Note: This page contains sample records for the topic instrumented aircraft flights from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Alaskan flight trials of a synthetic vision system for instrument landings of a piston twin aircraft  

NASA Astrophysics Data System (ADS)

Stanford University has developed a low-cost prototype synthetic vision system and flight tested it onboard general aviation aircraft. The display aids pilots by providing an 'out the window' view, making visualization of the desired flight path a simple task. Predictor symbology provides guidance on straight and curved paths presented in a 'tunnel- in-the-sky' format. Based on commodity PC hardware to achieve low cost, the Tunnel Display system uses differential GPS (typically from Stanford prototype Wide Area Augmentation System hardware) for positioning and GPS-aided inertial sensors for attitude determination. The display has been flown onboard Piper Dakota and Beechcraft Queen Air aircraft at several different locations. This paper describes the system, its development, and flight trials culminating with tests in Alaska during the summer of 1998. Operational experience demonstrated the Tunnel Display's ability to increase flight- path following accuracy and situational awareness while easing the task instrument flying.

Barrows, Andrew K.; Alter, Keith W.; Jennings, Chad W.; Powell, J. D.

1999-07-01

2

Estimation of Aircraft Dynamic States and Instrument Systematic Errors from Flight Test Measurements Using the Carlson Square Root Formulation of the Kalman Filter.  

National Technical Information Service (NTIS)

The development of a procedure for estimating aircraft dynamic states and instrument systematic errors from flight test measurements is described. The method has particular application in non-steady performance estimation for reconstructing aircraft fligh...

C. A. Martin

1980-01-01

3

Aircraft speed instruments  

NASA Technical Reports Server (NTRS)

This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

Beij, K Hilding

1933-01-01

4

RSRA aircraft in flight  

NASA Technical Reports Server (NTRS)

A Rotor Systems Research Aircraft (RSRA) is seen here on a flight test at the Dryden Flight Research Center, Edwards, California, in spring of 1984. The tests at Dryden were to familiarize pilots and researchers with ground-handling and takeoff flight characteristics, as well as to acquire in-flight data in the aircraft configuration, with the main rotor removed. The RSRA was a unique pure research aircraft developed to fill the void between design analysis, wind tunnel testing, and flight results of rotor aircraft. The joint NASA/Army project began in December of 1970, with the first of two aircraft arriving from Sikorsky on February 11, 1979. The aircraft was designed to investigate the concepts involved with stopping the main rotor in flight, with the large blades then providing aerodynamic lift assistance to the stubby conventional wings extending from the lower fuselage. This concept gave the aircraft the vertical flight stability of a helicopter, and the horizontal cruise capability of a conventional aircraft. Tests were successful and lead to later rotor research conducted at NASA's Ames Research Center. One of the two RSRA aircraft was later modified to the X-Wing and received limited testing at Dryden before the program was terminated in 1988.

1984-01-01

5

14 CFR 25.1303 - Flight and navigation instruments.  

Code of Federal Regulations, 2013 CFR

...2014-01-01 false Flight and navigation instruments. 25.1303...DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS...25.1303 Flight and navigation instruments. (a) The following flight and navigation instruments must...

2014-01-01

6

14 CFR 27.1303 - Flight and navigation instruments.  

Code of Federal Regulations, 2011 CFR

...2014-01-01 false Flight and navigation instruments. 27.1303...DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS... § 27.1303 Flight and navigation instruments. The following are the required flight and navigation instruments: (a) An...

2014-01-01

7

14 CFR 23.1303 - Flight and navigation instruments.  

Code of Federal Regulations, 2011 CFR

...2014-01-01 false Flight and navigation instruments. 23.1303...DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS... § 23.1303 Flight and navigation instruments. The following...minimum required flight and navigation instruments: (a) An...

2014-01-01

8

Aeronautic instruments. Section III : aircraft speed instruments  

NASA Technical Reports Server (NTRS)

Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.

Hunt, Franklin L; Stearns, H O

1923-01-01

9

ASDAR (aircraft to satellite data relay) flight test report  

NASA Technical Reports Server (NTRS)

The aircraft to Satellite Data Relay (ASDAR), an airborne data collection system that gathers meteorological data from existing aircraft instrumentation and relays it to ground user via a geo-synchronous meteorological satellite, is described and the results of the first test flight on a commercial Boeing 747 aircraft are presented. The flight test was successful and verified system performance in the anticipated environment.

Domino, E. J.; Lovell, R. R.; Conroy, M. J.; Culp, D. H.

1977-01-01

10

14 CFR 29.1303 - Flight and navigation instruments.  

Code of Federal Regulations, 2012 CFR

... 2014-01-01 false Flight and navigation instruments. 29.1303 Section 29...ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT... General § 29.1303 Flight and navigation instruments. The following are...

2014-01-01

11

Aircraft flight test trajectory control  

NASA Technical Reports Server (NTRS)

Two design techniques for linear flight test trajectory controllers (FTTCs) are described: Eigenstructure assignment and the minimum error excitation technique. The two techniques are used to design FTTCs for an F-15 aircraft model for eight different maneuvers at thirty different flight conditions. An evaluation of the FTTCs is presented.

Menon, P. K. A.; Walker, R. A.

1988-01-01

12

14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).  

Code of Federal Regulations, 2011 CFR

...Qualifications: Flight instructors (aircraft) and flight instructors (simulator...RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications: Flight instructors (aircraft) and flight instructors...

2014-01-01

13

Flight directors for STOl aircraft  

NASA Technical Reports Server (NTRS)

Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.

Rabin, U. H.

1983-01-01

14

Laser Powered Aircraft Takes Flight  

NASA Technical Reports Server (NTRS)

A team of NASA researchers from Marshall Space Flight Center (MSFC) and Dryden Flight Research center have proven that beamed light can be used to power an aircraft, a first-in-the-world accomplishment to the best of their knowledge. Using an experimental custom built radio-controlled model aircraft, the team has demonstrated a system that beams enough light energy from the ground to power the propeller of an aircraft and sustain it in flight. Special photovoltaic arrays on the plane, similar to solar cells, receive the light energy and convert it to electric current to drive the propeller motor. In a series of indoor flights this week at MSFC, a lightweight custom built laser beam was aimed at the airplane `s solar panels. The laser tracks the plane, maintaining power on its cells until the end of the flight when the laser is turned off and the airplane glides to a landing. The laser source demonstration represents the capability to beam more power to a plane so that it can reach higher altitudes and have a greater flight range without having to carry fuel or batteries, enabling an indefinite flight time. The demonstration was a collaborative effort between the Dryden Center at Edward's, California, where the aircraft was designed and built, and MSFC, where integration and testing of the laser and photovoltaic cells was done. Laser power beaming is a promising technology for consideration in new aircraft design and operation, and supports NASA's goals in the development of revolutionary aerospace technologies. Photographed with their invention are (from left to right): David Bushman and Tony Frackowiak, both of Dryden; and MSFC's Robert Burdine.

2003-01-01

15

Eclipse program QF-106 aircraft in flight  

NASA Technical Reports Server (NTRS)

This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

1997-01-01

16

Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight  

NASA Technical Reports Server (NTRS)

A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot from a mobile flight control station on the ground. A Global Positioning System (GPS) unit

1998-01-01

17

Unmanned reconnaissance aircraft, Predator B in flight.  

NASA Technical Reports Server (NTRS)

Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

2001-01-01

18

Aircraft icing instrumentation: Unfilled needs. [rotary wing aircraft  

NASA Technical Reports Server (NTRS)

A list of icing instrumentation requirements are presented. Because of the Army's helicopter orientation, many of the suggestions are specific to rotary wing aircraft; however, some of the instrumentation are also suitable for general aviation aircraft.

Kitchens, P. F.

1980-01-01

19

New capabilities for older aircraft: A study of pilot integration of retro-fit digital avionics to analog-instrumented flight decks  

NASA Astrophysics Data System (ADS)

The purpose of this study was to determine whether applying Gilbert's Behavior Engineering Model to military tactical aviation organizations would foster effective user integration of retro-fit digital avionics in analog-instrumented flight decks. This study examined the relationship between the reported presence of environmental supports and personal repertory supports as defined by Gilbert, and the reported self-efficacy of users of retro-fit digital avionics to analog flight decks, and examined the efficacious behaviors of users as they attain mastery of the equipment and procedures, and user reported best practices and criteria for masterful performance in the use of retro-fit digital avionics and components. This study used a mixed methodology, using quantitative surveys to measure the perceived level of organizational supports that foster mastery of retro-fit digital avionic components, and qualitative interviews to ascertain the efficacious behaviors and best practices of masterful users of these devices. The results of this study indicate that there is some relationship between the reported presence of organizational supports and personal repertory supports and the reported self-mastery and perceived organizational mastery of retro-fit digital avionics applied to the operation of the research aircraft. The primary recommendation is that unit leadership decide exactly the capabilities desired from retro-fit equipment, publish these standards, ensure training in these standards is effective, and evaluate performance based on these standards. Conclusions indicate that sufficient time and resources are available to the individual within the study population, and the organization as a whole, to apply Gilbert's criteria toward the mastery of retro-fit digital avionics applied to the operation of the research aircraft.

Breuer, Glynn E.

20

PIK-20 Aircraft in Flight  

NASA Technical Reports Server (NTRS)

This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

1991-01-01

21

X-1 aircraft in flight  

NASA Technical Reports Server (NTRS)

The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee for Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Muroc Army Air Field (later redesignated Edwards Air Force Base) with Chalmers Goodlin, a Bell test pilot,at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lb thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before evermaking any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. The following movie runs about 20 seconds, and shows several air-to-air views of X-1 Number 2 and its modified B-50 mothership. It begins with different angles of the X-1 in-flight while mated to the B-50's bomb bay, and ends showing the air-launch. The X-1 drops below the B-50, then accelerates away as the rockets ignite.

1949-01-01

22

Outsider's look at flight instrumentation  

SciTech Connect

This paper presents ideas and speculations on possible diagnostic instrumentation for use in missile flight testing. A plea is made for increased instrumentation efforts. There is some discussion of telemetry methods.

Lundy, A.S.

1981-01-01

23

14 CFR 375.31 - Demonstration flights of foreign aircraft.  

Code of Federal Regulations, 2011 CFR

...false Demonstration flights of foreign aircraft. 375.31 Section 375.31 Aeronautics...REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized...31 Demonstration flights of foreign aircraft. Flights of foreign civil...

2014-01-01

24

14 CFR 135.340 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...  

Code of Federal Regulations, 2011 CFR

...training and checking: Flight instructors (aircraft), flight instructors (simulator...RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.340 Initial and...training and checking: Flight instructors (aircraft), flight instructors...

2014-01-01

25

Aircraft power-plant instruments  

NASA Technical Reports Server (NTRS)

This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

Sontag, Harcourt; Brombacher, W G

1934-01-01

26

Aircraft Power-Plant Instruments  

NASA Technical Reports Server (NTRS)

This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

Sontag, Harcourt; Brombacher, W G

1934-01-01

27

Development and evaluation of a prototype in-flight instrument flight rules (IFR) procedures trainer  

NASA Technical Reports Server (NTRS)

An in-flight instrument flight rules (IFR) procedures trainer capable of providing simulated indications of instrument flight in a typical general aviation aircraft independent of ground based navigation aids was developed. The IFR navaid related instruments and circuits from an ATC 610J table top simulator were installed in a Cessna 172 aircraft and connected to its electrical power and pitot static systems. The benefits expected from this hybridization concept include increased safety by reducing the number of general aviation aircraft conducting IFR training flights in congested terminal areas, and reduced fuel use and instruction costs by lessening the need to fly to and from navaid equipped airports and by increased efficiency of the required in-flight training. Technical feasibility was demonstrated and the operational feasibility of the concept was evaluated. Results indicated that the in-flight simulator is an effective training device for teaching IFR procedural skills.

Aaron, J. B., Jr.; Morris, G. G.

1981-01-01

28

Nonclassical Flight Control for Unhealthy Aircraft  

NASA Technical Reports Server (NTRS)

This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

Lu, Ping

1997-01-01

29

Vertical flight path steering system for aircraft  

NASA Technical Reports Server (NTRS)

Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

Lambregts, Antonius A. (Inventor)

1983-01-01

30

Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances.  

National Technical Information Service (NTIS)

This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances crui...

B. Sridhar H. K. Ng J. Li N. Y. Chen

2012-01-01

31

Measurement of In-Flight Aircraft Emissions  

NASA Technical Reports Server (NTRS)

Aircraft engine emission and their chemical and physical evolution can be measured in flight using high resolution infrared spectroscopy. The Airborne Emission Spectrometer (AES), designed for remote measure- ments of atmosphere emissions from an airborne platform, is an ideal tool for the evaluation of aircraft emissions and their evolution. Capabilities of AES will be discussed. Ground data will be given.

Sokoloski, M.; Arnold, C.; Rider, D.; Beer, R.; Worden, H.; Glavich, T.

1995-01-01

32

Statistical Detection of Atypical Aircraft Flights  

NASA Technical Reports Server (NTRS)

A computational method and software to implement the method have been developed to sift through vast quantities of digital flight data to alert human analysts to aircraft flights that are statistically atypical in ways that signify that safety may be adversely affected. On a typical day, there are tens of thousands of flights in the United States and several times that number throughout the world. Depending on the specific aircraft design, the volume of data collected by sensors and flight recorders can range from a few dozen to several thousand parameters per second during a flight. Whereas these data have long been utilized in investigating crashes, the present method is oriented toward helping to prevent crashes by enabling routine monitoring of flight operations to identify portions of flights that may be of interest with respect to safety issues.

Statler, Irving; Chidester, Thomas; Shafto, Michael; Ferryman, Thomas; Amidan, Brett; Whitney, Paul; White, Amanda; Willse, Alan; Cooley, Scott; Jay, Joseph; Rosenthal, Loren; Swickard, Andrea; Bates, Derrick; Scherrer, Chad; Webb, Bobbie-Jo; Lawrence, Robert; Mosbrucker, Chris; Prothero, Gary; Andrei, Adi; Romanowski, Tim; Robin, Daniel; Prothero, Jason; Lynch, Robert; Lowe, Michael

2006-01-01

33

Digital signal conditioning for flight test instrumentation  

NASA Technical Reports Server (NTRS)

An introduction to digital measurement processes on aircraft is provided. Flight test instrumentation systems are rapidly evolving from analog-intensive to digital intensive systems, including the use of onboard digital computers. The topics include measurements that are digital in origin, as well as sampling, encoding, transmitting, and storing data. Particular emphasis is placed on modern avionic data bus architectures and what to be aware of when extracting data from them. Examples of data extraction techniques are given. Tradeoffs between digital logic families, trends in digital development, and design testing techniques are discussed. An introduction to digital filtering is also covered.

Bever, Glenn A.

1991-01-01

34

Eclipse program F-106 aircraft in flight, front view  

NASA Technical Reports Server (NTRS)

Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

1997-01-01

35

Eclipse program QF-106 aircraft in flight, view from tanker  

NASA Technical Reports Server (NTRS)

View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

1997-01-01

36

Schlieren Imaging Of An Aircraft In Flight  

NASA Technical Reports Server (NTRS)

Technique for making schlieren images of airplanes and missiles in supersonic flight devised to help understand physics of compressible aerodynamic flows about complicated aircraft shapes. Technique also used to study far-field sonic booms. Data obtained from schlieren images useful in optimizing designs of prototype aircraft. Technique incorporates elements of focusing schlieren photography, astronomical photography, and streak photography. Using sun or moon as source of light, apparatus forms image revealing gradients of density in air flow.

Weinstein, Leonard M.

1994-01-01

37

Modeling lateral attenuation of aircraft flight noise  

NASA Astrophysics Data System (ADS)

To calculate the airbase and/or airport noise exposure at any specified ground position located to the side of a flight path, a variety of noise attenuation mechanisms must be accounted for if the model is to predict levels that are in reasonable agreement with field noise measurements. For civil aircraft the lateral attenuation model developed by the Society of Automotive Engineers, Inc. A-21 Committee on Aircraft Noise is commonly used. Since it was derived mainly from measured lateral attenuation data on civil aircraft, the predicted results generally show good agreement when compared with actual measurements. However, the frequency spectra of the noise from most military aircraft is often quite different from that associated with civil transports. A series of field experiments was conducted to develop a data base of sufficient size (853 points at elevation angles aranging from 1.9 to 90 degrees) to accurately model the lateral attenuation associated with military flights near airbases and especially along Military Training Routes where the aircraft fly at low altitude (150 m or less) and at high subsonic airspeeds. Those tests confirmed the need for a different model of lateral attenuation for typical United States military versus civil aircraft flight operations. A companion paper, A Prediction Model for Noise From Low-Altitude Military Aircraft, describes recent tests performed in the United Kingdom. Two of the aircraft (F-15 and F-16) were common to the tests performed in the United States and the United Kingdom. This paper merges the 182 data points at very low elevation angles (1.3 to 6.8 degrees) from the UK tests, adds 154 more USAF data points at low to moderate elevation angles (3 to 45 degrees) and derives an improved model for lateral attenuation associated with military aircraft.

Speakman, J. D.; Berry, B. F.

38

Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project  

NASA Technical Reports Server (NTRS)

An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

2006-01-01

39

Present status of aircraft instruments  

NASA Technical Reports Server (NTRS)

This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

1932-01-01

40

Commercial aircraft flight deck noise criteria  

Microsoft Academic Search

As a method for obtaining results that could contribute to the establishment of commercial jet aircraft flight deck noise criteria, fifty persons were exposed to simulations of various flight deck noise exposure conditions. Exposure levels investigated were 75, 80 and 85 dBA for periods of 1, 2, and 4 hours. Noise spectra representing both older narrow-body and newer technology wide-body

J. E. Mabry; B. M. Sullivan; R. A. Shields

1979-01-01

41

Real Time Correction of Aircraft Flight Fonfiguration  

NASA Technical Reports Server (NTRS)

Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.

Schipper, John F. (Inventor)

2009-01-01

42

Flight flutter testing and aeroelastic stability of aircraft  

Microsoft Academic Search

Purpose To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data. Design\\/methodology\\/approach Flight flutter test requirements are first reviewed

Altan Kayran

2007-01-01

43

Flight flutter testing and aeroelastic stability of aircraft  

Microsoft Academic Search

Purpose This paper sets out to provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data. Design\\/methodology\\/approach Flight flutter test

Altan Kayran

2007-01-01

44

Flight Safety Aircraft Risk: A Growing Problem  

NASA Astrophysics Data System (ADS)

In recent years there has been a growing awareness of the need to have appropriate criteria for protection of aircraft from debris resulting from the flight termination of a malfunctioning space booster. There have been several sequences of events that have interacted to bring us to the current risk management problem. With the advent of the US initiative to have common flight safety analysis processes and criteria, it was recognized that the traditional aircraft protection approach was inadequate. It did not consider the added public concern for catastrophic events. While the probability may have been small for downing a large commercial passenger plane, the public outrage if it happened would not be adequately measured by the individual risk to passengers nor the collective (societal risk) presented by a single airplane. Over a period of a number of years the US has developed and evolved a criterion to address catastrophic risk protection. Beginning in the same time period, it was recognized the assertion that all debris with masses greater than one gram were lethal to aircraft was unduly conservative. Over this same period initiatives have been developed to refine aircraft vulnerability models. There were, however, two significant unconservative assumptions that were made in the early years. It was presumed that significant risk to aircraft could only occur in the launch area. In addition, aircraft risk assessments, when they were made were based on debris lists designed to protect people on the ground (typically debris with an impact kinetic energy greater than 11 ft-lb). Good debris lists for aircraft protection do not yet exist. However, it has become increasingly clear that even with partial breakup lists large regions were required from which aircraft flight would be restricted using the normal exclusion approaches. We provide a review of these events and an indication of the way forward.

Haber, J. M.

2012-01-01

45

Results of a flight investigation of control-display interactions for VTOL decelerating descending instrument approaches using the X-22A aircraft  

NASA Technical Reports Server (NTRS)

Control, display, and guidance requirements for VTOL instrument transitions were studied to provide meaningful data related to the interaction of aircraft control system and pilot display characteristics on pilot rating and performance during a steep decelerating descending transition from a representative forward velocity to the hover under simulated instrument conditions. Thirty seven evaluations were performed of combinations of five generic display presentations, ranging from position information only to four axis control directors, and five levels of control augmentation systems, ranging from rate augmentation only to decoupled velocity responses and automatic configuration changes. Primary results include the demonstration of an inverse relationship between control complexity and display sophistication and the definition of acceptable and satisfactory control display combinations.

Lebacqz, J. V.; Aiken, E. W.

1975-01-01

46

Reconfigurable redundancy management for aircraft flight control  

NASA Technical Reports Server (NTRS)

A highly fault tolerant digital computer system has been configured based on extensive experience with flight proven, redundant digital flight control systems. The feasibility of minimizing hardware complexity is shown while maintaining high levels of fault tolerance. The emerging hardware design combines reconfiguration concepts with conventional hardware redundancy techniques and special operational software to provide dual fail operate performance with a basic triplex system. The design provides high reliability and flight safety, enhances maintainability, and reduces life cycle cost while offering improved performance for future aircraft.

Bosch, J. A.; Kuehl, W. J.

1976-01-01

47

Flight Evaluation of a Pilot-Assist Stability Augmentation System for Light Aircraft.  

National Technical Information Service (NTIS)

The purpose of the study was to evaluate the utility of a light aircraft pilot-assist stability augmentation system in extricating the noninstrument qualified pilot from accidentally encountered instrument flight conditions. Ten noninstrument rated pilots...

R. Walchi D. Eldredge

1970-01-01

48

A fuzzy logic controller for aircraft flight control  

Microsoft Academic Search

This paper describes a model of an autopilot controller based on fuzzy algorithms. The controller maneuvers an aircraft from level flight into a final-approach flight path and maintains the aircraft along the glide path until just before touchdown. To evaluate the performance and effectiveness of the model, the aircraft response to controller actions is simulated using flight simulation techniques. The

Lawrence I. Larkin

1984-01-01

49

Aircraft digital flight control technical review  

NASA Technical Reports Server (NTRS)

The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

Davenport, Otha B.; Leggett, David B.

1993-01-01

50

B-52 Launch Aircraft in Flight  

NASA Technical Reports Server (NTRS)

NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet.

2001-01-01

51

The Communicative Relevancies of Instrument Flight; A Technologically Contingent World.  

ERIC Educational Resources Information Center

The success and safety of flight in actual instrument conditions is dependent upon the communicative competency of the individuals involved. The more obvious elements of communication involved include crew coordination and communication both verbal and nonverbal, aircraft and ground communication links, pilot interpretation of verbally and

McCoy, Claire Elaine

52

SCIP2 flight instrumentation specification for parameter identification: User's guide  

NASA Technical Reports Server (NTRS)

SCIP2 which is a digital computer program that can be used to investigate the effects of instrumentation errors on the accuracy of aircraft stability and control derivatives identified from flight test data is presented. The program is based on the assumptions that the aircraft differential equations of motion are linear and consist of small perturbations about a quasisteady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. A summary of the equations which are coded in the program are included.

Taniguchi, N.

1972-01-01

53

14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.  

Code of Federal Regulations, 2011 CFR

...functioning dual controls. However, instrument flight instruction may...place of fixed, dual controls may be used for flight instruction to conduct...functioning dual controls. However, simulated instrument flight may be...

2014-01-01

54

Systems and methods for aircraft flight tracking and display  

US Patent & Trademark Office Database

Systems and methods are provided for automated collection and analysis of aircraft flight data. In accordance with one aspect, a system for collecting flight data associated with an aircraft is provided to transmit collected flight data to a remote system for storage and processing. In accordance with another aspect, a remote system utilizes received aircraft location data to determine whether an aircraft flight incident has occurred, and to alert appropriate emergency services. In accordance with another aspect, a remote system analyzes received aircraft flight data and quantitatively evaluates performance of a pilot. In yet another aspect, a system is provided for graphical and textual display of collected aircraft flight data and pilot performance evaluation data.

2014-03-04

55

Practice and Incentive Effects on Learner Performance: Aircraft Instrument Comprehension Task.  

ERIC Educational Resources Information Center

To study the effects of practice and incentive on learner performance on the aircraft instrument comprehension task, 48 third-year Air Force cadets were chosen as subjects. The subjects were expected to be able to identify which one of four pictures of aircraft in flight most nearly corresponded to the position indicated on a panel of attitude and

Tenpas, Barbara G.; Higgins, Norman C.

56

Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft  

NASA Technical Reports Server (NTRS)

This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

Wells, Edward A.; Urnes, James M., Sr.

1994-01-01

57

Two YF-12 aircraft in flight  

NASA Technical Reports Server (NTRS)

The YF-12A (60-6935) carries the 'coldwall' heat transfer pod on a pylon beneath the forward fuselage. The pod is seen with its insulating coating intact. In the foreground, the YF-12C flies photo chase. The coldwall project, supported by Langley Research Center, consisted of a stainless steel tube equipped with thermocouples and pressure-sensors. A special insulating coating covered the tube, which was chilled with liquid nitrogen. At Mach 3, the insulation could be pyrotechnically blown away from the tube, instantly exposing it to the thermal environment. The experiment caused many inflight difficulties, such as engine unstarts, but eventually researchers got a successful flight. The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An interceptor version was developed in 1963 under the designation YF-12A. A USAF reconnaissance variant, called the SR-71, was first flown in 1964. The A-12 and SR-71 designs included leading and trailing edges made of high-temperature fiberglass-asbestos laminates. The NASA YF-12 research program was ambitious; the aircraft flew an average of once a week unless down for extended maintenance or modification. Program expenses averaged $3.1 million per year just to run the flight tests. NASA crews for the YF-12 included pilots Fitzhugh Fulton and Donald Mallick, anf flight test engineers Victor Horton and Ray Young. Other NASA test pilots checked out in the YF-12A included John Manke, William Dana, Gary Krier, Einar Enevoldson, Tom McMurtry, Steve Ishmael, and Michael Swann. The YF-12C was only flown by Fulton, Mallick, Horton, and Ray.

