee also met several times to establish recommendations for the voluntary implementation of a testing program based on the studies and the performance standard. For several reasons, a formal program did not materialize. Ongoing tests and studies have supported the development of specific instruments and have helped specific clients understand the performance of their instruments. The purpose of this presentation is to trace the history of instrument testing to date and suggest the benefits of a centralized formal program.

  3. Satellite oceanography - The instruments

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  4. Instrument validation project

    SciTech Connect

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells.

  5. Space applications instrumentation systems

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.; Oberholtzer, J. D.

    1972-01-01

    A compendium of resumes of 158 instrument systems or experiments, of particular interest to space applications, is presented. Each resume exists in a standardized format, permitting entries for 26 administrative items and 39 scientific or engineering items. The resumes are organized into forty groups determined by the forty spacecraft with which the instruments are associated. The resumes are followed by six different cross indexes, each organized alphabetically according to one of the following catagories: instrument name, acronym, name of principal investigator, name of organization employing the principal investigator, assigned experiment number, and spacecraft name. The resumes are associated with a computerized instrument resume search and retrieval system.

  6. Inclusion Practice Priorities Instrument.

    ERIC Educational Resources Information Center

    Montie, Jo; And Others

    This instrument was developed to assist individuals or teams to review best practice indicators regarding the development of inclusive school communities and to establish priority targets for improvement. The instrument covers three areas: (1) school community issues, (2) team issues, and (3) classroom issues. For each area, there is a review…

  7. Affective Involvement Instrument.

    ERIC Educational Resources Information Center

    Lemlech, Johanna K.

    1970-01-01

    The Affective Involvement Instrument (AII) describes and classifies affective involvement in the process of decision-making as it occurs during classroom activities such as role-playing or group discussions. The thirty-celled instrument behaviorizes the six processes involved in decision-making and combines them with the taxonomic levels of the…

  8. Developments in Electrochemical Instrumentation.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1982-01-01

    Discusses developments in electrochemical instrumentation, including the role of computers, measurement/control instruments, present needs and future prospects. Indicates that microprocessors are used primarily for data processing, and that progress depends on noninstrumental factors such as electrode materials. (Author/JN)

  9. Thermally isolated well instruments

    SciTech Connect

    Engelder, P.D.

    1984-04-03

    A well instrument is isolated from the high temperatures of a surrounding earth formation by enclosing the instrument within a heat insulative jacket structure, preferably a dewar having spaced walls with a vacuum therebetween, with a heat sink contained in the jacket above the instrument assembly, and with a heat pipe extending upwardly from the instrument assembly to the heat sink and containing a fluid which by evaporation at a lower point and condensation at a higher point will conduct heat upwardly from the instrument assembly to the heat sink but not downwardly therebetween. The heat pipe preferably projects upwardly beyond a top portion of the insulating jacket to the location of a convector element which is exposed to the temperature of fluid or air at the outside of the insulating jacket to transmit heat from within the jacket to its exterior but not in a reverse direction.

  10. Aeronautic Instruments. Section II : Altitude Instruments

    NASA Technical Reports Server (NTRS)

    Mears, A H; Henrickson, H B; Brombacher, W G

    1923-01-01

    This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.

  11. The DKIST Instrumentation Suite

    NASA Astrophysics Data System (ADS)

    Woeger, Friedrich

    2016-05-01

    The Daniel K. Inouye Solar Telescope with its four meter diameter aperture will be the largest telescope in the world for solar observations when it is commissioned in the year 2019. In order to harness its scientific potential immediately, DKIST will integrate five instruments that each will provide unique functionality to measure properties of the solar atmosphere at unprecedented spatial resolution.In this paper we discuss the unique capabilities in the DKIST instrument suite that consists of the Visible Broadband Imager (VBI), the Visible Spectro-Polarimeter (ViSP), the Visible Tunable Filter (VTF), the Diffraction-Limited Near-Infrared Spectro-Polarimeter (DL-NIRSP), and the Cryogenic Near-Infrared Spectro-Polarimeter (Cryo-NIRSP).In addition, we will explain the facility's approach to supporting high spatial resolution data acquisition with multiple instruments simultaneously by means of the Facility Instrument Distribution Optics. This system of wavelength separating and interchangeable beamsplitters will enable a variety of different ways to optically configure the light beam to the instruments. This approach ensures that the DKIST instruments can use their individual advantages in a multitude of different observing scenarios. The DKIST instrumentation suite will enable crucial new insights into complex physical processes that occur on spatial scales that are smaller than any solar structure observed in the past.

  12. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  13. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  14. Mass spectrometers: instrumentation

    NASA Astrophysics Data System (ADS)

    Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

    1992-09-01

    Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a

  15. Instrument intercomparisons and assessments

    NASA Astrophysics Data System (ADS)

    Albritton, D. L.; Zander, R. J.; Farmer, C. B.; Hilsenrath, E.; Mankin, W. G.; Murcray, D. G.; Pollitt, S.; Robbins, D. E.; Roscoe, H.

    Over the past few years, several field campaigns were devoted to the goal of assessing instrument reliability, as opposed to solely obtaining data to answer a geophysical question. Some examples of the formal instrument intercomparisons that have occurred in the past decade and those that are planned for the very near future are listed chronologically. Balloon-borne techniques and instruments that address the height profiles of the trace species in the lower stratosphere are emphasized. Beginning with the most extensively studied trace constituent, the approach taken and the results obtained, are described. The current status of the measurement capabilities are summarized, and the needs for future intercomparisons and assessments are listed.

  16. Writing Instrument Profiles for Mastery of Instrumental Analysis

    ERIC Educational Resources Information Center

    King, Daniel; Fernandez, Jorge; Nalliah, Ruth

    2012-01-01

    Because of the rapidly changing nature of chemical instrumentation, students must be trained in how to learn and understand new instruments. Toward this end, students are asked to create small instrument manuals, or instrument profiles, for the major pieces of equipment studied during an instrumental analysis course. This writing-intensive process…

  17. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  18. NPP: The Five Instruments

    NASA Video Gallery

    The NPP satellite has 5 instruments on board: VIIRS, CERES, CrIS, ATMS, and OMPS. Each one will deliver a specific set of data helping weather prediction and climate studies. This video is a quick ...

  19. Fiber Optics Instrumentation Development

    NASA Technical Reports Server (NTRS)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  20. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  1. CALIPSO Instrument Operational

    Atmospheric Science Data Center

    2014-09-18

    CALIPSO Instrument Operational Thursday, September 11, 2014 The CALIPSO payload is back in data acquisition mode as of Wednesday, September 17, 2014.  CALIPSO data processing has returned to a nominal state, and...

  2. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  3. Aeronautic Instruments. Section III : Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Hunt, Franklin L; Stearns, H O

    1923-01-01

    Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.

  4. Experimenting with woodwind instruments

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2007-05-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects of holes in the tubing and other factors that make simple tubes useful as musical instruments.

  5. Modeling of Musical Instruments

    NASA Astrophysics Data System (ADS)

    Bader, Rolf; Hansen, Uwe

    Signal processing techniques in acoustics address many concerns. Included are such things as wave propagation variables, amplitude considerations, spectral content, wavelength, and phase. Phase is primarily of concern when waves interact with each other, as well as with a medium, and the imposition of boundary conditions leads to normal mode vibrations. Such conditions are prevalent in all musical instruments, and thus relevant signal processing techniques are essential to both understanding and modeling the structure of musical instruments and the sound radiated.

  6. Instrumentation in Arthroscopy.

    PubMed

    Barp, Eric A; Erickson, John G; Reese, Eric R

    2016-10-01

    In recent years, arthroscopic procedures of the foot and ankle have seen a significant increase in both indications and popularity. Furthermore, technological advances in video quality, fluid management, and other arthroscopy-specific instruments continue to make arthroscopic procedures more effective with reproducible outcomes. As surgeons continue to use this approach, it is important that they have a complete understanding of the instrumentation available to them, including their indications and limitations. PMID:27599434

  7. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  8. [The instrument for thermography].

    PubMed

    Hamaguchi, Shinsuke

    2014-07-01

    Thermography is an imaging method using the instrument to detect infrared rays emitted from the body surface, and to plot them as a distribution diagram of the temperature information. Therefore, a thermographic instrument can be assumed to measure the skin temperature of the diseased region. Such an instrument is a useful device for noninvasive and objective assessment of various diseases. Examination using a thermographic instrument can assess the autonomic dysfunction by measuring the skin blood flow involved with the sympathetic innervation. Thermography is useful in assisting the determination of the therapeutic effect. However, autonomic dysfunction should be confirmed correctly with the assessment of thermatome that shows abnormal thermal distribution in the region of the disease. Thermography should make noticeable the difference between the body temperature of abnormal and normal sites, and show the alteration of temperature. Monitoring using thermography is useful to determine the effect of sympathetic nerve block. If a thermographic instrument is used, it is important that examiners should understand the function of the instrument, as well as its advantages and disadvantages. PMID:25098130

  9. HETDEX: Developing the HET's Second Generation Low Resolution Spectrograph for Probing Lyman-alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Hill, G. J.; Lee, H.; Tuttle, S. E.; Vattiat, B. L.; Gebhardt, K.; Finkelstein, S. L.; Adams, J. J.; HETDEX Collaboration

    2012-01-01

    HETDEX will map the power spectrum of 0.8 million blindly discovered Lyman-alpha Emitting Galaxies (LAE) using a revolutionary new array of massively replicated fiber-fed spectrographs dubbed the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). In the era of the Hobby-Eberly Telescope wide-field upgrade and VIRUS, the current Low Resolution Spectrograph (LRS) must be replaced with a fiber instrument. We discuss the development of the second generation LRS (LRS2), which is a multi-channel instrument based on the VIRUS design. In its current design phase, it is fed by a 287 fiber microlens coupled integral field unit that covers 7” x 12” with 0.62” resolution. The instrument covers 3720 Å to 4700 Å at R ≈ 1900 and 4600 Å to 7000 Å at R ≈1200. With the purpose of making the instrument ideal for follow-up observations of LAE in the HETDEX survey, we discuss the science drivers for selecting the instrument's spectral resolution. We test the utility of the instrument and pilot a future study with LRS2 by presenting R ≈ 2000 spectra taken with the VIRUS prototype spectrograph (VIRUS-P) in a high-resolution mode at the McDonald Observatory Harlan J. Smith 2.7 m telescope. These LAE were originally discovered in the HETDEX Pilot Survey and their Lyman-alpha line profiles are constrained by near-infrared observations of rest-frame optical emission lines that set the systemic redshift of the galaxies. We discuss the velocity offsets of the Lyman-alpha line from the systemic line center and compare the line profiles to theoretical predictions and to similar observations for Lyman-break galaxies. Our observations provide an example of how LRS2 can be used to probe Lyman-alpha emission in 2 < z < 3 star forming galaxies.

  10. Aeronautic Instruments. Section V : Power Plant Instruments

    NASA Technical Reports Server (NTRS)

    Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C

    1923-01-01

    Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.

  11. The keyboard instruments.

    PubMed

    Manchester, Ralph A

    2014-06-01

    Now that the field of performing arts medicine has been in existence for over three decades, we are approaching a key point: we should start to see more articles that bring together the data that have been collected from several studies in order to draw more robust conclusions. Review articles and their more structured relative, the meta-analysis, can help to improve our understanding of a particular topic, comparing and synthesizing the results of previous research that has been done on that subject area. One way this could be done would be to review the research that has been carried out on the performance-related problems associated with playing a particular instrument or group of instruments. While I am not going to do that myself, I hope that others will. In this editorial, I will do a very selective review of the playing-related musculoskeletal disorders (PRMDs) associated with one instrument group (the keyboard instruments), focusing on the most played instrument in that group (the piano;). PMID:24925170

  12. Issues in Shuttle System Instrumentation

    NASA Technical Reports Server (NTRS)

    James, George

    2004-01-01

    The purose: a) Customer's perspective on Space Shuttle Return to Flight instrumentation; b) Focus on the difficult instrumentation issues; and c) Enable a discussion of new technologies (i.e.- NANO/MEMS/Small Tech) that could enhance Shuttle instrumentation posture. The T-10 Umbilical allows the vehicle instruments to be monitored and recorded prior to each launch and retract during launch.Launch Complex Instrumentation are instruments needed for assessment of Launch Commit Criteria (LCC) Salt-air and launch environments are issues. Instrumentation (Drag-On Instrumentation) can be added as needed to the vehicle for non-flight use. The current Roll-out Fatigue Testing is a primary example.

  13. Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    de Vries, Johan

    The Ozone Monitoring Instrument is a trace gas monitoring instrument in the line of GOME (ERS-2) and Sciamachy (ENVISAT). Following these instruments, OMI provides UV-visible spectroscopy with a resolution sufficient to separate out the various absorbing trace gases (using DOAS or `Full' retrieval), but shaped as an imaging spectrometer. This means that a two dimensional detector is used where one dimension records the spectrum and the other images the swath. The scanning mechanism from the GOME and Sciamachy is not required anymore and there are considerable advantages with respect to simultaneous measurement of swath pixels, polarisation and obtainable swath width. The OMI consortium for a phase B is formed by Fokker Space & Systems and TPD in the Netherlands and VTT in Finland. In the presentation UV-visible atmospheric remote sensing will be placed in perspective and the OMI will be explaned.

  14. Nonmetallic Diaphragms for Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Buckingham, C T

    1925-01-01

    This report, the second of a series of reports relating to the general subject of instrument diaphragms. The first report of the series was published as Technical Report no. 165, "diaphragms for aeronautic instruments," and comprised an outline of historical developments and theoretical principles. The present report relates entirely to nonmetallic diaphragms, the use of which in certain types of pressure elements has been increasing for some time. Little, if any, information has been available to aid the designer of instruments using this form of pressure element. It was to attempt to meet the need for such information that the investigation reported in this paper was undertaken. The report describes the various materials which have been used as nonmetallic diaphragms, discusses the factors which affect the performance of the diaphragms and gives the results of tests made for the purpose of investigating the effect produced by these factors.

  15. Eigenvalues and musical instruments

    NASA Astrophysics Data System (ADS)

    Howle, V. E.; Trefethen, Lloyd N.

    2001-10-01

    Most musical instruments are built from physical systems that oscillate at certain natural frequencies. The frequencies are the imaginary parts of the eigenvalues of a linear operator, and the decay rates are the negatives of the real parts, so it ought to be possible to give an approximate idea of the sound of a musical instrument by a single plot of points in the complex plane. Nevertheless, the authors are unaware of any such picture that has ever appeared in print. This paper attempts to fill that gap by plotting eigenvalues for simple models of a guitar string, a flute, a clarinet, a kettledrum, and a musical bell. For the drum and the bell, simple idealized models have eigenvalues that are irrationally related, but as the actual instruments have evolved over the generations, the leading five or six eigenvalues have moved around the complex plane so that their relative positions are musically pleasing.

  16. Volume phase holographic grating performance on the VIRUS-P instrument

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Hill, Gary J.; MacQueen, Phillip J.

    2008-07-01

    The Visible Integral-field Replicable Unit Spectrograph Prototype (VIRUS-P) has been in operation on the Harlan J Smith 2.7m Telescope at McDonald Observatory since October of 2006. The prototype was created to test the design and science capabilities of the full VIRUS instrument, wherein 150 copies of the spectrograph will be installed on the Hobby Eberly Telescope (HET). We here discuss the specialized test bench built to assess the blue optimized Volume Phase Holographic (VPH) grating performance. We also give lab and on-telescope efficiency measurements for three such gratings in the wavelength range 3400-6800Å. Two sources of stray light relevant to most spectrograph designs are also discussed.

  17. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  18. Interfacing to accelerator instrumentation

    SciTech Connect

    Shea, T.J.

    1995-12-31

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed.

  19. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented. PMID:7300627

  20. Advanced sensors and instrumentation

    NASA Technical Reports Server (NTRS)

    Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty

    1990-01-01

    NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.

  1. Instrumentation in medical systems

    SciTech Connect

    Chu, W.T.

    1995-05-01

    The demand for clinical use of accelerated heavy charged-particle (proton and light-ion) beams for cancer treatment is now burgeoning worldwide. Clinical trials are underway at more than a dozen accelerators. Several hospital-based accelerator facilities dedicated to radiation treatment of human cancer have been constructed, and their number is growing. Many instruments in medical systems have been developed for modifying extracted particle beams for clinical application, monitoring the delivery of the treatment beams, and controlling the treatment processes to ensure patient safety. These in turn demand new developments of instruments in controlling beam extraction, beam tuning, and beam transportation at the medical systems.

  2. Lightning Instrumentation at KSC

    NASA Technical Reports Server (NTRS)

    Colon, Jose L.; Eng, D.

    2003-01-01

    This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.

  3. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  4. Standard NIM instrumentation system

    SciTech Connect

    Not Available

    1990-05-01

    NIM is a standard modular instrumentation system that is in wide use throughout the world. As the NIM system developed and accommodations were made to a dynamic instrumentation field and a rapidly advancing technology, additions, revisions and clarifications were made. These were incorporated into the standard in the form of addenda and errata. This standard is a revision of the NIM document, AEC Report TID-20893 (Rev. 4) dated July 1974. It includes all the addenda and errata items that were previously issued as well as numerous additional items to make the standard current with modern technology and manufacturing practice.

  5. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  6. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  7. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  8. Inspector-instrument interface in portable NDA instrumentation

    SciTech Connect

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. This report describes an inspector-instrument interface design which allows communication of procedures, responses, and results between the instrument and user. The interface has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer.

  9. Inspector-instrument interface in portable NDA instrumentation

    SciTech Connect

    Halbig, J.K.; Klosterbuer, S.F.

    1981-01-01

    Recent electronics technology advances make it possible to design sophisticated instruments in small packages for convenient field implementation. An inspector-instrument interface design that allows communication of procedures, responses, and results between the instrument and user is presented. This capability has been incorporated into new spent-fuel instrumentation and a battery-powered multichannel analyzer.

  10. Synthesis and anticancer activity evaluation of 3,4-mono- and bicyclosubstituted N-(het)aryl trifluoromethyl succinimides

    PubMed Central

    Luzina, Elena L.; Popov, Anatoliy V.

    2014-01-01

    Novel trifluoromethylated mono- and bicyclic succinimides derived from trifluoromethylmaleic anhydride were synthesized using cyclopentadiene or 2,3-dimethylbutadiene and (het)arylamines. The biological activity of these compounds was evaluated using prediction methods and experimental studies. This series of new trifluoromethyl succinimides (3a,b and 6a–c) were tested by the National Cancer Institute (NCI, Bethesda, USA) by Program NCI-60 DTP Human Tumor Cell Line Screen at a single high dose (10−5 M). Imides revealed activity on Leukemia cell lines (RPMI-8226 - myeloma cell line), Non-Small Cell Lung Cancer cell lines (A549/ATCC - lung carcinoma epithelial cells) and Renal cancer cell lines (A498 and SN12C). PMID:25400294

  11. Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay.

    PubMed

    Paper, Dietrich H; Karall, Elisabeth; Kremser, Michaela; Krenn, Liselotte

    2005-04-01

    The antiinflammatory effects of ethanol and aqueous extracts from Drosera rotundifolia and from Drosera madagascariensis were compared in vivo in the HET-CAM assay. Both extracts from D. rotundifolia and the ethanol extract from D. madagascariensis showed remarkable efficacy at doses of 500 microg/pellet. The inhibition of the inflammation by the extracts was stronger than that by 50 microg hydrocortisone/pellet. In contrast, there was only a very weak effect observed at a dose of 500 microg/pellet of the water extract from D. madagascariensis. The chemical analyses of the extracts showed that the effect cannot be attributed to naphthoquinones, but might be due to flavonoids. Ellagic acid obviously plays an important role in the antiangiogenic effect of the Drosera extracts. PMID:16041727

  12. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  13. Instrument for Textbook Assessment.

    ERIC Educational Resources Information Center

    Huetteman, Julie Doidge

    An instrument to assist in assessing textbooks was created to provide a concise format for comparison and evaluation. Textbook characteristics were selected to illustrate content and proportion of characteristics of textbooks. Nine textbook characteristics were selected for quantifying the content areas of textbooks: (1) number of pages in the…

  14. Music: Instrumental Techniques, Percussion.

    ERIC Educational Resources Information Center

    Pearl, Jesse

    A course in introduction to music emphasizing harmony is presented. The approach used is a laboratory approach in which pupils will develop skill in playing percussion instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will recognize duple, triple,…

  15. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  16. Portable dynamic fundus instrument

    NASA Technical Reports Server (NTRS)

    Taylor, Gerald R. (Inventor); Meehan, Richard T. (Inventor); Hunter, Norwood R. (Inventor); Caputo, Michael P. (Inventor); Gibson, C. Robert (Inventor)

    1992-01-01

    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data.

  17. Instrument for assaying radiation

    DOEpatents

    Coleman, Jody Rustyn; Farfan, Eduardo B.

    2016-03-22

    An instrument for assaying radiation includes a flat panel detector having a first side opposed to a second side. A collimated aperture covers at least a portion of the first side of the flat panel detector. At least one of a display screen or a radiation shield may cover at least a portion of the second side of the flat panel detector.

  18. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  19. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  20. Instrument Measures Ocular Counterrolling

    NASA Technical Reports Server (NTRS)

    Levitan, Barry M.; Reschke, Millard F.; Spector, Lawrence N.

    1991-01-01

    Compact, battery-powered, noninvasive unit replaces several pieces of equipment and operator. Instrument that looks like pair of goggles with small extension box measures ocular counterrotation. Called "otolith tilt-translation reinterpretation" (OTTR) goggles, used in studies of space motion sickness. Also adapted to use on Earth and determine extent of impairment in patients who have impaired otolith functions.

  1. Elementary Instrumental Music Program.

    ERIC Educational Resources Information Center

    Smith, Dolores A.

    THE FOLLOWING IS THE FULL TEXT OF THIS DOCUMENT: Our former Elementary Instrumental Music Program for 4th-6th graders was costly and ineffective. Students were bused to a high school in the middle of the instructional day--costs (time and transportation) were not compensatory with the program, which was experiencing a significant drop-out rate.…

  2. HARMONI instrument control electronics

    NASA Astrophysics Data System (ADS)

    Gigante, José V.; Rodríguez Ramos, Luis F.; Zins, Gerard; Schnetler, Hermine; Pecontal, Arlette; Herreros, José Miguel; Clarke, Fraser; Bryson, Ian; Thatte, Niranjan

    2014-07-01

    HARMONI is an integral field spectrograph working at visible and near-infrared wavelengths over a range of spatial scales from ground layer corrected to fully diffraction-limited. The instrument has been chosen to be part of the first-light complement at the European Extremely Large Telescope (E-ELT). This paper describes the instrument control electronics to be developed at IAC. The large size of the HARMONI instrument, its cryogenic operation, and the fact that it must operate with enhanced reliability is a challenge from the point of view of the control electronics design. The present paper describes a design proposal based on the current instrument requirements and intended to be fully compliant with the ESO E-ELT standards, as well as with the European EMC and safety standards. The modularity of the design and the use of COTS standard hardware will benefit the project in several aspects, as reduced costs, shorter schedule by the use of commercially available components, and improved quality by the use of well proven solutions.

  3. University Reactor Instrumentation Grant

    SciTech Connect

    S. M. Bajorek

    2000-02-01

    A noble gas air monitoring system was purchased through the University Reactor Instrumentation Grant Program. This monitor was installed in the Kansas State TRIGA reactor bay at a location near the top surface of the reactor pool according to recommendation by the supplier. This system is now functional and has been incorporated into the facility license.

  4. Designing Intelligent Instruments

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.; Erner, Philip M.; Frasso, Scott

    2007-11-01

    Remote science operations require automated systems that can both act and react with minimal human intervention. One such vision is that of an intelligent instrument that collects data in an automated fashion, and based on what it learns, decides which new measurements to take. This innovation implements experimental design and unites it with data analysis in such a way that it completes the cycle of learning. This cycle is the basis of the Scientific Method. The three basic steps of this cycle are hypothesis generation, inquiry, and inference. Hypothesis generation is implemented by artificially supplying the instrument with a parameterized set of possible hypotheses that might be used to describe the physical system. The act of inquiry is handled by an inquiry engine that relies on Bayesian adaptive exploration where the optimal experiment is chosen as the one which maximizes the expected information gain. The inference engine is implemented using the nested sampling algorithm, which provides the inquiry engine with a set of posterior samples from which the expected information gain can be estimated. With these computational structures in place, the instrument will refine its hypotheses, and repeat the learning cycle by taking measurements until the system under study is described within a pre-specified tolerance. We will demonstrate our first attempts toward achieving this goal with an intelligent instrument constructed using the LEGO MINDSTORMS NXT robotics platform.

  5. Experimenting with Woodwind Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2007-01-01

    Simple experiments involving musical instruments of the woodwind family can be used to demonstrate the basic physics of vibrating air columns in resonance tubes using nothing more than straightforward measurements and data collection hardware and software. More involved experimentation with the same equipment can provide insight into the effects…

  6. University Reactor Instrumentation Program

    SciTech Connect

    Vernetson, W.G.

    1992-11-01

    Recognizing that the University Reactor Instrumentation Program was developed in response to widespread needs in the academic community for modernization and improvement of research and training reactors at institutions such as the University of Florida, the items proposed to be supported by this grant over its two year period have been selected as those most likely to reduce foreed outages, to meet regulatory concerns that had been expressed in recent years by Nuclear Regulatory Commission inspectors or to correct other facility problems and limitations. Department of Energy Grant Number DE-FG07-90ER129969 was provided to the University of Florida Training Reactor(UFTR) facility through the US Department of Energy's University Reactor Instrumentation Program. The original proposal submitted in February, 1990 requested support for UFTR facility instrumentation and equipment upgrades for seven items in the amount of $107,530 with $13,800 of this amount to be the subject of cost sharing by the University of Florida and $93,730 requested as support from the Department of Energy. A breakdown of the items requested and total cost for the proposed UFTR facility instrumentation and equipment improvements is presented.

  7. Instrument measures cloud cover

    NASA Technical Reports Server (NTRS)

    Laue, E. G.

    1981-01-01

    Eight solar sensing cells comprise inexpensive monitoring instrument. Four cells always track Sun while other four face sky and clouds. On overcast day, cloud-irradiance sensors generate as much short-circuit current as Sun sensor cells. As clouds disappear, output of cloud sensors decreases. Ratio of two sensor type outputs determines fractional cloud cover.

