Sample records for instrumented robotic aircraft

  1. The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations.

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; Webster, P. J.; Curry, J. A.; Tyrell, G.; Gauntlett, D.; Brett, G.; Becker, J.; Hoag, R.; Vaglienti, W.

    2001-05-01

    The Aerosonde is a small robotic aircraft designed for highly flexible and inexpensive operations. Missions are conducted in a completely robotic mode, with the aircraft under the command of a ground controller who monitors the mission. Here we provide an update on the Aerosonde development and operations and expand on the vision for the future, including instrument payloads, observational strategies, and platform capabilities. The aircraft was conceived in 1992 and developed to operational status in 1995-98, after a period of early prototyping. Continuing field operations and development since 1998 have led to the Aerosonde Mark 3, with ~2000 flight hours completed. A defined development path through to 2002 will enable the aircraft to become increasingly more robust with increased flexibility in the range and type of operations that can be achieved. An Aerosonde global reconnaissance facility is being developed that consists of launch and recovery sites dispersed around the globe. The use of satellite communications and internet technology enables an operation in which all aircraft around the globe are under the command of a single center. During operation, users will receive data at their home institution in near-real time via the virtual field environment, allowing the user to update the mission through interaction with the global command center. Sophisticated applications of the Aerosonde will be enabled by the development of a variety of interchangeable instrument payloads and the operation of Smart Aerosonde Clusters that allow a cluster of Aerosondes to interact intelligently in response to the data being collected.

  2. Robots for Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Marshall Space Flight Center charged USBI (now Pratt & Whitney) with the task of developing an advanced stripping system based on hydroblasting to strip paint and thermal protection material from Space Shuttle solid rocket boosters. A robot, mounted on a transportable platform, controls the waterjet angle, water pressure and flow rate. This technology, now known as ARMS, has found commercial applications in the removal of coatings from jet engine components. The system is significantly faster than manual procedures and uses only minimal labor. Because the amount of "substrate" lost is minimal, the life of the component is extended. The need for toxic chemicals is reduced, as is waste disposal and human protection equipment. Users of the ARMS work cell include Delta Air Lines and the Air Force, which later contracted with USBI for development of a Large Aircraft Paint Stripping system (LARPS). LARPS' advantages are similar to ARMS, and it has enormous potential in military and civil aircraft maintenance. The technology may also be adapted to aircraft painting, aircraft inspection techniques and paint stripping of large objects like ships and railcars.

  3. Robotic instrumentation: Evolution and microsurgical applications

    PubMed Central

    Parekattil, Sijo J.; Moran, Michael E.

    2010-01-01

    This article presents a review of the history and evolution of robotic instrumentation and its applications in urology. A timeline for the evolution of robotic instrumentation is presented to better facilitate an understanding of our current-day applications. Some new directions including robotic microsurgical applications (robotic assisted denervation of the spermatic cord for chronic orchialgia and robotic assisted vasectomy reversal) are presented. There is a paucity of prospective comparative effectiveness studies for a number of robotic applications. However, right or wrong, human nature has always led to our infatuation with the concept of using tools to meet our needs. This chapter is a brief tribute to where we have come from and where we may be potentially heading in the field of robotic assisted urologic surgery. PMID:21116362

  4. Reducing robotic prostatectomy costs by minimizing instrumentation.

    PubMed

    Delto, Joan C; Wayne, George; Yanes, Rafael; Nieder, Alan M; Bhandari, Akshay

    2015-05-01

    Since the introduction of robotic surgery for radical prostatectomy, the cost-benefit of this technology has been under scrutiny. While robotic surgery professes to offer multiple advantages, including reduced blood loss, reduced length of stay, and expedient recovery, the associated costs tend to be significantly higher, secondary to the fixed cost of the robot as well as the variable costs associated with instrumentation. This study provides a simple framework for the careful consideration of costs during the selection of equipment and materials. Two experienced robotic surgeons at our institution as well as several at other institutions were queried about their preferred instrument usage for robot-assisted prostatectomy. Costs of instruments and materials were obtained and clustered by type and price. A minimal set of instruments was identified and compared against alternative instrumentation. A retrospective review of 125 patients who underwent robotically assisted laparoscopic prostatectomy for prostate cancer at our institution was performed to compare estimated blood loss (EBL), operative times, and intraoperative complications for both surgeons. Our surgeons now conceptualize instrument costs as proportional changes to the cost of the baseline minimal combination. Robotic costs at our institution were reduced by eliminating an energy source like the Ligasure or vessel sealer, exploiting instrument versatility, and utilizing inexpensive tools such as Hem-o-lok clips. Such modifications reduced surgeon 1's cost of instrumentation to ∼40% less compared with surgeon 2 and up to 32% less than instrumentation used by surgeons at other institutions. Surgeon 1's combination may not be optimal for all robotic surgeons; however, it establishes a minimally viable toolbox for our institution through a rudimentary cost analysis. A similar analysis may aid others in better conceptualizing long-term costs not as nominal, often unwieldy prices, but as percent changes in

  5. Monitoring Disasters by Use of Instrumented Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Sullivan, Donald V.; Dunagan, Steven E.; Brass, James A.; Ambrosia, Vincent G.; Buechel, Sally W.; Stoneburner, Jay; Schoenung, Susan M.

    2009-01-01

    Efforts are under way to develop data-acquisition, data-processing, and data-communication systems for monitoring disasters over large geographic areas by use of uninhabited aerial systems (UAS) robotic aircraft that are typically piloted by remote control. As integral parts of advanced, comprehensive disaster- management programs, these systems would provide (1) real-time data that would be used to coordinate responses to current disasters and (2) recorded data that would be used to model disasters for the purpose of mitigating the effects of future disasters and planning responses to them. The basic idea is to equip UAS with sensors (e.g., conventional video cameras and/or multispectral imaging instruments) and to fly them over disaster areas, where they could transmit data by radio to command centers. Transmission could occur along direct line-of-sight paths and/or along over-the-horizon paths by relay via spacecraft in orbit around the Earth. The initial focus is on demonstrating systems for monitoring wildfires; other disasters to which these developments are expected to be applicable include floods, hurricanes, tornadoes, earthquakes, volcanic eruptions, leaks of toxic chemicals, and military attacks. The figure depicts a typical system for monitoring a wildfire. In this case, instruments aboard a UAS would generate calibrated thermal-infrared digital image data of terrain affected by a wildfire. The data would be sent by radio via satellite to a data-archive server and image-processing computers. In the image-processing computers, the data would be rapidly geo-rectified for processing by one or more of a large variety of geographic-information- system (GIS) and/or image-analysis software packages. After processing by this software, the data would be both stored in the archive and distributed through standard Internet connections to a disaster-mitigation center, an investigator, and/or command center at the scene of the fire. Ground assets (in this case

  6. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  7. Challenging Residual Contamination of Instruments for Robotic Surgery in Japan.

    PubMed

    Saito, Yuhei; Yasuhara, Hiroshi; Murakoshi, Satoshi; Komatsu, Takami; Fukatsu, Kazuhiko; Uetera, Yushi

    2017-02-01

    BACKGROUND Recently, robotic surgery has been introduced in many hospitals. The structure of robotic instruments is so complex that updating their cleaning methods is a challenge for healthcare professionals. However, there is limited information on the effectiveness of cleaning for instruments for robotic surgery. OBJECTIVE To determine the level of residual contamination of instruments for robotic surgery and to develop a method to evaluate the cleaning efficacy for complex surgical devices. METHODS Surgical instruments were collected immediately after operations and/or after in-house cleaning, and the level of residual protein was measured. Three serial measurements were performed on instruments after cleaning to determine the changes in the level of contamination and the total amount of residual protein. The study took place from September 1, 2013, through June 30, 2015, in Japan. RESULTS The amount of protein released from robotic instruments declined exponentially. The amount after in-house cleaning was 650, 550, and 530 µg/instrument in the 3 serial measurements. The overall level of residual protein in each measurement was much higher for robotic instruments than for ordinary instruments (P<.0001). CONCLUSIONS Our data demonstrated that complete removal of residual protein from surgical instruments is virtually impossible. The pattern of decline differed depending on the instrument type, which reflected the complex structure of the instruments. It might be necessary to establish a new standard for cleaning using a novel classification according to the structural complexity of instruments, especially for those for robotic surgery. Infect Control Hosp Epidemiol 2017;38:143-146.

  8. A laser tracking dynamic robot metrology instrument

    NASA Technical Reports Server (NTRS)

    Parker, G. A.; Mayer, J. R. R.

    1989-01-01

    Research work over several years has resulted in the development of a laser tracking instrument capable of dynamic 3-D measurements of robot end-effector trajectories. The instrument characteristics and experiments to measure the static and dynamic performance of a robot in an industrial manufacturing environment are described. The use of this technology for space applications is examined.

  9. Robotics and Automation for Flight Deck Aircraft Servicing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in thismore » case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.« less

  10. A Robot or a Science Instrument?

    NASA Image and Video Library

    2009-10-20

    Some say the science instrument on NASA Wide-field Infrared Survey Explorer mission resembles the Star Wars robot R2-D2. The instrument is enclosed in a solid-hydrogen cryostat, which cools the WISE telescope and detectors.

  11. Guide to measurement of winds with instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Paige, Terry S.; Nelius, Andrew E.

    1991-01-01

    Aircraft measurement techniques are reviewed. Review of past and present applications of instrument aircraft to atmospheric observations is presented. Questions to be answered relative to measuring mean wind profiles as contrasted to turbulence measurements are then addressed. Requirements of instrumentation and accuracy, data reduction, data acquisition, and theoretical and certainty analysis are considered.

  12. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  13. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  14. Analysis of wind profile measurements from an instrumented aircraft

    NASA Technical Reports Server (NTRS)

    Paige, Terry S.; Murphy, Patrick J.

    1990-01-01

    The results of an experimental program to determine the capability of measuring wind profiles on support of STS operations with an instrumented aircraft are discussed. These results are a compilation of the flight experiments and the statistical data comparing the quality of the aircraft measurements with quasi-simultaneous and quasi-spatial overlapping Jimsphere measurements. An instrumented aircraft was chosen as a potential alternative to the Jimsphere/radar system for expediting the wind profile calculation by virtue of the ability of an aircraft to traverse the altitudes of interest in roughly 10 minutes. The two aircraft which participated in the study were F-104 and ER-2.

  15. Design and Development of the Aircraft Instrument Comprehension Program.

    ERIC Educational Resources Information Center

    Higgins, Norman C.

    The Aircraft Instrument Comprehension (AIC) Program is a self-instructional program designed to teach undergraduate student pilots to read instruments that indicate the position of the aircraft in flight, based on sequential instructional stages of information, prompted practice, and unprompted practice. The program includes a 36-item multiple…

  16. STDN network operations procedure for Apollo range instrumentation aircraft, revision 1

    NASA Technical Reports Server (NTRS)

    Vette, A. R.; Pfeiffer, W. A.

    1972-01-01

    The Apollo range instrumentation aircraft (ARIA) fleet which consists of four EC-135N aircraft used for Apollo communication support is discussed. The ARIA aircraft are used to provide coverage of lunar missions, earth orbit missions, command module/service module separation to spacecraft landing, and assist in recovery operations. Descriptions of ARIA aircraft, capabilities, and instrumentation are included.

  17. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    PubMed Central

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  18. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  19. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  20. Aircraft noise measurement instrumentation and techniques

    DOT National Transportation Integrated Search

    1996-08-01

    This letter report describes aircraft noise measurement instrumentation to : be used in the field. It includes guidance on good field-measurement : practice, general rules-of-thumb, as well as references to appropriate : national and international st...

  1. Dynamics and control of robotic aircraft with articulated wings

    NASA Astrophysics Data System (ADS)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  2. TAIPAN instrument fibre positioner and Starbug robots: engineering overview

    NASA Astrophysics Data System (ADS)

    Staszak, Nicholas F.; Lawrence, Jon; Brown, David M.; Brown, Rebecca; Zhelem, Ross; Goodwin, Michael; Kuehn, Kyler; Lorente, Nuria P. F.; Nichani, Vijay; Waller, Lew; Case, Scott; Content, Robert; Hopkins, Andrew M.; Klauser, Urs; Pai, Naveen; Mueller, Rolf; Mali, Slavko; Vuong, Minh V.

    2016-07-01

    TAIPAN will conduct a stellar and galaxy survey of the Southern sky. The TAIPAN positioner is being developed as a prototype for the MANIFEST instrument on the GMT. The design for TAIPAN incorporates 150 optical fibres (with an upgrade path to 300) situated within independently controlled robotic positioners known as Starbugs. Starbugs allow precise parallel positioning of individual fibres, thus significantly reducing instrument configuration time and increasing the amount of observing time. Presented is an engineering overview of the UKST upgrade of the completely new Instrument Spider Assembly utilized to support the Starbug Fibre Positioning Robot and current status of the Starbug itself.

  3. A Unique Instrumental Malfunction during Robotic Prostatectomy

    PubMed Central

    Park, Sung Yul; Ahn, Jenny Jin-Kyung; Jeong, Wooju; Ham, Won Sik

    2010-01-01

    Over the past decade, the introduction of robotics in the field of medicine has provided a new approach to patients requiring surgery, and both its advantages and disadvantages are currently under study by many groups worldwide. The use of robotics has especially been considered by the urological community as a treatment option in radical prostatectomy. The current case report is one in which the da Vinci Surgical System™, with fourth arm use was employed in radical prostatectomy. This case presents a unique occurrence in which a bolt of the Prograsper forcep became loose during an operation, leading to diminished device functionality and later impedance of its removal. A circumstance such as this has not previously been reported, so we introduce for other robotic surgeons our unique instrumental malfunction case during a robotic prostatectomy. PMID:20046531

  4. Instrument for Aircraft-Icing and Cloud-Physics Measurements

    NASA Technical Reports Server (NTRS)

    Lilie, Lyle; Bouley, Dan; Sivo, Chris

    2006-01-01

    The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.

  5. Single-Command Approach and Instrument Placement by a Robot on a Target

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Cheng, Yang

    2005-01-01

    AUTOAPPROACH is a computer program that enables a mobile robot to approach a target autonomously, starting from a distance of as much as 10 m, in response to a single command. AUTOAPPROACH is used in conjunction with (1) software that analyzes images acquired by stereoscopic cameras aboard the robot and (2) navigation and path-planning software that utilizes odometer readings along with the output of the image-analysis software. Intended originally for application to an instrumented, wheeled robot (rover) in scientific exploration of Mars, AUTOAPPROACH could be adapted to terrestrial applications, notably including the robotic removal of land mines and other unexploded ordnance. A human operator generates the approach command by selecting the target in images acquired by the robot cameras. The approach path consists of multiple legs. Feature points are derived from images that contain the target and are thereafter tracked to correct odometric errors and iteratively refine estimates of the position and orientation of the robot relative to the target on successive legs. The approach is terminated when the robot attains the position and orientation required for placing a scientific instrument at the target. The workspace of the robot arm is then autonomously checked for self/terrain collisions prior to the deployment of the scientific instrument onto the target.

  6. Injury potentials of light-aircraft instrument panels.

    DOT National Transportation Integrated Search

    1966-04-01

    Results of head-impact tests against typical light-aircraft instrument panels to determine their g time-force parameters during deformation of structure are presented for three different velocities of impact. Evaluations of the energy attenuator rece...

  7. Highly accurate FTIR observations from the scanning HIS aircraft instrument

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Tobin, David C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L., Sr.; van Delst, Paul F. W.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Olson, Erik R.; Dutcher, Steven B.; Taylor, Joseph K.

    2005-01-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) instrument for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS(2002), CrIS(2006), IASI(2006), GIFTS(200?), HES(2013)]. Follow-on developments at the University of Wisconsin that employ Fourier Transform Infrared (FTIR) for Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the new Scanning HIS aircraft instrument. The Scanning HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. Scanning HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST), are being used for satellite instrument validation and for atmospheric research. A novel detector configuration on Scanning HIS allows the incorporation of a single focal plane and cooler with three or four spectral bands that view the same spot on the ground. The calibration accuracy of the S-HIS and results from recent field campaigns are presented, including validation comparisons with the NASA EOS infrared observations (AIRS and MODIS). Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations, including those from the NASA EOS spacecrafts (Terra, Aqua and Aura) and the new complement of NPOESS operational instruments. It is expected that aircraft flights of the S-HIS and the NAST will be used to check the long-term stability of AIRS and the NPOESS operational follow-on sounder, the Cross-track Infrared Sounder (CrIS), over the life of the mission.

  8. Research Aircraft - Controlling Instruments from the Ground in a Secure and Authenticated Fashion

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Martin, C.; Fawaz, S.; Webster, C.

    2012-12-01

    At NCAR's Research Aviation Facility (RAF) we're finding a number of factors motivating the desire to be able to control instruments fielded on the aircraft we operate for the NSF. Investigators are increasingly interested in fielding greater numbers of research instruments for projects, instruments are becoming increasingly complicated, and adjustment of instrument behavior to adapt to changing conditions around the aircraft and to meet project goals are just a few of these factors. Usually there are not enough seats on the aircraft to accommodate all the instrument PIs and crew members who do occupy the seats are being asked to monitor and control increasing numbers of instruments about which they have limited knowledge. We use Satellite Communications (SatCom) to allow researchers to communicate with colleagues/crew on the aircraft and so that some of the real-time data can be sent to the ground for helping to optimize the research. Historically, challenges of authentication, security and the disruptive SatCom system have motivated us to avoid providing for remote instrument control. Now we have now reached an era where remote instrument control is a necessity. This poster will discuss the approach we are implementing to provide this capability for our instrument investigators. Particular attention is paid to how we assure authentication and security so that only the instrument investigators are capable of communicating with their instruments.;

  9. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  10. Precision instrument placement using a 4-DOF robot with integrated fiducials for minimally invasive interventions

    NASA Astrophysics Data System (ADS)

    Stenzel, Roland; Lin, Ralph; Cheng, Peng; Kronreif, Gernot; Kornfeld, Martin; Lindisch, David; Wood, Bradford J.; Viswanathan, Anand; Cleary, Kevin

    2007-03-01

    Minimally invasive procedures are increasingly attractive to patients and medical personnel because they can reduce operative trauma, recovery times, and overall costs. However, during these procedures, the physician has a very limited view of the interventional field and the exact position of surgical instruments. We present an image-guided platform for precision placement of surgical instruments based upon a small four degree-of-freedom robot (B-RobII; ARC Seibersdorf Research GmbH, Vienna, Austria). This platform includes a custom instrument guide with an integrated spiral fiducial pattern as the robot's end-effector, and it uses intra-operative computed tomography (CT) to register the robot to the patient directly before the intervention. The physician can then use a graphical user interface (GUI) to select a path for percutaneous access, and the robot will automatically align the instrument guide along this path. Potential anatomical targets include the liver, kidney, prostate, and spine. This paper describes the robotic platform, workflow, software, and algorithms used by the system. To demonstrate the algorithmic accuracy and suitability of the custom instrument guide, we also present results from experiments as well as estimates of the maximum error between target and instrument tip.