1975-01-01

58

Rapid Automated Aircraft Simulation Model Updating from Flight Data  

NASA Technical Reports Server (NTRS)

Techniques to identify aircraft aerodynamic characteristics from flight measurements and compute corrections to an existing simulation model of a research aircraft were investigated. The purpose of the research was to develop a process enabling rapid automated updating of aircraft simulation models using flight data and apply this capability to all flight regimes, including flight envelope extremes. The process presented has the potential to improve the efficiency of envelope expansion flight testing, revision of control system properties, and the development of high-fidelity simulators for pilot training.

Brian, Geoff; Morelli, Eugene A.

2011-01-01

59

Development of flying qualities criteria for single pilot instrument flight operations  

NASA Technical Reports Server (NTRS)

Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

1982-01-01

60

Adaptive Flight Control for Aircraft Safety Enhancements  

NASA Technical Reports Server (NTRS)

This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique "Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control" has been developed at NASA ARC to address the needs for stability margin metrics for adaptive control that potentially enables future V&V of adaptive systems. The technique "Direct Adaptive Control With Unknown Actuator Failures" is developed at NASA LaRC to deal with unknown actuator failures. The technique "Adaptive Control with Adaptive Pilot Element" is being researched at NASA LaRC to investigate the effects of pilot interactions with adaptive flight control that can have implications of stability and performance.

Nguyen, Nhan T.; Gregory, Irene M.; Joshi, Suresh M.

2008-01-01

61

Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses  

NASA Technical Reports Server (NTRS)

An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

Winebarger, R. M.; Neely, W. R., Jr.

1984-01-01

62

HiMAT highly maneuverable aircraft technology, flight report  

NASA Technical Reports Server (NTRS)

Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.

1982-01-01

63

An Innovative Instrument Flight Training Program.  

ERIC Educational Resources Information Center

An innovative flight training program, its development, and initial administration are described. The program involves use of a commercially available training device in a twin-engine transition and instrument training course. Principal features of the training include redefinition of the flight instructor's role, and incentive award system,

Caro, Paul W.

64

State estimation applications in aircraft flight-data analysis: A user's manual for SMACK  

NASA Technical Reports Server (NTRS)

The evolution in the use of state estimation is traced for the analysis of aircraft flight data. A unifying mathematical framework for state estimation is reviewed, and several examples are presented that illustrate a general approach for checking instrument accuracy and data consistency, and for estimating variables that are difficult to measure. Recent applications associated with research aircraft flight tests and airline turbulence upsets are described. A computer program for aircraft state estimation is discussed in some detail. This document is intended to serve as a user's manual for the program called SMACK (SMoothing for AirCraft Kinematics). The diversity of the applications described emphasizes the potential advantages in using SMACK for flight-data analysis.

Bach, Ralph E., Jr.

1991-01-01

65

Analysis of instrumentation error effects on the identification accuracy of aircraft parameters  

NASA Technical Reports Server (NTRS)

An analytical investigation is presented of the effect of unmodeled measurement system errors on the accuracy of aircraft stability and control derivatives identified from flight test data. Such error sources include biases, scale factor errors, instrument position errors, misalignments, and instrument dynamics. Two techniques (ensemble analysis and simulated data analysis) are formulated to determine the quantitative variations to the identified parameters resulting from the unmodeled instrumentation errors. The parameter accuracy that would result from flight tests of the F-4C aircraft with typical quality instrumentation is determined using these techniques. It is shown that unmodeled instrument errors can greatly increase the uncertainty in the value of the identified parameters. General recommendations are made of procedures to be followed to insure that the measurement system associated with identifying stability and control derivatives from flight test provides sufficient accuracy.

Sorensen, J. A.

1972-01-01

66

Investigations of simulated aircraft flight through thunderstorm outflows  

NASA Technical Reports Server (NTRS)

The effects of wind shear on aircraft flying through thunderstorm gust fronts were investigated. A computer program was developed to solve the two dimensional, nonlinear equations of aircraft motion, including wind shear. The procedure described and documented accounts for spatial and temporal variations of the aircraft within the flow regime. Analysis of flight paths and control inputs necessary to maintain specified trajectories for aircraft having characteristics of DC-8, B-747, augmentor wing STOL, and DHC-6 aircraft was recorded. From the analysis an attempt was made to find criteria for reduction of the hazards associated with landing through thunderstorm gust fronts.

Frost, W.; Crosby, B.

1978-01-01

67

The design of a joined wing flight demonstrator aircraft  

NASA Technical Reports Server (NTRS)

A joined-wing flight demonstrator aircraft has been developed at the NASA Ames Research Center in collaboration with ACA Industries. The aircraft is designed to utilize the fuselage, engines, and undercarriage of the existing NASA AD-1 flight demonstrator aircraft. The design objectives, methods, constraints, and the resulting aircraft design, called the JW-1, are presented. A wind-tunnel model of the JW-1 was tested in the NASA Ames 12-foot wind tunnel. The test results indicate that the JW-1 has satisfactory flying qualities for a flight demonstrator aircraft. Good agreement of test results with design predictions confirmed the validity of the design methods used for application to joined-wing configurations.

Smith, S. C.; Cliff, S. E.; Kroo, I. M.

1987-01-01

68

Flight instrumentation specification for parameter identification: Program user's guide. [instrument errors/error analysis  

NASA Technical Reports Server (NTRS)

A set of four digital computer programs is presented which can be used to investigate the effects of instrumentation errors on the accuracy of aircraft and helicopter stability-and-control derivatives identified from flight test data. The programs assume that the differential equations of motion are linear and consist of small perturbations about a quasi-steady flight condition. It is also assumed that a Newton-Raphson optimization technique is used for identifying the estimates of the parameters. Flow charts and printouts are included.

Mohr, R. L.

1975-01-01

69

Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances  

NASA Technical Reports Server (NTRS)

This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of aviation on climate based on aircraft flight distances.

Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan

2012-01-01

70

14 CFR 91.715 - Special flight authorizations for foreign civil aircraft.  

Code of Federal Regulations, 2011 CFR

...flight authorizations for foreign civil aircraft. 91.715 Section 91.715 Aeronautics...OPERATING AND FLIGHT RULES Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United States; and...

2014-01-01

71

48 CFR 1852.228-71 - Aircraft flight risks.  

Code of Federal Regulations, 2013 CFR

...a ramp and continues until the aircraft has completed its landing run and is beached at a ramp. (iii) With respect to helicopters, flight commences upon engagement of the rotors for the purpose of take-off and continues until the aircraft has...

2013-10-01

72

Flight Test Safety Considerations for Airborne Science Aircraft  

NASA Technical Reports Server (NTRS)

Most of the scientific community that require scientific data or scientific measurements from aircraft do not understand the full implications of putting certain equipment on board high performance aircraft. It is the duty of the NASA Flight Operations personnel to ensure that all Principal Investigators who are given space on NASA flight research aircraft, comply with stringent safety requirements. The attitude of the experienced Flight operations personnel given this duty has been and remains one of insuring that the PI's experiment is allowed to be placed on the aircraft (facility) and can be operated in a manner that will obtain the expected data. This is sometimes a challenge. The success that NASA has in this regard is due to the fact that it is its own authority under public law, to certify its aircraft as airworthy. Airworthiness, fitness for flight, is a complex issue which pulls together all aspects of configuration management, engineering, quality, and flight safety. It is often the case at each NASA Center that is conducting airborne research, that unique solutions to some challenging safety issues are required. These solutions permit NASA to do things that would not be permitted by the Department of Transportation. This paper will use examples of various flight research configurations to show the necessity of a disciplined process leading up to flight test and mission implementation. All new configurations required engineering flight test but many, as noted in this paper, require that the modifications be flight tested to insure that they do not negatively impact on any part of the aircraft operational profiles. The success of these processes has been demonstrated over many years and NASA has accommodated experimental packages that cannot be flown on any other aircraft.

Reynolds, Randolph S.

1997-01-01

73

Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions  

NASA Technical Reports Server (NTRS)

Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

2012-01-01

74

Extraction of aerodynamic parameters for aircraft at extreme flight conditions  

NASA Technical Reports Server (NTRS)

The maximum likelihood estimator was used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new development and applications, assuming familiarity with basic concepts. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are discussed. The current strength and limitations associated with obtaining flight-determined aerodynamic coefficients in extreme flight conditions are assessed. The importance of the careful combining of wind tunnel results (or calculations) and flight results and the thorough evaluation of the mathematical model is emphasized. The basic concepts of minimization and estimation are examined for a simple computed aircraft example, and the cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation of stability and control derivatives from flight data is discussed.

Iliff, K. W.

1985-01-01

75

Extraction of aerodynamic parameters for aircraft at extreme flight conditions  

NASA Technical Reports Server (NTRS)

The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic concepts. This paper briefly discusses the maximum likelihood estimator and the aircraft equations of motion that the estimator uses. The current strength and limitations associated with obtaining flight-determined aerodynamic coefficients in extreme flight conditions is assessed. The importance of the careful combining of wind tunnel results (or calculations) and flight results and the thorough evaluation of the mathematical model is emphasized. The basic concepts of minimization and estimation are examined for a simple computed aircraft example, and the cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation of stability and control derivatives from flight data is discussed.

Iliff, K. W.

1985-01-01

76

19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...  

Code of Federal Regulations, 2011 CFR

...2014-04-01 false Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...REDUCED RATE, ETC. General Provisions Civil Aircraft § 10.183 Duty-free entry of civil...

2014-04-01

77

Research on Simulation Method of Flight Safety for Civil Aircraft  

Microsoft Academic Search

\\u000a Flight safety evaluation technique will significantly guide the new-style aircraft preliminary design. Based on the principle\\u000a of Human-machine System Engineering, the dynamic characteristic and modeling method of both pilot and aircraft are investigated.\\u000a Pilot decision-making and Aircraft Failure model are proposed, and then a low-cost, convenient software evaluation system\\u000a for flight safety simulation is developed based on the object-oriented technique.

Wei Zhang; Hehe Yi; Zhi Ma

78

Flight Control Testing of the VAK-191B Aircraft.  

National Technical Information Service (NTIS)

The U.S. Navy/Federal Republic of Germany Joint Flight Test Program, using the VAK-191B aircraft, was conducted to expand the base of VSTOL technology. During the flight program, an integrated test block approach was considered mandatory for the acquisiti...

R. L. Traskos

1977-01-01

79

A Flight Test Maneuver Autopilot for a Highly Manueverable Aircraft.  

National Technical Information Service (NTIS)

A flight test maneuver autopilot (FTMAP) is currently being flown to increase the quality and quantity of the data obtained in the flight testing of the highly maneuverable aircraft technology (HiMAT) remotely piloted research vehicle (RPRV). The FTMAP re...

R. B. Roncoli

1982-01-01

80

Parameter-robust flight control system for a flexible aircraft  

Microsoft Academic Search

This paper discusses the design of a flight control system for a flexible aircraft, with significant coupling between flight mechanics and structural dynamics modes. Based on a longitudinal model, a normal acceleration control law is designed with a new synthesis technique, which is in fact a mixing of optimal control and eigenstructure assignment by means of constrained optimization. This technique

F. Kubica; T. Livet; X. Le Tron; A. Bucharles

1995-01-01

81

Kinematic synthesis of flight control systems for light aircrafts  

Microsoft Academic Search

In this paper, kinematic synthesis of a planar flight control system mechanism has been conducted for a light aircraft designed and built by TAI. To achieve a simple construction, the four-bar linkages are used in the synthesis. Freudenstein's Method and Bloch's Method are utilized for analytical three and four bar position syntheses respectively. A case study of an elevator flight

Yavuz Yaman; Yunus Akman; Eres Sylemez

2002-01-01

82

Investigation of damping liquids for aircraft instruments  

NASA Technical Reports Server (NTRS)

This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.

Keulegan, G H

1929-01-01

83

Risk assessment of high altitude free flight commercial aircraft operations  

SciTech Connect

A quantitative model is under development to assess the safety and efficiency of commercial aircraft operations under the Free Flight Program proposed for air traffic control for the US National Airspace System. The major objective of the Free Flight Program is to accommodate the dramatic growth anticipated in air traffic in the US. However, the potential impacts upon aircraft safety from implementing the Program have not been fully explored and evaluated. The model is directed at assessing aircraft operations at high altitude over the continental US airspace since this action is the initial step for Free Flight. Sequential steps with analysis, assessment, evaluation, and iteration will be required to satisfactorily accomplish the complete transition of US commercial aircraft traffic operations.

Kimura, C.Y.; Sandquist, G.M.; Slaughter, D.M.; Sanzo, D.L.

1998-04-23

84

Integrated Resilient Aircraft Control Project Full Scale Flight Validation  

NASA Technical Reports Server (NTRS)

Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

Bosworth, John T.

2009-01-01

85

Flight Testing the Rotor Systems Research Aircraft (RSRA)  

NASA Technical Reports Server (NTRS)

In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

Hall, G. W.; Merrill, R. K.

1983-01-01

86

Guide to measurement of winds with instrumented aircraft  

NASA Technical Reports Server (NTRS)

Aircraft measurement techniques are reviewed. Review of past and present applications of instrument aircraft to atmospheric observations is presented. Questions to be answered relative to measuring mean wind profiles as contrasted to turbulence measurements are then addressed. Requirements of instrumentation and accuracy, data reduction, data acquisition, and theoretical and certainty analysis are considered.

Frost, Walter; Paige, Terry S.; Nelius, Andrew E.

1991-01-01

87

Test-Engine and Inlet Performance of an Aircraft Used for Investigating Flight Effects on Fan Noise.  

National Technical Information Service (NTIS)

As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acousti...

R. A. Golub J. S. Preisser

1984-01-01

88

NASA Ames Active Control Aircraft flight experiments (ACA) program. [for short haul aircraft  

NASA Technical Reports Server (NTRS)

The objectives of the Ames ACA program are to develop the active control technology (ACT) for short-haul aircraft, to evaluate existing methods, to develop new techniques, and to demonstrate the readiness of the technology in operational environment. Two concepts are basic to ACT: integrated aircraft design and integrated flight-control-system design.

Meyer, G.; Wehrend, W. R.

1975-01-01

89

Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft  

NASA Technical Reports Server (NTRS)

A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

2002-01-01

90

Flight demonstration of a self repairing flight control system in a NASA F-15 fighter aircraft  

NASA Technical Reports Server (NTRS)

Battle damage causing loss of control capability can compromise mission objectives and even result in aircraft loss. The Self Repairing Flight Control System (SRFCS) flight development program directly addresses this issue with a flight control system design that measures the damage and immediately refines the control system commands to preserve mission potential. The system diagnostics process detects in flight the type of faults that are difficult to isolate post flight, and thus cause excessive ground maintenance time and cost. The control systems of fighter aircraft have the control power and surface displacement to maneuver the aircraft in a very large flight envelope with a wide variation in airspeed and g maneuvering conditions, with surplus force capacity available from each control surface. Digital flight control processors are designed to include built-in status of the control system components, as well as sensor information on aircraft control maneuver commands and response. In the event of failure or loss of a control surface, the SRFCS utilizes this capability to reconfigure control commands to the remaining control surfaces, thus preserving maneuvering response. Correct post-flight repair is the key to low maintainability support costs and high aircraft mission readiness. The SRFCS utilizes the large data base available with digital flight control systems to diagnose faults. Built-in-test data and sensor data are used as inputs to an Onboard Expert System process to accurately identify failed components for post-flight maintenance action. This diagnostic technique has the advantage of functioning during flight, and so is especially useful in identifying intermittent faults that are present only during maneuver g loads or high hydraulic flow requirements. A flight system was developed to test the reconfiguration and onboard maintenance diagnostics concepts on a NASA F-15 fighter aircraft.

Urnes, James M.; Stewart, James; Eslinger, Robert

1990-01-01

91

Adaptive Flight Control for Aircraft Safety Enhancements.  

National Technical Information Service (NTIS)

This poster presents the current adaptive control research being conducted at NASA ARC and LaRC in support of the Integrated Resilient Aircraft Control (IRAC) project. The technique 'Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive...

I. M. Gregory N. T. Nguyen S. M. Joshi

2008-01-01

92

Pathfinder-Plus aircraft in flight  

NASA Technical Reports Server (NTRS)

The Pathfinder-Plus solar-powered aircraft is shown taking off from a runway, then flying at low altitude over the ocean. The vehicle, which looks like a flying ruler, operates at low airspeed. Among the missions proposed for a solar-powered aircraft are communications relay, atmospheric studies, pipeline monitoring and gas leak detection, environmental monitoring using thermal and radar images, and disaster relief and monitoring.

1998-01-01

93

Flight test of a pure-tone acoustic source. [aircraft noise  

NASA Technical Reports Server (NTRS)

Static and flight testing of a pure-tone acoustic source were conducted in order to: (1) determine if a 4-KHz tone radiated by a source in flight and mixed with broadband aircraft flyover noise could be measured on the ground with a high degree of statistical confidence; (2) determine how well a comparison could be made of flight-to-static tone radiation pattern and a static radiation pattern; and (3) determine if there were any installation effects on the radiation pattern due to the flight vehicle. Narrow-band acoustic data were measured and averaged over eight microphones to obtain a high statistical confidence. The flight data were adjusted to an equivalent static condition by applying corrections for retarded time, spherical spreading, atmospheric absorption, ground impedance, instrumentation constraints, convective amplification, and the Doppler shift. The flight-to-static results are in excellent agreement with the measured static data. No installation effects were observed on the radiation pattern.

Mueller, A. W.; Preisser, J. S.

1981-01-01

94

Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight  

NASA Technical Reports Server (NTRS)

General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

Talay, T. A.

1975-01-01

95

Instrumentation of sampling aircraft for measurement of launch vehicle effluents  

NASA Technical Reports Server (NTRS)

An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

1977-01-01

96

Advanced flight deck for next generation aircraft  

Microsoft Academic Search

Alternative Flight Management System (FMS) human interface and Advanced Primary Flight Display (PFD) concepts are needed as the complexities of understanding and operating increased functionality on equipment continue to burden and confuse an already inundated pilot. In 1997 Rockwell Collins Inc. designed an advanced FMS display\\/interface and enhanced an existing 3D PFD that significantly reduced human interface problems between users

Robert A. Faerber; T. J. Etherington

1998-01-01

97

Theory of Aircraft Flight. Aerospace Education II.  

ERIC Educational Resources Information Center

This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of

Elmer, James D.

98

Theory of Aircraft Flight. Aerospace Education II.  

ERIC Educational Resources Information Center

The textbook provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of properties of the atmosphere. How different

Glascoff, W. G., III

99

Aerodynamic derivatives for an oblique wing aircraft estimated from flight data by using a maximum likelihood technique  

NASA Technical Reports Server (NTRS)

There are several practical problems in using current techniques with five degree of freedom equations to estimate the stability and control derivatives of oblique wing aircraft from flight data. A technique was developed to estimate these derivatives by separating the analysis of the longitudinal and lateral directional motion without neglecting cross coupling effects. Although previously applied to symmetrical aircraft, the technique was not expected to be adequate for oblique wing vehicles. The application of the technique to flight data from a remotely piloted oblique wing aircraft is described. The aircraft instrumentation and data processing were reviewed, with particular emphasis on the digital filtering of the data. A complete set of flight determined stability and control derivative estimates is presented and compared with predictions. The results demonstrated that the relatively simple approach developed was adequate to obtain high quality estimates of the aerodynamic derivatives of such aircraft.

Maine, R. E.

1978-01-01

100

Safe automatic flight back and landing of aircraft flight reconfiguration function (FRF)  

Microsoft Academic Search

SOFIA (Safe Automatic Flight Back and Landing of Aircraft) project is a response to the challenge of developing concepts and techniques enabling the safe and automatic return to ground in the event of hostile actions. Activities in this sense have been started in the framework of the SAFEE SP3 (Secure Aircraft in the Future European Environment Sub-Project 3) project. SOFIA

Juan Alberto Herrera Garca

2008-01-01

101

Safe Automatic Flight Back and Landing of Aircraft Flight Reconfiguration Function (FRF)  

Microsoft Academic Search

SOFIA (safe automatic flight back and landing of aircraft) project is a response to the challenge of developing concepts and techniques enabling the safe and automatic return to ground in the event of hostile actions. Activities in this sense have been started in the framework of the SAFEE SP3 (secure aircraft in the future european environment sub-project 3) project. SOFIA

Juan Alberto Herreria Garcia

2008-01-01

102

Aircraft Configured for Flight in an Atmosphere Having Low Density  

NASA Technical Reports Server (NTRS)

An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Guynn, Mark D. (Inventor); Hunter, Craig A. (Inventor); Paddock, David A. (Inventor); Riddick, Steven E. (Inventor); Teter, Jr., John E. (Inventor)

2012-01-01

103

Optimizing aircraft performance with adaptive, integrated flight/propulsion control  

NASA Technical Reports Server (NTRS)

The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

Smith, R. H.; Chisholm, J. D.; Stewart, J. F.

1991-01-01

104

Testing Instrument for Flight-Simulator Displays  

NASA Technical Reports Server (NTRS)

Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.

Haines, Richard F.

1987-01-01

105

Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise  

Microsoft Academic Search

As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve

R. A. Golub; J. S. Preisser

1984-01-01

106

Flight investigation of a vertical-velocity command system for VTOL aircraft  

NASA Technical Reports Server (NTRS)

A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.

Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.

1977-01-01

107

Analysis of the cyclotron facility calibration and aircraft dosimetry results from the liulin-3M instrument  

NASA Astrophysics Data System (ADS)

The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, used on the MIR space station during the 1988-1994 time period. The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and 1 cm2 area is contained in the instrument. Pulse high analysis technique is used to determine the energy losses in the detector. The final data from the instrument are the flux and the dose rate for the exposure time and 256 channels of absorbed dose spectra based on the assumption that the particle flux is normal to the detector. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and had been used for radiation measurements during commercial aircraft flights. The calibration procedure and some flight results are presented in this paper.

Dachev, Ts. P.; Stassinopoulos, E. G.; Tomov, B. T.; Dimitrov, Pl. G.; Matviichuk, Yu. N.; Shurshakov, V. A.; Petrov, V. M.

108

First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight  

NASA Astrophysics Data System (ADS)

Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ?CO2 and ?T and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ? for fuel-sulfur conversion to SA of 0.34 %.

Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

109

Proportional Plus Integral Control of Aircraft for Automated Maneuvering Formation Flight.  

National Technical Information Service (NTIS)

In this study an automated formation control system for a lead and wing aircraft flight is developed. The proposed formation control system is capable of controlling like or dissimilar aircraft in maneuvering formation flight. Thus, two versions of the C-...

J. L. Dargan

1991-01-01

110

Dryden B-52 Launch Aircraft in Flight over Dryden  

NASA Technical Reports Server (NTRS)

NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.

1996-01-01

111

System identification methods for aircraft flight control development and validation  

NASA Technical Reports Server (NTRS)

System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

Tischler, Mark B.

1995-01-01

112

Survey on eye comfort in aircraft: I. Flight attendants.  

PubMed

Extensive research in aviation medicine has been devoted to various aspects of vision, but there has been little attention to the eye problems of flight attendants. Flight attendants, especially contact lens wearers, have complained about eye discomfort in aircraft. The purpose of this study was to evaluate some of the conditions in aircraft that might influence their eye comfort. A questionnaire on eye comfort was developed in conjunction with the Air Safety Department of the Association of Flight Attendants and distributed through its Flightlog magazine. Of the 774 respondents, 95% reported some eye discomfort in aircraft. It is significant that both those who did and who did wear contact lenses reported similar eye problems. The most common eye problems reported were conjunctival redness and dried eyes. Smoking was indicated by the respondents to be the most noticeable factor causing eye symptoms. Aircraft cabin conditions are discussed, including relative humidity, atmospheric oxygen, and ozone concentration. Since air passengers are exposed to the same aircraft conditions as the attendants, they probably would manifest similar eye problems. PMID:464966

Eng, W G

1979-04-01

113

Development of In-Flight Simulation Aircraft for Research and Training Applications in UK (United Kingdom).  

National Technical Information Service (NTIS)

The objectives and the aircraft experimental system for the Vectored thrust Aircraft Advanced Flight Control (VAAC) research program are discussed. The VAAC program studies control laws, displays and cockpit controls for advanced STOL aircraft. The object...

O. P. Nicholas J. A. Giles D. A. Williams

1986-01-01

114

Instrumentation for Measurement of Aircraft Noise and Sonic Boom.  

National Technical Information Service (NTIS)

Instrumentation suitable for measuring both aircraft noise and sonic boom is described. It is comprised of a converter that produces an electric current proportional to the sound pressure level at a condenser microphone. The electric current is transmitte...

A. J. Zuckerwar

1973-01-01

115

Knowledge-based processing for aircraft flight control  

NASA Technical Reports Server (NTRS)

The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.

Painter, John H.

1991-01-01

116

Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations  

NASA Technical Reports Server (NTRS)

The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

Merrill, Walter; Garg, Sanjay

1995-01-01

117

Evaluating aircraft pilot - Navigational equipment in flight tests  

Microsoft Academic Search

The specialists at M.M. Gromov Flight Research Institute (FRI) have developed special techniques and facilities to evaluate the aircraft pilot - navigational equipment for conformance to specified requirements. On-board trajectory measurement complex equipment is used for data recording and determination of actual values of trajectory parameters. The parameter values are obtained using the differential mode of the satellite navigation system.

E. G. Kharin; L. A. Kopylov; V. G. Polikarpov; V. A. Kopelovich

2008-01-01

118

NDE of Damage in Aircraft Flight Control Surfaces  

Microsoft Academic Search

Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb

David K. Hsu; Daniel J. Barnard; Vinay Dayal

2007-01-01

119

Applications of state estimation in aircraft flight-data analysis  

NASA Technical Reports Server (NTRS)

This paper traces the evolution of the use of state estimation in the analysis of aircraft flight data and discusses some recent applications associated with airline turbulence upsets and high-angle-of-attack flight tests. A unifying mathematical framework for state estimation is reviewed, and several examples are shown that illustrate a general approach for estimating variables that are difficult to measure. It is hoped that the diversity of the applications discussed and the examples presented will make the flight-data analyst mindful of the potential advantages of using state estimation methods.

Bach, R. E., Jr.; Wingrove, R. C.

1983-01-01

120

Engineering Design of the Television Instrumentation System for the Harpoon Captive Flight Program.  