  8. Process Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III; Fowler, Malcolm

    This module provides instructional materials that are designed to help teachers train students in job skills for entry-level jobs as instrumentation technicians. This text addresses the basics of troubleshooting control loops, and the transducers, transmitters, signal conditioners, control valves, and controllers that enable process systems to…

  9. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  10. Flaws of drug instrumentalization.

    PubMed

    Swendsen, Joel; Le Moal, Michel

    2011-12-01

    The adaptive use of drugs, or "drug instrumentalization," is presented as a reality that the scientific literature has largely ignored. In this commentary, we demonstrate why this concept has limited value from the standpoint of nosology, why it should not be viewed as "adaptive," and why it has dangerous implications for policy and public health efforts. PMID:22074977

  11. Analytical Instrument Obsolescence Examined.

    ERIC Educational Resources Information Center

    Haggin, Joseph

    1982-01-01

    The threat of instrument obsolescence and tight federal budgets have conspired to threaten the existence of research analytical laboratories. Despite these and other handicaps most existing laboratories expect to keep operating in support of basic research, though there may be serious penalties in the future unless funds are forthcoming. (Author)

  12. Music: Instrumental Techniques, Woodwinds.

    ERIC Educational Resources Information Center

    Baker, Melvin

    A course in introduction to music emphasizing modes and forms is presented. The approach used is a laboratory approach in which pupils will develop skill in playing wood-wind instruments, sing, listen to, read and compose music with emphasis on identification of elementary concepts of mode and form. Course objectives include: (1) pupil will select…

  13. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, M.

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into interstellar space surrounding our star, the Sun. This region was probed in the past by remote techniques and it will be explored in situ by the Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the Sun and Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence the design of the mission, spacecraft and scientific instrumentation. We will review measurement objectives of the first mission into interstellar space and outline constrains on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of wh at a flyby mission of the distant future would encounter in approaching another star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonom . There are, however,y physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  14. Instrumentation for interstellar exploration

    NASA Astrophysics Data System (ADS)

    Gruntman, Mike

    2004-01-01

    The time has arrived for designing, building, and instrumenting a spacecraft for a dedicated foray into the galactic environment surrounding our star, the sun. This region was probed in the past by remote techniques and it will be explored in situ by the NASA's planned Interstellar Probe mission. The mission will significantly advance our understanding of the nature of the local interstellar medium and explore the distant frontier of the solar system by revealing the details of the interaction between the sun and the Galaxy. This mission will also be an important practical step toward interstellar flight of the future. Reaching interstellar space in reasonable time requires high escape velocities and will likely be enabled by non-chemical propulsion such as nuclear-powered electric propulsion or solar sailing. Unusually high spacecraft velocities, enormous distances from the Sun, and non-chemical propulsion will significantly influence design of the mission, spacecraft, and scientific instrumentation. We will review measurement objectives of the first dedicated mission into interstellar space and outline constraints on the instrumentation. Measurement of particles, fields, and dust in the interstellar medium will be complemented by search for complex organic molecules and remote sensing capabilities in various spectral bands. A "look" back at our solar system will also be a glimpse of what a truly-interstellar mission of the distant future would encounter in approaching a target star. The instrumentation for interstellar exploration presents numerous challenges. Mass, telemetry, and power constraints would place a premium on miniaturization and autonomy. There are, however, physical limits on how small the sensors could be. New instrument concepts may be required to achieve the desired measurement capabilities under the stringent constraints of a realistic interstellar mission.

  15. Instrument Control Unit for the EPD on board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Sánchez Prieto, S.; Prieto Mateo, M.; Rodríguez Polo; Gutiérrez Molina; Parra Espada, P.; da Silva Fariña, A.

    2013-05-01

    Undoubtedly, Solar Orbiter is the leading mission of the European Space Agency for studying the Sun in the current decade. Its elliptical orbit around the Sun, with a perihelion as low as 0.28 AU and with an increasing inclination of up to more than 25° with respect to the solar equator, makes it ideal for an in-situ environmental study. This study will provide the key to determine how does the Sun create and control the heliosphere, which is the main objective of this mission. One of the ten instruments that are part of the Solar Orbiter's payload is the Energetic Particle Detector (EPD). Its main objective is to measure the composition, timing and distribution functions of suprathermal and energetic particles. Scientific topics to be addressed include the sources, acceleration mechanisms, and transport processes of these particles. EPD is composed of four sensors (STEIN, EPT, HET and SIS), distributed along the spacecraft, and an Instrument Control Unit or ICU. The sensors are able to measure electrons in the energy range from 0.002 to 20 MeV, protons from 0.003 to 100 MeV and nucleons of He to Fe in the range of 0.008 to 200 MeV/n. The ICU is the sole interface with the spacecraft, providing control, communication and data processing to the sensors. Due to the strong reliability requirements associated to the ICU, special care has been taken in the hardware, software and mechanical designs. In this work the development status of the ICU, together with its hardware and software architectures, design decisions and tools are presented.

  16. Data acquisition instruments: Psychopharmacology

    SciTech Connect

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  17. THE ARCADE 2 INSTRUMENT

    SciTech Connect

    Singal, J.; Fixsen, D. J.; Kogut, A.; Mirel, P.; Wollack, E.; Levin, S.; Seiffert, M.; Limon, M.; Lubin, P.; Villela, T.; Wuensche, C. A.

    2011-04-01

    The second generation Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) instrument is a balloon-borne experiment to measure the radiometric temperature of the cosmic microwave background and Galactic and extragalactic emission at six frequencies from 3 to 90 GHz. ARCADE 2 utilizes a double-nulled design where emission from the sky is compared to that from an external cryogenic full-aperture blackbody calibrator by cryogenic switching radiometers containing internal blackbody reference loads. In order to further minimize sources of systematic error, ARCADE 2 features a cold fully open aperture with all radiometrically active components maintained at near 2.7 K without windows or other warm objects, achieved through a novel thermal design. We discuss the design and performance of the ARCADE 2 instrument in its 2005 and 2006 flights.

  18. An ice lithography instrument

    NASA Astrophysics Data System (ADS)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  19. Impact dynamics instrumentation

    NASA Astrophysics Data System (ADS)

    McCormck, R. F.

    1986-01-01

    One of the tasks specified in the NASA Langley controlled impact demonstration (CID) work package was to furnish dynamic instrumentation sensors. The types of instrumentation sensors required were accelerometers for aircraft structural loads measurements, seat belt load cells to measure anthropomorphic dummy responses to the aircraft impact, and strain gage bending bridges to measure the aircraft fuselage and wing bending during impact. The objective in the selection of dynamic instrumentation for the CID was to provide 352 of the highest quality transducers and remain within budget allocation. The transducers that were selected for the CID evaluation process were each subjected to rigorous laboratory acceptance tests and to aircraft fuselage section drop tests at the LaRC Impact Dynamics Research Facility. Data compiled from this series of tests showed the selected transducers to be best suited for the CID mission requirement. The transducers installation technique on the airframe proved successful. The transducer quality assurance was guaranteed through rigorous acceptance testing. Data acquired was 97.0%.

  20. Mandolin Family Instruments

    NASA Astrophysics Data System (ADS)

    Cohen, David J.; Rossing, Thomas D.

    The mandolin family of instruments consists of plucked chordophones, each having eight strings in four double courses. With the exception of the mandobass, the courses are tuned in intervals of fifths, as are the strings in violin family instruments. The soprano member of the family is the mandolin, tuned G3-D4-A4-E5. The alto member of the family is the mandola, tuned C3-G3-D4-A4. The mandola is usually referred to simply as the mandola in the USA, but is called the tenor mandola in Europe. The tenor member of the family is the octave mandolin, tuned G2-D3-A3-E4. It is referred to as the octave mandolin in the USA, and as the octave mandola in Europe. The baritone member of the family is the mandocello, or mandoloncello, tuned C2-G2-D3-A3. A variant of the mandocello not common in the USA is the five-course liuto moderno, or simply liuto, designed for solo repertoire. Its courses are tuned C2-G2-D3-A3-E4. A mandobass was also made by more than one manufacturer during the early twentieth century, though none are manufactured today. They were fretted instruments with single string courses tuned E1-A1-D2-G2. There are currently a few luthiers making piccolo mandolins, tuned C4-G4-D5-A5.

  1. Embedded instrumentation systems architecture

    NASA Astrophysics Data System (ADS)

    Visnevski, Nikita A.

    2007-04-01

    This paper describes the operational concept of the Embedded Instrumentation Systems Architecture (EISA) that is being developed for Test and Evaluation (T&E) applications. The architecture addresses such future T&E requirements as interoperability, flexibility, and non-intrusiveness. These are the ultimate requirements that support continuous T&E objectives. In this paper, we demonstrate that these objectives can be met by decoupling the Embedded Instrumentation (EI) system into an on-board and an off-board component. An on-board component is responsible for sampling, pre-processing, buffering, and transmitting data to the off-board component. The latter is responsible for aggregating, post-processing, and storing test data as well as providing access to the data via a clearly defined interface including such aspects as security, user authentication and access control. The power of the EISA architecture approach is in its inherent ability to support virtual instrumentation as well as enabling interoperability with such important T&E systems as Integrated Network-Enhanced Telemetry (iNET), Test and Training Enabling Architecture (TENA) and other relevant Department of Defense initiatives.

  2. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  3. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  4. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  5. An ice lithography instrument

    PubMed Central

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-01-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines. PMID:21721733

  6. Borehole survey instrument

    SciTech Connect

    Sharp, H.E.; Lin, J.W. III; Macha, E.S.; Smither, M.A.

    1984-12-04

    A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approaching ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.

  7. SABER instrument design update

    NASA Astrophysics Data System (ADS)

    Esplin, Roy W.; Zollinger, Lorin; Batty, J. Clair; Folkman, Steve; Roosta, Mehrdad; Tansock, Joseph J.; Jensen, Mark; Stauder, John; Miller, Jim; Vanek, Michael; Robinson, Don

    1995-09-01

    This paper describes the design of a 10-channel infrared (1.27 to 16.9 micrometers ) radiometer instrument known as SABER (sounding of the atmosphere using broadband emission radiometry) that will measure earth-limb emissions from the TIMED (thermosphere- ionosphere-mesosphere energetics and dynamics) satellite. The instrument telescope, designed to reject stray light from the earth and the atmosphere, is an on-axis Cassegrain design with a clam shell reimager and a one-axis scan mirror. The telescope is cooled below 210 K by a dedicated radiator. The focal plane assembly (consisting of a filter array, a detector array, a Lyot stop, and a window) is cooled to 75 K by a miniature cryogenic refrigerator. The conductive heat load on the refrigerator is minimized by a Kevlar support system that thermally isolates the focal plane assembly from the telescope. Kevlar is also used to thermally isolate the telescope from the spacecraft. Instrument responsivity drifts due to changes in telescope and focal plane temperatures as well as other causes are neutralized by an in-flight calibration system. The detector array consists of discrete HgCdTe, InSb, and InGaAs detectors. Two InGaAs detectors are a new long wavelength type, made by EG&G, that have a long wavelength cutoff of 2.33 micrometers at 77 K.

  8. Simulation visualization through dynamic instrumentation

    SciTech Connect

    Bisset, K.R.

    1998-09-01

    The goal of the instrument composition system is to allow a simulation user to dynamically create instruments as a simulation executes. Instruments can include graphical displays, data collectors, and debugging aides. Instruments are made up of small building blocks which can be easily combined into larger, more complex instruments. Through the sue of an Attribute Server (a distributed publication/subscription mechanism), the actors and instruments in a simulation can interact without direct knowledge of each other. Instead, each actor publishes the attributes which it has available. An instrument subscribes to the attributes in which it is interested, and is notified whenever the value of one of these attribute changes. An instrument can also publish attributes for use by other instruments. Since the Attribute Server is distributed, the publisher of an attribute need not execute on the same machine as the subscriber. This allows CPU intensive data visualization to execute on separate machines from the simulation, minimizing the impact on the simulation.

  9. FHR Process Instruments

    SciTech Connect

    Holcomb, David Eugene

    2015-01-01

    Fluoride salt-cooled High temperature Reactors (FHRs) are entering into early phase engineering development. Initial candidate technologies have been identified to measure all of the required process variables. The purpose of this paper is to describe the proposed measurement techniques in sufficient detail to enable assessment of the proposed instrumentation suite and to support development of the component technologies. This paper builds upon the instrumentation chapter of the recently published FHR technology development roadmap. Locating instruments outside of the intense core radiation and high-temperature fluoride salt environment significantly decreases their environmental tolerance requirements. Under operating conditions, FHR primary coolant salt is a transparent, low-vapor-pressure liquid. Consequently, FHRs can employ standoff optical measurements from above the salt pool to assess in-vessel conditions. For example, the core outlet temperature can be measured by observing the fuel s blackbody emission. Similarly, the intensity of the core s Cerenkov glow indicates the fission power level. Short-lived activation of the primary coolant provides another means for standoff measurements of process variables. The primary coolant flow and neutron flux can be measured using gamma spectroscopy along the primary coolant piping. FHR operation entails a number of process measurements. Reactor thermal power and core reactivity are the most significant variables for process control. Thermal power can be determined by measuring the primary coolant mass flow rate and temperature rise across the core. The leading candidate technologies for primary coolant temperature measurement are Au-Pt thermocouples and Johnson noise thermometry. Clamp-on ultrasonic flow measurement, that includes high-temperature tolerant standoffs, is a potential coolant flow measurement technique. Also, the salt redox condition will be monitored as an indicator of its corrosiveness. Both

  10. Topics in Chemical Instrumentation, Cl. Thermoluminescence: Part II. Instrumentation.

    ERIC Educational Resources Information Center

    Manche, Emanuel P.

    1979-01-01

    Presents part two on the use of the detection of thermoluminescence as an analytical tool for the chemistry laboratory and allied science. This part discusses instrumentation used and investigates recent developments in instrumentation for thermoluminescence. (HM)

  11. CARMENES instrument overview

    NASA Astrophysics Data System (ADS)

    Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V.-M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R.-R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W.

    2014-07-01

    This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The

  12. Instrumentation: Software-Driven Instrumentation: The New Wave.

    ERIC Educational Resources Information Center

    Salit, M. L.; Parsons, M. L.

    1985-01-01

    Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…

  13. ZBLAN Viscosity Instrumentation

    NASA Technical Reports Server (NTRS)

    Kaukler, William

    2001-01-01

    The past year's contribution from Dr. Kaukler's experimental effort consists of these 5 parts: a) Construction and proof-of-concept testing of a novel shearing plate viscometer designed to produce small shear rates and operate at elevated temperatures; b) Preparing nonlinear polymeric materials to serve as standards of nonlinear Theological behavior; c) Measurements and evaluation of above materials for nonlinear rheometric behavior at room temperature using commercial spinning cone and plate viscometers available in the lab; d) Preparing specimens from various forms of pitch for quantitative comparative testing in a Dynamic Mechanical Analyzer, Thermal Mechanical Analyzer; and Archeological Analyzer; e) Arranging to have sets of pitch specimens tested using the various instruments listed above, from different manufacturers, to form a baseline of the viscosity variation with temperature using the different test modes offered by these instruments by compiling the data collected from the various test results. Our focus in this project is the shear thinning behavior of ZBLAN glass over a wide range of temperature. Experimentally, there are no standard techniques to perform such measurements on glasses, particularly at elevated temperatures. Literature reviews to date have shown that shear thinning in certain glasses appears to occur, but no data is available for ZBLAN glass. The best techniques to find shear thinning behavior require the application of very low rates of shear. In addition, because the onset of the thinning behavior occurs at an unknown elevated temperature, the instruments used in this study must provide controlled low rates of shear and do so for temperatures approaching 600 C. In this regard, a novel shearing parallel plate viscometer was designed and a prototype built and tested.

  14. LBL's Pollution Instrumentation Comparability Program.

    ERIC Educational Resources Information Center

    McLaughlin, R. D.; And Others

    1979-01-01

    Contained are condensed excerpts from the Lawrence Berkeley Laboratory Survey of Instrumentation for Environmental Monitoring. The survey describes instrumentation used to analyze air and water quality, radiation emissions, and biomedical impacts. (BB)

  15. Instruments for Water Quality Monitoring

    ERIC Educational Resources Information Center

    Ballinger, Dwight G.

    1972-01-01

    Presents information regarding available instruments for industries and agencies who must monitor numerous aquatic parameters. Charts denote examples of parameters sampled, testing methods, range and accuracy of test methods, cost analysis, and reliability of instruments. (BL)

  16. Precision Instrument and Equipment Repairers.

    ERIC Educational Resources Information Center

    Wyatt, Ian

    2001-01-01

    Explains the job of precision instrument and equipment repairers, who work on cameras, medical equipment, musical instruments, watches and clocks, and industrial measuring devices. Discusses duties, working conditions, employment and earnings, job outlook, and skills and training. (JOW)

  17. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  18. Instrumental musicians' hazards.

    PubMed

    Hoppmann, R A

    2001-01-01

    In the last two decades, injuries to instrumental musicians have been well documented. Major categories of performance-related injuries include musculoskeletal overuse, nerve entrapment/thoracic outlet syndrome, and focal dystonia. Other areas of concern to instrumentalists include hypermobility, osteoarthritis, fibromyalgia, and hearing loss. This chapter reviews the epidemiology, risk factors, physical exam, treatment, and prevention of common problems of instrumentalists. Emphasis is placed on the team approach of treatment and prevention and the need for close collaboration of the various health professionals, music educators, and performers. Additional resources are presented for those interested in pursuing performing arts medicine in greater detail. PMID:11567922

  19. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  20. Diaphragms for Aeronautic Instruments

    NASA Technical Reports Server (NTRS)

    Hersey, M D

    1924-01-01

    This investigation was carried out at the request of the National Advisory Committee for Aeronautics and comprises an outline of historical developments and theoretical principles, together with a discussion of expedients for making the most effective use of existing diaphragms actuated by the hydrostatic pressure form an essential element of a great variety instruments for aeronautic and other technical purposes. The various physical data needed as a foundation for rational methods of diaphragm design have not, however, been available hitherto except in the most fragmentary form.

  1. Biomagnetic instrumentation and measurement

    NASA Technical Reports Server (NTRS)

    Iufer, E. J.

    1978-01-01

    The instruments and techniques of biomagnetic measurement have progressed greatly in the past 15 years and are now of a quality appropriate to clinical applications. The paper reports on recent developments in the design and application of SQUID (Superconducting Quantum Interference Device) magnetometers to biomagnetic measurement. The discussion covers biomagnetic field levels, magnetocardiography, magnetic susceptibility plethysmography, ambient noise and sensor types, principles of operation of a SQUID magnetometer, and laboratory techniques. Of the many promising applications of noninvasive biomagnetic measurement, magnetocardiography is the most advanced and the most likely to find clinical application in the near future.

  2. Instrument Quality Control.

    PubMed

    Jayakody, Chatura; Hull-Ryde, Emily A

    2016-01-01

    Well-defined quality control (QC) processes are used to determine whether a certain procedure or action conforms to a widely accepted standard and/or set of guidelines, and are important components of any laboratory quality assurance program (Popa-Burke et al., J Biomol Screen 14: 1017-1030, 2009). In this chapter, we describe QC procedures useful for monitoring the accuracy and precision of laboratory instrumentation, most notably automated liquid dispensers. Two techniques, gravimetric QC and photometric QC, are highlighted in this chapter. When used together, these simple techniques provide a robust process for evaluating liquid handler accuracy and precision, and critically underpin high-quality research programs. PMID:27316990

  3. Keyboard Emulation For Computerized Instrumentation

    NASA Technical Reports Server (NTRS)

    Wiegand, P. M.; Crouch, S. R.

    1989-01-01

    Keyboard emulator has interface at same level as manual keyboard entry. Since communication and control take place at high intelligence level in instrument, all instrument circuitry fully utilized. Little knowledge of instrument circuitry necessary, since only task interface performs is key closure. All existing logic and error checking still performed by instrument, minimizing workload of laboratory microcomputer. Timing constraints for interface operation minimal at keyboard entry level.

  4. Surface composition mapping radiometer instrument

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, development, and fabrication of a three-channel scanning radiometer are discussed. The instrument was flown on Nimbus 5 satellite and measured infrared energy in the 8.3 to 9.3, 10.2 to 11.2, and 0.8 to 1.1 micron spectral regions. The instrument parameters are presented. Theoretical discussions of the instrument subassemblies are provided. Operational details of the mechanical and electrical portions of the instrument are included.

  5. A new innovative instrument for space plasma instrumentation

    NASA Technical Reports Server (NTRS)

    Torbert, Roy B.

    1993-01-01

    The Faraday Ring Ammeter was the subject of this grant for a new innovative instrument for space plasma instrumentation. This report summarizes our progress in this work. Briefly, we have conducted an intensive series of experiments and trials over three years, testing some five configurations of the instrument to measure currents, resulting in two Ph.D. theses, supported by this grant, and two flight configurations of the instrument. The first flight would have been on a NASA-Air Force collaborative sounding rocket, but was not flown because of instrumental difficulties. The second has been successfully integrated on the NASA Auroral Turbulence payload which is to be launched in February, 1994.

  6. Spacecraft instrument calibration and stability

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Feldman, P.; Hudson, R.; Lean, J.; Madden, R.; Mcmaster, L.; Mount, G.; Rottman, G.; Simon, P. C.

    1989-01-01

    The following topics are covered: instrument degradation; the Solar Backscatter Ultraviolet (SBUV) Experiment; the Total Ozone Mapping Spectrometer (TOMS); the Stratospheric Aerosol and Gas Experiment 1 (SAGE-1) and SAGE-2 instruments; the Solar Mesosphere Explorer (SME) UV ozone and near infrared airglow instruments; and the Limb Infrared Monitor of the Stratosphere (LIMS).

  7. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  8. Instrument Remote Control via the Astronomical Instrument Markup Language

    NASA Technical Reports Server (NTRS)

    Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard

    1998-01-01

    The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.

  9. The QUIET Instrument

    NASA Technical Reports Server (NTRS)

    Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.

    2012-01-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,

  10. Instrumentation for Submillimeter Polarimetry

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Novak, G.

    1984-01-01

    During the last two years three instruments were built and operated for detection of polarization in the submillimeter to millimeter wavelength bands. In principle, simply rotating a polarizing grid in front of the detector would be sufficient to determine the state of linear polarization. In practice severe systematic problems are found with this approach. Everything in the light path has potential for inducing polarization. The telescope, apertures in the lightpath, and the Winston light collectors all introduce systematic errors. (The polarization/depolarization induced by these devices is due to diffraction and the finite conductivity of the metals used). Two of the polarimeters are for use on the KAO; the third is for the IRTF on Mauna Kea. The airplane polarimeters, M1 and M2, were specifically designed to minimize the systematic errors. The ground based polarimeter uses our f/35 photometer with an external polarizing grid as the analyzer. With all three instruments the key to success is the data collector and analysis scheme.

  11. An Instrumental Innovation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.

  12. The QUIET Instrument

    SciTech Connect

    Bischoff, C.; et al.

    2012-07-01

    The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

  13. HETDEX: Overview of the Hobby-Eberly Telescope Dark Energy Experiment and Instrumentation

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Gebhardt, K.; Drory, N.; DePoy, D.; Komatsu, E.; Bender, R.; Schneider, D.; Fabricius, M.; Lee, H.; Tuttle, S.; Marshall, J.; Kelz, A.; Roth, M.; Cornell, M.; HETDEX Collaboration

    2012-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey to map the evolution of dark energy using Lyman-alpha emitting galaxies as tracers. HETDEX comprises a major upgrade of the HET, deployment of the massively replicated integral field spectrograph, VIRUS, and the execution of a multi-year blind spectroscopic survey. VIRUS, consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each 50x50 sq. arcsec IFU is made up of 448 1.5-arcsec fibers, and feeds a pair of spectrographs with a fixed bandpass of 350-550 nm and resolving power R 700. Each exposure gathers 33,600 spectra. Observing 20 minutes per field, we reach a line flux limit of 3.5e-17 ergs-sec-1-cm-2 and mAB 22. The baseline survey will deliver spectra of 0.8M LAEs in a 9 cubic Gpc volume with 1.9 < z < 3.5, and 1M [OII] emitters with z < 0.48. In addition, the survey will cover 0.4M other galaxies, 0.25M stars, 2000 galaxy clusters, 7000 QSOs with z < 3.5, and 20,000 NVSS radio sources. The main survey area of 42x7 sq. deg. is centered at 13hr, +53deg. Within that 300 sq. deg. region we cover 1/4.5 with fibers; thus 60 sq. deg. of sky have spectra. Initial observations will be conducted from Spring 2013 through Spring 2015. We present an overview of the project, including instrumentation and details of the planned surveys.

  14. XEUS mission and instruments

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Peacock, Anthony J.; Parmar, Arvind N.; Beijersbergen, Marco W.

    2002-01-01

    The X-ray Evolving Universe Spectroscopy mission (XEUS) is an ambitious project under study by the European Space Agency (ESA), which aims to probe the distant hot universe with comparable sensitivity to NGST and ALMA. The effective optical area and angular resolution required to perform this task is 30 m2 effective area and <5 inch angular resolution respectively at 1 keV. The single Wolter-I X-ray telescope having these characteristics will be equipped with large area semiconductor detectors and high-resolution cryogenic imaging spectrometers with 2 eV resolution at 1 keV. A novel approach to mission design has been developed, placing the detector instruments on one dedicated spacecraft and the optics on another. The International Space Station (ISS) with the best ever-available infrastructure in space will be used to expand the mirror diameter from 4.5 m to 10 m, by using the European Robotic Arm on the ISS. The detector spacecraft (DSC) uses solar-electric propulsion to maintain its position while flying in formation with the mirror spacecraft. The detector instruments are protected from straylight and contamination by sophisticated baffles and filters, and employing the Earth as a shield to make the most sensitive low energy X-ray observations of the heavily red-shifted universe. After completion of an initial observation phase lasting 5 years, the mirror spacecraft will be upgraded (basically expanded to a full 10 m diameter mirror) at the ISS, while the DSC is replaced by a new spacecraft with a new suite of detector instruments optimised to the full area XEUS mirror. An industrial feasibility study was successfully completed and identified no major problem area. Current activities focus on a full system level study and the necessary technology developments. XEUS is likely to become a truly global mission, involving many of the partners that have teamed up to build the ISS. Japan is already a major partner int the study of XEUS, with ISAS having its main

  15. Robotic servicing of EOS instruments

    NASA Technical Reports Server (NTRS)

    Razzaghi, Andrea I.; Juberts, Maris

    1990-01-01

    This paper addresses robotic servicing of the Earth Observing Satellite (EOS) instruments. The goals of implementing a robotic servicing system on EOS would be to maintain the instruments throughout the required mission life and minimize life-cycle costs. To address robot servicing, an initial design concept has been developed which will be applied to a representative EOS instrument. This instrument will be used as a model for determining the most practical level of servicing of its parts, and how to design these parts for robot servicing. Using this representative EOS instrument as a model, a generic design scheme will be developed that can be applied to all EOS instruments. The first task is to determine how to identify which parts must be designed for robot servicing. Next, the requirements imposed on the instruments and the servicing robot when designing for robot serviceability must be examined.