  11. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  12. AutoGNI, the Robot Under the Aircraft Floor: An Automated System for Sampling Giant Aerosol Particles by Impaction in the Free Airstream Outside a Research Aircraft

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.; Schwenz, K.; Aquino, J.; Carnes, J.; Webster, C.; Munnerlyn, J.; Wissman, T.; Lugger, T.

    2017-12-01

    Giant sea-salt aerosol particles, also called Giant Cloud Condensation Nuclei (GCCN), have been proposed as a means of rapidly forming precipitation sized drizzle drops in warm marine clouds (e.g., Jensen and Nugent, 2017). Such rare particles are best sampled from aircraft in air below cloud base, where normal laser optical instruments have too low sample volume to give statistically significant samples of the large particle tail. An automated sampling system (the AutoGNI) has been built to operate from inside a pressurized aircraft. Under the aircraft floor, a pressurized vessel contains 32 custom-built polycarbonate microscope slides. Using robotics with 5 motor drives and 18 positioning switches, the AutoGNI can take slides from their holding cassettes, pass them onto a caddy in an airfoil that extends 200 mm outside the aircraft, where they are exposed in the free airstream, thus avoiding the usual problems with large particle losses in air intakes. Slides are typically exposed for 10-30 s in the marine boundary layer, giving sample volumes of about 100-300 L or more. Subsequently the slides are retracted into the pressure vessel, stored and transported for laboratory microscope image analysis, in order to derive size-distribution histograms. While the aircraft is flying, the AutoGNI system is remotely controlled from a laptop on the ground, using an encrypted commercial satellite connection to the NSF/NCAR GV research aircraft's main server, and onto the AutoGNI microprocessor. The sampling of such GCCN is becoming increasingly important in order to provide complete input data for model calculations of aerosol-cloud interactions and their feedbacks in climate prediction. The AutoGNI has so far been sampling sea-salt GCCN in the Magellan Straight during the 2016 ORCAS project and over the NW Pacific during the 2017 ARISTO project, both from the NSF/NCAR GV research aircraft. Sea-salt particle sizes of 1.4 - 32 μm dry diameter have been observed.

  13. Instrumented Compliant Wrist with Proximity and Contact Sensing for Close Robot Interaction Control.

    PubMed

    Laferrière, Pascal; Payeur, Pierre

    2017-06-14

    Compliance has been exploited in various forms in robotic systems to allow rigid mechanisms to come into contact with fragile objects, or with complex shapes that cannot be accurately modeled. Force feedback control has been the classical approach for providing compliance in robotic systems. However, by integrating other forms of instrumentation with compliance into a single device, it is possible to extend close monitoring of nearby objects before and after contact occurs. As a result, safer and smoother robot control can be achieved both while approaching and while touching surfaces. This paper presents the design and extensive experimental evaluation of a versatile, lightweight, and low-cost instrumented compliant wrist mechanism which can be mounted on any rigid robotic manipulator in order to introduce a layer of compliance while providing the controller with extra sensing signals during close interaction with an object's surface. Arrays of embedded range sensors provide real-time measurements on the position and orientation of surfaces, either located in proximity or in contact with the robot's end-effector, which permits close guidance of its operation. Calibration procedures are formulated to overcome inter-sensor variability and achieve the highest available resolution. A versatile solution is created by embedding all signal processing, while wireless transmission connects the device to any industrial robot's controller to support path control. Experimental work demonstrates the device's physical compliance as well as the stability and accuracy of the device outputs. Primary applications of the proposed instrumented compliant wrist include smooth surface following in manufacturing, inspection, and safe human-robot interaction.

  14. Practice and Incentive Effects on Learner Performance: Aircraft Instrument Comprehension Task.

    ERIC Educational Resources Information Center

    Tenpas, Barbara G.; Higgins, Norman C.

    To study the effects of practice and incentive on learner performance on the aircraft instrument comprehension task, 48 third-year Air Force cadets were chosen as subjects. The subjects were expected to be able to identify which one of four pictures of aircraft in flight most nearly corresponded to the position indicated on a panel of attitude and…

  15. Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.

    2014-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.

  16. Automatic tracking of laparoscopic instruments for autonomous control of a cameraman robot.

    PubMed

    Khoiy, Keyvan Amini; Mirbagheri, Alireza; Farahmand, Farzam

    2016-01-01

    An automated instrument tracking procedure was designed and developed for autonomous control of a cameraman robot during laparoscopic surgery. The procedure was based on an innovative marker-free segmentation algorithm for detecting the tip of the surgical instruments in laparoscopic images. A compound measure of Saturation and Value components of HSV color space was incorporated that was enhanced further using the Hue component and some essential characteristics of the instrument segment, e.g., crossing the image boundaries. The procedure was then integrated into the controlling system of the RoboLens cameraman robot, within a triple-thread parallel processing scheme, such that the tip is always kept at the center of the image. Assessment of the performance of the system on prerecorded real surgery movies revealed an accuracy rate of 97% for high quality images and about 80% for those suffering from poor lighting and/or blood, water and smoke noises. A reasonably satisfying performance was also observed when employing the system for autonomous control of the robot in a laparoscopic surgery phantom, with a mean time delay of 200ms. It was concluded that with further developments, the proposed procedure can provide a practical solution for autonomous control of cameraman robots during laparoscopic surgery operations.

  17. Unicompartmental knee arthroplasties: robot vs. patient specific instrumentation.

    PubMed

    Jaffry, Zahra; Masjedi, Milad; Clarke, Susannah; Harris, Simon; Karia, Monil; Andrews, Barry; Cobb, Justin

    2014-03-01

    The technical reliability demonstrated by semi active robots in implant placement could render unicompartmental knee arthroplasties (UKAs) more favourable than they are currently. The relatively untested method using patient specific instrumentation (PSI), however, has the potential to match the accuracy produced by robots but without the barriers that have prevented them from being used more widely in clinical practice, namely operative time. Therefore this study took a step towards comparing the accuracy and time taken between the two technologies. Thirty-six UKAs were carried out on identical knee models, 12 with the Sculptor, 12 with PSI and 12 conventionally under timed conditions. Implant placement in these knees was then judged against that in a pre-operative plan. Tibial implant orientations and femoral implant positions and orientations were significantly more accurate in the PSI group with mean errors of 6°, 2 mm and 4° respectively, than the conventional group which had means of 9°, 4 mm and 10°. There was no significant difference between the robot and PSI generally except in tibial implant orientation (mean robotic error 3°) and tibial implant position did not vary significantly across all three groups. It was also found that use of PSI and conventional methods took half the time taken by the robot (p<0.001). With further development, PSI can match and possibly surpass the accuracy of the robot, as it does with the conventional method, and achieve planned surgery in less time. This work sets the foundation for clinical trials involving PSI. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Instrumentation and data acquisition for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  19. Building an open-source robotic stereotaxic instrument.

    PubMed

    Coffey, Kevin R; Barker, David J; Ma, Sisi; West, Mark O

    2013-10-29

    This protocol includes the designs and software necessary to upgrade an existing stereotaxic instrument to a robotic (CNC) stereotaxic instrument for around $1,000 (excluding a drill), using industry standard stepper motors and CNC controlling software. Each axis has variable speed control and may be operated simultaneously or independently. The robot's flexibility and open coding system (g-code) make it capable of performing custom tasks that are not supported by commercial systems. Its applications include, but are not limited to, drilling holes, sharp edge craniotomies, skull thinning, and lowering electrodes or cannula. In order to expedite the writing of g-coding for simple surgeries, we have developed custom scripts that allow individuals to design a surgery with no knowledge of programming. However, for users to get the most out of the motorized stereotax, it would be beneficial to be knowledgeable in mathematical programming and G-Coding (simple programming for CNC machining). The recommended drill speed is greater than 40,000 rpm. The stepper motor resolution is 1.8°/Step, geared to 0.346°/Step. A standard stereotax has a resolution of 2.88 μm/step. The maximum recommended cutting speed is 500 μm/sec. The maximum recommended jogging speed is 3,500 μm/sec. The maximum recommended drill bit size is HP 2.

  20. Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.

    PubMed

    He, Chao; Wang, Shuxin; Sang, Hongqiang; Li, Jinhua; Zhang, Linan

    2014-09-01

    Force sensing for robotic surgery is limited by the size of the instrument, friction and sterilization requirements. This paper presents a force-sensing instrument to avoid these restrictions. Operating forces were calculated according to cable tension. Mathematical models of the force-sensing system were established. A force-sensing instrument was designed and fabricated. A signal collection and processing system was constructed. The presented approach can avoid the constraints of space limits, sterilization requirements and friction introduced by the transmission parts behind the instrument wrist. Test results showed that the developed instrument has a 0.03 N signal noise, a 0.05 N drift, a 0.04 N resolution and a maximum error of 0.4 N. The validation experiment indicated that the operating and grasping forces can be effectively sensed. The developed force-sensing system can be used in minimally invasive robotic surgery to construct a force-feedback system. Copyright © 2013 John Wiley & Sons, Ltd.

  1. The development of an instrument to measure the self-efficacy of students participating in VEX robotics competitions

    NASA Astrophysics Data System (ADS)

    Robinson, Trevor P.

    The number of robotics competitions has steadily increased over the past 30 years. Schools are implementing robotics competitions to increase student content knowledge and interest in science, technology, engineering, and mathematics (STEM). Companies in STEM-related fields are financially supporting robotics competitions to help increase the number of students pursuing careers in STEM among other reasons. These financial supporters and school administrations are asking what the outcomes of students participating in competitive robotics are. Few studies have been conducted to investigate these outcomes. The studies that have been conducted usually compare students in robotics to students not in robotics. There have not been any studies that compare students to themselves before and after participating in robotics competitions. This may be due to the lack of available instruments to measure student outcomes. This study developed an instrument to measure the self-efficacy of students participating in VEX Robotics Competitions (VRC). The VRC is the world's largest and fastest growing robotics competition available for middle and high school students. Self-efficacy was measured because of its importance to the education community. Students with higher self-efficacy tend to persevere through difficult tasks more frequently than students with low self-efficacy. A person's self-efficacy has major influence over what interests, activities, classes, college majors, and careers he or she will pursue in life. The self-efficacy survey instrument created through this study was developed through an occupational and task analysis (OTA), and initial content and face validity was established through the OTA process. Exploratory and confirmatory factor analyses were also conducted to assist in instrument validation. The reliability was calculated using Cronbach's alpha. Face validity was established through the OTA process. Construct validity was established through the factor

  2. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Kamine, Tovy Haber; Bendrick, Gregg A.

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three

  3. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  4. Evaluation of Sensor Configurations for Robotic Surgical Instruments.

    PubMed

    Gómez-de-Gabriel, Jesús M; Harwin, William

    2015-10-27

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included.

  5. Automation for nondestructive inspection of aircraft

    NASA Technical Reports Server (NTRS)

    Siegel, M. W.

    1994-01-01

    We discuss the motivation and an architectural framework for using small mobile robots as automated aids to operators of nondestructive inspection (NDI) equipment. We review the need for aircraft skin inspection, and identify the constraints in commercial airlines operations that make small mobile robots the most attractive alternative for automated aids for NDI procedures. We describe the design and performance of the robot (ANDI) that we designed, built, and are testing for deployment of eddy current probes in prescribed commercial aircraft inspections. We discuss recent work aimed at also providing robotic aids for visual inspection.

  6. Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis.

    PubMed

    Keric, Naureen; Eum, David J; Afghanyar, Feroz; Rachwal-Czyzewicz, Izabela; Renovanz, Mirjam; Conrad, Jens; Wesp, Dominik M A; Kantelhardt, Sven R; Giese, Alf

    2017-03-01

    Robot-assisted percutaneous insertion of pedicle screws is a recent technique demonstrating high accuracy. The optimal treatment for spondylodiscitis is still a matter of debate. We performed a retrospective cohort study on surgical patients treated with pedicle screw/rod placement alone without the application of intervertebral cages. In this collective, we compare conventional open to a further minimalized percutaneous robot-assisted spinal instrumentation, avoiding a direct contact of implants and infectious focus. 90 records and CT scans of patients treated by dorsal transpedicular instrumentation of the infected segments with and without decompression and antibiotic therapy were analysed for clinical and radiological outcome parameters. 24 patients were treated by free-hand fluoroscopy-guided surgery (121 screws), and 66 patients were treated by percutaneous robot-assisted spinal instrumentation (341 screws). Accurate screw placement was confirmed in 90 % of robot-assisted and 73.5 % of free-hand placed screws. Implant revision due to misplacement was necessary in 4.95 % of the free-hand group compared to 0.58 % in the robot-assisted group. The average intraoperative X-ray exposure per case was 0.94 ± 1.04 min in the free-hand group vs. 0.4 ± 0.16 min in the percutaneous group (p = 0.000). Intraoperative adverse events were observed in 12.5 % of free-hand placed pedicle screws and 6.1 % of robot robot-assisted screws. The mean postoperative hospital stay in the free-hand group was 18.1 ± 12.9 days, and in percutaneous group, 13.8 ± 5.6 days (p = 0.012). This study demonstrates that the robot-guided insertion of pedicle screws is a safe and effective procedure in lumbar and thoracic spondylodiscitis with higher accuracy of implant placement, lower radiation dose, and decreased complication rates. Percutaneous spinal dorsal instrumentation seems to be sufficient to treat lumbar and thoracic spondylodiscitis.

  7. Concurrent 3-D sonifications enable the head-up monitoring of two interrelated aircraft navigation instruments.

    PubMed

    Towers, John; Burgess-Limerick, Robin; Riek, Stephan

    2014-12-01

    The aim of this study was to enable the head-up monitoring of two interrelated aircraft navigation instruments by developing a 3-D auditory display that encodes this navigation information within two spatially discrete sonifications. Head-up monitoring of aircraft navigation information utilizing 3-D audio displays, particularly involving concurrently presented sonifications, requires additional research. A flight simulator's head-down waypoint bearing and course deviation instrument readouts were conveyed to participants via a 3-D auditory display. Both readouts were separately represented by a colocated pair of continuous sounds, one fixed and the other varying in pitch, which together encoded the instrument value's deviation from the norm. Each sound pair's position in the listening space indicated the left/right parameter of its instrument's readout. Participants' accuracy in navigating a predetermined flight plan was evaluated while performing a head-up task involving the detection of visual flares in the out-of-cockpit scene. The auditory display significantly improved aircraft heading and course deviation accuracy, head-up time, and flare detections. Head tracking did not improve performance by providing participants with the ability to orient potentially conflicting sounds, suggesting that the use of integrated localizing cues was successful. Conclusion: A supplementary 3-D auditory display enabled effective head-up monitoring of interrelated navigation information normally attended to through a head-down display. Pilots operating aircraft, such as helicopters and unmanned aerial vehicles, may benefit from a supplementary auditory display because they navigate in two dimensions while performing head-up, out-of-aircraft, visual tasks.

  8. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  9. Pilot heart rate during in-flight simulated instrument approaches in a general aviation aircraft.

    DOT National Transportation Integrated Search

    1970-04-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in conventional 'T' c...

  10. Evaluation of Sensor Configurations for Robotic Surgical Instruments

    PubMed Central

    Gómez-de-Gabriel, Jesús M.; Harwin, William

    2015-01-01

    Designing surgical instruments for robotic-assisted minimally-invasive surgery (RAMIS) is challenging due to constraints on the number and type of sensors imposed by considerations such as space or the need for sterilization. A new method for evaluating the usability of virtual teleoperated surgical instruments based on virtual sensors is presented. This method uses virtual prototyping of the surgical instrument with a dual physical interaction, which allows testing of different sensor configurations in a real environment. Moreover, the proposed approach has been applied to the evaluation of prototypes of a two-finger grasper for lump detection by remote pinching. In this example, the usability of a set of five different sensor configurations, with a different number of force sensors, is evaluated in terms of quantitative and qualitative measures in clinical experiments with 23 volunteers. As a result, the smallest number of force sensors needed in the surgical instrument that ensures the usability of the device can be determined. The details of the experimental setup are also included. PMID:26516863

  11. Instrumentation for measuring aircraft noise and sonic boom

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1976-01-01

    Improved instrumentation suitable for measuring aircraft noise and sonic booms is described. An electric current proportional to the sound pressure level at a condenser microphone is produced and transmitted over a cable and amplified by a zero drive amplifier. The converter consists of a local oscillator, a dual-gate field-effect transistor mixer, and a voltage regulator/impedance translator. The improvements include automatic tuning compensation against changes in static microphone capacitance and means for providing a remote electrical calibration capability.