National Technical Information Service (NTIS)

A Television Instrumentation System provides a data gathering and reduction system for use in the Harpoon Anti-Ship Missile Captive Flight Test Program being conducted at Pt. Mugu, California. The system is installed in an aircraft test bed that simulates...

J. J. Poetker C. H. Ronnenburg F. N. Sansone

1974-01-01

121

X-31 Enhanced Fighter Maneuverability Aircraft in Flight  

NASA Technical Reports Server (NTRS)

The X-31 Enhanced Fighter Maneuverability aircraft in flight over California's Mojave desert during a 1992 test flight. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1992-01-01

122

Evaluation of transponder antenna coverage\\/ATCRBS during simulated flights of aircraft  

Microsoft Academic Search

A computer model was used to analyze the effect of aircraft orientation on the performance of the Air Traffic Control Radar Beacon System (ATCRBS). Flights by Cessna 150, Boeing 727, Boeing 747, and F-4H aircraft over a common flight route out of La Guardia Airport were simulated. Transponder\\/antenna performance for various aircraft attitudes and locations along the flight path was

T. Gibson

1979-01-01

123

Flight mechanics of a tailless articulated wing aircraft.  

PubMed

This paper investigates the flight mechanics of a micro aerial vehicle without a vertical tail in an effort to reverse-engineer the agility of avian flight. The key to stability and control of such a tailless aircraft lies in the ability to control the incidence angles and dihedral angles of both wings independently. The dihedral angles can be varied symmetrically on both wings to control aircraft speed independently of the angle of attack and flight path angle, while asymmetric dihedral can be used to control yaw in the absence of a vertical stabilizer. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. Numerical continuation and bifurcation analysis are used to compute trim states and assess their stability. This paper lays the foundation for design and stability analysis of a flapping wing aircraft that can switch rapidly from flapping to gliding flight for agile manoeuvring in a constrained environment. PMID:21487173

Paranjape, Aditya A; Chung, Soon-Jo; Selig, Michael S

2011-06-01

124

Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.  

ERIC Educational Resources Information Center

This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as

Dade County Public Schools, Miami, FL.

125

Flight propulsion control integration for V/STOL aircraft  

NASA Technical Reports Server (NTRS)

The goal of the propulsion community is to have the enabling propulsion technologies in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack fighter aircraft in the mid-1990's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL, and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff vertical landing fighter/attack aircraft in the post-ATF period. The rationale, methods, and criteria used in developing a joint NASA Lewis and NASA Ames research program to develop the technology element for integrated flight propulsion control through integrated methodologies is presented. This program, the Supersonic STOVL Integrated Flight Propulsion Controls Program, is part of the overall NASA Lewis Supersonic STOVL integrated approach to an integrated program to achieve integrated flight propulsion control technology.

Mihaloew, James R.

1987-01-01

126

Aircraft motion analysis using limited flight and radar data  

NASA Technical Reports Server (NTRS)

The development and application of methods for reconstructing, from a limited set of recorded data, a comprehensive scenario of aircraft motions before and during an accident are described. The accuracy of these analytical methods is investigated using data recorded onboard the Ames CV-990 research aircraft. In these experiments, the expanded set of data, derived from either foil or ATC records, is compared with corresponding values measured by the research instrumentation system onboard the aircraft. The results indicate that many of the derived quantities are in good agreement with the corresponding onboard measurements. A recent application of this procedure using actual accident records is presented and potential applications are briefly reviewed.

Wingrove, R. C.; Bach, R. E., Jr.; Parks, E. K.

1979-01-01

127

EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Arctic2003 Aircraft Campaign Flight Report  

NASA Technical Reports Server (NTRS)

In March 2003 a coordinated Arctic sea ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was part of the program for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea ice products. The AMSR-E, designed and built by the Japanese National Space Development Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea ice products to be validated include sea ice concentration, sea ice temperature, and snow depth on sea ice. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the seven flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements. Two of the seven aircraft flights were coordinated with scientists making surface measurements of snow and ice properties including sea ice temperature and snow depth on sea ice at a study area near Barrow, AK and at a Navy ice camp located in the Beaufort Sea. Two additional flights were dedicated to making heat and moisture flux measurements over the St. Lawrence Island polynya to support ongoing air-sea-ice processes studies of Arctic coastal polynyas. The remaining flights covered portions of the Bering Sea ice edge, the Chukchi Sea, and Norton Sound.

Cavalieri, D. J.; Markus,T.

2003-01-01

128

Longitudinal flying qualities criteria for single-pilot instrument flight operations  

NASA Technical Reports Server (NTRS)

Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

Stengel, R. F.; Bar-Gill, A.

1983-01-01

129

Longitudinal flying qualitites criteria for single-pilot instrument flight operations  

NASA Technical Reports Server (NTRS)

Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems, the relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

Bar-Gill, A.; Stengel, R. F.

1986-01-01

130

X-29A aircraft structural loads flight testing  

NASA Technical Reports Server (NTRS)

The X-29A research and technology demonstrator aircraft has completed a highly successful multiphase flight test program. The primary research objective was to safely explore, evaluate, and validate a number of aerodynamic, structural, and flight control technologies, all highly integrated into the vehicle design. Most of these advanced technologies, particularly the forward-swept-wing platform, had a major impact on the structural design. Throughout the flight test program, structural loads clearance was an ongoing activity to provide a safe maneuvering envelope sufficient to accomplish the research objectives. An overview is presented of the technologies, flight test approach, key results, and lessons learned from the structural flight loads perspective. The overall design methodology was considered validated, but a number of structural load characteristics were either not adequately predicted or totally unanticipated prior to flight test. While conventional flight testing techniques were adequate to insure flight safety, advanced analysis tools played a key role in understanding some of the structural load characteristics, and in maximizing flight test productivity.

Sims, Robert; Mccrosson, Paul; Ryan, Robert; Rivera, Joe

1989-01-01

131

An Indispensable Ingredient: Flight Research and Aircraft Design  

NASA Technical Reports Server (NTRS)

Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

Gorn, Michael H.

2003-01-01

132

Buffet Induced Structural/Flight-Control System Interaction of the X-29A Aircraft.  

National Technical Information Service (NTIS)

High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situa...

D. F. Voracek R. Clarke

1991-01-01

133

An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data  

NASA Technical Reports Server (NTRS)

A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

2000-01-01

134

Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft  

NASA Technical Reports Server (NTRS)

The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

2006-01-01

135

Flight evaluation of advanced flight control systems and cockpit displays for powered-lift STOL Aircraft  

NASA Technical Reports Server (NTRS)

A flight research program was conducted to assess the improvements, in longitudinal path control during a STOL approach and landing, that can be achieved with manual and automatic control system concepts and cockpit displays with various degrees of complexity. NASA-Ames powered-lift Augmentor Wing Research Aircraft was used in the research program. Satisfactory flying qualities were demonstrated for selected stabilization and command augmentation systems and flight director combinations. The ability of the pilot to perform precise landings at low touchdown sink rates with a gentle flare maneuver was also achieved. The path-control improvement is considered to be applicable to other powered-lift aircraft configurations.

Franklin, J. A.; Smith, D. W.; Watson, D. M.; Warner, D. N., Jr.; Innis, R. C.; Hardy, G. H.

1976-01-01

136

Autonomous Flight Safety System September 27, 2005, Aircraft Test  

NASA Technical Reports Server (NTRS)

This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.

Simpson, James C.

2005-01-01

137

Overview of the preparation and use of an OV-10 aircraft for wake vortex hazards flight experiments  

NASA Technical Reports Server (NTRS)

An overview is presented of the development, use, and current flight-test status of a highly instrumented North American Rockwell OV-10A Bronco as a wake-vortex-hazards research aircraft. A description of the operational requirements and measurements criteria, the resulting instrumentation systems and aircraft modifications, system-calibration and research flights completed to date, and current flight status are included. These experiments are being conducted by the National Aeronautics and Space Administration as part of an effort to provide the technology to safely improve the capacity of the nation's air transportation system and specifically to provide key data in understanding and predicting wake vortex decay, transport characteristics, and the dynamics of encountering wake turbulence. The OV-10A performs several roles including meteorological measurements platform, wake-decay quantifier, and trajectory-quantifier for wake encounters. Extensive research instrumentation systems include multiple airdata sensors, video cameras with cockpit displays, aircraft state and control-position measurements, inertial aircraft-position measurements, meteorological measurements, and an on-board personal computer for real-time processing and cockpit display of research data. To date, several of the preliminary system check flights and two meteorological-measurements deployments have been completed. Several wake encounter and wake-decay-measurements flights are planned for the fall of 1995.

Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

1995-01-01

138

Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station  

NASA Technical Reports Server (NTRS)

Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

Bendrick, Gregg A.; Kamine, Tovy Haber

2008-01-01

139

Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight  

NASA Technical Reports Server (NTRS)

Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to th

1994-01-01

140

Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.  

ERIC Educational Resources Information Center

The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument

Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

141

Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise  

NASA Astrophysics Data System (ADS)

As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

Golub, R. A.; Preisser, J. S.

1984-04-01

142

Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise  

NASA Technical Reports Server (NTRS)

As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

Golub, R. A.; Preisser, J. S.

1984-01-01

143

Comparison of wind and turbulence measurements from Doppler lidar and instrumented aircraft  

NASA Technical Reports Server (NTRS)

Wind fields were measured with the ground based lidar, NOAA Wave Propagation Laboratory and with the NASA B-57B instrumented aircraft. The remotely sensed winds are compared with the in situ aircraft measurements. Three flight plans were carried out during the two different field programs. At NASA/MSFC the aircraft circled while the lidar scanned conically and the aircraft flew 6 deg approach path along the fixed lidar beam. The aircraft flew an approach along the lidar beam directed south-north (parallel to the mountain range) and a climbout along the lidar beam which alternately shifted east-west (perpendicular to the mountain range). Turbulence intensities and spectra were calculated from the temporal fluctuations in the lidar-measured radial wind speed component. These field tests provided unique sets of data to examine the mean wind and turbulence measurements made by remote sensing instruments. The comparison of aircraft measured turbulence intensities and spectra with lidar time histories of radial wind speed were in good agreement.

Huang, K. H.; Frost, W.; Ringnes, E. A.

1985-01-01

144

Novel flight instrument display to minimize the risk of spatial disorientation  

NASA Astrophysics Data System (ADS)

This novel flight instrument display presents information to the pilot in a simple and easily comprehensible format by integrating the five orientational flight parameters. It allows the pilot to select specific orientation parameters and then follow a simple tracking task which ensures that these parameters are maintained or, if necessary, recovered. The pilot can at any time check any parameter he wishes, but is free from the requirement to continually sample and combine information from the traditional instruments to maintain stable flight. Cognitive workload to maintain orientation is thus reduced. Our assessment of the display in a UH-60 helicopter simulator showed that the novel display makes recovery from unusual aircraft attitudes and instrument flying easier than when using the standard instrument panel.

Braithwaite, Malcolm G.; Durnford, Simon J.

1997-06-01

145

14 CFR Appendix B to Part 417 - Flight Hazard Area Analysis for Aircraft and Ship Protection  

...Flight Hazard Area Analysis for Aircraft and Ship Protection B Appendix B to Part 417...Flight Hazard Area Analysis for Aircraft and Ship Protection B417.1Scope This appendix...requirements to establish aircraft hazard areas, ship hazard areas, and land impact...

2014-01-01

146

14 CFR Appendix B to Part 417 - Flight Hazard Area Analysis for Aircraft and Ship Protection  

Code of Federal Regulations, 2011 CFR

...Flight Hazard Area Analysis for Aircraft and Ship Protection B Appendix B to Part 417...Flight Hazard Area Analysis for Aircraft and Ship Protection B417.1Scope This appendix...requirements to establish aircraft hazard areas, ship hazard areas, and land impact...

2011-01-01

147

14 CFR Appendix B to Part 417 - Flight Hazard Area Analysis for Aircraft and Ship Protection  

Code of Federal Regulations, 2012 CFR

...Flight Hazard Area Analysis for Aircraft and Ship Protection B Appendix B to Part 417...Flight Hazard Area Analysis for Aircraft and Ship Protection B417.1Scope This appendix...requirements to establish aircraft hazard areas, ship hazard areas, and land impact...

2012-01-01

148

Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches  

NASA Technical Reports Server (NTRS)

Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

Hindson, W. S.; Hardy, G. H.; Innis, R. C.

1981-01-01

149

Results from a GPS Shuttle Training Aircraft flight test  

NASA Technical Reports Server (NTRS)

A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.

Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.

1991-01-01

150

The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research  

NASA Technical Reports Server (NTRS)

The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

2000-01-01

151

Aircraft Trajectory: Prediction and Control in the Air Transport Flight Management Computer Systems.  

National Technical Information Service (NTIS)

The declining cost of computing power and memory has enabled avionic manufacturers to develop sophisticated airborne computing systems. One of the most complex aircraft systems on modern air transport aircraft is the Flight Management Computer System (FMC...

P. J. Howells

1990-01-01

152

Altus I aircraft in flight, retracting landing gear after takeoff  

NASA Technical Reports Server (NTRS)

The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

1997-01-01

153

Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station  

NASA Technical Reports Server (NTRS)

Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three physiologic cones of eye/head movement; 2) Understand how instrument displays comply with these design principles in conventional aircraft and an uninhabited aerial vehicle system. Which of the following is NOT a recognized physiologic principle of instrument display design? Cone of Easy Eye Movement 2) Cone of Binocular Eye Movement 3) Cone of Maximum Eye Movement 4) Cone of Head Movement 5) None of the above. Answer: # 2) Cone of Binocular Eye Movement

Kamine, Tovy Haber; Bendrick, Gregg A.

2008-01-01

154

Flight Dynamics Modeling and Simulation of a Damaged Transport Aircraft  

NASA Technical Reports Server (NTRS)

A study was undertaken at NASA Langley Research Center to establish, demonstrate, and apply methodology for modeling and implementing the aerodynamic effects of MANPADS damage to a transport aircraft into real-time flight simulation, and to demonstrate a preliminary capability of using such a simulation to conduct an assessment of aircraft survivability. Key findings from this study include: superpositioning of incremental aerodynamic characteristics to the baseline simulation aerodynamic model proved to be a simple and effective way of modeling damage effects; the primary effect of wing damage rolling moment asymmetry may limit minimum airspeed for adequate controllability, but this can be mitigated by the use of sideslip; combined effects of aerodynamics, control degradation, and thrust loss can result in significantly degraded controllability for a safe landing; and high landing speeds may be required to maintain adequate control if large excursions from the nominal approach path are allowed, but high-gain pilot control during landing can mitigate this risk.

Shah, Gautam H.; Hill, Melissa A.

2012-01-01

155

Flight Test of ASAC Aircraft Interior Noise Control System  

NASA Technical Reports Server (NTRS)

A flight test is described in which an active structural/acoustic control system reduces turboprop induced interior noise on a Raytheon Aircraft Company 1900D airliner. Control inputs to 21 inertial force actuators were computed adaptively using a transform domain version of the multichannel filtered-X LMS algorithm to minimize the mean square response of 32 microphones. A combinatorial search algorithm was employed to optimize placement of the force actuators on the aircraft frame. Both single frequency and multi-frequency results are presented. Reductions of up to 15 dB were obtained at the blade passage frequency (BPF) during single frequency control tests. Simultaneous reductions of the BPF and next 2 harmonics of 10 dB, 2.5 dB and 3.0 dB, were obtained in a multi-frequency test.

Palumbo, Dan; Cabell, Ran; Cline, John; Sullivan, Brenda

1999-01-01

156

Emergency in-flight egress opening for general aviation aircraft  

NASA Technical Reports Server (NTRS)

In support of a stall/spin research program, an emergency in-flight egress system is being installed in a light general aviation airplane. To avoid a major structural redesign for a mechanical door, an add-on 11.2 kg pyrotechnic-actuated system was developed to create an opening in the existing structure. The airplane skin will be explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel will be jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mock-ups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics.

Bement, L. J.

1980-01-01

157

Flight assessment of a large supersonic drone aircraft for research use  

NASA Technical Reports Server (NTRS)

An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

Eckstrom, C. V.; Peele, E. L.

1974-01-01

158

An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach  

NASA Technical Reports Server (NTRS)

NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

Oneill-Rood, Nora; Glover, Richard D.

1990-01-01

159

STDN network operations procedure for Apollo range instrumentation aircraft, revision 1  

NASA Technical Reports Server (NTRS)

The Apollo range instrumentation aircraft (ARIA) fleet which consists of four EC-135N aircraft used for Apollo communication support is discussed. The ARIA aircraft are used to provide coverage of lunar missions, earth orbit missions, command module/service module separation to spacecraft landing, and assist in recovery operations. Descriptions of ARIA aircraft, capabilities, and instrumentation are included.

Vette, A. R.; Pfeiffer, W. A.

1972-01-01

160

A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft  

NASA Astrophysics Data System (ADS)

For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48 is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 1016 molecules cm-2 in the plume center. The emission estimates are consistent with reports in the pollutant transfer register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected. The present study reports on the experimental setup and characteristics of AirMAP, and the first measurements at high spatial resolution and wide spatial coverage are presented which meet the requirements for NO2 mapping to observe and account for the intrinsic variability of tropospheric NO2.

Schnhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

2014-04-01

161

Some Aspects of Flight Trajectory Control in Future Avionic Systems for Combat Aircraft.  

National Technical Information Service (NTIS)

This paper considers some of the reasons for increased integration with emphasis on Flight Profile Control in combat aircraft, largely in the ground attack role. Some of the reasons for further integration involving flight control are examined. Next the p...

W. H. McKinlay

1983-01-01

162

76 FR 22163 - Ninth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...  

Federal Register 2010, 2011, 2012, 2013

...TRANSPORTATION Federal Aviation Administration Ninth...Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA...Barriers and Alternative Flight Deck Security...

2011-04-20

163

75 FR 29810 - Sixth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...  

Federal Register 2010, 2011, 2012, 2013

...TRANSPORTATION Federal Aviation Administration Sixth...Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures...AGENCY: Federal Aviation Administration...Barriers and Alternative Flight Deck Security...

2010-05-27

164

75 FR 9016 - Fifth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...  

Federal Register 2010, 2011, 2012, 2013

...TRANSPORTATION Federal Aviation Administration Fifth...Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA...Barriers and Alternative Flight Deck Security...

2010-02-26

165

75 FR 67450 - Eighth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...  

Federal Register 2010, 2011, 2012, 2013

...TRANSPORTATION Federal Aviation Administration Eighth...Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA...Barriers and Alternative Flight Deck Security...

2010-11-02

166

75 FR 52591 - Seventh Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...  

Federal Register 2010, 2011, 2012, 2013

...TRANSPORTATION Federal Aviation Administration Seventh...Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA...Barriers and Alternative Flight Deck Security...

2010-08-26

167

Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility  

NASA Technical Reports Server (NTRS)

Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.

Kehoe, Michael W.

1988-01-01

168

Aircraft equipment  

NASA Technical Reports Server (NTRS)

The complex of functionally interconnected instruments and devices for controlling flight, engine operations, electrical systems, communications, and vital systems for passengers and crew is described. The aggregates of the aircraft automatic equipment are also discussed.

1977-01-01

169

Calibration and intercomparison of water vapor instrumentation used on the NSF/NCAR HIAPER aircraft  

NASA Astrophysics Data System (ADS)

Subject of the study is the characterization of a Kahn DCS-80 water vapor calibration system and the calibration of two water vapor sensors used on research aircraft, namely a Buck Instruments B-1001 chilled mirror sensor and a MayComm Tunable Diode Laser Absorption Hygrometer. A series of Vaisala drop sondes were also characterized and compared to the aircraft instruments. In an effort to assess the precision of the water vapor sensors that are being used on board the NSF/NACR GV aircraft (HIAPER), the instruments were tested at ambient pressure (800 mbar) inside an environmental chamber to simulate temperature conditions during flight. Tested dewpoints ranged from -70 to +20 degrees Celsius. The TDL - hygrometer was calibrated in preparation for an international water vapor measurement intercomparison campaign at the Forschungszentrum Karlsruhe, Germany. We will present the detailed calibration and characterization procedure, the laboratory setup for the different sensors, results from the calibrations of all instruments, assess their precision and useful operating range, and present some preliminary results from the international intercomparison campaign.

Kraemer, D.; Campos, T.; Flocke, F.; Jensen, J.; Wang, J.; Cole, H.; Korn, E.; Lauritsen, D.; Kraemer, M.

2007-12-01

170

Calibration of strain-gage installations in aircraft structures for the measurement of flight loads  

NASA Technical Reports Server (NTRS)

A general method has been developed for calibrating strain-gage installations in aircraft structures, which permits the measurement in flight of the shear or lift, the bending moment, and the torque or pitching moment on the principal lifting or control surfaces. Although the stress in structural members may not be a simple function of the three loads of interest, a straightforward procedure is given for numerically combining the outputs of several bridges in such a way that the loads may be obtained. Extensions of the basic procedure by means of electrical combination of the strain-gage bridges are described which permit compromises between strain-gage installation time, availability of recording instruments, and data reduction time. The basic principles of strain-gage calibration procedures are illustrated by reference to the data for two aircraft structures of typical construction, one a straight and the other a swept horizontal stabilizer.

Skopinski, T H; Aiken, William S , Jr; Huston, Wilber B

1954-01-01

171

Modeling Aircraft Wing Loads from Flight Data Using Neural Networks  

NASA Technical Reports Server (NTRS)

Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

Allen, Michael J.; Dibley, Ryan P.

2003-01-01

172

Emergency in-flight egress for general aviation aircraft  

NASA Technical Reports Server (NTRS)

A NASA program for development of an inflight egress system for the left (pilot) door of general aviation aircraft is described. The pyrotechnic release door was felt to be necessary because of pilot difficulty in reaching the right door when subjected to spin/stall centrifugal effects. A flexible, linear shaped charged of hexanitrostibene II and a lanyard actuated detonator are discussed, along with mock-up tests and instrumentation. The egress system was designed for minimum structural impact, mimimum pilot initiation procedures, low weight, and no egress interference, and to provide sufficient force to blow off the door, have low required maintenance, and high reliability. Results of 68 tests are reviewed, noting the inclusion of a screen to keep glass fragments from spraying the cabin. Certification was achieved, and uses in the F-111 and B-1 aircraft are noted.

Bement, L. J.

1981-01-01

173

14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...  

Code of Federal Regulations, 2011 CFR

...instructor-instrument rating must include flight training on the following approved...lesson on a maneuver to be performed in flight; (5) Air traffic control clearances and procedures; (6) Flight by reference to instruments;...

2014-01-01

174

Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft  

NASA Technical Reports Server (NTRS)

Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

Conners, Timothy R.; Sims, Robert L.

1998-01-01

175

An Integrated Approach to Aircraft Modelling and Flight Control Law Design  

Microsoft Academic Search

The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions. Consequently, a large part of the FCL design process involves extensive simulation analyses, hardware-in-the-loop testing,

G. H. N. Looye

2008-01-01

176

Integrated propulsion-based flight control system design for a civil transport aircraft  

Microsoft Academic Search

We describe results of a study carried out at the University of Leicester in collaboration with Volvo Aero Corporation, on the design of integrated flight and propulsion control systems for a large civil transport aircraft. The use of the aircraft engines (via differential thrust and\\/or thrust vectoring) for the purposes of emergency flight control is examined in detail. An industry

M. Harefors; D. G. Bates

2002-01-01

177

Reliability analysis of flight control system for large civil aircraft with Imperfect Fault Coverage Model  

Microsoft Academic Search

Reliability of flight control system (FCS) is a key factor of the aircraft safety. Therefore, redundant technology and Built-in Test (BIT) technology are usually adapted by flight control system for modern large civil aircraft so as to improve the system reliability. Taking Boeing 777 as an example, Imperfect Fault Coverage Model (IFCM) is built with the analysis on the influence

Xiao Xiong; Ping Zhang

2012-01-01

178

Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft  

NASA Technical Reports Server (NTRS)

This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

1986-01-01

179

Analysis of the Cyclotron Facility Calibration and Aircraft Results Obtained by LIULIN-3M Instrument  

NASA Technical Reports Server (NTRS)

The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, which has been used on the NffR space station in the 1988-1994 time period, The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and 1 cm(exp 2) area is used in the instrument. Pulse high analysis technique is used for measurement of the energy losses in the detector. The final data sets from the instrument are the flux and the dose rate for the exposition time and 256 channels of LET spectra if a non-nal coincidence of the particles to the detector is considered. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and was used for space radiation measurements during commercial aircraft flights. Obtained calibration and flight results are analyzed in the paper.

Dachev, T. P.; Stassinopoulos, E. G.; Tomov, B. T.; Dimitrov, P. G.; Matviichuk, Y. N.; Shurshakov, V. A.; Petrov, V. M.

1998-01-01

180

Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control  

NASA Technical Reports Server (NTRS)

The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

Baer-Riedhart, Jennifer L.; Landy, Robert J.

1987-01-01

181

Real-Time Identification of Aircraft Physical Models for Fault Tolerant Flight Control  

Microsoft Academic Search

\\u000a The primary goal of aircraft fault tolerant flight control is to recover or maintain safe flight when failures have occurred.\\u000a Aircraft failures can be categorized into subsystem failures and airframe\\/structural failures. Modern aircraft subsystems\\u000a are equipped with redundancies and failure detection systems for maintaining and monitoring the health status of subsystems.\\u000a However, when failures such as engine separations, vertical tail

Ping Chu; Jan Mulder; Jan Breeman

182

Flight test of an imaging O2(X-b) monocular passive ranging instrument  

NASA Astrophysics Data System (ADS)

An instrument for monocular passive ranging based on atmospheric oxygen absorption near 762 nm has been designed, built and deployed to track emissive targets. An intensified CCD array is coupled to variable band pass liquid crystal filter and 3.5 - 8.8 degree field of view optics. The system was first deployed for a ground test viewing a static jet engine in afterburner at ranges of 0.35 - 4.8 km, establishing a range error of 15%. The instrument was also flight tested in a C-12 imaging an the exhaust plume of another aircraft afterburner at ranges up to 11 km.

Anderson, Joel R.; Hawks, Michael R.; Gross, Kevin C.; Perram, Glen P.

2011-05-01

183

Transfer of Instrument Training and the Synthetic Flight Training System.  