  16. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  17. Sentinel-1 Instrument Overview

    NASA Astrophysics Data System (ADS)

    Snoeij, Paul; Torres, Ramon; Geudtner, Dirk; Brown, Michael; Deghaye, Patrick; Navas-Traver, Ignacio; Ostergaard, Allan; Rommen, Bjorn; Floury, Nicolas; Davidson, Malcolm

    2013-03-01

    The forthcoming European Space Agency (ESA) Sentinel-1 (S-1) C-band SAR constellation will provide continuous all-weather day/night global coverage, with six days exact repetition time (near daily coverage over Europe and Canada) and with radar data delivery within 3 to 24 hours. These features open new possibilities for operational maritime services. The Sentinel-1 space segment has been designed and is being built by an industrial consortium with Thales Alenia Space Italia as prime contractor and EADS Astrium GmbH as C-SAR instrument responsible. It is expected that Sentinel-1A be launched in 2013. This paper will provide an overview of the Sentinel-1 system, the status and characteristics of the technical implementation. The key elements of the system supporting the maritime user community will be highlighted.

  18. Instrumentation and radiopharmaceutical validation.

    PubMed

    Zigler, S S

    2009-08-01

    Although the promise of new positron emission tomography (PET) imaging agents is great, the process of bringing these agents to commercialization remains in its infancy. There are no PET products today that have gone through the full clinical and chemistry development process required to gain marketing approval by the US Food and Drug Administration (FDA). The purpose of this paper was to review validation from the perspective of the chemistry, manufacturing and controls (CMC) section of an FDA filing, as well as the validation requirements described in FDA good manufacturing practice (GMP) regulations, guidance documents and general chapters of the US Pharmacopeia (USP). The review includes discussion of validation from development to commercial production of PET radiopharmaceuticals with a special emphasis on equipment and instrumentation used in production and testing. The goal is to stimulate a dialog that leads to the standardization of industry practices and regulatory requirements for validation practices in PET. PMID:19834450

  19. Well surveying instrument sensor

    SciTech Connect

    Poquette, R.S.

    1981-01-20

    A surveying instrument sensor which includes a gimbal supported for rotation within a casing, a torquer coupled to rotate the gimbal with a first two-axis flexure suspended gyro supported on the gimbal with its spin axis perpendicular to the axis of the gimbal and one of its sensitive axes aligned with the axis of the gimbal, a second two-axis flexure suspended gyro disposed on the gimbal with its spin axis alinged with the axis of the gimbal and having two sensitive axes outputs orthogonal thereto. The output of the first gyro is coupled to the torquer to form a gimbal stabilized loop and the outputs and torquing inputs of the second gimbal coupled into rate capture loops with output signals obtained from the rate captured loops permitting fast and accurate surveying of a well pipe.

  20. NEUTRONIC REACTOR CORE INSTRUMENT

    DOEpatents

    Mims, L.S.

    1961-08-22

    A multi-purpose instrument for measuring neutron flux, coolant flow rate, and coolant temperature in a nuclear reactor is described. The device consists essentially of a hollow thimble containing a heat conducting element protruding from the inner wall, the element containing on its innermost end an amount of fissionsble materinl to function as a heat source when subjected to neutron flux irradiation. Thermocouple type temperature sensing means are placed on the heat conducting element adjacent the fissionable material and at a point spaced therefrom, and at a point on the thimble which is in contact with the coolant fluid. The temperature differentials measured between the thermocouples are determinative of the neutron flux, coolant flow, and temperature being measured. The device may be utilized as a probe or may be incorporated in a reactor core. (AE C)

  1. Portable musical instrument amplifier

    DOEpatents

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  2. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  3. LANDSAT instruments characterization

    NASA Technical Reports Server (NTRS)

    Lee, Y. (Principal Investigator)

    1984-01-01

    Work performed for the LANDSAT instrument characterization task in the areas of absolute radiometry, coherent noise analysis, and between-date smoothing is reported. Absolute radiometric calibration for LANDSAT-5 TM under ambient conditions was performed. The TM Radiometric Algorithms and Performance Program (TRAPP) was modified to create optional midscan data files and to match the TM Image Processing System (TIPS) algorithm for pulse determination. Several data reduction programs were developed, including a linear regression and its plotted result. A fast Fourier transformation study was conducted on the resequenced TM data. Subscenes of homogeneous water within scenes over Pensacola, Florida were used for testing the FFT on the resequenced data. Finally, a gain and pulse height stability study of LANDSAT 5 TM spectral bands was performed.

  4. Instrumented Architectural Simulation System

    NASA Technical Reports Server (NTRS)

    Delagi, B. A.; Saraiya, N.; Nishimura, S.; Byrd, G.

    1987-01-01

    Simulation of systems at an architectural level can offer an effective way to study critical design choices if (1) the performance of the simulator is adequate to examine designs executing significant code bodies, not just toy problems or small application fragements, (2) the details of the simulation include the critical details of the design, (3) the view of the design presented by the simulator instrumentation leads to useful insights on the problems with the design, and (4) there is enough flexibility in the simulation system so that the asking of unplanned questions is not suppressed by the weight of the mechanics involved in making changes either in the design or its measurement. A simulation system with these goals is described together with the approach to its implementation. Its application to the study of a particular class of multiprocessor hardware system architectures is illustrated.

  5. Ideology as instrument.

    PubMed

    Glassman, Michael; Karno, Donna

    2007-12-01

    Comments on the article by J. T. Jost, which argued that the end-of-ideology claims that emerged in the aftermath of World War II were both incorrect and detrimental to the field of political psychology. M. Glassman and D. Karno make three critical points. First, Jost objectified ideology as a grand strategy implemented at the individual level, rather than as an instrument used for a specific purpose in activity. In doing so, he set ideology up as an "object" that guides human behavior rather than as a rational part of human experience. Second, they take issue with the idea that, because somebody acts in a manner that can be categorized as ideological, there actually is such a thing as ideology separate from that event and/or political experience and that psychologists ought to understand the meaning of ideology in order to understand future human activities as outside observers. Third, Jost seems to see this objective ideology as a unidirectional, causal mechanism for activity, a mechanism that assumes individuals act according to ideology, which eclipses the possibility that immediate ideological positions are the residue of purposeful activity. Glassman and Karno suggest that it may be better to take a pluralistic view of ideology in human action. Where ideology does exist, it is as a purposeful instrument--part of a logically based action to meet some ends-in-view--a mixture of immediate goals tied to secondary belief systems (which have been integrated to serve the material purposes of the purveyors of these ideologies). So if we are to understand ideology, we can only understand it through its use in human activity. PMID:18085858

  6. Instrumentation and control systems, equipment location; instrumentation and control building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Instrumentation and control systems, equipment location; instrumentation and control building, instrumentation room, bays and console plan. Specifications No. Eng-04-353-55-72; drawing no. 60-09-12; sheet 110 of 148; file no. 1321/61. Stamped: Record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  7. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  8. Virtual instrument simulator for CERES

    NASA Astrophysics Data System (ADS)

    Chapman, John J.

    1997-12-01

    A benchtop virtual instrument simulator for CERES (clouds and the Earth's radiant energy system) has been built at NASA, Langley Research Center in Hampton, Virginia. The CERES instruments will fly on several earth orbiting platforms notably NASDA's tropical rainfall measurement mission (TRMM) and NASA's Earth observing system (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES virtual instrument simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed flight code and ground support software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES instrument simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES instrument simulator will be used to verify memory uploads by the CERES flight operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively

  9. Pancreatitis Quality of Life Instrument: Development of a new instrument

    PubMed Central

    Bova, Carol; Barton, Bruce; Hartigan, Celia

    2014-01-01

    Objectives: The goal of this project was to develop the first disease-specific instrument for the evaluation of quality of life in chronic pancreatitis. Methods: Focus groups and interview sessions were conducted, with chronic pancreatitis patients, to identify items felt to impact quality of life which were subsequently formatted into a paper-and-pencil instrument. This instrument was used to conduct an online survey by an expert panel of pancreatologists to evaluate its content validity. Finally, the modified instrument was presented to patients during precognitive testing interviews to evaluate its clarity and appropriateness. Results: In total, 10 patients were enrolled in the focus groups and interview sessions where they identified 50 items. Once redundant items were removed, the 40 remaining items were made into a paper-and-pencil instrument referred to as the Pancreatitis Quality of Life Instrument. Through the processes of content validation and precognitive testing, the number of items in the instrument was reduced to 24. Conclusions: This marks the development of the first disease-specific instrument to evaluate quality of life in chronic pancreatitis. It includes unique features not found in generic instruments (economic factors, stigma, and spiritual factors). Although this marks a giant step forward, psychometric evaluation is still needed prior to its clinical use. PMID:26770703

  10. Two Radiative/Thermochemical Instruments

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Janoff, Dwight D.; Shelley, Richard M.

    1990-01-01

    Measurements of absorption and emission complement thermal measurements. Two laboratory instruments for research in combustion and pyrolysis equipped for radiative as well as thermal measurements. One instrument essentially differential scanning calorimeter (DSC) modified to detect radiation emitted by flames. Provides means to evaluate limits of flammability of materials exhibiting exothermic reactions in DSC's. Other instrument used to determine pyrolysis properties of specimens exposed to various gases by measurement of infrared absorption spectra of pyrolysis products.

  11. Instrumentation in Frontal Sinus Surgery.

    PubMed

    Tajudeen, Bobby A; Adappa, Nithin D

    2016-08-01

    Frontal recess dissection proposes many challenges to the surgeon. These challenges stem from its highly variable nature, small caliber, difficult visualization, and proximity to vital structures such as the skull base and orbit. As such, delicate mucosal-sparing dissection of the frontal recess with proper instrumentation is paramount to minimize scar formation and ensure patency. Here, the article explores key instrumentation in frontal recess surgery with an emphasis on hand instruments and adjunctive technologies. PMID:27329980

  12. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  13. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  14. Radiological instrument. Patent Application

    SciTech Connect

    Kronenberg, S.; McLaughlin, W.L.; Siebentritt, C.R.

    1985-10-10

    This patent application discloses a radiological measuring instrument including an angularly variable radiation-sensitive structure comprised of two blocks of material having a different index of refraction with one of the materials comprising a radiochromic substance whose refractive index changes through anomolous dispersion as a result of being exposed to radiation. The ratio of the two indices of refraction is selected to be close to unity, with the radiation-sensitive structure being pivotally adjusted so that light is directed into one end of the block comprising the material having the greater index of refraction. This element, moreover, is selected to be clear and transparent with the incident angle being close to the critical angle where total reflection of all incident light occurs. A portion of the incident light is furthermore projected through the clear transparent block without reflection, with the two beams emerging from the other end of the block, where they are detected. Exposure to radiation changes the index of refraction of the radiochromic block and accordingly the reflected energy emerging therefrom. Calibrated readjustment of the angle of incidence provides a measure of the sensed radiation.

  15. Instrumentation Working Group Summary

    NASA Technical Reports Server (NTRS)

    Zaller, Michelle; Miake-Lye, Richard

    1999-01-01

    The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered

  16. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  17. The Clementine instrument complement

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.

    1993-01-01

    The recent successes of the Galileo solid-state imaging (SSI) experiment at the Moon and Gaspra show the utility of multispectral imaging of planetary objects. 'Clementine' is the planetary community's 'code name' for the SDIO (Space Defense Initiative Organization), mission to the Moon and the asteroid Geographos. This mission is designed as a long term stressing test on sensors and space systems developed for SDIO. In the course of this test Clementine will obtain science data using a varied and powerful array of remote sensing instruments which were developed by or for Lawrence Livermore National Laboratory in Livermore, California. Clementine carries five cameras, one for navigation and four for science experiments. In addition, a laser ranger is included which will serve as a laser altimeter. The Clementine cameras cover a wider range of spatial resolutions and wavelength range than did Galileo and are almost ideally suited to mapping of mafic rock types as are present on the Moon and expected at Geographos. Calibration of the cameras will occur at the sensor calibration laboratory at LLNL. In flight calibrations, using standard stars and other standards should improve the stated accuracies. Signal-to-noise ratios (SNRs) include the following noise sources: shot noise, calibration error, digitization noise, readout noise, and frame transfer noise (where applicable). The achieved SNRs are a balance between detector saturation and acceptable image smear. The 'worst' case uses the longest possible integration times.

  18. The tissue diagnostic instrument

    PubMed Central

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-01-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection. PMID:19485522

  19. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  20. The tissue diagnostic instrument

    NASA Astrophysics Data System (ADS)

    Hansma, Paul; Yu, Hongmei; Schultz, David; Rodriguez, Azucena; Yurtsev, Eugene A.; Orr, Jessica; Tang, Simon; Miller, Jon; Wallace, Joseph; Zok, Frank; Li, Cheng; Souza, Richard; Proctor, Alexander; Brimer, Davis; Nogues-Solan, Xavier; Mellbovsky, Leonardo; Peña, M. Jesus; Diez-Ferrer, Oriol; Mathews, Phillip; Randall, Connor; Kuo, Alfred; Chen, Carol; Peters, Mathilde; Kohn, David; Buckley, Jenni; Li, Xiaojuan; Pruitt, Lisa; Diez-Perez, Adolfo; Alliston, Tamara; Weaver, Valerie; Lotz, Jeffrey

    2009-05-01

    Tissue mechanical properties reflect extracellular matrix composition and organization, and as such, their changes can be a signature of disease. Examples of such diseases include intervertebral disk degeneration, cancer, atherosclerosis, osteoarthritis, osteoporosis, and tooth decay. Here we introduce the tissue diagnostic instrument (TDI), a device designed to probe the mechanical properties of normal and diseased soft and hard tissues not only in the laboratory but also in patients. The TDI can distinguish between the nucleus and the annulus of spinal disks, between young and degenerated cartilage, and between normal and cancerous mammary glands. It can quantify the elastic modulus and hardness of the wet dentin left in a cavity after excavation. It can perform an indentation test of bone tissue, quantifying the indentation depth increase and other mechanical parameters. With local anesthesia and disposable, sterile, probe assemblies, there has been neither pain nor complications in tests on patients. We anticipate that this unique device will facilitate research on many tissue systems in living organisms, including plants, leading to new insights into disease mechanisms and methods for their early detection.

  1. Ultrasonics and space instrumentation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.

  2. Guideline implementation: surgical instrument cleaning.

    PubMed

    Cowperthwaite, Liz; Holm, Rebecca L

    2015-05-01

    Cleaning, decontaminating, and handling instructions for instruments vary widely based on the type of instrument and the manufacturer. Processing instruments in accordance with the manufacturer's instructions can help prevent damage and keep devices in good working order. Most importantly, proper cleaning and disinfection may prevent transmission of pathogenic organisms from a contaminated device to a patient or health care worker. The updated AORN "Guideline for cleaning and care of surgical instruments" provides guidance on cleaning, decontaminating, transporting, inspecting, and storing instruments. This article focuses on key points of the guideline to help perioperative personnel implement appropriate instrument care protocols in their practice settings. The key points address timely cleaning and decontamination of instruments after use; appropriate heating, ventilation, and air conditioning parameters for the decontamination area; processing of ophthalmic instruments and laryngoscopes; and precautions to take with instruments used in cases of suspected prion disease. Perioperative RNs should review the complete guideline for additional information and for guidance when writing and updating policies and procedures. PMID:25946180

  3. Instrumentation advances for transonic testing

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1989-01-01

    New and improved instrumentation, like new and improved wind tunnels, provide capabilities which stimulate innovative research and discovery. During the past few years there have been a number of instrumentation developments which have aided and abetted the acquisition of more accurate aerodynamic data and have led to new physical insights as well. Some of these advances are reviewed, particularly in the area of thin film gages, hot wire anemometry, and laser instrumentation. A description is given of the instruments and/or techniques and some sample results are shown.

  4. Interstellar Dust Instrumentation

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Gruen, E.; Horanyi, M.; Drake, K.; Collette, A.; Kempf, S.; Srama, R.; Postberg, F.; Krueger, H.; Auer, S.

    2010-10-01

    Interstellar grains traversing the inner planetary system have been identified by the Ulysses dust detector. Space dust detectors on other missions confirmed this finding. Analysis of the Stardust collectors is under way to search for and analyze such exotic grains. Interstellar dust particles can be detected and analyzed in the near-Earth space environment. New instrumentation has been developed to determine the origin of dust particles and their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS, Rev. Sci. Instrum. 79, 084501, 2008) together with a high mass resolution mass analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 micron in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 (Earth, Moon and Planets, DOI: 10.1007/s11038-005-9040-z, 2005; Rev. Sci. Instrum. 78, 014501, 2007). The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential in finding collected sub-micron sized grains on the collector.

  5. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  6. ({sup 3}He,t) reaction on the double {beta} decay nucleus {sup 48}Ca and the importance of nuclear matrix elements

    SciTech Connect

    Grewe, E.-W.; Frekers, D.; Rakers, S.; Baeumer, C.; Dohmann, H.; Thies, J.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Botha, N. T.; Fujita, H.; Hatanaka, K.; Nakanishi, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Negret, A.; Popescu, L.; Neveling, R.

    2007-11-15

    High-resolution ({sup 3}He,t) measurements on the double {beta}-decay ({beta}{beta}) nucleus {sup 48}Ca have been performed at RCNP (Osaka, Japan) to determine Gamow-Teller (GT{sup -}) transitions to the nucleus {sup 48}Sc, which represents the intermediate nucleus in the second-order perturbative description of the {beta}{beta} decay. At a bombarding energy of E{sub {sup 3}He}=420 MeV an excitation energy resolution of 40 keV was achieved. The measurements were performed at two angle positions of the Grand Raiden Spectrometer (GRS): 0 deg. and 2.5 deg. The results of both settings were combined to achieve angular distributions, by which the character of single transitions could be determined. To characterize the different multipoles, theoretical angular distributions for states with J{sup {pi}}=1{sup +},2{sup +},2{sup -}, and 3{sup +} were calculated using the distorted-wave Born approximation (DWBA) Code DW81. The GT{sup -} strength was extracted up to E{sub x}=7 MeV and combined with corresponding GT{sup +} strength deduced from the {sup 48}Ti(d,{sup 2}He){sup 48}Sc data to calculate the low-energy part of the {beta}{beta}-decay matrix element for the {sup 48}Ca 2{nu}{beta}{beta} decay. We show that after applying trivial momentum corrections to the ({sup 3}He,t) spectrum, the two reaction probes (p,n) and ({sup 3}He,t) reveal a spectral response to an impressively high degree of similarity in the region of low momentum transfer.

  7. Zach's instruments and their characteristics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    The astronomically interested Duke Ernst II von Sachsen-Gotha-Altenburg (1745-1804) hired Baron Franz Xaver von Zach (1754-1832) as court astronomer in 1786. Immediatedly Zach started to make plans for instrumentation for a new observatory. But first they travelled with their instruments (a 2-foot Ramsden transit instrument, the Sisson quadrant, three Hadley sextants, two achromatic refractors and chronometers) to southern France. In Hyàres a tower of the wall around the town was converted into an observatory in 1787. For the building of the new observatory Zach had chosen a place outside of Gotha on the top of the Seeberg. The three main instruments were an 8-foot transit instrument made by Ramsden, a northern and southern mural quadrant made by Sisson and a zenith sector made by Cary, in addition an 8-foot circle made by Ramsden. By analysing the whole instrumentation of Gotha observatory, we can see a change around 1800 in the kind of instruments, from quadrants and sextants to the full circles and from the transit instrument to the meridian circle. The decline of the Gotha observatory started with the early death of the Duke in 1804 and the subsequent departure of Zach in 1806.

  8. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  9. Rating Scale Instruments and Measurement

    ERIC Educational Resources Information Center

    Cavanagh, Robert F.; Romanoski, Joseph T.

    2006-01-01

    The article examines theoretical issues associated with measurement in the human sciences and ensuring data from rating scale instruments are measures. An argument is made that using raw scores from rating scale instruments for subsequent arithmetic operations and applying linear statistics is less preferable than using measures. These theoretical…

  10. Associations in Human Instrumental Conditioning

    ERIC Educational Resources Information Center

    Gamez, A. Matias; Rosas, Juan M.

    2007-01-01

    Four experiments were conducted to study the contents of human instrumental conditioning. Experiment 1 found positive transfer between a discriminative stimulus (S[superscript D] and an instrumental response (R) that shared the outcome (O) with the response that was originally trained with the S[superscript D], showing the formation of an…

  11. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  12. Technician Program Uses Advanced Instruments.

    ERIC Educational Resources Information Center

    Stinson, Stephen

    1981-01-01

    Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)

  13. Cervical Spine Instrumentation in Children.

    PubMed

    Hedequist, Daniel J; Emans, John B

    2016-06-01

    Instrumentation of the cervical spine enhances stability and improves arthrodesis rates in children undergoing surgery for deformity or instability. Various morphologic and clinical studies have been conducted in children, confirming the feasibility of anterior or posterior instrumentation of the cervical spine with modern implants. Knowledge of the relevant spine anatomy and preoperative imaging studies can aid the clinician in understanding the pitfalls of instrumentation for each patient. Preoperative planning, intraoperative positioning, and adherence to strict surgical techniques are required given the small size of children. Instrumentation options include anterior plating, occipital plating, and a variety of posterior screw techniques. Complications related to screw malposition include injury to the vertebral artery, neurologic injury, and instrumentation failure. PMID:27097300

  14. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  15. Instrument Concept for the Proposed DESDynI SAR instrument

    NASA Technical Reports Server (NTRS)

    Perkovic-Martin, Dragana; Hoffman, James P.; Veilleux, Louise

    2012-01-01

    The proposed DESDynI (Solid Earth Deformation, Ecosystems Structure and Dynamics of Ice) SAR (synthetic aperture radar) Instrument would expand the trade-space of radar instrument concepts and push the boundaries of high-level integration of digital and RF subsystems in order to achieve very precise assessments of system's behavior; DESDynI mission concept would provide continuous science measurements that would greatly enhance understanding of geophysical and anthropological effects in three science disciplines; Trades in instrument architecture implementations and partnership discussions are producing a set of options for science community and NASA to evaluate and consider implementing late in the decade.

  16. Instrumental variables and Mendelian randomization with invalid instruments

    NASA Astrophysics Data System (ADS)

    Kang, Hyunseung

    Instrumental variables (IV) methods have been widely used to determine the causal effect of a treatment, exposure, policy, or an intervention on an outcome of interest. The IV method relies on having a valid instrument, a variable that is (A1) associated with the exposure, (A2) has no direct effect on the outcome, and (A3) is unrelated to the unmeasured confounders associated with the exposure and the outcome. However, in practice, finding a valid instrument, especially those that satisfy (A2) and (A3), can be challenging. For example, in Mendelian randomization studies where genetic markers are used as instruments, complete knowledge about instruments' validity is equivalent to complete knowledge about the involved genes' functions. The dissertation explores the theory, methods, and application of IV methods when invalid instruments are present. First, when we have multiple candidate instruments, we establish a theoretical bound whereby causal effects are only identified as long as less than 50% of instruments are invalid, without knowing which of the instruments are invalid. We also propose a fast penalized method, called sisVIVE, to estimate the causal effect. We find that sisVIVE outperforms traditional IV methods when invalid instruments are present both in simulation studies as well as in real data analysis. Second, we propose a robust confidence interval under the multiple invalid IV setting. This work is an extension of our work on sisVIVE. However, unlike sisVIVE which is robust to violations of (A2) and (A3), our confidence interval procedure provides honest coverage even if all three assumptions, (A1)-(A3), are violated. Third, we study the single IV setting where the one IV we have may actually be invalid. We propose a nonparametric IV estimation method based on full matching, a technique popular in causal inference for observational data, that leverages observed covariates to make the instrument more valid. We propose an estimator along with

  17. Solid motor diagnostic instrumentation. [design of self-contained instrumentation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Arens, W. E.; Wuest, W. S.

    1973-01-01

    A review of typical surveillance and monitoring practices followed during the flight phases of representative solid-propellant upper stages and apogee motors was conducted to evaluate the need for improved flight diagnostic instrumentation on future spacecraft. The capabilities of the flight instrumentation package were limited to the detection of whether or not the solid motor was the cause of failure and to the identification of probable primary failure modes. Conceptual designs of self-contained flight instrumentation packages capable of meeting these reqirements were generated and their performance, typical cost, and unit characteristics determined. Comparisons of a continuous real time and a thresholded hybrid design were made on the basis of performance, mass, power, cost, and expected life. The results of this analysis substantiated the feasibility of a self-contained independent flight instrumentation module as well as the existence of performance margins by which to exploit growth option applications.

  18. GEO Sounding Using Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Shiue, James; Krimchansky, Sergey; Susskind, Joel; Krimchansky, Alexander; Chu, Donald; Davis, Martin

    2004-01-01

    There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.

  19. Validating GOES Instrument Thermal Deformations

    NASA Technical Reports Server (NTRS)

    Harter, Peter; Ghaffarian, Benny; Ng, Ray; Pugh, Brett; Wilkin, Paul; Sayal, Chetan; Chu, Don

    2001-01-01

    Comparison of the Geostationary Operational Environmental Satellite (GOES) instrument thermal model predictions with on-orbit data shows that the models capture the observed temperature and misalignment trends. Lack of precise knowledge as to spacecraft pointing precludes such comparison with instrument pointing predictions. Based on the models, thermally induced instrument attitude variation will dominate GOES N-Q Image Motion Compensation (IMC). Errors due to day-to-day changes in the attitude profiles are predicted to be under 10 microradians except for rapid scans where disturbances may reach 30 microradians.