  12. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    PubMed

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Mapping From an Instrumented Glove to a Robot Hand

    NASA Technical Reports Server (NTRS)

    Goza, Michael

    2005-01-01

    An algorithm has been developed to solve the problem of mapping from (1) a glove instrumented with joint-angle sensors to (2) an anthropomorphic robot hand. Such a mapping is needed to generate control signals to make the robot hand mimic the configuration of the hand of a human attempting to control the robot. The mapping problem is complicated by uncertainties in sensor locations caused by variations in sizes and shapes of hands and variations in the fit of the glove. The present mapping algorithm is robust in the face of these uncertainties, largely because it includes a calibration sub-algorithm that inherently adapts the mapping to the specific hand and glove, without need for measuring the hand and without regard for goodness of fit. The algorithm utilizes a forward-kinematics model of the glove derived from documentation provided by the manufacturer of the glove. In this case, forward-kinematics model signifies a mathematical model of the glove fingertip positions as functions of the sensor readings. More specifically, given the sensor readings, the forward-kinematics model calculates the glove fingertip positions in a Cartesian reference frame nominally attached to the palm. The algorithm also utilizes an inverse-kinematics model of the robot hand. In this case, inverse-kinematics model signifies a mathematical model of the robot finger-joint angles as functions of the robot fingertip positions. Again, more specifically, the inverse-kinematics model calculates the finger-joint commands needed to place the fingertips at specified positions in a Cartesian reference frame that is attached to the palm of the robot hand and that nominally corresponds to the Cartesian reference frame attached to the palm of the glove. Initially, because of the aforementioned uncertainties, the glove fingertip positions calculated by the forwardkinematics model in the glove Cartesian reference frame cannot be expected to match the robot fingertip positions in the robot

  14. Instrument Failure, Stress, and Spatial Disorientation Leading to a Fatal Crash With a Large Aircraft.

    PubMed

    Tribukait, Arne; Eiken, Ola

    2017-11-01

    An aircraft's orientation relative to the ground cannot be perceived via the sense of balance or the somatosensory system. When devoid of external visual references, the pilot must rely on instruments. A sudden unexpected instrument indication is a challenge to the pilot, who might have to question the instrument instead of responding with the controls. In this case report we analyze, from a human-factors perspective, how a limited instrument failure led to a fatal accident. During straight-ahead level flight in darkness, at 33,000 ft, the commander of a civil cargo airplane was suddenly confronted by an erroneous pitch-up indication on his primary flight display. He responded by pushing the control column forward, making a bunt maneuver with reduced/negative Gz during approximately 15 s. The pilots did not communicate rationally or cross-check instruments. Recordings of elevator and aileron positions suggest that the commander made intense efforts to correct for several extreme and erroneous roll and pitch indications. Gz displayed an increasing trend with rapid fluctuations and peaks of approximately 3 G. After 50 s the aircraft entered a turn with decreasing radius and finally hit the ground in an inverted attitude. A precipitate maneuvring response can, even if occurring in a large aircraft at high altitude, result in a seemingly inexorable course of events, ending with a crash. In the present case both pilots were probably incapacitated by acute psychological stress and spatial disorientation. Intense variations in Gz may have impaired the copilot's reading of the functioning primary flight display.Tribukait A, Eiken O. Instrument failure, stress, and spatial disorientation leading to a fatal crash with a large aircraft. Aerosp Med Hum Perform. 2017; 88(11):1043-1048.

  15. Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.

    2014-12-01

    There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time

  16. Development of a facility using robotics for testing automation of inertial instruments

    NASA Technical Reports Server (NTRS)

    Greig, Joy Y.; Lamont, Gary B.; Biezad, Daniel J.; Lewantowicz, Zdsislaw H.; Greig, Joy Y.

    1987-01-01

    The Integrated Robotics System Simulation (ROBSIM) was used to evaluate the performance of the PUMA 560 arm as applied to testing of inertial sensors. Results of this effort were used in the design and development of a feasibility test environment using a PUMA 560 arm. The implemented facility demonstrated the ability to perform conventional static inertial instrument tests (rotation and tumble). The facility included an efficient data acquisitions capability along with a precision test servomechanism function resulting in various data presentations which are included in the paper. Analysis of inertial instrument testing accuracy, repeatability and noise characteristics are provided for the PUMA 560 as well as for other possible commercial arm configurations. Another integral aspect of the effort was an in-depth economic analysis and comparison of robot arm testing versus use of contemporary precision test equipment.

  17. Gestonurse: a robotic surgical nurse for handling surgical instruments in the operating room.

    PubMed

    Jacob, Mithun; Li, Yu-Ting; Akingba, George; Wachs, Juan P

    2012-03-01

    While surgeon-scrub nurse collaboration provides a fast, straightforward and inexpensive method of delivering surgical instruments to the surgeon, it often results in "mistakes" (e.g. missing information, ambiguity of instructions and delays). It has been shown that these errors can have a negative impact on the outcome of the surgery. These errors could potentially be reduced or eliminated by introducing robotics into the operating room. Gesture control is a natural and fundamentally sound alternative that allows interaction without disturbing the normal flow of surgery. This paper describes the development of a robotic scrub nurse Gestonurse to support surgeons by passing surgical instruments during surgery as required. The robot responds to recognized hand signals detected through sophisticated computer vision and pattern recognition techniques. Experimental results show that 95% of the gestures were recognized correctly. The gesture recognition algorithm presented is robust to changes in scale and rotation of the hand gestures. The system was compared to human task performance and was found to be only 0.83 s slower on average.

  18. Application of a model of instrumental conditioning to mobile robot control

    NASA Astrophysics Data System (ADS)

    Saksida, Lisa M.; Touretzky, D. S.

    1997-09-01

    Instrumental conditioning is a psychological process whereby an animal learns to associate its actions with their consequences. This type of learning is exploited in animal training techniques such as 'shaping by successive approximations,' which enables trainers to gradually adjust the animal's behavior by giving strategically timed reinforcements. While this is similar in principle to reinforcement learning, the real phenomenon includes many subtle effects not considered in the machine learning literature. In addition, a good deal of domain information is utilized by an animal learning a new task; it does not start from scratch every time it learns a new behavior. For these reasons, it is not surprising that mobile robot learning algorithms have yet to approach the sophistication and robustness of animal learning. A serious attempt to model instrumental learning could prove fruitful for improving machine learning techniques. In the present paper, we develop a computational theory of shaping at a level appropriate for controlling mobile robots. The theory is based on a series of mechanisms for 'behavior editing,' in which pre-existing behaviors, either innate or previously learned, can be dramatically changed in magnitude, shifted in direction, or otherwise manipulated so as to produce new behavioral routines. We have implemented our theory on Amelia, an RWI B21 mobile robot equipped with a gripper and color video camera. We provide results from training Amelia on several tasks, all of which were constructed as variations of one innate behavior, object-pursuit.

  19. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts.

    PubMed

    Dagalakis, Nicholas G; Yoo, Jae Myung; Oeste, Thomas

    2016-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

  20. Human-Robot Collaboration Dynamic Impact Testing and Calibration Instrument for Disposable Robot Safety Artifacts

    PubMed Central

    Dagalakis, Nicholas G.; Yoo, Jae Myung; Oeste, Thomas

    2017-01-01

    The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels. PMID:28579658

  1. Robot dynamics in reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Grisham, Tollie; Hinman, Elaine; Coker, Cindy

    1990-01-01

    Robot dynamics and control will become an important issue for productive platforms in space. Robotic operations will be necessary for both man tended stations and for the efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to safety concerns and an anticipated increase in acceleration levels due to manipulator motion. The robot used for the initial studies was a UMI RTX robot, which was adapted to operate in a materials processing workcell to simulate sample changing in a microgravity environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field. The primary objective of the initial flights was to determine operating characteristics of both the robot and the operator in the variable gravity of the KC-135 during parabolic maneuvers. It was demonstrated that the KC-135 aircraft can be used for observing dynamics of robotic manipulators. The difficulties associated with humans performing teleoperation tasks during varying G levels were also observed and can provide insight into some areas in which the use of artificial techniques would provide improved system performance. Additionally a graphic simulation of the workcell was developed on a Silicon Graphics Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is intended to be used for predictive displays of the robot operating on the aircraft. It is also anticipated that this simulation can be useful for off-line programming of tasks in the future.

  2. Sensorization of a surgical robotic instrument for force sensing

    NASA Astrophysics Data System (ADS)

    Shahzada, Kaspar S.; Yurkewich, Aaron; Xu, Ran; Patel, Rajni V.

    2016-03-01

    This paper presents the development and application of an approach for sensorizing a surgical robotic instrument for two degree-of-freedom (DOF) lateral force sensing. The sensorized instrument is compatible with the da Vinci® Surgical System and can be used for skills assessment and force control in specific surgical tasks. The sensing technology utilizes a novel layout of four fiber Bragg grating (FBG) sensors attached to the shaft of a da Vinci® surgical instrument. The two cross-section layout is insensitive to error caused by combined force and torque loads, and the orientation of the sensors minimizes the condition number of the instrument's compliance matrix. To evaluate the instrument's sensing capabilities, its performance was tested using a commercially available force-torque sensor, and showed a resolution of 0.05N at 1 kHz sampling rate. The performance of the sensorized instrument was evaluated by performing three surgical tasks on phantom tissue using the da Vinci® system with the da Vinci Research Kit (dVRK): tissue palpation, knot tightening during suturing and Hem-O-Lok® tightening during knotless suturing. The tasks were designed to demonstrate the robustness of the sensorized force measurement approach. The paper reports the results of further evaluation by a group of expert and novice surgeons performing the three tasks mentioned above.

  3. Modeling and vibration control of the flapping-wing robotic aircraft with output constraint

    NASA Astrophysics Data System (ADS)

    He, Wei; Mu, Xinxing; Chen, Yunan; He, Xiuyu; Yu, Yao

    2018-06-01

    In this paper, we propose the boundary control for undesired vibrations suppression with output constraint of the flapping-wing robotic aircraft (FWRA). We also present the dynamics of the flexible wing of FWRA with governing equations and boundary conditions, which are partial differential equations (PDEs) and ordinary differential equations (ODEs), respectively. An energy-based barrier Lyapunov function is introduced to analyze the system stability and prevent violation of output constraint. With the effect of the proposed boundary controller, distributed states of the system remain in the constrained spaces. Then the IBLF-based boundary controls are proposed to assess the stability of the FWRA in the presence of output constraint.

  4. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  5. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  6. Investigation of damping liquids for aircraft instruments

    NASA Technical Reports Server (NTRS)

    Keulegan, G H

    1929-01-01

    This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.

  7. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  8. V/STOL tilt rotor research aircraft. Volume 3: Ship 2 instrumentation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 2 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness, instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement data codes to J-box locations is given in a table. Cross references are given.

  9. V/STOL tilt rotor research aircraft. Volume 2: Ship 1 instrumentation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 1 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement item codes to J-box locations is given in a table. Cross references are given.

  10. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2015-12-01

    The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north

  11. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation

    PubMed Central

    Anderson, Patrick L.; Lathrop, Ray A.; Webster, Robert J.

    2018-01-01

    Introduction Conventional manual laparoscopic instruments for minimally invasive surgery have limited dexterity within the patient, making procedures challenging. Surgical robotic systems offer enhanced articulation, but at substantial financial costs. This has motivated the development of high-dexterity, low-cost laparoscopic instruments. Areas covered This article reviews both commercial and academic results on creating fully mechanical (i.e. non-robotic) laparoscopic instruments that provide wrists or wrist-like dexterity within the patient. We review the state of the art in the development of these mechanical instruments, focusing on the surgeon interface, wrist mechanism, and the kinematic mapping between the two. Expert commentary Current articulated mechanical laparoscopic instruments exhibit a wide range of designs, with no clear consensus on what makes such devices easy to use. As these technologies mature, user studies are needed to determine surgeon preferences. Articulated, low-cost instruments have the potential to impact the minimally invasive surgery market if they provide compelling benefits to surgeons. PMID:26808896

  12. Robot-like dexterity without computers and motors: a review of hand-held laparoscopic instruments with wrist-like tip articulation.

    PubMed

    Anderson, Patrick L; Lathrop, Ray A; Webster, Robert J

    2016-07-01

    Conventional manual laparoscopic instruments for minimally invasive surgery have limited dexterity within the patient, making procedures challenging. Surgical robotic systems offer enhanced articulation, but at substantial financial costs. This has motivated the development of high-dexterity, low-cost laparoscopic instruments. This article reviews both commercial and academic results on creating fully mechanical (i.e. non-robotic) laparoscopic instruments that provide wrists or wrist-like dexterity within the patient. We review the state of the art in the development of these mechanical instruments, focusing on the surgeon interface, wrist mechanism, and the kinematic mapping between the two. Expert commentary: Current articulated mechanical laparoscopic instruments exhibit a wide range of designs, with no clear consensus on what makes such devices easy to use. As these technologies mature, user studies are needed to determine surgeon preferences. Articulated, low-cost instruments have the potential to impact the minimally invasive surgery market if they provide compelling benefits to surgeons.

  13. A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2014-04-01

    For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission

  14. ARIES NDA Robot operators` manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, N.L.; Nelson, D.C.

    1998-05-01

    The ARIES NDA Robot is an automation device for servicing the material movements for a suite of Non-destructive assay (NDA) instruments. This suite of instruments includes a calorimeter, a gamma isotopic system, a segmented gamma scanner (SGS), and a neutron coincidence counter (NCC). Objects moved by the robot include sample cans, standard cans, and instrument plugs. The robot computer has an RS-232 connection with the NDA Host computer, which coordinates robot movements and instrument measurements. The instruments are expected to perform measurements under the direction of the Host without operator intervention. This user`s manual describes system startup, using the mainmore » menu, manual operation, and error recovery.« less

  15. Robotic Lobectomy Utilizing the Robotic Stapler.

    PubMed

    Pearlstein, Daryl Phillip

    2016-12-01

    A drawback of robotic lobectomy is the inability of the operating surgeon to perform stapler division of the pulmonary vessels and bronchi. With the advent of the robotic stapler, the surgeon is able to control this instrument from the console. The robotic stapler presents certain challenges. This article outlines techniques to use the robotic stapler for the safe and predictable performance of lobectomies. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2013-10-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne employment. The modified instrument is described. A laboratory characterization was performed to determine the instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation a calibration strategy is described, that utilizes CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppbv for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppbv. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately considered and the uncertainty is estimated to be 12.4 ppbv. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppbv at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  17. The effect of aircraft control forces on pilot performance during instrument landings in a flight simulator.

    PubMed

    Hewson, D J; McNair, P J; Marshall, R N

    2001-07-01

    Pilots may have difficulty controlling aircraft at both high and low force levels due to larger variability in force production at these force levels. The aim of this study was to measure the force variability and landing performance of pilots during an instrument landing in a flight simulator. There were 12 pilots who were tested while performing 5 instrument landings in a flight simulator, each of which required different control force inputs. Pilots can produce the least force when pushing the control column to the right, therefore the force levels for the landings were set relative to each pilot's maximum aileron-right force. The force levels for the landings were 90%, 60%, and 30% of maximal aileron-right force, normal force, and 25% of normal force. Variables recorded included electromyographic activity (EMG), aircraft control forces, aircraft attitude, perceived exertion and deviation from glide slope and heading. Multivariate analysis of variance was used to test for differences between landings. Pilots were least accurate in landing performance during the landing at 90% of maximal force (p < 0.05). There was also a trend toward decreased landing performance during the landing at 25% of normal force. Pilots were more variable in force production during the landings at 60% and 90% of maximal force (p < 0.05). Pilots are less accurate at performing instrument landings when control forces are high due to the increased variability of force production. The increase in variability at high force levels is most likely associated with motor unit recruitment, rather than rate coding. Aircraft designers need to consider the reduction in pilot performance at high force levels, as well as pilot strength limits when specifying new standards.

  18. Improving precise positioning of surgical robotic instruments by a three-side-view presentation system on telesurgery.

    PubMed

    Hori, Kenta; Kuroda, Tomohiro; Oyama, Hiroshi; Ozaki, Yasuhiko; Nakamura, Takehiko; Takahashi, Takashi

    2005-12-01

    For faultless collaboration among the surgeon, surgical staffs, and surgical robots in telesurgery, communication must include environmental information of the remote operating room, such as behavior of robots and staffs, vital information of a patient, named supporting information, in addition to view of surgical field. "Surgical Cockpit System, " which is a telesurgery support system that has been developed by the authors, is mainly focused on supporting information exchange between remote sites. Live video presentation is important technology for Surgical Cockpit System. Visualization method to give precise location/posture of surgical instruments is indispensable for accurate control and faultless operation. In this paper, the authors propose three-side-view presentation method for precise location/posture control of surgical instruments in telesurgery. The experimental results show that the proposed method improved accurate positioning of a telemanipulator.

  19. Testing for Instrument Deployment by InSight Robotic Arm

    NASA Image and Video Library

    2015-03-04

    In the weeks after NASA's InSight mission reaches Mars in September 2016, the lander's arm will lift two key science instruments off the deck and place them onto the ground. This image shows testing of InSight's robotic arm inside a clean room at NASA's Jet Propulsion Laboratory, Pasadena, California, about two years before it will perform these tasks on Mars. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will launch in March 2016. It will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. One key instrument that the arm will deploy is the Seismic Experiment for Interior Structure, or SEIS. It is from France's national space agency (CNES), with components from Germany, Switzerland, the United Kingdom and the United States. In this scene, the arm has just deployed a test model of a protective covering for SEIS, the instrument's wind and thermal shield. The shield's purpose is to lessen disturbances that weather would cause to readings from the sensitive seismometer. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19144

  20. Automated Inspection of Aircraft

    DOT National Transportation Integrated Search

    1998-04-01

    This report summarizes the development of a robotic system designed to assist aircraft inspectors by remotely deploying non-destructive inspection (NDI) sensors and acquiring, processing, and storing inspection data. Carnegie Mellon University studie...

  1. AGARD Flight Test Instrumentation Series. Volume 7. Strain Gauge Measurements on Aircraft

    DTIC Science & Technology

    1976-04-01

    U.S. DEPARTMENT OF CRY11ERCE Natioal Techaical Infnaitm Soice AD-A026 838 AGARD FLIGHT TEST INSTRUMENTATION SERIES VOLUME 7. STRAIN GUAGE...MEASUREMENTS ON AIRCRAFT ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT PREPARED FOR.I NORTH ATLANTIC TREATY ORGANIZATION APRIL 1976 • • ,. h VI -i• d...INFORMATION DOCUMENT PROCESSING WORKSHEET ,5.RVICE USCOMM-DC 41420.P7I AGARD-AG-160 Volume 7 NORTH ATLANTIC TREATY ORGANIZATION ADVISORY GROUP FOR AEROSPACE

  2. Validation of Atmospheric InfraRed Sounder (AIRS) spectral radiances with the Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Moeller, Chris C.; Knuteson, Robert O.; Best, Fred A.; Smith, William L.; van Delst, Paul; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark D.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, Hugh B.; Dutcher, Steven B.; Taylor, Joe K.