ERIC Educational Resources Information Center

One phase of an innovative flight training program, its development, and initial administration is described in this paper. The operational suitability test activities related to a determination of the transfer of instrument training value of the Army's Synthetic Flight Training System (SFTS) Device 2B24. Sixteen active Army members of an Officer

Caro, Paul W.

184

Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths  

NASA Technical Reports Server (NTRS)

The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows little geographical relationship to the high cloud input. Considering whether these effects would be observable, changing upper level cloud cover by as little as 0.4% produces warming greater than 2 standard deviations in the Microwave Sounding Unit (MSU) channels 4, 2 and 2r, in flight path regions and in the subtropics. Despite the simplified nature of these experiments, the results emphasize the sensitivity of the modeled climate to high level cloud cover changes, and thus the potential ability of aircraft to influence climate by altering clouds in the upper troposphere.

Rind, David; Lonergan, P.; Shah, K.

1999-01-01

185

SR-71A in Flight with Test Fixture Mounted Atop the Aft Section of the Aircraft  

NASA Technical Reports Server (NTRS)

This close-up, head-on view of NASA's SR-71A Blackbird in flight shows the aircraft with an experimental test fixture mounted on the back of the airplane. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995. It has since returned to Dryden along with SR-71A 61-79

1999-01-01

186

Fiber optic (flight quality) sensors for advanced aircraft propulsion  

NASA Technical Reports Server (NTRS)

Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

Poppel, Gary L.

1994-01-01

187

Effect of stabilization on VTOL aircraft in hovering flight  

NASA Technical Reports Server (NTRS)

A motion simulator study was conducted to determine the effects of roll and pitch stabilization on the handling qualities and control power requirements of VTOL aircraft during hover and short-distance maneuvering flight. Three levels of stabilization complexity were compared: (1) no stabilization, (2) rate stabilization, and (3) attitude stabilization. Control sensitivities and stabilization gains were optimized prior to comparison. Results are presented to show how the optimum systems were determined and how they compared with each other at different levels of control power. Comparisons were made both in calm air and in the presence of roll disturbances. Results indicate the attitude-stabilized system provides the best handling qualities for the least amount of control power.

Greif, R. K.; Fry, E. B.; Gerdes, R. M.; Gossett, T. D.

1972-01-01

188

Flight control synthesis for flexible aircraft using Eigenspace assignment  

NASA Technical Reports Server (NTRS)

The use of eigenspace assignment techniques to synthesize flight control systems for flexible aircraft is explored. Eigenspace assignment techniques are used to achieve a specified desired eigenspace, chosen to yield desirable system impulse residue magnitudes for selected system responses. Two of these are investigated. The first directly determines constant measurement feedback gains that will yield a close-loop system eigenspace close to a desired eigenspace. The second technique selects quadratic weighting matrices in a linear quadratic control synthesis that will asymptotically yield the close-loop achievable eigenspace. Finally, the possibility of using either of these techniques with state estimation is explored. Application of the methods to synthesize integrated flight-control and structural-mode-control laws for a large flexible aircraft is demonstrated and results discussed. Eigenspace selection criteria based on design goals are discussed, and for the study case it would appear that a desirable eigenspace can be obtained. In addition, the importance of state-space selection is noted along with problems with reduced-order measurement feedback. Since the full-state control laws may be implemented with dynamic compensation (state estimation), the use of reduced-order measurement feedback is less desirable. This is especially true since no change in the transient response from the pilot's input results if state estimation is used appropriately. The potential is also noted for high actuator bandwidth requirements if the linear quadratic synthesis approach is utilized. Even with the actuator pole location selected, a problem with unmodeled modes is noted due to high bandwidth. Some suggestions for future research include investigating how to choose an eigenspace that will achieve certain desired dynamics and stability robustness, determining how the choice of measurements effects synthesis results, and exploring how the phase relationships between desired eigenvector elements effects the synthesis results.

Davidson, J. B.; Schmidt, D. K.

1986-01-01

189

Knowledge-based processing for aircraft flight control  

NASA Technical Reports Server (NTRS)

This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.

Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul

1994-01-01

190

SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker  

NASA Technical Reports Server (NTRS)

NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990

1996-01-01

191

CID Aircraft in practice flight above target impact site with wing cutters  

NASA Technical Reports Server (NTRS)

In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720 to fly as a drone aircraft; General Electric installed and tested four degraders (one on each engine); and the FAA refined AMK (blending, testing, and fueling a full-size aircraft). The 15 flights had 15 takeoffs, 14 landings and a larger number of approaches to about 150 feet above the prepared crash site under remote control. These flight were used to introduce AMK one step at a time into some of the fuel tanks and engines while monitoring the performance of the engines. On the final flight (No. 15) with no crew, all fuel tanks were filled with a total of 76,000 pounds of AMK and the remotely-piloted aircraft landed on Rogers Dry Lakebed in an area prepared with posts to test the effectiveness of the AMK in a controlled impact. The CID, which some wags called the Crash in the Desert, was spectacular with a large fireball enveloping and burning the B-720 aircraft. From the standpoint of AMK the test was a major set-back, but for NASA Langley, the data collected on crashworthiness was deemed successful and just as important.

1984-01-01

192

A flight investigation of the STOL characteristics of an augmented jet flap STOL research aircraft  

NASA Technical Reports Server (NTRS)

The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.

Quigley, H. C.; Innis, R. C.; Grossmith, S.

1974-01-01

193

Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy  

NASA Technical Reports Server (NTRS)

This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.

Madzsar, George C.; Bickford, Randall L.; Duncan, David B.

1994-01-01

194

Flight Test of a Propulsion Controlled Aircraft System on the NASA F-15 Airplane.  

National Technical Information Service (NTIS)

Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual th...

F. W. Burcham T. A. Maine

1995-01-01

195

Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft  

NASA Technical Reports Server (NTRS)

The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.

Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph

2007-01-01

196

Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft.  

National Technical Information Service (NTIS)

The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a softwar...

C. R. Bomben J. W. Smolka J. T. Bosworth P. S. Silliams-Hayes J. J. Burken R. R. Larson M. J. Buschbacher H. A. Maliska

2006-01-01

197

The Altus II remotely piloted aircraft carried a variety of specialized instruments and cameras duri  

NASA Technical Reports Server (NTRS)

The Altus II remotely piloted aircraft carried a variety of specialized instruments and cameras during a lightning study over Florida during the summer of 2002, including one sensor mounted on a boom extending from Altus' nose. The Altus Cumulus Electrification Study (ACES), led by Dr. Richard Blakeslee of NASA Marshall Space Flight center, focused on the collection of electrical, magnetic and optical measurements of thunderstorms. Data collected will help scientists understand the development and life cycles of thunderstorms, which in turn may allow meteorologists to more accurately predict when destructive storms may hit. The Altus II, built by General Atomics Aeronautical Systems, Inc., is one of several remotely operated aircraft developed and matured under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. The program focused on developing airframe, propulsion, control system and communications technologies to allow unmanned aerial vehicles (UAVs) to operate at very high altitudes for long durations while carrying a variety of sensors, cameras or other instruments for science experiments, surveillance or telecommunications relay missions.

2002-01-01

198

Detection of Obstacles in the Flight Path of an Aircraft  

Microsoft Academic Search

The National Aeronautics and Space Administration (NASA), along with members of the aircraft industry, re- cently developed technologies for a new supersonic aircraft. One of the technological areas considered for this aircraft is the use of video cameras and image processing equipment to aid the pilot in detecting other aircraft in the sky. The de- tection techniques should provide high

Tarak Gandhi; Mau-tsuen Yang; Rangachar Kasturi; Octavia I. Camps; Lee D. Coraor; Jeffrey Mccandless

2000-01-01

199

A review of in-flight detection and identification of aircraft icing and reconfigurable control  

NASA Astrophysics Data System (ADS)

The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this review paper, aircraft icing identification based on neural network (NN), batch least-squares algorithm, Kalman filtering (KF), combined NN/KF, and H? parameter identification techniques are investigated, and compared with each other. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

Caliskan, Fikret; Hajiyev, Chingiz

2013-07-01

200

NDE of Damage in Aircraft Flight Control Surfaces  

NASA Astrophysics Data System (ADS)

Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown.

Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay

2007-03-01

201

NDE of Damage in Aircraft Flight Control Surfaces  

SciTech Connect

Flight control surfaces on an aircraft, such as ailerons, flaps, spoilers and rudders, are typically adhesively bonded composite or aluminum honeycomb sandwich structures. These components can suffer from damage caused by hail stone, runway debris, or dropped tools during maintenance. On composites, low velocity impact damages can escape visual inspection, whereas on aluminum honeycomb sandwich, budding failure of the honeycomb core may or may not be accompanied by a disbond. This paper reports a study of the damage morphology in such structures and the NDE methods for detecting and characterizing them. Impact damages or overload failures in composite sandwiches with Nomex or fiberglass core tend to be a fracture or crinkle or the honeycomb cell wall located a distance below the facesheet-to-core bondline. The damage in aluminum honeycomb is usually a buckling failure, propagating from the top skin downward. The NDE methods used in this work for mapping out these damages were: air-coupled ultrasonic scan, and imaging by computer aided tap tester. Representative results obtained from the field will be shown.

Hsu, David K.; Barnard, Daniel J.; Dayal, Vinay [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50011 (United States)

2007-03-21

202

Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft  

NASA Technical Reports Server (NTRS)

As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

Hoe, Garrison; Owens, Donald B.; Denham, Casey

2012-01-01

203

Piracetam and fish orientation during parabolic aircraft flight  

NASA Technical Reports Server (NTRS)

Goldfish were flown in parabolic Keplerian trajectories in a KC-135 aircraft to assay both the effectiveness of piracetam as an antimotion sickness drug and the effectiveness of state-dependent training during periods of oscillating gravity levels. Single-frame analyses of infrared films were performed for two classes of responses - role rates in hypogravity or hypogravity orienting responses (LGR) and climbing responses in hypergravity or hypergravity orienting responses (HGR). In Experiment I, preflight training with the vestibular stressor facilitated suppression of LGR by the 10th parabola. An inverse correlation was found between the magnitudes of LGR and HGR. Piracetam was not effective in a state-dependent design, but the drug did significantly increase HGR when injected into trained fish shortly before flight. In Experiment II, injections of saline, piracetam, and modifiers of gamma-aminobutyric acid - aminooxyacetic acid (AOAA) and isonicotinic acid did not modify LGR. AOAA did significantly increase HGR. Thus, the preflight training has a beneficial effect in reducing disorientation in the fish in weightlessness, but the drugs employed were ineffective.

Hoffman, R. B.; Salinas, G. A.; Homick, J. L.

1980-01-01

204

Dynamic ground effects flight test of an F-15 aircraft  

NASA Technical Reports Server (NTRS)

Flight tests to determine the changes in the aerodynamic characteristics of an F-15 aircraft caused by dynamic ground effects are described. Data were obtained for low and high sink rates between 0.7 and 6.5 ft/sec and at two landing approach speeds and flap settings: 150 kn with the flaps down and 170 kn with the flaps up. Simple correlation curves are given for the change in aerodynamic coefficients because of ground effects as a function of sink rate. Ground effects generally caused an increase in the lift, drag, and nose-down pitching movement coefficients. The change in the lift coefficient increased from approximately 0.05 at the high-sink rate to approximately 0.10 at the low-sink rate. The change in the drag coefficient increased from approximately 0 to 0.03 over this decreasing sink rate range. No significant difference because of the approach configuration was evident for lift and drag; however, a significant difference in pitching movement was observed for the two approach speeds and flap settings. For the 170 kn with the flaps up configuration, the change in the nose-down pitching movement increased from approximately -0.008 to -0.016. For the 150 kn with the flaps down configuration, the change was approximately -0.008 to -0.038.

Corda, Stephen; Stephenson, Mark T.; Burcham, Frank W.; Curry, Robert E.

1994-01-01

205

Modeling of Selected Aircraft Flight Phases Using Data from Flight Data Recorder  

NASA Astrophysics Data System (ADS)

While observing the dynamic air traffic increase, the issue of continuous controlling and monitoring every individual phase of flights becomes an essential matter. One of the phase of flight that has been studied is landing. At the commercial airports, landings take place every several dozen seconds up to few minutes. The correctness of carrying out required procedures has a crucial impact on the runway throughput, number of operations performed in the aerodrome vicinity and, above all, safety of the passengers. For obvious reasons the research and analysis of these processes cannot be done on objects in real conditions. Therefore, there is a tendency to use IT tools and other methods for the purpose of the analysis of the operations which take place in the aerodrome vicinity. In order to make use of the computer simulation it is essential to have mathematical models of these operations. The purpose of this article is to present methodology and defined a model that is based on parameters recorded by the flight data recorder. Models developed in that way map reality with high accuracy. Such models map the real aircraft operations in the aerodrome vicinity and can be applied in practice.

Stelmach, Anna

2012-02-01

206

48 CFR 1852.228-70 - Aircraft ground and flight risk.  

Code of Federal Regulations, 2013 CFR

...clause may be modified as follows: If the contract covers helicopters, vertical take-off aircraft, lighter-than-air airships...on the Contractor's premises. (iii) With respect to helicopters, flight commences upon engagement of the rotors for...

2013-10-01

207

Research and Feasibility of an Integrated Servo Pump Actuator Package for Aircraft Flight Control.  

National Technical Information Service (NTIS)

A research and development study was conducted to determine the feasibility of utilizing the servo pump principle in the design of Integrated Servo Actuator Packages that are planned for use in military aircraft primary flight control systems. A feasibili...

K. F. Becker N. F. Pedersen

1971-01-01

208

Noise Levels on Aircraft-Carrier Flight Decks, and Their Effects.  

National Technical Information Service (NTIS)

Measurements were made of noise levels produced by four aircraft during pilot qualification exercises aboard the flight deck of USS KITTY HAWK. These measurements, on both the A- and C- frequency weighting networks, were augmented by calculations of speec...

J. C. Webster

1971-01-01

209

Instrumentation for space flight experiments. [using nonhuman primates  

NASA Technical Reports Server (NTRS)

The selection of measurement systems for experiments conducted in the context of a space flight must be guided by the criteria applicable to any scientific study requiring objective measurements of physiological variables. Steps fundamental to the process of choosing the best instrumentation system are identified and the key factors in matching the operational characteristics of the instrumentation to its intended use are discussed. Special problems in obtaining data from nonhuman primates, whether restrained or unrestrained, are explored. Choices for data processing are evaluated as well as the use of prototype flight tests and simulations to assess future life science experiments for spacelab or payloads for the space shuttle biomedical scientific satellite.

Mccutcheon, E. P.

1977-01-01

210

Experimental flight test vibration measurements and nondestructive inspection on a USCG HC-130H aircraft  

NASA Technical Reports Server (NTRS)

This paper presents results of experimental flight test vibration measurements and structural inspections performed by the Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) at Sandia National Laboratories and the US Coast Guard Aircraft Repair and Supply Center (ARSC). Structural and aerodynamic changes induced by mounting a Forward Looking Infrared (FLIR) system on a USCG HC-130H aircraft are described. The FLIR adversely affected the air flow characteristics and structural vibration on the external skin of the aircraft's right main wheel well fairing. Upon initial discovery of skin cracking and visual observation of skin vibration in flight by the FLIR, a baseline flight without the FLIR was conducted and compared to other measurements with the FLIR installed. Nondestructive inspection procedures were developed to detect cracks in the skin and supporting structural elements and document the initial structural condition of the aircraft. Inspection results and flight test vibration data revealed that the FLIR created higher than expected flight loading and was the possible source of the skin cracking. The Coast Guard performed significant structural repair and enhancement on this aircraft, and additional in-flight vibration measurements were collected on the strengthened area both with and without the FLIR installed. After three months of further operational FLIR usage, the new aircraft skin with the enhanced structural modification was reinspected and found to be free of flaws. Additional US Coast Guard HC-130H aircraft are now being similarly modified to accommodate this FLIR system. Measurements of in- flight vibration levels with and without the FLIR installed, and both before and after the structural enhancement and repair were conducted on the skin and supporting structure in the aircraft's right main wheel fairing. Inspection results and techniques developed to verify the aircraft's structural integrity are discussed.

Moore, D. G.; Jones, C. R.; Mihelic, J. E.; Barnes, J. D.

1998-01-01

211

14 CFR 21.39 - Flight test instrument calibration and correction report.  

Code of Federal Regulations, 2010 CFR

...2009-01-01 false Flight test instrument calibration and correction report... § 21.39 Flight test instrument calibration and correction report...required in connection with the calibration of instruments used for test...

2009-01-01

212

14 CFR 21.39 - Flight test instrument calibration and correction report.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Flight test instrument calibration and correction report... § 21.39 Flight test instrument calibration and correction report...required in connection with the calibration of instruments used for test...

2010-01-01

213

Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft  

NASA Technical Reports Server (NTRS)

Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants.

Hague, D. S.; Merz, A. W.

1976-01-01

214

Flight Performance Characteristics of a Biologically-Inspired Morphing Aircraft  

Microsoft Academic Search

Despite the past century of innovation in aircraft technology, the versatility of modern aircraft remains far worse than airborne biological counterparts. The shape changing accomplished by birds and bats in ight stands as one of the few examples of true morphing. As such, the aircraft community is devoting considerable attention to the study of biological systems and how they might

Mujahid Abdulrahim

215

Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation  

SciTech Connect

Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

Patt, R.F.

1980-06-01

216

Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation  

NASA Technical Reports Server (NTRS)

Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.

Patt, R. F.

1980-01-01

217

Aircraft interrogation and display system: A ground support equipment for digital flight systems  

NASA Technical Reports Server (NTRS)

A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

Glover, R. D.

1982-01-01

218

Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions  

NASA Technical Reports Server (NTRS)

This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

Nguyen, Nhan T.; Tuzcu, Ilhan

2009-01-01

219

An optical technique for examining aircraft shock wave structures in flight  

NASA Technical Reports Server (NTRS)

The detailed properties of sonic booms have to be better understood before commercial, next generation, supersonic and hypersonic aircraft can be properly developed. Experimental tests and measurements are needed to help sort the physical details of the flows at realistic test conditions. Some of these tests can be made in wind tunnels, but the need for full flight conditions simulation, the problem of tunnel wall interference, and the short distance the shocks can be examined from the aircraft, limit the usefulness of wind tunnel tests. Previous measurement techniques for examining the flow field of aircraft in flight have included pressure measurements on the aircraft, ground based pressure measurements, and flow field measurements made with chase aircraft. Obtaining data with chase planes is a slow and difficult process, and is limited in how close it can be obtained to the test aircraft. A need clearly existed for a better technique to examine the shock structure from the plane to large distances from the plane. A new technique has been recently developed to obtain schlieren photographs of aircraft in flight (SAF). Preliminary results have been obtained, and the technique holds promise as a tool to study the shape and approximate strength of the shock wave structure around the test aircraft, and examine shock wave details all the way from the aircraft to near the ground. The current paper describes this approach, and gives some preliminary test results.

Weinstein, Leonard M.

1994-01-01

220

Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)  

NASA Technical Reports Server (NTRS)

We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.

Madou, Marc; Lowenstein, Max; Wegener, Steven

1995-01-01

221

A Perspective on Development Flight Instrumentation and Flight Test Analysis Plans for Ares I-X  

NASA Technical Reports Server (NTRS)

NASA. s Constellation Program will take a significant step toward completion of the Ares I crew launch vehicle with the flight test of Ares I-X and completion of the Ares I-X post-flight evaluation. The Ares I-X flight test vehicle is an ascent development flight test that will acquire flight data early enough to impact the design and development of the Ares I. As the primary customer for flight data from the Ares I-X mission, Ares I has been the major driver in the definition of the Development Flight Instrumentation (DFI). This paper focuses on the DFI development process and the plans for post-flight evaluation of the resulting data to impact the Ares I design. Efforts for determining the DFI for Ares I-X began in the fall of 2005, and significant effort to refine and implement the Ares I-X DFI has been expended since that time. This paper will present a perspective in the development and implementation of the DFI. Emphasis will be placed on the process by which the list was established and changes were made to that list due to imposed constraints. The paper will also discuss the plans for the analysis of the DFI data following the flight and a summary of flight evaluation tasks to be performed in support of tools and models validation for design and development.

Huebner, Lawrence D.; Richards, James S.; Brunty, Joseph A.; Smith, R. Marshall; Trombetta, Dominic R.

2009-01-01

222

Photometric Evaluation of Reflection-Reducing Coating for Aircraft Instrument Cover Glass.  

National Technical Information Service (NTIS)

Comparisons were made between plain instrument cover glass used on aircraft instrument panels and cover glass deposited with multilayer antireflection coating conforming to MIL-C-14806 and AMS 2521. Photometric measurements of reflections, light transmiss...

H. R. Stowell R. W. Bauer

1969-01-01

223

Design of Flight Control System for a Small Unmanned Tilt Rotor Aircraft  

Microsoft Academic Search

A tilt rotor is an aircraft of a special kind, which possesses the characteristics of a helicopter and a fixed-wing airplane. However, there are a great number of important technical problems waiting for settlements. Of them, the flight control system might be a critical one. This article presents the progresses of the research work on the design of flight control

Song Yanguo; Wang Huanjin

2009-01-01

224

Handling Qualities Degradation in Tilt-Rotor Aircraft Following Flight Control System Failures  

Microsoft Academic Search

Handling Qualities are critical in terms of performance and flight safety and will have a strong influence on the design of a future Civil Tilt-Rotor. As with all civil aircraft, the design must comply with civil aviation airworthiness regulations within which safety standards play a major role, thus any handling qualities degradations caused by a flight control system component failure

Neil Cameron; Gareth D Padfield

225

Longitudinal aerodynamic parameters of the Kestrel aircraft (XV-6A) extracted from flight data  

NASA Technical Reports Server (NTRS)

Flight-test data have been used to extract the longitudinal aerodynamic parameters of a vectored-thrust aircraft. The results show that deflecting the thrust past 15 has an effect on the pitching-moment derivatives and tends to reduce the static stability. The trend toward reduction in the longitudinal stability also been noted by the pilots conducting the flight tests.

Suit, W. T.; Williams, J. L.

1973-01-01

226

Flight Assessment of a Large Supersonic Drone Aircraft for Research Use.  

National Technical Information Service (NTIS)

An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver ...

C. V. Eckstrom E. L. Peele

1974-01-01

227

Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions  

NASA Technical Reports Server (NTRS)

Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

2008-01-01

228

Flight simulator experiments to determine human reaction to aircraft motion environments  

NASA Technical Reports Server (NTRS)

An analysis of human response to aircraft motion is presented using data obtained on the NASA Flight Research Center's Jetstar aircraft. The purpose of these tests was to explore the relationship of vertical and transverse accelerations to human comfort as well as obtain information on the maximum comfortable bank angle for commercial aircraft operations. A preliminary study was also conducted to establish the importance or lack thereof of the low frequency content of aircraft motion due to natural turbulence. An effort has been made to model these data and comparisons with appropriate sources are made.

Jacobson, I. D.; Rudrapatna, A. N.

1974-01-01

229

Utilization of satellite imagery by in-flight aircraft. [for weather information  

NASA Technical Reports Server (NTRS)

Present and future utilization of satellite weather data by commercial aircraft while in flight was assessed. Weather information of interest to aviation that is available or will become available with future geostationary satellites includes the following: severe weather areas, jet stream location, weather observation at destination airport, fog areas, and vertical temperature profiles. Utilization of this information by in-flight aircraft is especially beneficial for flights over the oceans or over remote land areas where surface-based observations and communications are sparse and inadequate.

Luers, J. K.

1976-01-01

230

A knowledge-based system design/information tool for aircraft flight control systems  

NASA Technical Reports Server (NTRS)

Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.

Mackall, Dale A.; Allen, James G.

1989-01-01

231

Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument  

NASA Technical Reports Server (NTRS)

This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

1998-01-01

232

A Risk Assessment Model for Reduced Aircraft Separation: A Quantitative Method to Evaluate the Safety of Free Flight  

NASA Technical Reports Server (NTRS)

As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in-trail approaches. This research was performed under contract to NASA and in cooperation with the FAA's Safety Division (ASY).

Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)

1996-01-01

233

Flight experience with lightweight, low-power miniaturized instrumentation systems  

NASA Technical Reports Server (NTRS)

Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs is reported. The data loggers, the sensors, and the hardware and software developed to complete the systems are described. How the systems were used is described and the challenges encountered to make them work are covered. Examples of raw data and derived results are shown as well. Finally, future plans for these systems are discussed. For some flight research applications where miniaturized instrumentation is a requirement, the authors conclude that commercially available data loggers and sensors are viable alternatives. In fact, the data loggers and sensors make it possible to gather research-quality data in a timely and cost-effective manner.

Hamory, Philip J.; Murray, James E.

1993-01-01

234

Beyond the cockpit: The visual world as a flight instrument  

NASA Technical Reports Server (NTRS)

The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).

Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.

1992-01-01

235

Instrumented personal exercise during long-duration space flights  

NASA Technical Reports Server (NTRS)

The present work reports the results of instrumented personal exercise performed in flight by Skylab 3 and 4 crewmen. Inflight cycle ergometer data provide conclusive evidence that man can perform earthbound equivalent maximum levels of physical work while in the zero-G environment. Moreover, SL4 crewmen were able to improve their physical condition during 84 days of space flight relative to launch condition, due to rigorous personal exercise regimens. Biological data measured included oxygen consumption, CO2 production, minute volume, and heart rate.

Sawin, C. F.; Rummel, J. A.; Michel, E. L.

1975-01-01

236

Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary  

NASA Technical Reports Server (NTRS)

The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

1979-01-01

237

Effects of aircraft noise on flight and ground structures  

NASA Technical Reports Server (NTRS)

Acoustic loads measured on jet-powered STOL configurations are presented for externally blown and upper surface blown flap models ranging in size from a small laboratory model up to a full-scale aircraft model. The implications of the measured loads for potential acoustic fatigue and cabin noise are discussed. Noise transmission characteristics of light aircraft structures are presented. The relative importance of noise transmission paths, such as fuselage sidewall and primary structure, is estimated. Acceleration responses of a historic building and a residential home are presented for flyover noise from subsonic and supersonic aircraft. Possible effects on occupant comfort are assessed. The results from these three examples show that aircraft noise can induce structural responses that are large enough to require consideration in the design or operation of the aircraft.