  20. Adjustable extender for instrument module

    DOEpatents

    Sevec, J.B.; Stein, A.D.

    1975-11-01

    A blank extender module used to mount an instrument module in front of its console for repair or test purposes has been equipped with a rotatable mount and means for locking the mount at various angles of rotation for easy accessibility. The rotatable mount includes a horizontal conduit supported by bearings within the blank module. The conduit is spring-biased in a retracted position within the blank module and in this position a small gear mounted on the conduit periphery is locked by a fixed pawl. The conduit and instrument mount can be pulled into an extended position with the gear clearing the pawl to permit rotation and adjustment of the instrument.

  1. Commissioning Instrument for the GTC

    NASA Astrophysics Data System (ADS)

    Cuevas, S.; Sánchez, B.; Bringas, V.; Espejo, C.; Flores, R.; Chapa, O.; Lara, G.; Chavolla, A.; Anguiano, G.; Arciniega, S.; Dorantes, A.; González, J. L.; Montoya, J. M.; Toral, R.; Hernández, H.; Nava, R.; Devaney, N.; Castro, J.; Cavaller-Marqués, L.

    2005-12-01

    During the GTC integration phase, the Commissioning Instrument (CI) will be a diagnostic tool for performance verification. The CI features four operation modes: imaging, pupil imaging, Curvature WFS, and high resolution Shack-Hartmann WFS. This instrument was built by the Instituto de Astronomía UNAM and the Centro de Ingeniería y Desarrollo Industrial (CIDESI) under GRANTECAN contract after a public bid. In this paper we made a general instrument overview and we show some of the performance final results obtained when the Factory Acceptance tests previous to its transport to La Palma.

  2. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  3. Genetic markers as instrumental variables

    PubMed Central

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A.; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. PMID:26614692

  4. Geo-conservation: an example of the application of its principles in the sanitation of the polluted Laarder Wasmeren area near Hilversum, het Gooi, The Netherlands.

    NASA Astrophysics Data System (ADS)

    Sevink, Jan; Khodabux, Eric; Landsmeer, Dick; Stoeten, Jan

    2013-04-01

    The Laarder Wasmeren area near Hilversum, a nature reserve under management of the Goois Natuurreservaat with extensive drift sands and several fens, was heavily polluted by heavy metals and toxic organic substances as a result of prolonged discharge of sewage water onto the fens. Already upon the start of its environmental restoration in 2004, it became clear that the area holds important geological phenomena, including LateGlacial paleosols and multiple Holocene drift sands with intercalated paleosols. This discovery induced the Province of Noord-Holland in 2006 to declare het Gooi, of which the Laarder Wasmeren area forms part, a geological monument and thus to set limits for future activities that might lead to disturbance of its superficial geology. Today het Gooi is one of the 17 geological monuments of the province. The basic principle of provincial geo-conservation - minimal disturbance of the superficial geology - was also applied in the further restoration of the LWM area that included its ecological restoration as a nature reserve. This restoration project was supervised by the author and belongs to the major operations of that kind in the Netherlands. Completed in 2010/2011, it resulted in the discovery and conservation of a complex of Holocene drift sands and paleosols that is unique for the Netherlands. The project forms an excellent example of the application of a provincial geo-conservation policy.

  5. Geo-conservation: an example of the application of its principles in the sanitation of the polluted Laarder Wasmeren area near Hilversum, het Gooi, The Netherlands

    NASA Astrophysics Data System (ADS)

    Sevink, J.; Khodabux, E. R.; Landsmeer, D.; Stoeten, G. J.

    2012-04-01

    The Laarder Wasmeren area near Hilversum, a nature reserve under management of the Goois Natuurreservaat with extensive drift sands and several fens, was heavily polluted by heavy metals and toxic organic substances as a result of prolonged discharge of sewage water onto the fens. Already upon the start of its environmental restoration in 2004, it became clear that the area holds important geological phenomena, including LateGlacial paleosols and multiple Holocene drift sands with intercalated paleosols. This discovery induced the Province of Noord-Holland in 2006 to declare het Gooi, of which the Laarder Wasmeren area forms part, a geological monument and thus to set limits for future activities that might lead to disturbance of its superficial geology. Today het Gooi is one of the 17 geological monuments of the province. The basic principle of provincial geo-conservation - minimal disturbance of the superficial geology - was also applied in the further restoration of the LWM area that included its ecological restoration as a nature reserve. This restoration project was supervised by the author and belongs to the major operations of that kind in the Netherlands. Completed in 2010/2011, it resulted in the discovery and conservation of a complex of Holocene drift sands and paleosols that is unique for the Netherlands. The project forms an excellent example of the application of a provincial geo-conservation policy.

  6. ISIS Support for Dawn Instruments

    NASA Astrophysics Data System (ADS)

    Becker, K. J.; Anderson, J. A.; Barrett, J. M.; Sides, S. C.; Titus, T. N.

    2012-03-01

    The USGS ISIS system now includes support for the Dawn FC and VIR instruments with ingestion and camera/sensor model software. This provides the scientific community with the means to process Dawn image data into geologic maps.

  7. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  8. Self-playing musical instrument

    NASA Astrophysics Data System (ADS)

    Bouffard, Karen

    2001-05-01

    This do-ahead Physics Olympics competition is a musical challenge based on one designed by Dan Calder for a past New Hampshire Physics Olympics. The objective is to build a musical instrument that is self-playing.

  9. Life support subsystem monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Kostell, G. D.

    1974-01-01

    The recognition of the need for instrumentation in manned spacecraft life-support subsystems has increased significantly over the past several years. Of the required control and monitoring instrumentation, this paper will focus on the monitoring instrumentation as applied to life-support subsystems. The initial approach used independent sensors, independent sensor signal conditioning circuitry, and independent logic circuitry to provide shutdown protection only. This monitoring system was replaced with a coordinated series of printed circuit cards, each of which contains all the electronics to service one sensor and provide performance trend information, fault detection and isolation information, and shutdown protection. Finally, a review of sensor and instrumentation problems is presented, and the requirement for sensors with built-in signal conditioning and provisions for in situ calibration is discussed.

  10. Ames Scientists Develop MSL Instrument

    NASA Video Gallery

    David Blake, a research scientist at NASA Ames, led the development of CheMin, one of ten scientific instruments onboard Curiosity, the Mars Scientific Laboratory. The Powder X-Ray Diffraction tool...

  11. Spacecraft instrument technology and cosmochemistry.

    PubMed

    McSween, Harry Y; McNutt, Ralph L; Prettyman, Thomas H

    2011-11-29

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon's crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  12. Course on Instruments Updates Teachers.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Describes a course in chemical instrumentation for high school chemistry teachers, paid for by Union Carbide. Teachers used spectrophotometer, nuclear magnetic resonance spectrometer, atomic absorption spectrograph, gas chromatograph, liquid chromatograph and infrared spectrophotometer. Also describes other teacher education seminars. (JM)

  13. Instruments and attachments for electronystagmography

    NASA Technical Reports Server (NTRS)

    Mironenko, Y. T.; Vilenskiy, A. A.

    1980-01-01

    A portable set of instruments and devices was developed which makes it possible to record spontaneous nystagmus with open and closed eyes. Rotational, caloric, position, and pressure nystagmus under any conditions may also be recorded.

  14. Tailoring Instrumentation to the Operator.

    ERIC Educational Resources Information Center

    Abplanalp, Glen H.; Menzenhauer, Fred C.

    1978-01-01

    This article provides guidelines in selecting appropriate instrumentation for water treatment facilities. Major areas of concern include: technical operating requirements of the process; equipment design and quality; installations; and mechanical aptitude of personnel. (CS)

  15. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  16. Modular Approach to Instrumental Analysis.

    ERIC Educational Resources Information Center

    Deming, Richard L.; And Others

    1982-01-01

    To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)

  17. Islamic Astronomical Instruments and Observatories

    NASA Astrophysics Data System (ADS)

    Heidarzadeh, Tofigh

    This chapter is a brief survey of astronomical instruments being used and developed in Islamic territories from the eighth to the fifteenth centuries as well as a concise account of major observatories and observational programs in this period.

  18. Interfacing Microcomputers with Laboratory Instruments.

    ERIC Educational Resources Information Center

    Long, Joseph W.

    1983-01-01

    Describes development of microcomputer-controlled gamma scintillation spectrometer and chromatographic data analyzer, including design and construction of interface electronics and production of software. Includes diagrams of electric circuits and project evaluation indicating that both instruments functioned as intended. (JN)

  19. Instrument detects bacterial life forms

    NASA Technical Reports Server (NTRS)

    Plakas, C.

    1971-01-01

    Instrument assays enzymatic bioluminescent reaction that occurs when adenosine triphosphate /ATP/ combines with lucifrase and luciferin. Module assembly minimizes need for hardware associated with reaction fluid and waste transfer. System is applicable in marine biology and aerospace and medical fields.

  20. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  1. [Drug advertising as communication between the pharmaceutical industry and the physician: advertisements for psychotropic drugs in the Dutch medical journal, Nederlands Tijdschrift voor Geneeskunde, 1900-1940].

    PubMed

    van der Hoogte, Arjo Roersch; Pieters, Toine

    2010-01-01

    In this article we explore the historical development of drug advertisements for psychotropic drugs in the leading Dutch medical journal from 1900 to 1940. The advertisements for hypnotics and sedatives, in The Nederlands Tijdschrift voor Geneeskunde (Dutch medical journal) reflected the changes in the vocabulary and image promoted by the pharmaceutical companies. In the first two decades, the advertisements were sober and to the point, and included the trademark, company name, molecular formula and therapeutic properties of the medication. The emphasis was on creating a scientific image of reliable symptom control for the therapeutic drug. In doing so, the ethical drug companies tried (successfully) to distinguish themselves from the producers of patent medicines. Once scientific credibility was established, the form and content of the advertisements changed significantly. In the late 1920s and 1930s drug companies embraced modern advertising techniques, developing a figurative language to address the changing beliefs and practices of Dutch physicians. Instead of promoting therapeutic drugs as safe and scientific, the emphasis was on their effectiveness in comparison to similar drugs. In the process, scientific information was reduced to an indispensable standardized minimum, whereby therapeutic drugs were advertised according to the latest pharmacological taxonomy rather than molecular formulas. The image-making of 'ethical marketing' began during the interwar years when marketers applied modern advertising techniques and infotainment strategies. The scanty black and white informational bulletins transitioned into colourful advertisements. The pharmaceutical companies employed the same medical language as used by physicians, so that one word or image in an advertisement would suffice for the physician to recognize a drug and its therapeutic properties. These developments show the changing relationship between the modern ethical pharmaceutical industry and Dutch

  2. Radiant Power Measuring Instrument (RPMI)

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. The radiant power measuring instrument is a rugged, hand-carried instrument which provides an ERTS investigator with a capability of obtaining radiometric measurements needed to determine solar and atmospheric parameters that affect the ERTS radiance measurements. With these parameters, ERTS data can be transformed into absolute target reflectance signatures, making accurate unambiguous interpretations possible.

  3. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit instrument... of fluids would not create a hazard. (3) Each powerplant and auxiliary power unit instrument that... position. (f) Fuel pressure indicator. There must be means to measure fuel pressure, in each...

  4. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit instrument... of fluids would not create a hazard. (3) Each powerplant and auxiliary power unit instrument that... position. (f) Fuel pressure indicator. There must be means to measure fuel pressure, in each...

  5. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit instrument... of fluids would not create a hazard. (3) Each powerplant and auxiliary power unit instrument that... position. (f) Fuel pressure indicator. There must be means to measure fuel pressure, in each...

  6. The SETI instrument development plan

    NASA Technical Reports Server (NTRS)

    Crow, R. B.

    1980-01-01

    The architecture of the instrument system for the SETI (Search for Extraterrestrial Intelligence) program is briefly described and the development approach used to implement the operational instruments is discussed. The two versions of the instrument system include a target survey instrument to observe at a very high sensitivity a selected set of interesting stars that have particular a priori promise, and a sky survey instrument to observe the entire celestial sphere at a lower sensitivity. The targeted survey utilizes the 305 meter antenna at Arecibo, Puerto Rico, a 64 meter DSN antenna, and other large radio telescopes. The Arecibo instrument provides the highest sensitivity by virtue of the antenna gain. The antenna line feeds cover an instantaneous frequency range of 50 MHz (tunable over 100 MHz), while the multichannel spectrum analyzer/signal detector is capable of analyzing a frequency segment 16 MHz wide with a maximum resolution of 1 Hz. The sky survey employs a listen-only, 34 meter antenna. The SETI breadboard development is also described.

  7. Instrument Modelling in Observational Astronomy

    NASA Astrophysics Data System (ADS)

    Ballester, P.; Rosa, M. R.

    2004-07-01

    By constructing instrument models which incorporate as full as possible a knowledge of optical and detector physics, the calibration of astronomical data can be placed on a firmer footing than is currently the norm. A number of developments make it more practical today to efficiently use optical models in the whole observational process: At first, the proposer can prepare observations using model based exposure time estimators and data simulators. Second, the observatory controls the instrumental configuration, tests data analysis procedures and provides calibration solutions with the help of instrument and environment models. We show in particular how such models can be used to ease very significantly the calibration and operation of complex instruments from the Hubble Space Telescope and the Very Large Telescope and provide a high level of homogeneity and integrity in the post-operational archives. We review the role of instrument models for observatory operations, observing, pipeline processing and data interpretation and describe the current usage of instrument modelling at the ST-ECF and ESO.

  8. CARMENES. IV: instrument control software

    NASA Astrophysics Data System (ADS)

    Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger

    2012-09-01

    The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.

  9. INSTRUMENTATION FOR FAR INFRARED SPECTROSCOPY.

    SciTech Connect

    GRIFFITHS, P.R.; HOMES, C.

    2001-05-04

    Fourier transform spectrometers developed in three distinct spectral regions in the early 1960s. Pierre Connes and his coworkers in France developed remarkably sophisticated step-scan interferometers that permitted near-infrared spectra to be measured with a resolution of better than 0.0 1 cm{sup {minus}1}. These instruments may be considered the forerunners of the step-scan interferometers made by Bruker, Bio-Rad (Cambridge, MA, USA) and Nicolet although their principal application was in the field of astronomy. Low-resolution rapid-scanning interferometers were developed by Larry Mertz and his colleagues at Block Engineering (Cambridge, MA, USA) for remote sensing. Nonetheless, the FT-IR spectrometers that are so prevalent in chemical laboratories today are direct descendants of these instruments. The interferometers that were developed for far-infrared spectrometry in Gebbie's laboratory ,have had no commercial counterparts for at least 15 years. However, it could be argued that these instruments did as much to demonstrate the power of Fourier transform spectroscopy to the chemical community as any of the instruments developed for mid- and near-infrared spectrometry. Their performance was every bit as good as today's rapid-scanning interferometers. However, the market for these instruments is so small today that it has proved more lucrative to modify rapid-scanning interferometers that were originally designed for mid-infrared spectrometry than to compete with these instruments with slow continuous scan or step-scan interferometers.

  10. High Data Rate Instrument Study

    NASA Technical Reports Server (NTRS)

    Schober, Wayne; Lansing, Faiza; Wilson, Keith; Webb, Evan

    1999-01-01

    The High Data Rate Instrument Study was a joint effort between the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC). The objectives were to assess the characteristics of future high data rate Earth observing science instruments and then to assess the feasibility of developing data processing systems and communications systems required to meet those data rates. Instruments and technology were assessed for technology readiness dates of 2000, 2003, and 2006. The highest data rate instruments are hyperspectral and synthetic aperture radar instruments which are capable of generating 3.2 Gigabits per second (Gbps) and 1.3 Gbps, respectively, with a technology readiness date of 2003. These instruments would require storage of 16.2 Terebits (Tb) of information (RF communications case of two orbits of data) or 40.5 Tb of information (optical communications case of five orbits of data) with a technology readiness date of 2003. Onboard storage capability in 2003 is estimated at 4 Tb; therefore, all the data created cannot be stored without processing or compression. Of the 4 Tb of stored data, RF communications can only send about one third of the data to the ground, while optical communications is estimated at 6.4 Tb across all three technology readiness dates of 2000, 2003, and 2006 which were used in the study. The study includes analysis of the onboard processing and communications technologies at these three dates and potential systems to meet the high data rate requirements. In the 2003 case, 7.8% of the data can be stored and downlinked by RF communications while 10% of the data can be stored and downlinked with optical communications. The study conclusion is that only 1 to 10% of the data generated by high data rate instruments will be sent to the ground from now through 2006 unless revolutionary changes in spacecraft design and operations such as intelligent data extraction are developed.

  11. Analytical techniques and instrumentation: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information on developments in instrumentation is arranged into four sections: (1) instrumentation for analysis; (2) analysis of matter; (3) analysis of electrical and mechanical phenomena; and (4) structural analysis. Patent information for two of the instruments described is presented.

  12. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the...

  13. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  14. HET2 Overview

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.; Bualat, Maria Gabriele; Diftler, Myron A.

    2015-01-01

    2015 mid-year review charts of the Human Exploration Telerobotics 2 project that describe the Astrobee free-flying robot and the Robonaut 2 humanoid robot. A planned replacement for Synchronized Position Hold, Engage, Reorient, Experimental Satellite (SPHERES), which is currently in use in the International Space Station (ISS).

  15. Readiness Issues for Emergency Response Instrumentation

    SciTech Connect

    C.A. Riland; D.R. Bowman; R.J. Tighe

    1999-03-01

    Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

  16. An improved instrument mounting arm.

    PubMed

    Gendeh, B S; Khalid, B A; Alberti, P W

    2001-02-01

    Although some form of commercial instrument mounting arm is available, a paucity of information in the literature may cause problems in selecting the most appropriate model for an ENT department wishing to trial their invention for use in the clinic or operating theatre. The instrument mounting arm described here is based on existing designs used by hobbyists and model makers for many years but the main benefit of this innovation is its multi-purpose use in the operating theatre and cost effectiveness since it is made of aluminum alloy. It is compact, stable and easily adjustable and can incorporate an endoscope holder or an operating end piece to mount various ENT instruments that offers considerable advantages to the unassisted operator. PMID:11320829

  17. Wide Field Instrument Adjutant Scientist

    NASA Astrophysics Data System (ADS)

    Spergel, David

    As Wide Field Instrument Adjutant Scientist, my goal will be to maximize the science capability of the mission in a cost-contained environment. I hope to work with the HQ, project and the FSWG to assure mission success. I plan to play a leadership role in communicating the WFIRST science capabilities to the astronomy community , obtain input from both science teams and the broader community that help derive performance requirements and calibration metrics. I plan to focus on developing the observing program for the deep fields and focus on using them to calibrate instrument performance and capabilities. I plan to organize workshops that will bring together WFIRST team members with astronomers working on LSST, Euclid, JWST, and the ELTs to maximize combined science return. I am also eager to explore the astrometric and stellar seismology capabilities of the instrument with a goal of maximizing science return without affecting science requirements.

  18. Autoclaving of lubricated dental instruments.

    PubMed

    Hegna, I K; Kardel, K; Kardel, M

    1978-03-01

    Test organisms forced mechanically into lubricated, rotating dental instruments (handpieces) were all killed during autoclaving at 134 degrees C for 8 min, even when protected by serum and oil. The test organisms were: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and spores of Bacillus stearothermophilus. Also when testing the sterility of autoclaved simulated instrument surfaces (brass cylinders and pieces of a cotton fabric) which had been inoculated with bacteria and dried before they were sprayed with oil, there was no growth of the test organisms. In addition to the other test organisms, spores of Bacillus subtilis and Gram-positive, anaerobic bacteria isolated from used handpieces that had been exposed to several autoclavings were used. Some of the handpieces that had been left to dry after use in the dentist's office before they were autoclaved, were shown not to be sterile. Therefore, the authors suggest that autoclaving of the instruments should take place shortly after use and prescribed cleaning. PMID:274800

  19. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  20. Safeguards instrumentation: past, present, future

    SciTech Connect

    Higinbotham, W.A.

    1982-01-01

    Instruments are essential for accounting, for surveillance and for protection of nuclear materials. The development and application of such instrumentation is reviewed, with special attention to international safeguards applications. Active and passive nondestructive assay techniques are some 25 years of age. The important advances have been in learning how to use them effectively for specific applications, accompanied by major advances in radiation detectors, electronics, and, more recently, in mini-computers. The progress in seals has been disappointingly slow. Surveillance cameras have been widely used for many applications other than safeguards. The revolution in TV technology will have important implications. More sophisticated containment/surveillance equipment is being developed but has yet to be exploited. On the basis of this history, some expectations for instrumentation in the near future are presented.

  1. Advanced Light Source instrumentation overview

    SciTech Connect

    Kim, C.H.; Hinkson, J.

    1992-10-01

    The accelerator instrumentation played a vital role in commissioning the ALS injector accelerator. It helped us to see whether electron dynamics agreed with our theoretical predictions and important beam parameters met the design specifications. It helped us to see where beam losses occurred and why. In this paper we will start with a brief description of the ALS accelerator complex and the expected performance of it. Then we will describe each diagnostics instrument by its construction, operational principle, requirements, and our experiences with it. We will describe the wall current monitor, the scintillator, the Faraday cup, the beam collimator, the beam position monitor, the direct-current current transformer (DCCT), the traveling wave electrodes the Sabersky finger, and other special instruments. Finally, we will go into some detail on how we measured the beam emittances, the closed orbit, and the betatron tunes.

  2. Multifunction Imaging and Spectroscopic Instrument

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis

    2004-01-01

    A proposed optoelectronic instrument would perform several different spectroscopic and imaging functions that, heretofore, have been performed by separate instruments. The functions would be reflectance, fluorescence, and Raman spectroscopies; variable-color confocal imaging at two different resolutions; and wide-field color imaging. The instrument was conceived for use in examination of minerals on remote planets. It could also be used on Earth to characterize material specimens. The conceptual design of the instrument emphasizes compactness and economy, to be achieved largely through sharing of components among subsystems that perform different imaging and spectrometric functions. The input optics for the various functions would be mounted in a single optical head. With the exception of a targeting lens, the input optics would all be aimed at the same spot on a specimen, thereby both (1) eliminating the need to reposition the specimen to perform different imaging and/or spectroscopic observations and (2) ensuring that data from such observations can be correlated with respect to known positions on the specimen. The figure schematically depicts the principal components and subsystems of the instrument. The targeting lens would collect light into a multimode optical fiber, which would guide the light through a fiber-selection switch to a reflection/ fluorescence spectrometer. The switch would have four positions, enabling selection of spectrometer input from the targeting lens, from either of one or two multimode optical fibers coming from a reflectance/fluorescence- microspectrometer optical head, or from a dark calibration position (no fiber). The switch would be the only moving part within the instrument.

  3. Formation Flying and Deformable Instruments

    SciTech Connect

    Rio, Yvon

    2009-05-11

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  4. Instruments Sniff Organic Surface Contaminants

    NASA Technical Reports Server (NTRS)

    Adler-Golden, Steven; Matthew, Michael W.

    1995-01-01

    Portable instruments detecting both nonvolatile and volatile organic surface contaminants in real time developed. Instruments easy to use: operate under ordinary ambient atmospheric conditions, without need to use messy liquid solvents or install and remove witness plates, and without need to cut specimens from surfaces to be inspected. Principle of detection involves sweeping pure, activated gas across surface spot inspected, then monitoring light emitted at wavelengths characteristic of excited molecules formed by chemical reactions between activated gas and contaminants. Gas activated by dc discharge, radio-frequency induction, microwave radiation, laser beam, hot filaments, or any other suitable means that excites some of gas molecules.

  5. New generation of GOME instruments

    NASA Astrophysics Data System (ADS)

    Perez-Albinana, Abelardo; Munro, Rosemary; Corpaccioli, Enrico; Eisinger, Michael; Callies, Joerg; Lefebvre, Alain; Hahne, Achim R.

    2002-02-01

    Following the successful mission of the Global Ozone Monitoring Experiment (GOME) on-board the European Space Agency (ESA) ERS-2 satellite, the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and ESA have decided to embark on-board the Metop satellites an improved version of the GOME spectrometer. The new generation of GOME instruments will provide data for the ozone product chain of the EUMETSAT Polar System, in charge not only of the daily production of ozone data but also of the long term ozone monitoring. This imposes strong accuracy and stability requirements to the instrument, the calibration activities and the ground processing.

  6. Sample acquisition and instrument deployment

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1995-01-01

    Progress is reported in developing the Sample Acquisition and Instrument Deployment (SAID) system, a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. The systems have been fabricated and tested in environmental chambers, as well as soil testing and robotic control testing.

  7. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  8. Personal Computer Monitors Instrumentation Bus

    NASA Technical Reports Server (NTRS)

    Conroy, Bruce L.

    1994-01-01

    IBM-compatible personal computer used instead of logic analyzer or other special instrument to monitor IEEE-488 interface data bus that interconnects various pieces of laboratory equipment. Needed is short program for computer, commercial general-purpose interface bus circuit card, and adapter cable to link card to bus. Software available in Ada or Quick Basic language.

  9. Air Quality Instrumentation. Volume 1.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers from recent ISA symposia dealing with air pollution. Papers range from a discussion of some relatively new applications of proven techniques to discussions…

  10. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  11. Creative Thinking in Instrumental Classes.

    ERIC Educational Resources Information Center

    Priest, Thomas

    2002-01-01

    Focuses on ways to develop student creative thinking, improvisation, and composition skills in instrumental classes. Provides suggestions, such as the importance of offering students creative opportunities, supplying examples, giving control to students, and encouraging expressive integrity. Includes a bibliography of resources for developing…

  12. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  13. Instrumentation System Diagnoses a Thermocouple

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley

    2008-01-01

    An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.

  14. Literature Review of Multicultural Instrumentation

    ERIC Educational Resources Information Center

    Sarraj, Huda; Carter, Stacy; Burley, Hansel

    2015-01-01

    Demographic changes at the national level emphasize a critical need for multicultural education to be included as part of undergraduate education. This critical review of the literature examines 10 multicultural instruments that are suitable for use in K-12 or higher education institutions. This is a novel literature review in that it is the first…

  15. Experimenting with Brass Musical Instruments.

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2003-01-01

    Describes experiments to address the properties of brass musical instruments that can be used to demonstrate sound in any level physics course. The experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of sound waves and thus the musical pitches produced. (Author/NB)

  16. Psychology Needs Realism, Not Instrumentalism

    ERIC Educational Resources Information Center

    Haig, Brian D.