    2004-11-01

    The ability to accurately validate high spectral resolution infrared radiance measurements from space using comparisons with aircraft spectrometer observations has been successfully demonstrated. The demonstration is based on an under-flight of the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua spacecraft by the Scanning High resolution Interferometer Sounder (S-HIS) on the NASA ER-2 high altitude aircraft on 21 November 2002 and resulted in brightness temperature differences approaching 0.1K for most of the spectrum. This paper presents the details of this AIRS/S-HIS validation case and also presents comparisons of Aqua AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) radiance observations. Aircraft comparisons of this type provide a mechanism for periodically testing the absolute calibration of spacecraft instruments with instrumentation for which the calibration can be carefully maintained on the ground. This capability is especially valuable for assuring the long-term consistency and accuracy of climate observations. It is expected that aircraft flights of the S-HIS and its close cousin the National Polar Orbiting Environmental Satellite System (NPOESS) Atmospheric Sounder Testbed (NAST) will be used to check the long-term stability of the NASA EOS spacecrafts (Terra, Aqua and Aura) and the follow-on complement of operational instruments, including the Cross-track Infrared Sounder (CrIS).

  3. Adaptation of an In Situ Ground-Based Tropospheric OH/HO2 Instrument for Aircraft Use

    NASA Technical Reports Server (NTRS)

    Brune, William H.

    1997-01-01

    In-situ HO(x) (OH and HO2) measurements are an essential part of understanding the photochemistry of aircraft exhaust in the atmosphere. HO(x) affects the partitioning of nitrogen species in the NO(y) family. Its reactions are important sources and sinks for tropospheric ozone, thus providing a link between the NO(x) in aircraft exhaust and tropospheric ozone. OH mixing ratios are enhanced in aircraft wakes due to the photolysis of the HONO that is made close to the engine. Measurements of HO(x) in aircraft wakes, along with NO(x) measurements, thus provides a constraint on chemical models of the engine combustion and exhaust. The development of the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS) is reported. We designed, developed, and successfully flew this instrument. It was part of the instrument complement on board the NASA DC-8 during SUCCESS, which took place in Kansas in April and May, 1996. ATHOS has a limit-of-detection for OH (S/N = 2) of 10(exp 5) OH molecules cm(exp -3) in less than 150 seconds. While this sensitivity is about 2-3 times less than the initial projections in the proposal, it is more than adequate for good measurements of OH and HO2 from the planetary boundary layer to the stratosphere. Our participation in SUCCESS was to be engineering test flights for ATHOS; however, the high-quality measurements we obtained are being used to study HO(x) photochemistry in contrails, clouds, and the clear air.

  4. Lateral temperature spread of monopolar, bipolar and ultrasonic instruments for robot-assisted laparoscopic surgery.

    PubMed

    Hefermehl, Lukas J; Largo, Remo A; Hermanns, Thomas; Poyet, Cédric; Sulser, Tullio; Eberli, Daniel

    2014-08-01

    To assess critical heat spread of cautery instruments used in robot-assisted laparoscopic (RAL) surgery. Thermal spread along bovine musculofascial tissues was examined by infrared camera, histology and enzyme assay. Currently used monopolar, bipolar and ultrasonic laparoscopic instruments were investigated at various power settings and application times. The efficacy of using an additional Maryland clamp as a heat sink was evaluated. A temperature of 45 °C was considered the threshold temperature for possible nerve damage. Monopolar instruments exhibited a mean (sem) critical thermal spread of 3.5 (2.3) mm when applied at 60 W for 1 s. After 2 s, the spread was >20 mm. For adjustable bipolar instruments the mean (sem) critical thermal spread was 2.2 (0.6) mm at 60 W and 1 s, and 3.6 (1.3) mm at 2 s. The PK and LigaSure forceps had mean (sem) critical thermal spreads of 3.9 (0.8) and 2.8 (0.6) mm respectively, whereas the ultrasonic instrument reached 2.9 (0.8) mm. Application of an additional Maryland clamp as a heat sink, significantly reduced the thermal spread. Histomorphometric analyses and enzyme assay supported these findings. All coagulation devices used in RAL surgery have distinct thermal spreads depending on power setting and application time. Cautery may be of concern due to lateral temperature spread, causing potential damage to sensitive structures including nerves. Our results provide surgeons with a resource for educated decision-making when using coagulation devices during robotic procedures. © 2013 The Authors. BJU International © 2013 BJU International.

  5. Automated exterior inspection of an aircraft with a pan-tilt-zoom camera mounted on a mobile robot

    NASA Astrophysics Data System (ADS)

    Jovančević, Igor; Larnier, Stanislas; Orteu, Jean-José; Sentenac, Thierry

    2015-11-01

    This paper deals with an automated preflight aircraft inspection using a pan-tilt-zoom camera mounted on a mobile robot moving autonomously around the aircraft. The general topic is image processing framework for detection and exterior inspection of different types of items, such as closed or unlatched door, mechanical defect on the engine, the integrity of the empennage, or damage caused by impacts or cracks. The detection step allows to focus on the regions of interest and point the camera toward the item to be checked. It is based on the detection of regular shapes, such as rounded corner rectangles, circles, and ellipses. The inspection task relies on clues, such as uniformity of isolated image regions, convexity of segmented shapes, and periodicity of the image intensity signal. The approach is applied to the inspection of four items of Airbus A320: oxygen bay handle, air-inlet vent, static ports, and fan blades. The results are promising and demonstrate the feasibility of an automated exterior inspection.

  6. The 1999 Leonid Multi-Instrument Aircraft Campaign - An Early Review

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Butow, Steven J.; Fonda, Mark

    Two B707-type research aircraft of the 452^nd Flight Test Squadron at Edwards Air Force Base were deployed to study the Leonid meteor storm of 1999 over the Mediterranean Sea on Nov. 18. The mission was sponsored by various science programs of NASA, and offered an international team of 35 researchers observing conditions free of clouds and low altitude extinction at a prime location for viewing the storm. This 1999 Leonid Multi-Instrument Aircraft Campaign followed a similar effort in 1998, improving upon mission strategy and scope. As before, spectroscopic and imaging experiments targeted meteors and persistent trains, but also airglow, aurora, elves and sprites. The research aimed to address outstanding questions in astrobiology, planetary science, astronomy, and upper atmospheric research. In addition, USAF co-sponsored the mission to provide near real-time flux measurements for space weather awareness. First results are presented in these issues of Earth, Moon, and Planets in preparation for future missions that will target the exceptional Leonid returns of 2001 and 2002. An early review of the scientific achievements in the context of campaign objectives is given.

  7. The NASA Thunderstorm Overflight Program (TOP): Research in atmospheric electricity from an instrumented U-2 aircraft platform

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1983-01-01

    An overview of the NASA Thunderstorm Overflight Program (TOP) is presented. The various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used to collect optical and electronic signature from the lightning events, are discussed. Samples of some of the photographic and electronic signatures are presented. Approximately 6400 electronic data samples of optical pulses were collected and are being analyzed.

  8. Integrating laboratory robots with analytical instruments--must it really be so difficult?

    PubMed

    Kramer, G W

    1990-09-01

    Creating a reliable system from discrete laboratory instruments is often a task fraught with difficulties. While many modern analytical instruments are marvels of detection and data handling, attempts to create automated analytical systems incorporating such instruments are often frustrated by their human-oriented control structures and their egocentricity. The laboratory robot, while fully susceptible to these problems, extends such compatibility issues to the physical dimensions involving sample interchange, manipulation, and event timing. The workcell concept was conceived to describe the procedure and equipment necessary to carry out a single task during sample preparation. This notion can be extended to organize all operations in an automated system. Each workcell, no matter how complex its local repertoire of functions, must be minimally capable of accepting information (commands, data), returning information on demand (status, results), and being started, stopped, and reset by a higher level device. Even the system controller should have a mode where it can be directed by instructions from a higher level.

  9. Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)

    NASA Technical Reports Server (NTRS)

    Madou, Marc; Lowenstein, Max; Wegener, Steven

    1995-01-01

    We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.

  10. Setup of an interface for operation of IAGOS (In-service Aircraft Global Observing System) CORE instruments onboard the IAGOS CARIBIC platform.

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas

    2017-04-01

    The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25

  11. Tunable diode laser in-situ CH4 measurements aboard the CARIBIC passenger aircraft: instrument performance assessment

    NASA Astrophysics Data System (ADS)

    Dyroff, C.; Zahn, A.; Sanati, S.; Christner, E.; Rauthe-Schöch, A.; Schuck, T. J.

    2014-03-01

    A laser spectrometer for automated monthly measurements of methane (CH4) mixing ratios aboard the CARIBIC passenger aircraft is presented. The instrument is based on a commercial Fast Greenhouse Gas Analyser (FGGA, Los Gatos Res.), which was adapted to meet the requirements imposed by unattended airborne operation. It was characterised in the laboratory with respect to instrument stability, precision, cross sensitivity to H2O, and accuracy. For airborne operation, a calibration strategy is described that utilises CH4 measurements obtained from flask samples taken during the same flights. The precision of airborne measurements is 2 ppb for 10 s averages. The accuracy at aircraft cruising altitude is 3.85 ppb. During aircraft ascent and descent, where no flask samples were obtained, instrumental drifts can be less accurately determined and the uncertainty is estimated to be 12.4 ppb. A linear humidity bias correction was applied to the CH4 measurements, which was most important in the lower troposphere. On average, the correction bias was around 6.5 ppb at an altitude of 2 km, and negligible at cruising flight level. Observations from 103 long-distance flights are presented that span a large part of the northern hemispheric upper troposphere and lowermost stratosphere (UT/LMS), with occasional crossing of the tropics on flights to southern Africa. These accurate data mark the largest UT/LMS in-situ CH4 dataset worldwide. An example of a tracer-tracer correlation study with ozone is given, highlighting the possibility for accurate cross-tropopause transport analyses.

  12. Chemiluminescent methods and instruments for monitoring of the atmosphere and satellite validation on board of research aircrafts and unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Sitnikov, Nikolay; Borisov, Yuriy; Akmulin, Dimitry; Chekulaev, Igor; Sitnikova, Vera; Ulanovsky, Alexey; Sokolov, Alexey

    The results of development of instruments based on heterophase chemiluminescence for measurements of space distribution of ozone and nitrogen oxides concentrations on board of research aircrafts and unmanned aerial vehicles carried out in Central Aerological Observatory are presented. Some results of atmospheric investigations on board of research aircrafts M55 “Geophysica” (Russia) and “Falcon” (Germany) carried out using developed instruments in frame of international projects are demonstrated. Small and low power instruments based on chemiluminescent principle for UAV are developed. The results of measurements on board of UAV are shown. The development can be used for satellite data validation, as well as operative environmental monitoring of contaminated areas in particular, chemical plants, natural and industrial disasters territories, areas and facilities for space purposes etc.

  13. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  14. Applications of the Hyper Angular Rainbow Polarimeter (HARP) instrument from aircraft and from space

    NASA Astrophysics Data System (ADS)

    Martins, J. V.; Fernandez Borda, R. A.; McBride, B.; Remer, L. A.; Barbosa, H. M.; Dubovik, O.

    2017-12-01

    The remote sensing of aerosol and cloud microphysics is essential for the global assessment of aerosol and cloud properties. Current spectral techniques utilized by MODIS, VIIRS and similar sensors lack details on the retrieval of the cloud and aerosol particle microphysical properties desired by the scientific community. Multi-spectral hyperangular polarization measurements provide enough information for this additional microphysical retrievals. The HARP (HyperAngular Rainbow Polarimeter) is a compact and modular imaging instrument with wide Field Of View (94 deg cross track and up to 114 degrees along track) and up to 60 along track viewing angles. Spectrally, HARP is envisioned to have modules in the UV, VNIR and SWIR ranges. Currently there are two existing HARP VNIR sensors, for airborne (AirHARP) and space-borne applications respectively, both with 4 wavelengths centered at 440, 550, 670, and 865nm. The space-borne HARP sensor has been designed for a 3U CubeSat satellite currently scheduled for launch to the International Space Station in January 2018 and to be released as a free flying satellite shortly after. At this orbit HARP will provide pixel resolution at the ground of about 400m, which will be binned to coarse resolutions (e.g. 2.5 Km) for data rate reduction. The AirHARP instrument has recently flown in the NASA Langley UC12 aircraft during the LMOS (Lake Michigan Ozone Study) collecting a large data set on aerosol, clouds, and surface properties. AirHARP will also fly in the ACEPOL campaign on board the NASA ER2 aircraft in October/November 2017. These campaigns are supporting HARP's algorithm development and validation in preparation to HARP's Cubesat launch and possibly other HARP space-borne missions. This presentation will describe details of the HARP and AirHARP instruments, as well and preliminary results with level 1 and level 2 data collected during the LMOS and the ACEPOL aircraft campaigns showing clouds and aerosol retrieval results.

  15. Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.

    DTIC Science & Technology

    1984-06-01

    other automatic machinery such as presses, molding machines , and numerically-controlled machine tools, just as people do. A-36...Robotics Technologies 3 B. Relevant AI Technologies 4 1. Expert Systems 4 2. Automatic Planning 4 3. Natural Language 5 4. Machine Vision...building machines that imitate human behavior. Artificial intelligence is concerned with the functions of the brain, whereas robotics include, in

  16. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  17. Aerothermal Instrumentation Loads To Implement Aeroassist Technology in Future Robotic and Human Missions to MARS and Other Locations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Shams, Qamar A.

    2002-01-01

    The strategy of NASA to explore space objects in the vicinity of Earth and other planets of the solar system includes robotic and human missions. This strategy requires a road map for technology development that will support the robotic exploration and provide safety for the humans traveling to other celestial bodies. Aeroassist is one of the key elements of technology planning for the success of future robot and human exploration missions to other celestial bodies. Measurement of aerothermodynamic parameters such as temperature, pressure, and acceleration is of prime importance for aeroassist technology implementation and for the safety and affordability of the mission. Instrumentation and methods to measure such parameters have been reviewed in this report in view of past practices, current commercial availability of instrumentation technology, and the prospects of improvement and upgrade according to the requirements. Analysis of the usability of each identified instruments in terms of cost for efficient weight-volume ratio, power requirement, accuracy, sample rates, and other appropriate metrics such as harsh environment survivability has been reported.

  18. Feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.

    1973-01-01

    The scientific and engineering findings are presented of the feasibility study for the use of a YF-12 aircraft as a scientific instrument platform for observing the 1970 solar eclipse. Included in the report is the computer program documentation of the solar eclipse determination; summary data on SR-71A type aircraft capabilities and limitations as an observing platform for solar eclipses; and the recordings of an informal conference on observations of solar eclipses using SR-71A type aircraft.

  19. A comparison of effects of peripheral vision cues on pilot performance during instrument flight in dissimilar aircraft simulators.

    DOT National Transportation Integrated Search

    1968-09-01

    Pilot response to peripheral vision cues relating to aircraft bank angle was studied during instrument flight in two simulators representing (1) a conventional, medium weight, piston engine airliner, and (2) a heavy, jet engine, sweptwing transport. ...

  20. Robotic radical perineal cystectomy and extended pelvic lymphadenectomy: initial investigation using a purpose-built single-port robotic system.

    PubMed

    Maurice, Matthew J; Kaouk, Jihad H

    2017-12-01

    To assess the feasibility of radical perineal cystoprostatectomy using the latest generation purpose-built single-port robotic surgical system. In two male cadavers the da Vinci ® SP1098 Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) was used to perform radical perineal cystoprostatectomy and bilateral extended pelvic lymph node dissection (ePLND). New features in this model include enhanced high-definition three-dimensional optics, improved instrument manoeuvrability, and a real-time instrument tracking and guidance system. The surgery was accomplished through a 3-cm perineal incision via a novel robotic single-port system, which accommodates three double-jointed articulating robotic instruments, an articulating camera, and an accessory laparoscopic instrument. The primary outcomes were technical feasibility, intraoperative complications, and total robotic operative time. The cases were completed successfully without conversion. There were no accidental punctures or lacerations. The robotic operative times were 197 and 202 min. In this preclinical model, robotic radical perineal cystoprostatectomy and ePLND was feasible using the SP1098 robotic platform. Further investigation is needed to assess the feasibility of urinary diversion using this novel approach and new technology. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  1. Robotic Laser Coating Removal System

    DTIC Science & Technology

    2008-07-01

    Materiel Command IRR Internal Rate of Return JTP Joint Test Protocol JTR Joint Test Report LARPS Large Area Robotic Paint Stripping LASER Light...use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air Force...The use of laser paint stripping systems is applicable to depainting activities on large off-aircraft components and weapons systems for the Air

  2. London University Search Instrument: a combinatorial robot for high-throughput methods in ceramic science.

    PubMed

    Wang, Jian; Evans, Julian R G

    2005-01-01

    This paper describes the design, construction, and operation of the London University Search Instrument (LUSI) which was recently commissioned to create and test combinatorial libraries of ceramic compositions. The instrument uses commercially available powders, milled as necessary to create thick-film libraries by ink-jet printing. Multicomponent mixtures are prepared by well plate reformatting of ceramic inks. The library tiles are robotically loaded into a flatbed furnace and, when fired, transferred to a 2-axis high-resolution measurement table fitted with a hot plate where measurements of, for example, optical or electrical properties can be made. Data are transferred to a dedicated high-performance computer. The possibilities for remote interrogation and search steering are discussed.

  3. Robot-assisted general surgery.

    PubMed

    Hazey, Jeffrey W; Melvin, W Scott

    2004-06-01

    With the initiation of laparoscopic techniques in general surgery, we have seen a significant expansion of minimally invasive techniques in the last 16 years. More recently, robotic-assisted laparoscopy has moved into the general surgeon's armamentarium to address some of the shortcomings of laparoscopic surgery. AESOP (Computer Motion, Goleta, CA) addressed the issue of visualization as a robotic camera holder. With the introduction of the ZEUS robotic surgical system (Computer Motion), the ability to remotely operate laparoscopic instruments became a reality. US Food and Drug Administration approval in July 2000 of the da Vinci robotic surgical system (Intuitive Surgical, Sunnyvale, CA) further defined the ability of a robotic-assist device to address limitations in laparoscopy. This includes a significant improvement in instrument dexterity, dampening of natural hand tremors, three-dimensional visualization, ergonomics, and camera stability. As experience with robotic technology increased and its applications to advanced laparoscopic procedures have become more understood, more procedures have been performed with robotic assistance. Numerous studies have shown equivalent or improved patient outcomes when robotic-assist devices are used. Initially, robotic-assisted laparoscopic cholecystectomy was deemed safe, and now robotics has been shown to be safe in foregut procedures, including Nissen fundoplication, Heller myotomy, gastric banding procedures, and Roux-en-Y gastric bypass. These techniques have been extrapolated to solid-organ procedures (splenectomy, adrenalectomy, and pancreatic surgery) as well as robotic-assisted laparoscopic colectomy. In this chapter, we review the evolution of robotic technology and its applications in general surgical procedures.