Mixson, J. S.; Mayes, W. H.; Willis, C. M.

1976-01-01

238

Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment  

NASA Astrophysics Data System (ADS)

A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schch, A.; Schuck, T. J.

2014-03-01

239

Buffet induced structural/flight-control system interaction of the X-29A aircraft  

NASA Technical Reports Server (NTRS)

High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

Voracek, David F.; Clarke, Robert

1991-01-01

240

Results of the recent precipitation static flight test program on the Navy P-3B antisubmarine aircraft  

NASA Technical Reports Server (NTRS)

Severe precipitation static problems affecting the communication equipment onboard the P-3B aircraft were recently studied. The study was conducted after precipitation static created potential safety-of-flight problems on Naval Reserve aircraft. A specially designed flight test program was conducted in order to measure, record, analyze, and characterize potential precipitation static problem areas. The test program successfully characterized the precipitation static interference problems while the P-3B was flown in moderate to extreme precipitation conditions. Data up to 400 MHz were collected on the effects of engine charging, precipitation static, and extreme cross fields. These data were collected using a computer controlled acquisition system consisting of a signal generator, RF spectrum and audio analyzers, data recorders, and instrumented static dischargers. The test program is outlined and the computer controlled data acquisition system is described in detail which was used during flight and ground testing. The correlation of test results is also discussed which were recorded during the flight test program and those measured during ground testing.

Whitaker, Mike

1991-01-01

241

Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods  

NASA Technical Reports Server (NTRS)

The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.

Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan

2009-01-01

242

14 CFR Appendix B to Part 27 - Airworthiness Criteria for Helicopter Instrument Flight  

Code of Federal Regulations, 2011 CFR

...allow for prolonged instrument flight without undue pilot effort...probable failures affecting the control system must be considered...met throughout a practical flight envelope; (ii) The flight control, trim, and dynamic...

2014-01-01

243

14 CFR Appendix B to Part 29 - Airworthiness Criteria for Helicopter Instrument Flight  

Code of Federal Regulations, 2011 CFR

...allow for prolonged instrument flight without undue pilot effort...probable failures affecting the control system must be considered...met throughout a practical flight envelope; (ii) The flight control, trim, and dynamic...

2014-01-01

244

Design of an intelligent flight instrumentation unit using embedded RTOS  

NASA Astrophysics Data System (ADS)

Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

Estrada-Marmolejo, R.; Garca-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

2011-09-01

245

Shuttle flight pressure instrumentation: Experience and lessons for the future  

NASA Technical Reports Server (NTRS)

Flight data obtained from the Space Transportation System orbiter entries are processed and analyzed to assess the accuracy and performance of the Development Flight Instrumentation (DFI) pressure measurement system. Selected pressure measurements are compared with available wind tunnel and computational data and are further used to perform air data analyses using the Shuttle Entry Air Data System (SEADS) computation technique. The results are compared to air data from other sources. These comparisons isolate and demonstrate the effects of the various limitations of the DFI pressure measurement system. The effects of these limitations on orbiter performance analyses are addressed, and instrumentation modifications are recommended to improve the accuracy of similar fight data systems in the future.

Siemers, P. M., III; Bradley, P. F.; Wolf, H.; Flanagan, P. F.; Weilmuenster, K. J.; Kern, F. A.

1983-01-01

246

Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)  

NASA Technical Reports Server (NTRS)

The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.

Hall, G. W.; Morris, P. M.

1985-01-01

247

Preventing and controlling inadvertent IFR (instrument flight rule encounters).  

PubMed

Inadvertent instrument flight rules (IFR) encounters are some of the most harrying conditions a pilot can experience. They also result in the highest percentage of death from helicopter crashes. Yet, inadvertent IFR can be prevented to some degree, and if encountered, it can be conquered and survived. Pilots must have strong identities but also must follow strict rules as to when they can and cannot fly. Training, such as following the "four Cs"--control, climb, course and confess--and instruments can bring pilots through inadvertent IFR successfully, but legal questions remain. PMID:10128294

Steinbrunn, R N

1993-09-01

248

Robotics and Automation for Flight Deck Aircraft Servicing  

SciTech Connect

One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

Chesser, J.B.; Draper, J.V.; Pin, F.G.

1999-03-01

249

Pathfinder aircraft liftoff on altitude record setting flight of 71,500 feet  

NASA Technical Reports Server (NTRS)

The Pathfinder aircraft has set a new unofficial world record for high-altitude flight of over 71,500 feet for solar-powered aircraft at the U.S. Navy's Pacific Missile Range Facility, Kauai, Hawaii. Pathfinder was designed and manufactured by AeroVironment, Inc, of Simi Valley, California, and was operated by the firm under a jointly sponsored research agreement with NASA's Dryden Flight Research Center, Edwards, California. Pathfinder's record-breaking flight occurred July 7, 1997. The aircraft took off at 11:34 a.m. PDT, passed its previous record altitude of 67,350 feet at about 5:45 p.m. and then reached its new record altitude at 7 p.m. The mission ended with a perfect nighttime landing at 2:05 a.m. PDT July 8. The new record is the highest altitude ever attained by a propellor-driven aircraft. Before Pathfinder, the altitude record for propellor-driven aircraft was 67,028 feet, set by the experimental Boeing Condor remotely piloted aircraft. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

1997-01-01

250

Design criteria for integrated flight/propulsion control systems for STOVL fighter aircraft  

NASA Technical Reports Server (NTRS)

As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the US/UK STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on Ames Research Center's Vertical Motion Simulator. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying qualities design criteria applied to STOVL aircraft.

Franklin, James A.

1993-01-01

251

On-Line Mu Method for Robust Flutter Prediction in Expanding a Safe Flight Envelope for an Aircraft Model Under Flight Test  

NASA Technical Reports Server (NTRS)

A structured singular value (mu) analysis method of computing flutter margins has robust stability of a linear aeroelastic model with uncertainty operators (Delta). Flight data is used to update the uncertainty operators to accurately account for errors in the computed model and the observed range of aircraft dynamics of the aircraft under test caused by time-varying aircraft parameters, nonlinearities, and flight anomalies, such as test nonrepeatability. This mu-based approach computes predict flutter margins that are worst case with respect to the modeling uncertainty for use in determining when the aircraft is approaching a flutter condition and defining an expanded safe flight envelope for the aircraft that is accepted with more confidence than traditional methods that do not update the analysis algorithm with flight data by introducing mu as a flutter margin parameter that presents several advantages over tracking damping trends as a measure of a tendency to instability from available flight data.

Lind, Richard C. (Inventor); Brenner, Martin J.

2001-01-01

252

The 1999 Leonid Multi-Instrument Aircraft Campaign - An Early Review  

NASA Astrophysics Data System (ADS)

Two B707-type research aircraft of the 452^nd Flight Test Squadron at Edwards Air Force Base were deployed to study the Leonid meteor storm of 1999 over the Mediterranean Sea on Nov. 18. The mission was sponsored by various science programs of NASA, and offered an international team of 35 researchers observing conditions free of clouds and low altitude extinction at a prime location for viewing the storm. This 1999 Leonid Multi-Instrument Aircraft Campaign followed a similar effort in 1998, improving upon mission strategy and scope. As before, spectroscopic and imaging experiments targeted meteors and persistent trains, but also airglow, aurora, elves and sprites. The research aimed to address outstanding questions in astrobiology, planetary science, astronomy, and upper atmospheric research. In addition, USAF co-sponsored the mission to provide near real-time flux measurements for space weather awareness. First results are presented in these issues of Earth, Moon, and Planets in preparation for future missions that will target the exceptional Leonid returns of 2001 and 2002. An early review of the scientific achievements in the context of campaign objectives is given.

Jenniskens, Peter; Butow, Steven J.; Fonda, Mark

253

Flight Validation of a Handling Qualities Metric for a Damaged Aircraft  

NASA Technical Reports Server (NTRS)

Objectives: a) Develop an asymmetric handling qualities metric to predict cross coupling effects of a damaged aircraft: 1) Initial use of U.S Army Aeronautical Design Specification ADS-33; 2) Modification as required based on flight test results. b) Simulation and Flight Validation of proposed metric: 1) F-16 VISTA (March 2010); 2) F-18 Full Scale Test bed (Potential Early Experiment); and 3) Flight Simulators (GTM, ACFS, F-18 HILS). c) Provide flight validated metric and tool box to control law designers.

Cogan, Bruce R.

2009-01-01

254

Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft  

NASA Technical Reports Server (NTRS)

This report covers flight evaluation of composite inboard ailerons on the L-1011 under Contract NAS 1-15069 for a period of five years. This is the fourth annual report of the maintenance evaluation program, and covers the period from May 1985 when the third yearly inspections were completed, through July 1986. Four shipsets of graphite/epoxy composite inboard ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta aircraft and two TWA aircraft. A fifth shipset of composite ailerons was installed in 1980 on Lockheed's flight test L-1011. One instance of minor damage was observed on one of the composite ailerons and was repaired. No other maintenance actions have occurred on any of the composite parts except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 12,051]en1] to 14,046 hours, after approximately 4 years of service.

Stone, R. H.

1986-01-01

255

Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft  

NASA Technical Reports Server (NTRS)

Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after three years' service, and found to be performing satisfactorily. There are six Kevlar-49 panels on each aircraft, including sandwich and solid laminate wing-body panels, and 150 C service aft engine fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

Stone, R. H.

1977-01-01

256

Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System  

NASA Technical Reports Server (NTRS)

The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative paradigm is the Haptic Flight Control System (HFCS) that is part of NASA Langley Research Center s Naturalistic Flight Deck Concept. The HFCS uses only stick and throttle for easily and intuitively controlling the actual flight of the aircraft without losing any of the efficiency and operational benefits of the current paradigm. Initial prototypes of the HFCS are being evaluated and this paper describes one such evaluation. In this evaluation we examined claims regarding improved situation awareness, appropriate workload, graceful degradation, and improved pilot acceptance. Twenty-four instrument-rated pilots were instructed to plan and fly four different flights in a fictitious airspace using a moderate fidelity desktop simulation. Three different flight control paradigms were tested: Manual control, Full Automation control, and a simplified version of the HFCS. Dependent variables included both subjective (questionnaire) and objective (SAGAT) measures of situation awareness, workload (NASA-TLX), secondary task performance, time to recognize automation failures, and pilot preference (questionnaire). The results showed a statistically significant advantage for the HFCS in a number of measures. Results that were not statistically significant still favored the HFCS. The results suggest that the HFCS does offer an attractive and viable alternative to the tactical components of today s FMS/autopilot control system. The paper describes further studies that are planned to continue to evaluate the HFCS.

Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

2012-01-01

257

Flight Test Avionics Data Acquisition System for Future Fokker Aircraft.  

National Technical Information Service (NTIS)

The paper describes the Avionics Data Acquisition System (ADAS) which is being used for the acquisition of ARINC-429 data for flight-test purposes. It is one of the subsystems of the Fokker/NLR flight-test system MRVS-90. MRVS-90 is the Dutch acronym for ...

C. J. M. Bogers P. J. H. M. Manders

1994-01-01

258

Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations  

NASA Technical Reports Server (NTRS)

Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

2012-01-01

259

Adaptive Failure Compensation for Aircraft Flight Control Using Engine Differentials: Regulation  

NASA Technical Reports Server (NTRS)

The problem of using engine thrust differentials to compensate for rudder and aileron failures in aircraft flight control is addressed in this paper in a new framework. A nonlinear aircraft model that incorporates engine di erentials in the dynamic equations is employed and linearized to describe the aircraft s longitudinal and lateral motion. In this model two engine thrusts of an aircraft can be adjusted independently so as to provide the control flexibility for rudder or aileron failure compensation. A direct adaptive compensation scheme for asymptotic regulation is developed to handle uncertain actuator failures in the linearized system. A design condition is specified to characterize the system redundancy needed for failure compensation. The adaptive regulation control scheme is applied to the linearized model of a large transport aircraft in which the longitudinal and lateral motions are coupled as the result of using engine thrust differentials. Simulation results are presented to demonstrate the effectiveness of the adaptive compensation scheme.

Yu, Liu; Xidong, Tang; Gang, Tao; Joshi, Suresh M.

2005-01-01

260

Some vortical-flow flight experiments on slender aircraft that impacted the advancement of aeronautics  

NASA Astrophysics Data System (ADS)

This paper highlights the three aerodynamic pillars of aeronautics; namely, theory/CFD, wind-tunnel experiments and flight tests, and notes that at any given time these three are not necessarily at the same level of maturity. After an initial history of these three pillars, the focus narrows to a brief history of some vortical-flow flight experiments on slender aircraft that have impacted the advancement of aeronautics in recent decades. They include the F-106, Concorde, SR-71, light-weight fighters (F-16, F/A-18), and F-16XL. These aircraft share in common the utilization of vortical flow and have flown at transonic speeds during a part of the flight envelope. Due to the vast amount of information from flight and CFD that has recently become available for the F-16XL, this aircraft is highlighted and its results detailed. Lastly, it is interesting to note that, though complicated, vortical flows over the F-16XL aircraft at subsonic speeds can be reliably and generally well-predicted with the current CFD flow solvers. However, these solvers still have some problems in matching flight pressure data at transonic speeds. That this problem has been highlighted is both an advancement in aeronautics and a tempting prize to those who would seek its solution.

Lamar, John E.

2009-08-01

261

A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft  

NASA Technical Reports Server (NTRS)

Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

1995-01-01

262

Flight set 360L003 instrumentation final test report, volume 9  

NASA Technical Reports Server (NTRS)

Post-flight instrumentation hardware and data evaluation for 360L003 is summarized. The 360L003 motors were equipped with Developmental Flight Instrumentation (DFI), Operational Flight Instrumentation (OFI), and Ground Environmental Instrumentation (GEI). The DFI was designed to measure strain, temperature, pressure, and vibration at various locations on the motor during flight. The DFI is used to validate engineering models in a flight environment. The OFI consists of six Operational Pressure Tranducers which monitor chamber pressure during flight. These pressure transducers are used in the SRB separation cue. GEI measures the motor case, igniter flange, and nozzle temperature prior to launch.

1989-01-01

263

Stratospheric Flight of Three Mars Surface Instrument Prototypes  

NASA Astrophysics Data System (ADS)

The Analog Site Testbed for Readiness Advancement (ASTRA) is a high-altitude balloon platform for the testing of Mars surface instrument systems. In September 2012 three prototype instruments, a mass spectrometer and two anemometers, were taken to the 6 mbar pressure level of Earth's stratosphere (~34.5 km) above New Mexico to demonstrate their current capabilities and identify the critical path-to-flight steps for future advancement. Each of the instrument systems deployed on ASTRA were rated at TRL 4 at the start of the project. Through laboratory development, environmental testing, and the ASTRA balloon flight, each has advanced to an overall system TRL of 5, with specific subsystems reaching TRL 6. The results from the Rapid Acquisition Mass Spectrometer (RAMS), the Hot-Wire Anemometer (HWA), and the Single-Axis Sonic Anemometer (SASA) from the mid-September flight are presented, with focus given to both scientific results of the terrestrial atmospheric investigations, and the engineering and technical performance of the individual instrument systems and the balloon platform. The RAMS instrument has unique ion-imaging optics which permit the acquisition of a complete mass spectrum in a single CCD frame (~50 ms minimum). This allows RAMS to see rapid fluctuations in atmospheric constituents (necessary for the study of, for instance, vapor fluxes to and from the Mars surface) and has potential applications for laser ablation mass spectroscopy. The HWA is the latest generation of hot-wire anemometer, with heritage from the Mars Pathfinder MET instrument, and the ATMIS sensors developed for the Mars Polar Lander and the NetLander project. In addition to wind speed, a thermocouple cage around the hot filament detects heat plume direction, thus permitting 2-D wind vectors to be established. The SASA is a proof-of-capability device for an eventual three-axis sonic anemometer design. Developed under PIDDP funding by Dr. Don Banfield of Cornell (thus a contributed instrument to ASTRA), the SASA uses novel ultrasonic transducers capable of acoustic coupling to the thin Mars atmosphere. Rapid resolution of wind vectors (order 20 Hz), eventual 3-D capability, an open sensing volume, and high sensitivity, accuracy, and precision (order 2 cm/s) make this technique attractive for the measurement of turbulent eddies in the planetary boundary layer.

Hudson, T. L.; Neidholdt, E.; Banfield, D. J.; Kokorowski, M.; Kobie, B.; Diaz, E.; Gordon, S.; Doan, D.; Salami, M.

2012-12-01

264

Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft  

NASA Technical Reports Server (NTRS)

The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The airborne software then calculates a speed adjustment to null that difference over the remaining flight trajectory. Follow-on phases still under development will expand the concept to all types of aircraft, arriving from any direction, merging at different fixes and altitudes, and to any airport. This paper describes the implementation phases of the Merging and Spacing Concept, and provides high-level results of research conducted to date.

Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

2006-01-01

265

NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration  

NASA Technical Reports Server (NTRS)

The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

1984-01-01

266

Measurements of total odd nitrogen (NOy) aboard MOZAIC in-service aircraft: instrument design, operation and performance  

NASA Astrophysics Data System (ADS)

A small system for the unattended measurement of total odd nitrogen (NOy, i.e., the sum of NO and its atmospheric oxidation products) aboard civil in-service aircraft in the framework of MOZAIC is described. The instrument employs the detection of NO by its chemiluminescence with O3 in combination with catalytic conversion of the other NOy compounds to NO at 300C on a gold surface in the presence of H2. The instrument has a sensitivity of 0.4-7 cps/ppt and is designed for unattended operation during 1-2 service cycles of the aircraft (400-800 flight hours). The total weight is 50 kg, including calibration system, compressed gases, mounting, and safety measures. The layout and inlet configuration are governed by requirements due to the certification for passenger aircraft. Laboratory tests are described regarding the conversion efficiency for NO2 and HNO3 (both >98%). Interference by HCN and NH3 is 100% and <1%, respectively. The time response (90% time) of the instrument is <1 s for NO2 and 150 s for HNO3, the latter being caused by memory effects in the 80 cm long inlet line.

Volz-Thomas, A.; Berg, M.; Heil, T.; Houben, N.; Lerner, A.; Petrick, W.; Raak, D.; Ptz, H.-W.

2004-10-01

267

Measurements of total odd nitrogen (NOy) aboard MOZAIC in-service aircraft: instrument design, operation and performance  

NASA Astrophysics Data System (ADS)

A small system for the unattended measurement of total odd nitrogen (NOy, i.e., the sum of NO and its atmospheric oxidation products) aboard civil in-service aircraft in the framework of MOZAIC is described. The instrument employs the detection of NO by its chemiluminescence with O3 in combination with catalytic conversion of the other NOy compounds to NO at 300C on a gold surface in the presence of H2. The instrument has a sensitivity of 0.4-0.7cps/ppt and is designed for unattended operation during 1-2 service cycles of the aircraft (400-800 flight hours). The total weight is 50kg, including calibration system, compressed gases, mounting, and safety measures. The layout and inlet configuration are governed by requirements due to the certification for passenger aircraft. Laboratory tests are described regarding the conversion efficiency for NO2 and HNO3 (both >98%). Interference by non-NOy species is <1% for CH3CN and NH3, <5x10-5% for N2O (corresponding to <0.2ppt fake NOy from ambient N2O) and 100% for HCN. The time response of the instrument is <1s (90% change) for NO2. The response for HNO3 is nonlinear: 20s for 67%, 60s for 80%, and 150s for 90% response, respectively.

Volz-Thomas, A.; Berg, M.; Heil, T.; Houben, N.; Lerner, A.; Petrick, W.; Raak, D.; Ptz, H.-W.

2005-02-01

268

Video Analysis of the Flight of a Model Aircraft  

ERIC Educational Resources Information Center

A video-analysis software tool has been employed in order to measure the steady-state values of the kinematics variables describing the longitudinal behaviour of a radio-controlled model aircraft during take-off, climbing and gliding. These experimental results have been compared with the theoretical steady-state configurations predicted by the

Tarantino, Giovanni; Fazio, Claudio

2011-01-01

269

Analysis of Control Strategies for Aircraft Flight Upset Recovery.  

National Technical Information Service (NTIS)

This paper proposes a framework for studying the ability of a control strategy, consisting of a control law and a command law, to recover an aircraft from ight conditions that may extend beyond the normal ight envelope. This study was carried out (i) by e...

D. E. Cox D. G. Muri L. G. Crespo S. P. Kenny

2012-01-01

270

Vision-Only Aircraft Flight Control Methods and Test Results  

Microsoft Academic Search

An unmanned aerial vehicle usually carries an array of sensors whose output is used to estimate the vehicle's attitude, velocity and position. This paper details the development of control strategies for a glider, which is capable of flying from a starting point to a ending location using only a single vision sensor. Using vision to control an aircraft presents a

Alison A. Proctor; Eric N. Johnsony

2004-01-01

271

Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft  

ERIC Educational Resources Information Center

This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

2005-01-01

272

Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation  

NASA Technical Reports Server (NTRS)

The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to a survivable runway landing using TOC. The PCAR project objective was a set of pilot procedures for operation of a specific aircraft without hydraulics that (a) have been validated in both simulation and flight by relevant personnel, and (b) mesh well with existing commercial operations, maintenance, and training at a minimum cost. As a result of this study, a procedure has been developed to assist a crew in making a survivable landing using TOC. In a simulation environment, line pilots with little or no previous TOC experience performed survivable runway landings after a few practice TOC approaches. In-flight evaluations put line pilots in a simulated emergency situation where TOC was used to recover the aircraft, maneuver to a landing site, and perform an approach down to 200 feet AGL. The results of this research, including pilot observations, procedure comments, recommendations, future work and lessons learned, will he discussed. Flight data and video footage of TOC approaches may also be shown.

Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

2007-01-01

273

The experimental determination of atmospheric absorption from aircraft acoustic flight tests  

NASA Technical Reports Server (NTRS)

A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

Miller, R. L.; Oncley, P. B.

1971-01-01

274

Review of the Guidance Provided for Aircraft Recovery under Instrument Flying Conditions.  

National Technical Information Service (NTIS)

Aircraft recovery under instrument conditions entails inherent risks. Many commanders, in their attempts to conserve and preserve limited and costly resources, have taken steps to reduce the risk involved. Air Force has expended considerable effort to dev...

D. W. Livingston

1976-01-01

275

Research Aircraft - Controlling Instruments from the Ground in a Secure and Authenticated Fashion  

NASA Astrophysics Data System (ADS)

At NCAR's Research Aviation Facility (RAF) we're finding a number of factors motivating the desire to be able to control instruments fielded on the aircraft we operate for the NSF. Investigators are increasingly interested in fielding greater numbers of research instruments for projects, instruments are becoming increasingly complicated, and adjustment of instrument behavior to adapt to changing conditions around the aircraft and to meet project goals are just a few of these factors. Usually there are not enough seats on the aircraft to accommodate all the instrument PIs and crew members who do occupy the seats are being asked to monitor and control increasing numbers of instruments about which they have limited knowledge. We use Satellite Communications (SatCom) to allow researchers to communicate with colleagues/crew on the aircraft and so that some of the real-time data can be sent to the ground for helping to optimize the research. Historically, challenges of authentication, security and the disruptive SatCom system have motivated us to avoid providing for remote instrument control. Now we have now reached an era where remote instrument control is a necessity. This poster will discuss the approach we are implementing to provide this capability for our instrument investigators. Particular attention is paid to how we assure authentication and security so that only the instrument investigators are capable of communicating with their instruments.;

Baltzer, T.; Martin, C.; Fawaz, S.; Webster, C.

2012-12-01

276

Aircraft Accident Report. Trans World Airlines, Inc., Douglas DC-9, Tann Company Beechcraft Baron B-55 in-Flight Collision Near Urbana, Ohio, March 9, 1967.  

National Technical Information Service (NTIS)

Contents: History of flight; Injuries to persons; Damage to aircraft; Crew information; Aircraft information; Meteorological information; Aids to navigation; Communications; Aerodrome and ground facilities; Flight recorders; Wreckage; Fire; Survival aspec...

1968-01-01

277

14 CFR 61.65 - Instrument rating requirements.  

Code of Federal Regulations, 2013 CFR

...operations; (4) IFR navigation and approaches by use of navigation systems; (5...efficient operation of aircraft under instrument...instructor in an aircraft, or in a flight...instruments; (5) Navigation systems;...

2014-01-01

278

Solus: an autonomous aircraft for flight control and trajectory planning research  

Microsoft Academic Search

The University of Michigan has developed a fixed-wing model aircraft (Solus) with an embedded control system to develop and demonstrate UAV technology. The analytical objective of this project is the development of intelligent flight control and trajectory planning techniques, focusing on automated fault detection and recovery. Our experimental objective is to implement and evaluate these techniques on Solus for a

Ella M. Atkins; R. H. Miller; T. Van Pelt; Keith D. Shaw; W. B. Ribbens; Peter D. Washabaugh; Dennis S. Bernstein

1998-01-01

279

A hybrid frequency response technique and its application to aircraft flight flutter testing  

Microsoft Academic Search

Large aircraft, such as the Lockheed C-5A, can be forced to resonate on the ground in a large number of closely coupled vibration modes which involve the combined motion of lifting and control surfaces, fuselage and engines. During flight, atmospheric disturbances can also excite these vibrational resonances, though, under normal conditions, they are damped to a safe level because the

J. M. Simmons; J. W. Benson; J. P. Fiedler

1969-01-01

280

Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics.  

National Technical Information Service (NTIS)

In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utiliz...

D. L. Simon T. Kobayashi

2006-01-01

281

A Hyperstable Model-Following Flight Control System Used for Reconfiguration Following Aircraft Impairment  

Microsoft Academic Search

Techniques have been developed for remixing the commands issued by flight control laws that assume unimpaired operation. This approach allows impairments to be accommodated that previously were not. This increase in fault tolerance does not decrease reliability because no additional hardware is installed on the aircraft. Instead, previously existing redundant control surfaces are used to greater advantage. A recent effort

C. J. Dittmar

1988-01-01

282

Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.  

ERIC Educational Resources Information Center

This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel

Federal Aviation Administration (DOT), Washington, DC.

283

Flight Test Evaluation of Predicted Light Aircraft Drag, Performance, and Stability.  

National Technical Information Service (NTIS)

A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The techn...