    2005-01-01

    In this article, the author presents his comments on "Realism, Instrumentalism, and Scientific Symbiosis: Psychological Theory as a Search for Truth and the Discovery of Solutions" by John T. Cacioppo, Gun R. Semin and Gary G. Berntson. In the original article, the authors recommended the combined use of the philosophies of scientific realism and…

  17. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  18. Instrument measures dynamic pressure fluctuations

    NASA Technical Reports Server (NTRS)

    Coats, J. W.; Penko, P. E.; Reshotko, M.

    1977-01-01

    Pressure probe instrument, incorporating "infinite line" principle, can be used to remotely measure dynamic pressure fluctuations in hot high-pressure environemnts too severe for sensors. System is designed and can be utilized for measurements in core of operating turbofan engine.

  19. Analysis of Key Education Instrumentation.

    ERIC Educational Resources Information Center

    Penfield, Douglas A.; And Others

    The Key Assessment System, consisting of test instruments which measure psychological functioning, work related competencies, and attitudinal and motivational characteristics, is described. The system is a vocational assessment battery designed to differentiate levels of psychophysical capabilities in a nondiscriminatory manner. It provides a…

  20. Air Quality Instrumentation. Volume 2.

    ERIC Educational Resources Information Center

    Scales, John W., Ed.

    To insure a wide dissemination of information describing advances in measurement and control techniques, the Instrument Society of America (ISA) has published this monograph of selected papers, the second in a series, from recent ISA symposia dealing with air pollution. Papers range from a discussion of individual pollutant measurements to…

  1. Vacuum enhanced cutaneous biopsy instrument

    DOEpatents

    Collins, Joseph

    2000-01-01

    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  2. 32 CFR 21.665 - Nonprocurement instrument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS DoD GRANTS AND AGREEMENTS-GENERAL MATTERS Definitions § 21.665 Nonprocurement instrument. A legal instrument other than a procurement contract. Examples include instruments of financial assistance, such as... 32 National Defense 1 2010-07-01 2010-07-01 false Nonprocurement instrument. 21.665 Section...

  3. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Powerplant instruments. 27.1337 Section 27.1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1337 Powerplant instruments. (a) Instruments and...

  4. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Powerplant instruments. 27.1337 Section 27.1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Instruments: Installation § 27.1337 Powerplant instruments. (a) Instruments and...

  5. 14 CFR 29.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 29.1337 Section 29.1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Instruments: Installation § 29.1337 Powerplant instruments. (a) Instruments...

  6. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  7. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  8. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  9. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  10. 14 CFR 25.1333 - Instrument systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument systems. 25.1333 Section 25.1333... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1333 Instrument systems. For systems that operate the instruments required by § 25.1303(b) which are located at each...

  11. Instrument Reporting Practices in Second Language Research

    ERIC Educational Resources Information Center

    Derrick, Deirdre J.

    2016-01-01

    Second language (L2) researchers often have to develop or change the instruments they use to measure numerous constructs (Norris & Ortega, 2012). Given the prevalence of researcher-developed and -adapted data collection instruments, and given the profound effect instrumentation can have on results, thorough reporting of instrumentation is…

  12. Evaluation, comparison and calibration of oceanographic instruments

    SciTech Connect

    Not Available

    1985-01-01

    This book reviews oceanographic instrumentation. The parameters for which instrumentation is reviewed are limited to those where continuous monitoring is possible. The discussion is also limited to parameters of interest to physical oceanography and ocean engineering. Specific instruments reviewed include: meterological sensors and instruments; wave sensors; ocean current sensors; pressure sensors; and CTD sensors. Various types of oceanographic measurements are also evaluated.

  13. 47 CFR 73.688 - Indicating instruments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system. (b) The function of each instrument shall be clearly and permanently shown on the instrument..., the station may be operated without the defective instrument pending its repair or replacement for a... instrument is the transmission line meter used for determining the output power by the direct method,...

  14. 47 CFR 73.688 - Indicating instruments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... system. (b) The function of each instrument shall be clearly and permanently shown on the instrument..., the station may be operated without the defective instrument pending its repair or replacement for a... instrument is the transmission line meter used for determining the output power by the direct method,...

  15. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Powerplant instruments. 25.1337 Section 25.1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments...

  16. 47 CFR 73.688 - Indicating instruments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... system. (b) The function of each instrument shall be clearly and permanently shown on the instrument..., the station may be operated without the defective instrument pending its repair or replacement for a... instrument is the transmission line meter used for determining the output power by the direct method,...

  17. 47 CFR 73.688 - Indicating instruments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... system. (b) The function of each instrument shall be clearly and permanently shown on the instrument..., the station may be operated without the defective instrument pending its repair or replacement for a... instrument is the transmission line meter used for determining the output power by the direct method,...

  18. 47 CFR 73.688 - Indicating instruments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system. (b) The function of each instrument shall be clearly and permanently shown on the instrument..., the station may be operated without the defective instrument pending its repair or replacement for a... instrument is the transmission line meter used for determining the output power by the direct method,...

  19. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Powerplant instruments. 25.1337 Section 25.1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments...

  20. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  1. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  2. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  3. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  4. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  5. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  6. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  7. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  8. 14 CFR 121.307 - Engine instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine instruments. 121.307 Section 121.307..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.307 Engine instruments. Unless the Administrator allows or requires different instrumentation for turbine engine...

  9. 14 CFR 25.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 25.1381 Section 25.1381... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1381 Instrument lights. (a) The instrument lights must— (1) Provide sufficient illumination to make each instrument, switch and other...

  10. 14 CFR 23.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 23.1381 Section 23.1381... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1381 Instrument lights. The instrument lights must— (a) Make each instrument and control easily readable and...

  11. Regeneration in brass wind instruments

    NASA Astrophysics Data System (ADS)

    Elliott, S. J.; Bowsher, J. M.

    1982-07-01

    This paper is concerned with the production of musical notes by the interaction between the lips of a player and a brass wind instrument. The mechanism of this non-linear oscillation, together with that in the voice and for woodwind instruments, is discussed and past theories reviewed. Each element in the interaction is then carefully delineated and reasonable approximations to the governing equations for the lip dynamics and flow conditions through the lip opening are deduced: the acoustic parameters of the instrument and pressure source from the lungs can be experimentally determined. In contrast to the case of woodwind instruments, for example, many of the important parameters controlling the interaction can vary over a wide range and are under the complete control of the player. The expressions describing each component of the interaction are then combined to form an overall theory of regeneration, following Helmholtz, which leads to a description of the conditions necessary for a note to be sustained, and to an expression describing the characteristic waveform of the mouthpiece pressure at low frequencies. Experimental measurements of this mouthpiece pressure are presented, together with measurements of the steady and alternating components of the pressure in the mouth, and of the velocity in the mouthpiece for blown notes on a trombone and trumpet. Good agreement was observed between the harmonics of the measured mouthpiece pressure and those deduced from theory. Measurements are presented of the intonation of a trombone, and the range and characteristics of notes "buzzed" on a mouthpiece alone are discussed. Finally the steady pressure in the mouth and the average flow down the instrument are used to calculate the average lip opening, and hence the effective mass of the moving parts of the lips for a variety of notes played on a trombone and trumpet.

  12. Instrumentation requirements for the ESF thermomechanical experiments

    SciTech Connect

    Pott, J.; Brechtel, C.E.

    1992-12-31

    In situ thermomechanical experiments are planned as part of the Yucca Mountain Site Characterization Project that require instruments to measure stress and displacement at temperatures that exceed the typical specifications of existing geotechnical instruments. A high degree of instrument reliability will also be required to satisfy the objectives of the experiments, therefore a study was undertaken to identify areas where improvement in instrument performance was required. A preliminary list of instruments required for the experiments was developed, based on existing test planning and analysis. Projected temperature requirements were compared to specifications of existing instruments to identify instrumentation development needs. Different instrument technologies, not currently employed in geotechnical instrumentation, were reviewed to identify potential improvements of existing designs for the high temperature environment. Technologies with strong potentials to improve instrument performance with relatively high reliability include graphite fiber composite materials, fiber optics, and video imagery.

  13. ACRF Instrumentation Status and Information September 2009

    SciTech Connect

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ACRF Instrumentation Status and Information - June 2009

    SciTech Connect

    JW Voyles

    2009-06-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  15. ACRF Instrumentation Status and Information August 2009

    SciTech Connect

    JW Voyles

    2009-09-09

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status and Information April 2009

    SciTech Connect

    Voyles, JW

    2009-05-07

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  17. ACRF Instrumentation Status and Information July 2009

    SciTech Connect

    JW Voyles

    2009-08-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. ACRF Instrumentation Status and Information May 2009

    SciTech Connect

    JW Voyles

    2009-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. Reference instrument complement for IPNS Upgrade

    SciTech Connect

    Crawford, R.K.

    1993-07-01

    A feasibility study for a new 1 MW pulsed neutron source has recently been completed at Argonne. As part of this feasibility study, an instrument package to instrument 24 of the 36 beam ports has been considered. This complement of instruments is outlined, and details of some of the instruments are discussed. Developments required before some of these instruments can be built are also indicated.

  20. MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies

    NASA Astrophysics Data System (ADS)

    Chan, Wing Shan

    MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures: We developed a new actuator microstructure to control the spacing between closely spaced surfaces. Creating and controlling nanometer gaps is of interest in areas such as plasmonics and quantum electronics. For example, energy states in quantum well heterostructures can be tuned by adjusting the physical coupling distance between wells. Unfortunately, such an application calls for active control of a nano-scale air gap between surfaces which are orders of magnitude larger, which is difficult due to stiction forces. A vertical electrostatic wedge actuator was designed to control the air gap between two closely spaced quantum wells in a collapsed cantilever structure. A six-mask fab- rication process was developed and carried out on an InGaAs/InP quantum well het- erostructure on an InP substrate. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm from contact with an applied voltage of 60 V. Challenges in designing and fabricating the device are discussed. Optical Instrumentation for Glacier Ice Studies: We explored new optical instrumentation for glacier ice studies. Glacier ice, such as that of the Greenland and Antarctic ice sheets, is formed by the accumulation of snowfall over hundreds of thousands of years. Not all snowfalls are the same. Their isotopic compositions vary according to the planet's climate at the time, and may contain part of the past atmosphere. The physical properties and chemical content of the ice are therefore proxies of Earth's climate history. In this work, new optical methods and instrumentation based on light scattering and polarization were developed to more efficiently study glacier ice. Field deployments in Antarctica of said instrumentation and results acquired are presented.

  1. Evaluation Framework for Search Instruments

    SciTech Connect

    Warren, Glen A.; Smith, Leon E.; Cooper, Matthew W.; Kaye, William R.

    2005-10-23

    A framework for quantitatively evaluating current and proposed gamma-ray search instrument designs has been developed. The framework is designed to generate a large library of “virtual neighborhoods” that can be used to test and evaluate nearly any gamma-ray sensor type. Calculating nuisance-source emissions and combining various sources to create a large number of random virtual scenes places a significant computational burden on the development of the framework. To reduce this burden, a number of radiation transport simplifications have been made which maintain the essential physics ingredients for the quantitative assessment of search instruments while significantly reducing computational times. The various components of the framework, from the simulation and benchmarking of nuisance source emissions to the computational engine for generating the gigabytes of simulated search scenes, are discussed.

  2. New instrumentation in percutaneous nephrolithotomy

    PubMed Central

    Pugh, Joseph W.; Canales, Benjamin K.

    2010-01-01

    Percutaneous nephrolithotomy (PCNL) is the procedure of choice for removing large, complex, and/or multiple renal calculi. Since its first description in 1976, PCNL techniques and equipment have evolved to maximize procedural efficacy, safety, and reproducibility. We reviewed current literature from January 2004 to November 2009 using Medline search regarding PCNL instrumentation and technology. Additional equipment discovered during the review process without published Medline evidence was summarized from manufacturer brochures and data. Included in this review are summaries of intracorporeal lithotriptors and accessory equipment, stone manipulation devices, PCNL tract sealants, and a digital rigid nephroscope. The evolution of these devices from their predecessors has increased the instrumentation options for the treating urologist and may represent more effective technology for the percutaneous treatment of large renal stones. PMID:21116361

  3. Dual physiological rate measurement instrument

    NASA Technical Reports Server (NTRS)

    Cooper, Tommy G. (Inventor)

    1990-01-01

    The object of the invention is to provide an instrument for converting a physiological pulse rate into a corresponding linear output voltage. The instrument which accurately measures the rate of an unknown rectangular pulse wave over an extended range of values comprises a phase-locked loop including a phase comparator, a filtering network, and a voltage-controlled oscillator, arranged in cascade. The phase comparator has a first input responsive to the pulse wave and a second input responsive to the output signal of the voltage-controlled oscillator. The comparator provides a signal dependent on the difference in phase and frequency between the signals appearing on the first and second inputs. A high-input impedance amplifier accepts an output from the filtering network and provides an amplified output DC signal to a utilization device for providing a measurement of the rate of the pulse wave.

  4. Musical Instruments, Models, and Machines.

    NASA Astrophysics Data System (ADS)

    Gershenfeld, Neil

    1996-11-01

    A traditional musical instrument is an analog computer that integrates equations of motion based on applied boundary conditions. We are approaching a remarkable time when advances in transducers, real-time computing, and mathematical modeling will enable new technology to emulate and generalize the physics of great musical instruments from first principles, helping virtuosic musicians to do more and non-musicians to engage in creative expression. I will discuss the underlying problems, including non-contact sensing and state reconstruction for nonlinear systems, describe exploratory performance collaborations with artists ranging from Yo-Yo Ma to Penn & Teller, and then consider the broader implications of these devices for the interaction between people and machines. Part B of program listing

  5. The USNA MIDN Microdosimeter Instrument

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Dolecek, Q.; Heyne, J.; Veade, T.; Rosenfeld, A. B.; Cucinotta, F. A.; Zaider, M.; Dicello, J. F.

    2006-01-01

    This paper describes the MIcroDosimetry iNstrument (MIDN) mission now under development at the United States Naval Academy. The instrument is manifested to fly on the MidSTAR-1 spacecraft, which is the second spacecraft to be developed and launched by the Academy s faculty and midshipmen. Launch is scheduled for 1 September 2006 on an ATLAS-5 launch vehicle. MIDN is a rugged, portable, low power, low mass, solid-state microdosimeter designed to measure in real time the energy distributions of energy deposited by radiation in microscopic volumes. The MIDN microdosimeter sensor is a reverse-biased silicon p-n junction array in a Silicon-On-Insulator (SOI) configuration. Microdosimetric frequency distributions as a function of lineal energies determine the radiation quality factors in support of radiation risk estimation to humans.

  6. Holy Trinity of Instrumentation Development

    NASA Astrophysics Data System (ADS)

    Uršič, Rok; Šolar, Borut

    2004-11-01

    Being user friendly should be the main guidance, beside the self-understood high performance, in today's instrumentation development. Here we identify three components of the user-friendly policy: the all-in-one concept, customization, and connectivity. All-in-one is the concept of unification of various building blocks and thus various functionalities in one product. The customization is enabled by the product's reconfigurability that allows a product to grow and support new requirements and applications without changing hardware. The consequence of the two is the capacity of the single instrument to perform a variety of tasks that before were split among different devices. The last of the three is connectivity that improves the relationship between controls and beam diagnostics, brings out-of-the-crate freedom, and opens unforeseen possibilities for intra-accelerator cooperation and remote technical support.

  7. Epithermal neutron instrumentation at ISIS

    NASA Astrophysics Data System (ADS)

    Gorini, G.; Festa, G.; Andreani, C.

    2014-12-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained.

  8. In Situ Instruments: Overview of In Situ Instruments for Deployment in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Taylor, M.; Cardell, G.

    2000-01-01

    This presentation reviews the design and specifications for several instruments for deployment in extreme environments. The instruments are: (1) In Situ Geochronology Instrument, (2) Laser Ablation Sampling Instrument, (3) Micro Hygrometer (4) Micro Lidar, (5) Atmospheric Electron X-Ray Spectrometer and (6) Nuclear Magnetic Resonance Spectrometer. Included in the descriptions are the contact people and the objective of each instrument.

  9. MUSE instrument global performance test

    NASA Astrophysics Data System (ADS)

    Loupias, M.; Kosmalski, J.; Adjali, L.; Bacon, R.; Boudon, D.; Brotons, L.; Caillier, P.; Capoani, L.; Daguisé, E.; Jarno, A.; Hansali, G.; Kelz, A.; Laurent, F.; Migniau, J. E.; Pécontal-Rousset, A.; Piqueras, L.; Remillieux, A.; Renault, E.; Streicher, O.; Weilbacher, P.; Zins, G.

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument developed for ESO (European Southern Observatory) and will be assembled to the VLT (Very Large Telescope) in 2013. The MUSE instrument can simultaneously record 90.000 spectra in the visible wavelength range (465-930nm), across a 1*1arcmin² field of view, thanks to 24 identical Integral Field Units (IFU). A collaboration of 7 institutes has partly validated and sent their subsystems to CRAL (Centre de Recherche Astrophysique de Lyon) in 2011, where they have been assembled together. The global test and validation process is currently going on to reach the Preliminary Acceptance in Europe in 2012. The sharing of performances has been based on 5 main functional sub-systems. The Fore Optics sub-system derotates and anamorphoses the VLT Nasmyth focal plane image, the Splitting and Relay Optics associated with the Main Structure are feeding each IFU with 1/24th of the field of view. Each IFU is composed of a 3D function insured by an image slicer system and a spectrograph, and a detection function by a 4k*4k CCD cooled down to 163°K. The 5th function is the calibration and data reduction of the instrument. This article depicts the sequence of tests that has been completely reshafled mainly due to planning constraints. It highlights the priority given to the most critical performances tests of the sub-systems and their results. It enhances then the importance given to global tests. Finally, it makes a status on the verification matrix and the validation of the instrument and gives a critical view on the risks taken.

  10. Nuclear instrumentation cable end seal

    DOEpatents

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  11. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  12. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  13. LANDSAT D instrument module study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).

  14. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  15. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  16. Instrument Measures Shift In Focus

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J.

    1992-01-01

    Optical components tested at wavelengths from ultraviolet to infrared. Focus-shift-measuring instrument easy to use. Operated in lighted room, without having to make delicate adjustments while peering through microscope. Measures distance along which focal point of converging beam of light shifted by introduction of nominally plane parallel optical component into beam. Intended primarily for measuring focus shifts produced by windows and filters at wavelengths from 120 to 1,100 nanometers. Portable, compact, and relatively inexpensive for degree of precision.

  17. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. Spatial Displays and Spatial Instruments

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R. (Editor); Kaiser, Mary K. (Editor); Grunwald, Arthur J. (Editor)

    1989-01-01

    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles.

  19. MUSE instrument global performance analysis

    NASA Astrophysics Data System (ADS)

    Loupias, M.; Bacon, R.; Caillier, P.; Fleischmann, A.; Jarno, A.; Kelz, A.; Kosmalski, J.; Laurent, F.; Le Floch, M.; Lizon, J. L.; Manescau, A.; Nicklas, H.; Parès, L.; Pécontal, A.; Reiss, R.; Remillieux, A.; Renault, E.; Roth, M. M.; Rupprecht, G.; Stuik, R.

    2010-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation instrument developed for ESO (European Southern Observatory) and will be assembled to the VLT (Very Large Telescope) in 2012. The MUSE instrument can simultaneously record 90.000 spectra in the visible wavelength range (465-930nm), across a 1*1arcmin2 field of view, thanks to 24 identical Integral Field Units (IFU). A collaboration of 7 institutes has successfully passed the Final Design Review and is currently working on the first sub-assemblies. The sharing of performances has been based on 5 main functional sub-systems. The Fore Optics sub-system derotates and anamorphoses the VLT Nasmyth focal plane image, the Splitting and Relay Optics associated with the Main Structure are feeding each IFU with 1/24th of the field of view. Each IFU is composed of a 3D function insured by an image slicer system and a spectrograph, and a detection function by a 4k*4k CCD cooled down to 163°K. The 5th function is the calibration and data reduction of the instrument. This article depicts the breakdown of performances between these sub-systems (throughput, image quality...), and underlines the constraining parameters of the interfaces either internal or with the VLT. The validation of all these requirements is a critical task started a few months ago which requires a clear traceability and performances analysis.

  20. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  1. The OMPS Limb Profiler instrument

    NASA Astrophysics Data System (ADS)

    Rault, D. F.; Xu, P.

    2011-12-01

    The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.

  2. Geotechnical instrumentation for repository shafts

    SciTech Connect

    Lentell, R.L.; Byrne, J.

    1993-09-01

    The US Congress passed the Nuclear Waste Policy Act in 1980, which required that three distinctly different geologic media be investigated as potential candidate sites for the permanent disposal of high-level nuclear waste. The three media that were selected for study were basalt (WA), salt (TX, LA, MS, UT), and tuff (NV). Preliminary Exploratory Shaft Facilities (ESF) designs were prepared for seven candidate salt sites, including bedded and domal salt environments. A bedded-salt site was selected in Deaf Smith County, TX for detailed site characterization studies and ESF Final Design. Although Congress terminated the Salt Repository Program in 1988, Final Design for the Deaf Smith ESF was completed, and much of the design rationale can be applied to subsequent deep repository shafts. This paper presents the rationale for the geotechnical instrumentation that was designed for construction and operational performance monitoring of the deep shafts of the in-situ test facility. The instrumentation design described herein can be used as a general framework in designing subsequent instrumentation programs for future high-level nuclear waste repository shafts.

  3. The Polar Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.

    1995-01-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s(exp -1).

  4. The Polar Plasma Wave Instrument

    NASA Astrophysics Data System (ADS)

    Gurnett, D. A.; Persoon, A. M.; Randall, R. F.; Odem, D. L.; Remington, S. L.; Averkamp, T. F.; Debower, M. M.; Hospodarsky, G. B.; Huff, R. L.; Kirchner, D. L.; Mitchell, M. A.; Pham, B. T.; Phillips, J. R.; Schintler, W. J.; Sheyko, P.; Tomash, D. R.

    1995-02-01

    The Plasma Wave Instrument on the Polar spacecraft is designed to provide measurements of plasma waves in the Earth's polar regions over the frequency range from 0.1 Hz to 800 kHz. Three orthogonal electric dipole antennas are used to detect electric fields, two in the spin plane and one aligned along the spacecraft spin axis. A magnetic loop antenna and a triaxial magnetic search coil antenna are used to detect magnetic fields. Signals from these antennas are processed by five receiver systems: a wideband receiver, a high-frequency waveform receiver, a low-frequency waveform receiver, two multichannel analyzers; and a pair of sweep frequency receivers. Compared to previous plasma wave instruments, the Polar plasma wave instrument has several new capabilities. These include (1) an expanded frequency range to improve coverage of both low- and high-frequency wave phenomena, (2) the ability to simultaneously capture signals from six orthogonal electric and magnetic field sensors, and (3) a digital wideband receiver with up to 8-bit resolution and sample rates as high as 249k samples s-1.

  5. Innovative Technology in Hearing Instruments

    PubMed Central

    2011-01-01

    Hearing instrument technology research is almost entirely focused on the projected needs of the consumer market in the developed world. However, two thirds of the world’s population with hearing impairment live in developing countries and this proportion will increase in future, given present demographic trends. In developing regions, amplification and other hearing health needs may differ from those in industrialized nations, for cultural, health, or economic reasons. World Health Organization estimates indicate that at present only a small percentage of individuals in developing countries who are in need of amplification have access to hearing aid provision. New technologies, such as trainable hearing aids, advanced noise reduction algorithms, feedback reduction circuitry, nano coatings for hearing aid components, and innovative power options, may offer considerable potential benefits, both for individuals with hearing impairment in developing countries and for those who provide hearing health care services in these regions. This article considers the possible supporting role of innovative hearing instrument technologies in the provision of affordable hearing health care services in developing countries and highlights the need for research that considers the requirements of the majority of the world population in need of hearing instrument provision. PMID:22068223

  6. Sterilization beneath rings on dental instruments.

    PubMed

    Miller, C H; Sheldrake, M A

    1991-12-01

    This study determined the effectiveness of standard methods of instrument sterilization beneath instrument rings. Sets of three types of dental instruments were contaminated with known amounts of bacterial spores (Bacillus stearothermophilus or Bacillus subtilis). Instrument rings were placed over the contamination and the instruments processed through standard cycles in a steam autoclave, an unsaturated chemical vapor sterilizer, a standard dry heat sterilizer, an ethylene oxide gas sterilizer or a 2.0% alkaline glutaraldehyde solution. Controls consisted of spore-contaminated instruments without rings that were not processed through any sterilizing method and that were processed through each sterilizing method. All instruments and their associated rings were cultured for the presence of live spores. The results indicate that the reliability of sterilization beneath the instrument rings used is greatest if the ringed instruments are processed through a steam autoclave or an unsaturated chemical vapor sterilizer. PMID:1814351

  7. The space instrument SODISM and the ground instrument SODISM II

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Meissonnier, M.; Irbah, A.; Abbaki, S.; Assus, P.; Bertran, E.; Dubois, J. P.; Ducourt, E.; Dufour, C.; Marcovici, J. P.; Poiet, G.; Vieau, A. J.; Thuillier, G.

    2010-07-01

    PICARD is a French space scientific mission. Its objectives are the study of the origin of the solar variability and the study of the relations between the Sun and the Earth's climate. The launch is scheduled for 2010 on a Sun Synchronous Orbit at 725 km altitude. The mission lifetime is two years, however that can be extended to three years. The payload consists of two absolute radiometers measuring the TSI (Total Solar Irradiance) and an imaging telescope to determine the solar diameter, the limb shape and asphericity. SOVAP (SOlar VAriability PICARD) is an absolute radiometer provided by the RMIB (Royal Meteorological Institute of Belgium) to measure the TSI. It also carries a bolometer used for increasing the TSI sampling and ageing control. PREMOS (PREcision MOnitoring Sensor) radiometer is provided by the PMOD/WRC (Physikalisch Meteorologisches Observatorium of Davos / World Radiation Center) to measure the TSI and the Spectral Solar Irradiance. SODISM (SOlar Diameter Imager and Surface Mapper), is an 11-cm Ritchey-Chr´etien imaging telescope developed at CNRS (Centre National de la Recherche Scientifique) by LATMOS (Laboratoire, ATmosphere, Milieux, Observations Spatiales) ex Service d'A´eronomie, associated with a 2Kx2K CCD (Charge-Coupled Device), taking solar images at five wavelengths. It carries a four-prism system to ensure a metrological control of the optics magnification. SODISM allows us to measure the solar diameter and shape with an accuracy of a few milliarcseconds, and to perform helioseismologic observations to probe the solar interior. In this article, we describe the space instrument SODISM and its thermo-elastic properties. We also present the PICARD payload data center and the ground instrument SODISM II which will observe together with the space instrument.