  4. Visual display angles of conventional and a remotely piloted aircraft.

    PubMed

    Kamine, Tovy Haber; Bendrick, Gregg A

    2009-04-01

    Instrument display separation and proximity are important human factor elements used in the design and grouping of aircraft instrument displays. To assess display proximity in practical operations, the viewing visual angles of various displays in several conventional aircraft and in a remotely piloted vehicle were assessed. The horizontal and vertical instrument display visual angles from the pilot's eye position were measured in 12 different types of conventional aircraft, and in the ground control station (GCS) of a remotely piloted aircraft (RPA). A total of 18 categories of instrument display were measured and compared. In conventional aircraft almost all of the vertical and horizontal visual display angles lay within a "cone of easy eye movement" (CEEM). Mission-critical instruments particular to specific aircraft types sometimes displaced less important instruments outside the CEEM. For the RPA, all horizontal visual angles lay within the CEEM, but most vertical visual angles lay outside this cone. Most instrument displays in conventional aircraft were consistent with display proximity principles, but several RPA displays lay outside the CEEM in the vertical plane. Awareness of this fact by RPA operators may be helpful in minimizing information access cost, and in optimizing RPA operations.

  5. Robotic hip arthroscopy in human anatomy.

    PubMed

    Kather, Jens; Hagen, Monika E; Morel, Philippe; Fasel, Jean; Markar, Sheraz; Schueler, Michael

    2010-09-01

    Robotic technology offers technical advantages that might offer new solutions for hip arthroscopy. Two hip arthroscopies were performed in human cadavers using the da Vinci surgical system. During both surgeries, a robotic camera and 5 or 8 mm da Vinci trocars with instruments were inserted into the hip joint for manipulation. Introduction of cameras and working instruments, docking of the robotic system and instrument manipulation was successful in both cases. The long articulating area of 5 mm instruments limited movements inside the joint; an 8 mm instrument with a shorter area of articulation offered an improved range of motion. Hip arthroscopy using the da Vinci standard system appears a feasible alternative to standard arthroscopy. Instruments and method of application must be modified and improved before routine clinical application but further research in this area seems justified, considering the clinical value of such an approach. Copyright 2010 John Wiley & Sons, Ltd.

  6. Hand-held medical robots.

    PubMed

    Payne, Christopher J; Yang, Guang-Zhong

    2014-08-01

    Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.

  7. The aircraft as an instrument of self destruction.

    DOT National Transportation Integrated Search

    1973-03-01

    Often the relationship between the pilot and his aircraft is such that the aircraft may be thought of as an extension of the pilot himself during the act of flight. If this pilot accumulates stress in his life with which he can no longer adequately c...

  8. Robotic microsurgery in male infertility and urology-taking robotics to the next level.

    PubMed

    Gudeloglu, Ahmet; Brahmbhatt, Jamin V; Parekattil, Sijo J

    2014-03-01

    The initial reports of robotic assisted microsurgery began to appear in the early 1990s. Animal and early human studies were the initial publications. Larger series papers have recently been published from a few institutions. The field of robotic assisted microsurgery is still in evolution and so are adjunctive tools and instruments. It is clearly a different and unique skill set-is it microsurgery or is it robotic surgery, or both. It is clear from history that the art of surgery evolves over time to encompass new technology as long as the outcomes are better for the patient. Our current robotic platforms may not be ideal for microsurgery, however, the use of adjunctive tools and instrument refinement will further its future potential. This review article presents the current state of the art in various robotic assisted microsurgical procedures in male infertility and urology. Some novel applications of taking microsurgery to areas not classically accessible (intra-abdominal vasovasostomy) and adjunctive tools will also be presented.

  9. Development of robotic mobile platform with the universal chassis system

    NASA Astrophysics Data System (ADS)

    Ryadchikov, I.; Nikulchev, E.; Sechenev, S.; Drobotenko, M.; Svidlov, A.; Volkodav, P.; Feshin, A.

    2018-02-01

    The problem of stabilizing the position of mobile devices is extremely relevant at the modern level of technology development. This includes the problem of stabilizing aircraft and stabilizing the pitching of ships. In the laboratory of robotics and mechatronics of the Kuban State University, a robot is developed. The robot has additional internal degrees of freedom, responsible for compensating for deflections - the dynamic stabilization system.

  10. Comparison of sea surface flux measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments

    NASA Astrophysics Data System (ADS)

    Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain

    1998-10-01

    Two major campaigns (Surface of the Oceans, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent flux of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface fluxes from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the flux profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship fluxes were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft fluxes were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum flux agrees quite well, aircraft estimations of sensible and latent heat flux are lower than those of the ship. This result is surprising, since aircraft momentum flux estimates are often considered as much less accurate than scalar flux estimates. The various sources of errors on the aircraft and ship flux estimates are discussed. For sensible and latent heat flux, random errors on aircraft estimates, as well as variability of ship flux estimates, are lower than the discrepancy between the two platforms, whereas the momentum flux estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the flux values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes

  11. [Robotics in pediatric surgery].

    PubMed

    Camps, J I

    2011-10-01

    Despite the extensive use of robotics in the adult population, the use of robotics in pediatrics has not been well accepted. There is still a lack of awareness from pediatric surgeons on how to use the robotic equipment, its advantages and indications. Benefit is still controversial. Dexterity and better visualization of the surgical field are one of the strong values. Conversely, cost and a lack of small instruments prevent the use of robotics in the smaller patients. The aim of this manuscript is to present the controversies about the use of robotics in pediatric surgery.

  12. Biologically inspired robots as artificial inspectors

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  13. Computing Dynamics Of A Robot Of 6+n Degrees Of Freedom

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Bailey, Robert W.

    1995-01-01

    Improved formulation speeds and simplifies computation of dynamics of robot arm of n rotational degrees of freedom mounted on platform having three translational and three rotational degrees of freedom. Intended for use in dynamical modeling of robotic manipulators attached to such moving bases as spacecraft, aircraft, vessel, or land vehicle. Such modeling important part of simulation and control of robotic motions.

  14. KC-135 materials handling robotics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Robot dynamics and control will become an important issue for implementing productive platforms in space. Robotic operations will become necessary for man-tended stations and for efficient performance of routine operations in a manned platform. The current constraints on the use of robotic devices in a microgravity environment appears to be due to an anticipated increase in acceleration levels due to manipulator motion and for safety concerns. The objective of this study will be to provide baseline data to meet that need. Most texts and papers dealing with the kinematics and dynamics of robots assume that the manipulator is composed of joints separated by rigid links. However, in recent years several groups have begun to study the dynamics of flexible manipulators, primarily for applying robots in space and for improving the efficiency and precision of robotic systems. Robotic systems which are being planned for implementation in space have a number of constraints to overcome. Additional concepts which have to be worked out in any robotic implementation for a space platform include teleoperation and degree of autonomous control. Some significant results in developing a robotic workcell for performing robotics research on the KC-135 aircraft in preperation for space-based robotics applications in the future were generated. In addition, it was shown that TREETOPS can be used to simulate the dynamics of robot manipulators for both space and ground-based applications.

  15. Overview of the StratoClim Asian Monsoon Aircraft Campaign: Strategy, Instrumentation and preliminary Results

    NASA Astrophysics Data System (ADS)

    Stroh, F.

    2017-12-01

    The StratoClim Aircraft Field Campaign employing the high-flying research aircraft M55 Geophysica was carried out from mid July to mid August of 2017 from Kathmandu, Nepal, covering the airspace of Nepal, India, Bangladesh and Myanmar in the frame of the EC FP7 funded StratoClim project (see the Rex. et al. overview in this session). In order to sample the first detailed data set on climate relevant processes of the Asian Summer Monsoon anticyclone a comprehensive chemical and aerosol payload of more than 2 metric tons consisting of 26 different instrumets was flown to altitudes in excess of 20km to measure remote sensing and in-situ data on dynamical, chemical, and micro-chemical processes governing this experimentally underresearched atmospheric domain. An overview of the instrumentation, observation strategies, and preliminary results on open challenges as the horizontal and vertical trace gas and aerosol structures, effects of convective events and the ATAL will be given.

  16. Characterization of the Aerosol Instrument Package for the In-service Aircraft Global Observing System IAGOS

    NASA Astrophysics Data System (ADS)

    Bundke, Ulrich; Berg, Marcel; Tettig, Frank; Franke, Harald; Petzold, Andreas

    2015-04-01

    The atmospheric aerosol influences the climate twofold via the direct interaction with solar radiation and indirectly effecting microphysical properties of clouds. The latter has the largest uncertainty according to the last IPPC Report. A measured in situ climatology of the aerosol microphysical properties is needed to reduce the reported uncertainty of the aerosol climate impact. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. The IAGOS Aerosol Package (IAGOS-P2C) consists of two modified Butanol based CPCs (Model Grimm 5.410) and one optical particle counter (Model Grimm Sky OPC 1.129). A thermodenuder at 250°C is placed upstream the second CPC, thus the number concentrations of the total aerosol and the non-volatile aerosol fraction is measured. The Sky OPC measures the size distribution in the rage theoretically up to 32 μ m. Because of the inlet cut off diameter of D50=3 μ m we are using the 16 channel mode in the range of 250 nm - 2.5 μ m at 1 Hz resolution. In this presentation the IAGOS Aerosol package is characterized for pressure levels relevant for the planned application, down to cruising level of 150 hPa including the inlet system. In our aerosol lab we have tested the system against standard instrumentation with different aerosol test substances in a long duration test. Particle losses are characterized for the inlet system. In addition first results for airborne measurements are shown from a first field campaign.

  17. Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2008-10-02

    radiography . Two large inspection bays would each accommodate one F-22 aircraft and robotic x-ray inspection equipment. Six smaller bays would accommodate...large aircraft components (two ultrasonic inspection bays, two laser shearography inspection bays, and two digital radiography inspection bays...Hill Air Force Base, Utah Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

  18. Education by Robot!

    ERIC Educational Resources Information Center

    Cobb, Cheryl

    2004-01-01

    This article describes BEST (Boosting Engineering, Science, and Technology), a hands-on robotics program founded by Texas Instruments engineers Ted Mahler and Steve Marum. BEST links educators with industry to provide middle and high school students with a peek into the exciting world of robotics, with the goal of inspiring and interesting…

  19. Robotic single-site pelvic lymphadenectomy.

    PubMed

    Tateo, Saverio; Nozza, Arrigo; Del Pezzo, Chiara; Mereu, Liliana

    2014-09-01

    To examine the feasibility of performing pelvic lymphadenectomy with robotic single site approach. Recent papers described the feasibility of robotic-single site hysterectomy [1-3] for benign and malign pathologies but only with the development of new single site 5mm instruments as the bipolar forceps, robotic single site platform can be safely utilized also for lymphadenectomy. A 65 year-old, multiparous patient with a body mass index of 22.5 and diagnosed with well differentiated adenocarcinoma of the endometrium underwent a robotic single-site peritoneal washing, total hysterectomy, bilateral adnexectomy and pelvic lymphadenectomy. The procedure was performed using the da Vinci Si Surgical System (Intuitive Surgical, Sunnyvale, CA) through a single 2,5 cm umbilical incision, with a multi-channel system and two single site robotic 5mm instruments. A 3-dimensional, HD 8.5mm endoscope and a 5mm accessory instrument were also utilized. Type I lymphonodes dissection for external iliac and obturator regions was performed [4]. Total operative time was 210 min; incision, trocar placement and docking time occurring in 12 min. Total console time was 183 min, estimated blood loss was 50 ml, no intra-operative or post-operative complications occurred. Hospital discharge occurred on post operative day 2 and total number of lymphnodes removed was 33. Difficulties in term of instrument's clashing and awkward motions have been encountered. Robotic single-site pelvic lymphadenectomy using bipolar forceps and monopolar hook is feasible. New developments are needed to improve surgical ergonomics and additional studies should be performed to explore possible benefits of this procedure. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  1. Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013

    NASA Astrophysics Data System (ADS)

    Warneke, Carsten; Trainer, Michael; de Gouw, Joost A.; Parrish, David D.; Fahey, David W.; Ravishankara, A. R.; Middlebrook, Ann M.; Brock, Charles A.; Roberts, James M.; Brown, Steven S.; Neuman, Jonathan A.; Lerner, Brian M.; Lack, Daniel; Law, Daniel; Hübler, Gerhard; Pollack, Iliana; Sjostedt, Steven; Ryerson, Thomas B.; Gilman, Jessica B.; Liao, Jin; Holloway, John; Peischl, Jeff; Nowak, John B.; Aikin, Kenneth C.; Min, Kyung-Eun; Washenfelder, Rebecca A.; Graus, Martin G.; Richardson, Mathew; Markovic, Milos Z.; Wagner, Nick L.; Welti, André; Veres, Patrick R.; Edwards, Peter; Schwarz, Joshua P.; Gordon, Timothy; Dube, William P.; McKeen, Stuart A.; Brioude, Jerome; Ahmadov, Ravan; Bougiatioti, Aikaterini; Lin, Jack J.; Nenes, Athanasios; Wolfe, Glenn M.; Hanisco, Thomas F.; Lee, Ben H.; Lopez-Hilfiker, Felipe D.; Thornton, Joel A.; Keutsch, Frank N.; Kaiser, Jennifer; Mao, Jingqiu; Hatch, Courtney D.

    2016-07-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  2. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    PubMed Central

    Warneke, C.; Trainer, M.; de Gouw, J.A.; Parrish, D.D.; Fahey, D.W.; Ravishankara, A.R.; Middlebrook, A.M.; Brock, C.A.; Roberts, J.M.; Brown, S.S.; Neuman, J.A.; Lerner, B.M.; Lack, D.; Law, D.; Hübler, G.; Pollack, I.; Sjostedt, S.; Ryerson, T.B.; Gilman, J.B.; Liao, J.; Holloway, J.; Peischl, J.; Nowak, J.B.; Aikin, K.; Min, K.-E.; Washenfelder, R.A.; Graus, M.G.; Richardson, M.; Markovic, M.Z.; Wagner, N.L.; Welti, A.; Veres, P.R.; Edwards, P.; Schwarz, J.P.; Gordon, T.; Dube, W.P.; McKeen, S.; Brioude, J.; Ahmadov, R.; Bougiatioti, A.; Lin, J.J.; Nenes, A.; Wolfe, G.M.; Hanisco, T.F.; Lee, B.H.; Lopez-Hilfiker, F.D.; Thornton, J.A.; Keutsch, F.N.; Kaiser, J.; Mao, J.; Hatch, C.

    2018-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions. PMID:29619117

  3. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013

    NASA Technical Reports Server (NTRS)

    Warneke, C.; Trainer, M.; de Gouw, J. A.; Parrish, D. D.; Fahey, D. W.; Ravishankara, A. R.; Middlebrook, A. M.; Brock, C. A.; Roberts, J. M.; Brown, S. S.; hide

    2016-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  4. Instrumentation and Measurement Strategy for the NOAA SENEX Aircraft Campaign as Part of the Southeast Atmosphere Study 2013.

    PubMed

    Warneke, C; Trainer, M; de Gouw, J A; Parrish, D D; Fahey, D W; Ravishankara, A R; Middlebrook, A M; Brock, C A; Roberts, J M; Brown, S S; Neuman, J A; Lerner, B M; Lack, D; Law, D; Hübler, G; Pollack, I; Sjostedt, S; Ryerson, T B; Gilman, J B; Liao, J; Holloway, J; Peischl, J; Nowak, J B; Aikin, K; Min, K-E; Washenfelder, R A; Graus, M G; Richardson, M; Markovic, M Z; Wagner, N L; Welti, A; Veres, P R; Edwards, P; Schwarz, J P; Gordon, T; Dube, W P; McKeen, S; Brioude, J; Ahmadov, R; Bougiatioti, A; Lin, J J; Nenes, A; Wolfe, G M; Hanisco, T F; Lee, B H; Lopez-Hilfiker, F D; Thornton, J A; Keutsch, F N; Kaiser, J; Mao, J; Hatch, C

    2016-01-01

    Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO 2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

  5. Robotic Surgery

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Automated Endoscopic System for Optimal Positioning, or AESOP, was developed by Computer Motion, Inc. under a SBIR contract from the Jet Propulsion Lab. AESOP is a robotic endoscopic positioning system used to control the motion of a camera during endoscopic surgery. The camera, which is mounted at the end of a robotic arm, previously had to be held in place by the surgical staff. With AESOP the robotic arm can make more precise and consistent movements. AESOP is also voice controlled by the surgeon. It is hoped that this technology can be used in space repair missions which require precision beyond human dexterity. A new generation of the same technology entitled the ZEUS Robotic Surgical System can make endoscopic procedures even more successful. ZEUS allows the surgeon control various instruments in its robotic arms, allowing for the precision the procedure requires.

  6. Robot Drills Holes To Relieve Excess Tire Pressures

    NASA Technical Reports Server (NTRS)

    Carrott, David T.

    1996-01-01

    Small, relatively inexpensive, remotely controlled robot called "tire assault vehicle" (TAV) developed to relieve excess tire pressures to protect ground crew, aircraft equipment, and nearby vehicles engaged in landing tests of CV-990 Landing System Research Aircraft. Reduces costs and saves time in training, maintenance, and setup related to "yellow" and "red" tire conditions. Adapted to any heavy-aircraft environment in which ground-crew safety at risk because of potential for tire explosions. Also ideal as scout vehicle for performing inspections in hazardous locations.