F. O. Smetana S. R. Fox

1979-01-01

284

Flight Test Evaluation of Predicted Light Aircraft Drag, Performance, and Stability.  

National Technical Information Service (NTIS)

A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight....

F. O. Smetana S. R. Fox

1979-01-01

285

Soft computing applications in aircraft sensor management and flight control law reconfiguration  

Microsoft Academic Search

A sensor management system based on soft computing techniques has been developed and implemented in the flight control system of a small commercial aircraft. Unlike in the conventional sensor management system, the signals from sensors are assigned weights based on fuzzy membership functions and the consolidated signal is computed as a weighted average. This approach improves the quality of the

Marcel Oosterom; Robert Babuska; Henk B. Verbruggen

2002-01-01

286

Robust nonlinear flight control of a high-performance aircraft  

Microsoft Academic Search

This paper considers probabilistic robust control of nonlinear uncertain systems. A combination of stochastic robustness and dynamic inversion is proposed for general systems that have a feedback-linearizable nominal system. In this paper, the stochastic robust nonlinear control approach is applied to a highly nonlinear complex aircraft model, the high-incidence research model (HIRM). The model addresses a high-angle-of-attack enhanced manual control

Qian Wang; Robert F. Stengel

2005-01-01

287

Correlation of low speed wind tunnel and flight test data for V/STOL aircraft  

NASA Technical Reports Server (NTRS)

The availability of wind tunnel test data for correlation purposes of the same V/STOL aircraft tested in flight is very limited. This is due in a large part to size limitations of wind tunnels and the number of wind tunnels available for testing of full-scale aircraft. Wind tunnel tests are described for two research aircraft - the XV-5B fan-in-wing aircraft and the YOV-10 RCF (rotating cylinder flap) aircraft - in the NASA Ames 40- by 80-foot wind tunnel. The tests were conducted specifically to provide for correlation between wind tunnel and in-flight aerodynamics and noise test data. Correlation between aerodynamic and noise data are presented and testing techniques that are related to the accuracy of the data, or that might affect the correlations, are discussed. The correlation of noise measurements made with a J-85 engine mounted on a F-106 aircraft during low altitude flyovers with the same J-85 engine mounted on a model and tested in the Ames 40- by 80-foot wind tunnel are also reported.

Cook, W. L.; Hickey, D. H.

1976-01-01

288

Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft  

NASA Technical Reports Server (NTRS)

An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

1976-01-01

289

Instrumentation for Measurement of Aircraft Noise and Sonic Boom.  

National Technical Information Service (NTIS)

A jet aircraft noise and sonic boom measuring device which converts sound pressure into electric current is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable, amplifi...

A. J. Zuckerwar

1975-01-01

290

Modern digital flight control system design for VTOL aircraft  

NASA Technical Reports Server (NTRS)

Methods for and results from the design and evaluation of a digital flight control system (DFCS) for a CH-47B helicopter are presented. The DFCS employed proportional-integral control logic to provide rapid, precise response to automatic or manual guidance commands while following conventional or spiral-descent approach paths. It contained altitude- and velocity-command modes, and it adapted to varying flight conditions through gain scheduling. Extensive use was made of linear systems analysis techniques. The DFCS was designed, using linear-optimal estimation and control theory, and the effects of gain scheduling are assessed by examination of closed-loop eigenvalues and time responses.

Broussard, J. R.; Berry, P. W.; Stengel, R. F.

1979-01-01

291

The Genesis Solar Wind Concentrator: Flight and Post-Flight Conditions and Modeling of Instrumental Fractionation  

NASA Astrophysics Data System (ADS)

The Genesis mission Solar Wind Concentrator was built to enhance fluences of solar wind by an average of 20x over the 2.3 years that the mission exposed substrates to the solar wind. The Concentrator targets survived the hard landing upon return to Earth and were used to determine the isotopic composition of solar-windand hence solaroxygen and nitrogen. Here we report on the flight operation of the instrument and on simulations of its performance. Concentration and fractionation patterns obtained from simulations are given for He, Li, N, O, Ne, Mg, Si, S, and Ar in SiC targets, and are compared with measured concentrations and isotope ratios for the noble gases. Carbon is also modeled for a Si target. Predicted differences in instrumental fractionation between elements are discussed. Additionally, as the Concentrator was designed only for ions ?22 AMU, implications of analyzing elements as heavy as argon are discussed. Post-flight simulations of instrumental fractionation as a function of radial position on the targets incorporate solar-wind velocity and angular distributions measured in flight, and predict fractionation patterns for various elements and isotopes of interest. A tighter angular distribution, mostly due to better spacecraft spin stability than assumed in pre-flight modeling, results in a steeper isotopic fractionation gradient between the center and the perimeter of the targets. Using the distribution of solar-wind velocities encountered during flight, which are higher than those used in pre-flight modeling, results in elemental abundance patterns slightly less peaked at the center. Mean fractionations trend with atomic mass, with differences relative to the measured isotopes of neon of +4.10.9 /amu for Li, between -0.4 and +2.8 /amu for C, +1.90.7/amu for N, +1.30.4 /amu for O, -7.50.4 /amu for Mg, -8.90.6 /amu for Si, and -22.00.7 /amu for S (uncertainties reflect Monte Carlo statistics). The slopes of the fractionation trends depend to first order only on the relative differential mass ratio, ? m/ m. This article and a companion paper (Reisenfeld et al. 2012, this issue) provide post-flight information necessary for the analysis of the Genesis solar wind samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).

Wiens, Roger C.; Reisenfeld, Daniel B.; Olinger, Chad; Wurz, Peter; Heber, Veronika S.; Burnett, Donald S.

2013-06-01

292

An Evaluation Technique for an F\\/A-18 Aircraft Loads Model Using F\\/A-18 Systems Research Aircraft Flight Data  

Microsoft Academic Search

A limited evaluation of the F\\/A-18 baselineloads model was performed on the SystemsResearch Aircraft at NASA Dryden FlightResearch Center (Edwards, California).Boeing developed the F\\/A-18 loads modelusing a linear aeroelastic analysis inconjunction with a flight simulator todetermine loads at discrete locations on theaircraft. This experiment was designed sothat analysis of doublets could be used toestablish aircraft aerodynamic and loadsresponse at 20

Candida D. Olney; Heather Hillebrandt; Eric Y. Reichenbach

2000-01-01

293

Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft  

NASA Technical Reports Server (NTRS)

Previous investigations into formation flight have shown the possibility for significant fuel savings through drag reduction. Using two F/A-18 aircraft, NASA Dryden Flight Research Center has investigated flying aircraft in autonomous formation. Positioning the trailing airplane for best drag reduction requires investigation of the wingtip vortex effects induced by the leading airplane. A full accounting of the vortex effect on the trailing airplane is desired to validate vortex-effect prediction methods and provide a database for the design of a formation flight autopilot. A recent flight phase has mapped the complete wingtip vortex effects at two flight conditions with the trailing airplane at varying distances behind the leading one. Force and moment data at Mach 0.56 and an altitude of 25,000 ft and Mach 0.86 and an altitude of 36,000 ft have been obtained with 20, 55, 110, and 190 ft of longitudinal distance between the aircraft. The moments induced by the vortex on the trailing airplane were well within the pilot's ability to control. This report discusses the data analysis methods and vortex-induced effects on moments and side force. An assessment of the impact of the nonlinear vortex effects on the design of a formation autopilot is offered.

Hansen, Jennifer L.; Cobleigh, Brent R.

2002-01-01

294

In-Flight Assessment of a Pursuit Guidance Display Format for Manually Flown Precision Instrument Approaches  

NASA Technical Reports Server (NTRS)

In-flight evaluations of a pursuit guidance display system for manually flown precision instrument approaches were performed. The guidance system was integrated into the RASCAL JUH-60A Black Hawk helicopter. The applicability of the pursuit guidance disp1aFs to the operation of Runway Independent Aircraft (RIA) is made evident because the displays allow the pilot to fly a complex, multi-segment, descending, decelerating approach trajectory. The complex trajectory chosen for this in-flight assessment began from a downwind abeam position at 110 knots and was hand-flown to a 50 ft decision altitude at 40 knots using a rate-command/attitude-hold plus turn-coordination control system. The elements of the pursuit guidance format displayed on a 10-inch liquid crystal display (LCD) flat panel consisted of a flightpath vector and a "leader" aircraft as the pursuit guidance element. Approach guidance was based primarily on carrier-phase differential Global Positioning System (GPS) navigation, and secondarily on both medium accuracy inertial navigation unit states and air data computer states. Required Navigation Performance (RNP) concepts were applied to the construction of display elements such as lateral/vertical deviation indicators and a tunnel that indicated to the pilot, in real-time, the performance with respect to RNP error bounds. The results of the flight evaluations of the guidance display show that precise path control for operating within tight RNP boundaries (RNP 0.007NM/24ft for initial approach, RNP 0.008NM/19ft for intermediate approach, and RNP 0.002NM/9ft for final approach) is attainable with minimal to moderate pilot workload.

Moralez, Ernesto, III; Tucker, George E.; Hindson, William S.; Frost, Chad R.; Hardy, Gordon H.

2004-01-01

295

Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.  

ERIC Educational Resources Information Center

This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.

Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

296

Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system  

NASA Technical Reports Server (NTRS)

The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

Myers, Thomas T.; Mcruer, Duane T.

1988-01-01

297

Effects of wing modification on an aircraft's aerodynamic parameters as determined from flight data  

NASA Technical Reports Server (NTRS)

A study of the effects of four wing-leading-edge modifications on a general aviation aircraft's stability and control parameters is presented. Flight data from the basic aircraft configuration and configurations with wing modifications are analyzed to determine each wing geometry's stability and control parameters. The parameter estimates and aerodynamic model forms are obtained using the stepwise regression and maximum likelihood techniques. The resulting parameter estimates and aerodynamic models are verified using vortex-lattice theory and by analysis of each model's ability to predict aircraft behavior. Comparisons of the stability and control derivative estimates from the basic wing and the four leading-edge modifications are accomplished so that the effects of each modification on aircraft stability and control derivatives can be determined.

Hess, R. A.

1986-01-01

298

Effect of motion frequency spectrum on subjective comfort response. [modeling passenger reactions to commercial aircraft flights  

NASA Technical Reports Server (NTRS)

In order to model passenger reaction to present and future aircraft environments, it is necessary to obtain data in several ways. First, of course, is the gathering of environmental and passenger reaction data on commercial aircraft flights. In addition, detailed analyses of particular aspects of human reaction to the environment are best studied in a controllable experimental situation. Thus the use of simulators, both flight and ground based, is suggested. It is shown that there is a reasonably high probability that the low frequency end of the spectrum will not be necessary for simulation purposes. That is, the fidelity of any simulation which omits the very low frequency content will not yield results which differ significantly from the real environment. In addition, there does not appear to be significant differences between the responses obtained in the airborne simulator environment versus those obtained on commercial flights.

Jacobson, I. D.; Schoultz, M. B.; Blake, J. C.

1973-01-01

299

Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors  

NASA Technical Reports Server (NTRS)

This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

Blanken, Christopher L. (editor); Whalley, Matthew S. (editor)

1993-01-01

300

Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System  

NASA Technical Reports Server (NTRS)

The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

Churchill, G. B.; Gerdes, R. M.

1984-01-01

301

Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems  

NASA Technical Reports Server (NTRS)

This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

Seal, D. W.

1989-01-01

302

Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program  

NASA Technical Reports Server (NTRS)

The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

1994-01-01

303

Monitoring Disasters by Use of Instrumented Robotic Aircraft  

NASA Technical Reports Server (NTRS)

Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case, firefighters and/or firefighting equipment) would also be monitored in real time by use of Global Positioning System (GPS) units and radio communication links between the assets and the UAS. In this scenario, the UAS would serve as a data-relay station in the sky, sending packets of information concerning the locations of assets to the image-processing computer, wherein this information would be incorporated into the geo-rectified images and maps. Hence, the images and maps would enable command-center personnel to monitor locations of assets in real time and in relation to locations affected by the disaster. Optionally, in case of a disaster that disrupted communications, the UAS could be used as an airborne communication relay station to partly restore communications to the affected area. A prototype of a system of this type was demonstrated in a project denoted the First Response Experiment (Project FiRE). In this project, a controlled outdoor fire was observed by use of a thermal multispectral scanning imager on a UAS that delivered image data to a ground station via a satellite uplink/ downlink telemetry system. At the ground station, the image data were geo-rectified in nearly real time for distribution via the Internet to firefighting managers. Project FiRE was deemed a success in demonstrating several advances essential to the eventual success of the continuing development effort.

Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.

2009-01-01

304

Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model  

NASA Astrophysics Data System (ADS)

We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (?HCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ?HCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ?HCHO (-17% where ?HCHO > 5 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ?HCHO variability across the United States, smaller anthropogenic ?HCHO gradients are detectable at finer spatial scales (20-200 km) near many urban areas.

Boeke, Nicholas L.; Marshall, Julian D.; Alvarez, Sergio; Chance, Kelly V.; Fried, Alan; Kurosu, Thomas P.; Rappenglck, Bernhard; Richter, Dirk; Walega, James; Weibring, Petter; Millet, Dylan B.

2011-03-01

305

Studies on the flight performance optimization of commercial aircrafts  

Microsoft Academic Search

A thorough research on the flight trajectory optimization techniques with energy-state approach is conducted in this paper. The point-mass energy-state approximation model and the trajectory optimization principle and algorithms based on this model are first summarized. The fixed-time 4D trajectory optimization is then discussed, and the associated iteration algorithm is developed. The step-climb mode optimization principle and method are considered

Shufan Wu; Yongzhang Shen

1993-01-01

306

Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system  

NASA Astrophysics Data System (ADS)

An airfreight container with automated instruments for measurement of atmospheric gases and trace compounds was operated on a monthly basis onboard a Boeing 767-300 ER of LTU International Airways during long-distance flights from 1997 to 2002 (CARIBIC, Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, http://www.caribic-atmospheric.com). Subsequently a more advanced system has been developed, using a larger capacity container with additional equipment and an improved inlet system. CARIBIC phase #2 was implemented on a new long-range aircraft type Airbus A340-600 of the Lufthansa German Airlines (Star Alliance) in December 2004, creating a powerful flying observatory. The instrument package comprises detectors for the measurement of O3, total and gaseous H2O, NO and NOy, CO, CO2, O2, Hg, and number concentrations of sub-micrometer particles (>4 nm, >12 nm, and >18 nm diameter). Furthermore, an optical particle counter (OPC) and a proton transfer mass spectrometer (PTR-MS) are incorporated. Aerosol samples are collected for analysis of elemental composition and particle morphology after flight. Air samples are taken in glass containers for laboratory analyses of hydrocarbons, halocarbons and greenhouse gases (including isotopic composition of CO2) in several laboratories. Absorption tubes collect oxygenated volatile organic compounds. Three differential optical absorption spectrometers (DOAS) with their telescopes mounted in the inlet system measure atmospheric trace gases such as BrO, HONO, and NO2. A video camera mounted in the inlet provides information about clouds along the flight track. The flying observatory, its equipment and examples of measurement results are reported.

Brenninkmeijer, C. A. M.; Crutzen, P.; Boumard, F.; Dauer, T.; Dix, B.; Ebinghaus, R.; Filippi, D.; Fischer, H.; Franke, H.; Frie, U.; Heintzenberg, J.; Helleis, F.; Hermann, M.; Kock, H. H.; Koeppel, C.; Lelieveld, J.; Leuenberger, M.; Martinsson, B. G.; Miemczyk, S.; Moret, H. P.; Nguyen, H. N.; Nyfeler, P.; Oram, D.; O'Sullivan, D.; Penkett, S.; Platt, U.; Pupek, M.; Ramonet, M.; Randa, B.; Reichelt, M.; Rhee, T. S.; Rohwer, J.; Rosenfeld, K.; Scharffe, D.; Schlager, H.; Schumann, U.; Slemr, F.; Sprung, D.; Stock, P.; Thaler, R.; Valentino, F.; van Velthoven, P.; Waibel, A.; Wandel, A.; Waschitschek, K.; Wiedensohler, A.; Xueref-Remy, I.; Zahn, A.; Zech, U.; Ziereis, H.

2007-09-01

307

Civil aircraft for the regular investigation of the atmosphere based on an instrumented container: the new CARIBIC system  

NASA Astrophysics Data System (ADS)

A large airfreight container with automated instruments for measurement of atmospheric gases and trace compounds was operated on a monthly basis onboard a Boeing 767-300 ER of LTU International Airways during long-distance flights from 1997 to 2002 (CARIBIC, Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container, http://www.caribic-atmospheric.com). Subsequently a more advanced system has been developed, using a larger capacity container with additional equipment and an improved inlet system. CARIBIC phase #2 was implemented on a new long-range aircraft type Airbus A340-600 of the Lufthansa German Airlines (Star Alliance) in December 2004, creating a powerful flying observatory. The instrument package comprises detectors for the measurement of O3, total and gaseous H2O, NO and NOy, CO, CO2, O2, Hg, and number concentrations of sub-micrometer particles (>4 nm, >12 nm, and >18 nm diameter). Furthermore, an optical particle counter and a proton transfer mass spectrometer (PTR-MS) are installed. Aerosol samples are collected for analyses of elemental composition and particle morphology after flight. Air samples are taken in glass containers for laboratory analyses of hydrocarbons, halocarbons and greenhouse gases in several laboratories. Absorption tubes collect oxygenated volatile organic compounds. Three differential optical absorption spectrometers (DOAS) with their telescopes mounted in the inlet system measure atmospheric trace gases such as BrO, HONO, and NO2. A video camera mounted in the inlet provides information about clouds along the flight track. Here we describe the flying observatory and report examples of measurement results.

Brenninkmeijer, C. A. M.; Crutzen, P.; Boumard, F.; Dauer, T.; Dix, B.; Ebinghaus, R.; Filippi, D.; Fischer, H.; Franke, H.; Frie, U.; Heintzenberg, J.; Helleis, F.; Hermann, M.; Kock, H. H.; Koeppel, C.; Lelieveld, J.; Leuenberger, M.; Martinsson, B. G.; Miemczyk, S.; Moret, H. P.; Nguyen, H. N.; Nyfeler, P.; Oram, D.; O'Sullivan, D.; Penkett, S.; Platt, U.; Pupek, M.; Ramonet, M.; Randa, B.; Reichelt, M.; Rhee, T. S.; Rohwer, J.; Rosenfeld, K.; Scharffe, D.; Schlager, H.; Schumann, U.; Slemr, F.; Sprung, D.; Stock, P.; Thaler, R.; Valentino, F.; van Velthoven, P.; Waibel, A.; Wandel, A.; Waschitschek, K.; Wiedensohler, A.; Xueref-Remy, I.; Zahn, A.; Zech, U.; Ziereis, H.

2007-04-01

308

Flight-service program for advanced composite rudders on transport aircraft  

NASA Technical Reports Server (NTRS)

Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

1979-01-01

309

Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft  

NASA Technical Reports Server (NTRS)

If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

Stevens, Richard; Burcham, Frank W., Jr.

2009-01-01

310

EOS Aqua AMSR-E Arctic Sea-Ice Validation Program: Arctic2006 Aircraft Campaign Flight Report  

NASA Technical Reports Server (NTRS)

In March 2006, a coordinated Arctic sea-ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was the second Alaskan Arctic field campaign for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. The first campaign was completed in March 2003. The AMSR-E, designed and built by the Japanese Space Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea-ice products to be validated include sea-ice concentration, sea-ice temperature, and snow depth on sea ice. The focus of this campaign was on the validation of snow depth on sea ice and sea-ice temperature. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the six flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements.

Cavalieri, D. J.; Markus, T.

2006-01-01

311

Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft  

NASA Technical Reports Server (NTRS)

Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

2000-01-01

312

Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft  

NASA Technical Reports Server (NTRS)

Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

2000-01-01

313

Maritime acoustic detection of aircraft to increase flight safety and homeland security: an experimental study  

NASA Astrophysics Data System (ADS)

For several years ARL has studied acoustics to track vehicles, helicopters, Unmanned Aerial Vehicles (UAV) and others targets of interest. More recently these same acoustic sensors were placed on a "simulated" buoy in an attempt to detect and track aircraft over a large body of water. This report will investigate the advantages of using acoustic arrays to track air and water craft from a fixed floating platform as well as potential concerns associated with this technology. Continuous monitoring of aircraft overflight will increase situational awareness while persistent monitoring of commercial and military flight paths increases overall homeland security.

Solomon, Latasha; Sim, Leng; Tenney, Stephen

2008-05-01

314

Expanding a flutter envelope using data from accelerating flight: Application to the F-16 fighter aircraft  

NASA Astrophysics Data System (ADS)

Due to the destructive nature of flutter, flutter testing is a mandatory requirement for certification of both civilian and military aircraft. However, along with the complexity of newer aircraft, the time and cost associated with flutter testing has increased dramatically. Considering that many of the test techniques and analysis methods used to perform flutter testing date back to the 1950s and 1960's it may be time to take a fresh look at how flutter testing can best be accomplished. This thesis revisits flutter testing techniques and proposes an alternative to traditional flutter testing. The alternative uses flight test data from an aircraft that is performing an acceleration to clear the flutter envelope of the aircraft. Four academic issues arise from this new test approach. (1) Are frequencies and dampings affected by the acceleration of the aircraft? (2) Can parameter identification algorithms extract frequency and damping values from the time varying data? (3) Can the vibration response at airspeeds (or Mach numbers) beyond which the aircraft has accelerated be anticipated? (4) What formal criteria can be used to determine when the aircraft needs to end the acceleration and terminate the test point? The academic contribution of this thesis is to address these issues. It is shown that although the frequencies and damping values do change the change is so small that it is irrelevant. It is also shown that by taking small windows of data, within which the change in parameters is small, it is possible to accurately identify parameters from the time varying data. Finally it is shown that at least in principal parameters can be predicted using data from sub-critical airspeeds, and that testing can be discontinued before an unstable flight condition is reached.

Harris, Charles A.

315

Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument  

NASA Astrophysics Data System (ADS)

The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

2004-11-01

316

COMPATIBILITY OF AIRCRAFT AND SHIPBORNE INSTRUMENTS USED IN AIR-SEA INTERACTION RESEARCH  

Microsoft Academic Search

On June 16, 1966, an experiment was performed off the east coast of Florida that involved two research aircraft, one from the Naval Oceanographic Office and one from ESSA's Research Flight Facility, and the USCGSS Peirce, aboard which were two scientists from ESSA's Sea Air Interaction Laboratory, and the Weather Bureau Airport Station at Jacksonville, Fla. The purpose of this

JAMES D. McFADDEN; JOHN W. WILKERSON

1967-01-01

317

Highly Maneuverable Aircraft Technology (HiMAT) flight-flutter test program  

NASA Technical Reports Server (NTRS)

The highly maneuverable aircraft technology (HiMAT) vehicle was evaluated in a joint NASA and Air Force flight test program. The HiMAT vehicle is a remotely piloted research vehicle. Its design incorporates the use of advanced composite materials in the wings, and canards for aeroelastic tailoring. A flight-flutter test program was conducted to clear a sufficient flight envelope to allow for performance, stability and control, and loads testing. Testing was accomplished with and without flight control-surface dampers. Flutter clearance of the vehicle indicated satisfactory damping and damping trends for the structural modes of the HiMAT vehicle. The data presented include frequency and damping plotted as a function of Mach number.

Kehoe, M. W.

1984-01-01

318

Frequency-Domain Identification of XV-15 Tilt-Rotor Aircraft Dynamics in Hovering Flight  

NASA Technical Reports Server (NTRS)

Frequency-domain methods are used to identify the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight tests. Piloting and data analysis techniques are presented to determine frequency response plots and equivalent transfer function models. The open-loop pitch and roll dynamics for the hover flight condition exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining degrees of freedom are lightly damped and generally decoupled. Comparisons of XV-15 flight-test and simulator data are more favorable for high-frequency inputs (omega greater than 1.0 rad/sec) than low-frequency inputs. Time-domain comparisons of the extracted transfer functions with step response flight data are very favorable, even for large amplitude motions. The results presented in this paper demonstrate the utility of the frequency-domain techniques for dynamics identification and simulator fidelity studies.

Tischler, Mark B.; Leung, Joseph G. M.; Dugan, Daniel C.

1985-01-01

319

Coupled nonlinear flight dynamics, aeroelasticity, and control of very flexible aircraft  

NASA Astrophysics Data System (ADS)

Flight dynamics and control of rigid aircraft motion coupled with linearized structural dynamics has been studied for several decades. However, new requirements for very flexible aircraft are challenging the validity of most rigid body coupled linearized structural motion formulations, due to the presence of large elastic motions. This dissertation presents, the flight dynamics, integration, and control of the six degree-of-freedom equations of motion of a reference point on a very flexible aircraft coupled with the aeroelastic equations which govern the geometrically nonlinear structural response of the vehicle. A low-order strain-based nonlinear structural analysis coupled with unsteady finite-state potential flow aerodynamics form the basis for the aeroelastic formulation. The nonlinear beam structural model is based upon the finite strain approach. Kinematic differential equations are used to provide orientation and position of the fixed reference point. The resulting governing differential equations are non-linear, first- and second-order differential algebraic equations and provide a low-order complete nonlinear aircraft formulation. The resulting equations are integrated using an implicit Modified Newmark Method. The method incorporates both first- and second-order nonlinear equations without the necessity of transforming second-order equations to first-order form. The method also incorporates a Newton-Raphson sub-iteration scheme to reduce residual error. Due to the inherent flexibility of these aircraft, the low order structural modes couple directly with the rigid body modes. This creates a system which cannot be separated as in traditional control schemes. Trajectory control techniques are developed based upon a combination of linear and nonlinear inner-loop tracking and an outer-loop nonlinear transformation from desired trajectories to reference frame velocities. Numerical simulations are presented validating the proposed integration scheme and the open and closed loop response of a representative aircraft. Open loop simulations highlight the importance of nonlinear structural modeling as compared to rigid body and linearized structural analysis and show significant differences in the three reference point axes (pitch, roll, and yaw) not previously captured by rigid or linearized techniques. Closed loop simulations show the ability to track commanded trajectories in the presence of aeroelastic effects. Finally this dissertation provides several key contributions in the low-order modeling, analysis, and control of very flexible aircraft, specifically the development of (i) the six degree-of-freedom equations of motions of a reference point on a very flexible aircraft coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle, (ii) a nonlinear numerical integration scheme specifically targeted for very flexible aircraft, and (iii) a control architecture which provides closed loop trajectory tracking of a representative very flexible aircraft.