  8. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  9. Optimal calibration of instrumented treadmills using an instrumented pole.

    PubMed

    Sloot, L H; Houdijk, H; van der Krogt, M M; Harlaar, J

    2016-08-01

    Calibration of instrumented treadmills is imperative for accurate measurement of ground reaction forces and center of pressure (COP). A protocol using an instrumented pole has been shown to considerably increase force and COP accuracy. This study examined how this protocol can be further optimized to maximize accuracy, by varying the measurement time and number of spots, using nonlinear approaches to calculate the calibration matrix and by correcting for potential inhomogeneity in the distribution of COP errors across the treadmill's surface. The accuracy increased with addition of spots and correction for the inhomogeneous distribution across the belt surface, decreased with reduction of measurement time, and did not improve by including nonlinear terms. Most of these methods improved the overall accuracy only to a limited extent, suggesting that the maximal accuracy is approached given the treadmill's inherent mechanical limitations. However, both correction for position dependence of the accuracy as well as its optimization within the walking area are found to be valuable additions to the standard calibration process. PMID:27180211

  10. The ionized absorber and nuclear environment of IRAS 13349+2438: multi-wavelength insights from coordinated Chandra HETGS, HST STIS, HET and Spitzer IRS

    NASA Astrophysics Data System (ADS)

    Lee, Julia C.; Kriss, Gerard A.; Chakravorty, Susmita; Rahoui, Farid; Young, Andrew J.; Brandt, William N.; Hines, Dean C.; Ogle, Patrick M.; Reynolds, Christopher S.

    2013-04-01

    We present results from a multi-wavelength infrared (IR)-to-X-ray campaign of the infrared bright (but highly optical-ultraviolet extincted) quasi-stellar object (QSO) IRAS 13349+2438 obtained with the Chandra High Energy Transmission Grating Spectrometer (HETGS), the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS), the Hobby-Eberly Telescope (HET) 8 m and the Spitzer Infrared Spectrometer (IRS). Based on HET optical spectra of [O III], we refine the redshift of IRAS 13349 to be z = 0.108 53. The weakness of the [O III] in combination with strong Fe II in the HET spectra reveals extreme Eigenvector-1 characteristics in IRAS 13349, but the 2468 km s-1 width of the Hβ line argues against a narrow-line Seyfert 1 classification; on average, IR, optical and optical-ultraviolet (UV) spectra show IRAS 13349 to be a typical QSO. Independent estimates based on the Hβ line width and fits to the IRAS 13349 spectral energy distribution (SED) both give a black hole mass of MBH = 109 M⊙. The heavily reddened STIS UV spectra reveal for the first time blueshifted absorption from Ly α, N V and C IV, with components at systemic velocities of -950 km s^{-1} and -75 km s^{-1} . The higher velocity UV lines are coincident with the lower ionization (ξ ˜ 1.6) WA-1 warm absorber lines seen in the X-rays with the HETGS. In addition, a ξ ˜ 3.4 WA-2 is also required by the data, while a ξ ˜ 3 WA-3 is predicted by theory and seen at less significance; all detected X-ray absorption lines are blueshifted by ˜ 700-900 km s-1 . Theoretical models comparing different ionizing SEDs reveal that including the UV (i.e. the accretion disc) as part of the ionizing continuum has strong implications for the conclusions one would draw about the thermodynamic stability of the warm absorber. Specific to IRAS 13349, we find that an X-ray-UV ionizing SED favours a continuous distribution of ionization states in a smooth flow (this paper) versus discrete clouds in pressure

  11. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  12. Instrumentation for Sensitive Gas Measurements

    NASA Technical Reports Server (NTRS)

    OKeefe, Anthony

    2005-01-01

    An improved instrument for optical absorption spectroscopy utilizes off-axis paths in an optical cavity in order to increase detection sensitivity while suppressing resonance effects. The instrument is well suited for use in either cavity ring-down spectroscopy (CRDS) [in which one pulses an incident light beam and measures the rate of decay of light in the cavity] or integrated cavity output spectroscopy (ICOS) [in which one uses a continuous-wave incident light beam and measures the power of light in the cavity as a function of wavelength]. Typically, in optical absorption spectroscopy, one seeks to measure absorption of a beam of light in a substance (usually a gas or liquid) in a sample cell. In CRDS or ICOS, the sample cell is placed in (or consists of) an optical cavity, so that one can utilize multiple reflections of the beam to increase the effective optical path length through the absorbing substance and thereby increase the sensitivity for measuring absorption. If an absorbing substance is not present in the optical cavity, one can utilize the multiple passes of the light beam to increase the sensitivity for measuring absorption and scattering by components of the optical cavity itself. It is desirable to suppress the effects of resonances in the cavity in order to make the spectral response of the cavity itself as nearly constant as possible over the entire wavelength range of interest. In the present instrument, the desired flattening of the spectral response is accomplished by utilizing an off-axis beam geometry to effectively decrease the frequency interval between longitudinal electromagnetic modes of the cavity, such that the resulting transmission spectrum of the cavity is nearly continuous: in other words, the cavity becomes a broad-band optical device.

  13. Encapsulation process sterilizes and preserves surgical instruments

    NASA Technical Reports Server (NTRS)

    Montgomery, L. C.; Morelli, F. A.

    1964-01-01

    Ethylene oxide is blended with an organic polymer to form a sterile material for encapsulating surgical instruments. The material does not bond to metal and can be easily removed when the instruments are needed.

  14. An Instrument to Aid in Assessing Editorials.

    ERIC Educational Resources Information Center

    Burkhalter, Nancy

    1995-01-01

    Presents a primary-trait scoring instrument intended for journalism teachers to use in assessing students' editorials by breaking down the analysis into three essential components: claims, data, and warrants. Applies the instrument to two student essays. (SR)

  15. Microcomputer Software Evaluation Instrument Version 1983.

    ERIC Educational Resources Information Center

    Klopfer, Leopold E.; And Others

    1984-01-01

    Gives guidelines for using a microcomputer software evaluation instrument which focuses on policy issues, instructional quality, science subject-matter standards, and technical quality. The complete evaluation instrument is included. (JM)

  16. Pointing compensation system for spacecraft instruments

    NASA Technical Reports Server (NTRS)

    Plescia, Carl T. (Inventor); Gamble, Donald W. (Inventor)

    1987-01-01

    A closed loop system reduces pointing errors in one or more spacecraft instruments. Associated with each instrument is a electronics package (3) for commanding motion in that instrument and a pointing control system (5) for imparting motion in that instrument in response to a command (4) from the commanding package (3). Spacecraft motion compensation logic (25) compensates for instrument pointing errors caused by instrument-motion-induced spacecraft motion. Any finite number of instruments can be so compensated, by providing each pointing control system (5) and each commanding package (3), for the instruments desired to be compensated, with a link to the spacecraft motion compensation logic (25). The spacecraft motion compensation logic (25) is an electronic manifestation of the algebraic negative of a model of the dynamics of motion of the spacecraft. An example of a suitable model, and computer-simulated results, are presented.

  17. Regional Instrumentation Facilities Established by NSF.

    ERIC Educational Resources Information Center

    Analytical Chemistry, 1979

    1979-01-01

    This article describes the six regional instrumentation facilities established by the National Science Foundation. These centers make available to scientists state-of-the-art instrumentation such as: gas chromatographs; lasers; NMR spectrometers; X-rays; and others. (CS)

  18. Magnetospheric multiprobes: Investigations and instrumentation

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Chappell, C. R.; Fields, S. A.; Falthammar, C. G.; Winningham, J. D.; Hanson, W. B.; Heelis, R. A.; Heikkila, W. J.; Sugira, M.; Farthing, W. H.

    1980-01-01

    The multiprobe scientific objectives are to: (1) determine the spatial structure of plasma phenomena such as the aurora, convection reversals, and ion troughs; (2) separate spatial and temporal variations in these phenomena; (3) determine field aligned current densities; (4) perform multiple point analysis of particle beams, wave fields, and plasma clouds that are injected into the ionosphere and magnetosphere by Spacelab active experiment facilities. Trade studies described include: instrument accommodations, power, attitude determination, electric field antennas, storage and ejection, thermal control, tracking communications, command and data management, payload and mission specialist support, functional objectives, and orbital analysis.

  19. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  20. Experimenting with brass musical instruments

    NASA Astrophysics Data System (ADS)

    Lo Presto, Michael C.

    2003-07-01

    With the aid of microcomputer hardware and software for the introductory physics laboratory, I have developed several experiments dealing with the properties of brass musical instruments that could be used when covering sound anywhere from an introductory physics laboratory to a course in musical acoustics, or even independent studies. The results of these experiments demonstrate in a quantitative fashion the effects of the mouthpiece and bell on the frequencies of the sound waves and thus the musical pitches produced. Most introductory sources only discuss these effects qualitatively.

  1. Rapidly Adaptable Instrumentation Tester (RAIT)

    SciTech Connect

    Vargo, Timothy D.

    1999-06-07

    Emerging technologies in the field of "Test & Measurement" have recently enabled the development of the Rapidly Adaptable Instrumentation Tester (RAIT). Based on software developed with LabVIEW®, the RAIT design enables quick reconfiguration to test and calibrate a wide variety of telemetry systems. The consequences of inadequate testing could be devastating if a telemetry system were to fail during an expensive flight mission. Supporting both open-bench testing as well as automated test sequences, the RAIT has significantly lowered total time required to test and calibrate a system. This has resulted in an overall lower per unit testing cost than has been achievable in the past.

  2. Tevatron instrumentation: boosting collider performance

    SciTech Connect

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  3. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  4. New Instrumentation for Phase Partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Cells and molecules can be purified by partitioning between the two immiscible liquid phases formed by aqueous solutions of poly/ethylene glycol and dextran. Such purification can be more selective, higher yielding, and less destructive to sensitive biological materials than other available techniques. Earth's gravitational field is a hindering factor as it causes sedimentation of particles to be purified and shear-induced particle randomization. The present proposal is directed toward developing new instrumentation for performing phase partitioning both on Earth and in microgravity.

  5. Instrument Deployment for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.

  6. Mariner Jupiter/Saturn infrared instrument study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.

  7. Optoelectronic Instruments For Analysis Of Surface Defects

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Mueller, Robert P.; Davis, Richard M.; Gleman, Stuart M.; Hallberg, Carl G.; Thayer, Stephen W.; Thompson, David L.; Thompson, James E.

    1995-01-01

    Family of portable optoelectronic instruments developed to facilitate inspection of surface flaws like gouges, scratches, raised metal, and dents on large metal workpieces subject to surface-finish requirements. Instrument brought to workpiece and semiautomatically makes electronic record of three-dimensional shape of flaw. Entire inspection process takes only minutes. Prototype instrument includes structured-light microscope. Concept involves projection of known pattern of light onto surface inspected. Topography of surface determined from distortion of pattern as viewed through instrument.

  8. An Instrumental Perspective on CSCL Systems

    ERIC Educational Resources Information Center

    Lonchamp, Jacques

    2012-01-01

    The theory of instrumental genesis of Rabardel relates the social and the technical through the concept of instrument. An instrument is defined as a mixed entity made up by an artifact, the technical/material part, and a set of utilization schemes, the social/behavioural part, which both result from users' constructive activities. This theory is…

  9. 47 CFR 73.58 - Indicating instruments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Indicating instruments. 73.58 Section 73.58 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.58 Indicating instruments. (a) Each AM broadcast station must be equipped with indicating instruments...

  10. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  11. Chemical Instrumentation for the Visually Handicapped.

    ERIC Educational Resources Information Center

    Anderson, James L.

    1982-01-01

    Describes a simple, relatively inexpensive, and easily implemented approach for introducing visually handicapped students to chemical instrumentation via experiments on operational amplifiers as examples of some of the electronic building blocks of chemical instrumentation. The approach is applicable to other chemical instruments having electrical…

  12. 47 CFR 73.258 - Indicating instruments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Indicating instruments. 73.258 Section 73.258 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES FM Broadcast Stations § 73.258 Indicating instruments. (a) Each FM broadcast station shall be equipped with indicating instruments...

  13. Adult Perspectives of Learning Musical Instruments

    ERIC Educational Resources Information Center

    Roulston, Kathryn; Jutras, Peter; Kim, Seon Joo

    2015-01-01

    This article reports findings from a qualitative study of adults' perceptions and experiences of learning musical instruments. Conducted in the south-east United States, 15 adults who were learning instruments were recruited via community music groups and private instrumental teachers. Analysis of transcripts of semi-structured interviews…

  14. The Validation of a Software Evaluation Instrument.

    ERIC Educational Resources Information Center

    Schmitt, Dorren Rafael

    This study, conducted at six southern universities, analyzed the validity and reliability of a researcher developed instrument designed to evaluate educational software in secondary mathematics. The instrument called the Instrument for Software Evaluation for Educators uses measurement scales, presents a summary section of the evaluation, and…

  15. (abstract) Microwave Instrument for Rosetta Orbiter (MIRO)

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Frerking, M.; Allen, A.; Janssen, M.; Hofstadter, M.; Spilker, T.; Muhleman, D.; Schloerb, F. P.; Crovisier, J.; Beaudin, G.; Bockelee-Morvan, D.; Encrenaz, P.; Encrenaz, T.; Lellouch, E; Despois, D.; Ip, W. H.; Hartogh, P.; Mann, I.; Rauer, H.

    1996-01-01

    MIRO is a scientific instrument designed for the orbiter of the Rosetta International Mission. It will address the nature of the cometary nucleus, outgassing, and the development of the coma as strongly interrelated aspects of cometary physics. Detailed parameters of the MIRO instrument and the scientific objectives to be met will be discussed. Simulated observations with the MIRO instrument will be shown.

  16. ICFA Instrumentation Bulletin, Volume 13, Fall 1996

    SciTech Connect

    1996-12-01

    The publication of the ICFA Instrumentation Bulletin is an activity of the Panel on Future Innovation and Development of ICFA (International Committee for Future Accelerators). The Bulletin reports on research and progress in the field of instrumentation with emphasis on application in the field of high-energy physics. It encourages issues of generic instrumentation.

  17. Report on Instruments for Measuring School Effectiveness.

    ERIC Educational Resources Information Center

    Guzzetti, Barbara J.

    An extensive search of the literature and existing programs was undertaken to identify instruments that were being used to measure school effectiveness. Twenty-four instruments are currently available and are critiqued in this publication. Each critique reports the format and components of the instrument, its intended purpose and uses, reliability…

  18. 40 CFR 1065.915 - PEMS instruments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PEMS instruments. 1065.915 Section 1065.915 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065.915 PEMS instruments. (a) Instrument specifications....

  19. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument...

  20. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument...

  1. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument...

  2. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument...

  3. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument...

  4. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument...

  5. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument...

  6. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument...

  7. Are Musical Instrument Gender Associations Changing?

    ERIC Educational Resources Information Center

    Abeles, Hal

    2009-01-01

    The researcher sought to examine gender associations across three decades to determine if changes in the sex stereotyping of musical instruments has occurred. First, the study examined the paired comparison gender-instrument rankings of 180 college students. The results confirmed a reduction of instrument gender associations reported in the 1990s.…

  8. Industrial Instrument Mechanic. Occupational Analyses Series.

    ERIC Educational Resources Information Center

    Dean, Ann; Zagorac, Mike; Bumbaka, Nick

    This analysis covers tasks performed by an industrial instrument mechanic, an occupational title some provinces and territories of Canada have also identified as industrial instrumentation and instrument mechanic. A guide to analysis discusses development, structure, and validation method; scope of the occupation; trends; and safety. To facilitate…

  9. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument...

  10. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument...

  11. BICEP2 III: Instrumental systematics

    SciTech Connect

    Ade, P. A. R.

    2015-11-23

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call "deprojection," for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ~10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. Lastly, the contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10–3.

  12. BICEP2 III: Instrumental Systematics

    NASA Astrophysics Data System (ADS)

    BICEP2 Collaboration; Ade, P. A. R.; Aikin, R. W.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Irwin, K. D.; Karkare, K. S.; Kaufman, J. P.; Keating, B. G.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Netterfield, C. B.; Nguyen, H. T.; O'Brient, R.; Ogburn, R. W., IV; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Wong, C. L.; Yoon, K. W.

    2015-12-01

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the BICEP2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call "deprojection," for filtering the leading order beam-induced contamination from time-ordered data, and show that it reduces power in BICEP2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ∼10× below BICEP2's three-year statistical uncertainty, and negligible compared to the observed BB signal. The contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3-6) × 10-3.

  13. Instrumenting the Intelligence Analysis Process

    SciTech Connect

    Hampson, Ernest; Cowley, Paula J.

    2005-05-02

    The Advanced Research and Development Activity initiated the Novel Intelligence from Massive Data (NIMD) program to develop advanced analytic technologies and methodologies. In order to support this objective, researchers and developers need to understand what analysts do and how they do it. In the past, this knowledge generally was acquired through subjective feedback from analysts. NIMD established the innovative Glass Box Analysis (GBA) Project to instrument a live intelligence mission and unobtrusively capture and objectively study the analysis process. Instrumenting the analysis process requires tailor-made software hooks that grab data from a myriad of disparate application operations and feed into a complex relational database and hierarchical file store to collect, store, retrieve, and distribute analytic data in a manner that maximizes researchers’ understanding. A key to success is determining the correct data to collect and aggregate low-level data into meaningful analytic events. This paper will examine how the GBA team solved some of these challenges, continues to address others, and supports a growing user community in establishing their own GBA environments and/or studying the data generated by GBA analysts working in the Glass Box.

  14. Instrumentation: Analytical Capabilities on Mars

    NASA Technical Reports Server (NTRS)

    Westall, Frances; Allen, Carl; Braiser, Martin; Farmer, Jack; Massell, Wulf; Agee, Carl B.; Steele, Andrew; Fortson, Russ

    1998-01-01

    Human exploration of Mars will consist of a series of long-term missions, with early missions focusing upon establishing the Mars base, and undertaking basic field reconnaissance. A capable laboratory on Mars is an essential element in the exploration strategy. Analytical equipment both in the field and in the laboratory serves to extend the senses of the crew and help them sharpen their sampling skills as they learn to recognize rocks in the field and understand their geologic context and significance. On-site sample analyses allow results to be incorporated into evolving surface exploration plans and strategies, which will be developing in real-time as we learn more about Mars. Early Mars missions will focus on reconnaissance EVAs to collect rock and soil samples, maximizing the amount of Mars material returned to Earth. Later missions will be increasingly devoted to both extensive field campaigns and laboratory analyses. The capabilities and equipment described below will be built up at the Mars base incrementally over many missions, with science payloads and investigative infrastructure being partitioned among launch opportunities. This discussion considers what we require to measure, observe, and explore on a new planetary territory. Alternatively, what do we need to know and how do we equip ourselves to provide ample capabilities to acquire these data? Suggestions follow describing specific instruments that we could use. Appendix 5 lists a strawman science instrument payload, and a feasibility study of equipment transportation into the field on pressurized or unpressurized rovers.

  15. Method for improving instrument response

    DOEpatents

    Hahn, David W.; Hencken, Kenneth R.; Johnsen, Howard A.; Flower, William L.

    2000-01-01

    This invention pertains generally to a method for improving the accuracy of particle analysis under conditions of discrete particle loading and particularly to a method for improving signal-to-noise ratio and instrument response in laser spark spectroscopic analysis of particulate emissions. Under conditions of low particle density loading (particles/m.sup.3) resulting from low overall metal concentrations and/or large particle size uniform sampling can not be guaranteed. The present invention discloses a technique for separating laser sparks that arise from sample particles from those that do not; that is, a process for systematically "gating" the instrument response arising from "sampled" particles from those responses which do not, is dislosed as a solution to his problem. The disclosed approach is based on random sampling combined with a conditional analysis of each pulse. A threshold value is determined for the ratio of the intensity of a spectral line for a given element to a baseline region. If the threshold value is exceeded, the pulse is classified as a "hit" and that data is collected and an average spectrum is generated from an arithmetic average of "hits". The true metal concentration is determined from the averaged spectrum.

  16. BICEP2 III: Instrumental systematics

    DOE PAGESBeta

    Ade, P. A. R.

    2015-11-23

    In a companion paper, we have reported a >5σ detection of degree scale B-mode polarization at 150 GHz by the Bicep2 experiment. Here we provide a detailed study of potential instrumental systematic contamination to that measurement. We focus extensively on spurious polarization that can potentially arise from beam imperfections. We present a heuristic classification of beam imperfections according to their symmetries and uniformities, and discuss how resulting contamination adds or cancels in maps that combine observations made at multiple orientations of the telescope about its boresight axis. We introduce a technique, which we call "deprojection," for filtering the leading ordermore » beam-induced contamination from time-ordered data, and show that it reduces power in Bicep2's actual and null-test BB spectra consistent with predictions using high signal-to-noise beam shape measurements. We detail the simulation pipeline that we use to directly simulate instrumental systematics and the calibration data used as input to that pipeline. Finally, we present the constraints on BB contamination from individual sources of potential systematics. We find that systematics contribute BB power that is a factor of ~10× below Bicep2's three-year statistical uncertainty, and negligible compared to the observed BB signal. Lastly, the contribution to the best-fit tensor/scalar ratio is at a level equivalent to r = (3–6) × 10–3.« less

  17. Instrumentation for mass spectrometry: 1997

    SciTech Connect

    McLuckey, S.A.

    1997-08-01

    All mass spectrometry experiments involve the manipulation of material, an interface with the mass spectrometer, ionization, ion manipulation/analysis, detection and data collection/reduction. Each of these elements involve instrumentation. The wide range of species now amenable to mass spectrometry and the diverse areas of physical science in which it plays a role have led to a seemingly unlimited array of instrumental combinations. However, only a limited number of mass analyzers, and their combinations, dominate. The dominant analyzers include time-of-flight, Fourier transform ion cyclotron resonance, the Paul trap, the mass filter, and the sector mass spectrometer. Why there are so few (or so many, depending upon one`s point of view) can be understood upon consideration of a set of mass analyzer figures of merit. These include mass resolution, mass accuracy, mass range, dynamic range, abundance sensitivity, precision, efficiency, speed, MS{sup n} capability, compatibility with the ionizer, cost, and size. The most appropriate form of mass spectrometry is determined by the priorities of the particular measurement placed on the various mass analyzer characteristics and the relative strengths of the analyzers in meeting the requirements. Each of the analyzer types has a unique set of figures of merit that makes it optimally suited for particular applications. This paper discusses these figures of merit, provides data illustrating recent developments for each analyzer type, and gives the figures of merit of each type of analyzer as they stand in 1997. 101 refs., 24 figs.

  18. The TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, Pepijn; Kleipool, Quintus; Aben, Ilse; Levelt, Pieternel

    2015-04-01

    The Copernicus Sentinel 5 Precursor (S5P), scheduled for launch in 2016, is the first of the sentinels dedicated to monitoring of the atmospheric composition. The main application areas of the mission are air quality, climate and the ozone layer. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI). TROPOMI is a nadir viewing shortwave spectrometer that will measure in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of about 7x7 km2 at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The high spatial resolution serves two goals: (1) emissions sources can be detected with more accuracy and (2) the number of cloud-free ground pixels will increase substantially. The TROPOMI/S5P geophysical (Level 2) data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulphur dioxide, formaldehyde and aerosol and cloud parameters. In this contribution we will present the TROPOMI instrument performance and the new science opportunities that it will enable.

  19. PACMAN: PRIMA astrometric instrument software

    NASA Astrophysics Data System (ADS)

    Abuter, Roberto; Sahlmann, Johannes; Pozna, Eszter

    2010-07-01

    The dual feed astrometric instrument software of PRIMA (PACMAN) that is currently being integrated at the VLTI will use two spatially modulated fringe sensor units and a laser metrology system to carry out differential astrometry. Its software and hardware compromises a distributed system involving many real time computers and workstations operating in a synchronized manner. Its architecture has been designed to allow the construction of efficient and flexible calibration and observation procedures. In parallel, a novel scheme of integrating M-code (MATLAB/OCTAVE) with standard VLT (Very Large Telescope) control software applications had to be devised in order to support numerically intensive operations and to have the capacity of adapting to fast varying strategies and algorithms. This paper presents the instrument software, including the current operational sequences for the laboratory calibration and sky calibration. Finally, a detailed description of the algorithms with their implementation, both under M and C code, are shown together with a comparative analysis of their performance and maintainability.