  7. Robotic surgery in gynecology.

    PubMed

    Magrina, J F

    2007-01-01

    Robotic technology is nothing more than an enhancement along the continuum of laparoscopic technological advances and represents only the beginning of numerous more forthcoming advances. It constitutes a major improvement in the efficiency, accuracy, ease, and comfort associated with the performance of laparoscopic operations. Instrument articulation, downscaling of movements, absence of tremor, 3-D image, and comfort for the surgeon, assistant and scrub nurse are all new to the practice of laparoscopy. In our hands, robotic operative times for simple and radical hysterectomy are shorter than those obtained by conventional laparoscopy. Robotic technology is preferable to conventional laparoscopic instrumentation for the surgical treatment of gynecologic malignancies and most operations for benign disease of certain complexity such as hysterectomy myomectomy, and invasive pelvic endometriosis.

  8. Robotic Waterjet System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA needed a way to safely strip old paint and thermal protection material from reusable components from the Space Shuttle; to meet this requirement, Marshall Space Flight Center teamed with United Technologies' USBI Company and developed a stripping system based on hydroblasting. United Technology spun off a new company, Waterjet Systems, to commercialize and market the technology. The resulting ARMS (Automated Robotic Maintenance Systems), employ waterblasts at 55,000 pounds per square inch controlled by target-sensitive robots. The systems are used on aircraft and engine parts, and the newest application is on ships, where it not only strips but catches the ensuing wastewater. This innovation results in faster, cheaper stripping with less clean-up and reduced environmental impact.

  9. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.

    PubMed

    Nakadate, Ryu; Arata, Jumpei; Hashizume, Makoto

    2015-02-01

    At present, much of the research conducted worldwide focuses on extending the ability of surgical robots. One approach is to extend robotic dexterity. For instance, accessibility and dexterity of the surgical instruments remains the largest issue for reduced port surgery such as single port surgery or natural orifice surgery. To solve this problem, a great deal of research is currently conducted in the field of robotics. Enhancing the surgeon's perception is an approach that uses advanced sensor technology. The real-time data acquired through the robotic system combined with the data stored in the robot (such as the robot's location) provide a major advantage. This paper aims at introducing state-of-the-art products and pre-market products in this technological advancement, namely the robotic challenge in extending dexterity and hopefully providing the path to robotic surgery in the near future.

  10. Continuous spectroscopic measurement of methane isotopes and ethane made on board an aircraft: instrument configuration and characterisation

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Young, Stuart; Hopkins, James; Lee, James; Bauguitte, Stéphane; Dorsey, James; Allen, Grant; Gallagher, Martin; Yacovitch, Tara; Zahniser, Mark; Fisher, Rebecca; Lowry, Dave; Nisbet, Euan

    2017-04-01

    We describe the configuration of two commercially available absorption spectrometers for use on board the UK Facility for Airborne Atmospheric Research (FAAM) aircraft. A dual laser instrument has been used to make continuous measurements of the atmospheric 13CH4:12CH4 ratio and ethane mole fraction, using an interband cascade laser (ICL) and a recently developed type of diode laser respectively. Simultaneous measurements of atmospheric ethane have also been made using a single laser instrument employing an ICL, enabling instrument inter-comparison. Instrument performance is evaluated over a series of test flights, and initial results from the MOYA (Methane Observations and Yearly Assessments) campaign, targeting biomass burning plumes in west Africa, are also presented. We describe the calibration procedure and data analysis approaches for methane isotope measurement, involving calibration over a range of methane isotopic composition and methane mole fraction. We assess the effectiveness of this calibration technique during the first MOYA campaign period using measurements of a target cylinder of known composition.

  11. Robotic technology in surgery: past, present, and future.

    PubMed

    Camarillo, David B; Krummel, Thomas M; Salisbury, J Kenneth

    2004-10-01

    It has been nearly 20 years since the first appearance of robotics in the operating room. In that time, much progress has been made in integrating robotic technologies with surgical instrumentation, as evidenced by the many thousands of successful robot-assisted cases. However, to build on past success and to fully leverage the potential of surgical robotics in the future, it is essential to maximize a shared understanding and communication among surgeons, engineers, entrepreneurs, and healthcare administrators. This article provides an introduction to medical robotic technologies, develops a possible taxonomy, reviews the evolution of a surgical robot, and discusses future prospects for innovation. Robotic surgery has demonstrated some clear benefits. It remains to be seen where these benefits will outweigh the associated costs over the long term. In the future, surgical robots should be smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies from a number of different fields. Such advances will enable continued progress in surgical instrumentation and, ultimately, surgical care.

  12. Temperature Coefficient of the Modulus of Rigidity of Aircraft Instrument Diaphragm and Spring Materials

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Melton, E R

    1931-01-01

    Experimental data are presented on the variation of the modulus of rigidity in the temperature range -20 to +50 degrees C. of a number of metals which are of possible use for elastic elements for aircraft and other instruments. The methods of the torsional pendulum was used to determine the modulus of rigidity and its temperature coefficient for aluminum, duralumin, monel metal, brass, phosphor bronze, coin silver, nickel silver, three high carbon steels, and three alloy steels. It was observed that tensile stress affected the values of the modulus by amounts of 1 per cent or less.

  13. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.

    PubMed

    Akce, Abdullah; Johnson, Miles; Dantsker, Or; Bretl, Timothy

    2013-03-01

    This paper presents an interface for navigating a mobile robot that moves at a fixed speed in a planar workspace, with noisy binary inputs that are obtained asynchronously at low bit-rates from a human user through an electroencephalograph (EEG). The approach is to construct an ordered symbolic language for smooth planar curves and to use these curves as desired paths for a mobile robot. The underlying problem is then to design a communication protocol by which the user can, with vanishing error probability, specify a string in this language using a sequence of inputs. Such a protocol, provided by tools from information theory, relies on a human user's ability to compare smooth curves, just like they can compare strings of text. We demonstrate our interface by performing experiments in which twenty subjects fly a simulated aircraft at a fixed speed and altitude with input only from EEG. Experimental results show that the majority of subjects are able to specify desired paths despite a wide range of errors made in decoding EEG signals.

  14. Admittance Control for Robot Assisted Retinal Vein Micro-Cannulation under Human-Robot Collaborative Mode.

    PubMed

    Zhang, He; Gonenc, Berk; Iordachita, Iulian

    2017-10-01

    Retinal vein occlusion is one of the most common retinovascular diseases. Retinal vein cannulation is a potentially effective treatment method for this condition that currently lies, however, at the limits of human capabilities. In this work, the aim is to use robotic systems and advanced instrumentation to alleviate these challenges, and assist the procedure via a human-robot collaborative mode based on our earlier work on the Steady-Hand Eye Robot and force-sensing instruments. An admittance control method is employed to stabilize the cannula relative to the vein and maintain it inside the lumen during the injection process. A pre-stress strategy is used to prevent the tip of microneedle from getting out of vein in in prolonged infusions, and the performance is verified through simulations.

  15. Future of robotic surgery in urology.

    PubMed

    Rassweiler, Jens J; Autorino, Riccardo; Klein, Jan; Mottrie, Alex; Goezen, Ali Serdar; Stolzenburg, Jens-Uwe; Rha, Koon H; Schurr, Marc; Kaouk, Jihad; Patel, Vipul; Dasgupta, Prokar; Liatsikos, Evangelos

    2017-12-01

    To provide a comprehensive overview of the current status of the field of robotic systems for urological surgery and discuss future perspectives. A non-systematic literature review was performed using PubMed/Medline search electronic engines. Existing patents for robotic devices were researched using the Google search engine. Findings were also critically analysed taking into account the personal experience of the authors. The relevant patents for the first generation of the da Vinci platform will expire in 2019. New robotic systems are coming onto the stage. These can be classified according to type of console, arrangement of robotic arms, handles and instruments, and other specific features (haptic feedback, eye-tracking). The Telelap ALF-X robot uses an open console with eye-tracking, laparoscopy-like handles with haptic feedback, and arms mounted on separate carts; first clinical trials with this system were reported in 2016. The Medtronic robot provides an open console using three-dimensional high-definition video technology and three arms. The Avatera robot features a closed console with microscope-like oculars, four arms arranged on one cart, and 5-mm instruments with six degrees of freedom. The REVO-I consists of an open console and a four-arm arrangement on one cart; the first experiments with this system were published in 2016. Medicaroid uses a semi-open console and three robot arms attached to the operating table. Clinical trials of the SP 1098-platform using the da Vinci Xi for console-based single-port surgery were reported in 2015. The SPORT robot has been tested in animal experiments for single-port surgery. The SurgiBot represents a bedside solution for single-port surgery providing flexible tube-guided instruments. The Avicenna Roboflex has been developed for robotic flexible ureteroscopy, with promising early clinical results. Several console-based robots for laparoscopic multi- and single-port surgery are expected to come to market within the

  16. Initial laboratory experience with a novel ultrasound probe for standard and single-port robotic kidney surgery: increasing console surgeon autonomy and minimizing instrument clashing.

    PubMed

    Yakoubi, Rachid; Autorino, Riccardo; Laydner, Humberto; Guillotreau, Julien; White, Michael A; Hillyer, Shahab; Spana, Gregory; Khanna, Rakesh; Isaac, Wahib; Haber, Georges-Pascal; Stein, Robert J; Kaouk, Jihad H

    2012-06-01

    The aim of this study was to evaluate a novel ultrasound probe specifically developed for robotic surgery by determining its efficiency in identifying renal tumors. The study was carried out using the Da Vinci™ surgical system in one female pig. Renal tumor targets were created by percutaneous injection of a tumor mimic mixture. Single-port and standard robotic partial nephrectomy were performed. Intraoperative ultrasound was performed using both standard laparoscopic probe and the new ProART™ Robotic probe. Probe maneuverability and ease of handling for tumor localization were recorded. The standard laparoscopic probe was guided by the assistant. Significant clashing with robotic arms was noted during the single-port procedure. The novel robotic probe was easily introduced through the assistant trocar, and held by the console surgeon using the robotic Prograsp™ with no registered clashing in the external operative field. The average time for grasping the new robotic probe was less than 10 s. Once inserted and grasped, no limitation was found in terms of instrument clashing during the single-port procedure. This novel ultrasound probe developed for robotic surgery was noted to be user-friendly when performing porcine standard and especially single-port robotic partial nephrectomy. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Robot Rescue

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Tests with robots and the high-fidelity Hubble Space Telescope mockup astronauts use to train for servicing missions have convinced NASA managers it may be possible to maintain and upgrade the orbiting observatory without sending a space shuttle to do the job. In a formal request last week, the agency gave bidders until July 16 to sub-mit proposals for a robotic mission to the space telescope before the end of 2007. At a minimum, the mission would attach a rocket motor to deorbit the telescope safely when its service life ends. In the best case, it would use state-of-the- art robotics to prolong its life on orbit and install new instruments. With the space shuttle off-limits for the job under strict post-Columbia safety policies set by Administrator Sean O'Keefe, NASA has designed a "straw- man" robotic mission that would use an Atlas V or Delta N to launch a 20,ooO-lb. "Hubble Robotic Vehicle" to service the telescope. There, a robotic arm would grapple it, much as the shuttle does.

  18. Robotic Waterblasting

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.

  19. Pro-Am Collaborations with research grade robotic instruments and their contribution to outreach

    NASA Astrophysics Data System (ADS)

    Howes, N.

    2014-04-01

    Robotic telescopes in both the commercial sector and outreach area have increasingly provided both professional and amateur astronomers with high quality data. Projects like the Faulkes Telescope, which is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN) with their network of 1 and 2-metre robotic telescopes, have been directly involved in support for missions such as the European Space Agency Rosetta and Gaia missions, as well as involvement in a variety of NASA Comet missions such as the EPOXI/Comet 103P encounter. These telescope networks are unique in that they provide school students and high end amateur astronomers, with access to research grade instrumentation and equipment which may not have been affordable to them in many instances. With social media collaboration and dedicated websites, increasingly bridging the gap between the professional and amateur community, more and more amateurs are working as collaborators with scientists in not only providing data, but also in data reduction. Amateur astronomers have increasingly also been working with schools suggesting projects which have provided valuable scientific input to professional astronomers, whilst also giving young scientists in secondary education, an opportunity to work with professional instrumentation and methods, albeit at an entry level. We aim to demonstrate the long term value of these collaborations, and propose better working methodologies to help the professional community get more from amateur input. We will cite some examples of research paper collaborations, and scientifically valuable data sharing between professional and amateur astronomers, • Observations and results from the global campaign on Comet C/2007 Q3; Ref.[1] • Observations of the fragmentation of Comet 168P; Ref.[2] • Observations relating to the evolution of Comet C/2012 S1; Ref.[3

  20. Topics in Chemical Instrumentation. Robots in the Laboratory--An Overview.

    ERIC Educational Resources Information Center

    Strimaitis, Janet R.

    1990-01-01

    Discussed are applications of robotics in the chemistry laboratory. Highlighted are issues of precision, accuracy, and system integration. Emphasized are the potential benefits of the use of robots to automate laboratory procedures. (CW)

  1. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  2. Survey of Aircraft Emissions and Related Instrumentation

    DOT National Transportation Integrated Search

    1971-03-31

    The report presents the preliminary results of a survey of transportation systems emissions monitoring requirements. Emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and particulates from aircraft power plants, with emphasis on gas turb...

  3. A high precision instrument to measure angular and binocular deviation introduced by aircraft windscreens by using a shadow casting technique

    NASA Astrophysics Data System (ADS)

    Shivananju, B. N.; Yamdagni, S.; Vasu, R. M.; Asokan, S.

    2012-12-01

    Objects viewed through transparent sheets with residual non-parallelism and irregularity appear shifted and distorted. This distortion is measured in terms of angular and binocular deviation of an object viewed through the transparent sheet. The angular and binocular deviations introduced are particularly important in the context of aircraft windscreens and canopies as they can interfere with decision making of pilots especially while landing, leading to accidents. In this work, we have developed an instrument to measure both the angular and binocular deviations introduced by transparent sheets. This instrument is especially useful in the qualification of aircraft windscreens and canopies. It measures the deviation in the geometrical shadow cast by a periodic dot pattern trans-illuminated by the distorted light beam from the transparent test specimen compared to the reference pattern. Accurate quantification of the shift in the pattern is obtained by cross-correlating the reference shadow pattern with the specimen shadow pattern and measuring the location of the correlation peak. The developed instrument is handy to use and computes both angular and binocular deviation with an accuracy of less than ±0.1 mrad (≈0.036 mrad) and has an excellent repeatability with an error of less than 2%.

  4. Testing Aircraft Instruments.

    DTIC Science & Technology

    1981-02-11

    1. Have test data been collected, recorded, and presented in accordance with this TOP? Yes No Comment : 2. Were the facilities, test equipment...instrumentation, and support accommodations adequate to accomplish the test objectives? Yes No Comment : 3. Have all data collected been reviewed for...correctness and completeness? Yes No Comment : 4. Were the test results compromised in any way due to insufficient test planning? Yes No Comment : 5. Were the

  5. Robotics and general surgery.

    PubMed

    Jacob, Brian P; Gagner, Michel

    2003-12-01

    Robotics are now being used in all surgical fields, including general surgery. By increasing intra-abdominal articulations while operating through small incisions, robotics are increasingly being used for a large number of visceral and solid organ operations, including those for the gallbladder, esophagus, stomach, intestines, colon, and rectum, as well as for the endocrine organs. Robotics and general surgery are blending for the first time in history and as a specialty field should continue to grow for many years to come. We continuously demand solutions to questions and limitations that are experienced in our daily work. Laparoscopy is laden with limitations such as fixed axis points at the trocar insertion sites, two-dimensional video monitors, limited dexterity at the instrument tips, lack of haptic sensation, and in some cases poor ergonomics. The creation of a surgical robot system with 3D visual capacity seems to deal with most of these limitations. Although some in the surgical community continue to test the feasibility of these surgical robots and to question the necessity of such an expensive venture, others are already postulating how to improve the next generation of telemanipulators, and in so doing are looking beyond today's horizon to find simpler solutions. As the robotic era enters the world of the general surgeon, more and more complex procedures will be able to be approached through small incisions. As technology catches up with our imaginations, robotic instruments (as opposed to robots) and 3D monitoring will become routine and continue to improve patient care by providing surgeons with the most precise, least traumatic ways of treating surgical disease.

  6. Applications of high spectral resolution FTIR observations demonstrated by the radiometrically accurate ground-based AERI and the scanning HIS aircraft instruments

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Knuteson, Robert O.; Best, Fred A.; Tobin, David C.; Smith, William L.; Feltz, Wayne F.; Petersen, Ralph A.; Antonelli, Paolo; Olson, Erik R.; LaPorte, Daniel D.; Ellington, Scott D.; Werner, Mark W.; Dedecker, Ralph G.; Garcia, Raymond K.; Ciganovich, Nick N.; Howell, H. Benjamin; Vinson, Kenneth; Ackerman, Steven A.

    2003-06-01

    Development in the mid 80s of the High-resolution Interferometer Sounder (HIS) for the high altitude NASA ER2 aircraft demonstrated the capability for advanced atmospheric temperature and water vapor sounding and set the stage for new satellite instruments that are now becoming a reality [AIRS (2002), CrIS (2006), IASI (2006), GIFTS (2005/6)]. Follow-on developments at the University of Wisconsin-Madison that employ interferometry for a wide range of Earth observations include the ground-based Atmospheric Emitted Radiance Interferometer (AERI) and the Scanning HIS aircraft instrument (S-HIS). The AERI was developed for the US DOE Atmospheric Radiation Measurement (ARM) Program, primarily to provide highly accurate radiance spectra for improving radiative transfer models. The continuously operating AERI soon demonstrated valuable new capabilities for sensing the rapidly changing state of the boundary layer and properties of the surface and clouds. The S-HIS is a smaller version of the original HIS that uses cross-track scanning to enhance spatial coverage. S-HIS and its close cousin, the NPOESS Airborne Sounder Testbed (NAST) operated by NASA Langley, are being used for satellite instrument validation and for atmospheric research. The calibration and noise performance of these and future satellite instruments is key to optimizing their remote sensing products. Recently developed techniques for improving effective radiometric performance by removing noise in post-processing is a primary subject of this paper.