Shearer, Christopher M.

320

A flight simulator for advanced aircraft - Servo design to realization.  

NASA Technical Reports Server (NTRS)

Discussion of computer-aided design results obtained for a moving-base, three-man flight simulator. From a control viewpoint, the structure is discussed in terms of disturbance torques, damping ratios, natural frequencies, load acceleration, and smoothness. The use of inertia to achieve well-behaved structural transfer functions and smooth or high fidelity load accelerations is demonstrated. Transfer functions in the complex frequency domain, as well as time-dependent solutions to the system, are derived. The relative merits of using position and/or velocity as primary feedback, for a limited travel acceleration device, are discussed. Root locus plots, which were utilized in the control-system design, Bode plots, and time-dependent plots are drawn. In addition, the theoretical ratio of velocity to commanded input Bode plot is compared to the experimental results, and the dramatic effect on the load smoothness plot caused by selecting velocity over position as primary feedback is shown.

King, R. F.

1973-01-01

321

Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft  

NASA Technical Reports Server (NTRS)

As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

Taylor, Brian R.; Ratnayake, Nalin A.

2010-01-01

322

Flight testing a V/STOL aircraft to identify a full-envelope aerodynamic model  

NASA Technical Reports Server (NTRS)

Flight-test techniques are being used to generate a data base for identification of a full-envelope aerodynamic model of a V/STOL fighter aircraft, the YAV-8B Harrier. The flight envelope to be modeled includes hover, transition to conventional flight and back to hover, STOL operation, and normal cruise. Standard V/STOL procedures such as vertical takeoff and landings, and short takeoff and landings are used to gather data in the powered-lift flight regime. Long (3 to 5 min) maneuvers which include a variety of input types are used to obtain large-amplitude control and response excitations. The aircraft is under continuous radar tracking; a laser tracker is used for V/STOL operations near the ground. Tracking data are used with state-estimation techniques to check data consistency and to derive unmeasured variables, for example, angular accelerations. A propulsion model of the YAV-8B's engine and reaction control system is used to isolate aerodynamic forces and moments for model identification. Representative V/STOL flight data are presented. The processing of a typical short takeoff and slow landing maneuver is illustrated.

Mcnally, B. David; Bach, Ralph E., Jr.

1988-01-01

323

Flight testing a V/STOL aircraft to identify a full-envelope aerodynamic model  

NASA Technical Reports Server (NTRS)

Flight-test techniques are being used to generate a data base for identification of a full-envelope aerodynamic model of a V/STOL fighter aircraft, the YAV-8B Harrier. The flight envelope to be modeled includes hover, transition to conventionally flight and back to hover, STOL operation, and normal cruise. Standard V/STOL operation, and normal cruise. Standard V/STOL procedures such as vertical takeoff and landings, and short takeoff and landings are used to gather data in the powered-lift flight regime. Long (3-5-min) maneuvers which include a variety of input types are used to obtain large-amplitude control and response excitations. The aircraft is under continuous radar tracking; a laser tracker is used for V/STOL operations near the ground. Tracking data are used with state-estimation techniques to check data consistency and to derive unmeasured variables, for example, angular accelerations. A propulsion model of the YAV-8B's engine and reaction control system is used to isolate aerodynamic forces and moments for model identification. Representative V/STOL flight data are presented. The processing of a typical short-takeoff and slow-landing maneuver is illustrated.

Mcnally, B. David; Bach, Ralph E., Jr.

1988-01-01

324

Hybrid Kalman Filter: A New Approach for Aircraft Engine In-Flight Diagnostics  

NASA Technical Reports Server (NTRS)

In this paper, a uniquely structured Kalman filter is developed for its application to in-flight diagnostics of aircraft gas turbine engines. The Kalman filter is a hybrid of a nonlinear on-board engine model (OBEM) and piecewise linear models. The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight diagnostic system to be updated to the degraded health condition of the engines through a relatively simple process. Through this health baseline update, the effectiveness of the in-flight diagnostic algorithm can be maintained as the health of the engine degrades over time. Another significant aspect of the hybrid Kalman filter methodology is its capability to take advantage of conventional linear and nonlinear Kalman filter approaches. Based on the hybrid Kalman filter, an in-flight fault detection system is developed, and its diagnostic capability is evaluated in a simulation environment. Through the evaluation, the suitability of the hybrid Kalman filter technique for aircraft engine in-flight diagnostics is demonstrated.

Kobayashi, Takahisa; Simon, Donald L.

2006-01-01

325

Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data  

NASA Technical Reports Server (NTRS)

Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

Curry, Timothy J.; Batterson, James G. (Technical Monitor)

2000-01-01

326

Stable boundary layer wind shear model for aircraft flight hazard definition  

NASA Technical Reports Server (NTRS)

It is pointed out that wind shear, particularly at the lower altitudes in the terminal area, has been identified as being hazardous to aircraft operations. Accurate and reliable wind profiles are required for use in fast time and manned flight simulation studies aimed at fully defining and understanding the wind shear hazard. A description is presented of wind speed profiles for neutral and stable atmospheric conditions developed for the simulation studies to improve the safety and reliability of operations in the terminal area. The wind shear is mathematically modeled and the mathematical scenarios are presented in a format for direct application to wind shear hazard/flight simulation studies.

Frost, W.; Wang, S. T.; Camp, D. W.

1978-01-01

327

Flight test evaluation of predicted light aircraft drag, performance, and stability  

NASA Technical Reports Server (NTRS)

A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.

Smetana, F. O.; Fox, S. R.

1979-01-01

328

In-Flight Lightning Measurements and Reconstruction on a Metallic and Composite Aircraft  

NASA Astrophysics Data System (ADS)

Based on the success of the In-flight Lightning Strike Damage Assessment System (ILDAS) project launched within the scope of the Sixth Framework Programme of the European Commission and completed in July 2009, the results described in this paper form part of the ILDAS2 project initiated by Airbus Operations SAS in partnership with EADS IW and NLR. The principle aim of ILDAS2 project is to develop a system installed aboard an aircraft in order to determine the level, the current waveform and the attachments points of a lightning strike during an aircraft flight. The expectations linked to ILDAS2, the functional architecture of the system, the status and the projection of this development will be presented.

Boiddin, J.-F.; Flourens, F.; De Boer, A.; Bardet, M.; Herve, A.; Perez, G.; Riccio, L.

2012-05-01

329

The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities  

NASA Technical Reports Server (NTRS)

Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

Bauer, Jeff

2007-01-01

330

The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities  

NASA Technical Reports Server (NTRS)

Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

Bauer, Jeff

2007-01-01

331

Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications  

NASA Technical Reports Server (NTRS)

Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

Simpson, M. A.; Tran, B. N.

1991-01-01

332

Application of precomputed control laws in a reconfigurable aircraft flight control system  

NASA Technical Reports Server (NTRS)

A self-repairing flight control system concept in which the control law is reconfigured after actuator and/or control surface damage to preserve stability and pilot command tracking is described. A key feature of the controller is reconfigurable multivariable feedback. The feedback gains are designed off-line and scheduled as a function of the aircraft control impairment status so that reconfiguration is performed simply by updating the gain schedule after detection of an impairment. A novel aspect of the gain schedule design procedure is that the schedule is calculated using a linear quadratic optimization-based simultaneous stabilization algorithm in which the scheduled gain is constrained to stabilize a collection of plant models representing the aircraft in various control failure modes. A description and numerical evaluation of a controller design for a model of a statically unstable high-performance aircraft are given.

Moerder, Daniel D.; Halyo, Nesim; Broussard, John R.; Caglayan, Alper K.

1989-01-01

333

Adaptation of an In Situ Ground-Based Tropospheric OH/HO2 Instrument for Aircraft Use  

NASA Technical Reports Server (NTRS)

In-situ HO(x) (OH and HO2) measurements are an essential part of understanding the photochemistry of aircraft exhaust in the atmosphere. HO(x) affects the partitioning of nitrogen species in the NO(y) family. Its reactions are important sources and sinks for tropospheric ozone, thus providing a link between the NO(x) in aircraft exhaust and tropospheric ozone. OH mixing ratios are enhanced in aircraft wakes due to the photolysis of the HONO that is made close to the engine. Measurements of HO(x) in aircraft wakes, along with NO(x) measurements, thus provides a constraint on chemical models of the engine combustion and exhaust. The development of the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) is reported. We designed, developed, and successfully flew this instrument. It was part of the instrument complement on board the NASA DC-8 during SUCCESS, which took place in Kansas in April and May, 1996. ATHOS has a limit-of-detection for OH (S/N = 2) of 10(exp 5) OH molecules cm(exp -3) in less than 150 seconds. While this sensitivity is about 2-3 times less than the initial projections in the proposal, it is more than adequate for good measurements of OH and HO2 from the planetary boundary layer to the stratosphere. Our participation in SUCCESS was to be engineering test flights for ATHOS; however, the high-quality measurements we obtained are being used to study HO(x) photochemistry in contrails, clouds, and the clear air.

Brune, William H.

1997-01-01

334

A wake bending unsteady dynamic inflow model of tiltrotor in conversion flight of tiltrotor aircraft  

Microsoft Academic Search

The aerodynamics, dynamic responses and aeroelasticity of tiltrotor aircraft in the tilting of rotor i.e. in conversion flight\\u000a are extraordinarily complicated. The traditional quasi-steady assumption model can not reflect the unsteady aerodynamic problems\\u000a in the tilting of rotor. The CFD method based on the vortex theory can get better results, but it consumes a lot of computing\\u000a resources. In this

HaiLong Yue; PinQi Xia

2009-01-01

335

Flight control systems research. [optimization of F-8 aircraft control system  

NASA Technical Reports Server (NTRS)

Theoretical development is reported for the parameter optimization design technique needed for digital flight control system design. The results of an example case study applying the optimization technique for continuous systems to an F-8 aircraft feedback control system are presented. The concept of evolving the simplest system configuration that is capable of meeting a specified set of performance requirements is illustrated in this work.

Whitaker, H. P.; Baram, Y.; Cheng, Y.

1973-01-01

336

V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies  

NASA Technical Reports Server (NTRS)

An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.

Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.

1973-01-01

337

To Forecast or Not: LIFR (Limited Instrument Flight Rules) or IFR (Instrument Flight Rules). Forecasting Fog/Stratus 20-21 October 2005.  

National Technical Information Service (NTIS)

All forecasters can forecast low clouds, especially when environmental and computer models are suggesting such conditions. However, what is more difficult is forecasting whether the conditions will be LIFR (limited instrument flight rules) or IFR (instrum...

C. Rockey

2008-01-01

338

Towards an Improved Pilot-Vehicle Interface for Highly Automated Aircraft: Evaluation of the Haptic Flight Control System.  

National Technical Information Service (NTIS)

The control automation and interaction paradigm (e.g., manual, autopilot, flight management system) used on virtually all large highly automated aircraft has long been an exemplar of breakdowns in human factors and human-centered design. An alternative pa...

K. Goodrich, P. Schutte, R. Williams

2012-01-01

339

Ground-recorded sonic boom signatures of F-18 aircraft formation flight  

NASA Technical Reports Server (NTRS)

Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

Bahm, Catherine M.; Haering, Edward A., Jr.

1995-01-01

340

Ground-Recorded Sonic Boom Signatures of F-18 Aircraft in Formation Flight  

NASA Technical Reports Server (NTRS)

Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the tail shock of the upper F-18 (called tail-canopy). The second formation had the canopy of the lower F- 18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft . An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

Bahm, Catherine M.; Haering, Edward A., Jr.

1996-01-01

341

Criteria for design of integrated flight/propulsion control systems for STOVL fighter aircraft  

NASA Technical Reports Server (NTRS)

As part of NASA's program to develop technology for short takeoff and vertical landing (STOVL) fighter aircraft, control system designs have been developed for a conceptual STOVL aircraft. This aircraft is representative of the class of mixed-flow remote-lift concepts that was identified as the preferred design approach by the U.S./U.K. STOVL Joint Assessment and Ranking Team. The control system designs have been evaluated throughout the powered-lift flight envelope on the Vertical Motion Simulator (VMS) at Ames Research Center. Items assessed in the control system evaluation were: maximum control power used in transition and vertical flight, control system dynamic response associated with thrust transfer for attitude control, thrust margin in the presence of ground effect and hot-gas ingestion, and dynamic thrust response for the engine core. Effects of wind, turbulence, and ship airwake disturbances are incorporated in the evaluation. Results provide the basis for a reassessment of existing flying-qualities design criteria applied to STOVL aircraft.

Franklin, James A.

1993-01-01

342

Impact of flight regulations on effective use of unmanned aircraft systems for natural resources applications  

NASA Astrophysics Data System (ADS)

Unmanned Aircraft Systems (UAS) have great potential for rangeland assessment, monitoring, and numerous other applications in natural resources management. In order for UAS to become a dependable tool for public land management agencies in carrying out their government-mandated responsibilities, it is necessary to integrate UAS into the National Airspace System (NAS), which includes all aircraft, manned or unmanned. To achieve this, Federal Aviation Administration (FAA) regulations have to be followed to assure public safety. UAS operators need to know that FAA safety regulations, which incorporate line-of-sight restrictions, will only allow slow progress towards an operational system, and they must plan accordingly for the extra time necessary to prepare and complete flight missions. By following approved safety procedures, UAS operators can develop a UAS flight team that is capable of accomplishing missions anywhere in the United States while contributing to a totally integrated NAS comprised of all aircraft systems that can be used jointly for natural resources management. At the same time, it is hoped that FAA regulations will change in the future based on the capabilities and experience of the UAS flight team and on the locale in which operations take place, especially over large, remote, and sparsely populated areas.

Rango, Albert; Laliberte, Andrea S.

2010-07-01

343

Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team  

NASA Technical Reports Server (NTRS)

The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

Kelly, Michael J.

2013-01-01

344

The lightning swept stroke along an aircraft in flight. Part I: thermodynamic and electric properties of lightning arc channels  

Microsoft Academic Search

During a lightning strike to an aircraft in flight, the lightning channel becomes deformed in the airflow and displaced along the aircraft, a so-called swept stroke. The deformation and the displacement are caused by the interaction between the aerodynamic flow and the plasma properties of the channel together with the properties of the surface. The main part of the lightning

Anders Larsson; Philippe Lalande; Anne Bondiou-Clergerie; Alain Delannoy

2000-01-01

345

Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft  

NASA Technical Reports Server (NTRS)

Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

2014-01-01

346

Pulmonary Function Abnormalities in Never Smoking Flight Attendants Exposed to Secondhand Tobacco Smoke in the Aircraft Cabin  

PubMed Central

Objective To determine whether the flight attendants who were exposed to secondhand tobacco smoke (SHS) in the aircraft cabin have abnormal pulmonary function. Methods We administered questionnaires and performed pulmonary function testing in 61 never-smoking female flight attendants who worked in active air crews before the smoking ban on commercial aircraft (pre-ban). Results While the pre-ban flight attendants had normal FVC, FEV1, and FEV1/FVC ratio, they had significantly decreased flow at mid- and low-lung volumes, curvilinear flow-volume curves, and evidence of air trapping. Furthermore, the flight attendants had significantly decreased diffusing capacity (77.511.2 %predicted normal) with 51% having a diffusing capacity below their 95% normal prediction limit. Conclusions This cohort of healthy never-smoking flight attendants who were exposed to SHS in the aircraft cabin showed pulmonary function abnormalities suggestive of airway obstruction and impaired diffusion.

Arjomandi, Mehrdad; Haight, Thaddeus; Redberg, Rita; Gold, Warren M

2009-01-01

347

Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements  

NASA Astrophysics Data System (ADS)

A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about 10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than 20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

Rodi, A. R.; Leon, D. C.

2012-11-01

348

High-angle-of-attack yawing moment asymmetry of the X-31 aircraft from flight test  

NASA Technical Reports Server (NTRS)

Significant yawing moment asymmetries were encountered during the high-angle-of-attack envelope expansion of the two X-31 aircraft. These asymmetries led to position saturations of the thrust vector vanes and trailing-edge flaps during some of the dynamic stability axis rolling maneuvers at high angles of attack. This slowed the high-angle-of-attack envelope expansion and resulted in maneuver restrictions. Several aerodynamic modifications were made to the X-31 forebody with the goal of minimizing the asymmetry. A method for determining the yawing moment asymmetry from flight data was developed and an analysis of the various configuration changes completed. The baseline aircraft were found to have significant asymmetries above 45 deg angle of attack with the largest asymmetry typically occurring around 60 deg angle of attack. Applying symmetrical boundary layer transition strips along the forebody sides increased the magnitude of the asymmetry and widened the angle-of-attack range over which the largest asymmetry acted. Installing longitudinal forebody strakes and rounding the sharp nose of the aircraft caused the yawing moment asymmetry magnitude to be reduced. The transition strips and strakes made the asymmetry characteristic of the aircraft more repeatable than the clean forebody configuration. Although no geometric differences between the aircraft were known, ship 2 consistently had larger yawing moment asymmetries than ship 1.

Cobleigh, Brent R.

1994-01-01

349

Tiltrotor noise reduction through flight trajectory management and aircraft configuration control  

NASA Astrophysics Data System (ADS)

A tiltrotor can hover, takeoff and land vertically as well as cruise at high speeds and fly long distances. Because of these unique capabilities, tiltrotors are envisioned as an aircraft that could provide a solution to the issue of airport gridlock by operating on stub runways, helipads, or from smaller regional airports. However, during an approach-to-land a tiltrotor is susceptible to radiating strong impulsive noise, in particular, Blade-Vortex Interaction noise (BVI), a phenomenon highly dependent on the vehicle's performance-state. A mathematical model was developed to predict the quasi-static performance characteristics of a tiltrotor during a converting approach in the longitudinal plane. Additionally, a neural network was designed to model the acoustic results from a flight test of the XV-15 tiltrotor as a function of the aircraft's performance parameters. The performance model was linked to the neural network to yield a combined performance/acoustic model that is capable of predicting tiltrotor noise emitted during a decelerating approach. The model was then used to study noise trends associated with different combinations of airspeed, nacelle tilt, and flight path angle. It showed that BVI noise is the dominant noise source during a descent and that its strength increases with steeper descent angles. Strong BVI noise was observed at very steep flight path angles, suggesting that the tiltrotor's high downwash prevents the wake from being pushed above the rotor, even at such steep descent angles. The model was used to study the effects of various aircraft configuration and flight trajectory parameters on the rotor inflow, which adequately captured the measured BVI noise trends. Flight path management effectively constrained the rotor inflow during a converting approach and thus limited the strength of BVI noise. The maximum deceleration was also constrained by controlling the nacelle tilt-rate during conversion. By applying these constraints, low BVI noise approaches that take into account the first-order effects of deceleration on the acoustics were systematically designed and compared to a baseline approach profile. The low-noise approaches yielded substantial noise reduction benefits on a hemisphere surrounding the aircraft and on a ground plane below the aircraft's trajectory.

Gervais, Marc

350

NASA rotor systems research aircraft: Fixed-wing configuration flight-test results  

NASA Technical Reports Server (NTRS)

The fixed-wing, airplane configuration flight-test results of the Rotor System Research Aircraft (RSRA), NASA 740, at Ames/Dryden Flight Research Center are documented. Fourteen taxi and flight tests were performed from December 1983 to October 1984. This was the first time the RSRA was flown with the main rotor removed; the tail rotor was installed. These tests confirmed that the RSRA is operable as a fixed-wing aircraft. Data were obtained for various takeoff and landing distances, control sensitivity, trim and dynamics stability characteristics, performance rotor-hub drag, and acoustics signature. Stability data were obtained with the rotor hub both installed and removed. The speed envelope was developed to 261 knots true airspeed (KTAS), 226 knots calibrated airspeed (KCAS) at 10,000 ft density altitude. The airplane was configured at 5 deg. wing incidence with 5 deg. wing flaps as a normal configuration. Level-flight data were acquired at 167 KCAS for wing incidence from 0 to 10 deg. Step inputs and doublet inputs of various magnitudes were utilized to acquire dynamic stability and control sensitivity data. Sine-wave inputs of constantly increasing frequency were used to generate parameter identification data. The maximum load factor attained was 2.34 g at 206 KCAS.

Erickson, R. E.; Cross, J. L.; Kufeld, R. M.; Acree, C. W.; Nguyen, D.; Hodge, R. W.

1986-01-01

351

The measurement of aircraft performance and stability and control after flight through natural icing conditions  

NASA Technical Reports Server (NTRS)

The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

1986-01-01

352

Advanced piloted aircraft flight control system design methodology. Volume 1: Knowledge base  

NASA Technical Reports Server (NTRS)

The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design stages starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. While theory and associated computational means are an important aspect of the design methodology, the lore, knowledge and experience elements, which guide and govern applications are critical features. This material is presented as summary tables, outlines, recipes, empirical data, lists, etc., which encapsulate a great deal of expert knowledge. Much of this is presented in topical knowledge summaries which are attached as Supplements. The composite of the supplements and the main body elements constitutes a first cut at a a Mark 1 Knowledge Base for manned-aircraft flight control.

Mcruer, Duane T.; Myers, Thomas T.

1988-01-01

353

Design and piloted simulation evaluation of integrated flight/propulsion controls for STOVL aircraft  

NASA Technical Reports Server (NTRS)

Integrated flight/propulsion control systems have been designed for operation of STOVL aircraft over the low speed powered-lift flight envelope. The control system employs command modes for attitude, flightpath angle and flightpath acceleration during transition, and translational velocity command for hover and vertical landing. The command modes and feedback control are implemented in the form of a state-rate feedback implicit model follower to achieve the desired flying qualities and to suppress the effects of external disturbances and variations in the aircraft characteristics over the low speed envelope. A nonlinear inverse system was used to translate the output from these commands and feedback control into commands for the various aerodynamic and propulsion control effectors that are employed in powered-lift flight. Piloted evaluations of these STOVL integrated control designs have been conducted on Ames Research Center's Vertical Motion Simulator to assess flying qualities over the low-speed flight envelope. Results indicate that Level 1 flying qualities are achieved with this control system concept for each of these low-speed operations over a wide range of wind, atmospheric turbulence, and visibility conditions.

Franklin, James A.; Engelland, Shawn A.

1991-01-01

354

In-Flight Stability Analysis of the X-48B Aircraft  

NASA Technical Reports Server (NTRS)

This report presents the system description, methods, and sample results of the in-flight stability analysis for the X-48B, Blended Wing Body Low-Speed Vehicle. The X-48B vehicle is a dynamically scaled, remotely piloted vehicle developed to investigate the low-speed control characteristics of a full-scale blended wing body. Initial envelope clearance was conducted by analyzing the stability margin estimation resulting from the rigid aircraft response during flight and comparing it to simulation data. Short duration multisine signals were commanded onboard to simultaneously excite the primary rigid body axes. In-flight stability analysis has proven to be a critical component of the initial envelope expansion.

Regan, Christopher D.

2008-01-01

355

19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Duty-free entry of civil aircraft, aircraft engines...OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General... Civil Aircraft § 10.183 Duty-free entry of civil aircraft, aircraft...

2010-04-01

356

19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...  

Code of Federal Regulations, 2010 CFR

...2009-04-01 2009-04-01 false Duty-free entry of civil aircraft, aircraft engines...OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General... Civil Aircraft § 10.183 Duty-free entry of civil aircraft, aircraft...

2009-04-01

357

Theseus in Flight  

NASA Technical Reports Server (NTRS)

The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

1996-01-01

358

Evaluation of cloud detection instruments and performance of laminar-flow leading-edge test articles during NASA Leading-Edge Flight-Test Program  

NASA Technical Reports Server (NTRS)

Summary evaluations of the performance of laminar-flow control (LFC) leading edge test articles on a NASA JetStar aircraft are presented. Statistics, presented for the test articles' performance in haze and cloud situations, as well as in clear air, show a significant effect of cloud particle concentrations on the extent of laminar flow. The cloud particle environment was monitored by two instruments, a cloud particle spectrometer (Knollenberg probe) and a charging patch. Both instruments are evaluated as diagnostic aids for avoiding laminar-flow detrimental particle concentrations in future LFC aircraft operations. The data base covers 19 flights in the simulated airline service phase of the NASA Leading-Edge Flight-Test (LEFT) Program.

Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.; Fisher, David F.; Young, Ronald

1989-01-01

359

Instrumentation requirements for aircraft parameter identification with application to the helicopter  

NASA Technical Reports Server (NTRS)

The extent to which instrumentation errors cause degradation in the knowledge of stability and control derivatives identified for flight tests was studied along with the resultant degradation of the flight system performance base on these derivatives. The error in measurement and data processing systems used for parameter identification, error analysis techniques, and the effects of instrumentation, errors on the accuracy of parameter estimates are discussed. The analysis programs were used to study instrumentation error effects on the accuracy of the identified stability and control derivatives of the CH-46 helicopter.

Sorensen, J. A.; Mohr, R. L.; Cline, T. B.

1975-01-01

360

Mode-transition control law design for aircraft with ability of VTOL and high-speed cruise flight  

Microsoft Academic Search

The considered aircraft can provide an economical combination of vertical takeoff and landing (VTOL) capability with efficient high-speed cruise flight. The sliding mode control laws are proposed in this paper for flight path tracking and attitude control to achieve the mode transition. Besides, a control allocation algorithm based on the sliding mode control law is designed. The design overcomes the

Zhang Chenxi; Fan Penghui; Wang Xinhua; Cai Kaiyuan

2010-01-01

361

Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls  

NASA Technical Reports Server (NTRS)

A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

Gerren, Donna S.

1993-01-01

362

The development of an airborne instrumentation computer system for flight test  

NASA Technical Reports Server (NTRS)

Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

Bever, G. A.