  20. New instrument for orbital anthropometry.

    PubMed

    Kohout, M; Pai, L; Berenguer, B; Tayler, P; Pracharktam, N; Mulliken, J B

    1998-06-01

    A new instrument for orbital anthropometry is described. It consists of the base for a slit-lamp upon which the patient's head rests and rulers mounted on three independently movable axes. The z-axis probe is used to measure sagittal relationship between the corneal apices and points on the orbital perimeter. The instrument was tested against a sliding caliper and its accuracy was found to be within 0.2 mm or 2%. Intra- and inter-observer reliability were assessed by repeated measurements of two subjects by three observers. The intra-observer reliability was 0.99. Variations between observers was not significantly different for points orbitale inferius (oi), nasion (n), and orbitale superius (os), however, there was a statistically significant difference for measurement of orbitale laterale (ol). The correlation between anthropometric readings for lateral orbital wall to apex corneal (ol-ac) and CT scans for the same landmarks was assessed. Analysis of variance showed no difference between the measurement methods. This anthropometer is convenient and accurate for measurement of the sagittal orbital-globe relationships. A disadvantage is that it cannot be used intraoperatively. PMID:9702637

  1. Program Instrumentation and Trace Analysis

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Goldberg, Allen; Filman, Robert; Rosu, Grigore; Koga, Dennis (Technical Monitor)

    2002-01-01

    Several attempts have been made recently to apply techniques such as model checking and theorem proving to the analysis of programs. This shall be seen as a current trend to analyze real software systems instead of just their designs. This includes our own effort to develop a model checker for Java, the Java PathFinder 1, one of the very first of its kind in 1998. However, model checking cannot handle very large programs without some kind of abstraction of the program. This paper describes a complementary scalable technique to handle such large programs. Our interest is turned on the observation part of the equation: How much information can be extracted about a program from observing a single execution trace? It is our intention to develop a technology that can be applied automatically and to large full-size applications, with minimal modification to the code. We present a tool, Java PathExplorer (JPaX), for exploring execution traces of Java programs. The tool prioritizes scalability for completeness, and is directed towards detecting errors in programs, not to prove correctness. One core element in JPaX is an instrumentation package that allows to instrument Java byte code files to log various events when executed. The instrumentation is driven by a user provided script that specifies what information to log. Examples of instructions that such a script can contain are: 'report name and arguments of all called methods defined in class C, together with a timestamp'; 'report all updates to all variables'; and 'report all acquisitions and releases of locks'. In more complex instructions one can specify that certain expressions should be evaluated and even that certain code should be executed under various conditions. The instrumentation package can hence be seen as implementing Aspect Oriented Programming for Java in the sense that one can add functionality to a Java program without explicitly changing the code of the original program, but one rather writes an

  2. The HYDICE instrument design and its application to planetary instruments

    NASA Astrophysics Data System (ADS)

    Basedow, R.; Silverglate, P.; Rappoport, W.; Rockwell, R.; Rosenberg, D.; Shu, K.; Whittlesey, R.; Zalewski, E.

    The Hyperspectral Digital Imagery Collection Experiment (HYDICE) instrument represents a significant advance in the state of the art in hyperspectral sensors. It combines a higher signal-to-noise ratio (SNR) and significantly better spatial and spectral resolution and radio metric accuracy than systems flying on aircraft today. The need for 'clean' data, i.e., data free of sampling artifacts and excessive spatial or spectral noise, is a key driver behind the difficult combination of performance requirements laid out for HYDICE. Most of these involve the sensor optics and detector. This paper presents an optimized approach to those requirements, one that comprises push broom scanning, a single, mechanically cooled focal plane, a double-pass prism spectrometer, and an easily fabricated yet wide-field telescope. Central to the approach is a detector array that covers the entire spectrum from 0.4 to 2.5 microns. Among the major benefits conferred by such a design are optical and mechanical simplicity, low polarization sensitivity, and coverage of the entire spectrum without suffering the spectral gaps caused by beam splitters. The overall system minimizes interfaces to the C-141 aircraft on which it will be flown, can be calibrated on the ground and in flight to accuracies better than those required, and is designed for simple, push-button operation. Only unprocessed data are recorded during flight. A ground data processing station provides quick-look, calibration correction, and archiving capabilities, with a throughput better than the requirements. Overall performance of the system is expected to provide the solid database required to evaluate the potential of hyperspectral imagery in a wide variety of applications. HYDICE can be regarded as a test bed for future planetary instruments. The ability to spectrally image a wide field of view over multiple spectral octaves offers obvious advantages and is expected to maximize science return for the required cost and

  3. The HYDICE instrument design and its application to planetary instruments

    NASA Technical Reports Server (NTRS)

    Basedow, R.; Silverglate, P.; Rappoport, W.; Rockwell, R.; Rosenberg, D.; Shu, K.; Whittlesey, R.; Zalewski, E.

    1993-01-01

    The Hyperspectral Digital Imagery Collection Experiment (HYDICE) instrument represents a significant advance in the state of the art in hyperspectral sensors. It combines a higher signal-to-noise ratio (SNR) and significantly better spatial and spectral resolution and radio metric accuracy than systems flying on aircraft today. The need for 'clean' data, i.e., data free of sampling artifacts and excessive spatial or spectral noise, is a key driver behind the difficult combination of performance requirements laid out for HYDICE. Most of these involve the sensor optics and detector. This paper presents an optimized approach to those requirements, one that comprises push broom scanning, a single, mechanically cooled focal plane, a double-pass prism spectrometer, and an easily fabricated yet wide-field telescope. Central to the approach is a detector array that covers the entire spectrum from 0.4 to 2.5 microns. Among the major benefits conferred by such a design are optical and mechanical simplicity, low polarization sensitivity, and coverage of the entire spectrum without suffering the spectral gaps caused by beam splitters. The overall system minimizes interfaces to the C-141 aircraft on which it will be flown, can be calibrated on the ground and in flight to accuracies better than those required, and is designed for simple, push-button operation. Only unprocessed data are recorded during flight. A ground data processing station provides quick-look, calibration correction, and archiving capabilities, with a throughput better than the requirements. Overall performance of the system is expected to provide the solid database required to evaluate the potential of hyperspectral imagery in a wide variety of applications. HYDICE can be regarded as a test bed for future planetary instruments. The ability to spectrally image a wide field of view over multiple spectral octaves offers obvious advantages and is expected to maximize science return for the required cost and

  4. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  5. Mini-Laparoscopy: Instruments and Economics.

    PubMed

    Shadduck, Phillip P; Paquentin, Eduardo Moreno; Carvalho, Gustavo L; Redan, Jay A

    2015-11-01

    Mini-laparoscopy (Mini) was pioneered more than 20 years ago, initially with instruments borrowed from other specialties and subsequently with tools designed specifically for Mini. Early adoption of Mini was inhibited though by the limitations of these first-generation instruments, especially functionality and durability. Newer generation Mini instruments have recently become available with improved effector tips, a choice of shaft diameters and lengths, better shaft insulation and electrosurgery capability, improved shaft strength and rotation, more ergonomic handles, low-friction trocar options, and improved instrument durability. Improvements are also occurring in imaging and advanced energy for Mini. The current status of mini-laparoscopy instruments and economics are presented. PMID:26680380

  6. Instrumentation at the Anglo-Australian Observatory

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2004-09-01

    The Anglo-Australian Observatory (AAO) has an instrumentation group for engineering, design, and fabrication that integrates tightly with an energetic group of instrument scientists1 to develop complex astronomical instruments. This instrumentation group puts ideas for innovative technical solutions generated by the instrument scientist group into reality. One demonstration of past achievement is the highly ambitious and successful 2dF instrument that yielded invaluable scientific insight into the cosmological structure of the universe. The more recent successes of the instrumentation group include the OzPoz fiber positioner for the FLAMES facility on the VLT and the award-winning, imaging and multi-object IRIS-2 infrared spectrograph for the AAT. VPH gratings were first put into action in LDSS++ on the AAT and numerous VPH gratings are now in routine use on the 6dF spectrograph for the UKST. Under development are a completely new and unique fiber positioning scheme (Echidna) for use in the FMOS instrument for Subaru; a double-beamed, VPH-based, bench-mounted spectrograph for 2dF; new IR and optical detector controllers; a renovation of the telescope and instrument control systems for the AAT; and a feasibility study for an Echidna-style positioner for the Gemini telescopes. Several other design studies are underway for new instrument technologies using leading edge and innovative concepts in robotics and fibers. The synergy between our scientists and engineers establishes a sound basis for solving the instrumentation challenges facing us.

  7. Endoscopes integrated into instruments for spinal surgery

    NASA Astrophysics Data System (ADS)

    Frank, E.; Hollinger, Jeffrey O.; Winn, Shelley R.

    2000-06-01

    With minimally invasive approaches the visual path to guide instruments becomes constricted. Often one is unable to visualize adequately interaction of the instrument with tissue. We have incorporated 1.2-mm diameter 10,000 pixel fiberoptic endoscopes into instruments for spinal surgery. With these instruments one has a direct view of the instrument's interaction with the surgical anatomy. We have studied a variety of endoscopic instruments including malleable forceps, retractors and punches in over 40 cases of lateral disc herniations, migrated disc fragments and spinal stenosis. The instruments provided excellent visualization of spinal structures. The size and effect of the pathologic process could be readily evaluated, as could neural decompression. Operative times were not significantly increased and there were no complications attributable to the instruments. This preliminary work documents that 'seeing instruments' can be safely used and add to our appreciation of operative anatomy. It is suggested that these instruments may provide more complete decompression through a more limited, less invasive, access. Further study of these instruments may provide better understanding of their overall utility.

  8. Infrared Instrument for Detecting Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John

    2006-01-01

    The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.

  9. Design parameters for borehole strain instrumentation

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  10. Overview of coal conversion process instrumentation

    SciTech Connect

    Liptak, B. G.; Leiter, C. P.

    1980-05-01

    A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

  11. Preliminary analysis of a flexible instrument mount for large instruments on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A flexible instrument mount for large instruments on the space shuttle is analyzed. Concepts for pointing instruments while in orbit, with weights up to 2000 Kg and dimensions of 2 to 3 m were identified and analyzed. A mechanical concept was selected that can accommodate a set class of scientific instruments such as the LAMAR X-ray experiment with 24 LAMAR telescopes.

  12. High energy-resolution measurement of the 82Se(3He,t )82Br reaction for double-β decay and for solar neutrinos

    NASA Astrophysics Data System (ADS)

    Frekers, D.; Alanssari, M.; Adachi, T.; Cleveland, B. T.; Dozono, M.; Ejiri, H.; Elliott, S. R.; Fujita, H.; Fujita, Y.; Fujiwara, M.; Hatanaka, K.; Holl, M.; Ishikawa, D.; Matsubara, H.; Okamura, H.; Puppe, P.; Suda, K.; Tamii, A.; Thies, J.; Yoshida, H. P.

    2016-07-01

    A high-resolution (3He,t ) charge-exchange experiment at an incident energy of 420 MeV has been performed on the double beta (β β ) decay nucleus 82Se. A detailed Gamow-Teller (GT-) strength distribution in 82Br has been extracted, which provides information to the β β -decay nuclear matrix elements. Three strong and isolated transitions, which are to the 75, 1484 and the 2087 keV states in 82Br, are found to dominate the low-excitation region below ≈2.1 MeV. Above 2.1 MeV a sudden onset of a strong GT fragmentation is observed. The degree of fragmentation resembles a situation found in the neighboring A =76 system 76Ge, whereas the observed concentration of strength in the three low-lying states is reminiscent of the heavier neighbors 96Zr and 100Mo. The strong GT transition to the 75 keV ( 1+) state makes 82Se interesting for solar neutrino detection. The 82Se(νe,e-)82Br solar neutrino capture rate in a nonoscillation scenario is therefore evaluated to 668 ±12 (stat)±60 (sys) SNU, and some of the advantages of using selenium for solar neutrino studies are discussed.

  13. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 100 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. SOFIA First Generation Science Instruments

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Meyer, Allan W.

    2003-01-01

    SOFIA will provide 0.3- 1600 pm wavelength coverage, excellent FIR/submm angular resolution, a variety of focal plane instruments, and access to them throughout a 20-year lifetime. These attributes assure SOFIA a vital role in future observations of the interstellar medium, and in numerous other studies. SOFIA is a joint program of NASA in the U.S. and DLR in Germany. Observing time will be arranged by annual peer review of proposals, with roughly 80 percent of the time granted by the U.S. and 20 percent of the time granted by Germany. International proposals may be submitted to either time allocation committee. SOFIA is expected to begin science flights in 2005.

  15. Application of Fiber Optic Instrumentation

    NASA Technical Reports Server (NTRS)

    Richards, William Lance; Parker, Allen R., Jr.; Ko, William L.; Piazza, Anthony; Chan, Patrick

    2012-01-01

    Fiber optic sensing technology has emerged in recent years offering tremendous advantages over conventional aircraft instrumentation systems. The advantages of fiber optic sensors over their conventional counterparts are well established; they are lighter, smaller, and can provide enormous numbers of measurements at a fraction of the total sensor weight. After a brief overview of conventional and fiber-optic sensing technology, this paper presents an overview of the research that has been conducted at NASA Dryden Flight Research Center in recent years to advance this promising new technology. Research and development areas include system and algorithm development, sensor characterization and attachment, and real-time experimentally-derived parameter monitoring for ground- and flight-based applications. The vision of fiber optic smart structure technology is presented and its potential benefits to aerospace vehicles throughout the lifecycle, from preliminary design to final retirement, are presented.

  16. Urologic laser types and instrumentation.

    PubMed

    Natalin, Ricardo A; Phillips, Courtney K; Clayman, Ralph V; Landman, Jaime

    2008-11-01

    Though the primary role of lasers in urology has always been in the treatment of urolithiasis, there are several other indications for their use. There are many different types of lasers currently available, each with unique properties conducive to treating certain disorders. As such, it is critical that today's urologist understands each laser's characteristics in order to optimize patient selection and treatment. The lasers which are primarily used in urologic applications include the carbon dioxide (CO2) laser; the Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG); the Potassium Titanyl Phosphate (KTP) laser and the Holmium:YAG (Ho:YAG) laser. This review focuses on the unique characteristics of each of these lasers as well as the instrumentation needed utilize and deploy these tools in the urinary tract. PMID:19140577

  17. Updated Guidelines for ANSS Instruments

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Hutt, C. R.; Gee, L. S.

    2014-12-01

    In 2008 the Advanced National Seismic System (ANSS) of the U.S. Geological Survey (USGS) and cooperating universities and institutions issued USGS Open-File Report 2008-1262 (OFR) containing detailed guidelines for the performance of instrumentation to be used by the ANSS. Here we report an update underway to these guidelines to take account of lessons learned, changing technology, and expanding user desires; in a few instances, performance matters that are very hard to test in practice are either modified or removed. Instrument classes are defined in the OFR in terms of amplitude resolution and cost; because relevant technologies have advanced substantially in these six years and a number of groups have begun to explore the use of relatively inexpensive, entirely host installed and operated Class C systems, the guidelines for strong-motion sensors are being expanded to include detailed guidelines for them rather than just anticipating them. As always, Class A systems will form the state-of-the-art backbone of any network, with Class B filling in spatially and in areas otherwise not covered well. Class C systems would be an additional step in making networks denser by providing very inexpensive hardware, installation, and maintenance to fill in additionally between Class A and B sites, for example in a high-seismicity urban area, with Class A sites every 4-6 km, Class B every 2-3 km, and Class C at <1 km spacing. Class C devices would be both installed and maintained by hosts, not institutions, and therefore also would be economical for extending coverage in regions with widely spaced or rare large seismicity, such as the central and eastern U.S.

  18. MC and A instrumentation catalog

    SciTech Connect

    Neymotin, L.; Sviridova, V.

    1998-06-01

    In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

  19. Recent development in PET instrumentation.

    PubMed

    Peng, By Hao; Levin, Craig S

    2010-09-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr(3), and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  20. Spiral Development for Safeguards Instrumentation

    SciTech Connect

    Koskelo, M.; Undem, Halvor A.; Good, Morris S.; Frazar, Sarah L.; Schanfein, Mark; Kadner, S.

    2012-10-12

    Safeguards instrumentation is highly specialized, so a common approach in the US has been to develop initial prototypes for performance, operability and security within the US National Laboratories for the IAEA and then seek one or more commercial partners. Transfer of technology from US National Laboratories is a legal requirement for products that have the potential for mass production. Other important objectives include minimizing time to deployment and lifecycle cost, and optimizing product maintainability, sustainability and manufacturability. Unfortunately, the deployment of systems developed via this model has sometimes been seriously delayed or never adopted because of the difficulty of optimizing the significant parameters of the process between the public and private sectors. The authors suggest that forming an R&D partnership between a research laboratory and a commercial company much earlier in the process would provide significant advantages. The present US practice leads to unnecessary expenditures during the early R&D phase since many decisions are made based on research needs that are counterproductive for commercialization and manufacturability. If the ultimate goal of the project is to produce a reliable and cost effective commercial product, the commercial input is needed early and often. The new “model” of developing systems in a closer collaboration with the private sector, in a spiral “Commercialization by Design” approach, should also limit the long term financial mortgages that Member States frequently experience with respect to safeguards instrumentation development using the present process. As a concrete example, the potential for incorporating Wire Integrity Verification Technology into the iCobra Reader System is discussed.

  1. A review of instruments measuring resilience.

    PubMed

    Ahern, Nancy R; Kiehl, Ermalynn M; Sole, Mary Lou; Byers, Jacqueline

    2006-01-01

    The objectives of the study were to evaluate the psychometric properties and appropriateness of instruments for the study of resilience in adolescents. A search was completed using the terms resilience and instruments or scales using the EBSCO database (CINAHL, PreCINAHL, and Academic Search Premier), MEDLINE, PsychINFO and PsychARTICLES, and the Internet. After instruments were identified, a second search was performed for studies reporting the psychometric development of these instruments. Using inclusion and exclusion criteria, six psychometric development of instrument studies were selected for a full review. A data extraction table was used to compare the six instruments. Two of the six instruments (Baruth Protective Factors Inventory [BPFI] and Brief-Resilient Coping Scale) lacked evidence that they were appropriate for administration with the adolescent population due to lack of research applications. Three instruments (Adolescent Resilience Scale [ARS], Connor-Davidson Resilience Scale, and Resilience Scale for Adults) had acceptable credibility but needed further study in adolescents. One instrument (Resilience Scale [RS]) was determined to be the best instrument to study resilience in the adolescent population due to psychometric properties of the instrument and applications in a variety of age groups, including adolescence. Findings of this review indicate that the RS is the most appropriate instrument to study resilience in the adolescent population. While other instruments have potential (e.g., ARS, BPFI) as they were tested in the adolescent and young adult populations, they lack evidence for their use at this time. An evaluation of the review and recommendations are discussed. PMID:16772239

  2. Design, construction, and performance of VIRUS-P: the prototype of a highly replicated integral-field spectrograph for HET

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; MacQueen, Phillip J.; Smith, Michael P.; Tufts, Joseph R.; Roth, Martin M.; Kelz, Andreas; Adams, Joshua J.; Drory, Niv; Grupp, Frank; Barnes, Stuart I.; Blanc, Guillermo A.; Murphy, Jeremy D.; Altmann, Werner; Wesley, Gordon L.; Segura, Pedro R.; Good, John M.; Booth, John A.; Bauer, Svend-Marian; Popow, Emil; Goertz, John A.; Edmonston, Robert D.; Wilkinson, Christopher P.

    2008-07-01

    We describe the design, construction, and performance of VIRUS-P (Visible Integral-field Replicable Unit Spectrograph - Prototype), the prototype for 150+ identical fiber-fed integral field spectrographs for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). VIRUS-P was commissioned in 2007, is in regular service on the McDonald Observatory 2.7 m Smith telescope, and offers the largest field of any integral field spectrograph. The 246-fiber IFU uses a densepak-type fiber bundle with a 1/3 fill factor. It is fed at f/3.65 through a telecentric, two-group dioptric focal reducer. The spectrograph's double-Schmidt optical design uses a volume phase holographic grating at the pupil between the articulating f/3.32 folded collimator and the f/1.33 cryogenic prime focus camera. High on-sky throughput is achieved with this catadioptric system by the use of high reflectivity dielectric coatings, which set the 340-670 nm bandwidth. VIRUS-P is gimbal-mounted on the telescope to allow short fibers for high UV throughput, while maintaining high mechanical stability. The instrument software and the 18 square arcmin field, fixed-offset guider provide rapid acquisition, guiding, and precision dithering to fill in the IFU field. Custom software yields Poisson noise limited, sky subtracted spectra. The design characteristics are described that achieved uniformly high image quality with low scattered light and fiber-to-fiber cross talk. System throughput exceeds requirements and peaks at 40%. The observing procedures are described, and example observations are given.

  3. Use of failure modes and effects analysis in design of the tracker system for the HET wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Hayes, Richard; Beets, Tim; Beno, Joseph; Booth, John; Cornell, Mark; Good, John; Heisler, James; Hill, Gary; Kriel, Herman; Penney, Charles; Rafal, Marc; Savage, Richard; Soukup, Ian; Worthington, Michael; Zierer, Joseph

    2012-09-01

    In support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the Center for Electromechanics at The University of Texas at Austin was tasked with developing the new Tracker and control system to support the HETDEX Wide-Field Upgrade. The tracker carries the 3,100 kg Prime Focus Instrument Package and Wide Field Corrector approximately 13 m above the 10 m diameter primary mirror. Its safe and reliable operation by a sophisticated control system, over a 20 year life time is a paramount requirement for the project. To account for all potential failures and potential hazards, to both the equipment and personnel involved, an extensive Failure Modes and Effects Analysis (FMEA) was completed early in the project. This task required participation of all the stakeholders over a multi-day meeting with numerous follow up exchanges. The event drove a number of significant design decisions and requirements that might not have been identified this early in the project without this process. The result is a system that has multiple layers of active and passive safety systems to protect the tens of millions of dollars of hardware involved and the people who operate it. This paper will describe the background of the FMEA process, how it was utilized on HETDEX, the critical outcomes, how the required safety systems were implemented, and how they have worked in operation. It should be of interest to engineers, designers, and managers engaging in complex multi-disciplinary and parallel engineering projects that involve automated hardware and control systems with potentially hazardous operating scenarios.

  4. THOR Electric Field Instrument - EFI

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yuri; Bale, Stuart D.; Bonnell, John W.; Lindqvist, Per-Arne; Phal, Yamuna; Rothkaehl, Hanna; Soucek, Jan; Vaivads, Andris; Åhlen, Lennart

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) will measure the vector electric field from 0 to 200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above ~1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic scale plasma

  5. Demonstration of an instrumented patch

    NASA Astrophysics Data System (ADS)

    Martinez, M.; Renaud, G.; Backman, D.; Genest, M.; Delannoy, M.

    2007-04-01

    The primary objective of this study was to demonstrate the effectiveness of various strain measurement techniques at detecting the disbonding of a composite repair patch and then using this information to validate a new capacitance based disbond detection technique. The instrumented repair patch was parametrically designed with the help of Finite Element Analysis (FEA) software to have a stress concentration at its tip. This stress concentration was designed to produce a disbond during fatigue testing, without the need for the introduction of any foreign material to create an artificial disbond condition. The aluminum substrate was grit blasted and the instrumented patch was bonded using FM ®73 adhesive, and was cured following the recommendations of the manufacturer. The geometric characteristics of the patch followed standard repair guidelines for such variables as material selection, taper angles and loading conditions, with the exception of the area designed for premature disbond. All test specimens were inspected using non-destructive testing technique (ultrasound pulse echo) to guarantee that no disbonding had occurred during curing of the specimen. The specimens were placed under fatigue loading to induce a disbond condition between the aluminum substrate and the patch. The specimens were cyclically loaded and strain gauges bonded to strategic locations on the aluminum and composite patch surface to be able to measure changes in surface strains as the disbond progressed. A Digital Image Correlation (DIC) system was also used to measure full field strains over the gauge length of the coupon. The DIC results were compared with the strain gauge data and were used to provide a qualitative measure of the load transfer in the bonded specimen, which clearly demonstrated the change in surface strain that occurred as the composite patch disbonded from the aluminum substrate. Thermoelastic Stress Analysis (TSA) was also used to measure surface strains on the

  6. The Magnetometer Instrument on MESSENGER

    NASA Astrophysics Data System (ADS)

    Anderson, Brian J.; Acuña, Mario H.; Lohr, David A.; Scheifele, John; Raval, Asseem; Korth, Haje; Slavin, James A.

    2007-08-01

    The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, fluxgate instrument with its sensor mounted on a 3.6-m-long boom. The boom was deployed on March 8, 2005. The primary MAG science objectives are to determine the structure of Mercury’s intrinsic magnetic field and infer its origin. Mariner 10 observations indicate a planetary moment in the range 170 to 350 nT R {M/3} (where R M is Mercury’s mean radius). The uncertainties in the dipole moment are associated with the Mariner 10 trajectory and variability of the measured field. By orbiting Mercury, MESSENGER will significantly improve the determination of dipole and higher-order moments. The latter are essential to understanding the thermal history of the planet. MAG has a coarse range, ±51,300 nT full scale (1.6-nT resolution), for pre-flight testing, and a fine range, ±1,530 nT full scale (0.047-nT resolution), for Mercury operation. A magnetic cleanliness program was followed to minimize variable and static spacecraft-generated fields at the sensor. Observations during and after boom deployment indicate that the fixed residual field is less than a few nT at the location of the sensor, and initial observations indicate that the variable field is below 0.05 nT at least above about 3 Hz. Analog signals from the three axes are low-pass filtered (10-Hz cutoff) and sampled simultaneously by three 20-bit analog-to-digital converters every 50 ms. To accommodate variable telemetry rates, MAG provides 11 output rates from 0.01 s-1 to 20 s-1. Continuous measurement of fluctuations is provided with a digital 1-10 Hz bandpass filter. This fluctuation level is used to trigger high-time-resolution sampling in eight-minute segments to record events of interest when continuous high-rate sampling is not possible. The MAG instrument will provide accurate characterization of the intrinsic planetary field, magnetospheric structure, and

  7. Attention is necessary for subliminal instrumental conditioning.

    PubMed

    Mastropasqua, Tommaso; Turatto, Massimo

    2015-01-01

    The capacity of humans and other animals to provide appropriate responses to stimuli anticipating motivationally significant events is exemplified by instrumental conditioning. Interestingly, in humans instrumental conditioning can occur also for subliminal outcome-predicting stimuli. However, it remains unclear whether attention is necessary for subliminal instrumental conditioning to take place. In two experiments, human participants had to learn to collect rewards (monetary gains) while avoiding punishments (monetary losses), on the basis of subliminal outcome-predicting cues. We found that instrumental conditioning can proceed subconsciously only if spatial attention is aligned with the subliminal cue. Conversely, if spatial attention is briefly diverted from the subliminal cue, then instrumental conditioning is blocked. In humans, attention but not awareness is therefore mandatory for instrumental conditioning, thus revealing a dissociation between awareness and attention in the control of motivated behavior. PMID:26257144

  8. Making instruments work on the European ELT

    NASA Astrophysics Data System (ADS)

    Casali, Mark M.; Gonzalez, Juan Carlos; D'Odorico, Sandro

    2008-07-01

    The title of this paper was chosen to highlight the fact that the installation and operation of instrumentation on Extremely Large Telescopes (ELTs) will not be entirely simple or straightforward. The cost of construction and operation of ELTs will be such that substantial pressures will develop for proportional increases in the level of performance of the instrumentation, using as much of the electromagnetic information arriving at the focal plane as possible. This in turn will require complex instruments using adaptive optics, multiple channels or highly spatially multiplexed instruments. In the case of the European ELT, it will be a facility much in demand by ESOs 4000+ community of astronomers. The instrument infrastructure must therefore be able to accommodate the full range of projects likely to be undertaken. In this paper, we will discuss the instrument interfaces and infrastructure as envisioned in the current baseline for the European ELT and the requirements underpinning them.