  7. A Laser-Induced Fluorescence Instrument for Aircraft Measurements of Sulfur Dioxide in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Rollins, Andrew W.; Thornberry, Troy D.; Ciciora, Steven J.; McLaughlin, Richard J.; Watts, Laurel A.; Hanisco, Thomas F.; Baumann, Esther; Giorgetta, Fabrizio R.; Bui, Thaopaul V.; Fahey, David W.

    2016-01-01

    This work describes the development and testing of a new instrument for in situ measurements of sulfur dioxide (SO2) on airborne platforms in the upper troposphere and lower stratosphere (UTLS). The instrument is based on the laser-induced fluorescence technique and uses the fifth harmonic of a tunable fiber-amplified semiconductor diode laser system at 1084.5 nm to excite SO2 at 216.9 nm. Sensitivity and background checks are achieved in flight by additions of SO2 calibration gas and zero air, respectively. Aircraft demonstration was performed during the NASA Volcano Plume Investigation Readiness and Gas-Phase and Aerosol Sulfur (VIRGAS) experiment, which was a series of flights using the NASA WB-57F during October 2015 based at Ellington Field and Harlingen, Texas. During these flights, the instrument successfully measured SO2 in the UTLS at background (non-volcanic) conditions with a precision of 2 ppt at 10 s and an overall uncertainty determined primarily by instrument drifts of +/- (16% + 0.9 ppt).

  8. Intensive probing of a clear air convective field by radar and instrumental drone aircraft.

    NASA Technical Reports Server (NTRS)

    Rowland, J. R.

    1973-01-01

    An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.

  9. Robotic insects: Manufacturing, actuation, and power considerations

    NASA Astrophysics Data System (ADS)

    Wood, Robert

    2015-12-01

    As the characteristic size of a flying robot decreases, the challenges for successful flight revert to basic questions of fabrication, actuation, fluid mechanics, stabilization, and power - whereas such questions have in general been answered for larger aircraft. When developing a robot on the scale of a housefly, all hardware must be developed from scratch as there is nothing "off-the-shelf" which can be used for mechanisms, sensors, or computation that would satisfy the extreme mass and power limitations. With these challenges in mind, this talk will present progress in the essential technologies for insect-like robots with an emphasis on multi-scale manufacturing methods, high power density actuation, and energy-efficient power distribution.

  10. Factors influencing aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft ground handling operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from tests with instrumented ground vehicles and aircraft, and aircraft wet runway accident investigation are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  11. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detection using robotic single-site instrumentation: preclinical study.

    PubMed

    Levinson, Kimberly L; Mahdi, Haider; Escobar, Pedro F

    2013-01-01

    The present study was performed to determine the optimal dosage of indocyanine green (ICG) to accurately differentiate the sentinel node from surrounding tissue and then to test this dosage using novel single-port robotic instrumentation. The study was performed in healthy female pigs. After induction of anesthesia, all pigs underwent exploratory laparotomy, dissection of the bladder, and colpotomy to reveal the cervical os. With use of a 21-gauge needle, 0.5 mL normal saline solution was injected at the 3- and 9-o'clock positions as control. Four concentrations of ICG were constituted for doses of 1000, 500, 250, and 175 μg per 0.5 mL. ICG was then injected at the 3- and 9-o'clock positions on the cervix. The SPY camera was used to track ICG into the sentinel nodes and to quantify the intensity of light emitted. SPY technology uses an intensity scale of 1 to 256; this scale was used to determine the difference in intensity between the sentinel node and surrounding tissues. The optimal dosage was tested using single-port robotic instrumentation with the same injection techniques. A sentinel node was identified at all doses except 175 μg, at which ICG stayed in the cervix and vasculature only. For both the 500- and 250-μg doses, the sentinel node was identified before reaching maximum intensity. At maximum intensity, the difference between the surrounding tissue and the node was 207 (251 vs 44) for the 500-μg dose and 159 (251 vs 92) for the 250-μg dose. Sentinel lymph node (SLN) biopsy was successfully performed using single-port robotic technology with both the 250- and 500-μg doses. For SLN detection, the dose of ICG is related to the ability to differentiate the sentinel node from the surrounding tissue. An ICG dose of 250 to 500 μg enables identification of a SLN with more distinction from the surrounding tissues, and this procedure is feasible using single-port robotics instrumentation. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights

  12. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  13. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area

  14. Does a robotic scrub nurse improve economy of movements?

    NASA Astrophysics Data System (ADS)

    Wachs, Juan P.; Jacob, Mithun; Li, Yu-Ting; Akingba, George

    2012-02-01

    Objective: Robotic assistance during surgery has been shown to be a useful resource to both augment the surgical skills of the surgeon through tele-operation, and to assist the surgeon handling the surgical instruments to the surgeon, similar to a surgical tech. We evaluated the performance and effect of a gesture driven surgical robotic nurse in the context of economy of movements, during an abdominal incision and closure exercise with a simulator. Methods: A longitudinal midline incision (100 mm) was performed on the simulated abdominal wall to enter the peritoneal cavity without damaging the internal organs. The wound was then closed using a blunt needle ensuring that no tissue is caught up by the suture material. All the instruments required to complete this task were delivered by a robotic surgical manipulator directly to the surgeon. The instruments were requested through voice and gesture recognition. The robotic system used a low end range sensor camera to extract the hand poses and for recognizing the gestures. The instruments were delivered to the vicinity of the patient, at chest height and at a reachable distance to the surgeon. Task performance measures for each of three abdominal incision and closure exercises were measured and compared to a human scrub nurse instrument delivery action. Picking instrument position variance, completion time and trajectory of the hand were recorded for further analysis. Results: The variance of the position of the robotic tip when delivering the surgical instrument is compared to the same position when a human delivers the instrument. The variance was found to be 88.86% smaller compared to the human delivery group. The mean task completion time to complete the surgical exercise was 162.7+/- 10.1 secs for the human assistant and 191.6+/- 3.3 secs (P<.01) when using the robotic standard display group. Conclusion: Multimodal robotic scrub nurse assistant improves the surgical procedure by reducing the number of movements

  15. Surgical robot for single-incision laparoscopic surgery.

    PubMed

    Choi, Hyundo; Kwak, Ho-Seong; Lim, Yo-An; Kim, Hyung-Joo

    2014-09-01

    This paper introduces a novel surgical robot for single-incision laparoscopic surgeries. The robot system includes the cone-type remote center-of-motion (RCM) mechanism and two articulated instruments having a flexible linkage-driven elbow. The RCM mechanism, which has two revolute joints and one prismatic joint, is designed to maintain a stationary point at the apex of the cone shape. By placing the stationary point on the incision area, the mechanism allows a surgical instrument to explore the abdominal area through a small incision point. The instruments have six articulated joints, including an elbow pitch joint, which make the triangulation position for the surgery possible inside of the abdominal area. The presented elbow pitch structure is similar to the slider-crank mechanism but the connecting rod is composed of a flexible leaf spring for high payload and small looseness error. We verified the payload of the robot is more than 10 N and described preliminary experiments on peg transfer and suture motion by using the proposed surgical robot.

  16. Atmospheric Aerosol Sampling with Unmanned Aircraft Systems (UAS) in Alaska: Instrument Development, Payload Integration, and Measurement Campaigns

    NASA Astrophysics Data System (ADS)

    Barberie, S. R.; Saiet, E., II; Hatfield, M. C.; Cahill, C. F.

    2014-12-01

    Atmospheric aerosols remain one of biggest variables in understanding global climate. The number of feedback loops involved in aerosol processes lead to nonlinear behavior at the systems level, making confident modeling and prediction difficult. It is therefore important to ground-truth and supplement modeling efforts with rigorous empirical measurements. To this end, the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) at the University of Alaska Fairbanks has developed a new cascade DRUM-style impactor to be mounted aboard a variety of unmanned aircraft and work in tandem with an optical particle counter for the routine collection of atmospheric aerosols. These UAS-based aerosol samplers will be employed for measurement campaigns in traditionally hazardous conditions such as volcanic plumes and over forest fires. Here we report on the development and laboratory calibration of the new instrument, the integration with UAS, and the vertical profiling campaigns being undertaken.

  17. Robotic Surgical Training in an Academic Institution

    PubMed Central

    Chitwood, W. Randolph; Nifong, L. Wiley; Chapman, William H. H.; Felger, Jason E.; Bailey, B. Marcus; Ballint, Tara; Mendleson, Kim G.; Kim, Victor B.; Young, James A.; Albrecht, Robert A.

    2001-01-01

    Objective To detail robotic procedure development and clinical applications for mitral valve, biliary, and gastric reflux operations, and to implement a multispecialty robotic surgery training curriculum for both surgeons and surgical teams. Summary Background Data Remote, accurate telemanipulation of intracavitary instruments by general and cardiac surgeons is now possible. Complex technologic advancements in surgical robotics require well-designed training programs. Moreover, efficient robotic surgical procedures must be developed methodically and safely implemented clinically. Methods Advanced training on robotic systems provides surgeon confidence when operating in tiny intracavitary spaces. Three-dimensional vision and articulated instrument control are essential. The authors’ two da Vinci robotic systems have been dedicated to procedure development, clinical surgery, and training of surgical specialists. Their center has been the first United States site to train surgeons formally in clinical robotics. Results Established surgeons and residents have been trained using a defined robotic surgical educational curriculum. Also, 30 multispecialty teams have been trained in robotic mechanics and electronics. Initially, robotic procedures were developed experimentally and are described. In the past year the authors have performed 52 robotic-assisted clinical operations: 18 mitral valve repairs, 20 cholecystectomies, and 14 Nissen fundoplications. These respective operations required 108, 28, and 73 minutes of robotic telemanipulation to complete. Procedure times for the last half of the abdominal operations decreased significantly, as did the knot-tying time in mitral operations. There have been no deaths and few complications. One mitral patient had postoperative bleeding. Conclusion Robotic surgery can be performed safely with excellent results. The authors have developed an effective curriculum for training teams in robotic surgery. After training, surgeons

  18. Robotic Surgery for Lung Cancer

    PubMed Central

    Ambrogi, Marcello C; Fanucchi, Olivia; Melfi, Franco; Mussi, Alfredo

    2014-01-01

    During the last decade the role of minimally invasive surgery has been increased, especially with the introduction of the robotic system in the surgical field. The most important advantages of robotic system are represented by the wristed instrumentation and the depth perception, which can overcome the limitation of traditional thoracoscopy. However, some data still exist in literature with regard to robotic lobectomy. The majority of papers are focused on its safety and feasibility, but further studies with long follow-ups are necessary in order to assess the oncologic outcomes. We reviewed the literature on robotic lobectomy, with the main aim to better define the role of robotic system in the clinical practice. PMID:25207216

  19. Design and development of miniature parallel robot for eye surgery.

    PubMed

    Sakai, Tomoya; Harada, Kanako; Tanaka, Shinichi; Ueta, Takashi; Noda, Yasuo; Sugita, Naohiko; Mitsuishi, Mamoru

    2014-01-01

    A five degree-of-freedom (DOF) miniature parallel robot has been developed to precisely and safely remove the thin internal limiting membrane in the eye ground during vitreoretinal surgery. A simulator has been developed to determine the design parameters of this robot. The developed robot's size is 85 mm × 100 mm × 240 mm, and its weight is 770 g. This robot incorporates an emergency instrument retraction function to quickly remove the instrument from the eye in case of sudden intraoperative complications such as bleeding. Experiments were conducted to evaluate the robot's performance in the master-slave configuration, and the results demonstrated that it had a tracing accuracy of 40.0 μm.

  20. Robotic Colorectal Surgery

    PubMed Central

    2008-01-01

    Robotic colorectal surgery has gradually been performed more with the help of the technological advantages of the da Vinci® system. Advanced technological advantages of the da Vinci® system compared with standard laparoscopic colorectal surgery have been reported. These are a stable camera platform, three-dimensional imaging, excellent ergonomics, tremor elimination, ambidextrous capability, motion scaling, and instruments with multiple degrees of freedom. However, despite these technological advantages, most studies did not report the clinical advantages of robotic colorectal surgery compared to standard laparoscopic colorectal surgery. Only one study recently implies the real benefits of robotic rectal cancer surgery. The purpose of this review article is to outline the early concerns of robotic colorectal surgery using the da Vinci® system, to present early clinical outcomes from the most current series, and to discuss not only the safety and the feasibility but also the real benefits of robotic colorectal surgery. Moreover, this article will comment on the possible future clinical advantages and limitations of the da Vinci® system in robotic colorectal surgery. PMID:19108010

  1. A survey of autonomous vision-based See and Avoid for Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Mcfadyen, Aaron; Mejias, Luis

    2016-01-01

    This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.

  2. 14 CFR 47.13 - Signatures and instruments made by representatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Signatures and instruments made by... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.13 Signatures and instruments made by representatives. (a) Each signature on an Application for Aircraft Registration, on a request for cancellation of a...

  3. The robotic appendicovesicostomy and bladder augmentation: the next frontier in robotics, are we there?

    PubMed

    Cohen, Andrew J; Pariser, Joseph J; Anderson, Blake B; Pearce, Shane M; Gundeti, Mohan S

    2015-02-01

    There is growing interest in applying robotic-assisted laparoscopic techniques to complex reconstructive pelvic surgery owing to inherent benefits of precision, tissue handling, and articulating instruments for suturing. This review examines preliminary experiences with robotic-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy (RALIMA) as either an isolated or combined procedure. These series suggest RALIMA is feasible, with the benefit of early recovery and improved cosmetic results in selected patients. The robotic approach incurs functional outcomes and complication rates similar to those of open techniques. Given the steep learning curve, only surgeons with extensive robotic experience are currently adopting this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. LANL robotics site overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beugelsdijk, T.J.

    1990-11-01

    This paper reports on robotics applications at the Los Alamos National Laboratory. The topics of the paper include the ROBOCAL project to assay all nuclear materials entering and leaving the process floor at the Los Alamos Plutonium Facility, the isotope detector fabrication project, a plutonium dissolution robotic system, a safeguards waste automated measurement instrument, and DNA filter array construction. This report consists of overheads only.

  5. Pediatric robotic urologic surgery-2014

    PubMed Central

    Kearns, James T.; Gundeti, Mohan S.

    2014-01-01

    We seek to provide a background of the current state of pediatric urologic surgery including a brief history, procedural outcomes, cost considerations, future directions, and the state of robotic surgery in India. Pediatric robotic urology has been shown to be safe and effective in cases ranging from pyeloplasty to bladder augmentation with continent urinary diversion. Complication rates are in line with other methods of performing the same procedures. The cost of robotic surgery continues to decrease, but setting up pediatric robotic urology programs can be costly in terms of both monetary investment and the training of robotic surgeons. The future directions of robot surgery include instrument and system refinements, augmented reality and haptics, and telesurgery. Given the large number of children in India, there is huge potential for growth of pediatric robotic urology in India. Pediatric robotic urologic surgery has been established as safe and effective, and it will be an important tool in the future of pediatric urologic surgery worldwide. PMID:25197187

  6. Meteorological and operational aspects of 46 clear air turbulence sampling missions with an instrument B-57B aircraft. Volume 1: Program summary

    NASA Technical Reports Server (NTRS)

    Davis, R. E.; Champine, R. A.; Ehernberger, L. J.

    1979-01-01

    The results of 46 clear air turbulence (CAT) probing missions conducted with an extensively instrumented B-57B aircraft are summarized. Turbulence samples were obtained under diverse conditions including mountain waves, jet streams, upper level fronts and troughs, and low altitude mechanical and thermal turbulence. CAT was encouraged on 20 flights comprising 77 data runs. In all, approximately 4335 km were flown in light turbulence, 1415 km in moderate turbulence, and 255 km in severe turbulence during the program. The flight planning, operations, and turbulence forecasting aspects conducted with the B-57B aircraft are presented.

  7. Laboratory for Atmospheres: Instrument Systems Report

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Studies of the atmospheres of our solar system's planets including our own require a comprehensive set of observations, relying on instruments on spacecraft, aircraft, balloons, and on the surface. Laboratory personnel define requirements, conceive concepts, and develop instrument systems for spaceflight missions, and for balloon, aircraft, and ground-based observations. Laboratory scientists also participate in the design of data processing algorithms, calibration techniques, and data processing systems. The instrument sections of this report are organized by measurement technique: lidar, passive, in situ and microwave. A number of instruments in various stages of development or modification are also described. This report will be updated as instruments evolve.

  8. [Informatics, robotics and medicine].

    PubMed

    Carpentier, A

    1999-01-01

    Information technology is becoming common use in Medicine. Among the numerous applications are data processing, image analysis, 3D reconstruction, telemedicine, to mention only few of them. The interest of computers in surgical research and development is lesser known. Two examples are given: computer aided conception and simulation of physiologic systems. Robotics has been introduced more recently. There are three types of robotics corresponding to three types of use: targetting used by neural surgeons to localize tumors or anatomical structures, visualization used by general surgeons to hold and mobilize laparoscopes, instrumentation introduced more recently by cardiac surgeons to perform totally endoscopic cardiac operations. All these techniques open new ways for tomorrow "Instrumental Medicine".

  9. Robotic systems in spine surgery.

    PubMed

    Onen, Mehmet Resid; Naderi, Sait

    2014-01-01

    Surgical robotic systems have been available for almost twenty years. The first surgical robotic systems were designed as supportive systems for laparoscopic approaches in general surgery (the first procedure was a cholecystectomy in 1987). The da Vinci Robotic System is the most common system used for robotic surgery today. This system is widely used in urology, gynecology and other surgical disciplines, and recently there have been initial reports of its use in spine surgery, for transoral access and anterior approaches for lumbar inter-body fusion interventions. SpineAssist, which is widely used in spine surgery, and Renaissance Robotic Systems, which are considered the next generation of robotic systems, are now FDA approved. These robotic systems are designed for use as guidance systems in spine instrumentation, cement augmentations and biopsies. The aim is to increase surgical accuracy while reducing the intra-operative exposure to harmful radiation to the patient and operating team personnel during the intervention. We offer a review of the published literature related to the use of robotic systems in spine surgery and provide information on using robotic systems.