1984-01-01

363

Aircraft as Research Tools  

NASA Technical Reports Server (NTRS)

Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

1999-01-01

364

Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft  

NASA Technical Reports Server (NTRS)

Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

2005-01-01

365

Wireless Sensor Networks for Developmental and Flight Instrumentation  

NASA Technical Reports Server (NTRS)

Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -

Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

2011-01-01

366

NUVU: handheld instruments for video inspection of aircraft wiring  

NASA Astrophysics Data System (ADS)

Most of the current practices of manual visual inspection of aircraft wiring bundles can be replaced or assisted by a portable test system consisting of a miniature B/W or color TV camera and controllable uniform illumination mounted in a flashlight-sized, hand-held unit weighing less than one pound. The location and configuration of the battery power supply and image viewing and storage means are at the discretion of the inspector. A typical viewed area is nominally 1 inch by 1.3 inches, with a depth of field up to 1.5 inches. Tradeoffs among pixel dimensions, geometrical optics, and lens diffraction which arise in the design of such a unit are discussed. Data are presented showing actuator measured depths of field and image resolutions vs. variable camera lens aperture under real conditions. The image size in these tests provided an overall 12X enlargement of the target, as viewed by the inspector in real time. On insulated wires as small as 1mm OD, printed markings are easily seen and read, as are common chafes, radial surface cracks, and other surface anomalies of the insulation. The present mechanical design permits the small unit not only to inspect areas in any direction to which the hand and wrist can point, but also allows insertion of the unit in areas not easily accessible to the hand or eye.

Pike, John N.; Mehrotra, Yogesh; Kaplan, Herbert

1999-01-01

367

Flight Investigation of Various Longitudinal Short-Term Dynamics for STOL Landing Approach Using the X-22A Variable Stability Aircraft.  

National Technical Information Service (NTIS)

The first in-flight flying qualities experiment using the variable stability X-22A aircraft investigated longitudinal flying qualities requirements for STOL aircraft in terminal area operations. Emphasis was placed on defining minimum requirements for the...

R. E. Smith J. V. Lebacqz J. M. Schuler

1973-01-01

368

Ground Vibration and Flight Flutter Tests of the Single-seat F-16XL Aircraft with a Modified Wing  

NASA Technical Reports Server (NTRS)

The NASA single-seat F-16XL aircraft was modified by the addition of a glove to the left wing. Vibration tests were conducted on the ground to assess the changes to the aircraft caused by the glove. Flight Luther testing was conducted on the aircraft with the glove installed to ensure that the flight envelope was free of aeroelastic or aeroservoelastic instabilities. The ground vibration tests showed that above 20 Hz, several modes that involved the control surfaces were significantly changed. Flight test data showed that modal damping levels and trends were satisfactory where obtainable. The data presented in this report include estimated modal parameters from the ground vibration and flight flutter test.

Voracek, David F.

1993-01-01

369

Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons  

NASA Technical Reports Server (NTRS)

As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

1996-01-01

370

Flight service evaluation of advanced composite ailerons on the L-1011 transport aircraft  

NASA Technical Reports Server (NTRS)

This report covers flight service evaluation of composite inboard ailerons on the L-1011 under contract NAS1-15069 for a period of five years. This is the fifth and final annual report of the maintenance evaluation program, and covers the period from July 1986 when the fourth yearly inspections were completed, through May 1987. Four shipsets of graphite/epoxy composite inboard ailerons were installed on L-1011 aircraft for this maintenance evaluation program. These include two Delta and two TWA aircraft. A fifth shipset of composite ailerons was installed in 1980 on Lockheed's flight test L-1011. The previous four annual inspections had been visual exterior inspections only. For this final inspection, the lower covers were removed for access and both interior and exterior surfaces, spars and ribs, and fastener holes were inspected. No damage or defects were observed on any of the composite ailerons, and no maintenance actions had occurred except for repainting of areas with paint loss. Flight hours on the airline components at the time of inspection ranged from 14,597 to 17,180 hours, after approximately 5 years of service.

Stone, R. H.

1987-01-01

371

In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft  

NASA Technical Reports Server (NTRS)

Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

Gilyard, Glenn B. (Inventor)

1999-01-01

372

Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight  

NASA Technical Reports Server (NTRS)

An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

1979-01-01

373

Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodies commercial transport aircraft  

NASA Technical Reports Server (NTRS)

Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 9 years of service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing body sandwich fairing; a solid laminate under wing fillet panel; and a 422 K (300 F) service aft engine fairing. The fairings have accumulated a total of 70,000 hours, with one ship set having over 24,000 hours service. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems, or any condition requiring corrective action. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

Stone, R. H.

1983-01-01

374

Flight service evaluation of Kevlar-49/epoxy composite panels in wide-bodied commercial transport aircraft  

NASA Technical Reports Server (NTRS)

Kevlar-49 fairing panels were inspected and found to be performing satisfactorily after two years flight service on an Eastern and an Air Canada L-1011. Six panels are on each aircraft including sandwich and solid laminate wing-body panels, and 300 F service aft engine fairings. Some of the panels were removed from the aircraft to permit inspection of inner surfaces and fastener hole conditions. Minor defects such as surface cracks due to impact damage, small delaminated areas, elongation and fraying of fastener holes, were noted. None of these defects were considered serious enough to warrant corrective action in the opinion of airline personnel. The defects are typical for the most part of defects noted on similar fiberglass parts.

Stone, R. H.

1975-01-01

375

Flight Crew Sleep in Long-Haul Aircraft Bunk Facilities: Survey Results  

NASA Technical Reports Server (NTRS)

Modem long-haul aircraft can fly up to 16 continuous hours and provide a 24-hour, global capability. Extra (augmented) flight crew are available on long flights to allow planned rest periods, on a rotating basis, away from the flight deck in onboard crew rest facilities (2 bunks). A NASA/FAA study is under-way to examine the quantity and quality of sleep obtained in long-haul aircraft bunks and the factors that promote or interfere with that sleep. The first phase of the study involved a retrospective survey, followed by a second phase field study to collect standard polysomnographic data during inflight bunk sleep periods. A summary of the Phase I survey results are reported here. A multi-part 54-question retrospective survey was completed by 1,404 flight crew (37% return rate) at three different major US air carriers flying B747-100, 200, 400, and MD- 11 long-haul aircraft. The questions examined demographics, quantity and quality of sleep at home and in onboard bunks, factors that promote or interfere with sleep, and effects on subsequent performance and alertness. Flight crew reported a mean bunk sleep latency of 39.4 mins (SD=28.3 mins) (n=1,276) and a mean total sleep time of 2.2 hrs (SD=1.3 hrs) (n=603). (Different flight lengths could affect overall time available for sleep.) Crew rated 25 factors for their interference or promotion of bunk sleep. Figure I portrays the average ratings for each factor across all three carriers. A principal components analysis of the 25 factors revealed three areas that promoted bunk sleep: physiological (e.g., readiness for sleep), physical environment (e.g., bunk size, privacy), and personal comfort (e.g., blankets, pillows). Five areas were identified that interfered with sleep: environmental disturbance (e.g., background noise, turbulence), luminosity (e.g., lighting), personal disturbances (e.g., bathroom trips, random thoughts), environmental discomfort (e.g., low humidity, cold), and interpersonal disturbances (e.g., bunk partner).

Rosekind, Mark R.; Miller, Donna L.; Gregory, Kevin B.; Dinges, David F.; Shafto, Michael G. (Technical Monitor)

1995-01-01

376

19 CFR 10.183 - Duty-free entry of civil aircraft, aircraft engines, ground flight simulators, parts, components...  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Duty-free entry of civil aircraft, aircraft...THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC... Civil Aircraft § 10.183 Duty-free entry of civil aircraft,...

2013-04-01

377

Research instrumentation requirements for flight/wind-tunnel tests of the YF-12 propulsion system and related flight experience  

NASA Technical Reports Server (NTRS)

Description of the requirements for a comprehensive flight and wind-tunnel propulsion research program to examine the predictability of inlet performance, evaluate the effects of high-frequency pressure phenomena on inlets, and investigate improved control concepts in order to cope with airframe interactions. This program is unique in that it requires precise similarity of the geometry of the flight vehicle and tunnel modes; the test conditions, including local flow at the inlet; and instrumentation. Although few wind-tunnel instrumentation problems exist, many problems emerge during flight tests because of the thermal environment. Mach 3 flight temperatures create unique problems with transducers, connectors, and wires. All must be capable of withstanding continuous 1000 F temperatures, as well as the mechanical stresses imposed by vibration and thermal cycling.

Schweikhard, W. G.; Montoya, E. J.

1974-01-01

378

Theseus in Flight  

NASA Technical Reports Server (NTRS)

The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

1996-01-01

379

Theseus in Flight  

NASA Technical Reports Server (NTRS)

The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

1996-01-01

380

Theseus in Flight  

NASA Technical Reports Server (NTRS)

The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

1996-01-01

381

Flight service evaluation of kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft: Flight service report  

NASA Technical Reports Server (NTRS)

Kevlar-49 fairing panels, installed as flight service components on three L-1011s, were inspected after 7 years service. There are six Kevlar-49 panels on each aircraft: a left hand and right hand set of a wing-body sandwich fairing; a slid laminate under-wing fillet panel; and a 422 K service aft engine fairing. The three L-1011s include one each in service with Eastern, Air Canada, and TWA. The fairings have accumulated a total of 52,500 hours, with one ship set having 17.700 hours service. The inspections were conducted at the airlines' major maintenance bases with the participation of Lockheed Engineering. The Kevlar-49 components were found to be performing satisfactorily in service with no major problems or any condition requiring corrective action. The only defects noted were minor impact damage and a minor degree of fastener hole fraying and elongation. These are for the most part comparable to damage noted on fiberglass fairings. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structure.

Stone, R. H.

1981-01-01

382

Redundant actuator development study. [flight control systems for supersonic transport aircraft  

NASA Technical Reports Server (NTRS)

Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

Ryder, D. R.

1973-01-01

383

Flight service evaluation of Kevlar-49 epoxy composite panels in wide-bodied commercial transport aircraft  

NASA Technical Reports Server (NTRS)

Kevlar-49 fairing panels, installed as flight service components on three l-1011's, were inspected after 8 years service. The fairings had accumulated a total of 62,000 hours, with one ship set having 20,850 hours service. Kevlar-49 components were found to be performing satisfactorily in service with no major problems. The only defects noted were minor impact damage, a few minor disbonds and a minor degree of fastener hole fraying and elongation. The service history to date indicates that Kevlar-49 epoxy composite materials have satisfactory service characteristics for use in aircraft secondary structures.

Stone, R. H.

1982-01-01

384

Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d  

NASA Technical Reports Server (NTRS)

Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

2002-01-01

385

STS-93 Mission Specialist Coleman and husband prepare to board aircraft for return flight to Houston  

NASA Technical Reports Server (NTRS)

At the Skid Strip at the Cape Canaveral Air Station, Mission Specialist Catherine G. Coleman (Ph.D.) and her husband, Josh Simpson, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

1999-01-01

386

Advanced composite aileron for L-1011 transport aircraft: Ground tests and flight evaluation  

NASA Technical Reports Server (NTRS)

A composite aileron and a metal aileron were subjected to a series of comparative stiffness and vibration tests. These tests showed that the stiffness and vibration characteristics of the composite aileron are similar to the metal aileron. The first composite ground test article was statically tested to failure which occurred at 139 percent of design ultimate load. The second composite ground test article was tested to verify damage tolerance and fail-safe characteristics. Visible damage was inflicted to the aileron and the aileron was subjected to one lifetime of spectrum fatigue loading. After conducting limit load tests on the aileron, major damage was inflicted to the cover and the aileron was loaded to failure which occurred at 130 percent of design ultimate load. A shipset of composite ailerons were installed on Lockheed's L-1011 flight test aircraft and flown. The composite aileron was flutter-free throughout the flight envelope.

Griffin, C. F.

1981-01-01

387

Flight service evaluation of PRD-49/epoxy composite panels in wide-bodied commercial transport aircraft  

NASA Technical Reports Server (NTRS)

Fairing panels were fabricated to evaluate the fabrication characteristics and flight service performance of PRD-49 (Kevlar-49) a composite reinforcing material and to compare it with the fiberglass which is currently in use. Panel configurations were selected to evaluate the PRD-49 with two resin matrix materials in sandwich and solid laminate construction. Left and right hand versions of these configurations were installed on L-1011's which will accumulate approximately 3000 flight hours per year per aircraft. The direct substitution of PRD-49 for fiberglass produced a twenty-six percent weight reduction on the panel configurations. Examination of these panels revealed that there was no visible difference between the PRD-49 and adjacent fiberglass panels.

Wooley, J. H.

1974-01-01

388

STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston  

NASA Technical Reports Server (NTRS)

At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter, Bridget Youngs, prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility on July 27 with main gear touchdown at 11:20:35 p.m. EDT. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

1999-01-01

389

STS-93 Commander Collins and daughter prepare to board aircraft for return flight to Houston  

NASA Technical Reports Server (NTRS)

At the Skid Strip at the Cape Canaveral Air Station, Commander Eileen Collins and her daughter Bridget Youngs prepare to board an aircraft for their return flight to Houston following the completion of the STS-93 Space Shuttle mission. Landing occurred on runway 33 at KSC's Shuttle Landing Facility with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

1999-01-01

390

A safety margin and flight reference system and display for powered-lift aircraft  

NASA Technical Reports Server (NTRS)

A study was conducted to explore the feasibility of a safety margin and flight reference system for those powered-lift aircraft which require a backside piloting technique. The main objective was to display multiple safety margin criteria as a single variable which could be tracked both manually and automatically and which could be monitored in order to derive safety margin status. The study involved a pilot-in-the-loop analysis of several system concepts and a simulator experiment to evaluate those concepts showing promise. A system was ultimately configured which yielded reasonable compromises in controllability, status information content, and the ability to regulate safety margins at some expense of the allowable low speed flight path envelope.

Heffley, R. K.; Hardy, G. H.

1978-01-01

391

H-infinity based integrated flight-propulsion control design for a STOVL aircraft in transition flight  

NASA Technical Reports Server (NTRS)

Results are presented from an application of H-infinity control design methodology to a centralized integrated flight/propulsion control (IFPC) system design for a supersonic Short Take-Off and Vertical Landing (STOVL) fighter aircraft in transition flight. The overall design methodology consists of a centralized IFPC controller design with controller partitioning. Only the feedback controller design portion of the methodology is addressed. Design and evaluation vehicle models are summarized, and insight is provided into formulating the H-infinity control problem such that it reflects the IFPC design objectives. The H-infinity controller is shown to provide decoupled command tracking for the design model. The controller order could be significantly reduced by modal residualization of the fast controller modes without any deterioration in performance. A discussion is presented of the areas in which the controller performance needs to be improved, and ways in which these improvements can be achieved within the framework of an H-infinity based linear control design.

Garg, Sanjay; Mattern, Duane L.; Bright, Michelle M.; Ouzts, Peter J.

1990-01-01

392

Icing effects on aircraft stability and control determined from flight data: Preliminary results  

NASA Technical Reports Server (NTRS)

The effects of airframe icing on the stability and control characteristics of the NASA DH-6 Twin Otter icing research aircraft were investigated by flight test. The flight program was developed to obtain the stability and control parameters of the DH-6 in a baseline ('uniced') configuration and an 'artificially iced' configuration for specified thrust conditions. Stability and control parameter identification maneuvers were performed over a wide range of angles of attack for wing flaps retracted (0 deg) and wing flaps partially deflected (10 deg). Engine power was adjusted to hold thrust constant at one of three thrust coefficients (C(sub T) = 0.14, C(sub T) = 0.07, C(subT) = 0.00). This paper presents only the pitching- and yawing-moment results from the flight test program. Stability and control parameters were estimated for the uniced and artificially iced configurations using a modified stepwise regression algorithm. Comparisons of the uniced and iced stability and control parameters are presented for the majority of the flight envelope. The artificial ice reduced the elevator and rudder control effectiveness by 12 percent and 8 percent respectively for the 0 deg flap setting. The longitudinal static stability was also decreased substantially (approximately 10 percent) because of the tail ice. Further discussion is provided to explain some of the effects of ice on the stability and control parameters.

Ratvasky, T. P.; Ranaudo, R. J.

1993-01-01

393

Lessons Learned from Numerical Simulations of the F-16XL Aircraft at Flight Conditions  

NASA Technical Reports Server (NTRS)

Nine groups participating in the Cranked Arrow Wing Aerodynamics Project International (CAWAPI) project have contributed steady and unsteady viscous simulations of a full-scale, semi-span model of the F-16XL aircraft. Three different categories of flight Reynolds/Mach number combinations were computed and compared with flight-test measurements for the purpose of code validation and improved understanding of the flight physics. Steady-state simulations are done with several turbulence models of different complexity with no topology information required and which overcome Boussinesq-assumption problems in vortical flows. Detached-eddy simulation (DES) and its successor delayed detached-eddy simulation (DDES) have been used to compute the time accurate flow development. Common structured and unstructured grids as well as individually-adapted unstructured grids were used. Although discrepancies are observed in the comparisons, overall reasonable agreement is demonstrated for surface pressure distribution, local skin friction and boundary velocity profiles at subsonic speeds. The physical modeling, steady or unsteady, and the grid resolution both contribute to the discrepancies observed in the comparisons with flight data, but at this time it cannot be determined how much each part contributes to the whole. Overall it can be said that the technology readiness of CFD-simulation technology for the study of vehicle performance has matured since 2001 such that it can be used today with a reasonable level of confidence for complex configurations.

Rizzi, Arthur; Jirasek, Adam; Lamar, John; Crippa, Simone; Badcock, Kenneth; Boelens, Oklo

2009-01-01

394

14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...  

Code of Federal Regulations, 2011 CFR

...during the en route portion of flight below the standard MEA...aircraft operations on any desired flight path. Area navigation...certificate holders, training of flight crewmembers and other personnel...authorized to exercise operational control on the use of those...

2014-01-01

395

Instrumentation and Performance Analysis Plans for the HIFiRE Flight 2 Experiment  

NASA Technical Reports Server (NTRS)

Supersonic combustion performance of a bi-component gaseous hydrocarbon fuel mixture is one of the primary aspects under investigation in the HIFiRE Flight 2 experiment. In-flight instrumentation and post-test analyses will be two key elements used to determine the combustion performance. Pre-flight computational fluid dynamics (CFD) analyses provide valuable information that can be used to optimize the placement of a constrained set of wall pressure instrumentation in the experiment. The simulations also allow pre-flight assessments of performance sensitivities leading to estimates of overall uncertainty in the determination of combustion efficiency. Based on the pre-flight CFD results, 128 wall pressure sensors have been located throughout the isolator/combustor flowpath to minimize the error in determining the wall pressure force at Mach 8 flight conditions. Also, sensitivity analyses show that mass capture and combustor exit stream thrust are the two primary contributors to uncertainty in combustion efficiency.

Gruber, Mark; Barhorst, Todd; Jackson, Kevin; Eklund, Dean; Hass, Neal; Storch, Andrea M.; Liu, Jiwen

2009-01-01

396

Performance of an aircraft instrument for the measurement of NO y  

NASA Astrophysics Data System (ADS)

Measurements of NO and NOy using a chemiluminescence technique were made on board a DC-8 aircraft during NASA's Pacific Exploratory Mission-West B (PEM-West B). The gold converter to convert NOy species into NO was operated at a constant pressure using a servo-controlled Teflon valve, which has been used for NOy measurements on board the ER-2 aircraft. The results of laboratory tests and some flight data during PEM-West B are presented. These experiments indicate no detectable inlet loss of HNO3 in dry air, although some loss was observed at H2O mixing ratios of 1-2%. The laboratory tests also showed small variability in the NOy artifact, high conversion efficiency for NO2 and HNO3, low HCN conversion efficiency, good repeatability of the measurements, and fast response. The control of the converter pressure during flight has been proven to be very advantageous in making reliable aircraft NOy measurements in the troposphere. The uncertainties of the NO and NOy PEM-West B data, including the effects of HCN conversion and HNO3 inlet loss, have been estimated.

Kondo, Y.; Kawakami, S.; Koike, M.; Fahey, D. W.; Nakajima, H.; Zhao, Y.; Toriyama, N.; Kanada, M.; Sachse, G. W.; Gregory, G. L.

1997-12-01

397

Emergency in-flight egress opening for general aviation aircraft. [pilot bailout  

NASA Technical Reports Server (NTRS)

An emergency in-flight egress system was installed in a light general aviation airplane. The airplane had no provision for egress on the left side. To avoid a major structural redesign for a mechanical door, an add on 11.2 kg (24.6 lb) pyrotechnic-actuated system was developed to create an opening in the existing structure. The skin of the airplane was explosively severed around the side window, across a central stringer, and down to the floor, creating an opening of approximately 76 by 76 cm. The severed panel was jettisoned at an initial velocity of approximately 13.7 m/sec. System development included a total of 68 explosive severance tests on aluminum material using small samples, small and full scale flat panel aircraft structural mockups, and an actual aircraft fuselage. These tests proved explosive sizing/severance margins, explosive initiation, explosive product containment, and system dynamics. This technology is applicable to any aircraft of similar construction.

Bement, L. J.

1980-01-01

398

The 1998 Leonid Multi-Instrument Aircraft Campaign-an early Review  

NASA Astrophysics Data System (ADS)

The 1998 return of the Leonid shower was the target of the Leonid Multi-Instrument Aircraft Campaign (Leonid MAC), an unusual two-aircraft astronomical research mission executed near Okinawa, Japan. The prospect of a meteor storm brought 28 researchers of seven nationalities together in a concerted effort to observe the shower by imaging, spectroscopic, and ranging techniques. This paper is a review of the major science issues that are behind the deployment of each of the present array of instruments and describes the interconnection of the various experiments. This was NASA's first Astrobiology mission. The mission also aimed to study contemporary issues in planetary astronomy, in atmospheric sciences, and concerning the satellite impact hazard. First results of the participating observers are discussed and put in context, in preparation for the deployment of a planned second mission in November of 1999.

Jenniskens, Peter; Butow, Steven J.

1999-11-01

399

The 1998 Leonid Multi-Instrument Aircraft Campaign-An Early Review  

NASA Technical Reports Server (NTRS)

The 1998 return of the Leonid shower was the target of the Leonid multi-instrument aircraft campaign (Leonid MAC), an unusual two-aircraft astronomical research mission executed near Okinawa, Japan. The prospect of a meteor storm brought 28 researchers of 7 nationalities together in a concerted effort to observe the shower by imaging, spectroscopic, and ranging techniques. This paper is a review of the major science issues that are behind the deployment of each of the present array of instruments and describes the interconnection of the various experiments. This was NASA's first astrobiology mission. The mission also aimed to study contemporary issues in planetary astronomy, in atmospheric sciences, and concerning the satellite impact hazard. First results of the participating observers are discussed and put in context, in preparation for the deployment of a planned second mission in November of 1999.

Jenniskens, Peter; Butow, Steven J.; DeVincenzi, Donald L. (Technical Monitor)

1999-01-01

400

Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft  

NASA Technical Reports Server (NTRS)

Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system.

Shin, Jong-Yeob; Belcastro, Christine

2008-01-01

401

V/STOL tilt rotor research aircraft. Volume 2: Ship 1 instrumentation  

NASA Technical Reports Server (NTRS)

Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 1 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement item codes to J-box locations is given in a table. Cross references are given.

1978-01-01

402

Measurements of Long-Lived Trace Gases from Commercial Aircraft Platforms: Development of Instrumentation  

NASA Technical Reports Server (NTRS)

The upper troposphere (6-12 km altitude) is a poorly understood and highly vulnerable region of the atmosphere. It is important because many trace species, including ozone, have their greatest impact as greenhouse (infrared-absorbing) gases in this region. The addition of relatively small amounts of anthropogenic chemicals, such as nitrogen oxides, can have a dramatic effect on the abundance of ozone. Some of these pollutants are deposited directly, e.g., by aircraft, while others are transported in. The primary goal of this project was to measure several chemical compounds in the upper troposphere that will help us to understand how air is to transported to that part of the atmosphere; that is, does it come down from the stratosphere, does it rise from the surface via convection, and so on. To obtain adequate sampling to accomplish this goal, we proposed to make measurements from revenue aircraft during normal flight operations.

2002-01-01

403

Flight test of a pressurization system used to measure minor atmospheric constituents from an aircraft  

NASA Technical Reports Server (NTRS)

A flight evaluation of an ambient air sample pressurization system was conducted at altitudes between 6 and 12 km. The system regulated the sample pressure to 10.15 + or - 0.1 N/sq n and provided sample flow to three gas analysis instruments included in the system. Ozone concentrations measured by two instruments employing different techniques varied from about 30 parts per billion by volume (ppbv) to over 350 ppbv, and the two ozone monitors agreed to within 20 ppbv. A carbon dioxide analyzer indicated modifications required for future installations.

Reck, G. M.; Briehl, D.; Perkins, P. J.

1974-01-01

404

Modeling of Aircraft Unsteady Aerodynamic Characteristics/Part 3 - Parameters Estimated from Flight Data. Part 3; Parameters Estimated from Flight Data  

NASA Technical Reports Server (NTRS)

A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.

Klein, Vladislav; Noderer, Keith D.

1996-01-01

405

Flight test investigation of certification issues pertaining to general-aviation-type aircraft with natural laminar flow  

NASA Technical Reports Server (NTRS)

Development of Natural Laminar Flow (NLF) technology for application to general aviation-type aircraft has raised some question as to the adequacy of FAR Part 23 for certification of aircraft with significant NLF. A series of flight tests were conducted with a modified Cessna T210R to allow quantitative comparison of the aircraft's ability to meet certification requirements with significant NLF and with boundary layer transition fixed near the leading edge. There were no significant differences between the two conditions except an increasing in drag, which resulted in longer takeoff distances and reduced climb performance.

Doty, Wayne A.

1990-01-01

406

Development of a computer technique for the prediction of transport aircraft flight profile sonic boom signatures. M.S. Thesis  

NASA Technical Reports Server (NTRS)

A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.

Coen, Peter G.

1991-01-01

407

INVESTIGATION OF RADM PERFORMANCE USING AIRCRAFT MEASUREMENTS  

EPA Science Inventory

Measurements using specially instrumented aircraft were obtained during August and September, 1988 as an integral part of the ACID MODES (Model Operational and Diagnostic Evaluation Study) field study. pecialized flights, each designed to diagnose different aspects of the perform...

408

Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)  

NASA Technical Reports Server (NTRS)

Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

1987-01-01