  9. Remote Monitoring of Instrumentation in Sealed Compartments

    SciTech Connect

    Landron, Clinton; Moser, John C.

    1999-05-20

    The Instrumentation and Telemetry Departments at Sandia National Laboratories have been exploring the instrumentation of sealed canisters where the flight application will not tolerate either the presence of a chemical power source or penetration by power supply wires. This paper will describe the application of a low power micro-controller based instrumentation system that uses magnetic coupling for both power and data to support a flight application.

  10. Operation and performance of the OSSE instrument

    NASA Astrophysics Data System (ADS)

    Cameron, R. A.; Kurfess, J. D.; Johnson, W. N.; Kinzer, R. L.; Kroeger, R. A.; Leising, M. D.; Murphy, R. J.; Share, G. H.; Strickman, M. S.; Grove, J. E.

    1992-02-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Arthur Holly Compton Gamma Ray Observatory is described. An overview of the operation and control of the instrument is given, together with a discussion of typical observing strategies used with OSSE and basic data types produced by the instrument. Some performance measures for the instrument are presented that were obtained from pre-launch and in-flight data. These include observing statistics, continuum and line sensitivity, and detector effective area and gain stability.

  11. Increasing Laser Stability with Improved Electronic Instruments

    NASA Astrophysics Data System (ADS)

    Troxel, Daylin; Bennett, Aaron; Erickson, Christopher J.; Jones, Tyler; Durfee, Dallin S.

    2010-03-01

    We present several electronic instruments developed to implement an ultra-stable laser lock. These instruments include a high speed, low noise homodyne photo-detector; an ultrahigh stability, low noise current driver with high modulation bandwidth and digital control; a high-speed, low noise PID controller; a low-noise piezo driver; and a laser diode temperature controller. We will present the theory of operation for these instruments, design and construction techniques, and essential characteristics for each device.

  12. Operation and performance of the OSSE instrument

    NASA Technical Reports Server (NTRS)

    Cameron, R. A.; Kurfess, J. D.; Johnson, W. N.; Kinzer, R. L.; Kroeger, R. A.; Leising, M. D.; Murphy, R. J.; Share, G. H.; Strickman, M. S.; Grove, J. E.

    1992-01-01

    The Oriented Scintillation Spectrometer Experiment (OSSE) on the Arthur Holly Compton Gamma Ray Observatory is described. An overview of the operation and control of the instrument is given, together with a discussion of typical observing strategies used with OSSE and basic data types produced by the instrument. Some performance measures for the instrument are presented that were obtained from pre-launch and in-flight data. These include observing statistics, continuum and line sensitivity, and detector effective area and gain stability.

  13. Status of the JWST Science Instrument Payload

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt

    2016-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.

  14. Lidar instruments proposed for Eos

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.

    1990-01-01

    Lidar, an acronym for light detection and ranging, represents a class of instruments that utilize lasers to send probe beams into the atmosphere or onto the surface of the Earth and detect the backscattered return in order to measure properties of the atmosphere or surface. The associated technology has matured to the point where two lidar facilities, Geodynamics Laser Ranging System (GLRS), and Laser Atmospheric Wind Sensor (LAWS) were accepted for Phase 2 studies for Eos. A third lidar facility Laser Atmospheric Sounder and Altimeter (LASA), with the lidar experiment EAGLE (Eos Atmospheric Global Lidar Experiment) was proposed for Eos. The generic lidar system has a number of components. They include controlling electronics, laser transmitters, collimating optics, a receiving telescope, spectral filters, detectors, signal chain electronics, and a data system. Lidar systems that measure atmospheric constituents or meteorological parameters record the signal versus time as the beam propagates through the atmosphere. The backscatter arises from molecular (Rayleigh) and aerosol (Mie) scattering, while attenuation arises from molecular and aerosol scattering and absorption. Lidar systems that measure distance to the Earth's surface or retroreflectors in a ranging mode record signals with high temporal resolution over a short time period. The overall characteristics and measurements objectives of the three lidar systems proposed for Eos are given.

  15. New instruments for solar research

    NASA Technical Reports Server (NTRS)

    Rust, David M.; O'Byrne, John W.; Sterner, Raymond E., II

    1990-01-01

    In fulfilment of its goal to develop early detection and warning of emerging solar magnetic fields, the Center for Applied Solar Physics (CASP) has designed and constructed a solar vector magnetograph (VMG) that will provide unique data on the sunspot regions where flares originate. The instrument is reportedly beginning to approach its goals of measuring all three components of the solar magnetic field with a sensitivity of 50 to 100 G and a spatial resolution on the sun of about 700 km (1 arcsec). Importance of new high-resolution capabilities is stressed and the interpretation of VMG measurements is discussed. The performance of the solar VMG, installed in a 6-m dome at the National Solar Observatory at Sacramento Peak in Sunspot, New Mexico, and its construction and environment are described; particular attention is given to the use and function of the filters. Initial results are examined, including a description and analysis of a magnetogram obtained after installation of an improved blocking filter.

  16. New instruments for solar research

    NASA Astrophysics Data System (ADS)

    Rust, David M.; O'Byrne, John W.; Sterner, Raymond E., II

    1990-06-01

    In fulfilment of its goal to develop early detection and warning of emerging solar magnetic fields, the Center for Applied Solar Physics (CASP) has designed and constructed a solar vector magnetograph (VMG) that will provide unique data on the sunspot regions where flares originate. The instrument is reportedly beginning to approach its goals of measuring all three components of the solar magnetic field with a sensitivity of 50 to 100 G and a spatial resolution on the sun of about 700 km (1 arcsec). Importance of new high-resolution capabilities is stressed and the interpretation of VMG measurements is discussed. The performance of the solar VMG, installed in a 6-m dome at the National Solar Observatory at Sacramento Peak in Sunspot, New Mexico, and its construction and environment are described; particular attention is given to the use and function of the filters. Initial results are examined, including a description and analysis of a magnetogram obtained after installation of an improved blocking filter.

  17. Surgical Instrument Restraint in Weightlessness

    NASA Technical Reports Server (NTRS)

    Campbell, Mark R.; Dawson, David L.; Melton, Shannon; Hooker, Dona; Cantu, Hilda

    2000-01-01

    Performing a surgical procedure during spaceflight will become more likely with longer duration missions in the near future. Minimal surgical capability has been present on previous missions as the definitive medical care time was short and the likelihood of surgical events too low to justify surgical hardware availability. Early demonstrations of surgical procedures in the weightlessness of parabolic flight indicated the need for careful logistical planning and restraint of surgical hardware. The consideration of human ergonomics also has more impact in weightlessness than in the conventionall-g environment. Three methods of surgical instrument restraint - a Minor Surgical Kit (MSK), a Surgical Restraint Scrub Suit (SRSS), and a Surgical Tray (ST) were evaluated in parabolic flight surgical procedures. The Minor Surgical Kit was easily stored, easily deployed, and demonstrated the best ability to facilitate a surgical procedure in weightlessness. Important factors in this surgical restraint system include excellent organization of supplies, ability to maintain sterility, accessibility while providing secure restraint, ability to dispose of sharp items and biological trash, and ergonomical efficiency.

  18. Instrumentation, Control, and Intelligent Systems

    SciTech Connect

    Not Available

    2005-09-01

    Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

  19. Comet coma sample return instrument

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.

    1994-01-01

    The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.

  20. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  1. Overview of the instrumentation program

    NASA Astrophysics Data System (ADS)

    Nieberding, William C.

    1989-04-01

    This program is aimed at developing sensors and measurement systems capable of obtaining the data necessary for the verification of computational models of the structural behavior, the fatigue life, and the environmental conditions pertinent to advanced reusable space propulsion systems. One of the characteristics of measurement systems needed to verify codes is that the sensors must be nonintrusive or at least minimally intrusive so as not to significantly perturb the conditions being measured. This leads to a heavy emphasis on laser optical techniques and on thin-film sensors. Another characteristic of such instruments is that they must be highly accurate and produce very high spatial and temporal resolution of the parameter being measured. The measurement systems needed generally fall into a number of broad categories. First there are the measurements needed on the surfaces of components such as turbine blades and vanes. Some of the desired parameters are temperature, strain, and heat flux. Another broad category encompasses those measurements needed in the flow environment around these components. Here, the desired results are high resolution maps of such parameters as flow velocity, temperature, density, pressure, and species concentration. The remaining category deals with measurements necessary for monitoring the health of the engine. This category has loomed ever more important since the Challenger disaster. An optical method for determining the characteristics of the plume is presented. Holographic measurement of structural damage is also presented.

  2. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  3. The JEM-EUSO instrument

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    In this paper we describe the main characteristics of the JEM-EUSO instrument. The Extreme Universe Space Observatory on the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) will observe Ultra High-Energy Cosmic Rays (UHECR) from space. It will detect UV-light of Extensive Air Showers (EAS) produced by UHECRs traversing the Earth's atmosphere. For each event, the detector will determine the energy, arrival direction and the type of the primary particle. The advantage of a space-borne detector resides in the large field of view, using a target volume of about 1012 tons of atmosphere, far greater than what is achievable from ground. Another advantage is a nearly uniform sampling of the whole celestial sphere. The corresponding increase in statistics will help to clarify the origin and sources of UHECRs and characterize the environment traversed during their production and propagation. JEM-EUSO is a 1.1 ton refractor telescope using an optics of 2.5 m diameter Fresnel lenses to focus the UV-light from EAS on a focal surface composed of about 5,000 multi-anode photomultipliers, for a total of ≃3ṡ105 channels. A multi-layer parallel architecture handles front-end acquisition, selecting and storing valid triggers. Each processing level filters the events with increasingly complex algorithms using FPGAs and DSPs to reject spurious events and reduce the data rate to a value compatible with downlink constraints.

  4. Instrumentation for negative ion detection.

    PubMed

    McKeown, M

    1980-06-01

    The instrumentation and practical circuitry required for the detection of negative ions exiting the mass analysis section of a mass spectrometer is examined. The potentials needed to bias the electron multiplier when detecting negative ions from a low ion-energy mass spectrometer, e.g., a quadrupole, are contrasted with the biasing requirements of a mass spectrometer having high ion-energies, e.g., a magnetic sector. Methods of decoupling the biasing high voltage on the signal lead of the multiplier in pulse counting measurements are discussed in detail so that normal, ground referenced input, pulse preamplifiers may be used. Easily understood, practical rules for determining the values of circuit components are given together with a simplified theory of transferring pulse signals from multiplier collector to pulse preamplifier. The changes in circuitry needed when attempting to detect ions by current measurement methods from an electron multiplier area detailed. The effects of leakage currents into athe input of the current preamplifier and their avoidance bay using triaxial shielding on vacuum feed-throughs are explained. The article suggests possible methods of decoupling the high voltage referenced input and the ground referenced output of a current measuring preamplifier. PMID:7428750

  5. LISA Pathfinder Instrument Data Analysis

    NASA Technical Reports Server (NTRS)

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  6. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  7. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  8. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting. distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receive, the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  9. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  10. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  11. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  12. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  13. 18 CFR 12.41 - Monitoring instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... include, for example, instruments to monitor movement of joints, foundation or embankment deformation, seismic effects, hydrostatic pore pressures, structural cracking, or internal stresses on the...

  14. Kids with disabilities inspire a musical instrument

    SciTech Connect

    Daily, Dan; Pfeifer, Kent

    2013-11-21

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  15. Kids with disabilities inspire a musical instrument

    ScienceCinema

    Daily, Dan; Pfeifer, Kent

    2014-02-10

    The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

  16. CICADA, CCD and Instrument Control Software

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Brooks, Mick; Meatheringham, Stephen J.; Roberts, William H.

    Computerised Instrument Control and Data Acquisition (CICADA) is a software system for control of telescope instruments in a distributed computing environment. It is designed using object-oriented techniques and built with standard computing tools such as RPC, SysV IPC, Posix threads, Tcl, and GUI builders. The system is readily extensible to new instruments and currently supports the Astromed 3200 CCD controller and MSSSO's new tip-tilt system. Work is currently underway to provide support for the SDSU CCD controller and MSSSO's Double Beam Spectrograph. A core set of processes handle common communication and control tasks, while specific instruments are ``bolted'' on using C++ inheritance techniques.

  17. Virtual instrument for testing the hearing impaired

    NASA Astrophysics Data System (ADS)

    Norian, K. H.

    2001-02-01

    LABVIEW programing was used to build a virtual instrument to assess the needs of individual hearing impaired subjects to enable them to hear speech in background noise. The instrument acquires the noisy speech, adaptively removes noise from speech, and then feeds the speech to the subject. Design changes can quickly and easily be made to the instrument to assess the specific requirements of the electronic circuit of the hearing aid for the individual subject. The instrument provides a novel way of providing custom electronics for hearing aids.

  18. Rotary mode system initial instrument calibration

    SciTech Connect

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  19. The Relationship between Postsecondary Instrumental Student's Musical Independence and Grade-Level, Instrument Family, Gender, and Instrumental Ensemble.

    ERIC Educational Resources Information Center

    Bobbett, Gordon C.; And Others

    This study analyzed the relationship between MI (musical independence) and placement in college instrumental ensembles, the influence of instrument family and gender on the development of MI in postsecondary students, and identification of those outstanding MI students most at risk of dropping music as their college major. Instrumentalists (N=354)…

  20. Age-related Changes in Auditory Nerve – Inner Hair Cell Connections, Hair Cell Numbers, Auditory Brain Stem Response and Gap Detection in UM-HET4 Mice

    PubMed Central

    Altschuler, RA; Dolan, DF; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, DC; Miller, RA; Schacht, J

    2015-01-01

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in Gap Detection, the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons, and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell – auditory nerve connections and a significant reduction in Gap Detection. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in gap detection, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of gap detection or with the loss of connections, consistent with independent pathological mechanisms. PMID:25665752

  1. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. PMID:25665752

  2. [What's new in instrumental dermatology?].

    PubMed

    Amici, J-M

    2014-12-01

    This "What's new in instrumental dermatology" focuses on cutaneous oncologic surgery, base on a review of the 2012-2014 literature. First, the ability of dermatologists to make a good "oncologic reading of tumors" is the key of radical surgical treatment. Advantages and disadvantages of the biopsy are discussed. Then, the second message is the management of anticoagulants, that should not be interrupted for skin surgery. Despite recommendations, this practice is not followed in 40% of cases; this point is critical because bleeding complications are minor compared to potential morbidity of thrombotic events when stopping these medications. Regarding infection, nasal carriage of Staphylococcus aureus is identified as a risk factor for wound infection. A preoperative shower with chlorhexidine and mupirocin topical decolonization of nostril reduces this risk. Surgical techniques are trying to reach minimalism, by reducing undermining and scarring. On the trunk, using deep slow resorbable sutures improve scarring. In addition using adhesive sutures (strip) reduce the wideness of scar. On the face, the lower third of the nose is the most challenging because of the free edges, which are deformable. In this location bilobed or trilobed transposition flap offer the advantage of remaining in the nasal aesthetic unit and not disturbing the free edges of the nasal orifices. Regarding scarring, early hypertrophic scar is now well defined and linked with transposition flaps of the nasal region. An early treatment with intralesional corticosteroid injection appears to be effective. Finally, the biological mechanism of the effectiveness of compression in the prevention and treatment of dystrophic scar is now clear. The mechanotransduction explain how a mechanical stress of the skin activates biological cell pathways, which regulate the quality of collagen synthesis and the arrangement of skin fibrosis. PMID:25539752

  3. Plans for Advanced LIGO Instruments

    NASA Astrophysics Data System (ADS)

    Wilkinson, Carol

    2005-04-01

    The proposed Advanced LIGO detector will have an increase in sensitivity over initial LIGO by a factor of ten, with an increased bandwidth in the region of highest sensitivity and the ability to tune for specific astrophysical sources. Advanced LIGO will achieve the equivalent of the one-year integrated observation time of initial LIGO in just several hours, allowing observation of astrophysical gravitational waves on a regular basis. The Advanced LIGO detector will replace the existing detector at the LIGO Observatories while retaining the existing building and vacuum system infrastructure. The new instruments build on the initial LIGO Fabry-Perot Michelson Interferometer layout and take advantage of significant advances in technology since the design of initial LIGO in the 1990's. Signal strength/sensitivity will be improved by increasing the laser power, lowering optical absorption, and adding signal recycling to the Fabry-Perot arm cavities. Stray forces on the test masses will be controlled by reducing thermal noise sources in the suspensions and optics and using a multi-staged seismic isolation system with inertial sensing and feedback control. The LIGO laboratory, the LIGO Science Collaboration, and international partners have undertaken a structured program of research and development, including testing of full-scale prototypes in context. Significant progress has been made on several of the detector subsystems. The Advanced LIGO project has been through National Science Foundation peer review and the National Science Board has recommended it for funding. Based on a proposed funding start in 2007, detector installation will begin in 2010, with observations at an advanced level of commissioning in 2013.

  4. Images from Phoenix's MECA Instruments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The image on the upper left is from NASA's Phoenix Mars Lander's Optical Microscope after a sample informally called 'Sorceress' was delivered to its silicon substrate on the 38th Martian day, or sol, of the mission (July 2, 2008).

    A 3D representation of the same sample is on the right, as seen by Phoenix's Atomic Force Microscope. This is 200 times greater magnification than the view from the Optical Microscope, and the most highly magnified image ever seen from another world.

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The Optical Microscope and the Atomic Force Microscope are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Ozone Monitoring Instrument geolocation verification

    NASA Astrophysics Data System (ADS)

    Kroon, M.; Dobber, M. R.; Dirksen, R.; Veefkind, J. P.; van den Oord, G. H. J.; Levelt, P. F.

    2008-08-01

    Verification of the geolocation assigned to individual ground pixels as measured by the Ozone Monitoring Instrument (OMI) aboard the NASA EOS-Aura satellite was performed by comparing geophysical Earth surface details as observed in OMI false color images with the high-resolution continental outline vector map as provided by the Interactive Data Language (IDL) software tool from ITT Visual Information Solutions. The OMI false color images are generated from the OMI visible channel by integration over 20-nm-wide spectral bands of the Earth radiance intensity around 484 nm, 420 nm, and 360 nm wavelength per ground pixel. Proportional to the integrated intensity, we assign color values composed of CRT standard red, green, and blue to the OMI ground pixels. Earth surface details studied are mostly high-contrast coast lines where arid land or desert meets deep blue ocean. The IDL high-resolution vector map is based on the 1993 CIA World Database II Map with a 1-km accuracy. Our results indicate that the average OMI geolocation offset over the years 2005-2006 is 0.79 km in latitude and 0.29 km in longitude, with a standard deviation of 1.64 km in latitude and 2.04 km in longitude, respectively. Relative to the OMI nadir pixel size, one obtains mean displacements of ˜6.1% in latitude and ˜1.2% in longitude, with standard deviations of 12.6% and 7.9%, respectively. We conclude that the geolocation assigned to individual OMI ground pixels is sufficiently accurate to support scientific studies of atmospheric features as observed in OMI level 2 satellite data products, such as air quality issues on urban scales or volcanic eruptions and its plumes, that occur on spatial scales comparable to or smaller than OMI nadir pixels.

  6. NMR Imaging: Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Tingle, Jeremy Mark

    Available from UMI in association with The British Library. This thesis presents three original contributions to the field of Nuclear Magnetic Resonance (NMR): the experimental framework and analysis for the measurement of a new imaging parameter to describe perfusion; the measurement and analysis of magnetic field inhomogeneity and a practical correction system for their reduction; a novel system for the synchronous control of NMR experiments based on the microprogrammed concept. The thesis begins with an introduction to the theory of NMR. The application of NMR to imaging is also introduced with emphasis on the techniques which developed into those in common use today. Inaccurate determination of the traditional NMR parameters (T_1 and T_2 and the molecular diffusion coefficient) can be caused by non-diffusive fluid movement within the sample. The experimental basis for determining a new imaging parameter --the Perfusion coefficient--is presented. This provides a measure of forced isotropic fluid motion through an organ or tissue. The instrumentation required for conducting NMR experiments is described in order to introduce the contribution made in this area during this research: A sequence controller. The controller is based on the concept of microprogramming and enables completely synchronous output of 128 bits of data. The software for the generation and storage of control data and the regulation of the data to provide experimental control is microcomputer based. It affords precise and accurate regulation of the magnetic field gradients, the rf synthesizer and the spectrometer for spectroscopic and imaging applications. Fundamental to the science of NMR is the presence of a magnetic field. A detailed study of the analysis of magnetic field inhomogeneity in terms of spherical harmonics is presented. The field of a whole body imaging system with poor inhomogeneity was measured and analyzed to determine and describe the components of the inhomogeneity. Finally a

  7. Aeronautic instruments. Section I : general classification of instruments and problems including bibliography

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1923-01-01

    This report is intended as a technical introduction to the series of reports on aeronautic instruments. It presents a discussion of those subjects which are common to all instruments. First, a general classification is given, embracing all types of instruments used in aeronautics. Finally, a classification is given of the various problems confronted by the instrument expert and investigator. In this way the following groups of problems are brought up for consideration: problems of mechanical design, human factor, manufacturing problems, supply and selection of instruments, problems concerning the technique of testing, problems of installation, problems concerning the use of instruments, problems of maintenance, and physical research problems. This enumeration of problems which are common to instruments in general serves to indicate the different points of view which should be kept in mind in approaching the study of any particular instrument.

  8. Structural Determination and Tryptophan Fluorescence of Heterokaryon Incompatibility C2 Protein (HET-C2), a Fungal Glycolipid Transfer Protein (GLTP), Provide Novel Insights into Glycolipid Specificity and Membrane Interaction by the GLTP Fold

    SciTech Connect

    Kenoth, Roopa; Simanshu, Dhirendra K.; Kamlekar, Ravi Kanth; Pike, Helen M.; Molotkovsky, Julian G.; Benson, Linda M.; Bergen, III, H. Robert; Prendergast, Franklyn G.; Malinina, Lucy; Venyaminov, Sergei Y.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2010-06-21

    HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 {angstrom}) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp{sup 66}, Asn{sup 70}, Lys{sup 73}, Trp{sup 109}, and His{sup 147}) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by {alpha}-helices and a cooperative thermal unfolding transition of 49 C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at {approx}355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum ({approx}6 nm) permitting determination of binding affinities. The unique positioning of Trp{sup 208} at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.

  9. Adaptive Instruments for Students with Physical Disabilities

    ERIC Educational Resources Information Center

    Darrow, Alice-Ann

    2012-01-01

    The main adaptations that will be made for music students with physical disabilities are those that make the classroom accessible and those that make classroom instruments accessible. There are a number of principles to guide one when selecting instruments for students with physical disabilities. These principles can assist one in determining the…

  10. Assessment Instruments for Career Development. A Bibliography.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Center for Instructional Development and Services.

    This bibliography focuses on assessment tools and techniques that can be used for career development in a school setting. It covers professional preparation for guiding assessment exercises, tools for screening students for readiness to undertake assessment activities and make career decisions, and assessment instrument instruments themselves. The…

  11. Instrumentation for Environmental Monitoring: Water, Volume 2.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Lawrence Berkeley Lab.

    This volume is one of a series discussing instrumentation for environmental monitoring. Each volume contains an overview of the basic problems, comparisons among the basic methods of sensing and detection, and notes that summarize the characteristics of presently available instruments and techniques. The text of this survey discusses the…

  12. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Powerplant instruments. 27.1305 Section 27.1305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1305 Powerplant instruments. The following are the required...

  13. 14 CFR 29.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Powerplant instruments. 29.1305 Section 29.1305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1305 Powerplant instruments. The following are required...

  14. Instrumentation for measuring energy inputs to implements

    SciTech Connect

    Tompkins, F.D.; Wilhelm, L.R.

    1981-01-01

    A microcomputer-based instrumentation system for monitoring tractor operating parameters and energy inputs to implements was developed and mounted on a 75-power-takeoff-KW tractor. The instrumentation system, including sensors and data handling equipment, is discussed. 10 refs.

  15. Microfabricated field calibration assembly for analytical instruments

    DOEpatents

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.; Rodacy, Philip J.; Simonson, Robert J.

    2011-03-29

    A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

  16. General specifications covering requirements of aeronautic instruments

    NASA Technical Reports Server (NTRS)

    1917-01-01

    Report includes specifications for the use and production of instruments used in the navigation and operation of aircraft. Specifications are included for the following instruments: barometer or altimeter, compass, air speed meter, inclinometer, drift meter, tachometer, oil gauge, oil pressure gauge, gasoline gauge, gasoline flow indicator, distance indicator, barograph, angle of attack indicator, radiator temperature indicator, gasoline feed system pressure indicator, sextant, airplane director.

  17. A laser tracking dynamic robot metrology instrument

    NASA Technical Reports Server (NTRS)

    Parker, G. A.; Mayer, J. R. R.

    1989-01-01

    Research work over several years has resulted in the development of a laser tracking instrument capable of dynamic 3-D measurements of robot end-effector trajectories. The instrument characteristics and experiments to measure the static and dynamic performance of a robot in an industrial manufacturing environment are described. The use of this technology for space applications is examined.

  18. Unmanned Instrument Platform for Undersea Exploration

    NASA Technical Reports Server (NTRS)

    Paine, G.; Hansen, G. R.; Gulizia, R. W.; Paluzzi, P.

    1984-01-01

    Instruments accommodated on moving underwater platform. Towable underwater platform 3.2 meters long, 1.2 meters wide, 1.4 meters high and has mass of about 1,250 kilogram. Platform remotely operated and unmanned. Serves as test bed for development of ocean-measuring instruments and sonars at depths to 20,000 feet.

  19. Instrumentation for the Atmospheric Explorer photoelectron spectrometer

    NASA Technical Reports Server (NTRS)

    Peletier, D. P.

    1973-01-01

    The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

  20. Selected Instrumentation Films, 1969-1970.

    ERIC Educational Resources Information Center

    Simmons, Raymond L., Ed.

    This list of currently available films and filmstrips pertinent to instrumentation has been compiled from information solicited from many government and private sources. The 1969 compilation has been organized into the following eight categories: (1) principles of measurement and basic measurements; (2) analysis instrumentation; (3) automation and…