  10. Current applications of robotics in spine surgery: a systematic review of the literature.

    PubMed

    Joseph, Jacob R; Smith, Brandon W; Liu, Xilin; Park, Paul

    2017-05-01

    OBJECTIVE Surgical robotics has demonstrated utility across the spectrum of surgery. Robotics in spine surgery, however, remains in its infancy. Here, the authors systematically review the evidence behind robotic applications in spinal instrumentation. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Relevant studies (through October 2016) that reported the use of robotics in spinal instrumentation were identified from a search of the PubMed database. Data regarding the accuracy of screw placement, surgeon learning curve, radiation exposure, and reasons for robotic failure were extracted. RESULTS Twenty-five studies describing 2 unique robots met inclusion criteria. Of these, 22 studies evaluated accuracy of spinal instrumentation. Although grading of pedicle screw accuracy was variable, the most commonly used method was the Gertzbein and Robbins system of classification. In the studies using the Gertzbein and Robbins system, accuracy (Grades A and B) ranged from 85% to 100%. Ten studies evaluated radiation exposure during the procedure. In studies that detailed fluoroscopy usage, overall fluoroscopy times ranged from 1.3 to 34 seconds per screw. Nine studies examined the learning curve for the surgeon, and 12 studies described causes of robotic failure, which included registration failure, soft-tissue hindrance, and lateral skiving of the drill guide. CONCLUSIONS Robotics in spine surgery is an emerging technology that holds promise for future applications. Surgical accuracy in instrumentation implanted using robotics appears to be high. However, the impact of robotics on radiation exposure is not clear and seems to be dependent on technique and robot type.

  11. The European Research Infrastructure IAGOS - From dedicated field studies to routine observations of the atmosphere by instrumented passenger aircraft

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Thouret, Valerie; Cammas, Jean-Pierre; Brenninkmeijer, Carl A. M.; Iagos Team

    2013-04-01

    The global distribution of trace species is controlled by a complex interplay between natural and anthropogenic sources and sinks, atmospheric short- to long-range transport, and in future by diverse, largely not yet quantified feedback mechanisms such as enhanced evaporation of water vapour in a warming climate or possibly the release of methane from melting marine clathrates. Improving global trace gas budgets and reducing the uncertainty of climate predictions crucially requires representative data from routine long-term observations as independent constraint for the evaluation and improvement of model parameterizations. IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) is a new European Research Infrastructure which operates a unique global observing system by deploying autonomous instruments aboard a fleet of passenger aircraft. IAGOS consists of two complementary building blocks: IAGOS-CORE deploys newly developed high-tech instrumentation for regular in-situ measurements of atmospheric chemical species (O3, CO, CO2, NOx, NOy, H2O, CH4), aerosols and cloud particles. Involved airlines ensure global operation of the network. In IAGOS-CARIBIC a cargo container is operated as a flying laboratory aboard one passenger aircraft. IAGOS aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of the atmospheric chemical composition in the UTLS and the extra tropical troposphere and on vertical profiles of greenhouse gases, reactive trace gases and aerosols throughout the troposphere. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation

  12. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions.

    PubMed

    Kassahun, Yohannes; Yu, Bingbin; Tibebu, Abraham Temesgen; Stoyanov, Danail; Giannarou, Stamatia; Metzen, Jan Hendrik; Vander Poorten, Emmanuel

    2016-04-01

    robotics. Current devices possess no intelligence whatsoever and are merely advanced and expensive instruments.

  13. Robotic laparoscopic surgery: cost and training.

    PubMed

    Amodeo, A; Linares Quevedo, A; Joseph, J V; Belgrano, E; Patel, H R H

    2009-06-01

    The advantages of minimally invasive surgery are well accepted. Shorter hospital stays, decreased postoperative pain, rapid return to preoperative activity, decreased postoperative ileus, and preserved immune function are among the benefits of the laparoscopic approach. However, the instruments of laparoscopy afford surgeons limited precision and poor ergonomics, and their use is associated with a significant learning curve and the amount of time and energy necessary to develop and maintain such advanced laparoscopic skills is not insignificant. The robotic surgery allows all laparoscopists to perform advanced laparoscopic procedures with greater ease. The potential advantages of surgical robotic systems include making advanced laparoscopic surgical procedures accessible to surgeons who do not have advanced video endoscopic training and broadening the scope of surgical procedures that can be performed using the laparoscopic method. The wristed instruments, x10 magnifications, tremor filtering, scaling of movements and three-dimensional view allow the urologist to perform the intricate dissection and anastomosis with high precision. The robot is not, however, without significant disadvantages as compared with traditional laparoscopy. These include greater expense and consumption of operating room resources such as space and the availability of skilled technical staff, complete elimination of tactile feedback, and more limited options for trocar placement. The current cost of the da Vinci system is $ 1.2 million and annual maintenance is $ 138000. Many studies suggest that depreciation and maintenance costs can be minimised if the number of robotic cases is increased. The high cost of purchasing and maintaining the instruments of the robotic system is one of its many disadvantages. The availability of the robotic systems to only a limited number of centres reduces surgical training opportunities. Hospital administrators and surgeons must define the reasons for

  14. Influence of videogames and musical instruments on performances at a simulator for robotic surgery.

    PubMed

    Moglia, Andrea; Perrone, Vittorio; Ferrari, Vincenzo; Morelli, Luca; Boggi, Ugo; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2017-06-01

    To assess if exposure to videogames, musical instrument playing, or both influence the psychomotor skills level, assessed by a virtual reality simulator for robot-assisted surgery (RAS). A cohort of 57 medical students were recruited: playing musical instruments (group 1), videogames (group 2), both (group 3), and no activity (group 4); all students executed four exercises on a virtual simulator for RAS. Subjects from group 3 achieved the best performances on overall score: 527.09 ± 130.54 vs. 493.73 ± 108.88 (group 2), 472.72 ± 85.31 (group 1), and 403.13 ± 99.83 (group 4). Statistically significant differences (p < .05) between group 3 and group 4 were found for overall score (p = .009) and for time of completion (p = .044). As regards experience with the piano, subjects from group 3 outperformed those from group 1 on overall score (496.98 ± 122.71 vs. 470.25 ± 92.31), but without statistically significant difference (p = .646). The present study suggests that the level of psychomotor skills in subjects exposed to both musical instrument playing and videogames is higher than that in those practicing either one alone. The effect of videogames appears negligible in individuals playing the piano.

  15. Calibration of a Computer Based Instrumentation for Flight Research

    NASA Technical Reports Server (NTRS)

    Forsyth, T. J.; Reynolds, R. S. (Technical Monitor)

    1997-01-01

    NASA Ames Research Center has been investigating a Differential Global Positioning System (DGPS) for future use as a Category II/III landing system. The DGPS navigation system was developed and installed on a B200 King Air aircraft. Instrumentation that is not calibrated and verified as a total operating system can have errors or not work correctly. Systems need to be checked for cross talk and that they work together accurately. It is imperative that the instrumentation and computer do not affect aircraft avionics and instrumentation needed for aircraft operation. This paper discusses calibration and verification principles of a computer based instrumentation airborne system.

  16. Recent and Future Enhancements in NDI for Aircraft Structures

    DTIC Science & Technology

    2015-11-30

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  17. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  18. National plans for aircraft icing and improved aircraft icing forecasts and associated warning services

    NASA Technical Reports Server (NTRS)

    Pass, Ralph P.

    1988-01-01

    Recently, the United States has increased its activities related to aircraft icing in numerous fields: ice phobics, revised characterization of icing conditions, instrument development/evaluation, de-ice/anti-ice devices, simulated supercooled clouds, computer simulation and flight tests. The Federal Coordinator for Meteorology is involved in two efforts, one a National Plan on Aircraft Icing and the other a plan for Improved Aircraft Icing Forecasts and Associated Warning Services. These two plans will provide an approved structure for future U.S. activities related to aircraft icing. The recommended activities will significantly improve the position of government agencies to perform mandated activities and to enable U.S. manufacturers to be competitive in the world market.

  19. An approach to instrument qualified visual range

    NASA Astrophysics Data System (ADS)

    Courtade, Benoît; Bonnet, Jordan; Woodruff, Chris; Larson, Josiah; Giles, Andrew; Sonde, Nikhil; Moore, C. J.; Schimon, David; Harris, David Money; Pond, Duane; Way, Scott

    2008-04-01

    This paper describes a system that calculates aircraft visual range with instrumentation alone. A unique message is encoded using modified binary phase shift keying and continuously flashed at high speed by ALSF-II runway approach lights. The message is sampled at 400 frames per second by an aircraft borne high-speed camera. The encoding is designed to avoid visible flicker and minimize frame rate. Instrument qualified visual range is identified as the largest distance at which the aircraft system can acquire and verify the correct, runway-specific signal. Scaled testing indicates that if the system were implemented on one full ALSF-II fixture, instrument qualified range could be established at 5 miles in clear weather conditions.

  20. [Robot-assisted Pylorus-Preserving Partial Pancreaticoduodenectomy (Kausch-Whipple Procedure)].

    PubMed

    Aselmann, H; Egberts, J-H; Hinz, S; Jünemann, K-P; Becker, T

    2016-04-01

    The surgical treatment of pancreatic head tumours is one of the most complex procedures in general surgery. In contrast to colorectal surgery, minimally-invasive techniques are not very commonly applied in pancreatic surgery. Both the delicate dissection along peri- and retropancreatic vessels and the extrahepatic bile ducts and subsequent reconstruction are very demanding with rigid standard laparoscopic instruments. The 4-arm robotic surgery system with angled instruments, unidirectional movement of instruments with adjustable transmission, tremor elimination and a stable, surgeon-controlled 3D-HD view is a promising platform to overcome the limitations of standard laparoscopic surgery regarding precise dissection and reconstruction in pancreatic surgery. Pancreatic head resection for mixed-type IPMN of the pancreatic head. Robot-assisted, minimally-invasive pylorus-preserving pancreaticoduodenectomy (Kausch-Whipple procedure). The robotic approach is particularly suited for complex procedures such as pylorus-preserving pancreatic head resections. The fully robotic Kausch-Whipple procedure is technically feasible and safe. The advantages of the robotic system are apparent in the delicate dissection near vascular structures, in lymph node dissection, the precise dissection of the uncinate process and, especially, bile duct and pancreatic anastomosis. Georg Thieme Verlag KG Stuttgart · New York.

  1. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  2. Extensible Hardware Architecture for Mobile Robots

    NASA Technical Reports Server (NTRS)

    Park, Eric; Kobayashi, Linda; Lee, Susan Y.

    2005-01-01

    The Intelligent Robotics Group at NASA Ames Research Center has developed a new mobile robot hardware architecture designed for extensibility and reconfigurability. Currently implemented on the k9 rover. and won to be integrated onto the K10 series of human-robot collaboration research robots, this architecture allows for rapid changes in instrumentation configuration and provides a high degree of modularity through a synergistic mix of off-the-shelf and custom designed components, allowing eased transplantation into a wide vane6 of mobile robot platforms. A component level overview of this architecture is presented along with a description of the changes required for implementation on K10 , followed by plans for future work.

  3. Robotic surgery for benign gynaecological disease.

    PubMed

    Liu, Hongqian; Lu, DongHao; Wang, Lei; Shi, Gang; Song, Huan; Clarke, Jane

    2012-02-15

    Robotic surgery is the latest innovation in the field of minimally invasive surgery. In the case of robotic surgery, instead of directly moving the instruments the surgeon uses a robotic system to control the instruments for surgical procedures. Robotic surgical systems have been used in various gynaecological surgeries for benign disease, such as hysterectomy (removal of the uterus), myomectomy (removal of uterine leiomyomas) and tubal reanastomosis (the reuniting of a divided tube). The mounting evidence demonstrates the feasibility and safety of robotic surgery in benign gynaecological disease. Robotic surgery is advertised as having promising advantages including more precise vision and procedures, improved ergonomics and shorter length of hospital stay. However, the main disadvantages of the robotic surgical system should not be overlooked, including the high cost of disposable instruments and retraining for both surgeons and nurses. To assess the effectiveness and safety of robot-assisted surgery in the treatment of benign gynaecological disease. We searched the Cochrane Menstrual Disorders and Subfertility Group's Trial Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 2, 2011), MEDLINE and EMBASE up to November 2011 and citation lists of relevant publications. All randomised controlled trials (RCTs) comparing robotic surgery for benign gynaecological disease to laparoscopic or open surgical procedures. RCTs comparing different types of robotic assistants were also included. We contacted study authors for unpublished information, but failed in obtaining a response. Two review authors independently screened studies for inclusion. The domains assessed for risk of bias were allocation concealment, blinding, incomplete outcome data and selective outcome reporting. Odds ratios (OR) were used for reporting dichotomous data with 95% confidence intervals (CI), whilst mean differences (MD) were determined for continuous data. Statistical

  4. Robotics and neurosurgery.

    PubMed

    Nathoo, Narendra; Pesek, Todd; Barnett, Gene H

    2003-12-01

    Ultimately, neurosurgery performed via a robotic interface will serve to improve the standard of a neurosurgeon's skills, thus making a good surgeon a better surgeon. In fact, computer and robotic instrumentation will become allies to the neurosurgeon through the use of these technologies in training, diagnostic, and surgical events. Nonetheless, these technologies are still in an early stage of development, and each device developed will entail its own set of challenges and limitations for use in clinical settings. The future operating room should be regarded as an integrated information system incorporating robotic surgical navigators and telecontrolled micromanipulators, with the capabilities of all principal neurosurgical concepts, sharing information, and under the control of a single person, the neurosurgeon. The eventual integration of robotic technology into mainstream clinical neurosurgery offers the promise of a future of safer, more accurate, and less invasive surgery that will result in improved patient outcome.

  5. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  6. Instrumental Landing Using Audio Indication

    NASA Astrophysics Data System (ADS)

    Burlak, E. A.; Nabatchikov, A. M.; Korsun, O. N.

    2018-02-01

    The paper proposes an audio indication method for presenting to a pilot the information regarding the relative positions of an aircraft in the tasks of precision piloting. The implementation of the method is presented, the use of such parameters of audio signal as loudness, frequency and modulation are discussed. To confirm the operability of the audio indication channel the experiments using modern aircraft simulation facility were carried out. The simulated performed the instrument landing using the proposed audio method to indicate the aircraft deviations in relation to the slide path. The results proved compatible with the simulated instrumental landings using the traditional glidescope pointers. It inspires to develop the method in order to solve other precision piloting tasks.

  7. The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery.

    PubMed

    Feng, Allen L; Razavi, Christopher R; Lakshminarayanan, Pranav; Ashai, Zaid; Olds, Kevin; Balicki, Marcin; Gooi, Zhen; Day, Andrew T; Taylor, Russell H; Richmon, Jeremy D

    2017-11-01

    Assess the feasibility of a novel robotic platform for use in microvascular surgery. Prospective feasibility study. Robotics laboratory. The Robotic ENT (Ear, Nose, and Throat) Microsurgery System (REMS) (Galen Robotics, Inc., Sunnyvale, CA) is a robotic arm that stabilizes a surgeon's instrument, allowing precise, tremor-free movement. Six microvascular naïve medical students and one microvascular expert performed microvascular anastomosis of a chicken ischiatic artery, with and without the REMS. Trials were blindly graded by seven microvascular surgeons using a microvascular tremor scale (MTS) based on instrument tip movement as a function of vessel width. Time to completion (TTC) was measured, and an exit survey assessed participants' experience. The interrater reliability of the MTS was calculated. For microvascular-naïve participants, the mean MTS score for REMS-assisted trials was 0.72 (95% confidence interval [CI] 0.64-1.07) and 2.40 (95% CI 2.12-2.69) for freehand (P < 0.001). The mean TTC was 1,265 seconds for REMS-assisted trials and 1,320 seconds for freehand (P > 0.05). For the microvascular expert, the mean REMS-assisted MTS score was 0.71 (95% CI 0.15-1.27) and 0.86 (95% CI 0.35-1.37) for freehand (P > 0.05). TTC was 353 seconds for the REMS-assisted trial and 299 seconds for freehand. All participants thought the REMS was more accurate and improved instrument handling and stability. The intraclass correlation coefficient for MTS ratings was 0.914 (95% CI 0.823-0.968) for consistency and 0.901 (95% CI 0.795-0.963) for absolute value. The REMS is a feasible adjunct for microvascular surgery and a potential teaching tool capable of reducing tremor in novice users. Furthermore, the MTS is a feasible grading system for assessing microvascular tremor. NA. Laryngoscope, 127:2495-2500, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Aircraft-borne, laser-induced fluorescence instrument for the in situ detection of hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Wennberg, P. O.; Cohen, R. C.; Hazen, N. L.; Lapson, L. B.; Allen, N. T.; Hanisco, T. F.; Oliver, J. F.; Lanham, N. W.; Demusz, J. N.; Anderson, J. G.

    1994-01-01

    The odd-hydrogen radicals OH and HO2 are central to most of the gas-phase chemical transformations that occur in the atmosphere. Of particular interest is the role that these species play in controlling the concentration of stratospheric ozone. This paper describes an instrument that measures both of these species at volume mixing ratios below one part in 10(exp 14) in the upper troposphere and lower stratosphere. The hydroxyl radical (OH) is measured by laser induced fluorescence at 309 nm. Tunable UV light is used to pump OH to the first electric state near 282 nm. the laser light is produced by a high-repetition rate pulsed dye-laser powered with all solid-state pump lasers. HO2 is measured as OH after gas-phase titration with nitric oxide. Measurements aboard a NASA ER-2 aircraft demonstrate the capability of this instrument to perform reliably with very high signal-to-noise ratios (greater than 30) achieved in short integration times (less than 20 sec).

  9. [Usefullness of the Da Vinci robot in urologic surgery].

    PubMed

    Iselin, C; Fateri, F; Caviezel, A; Schwartz, J; Hauser, J

    2007-12-05

    A telemanipulator for laparoscopic instruments is now available in the world of surgical robotics. This device has three distincts advantages over traditional laparoscopic surgery: it improves precision because of the many degrees of freedom of its instruments, and it offers 3-D vision so as better ergonomics for the surgeon. These characteristics are most useful for procedures that require delicate suturing in a focused operative field which may be difficult to reach. The Da Vinci robot has found its place in 2 domains of laparoscopic urologic surgery: radical prostatectomy and ureteral surgery. The cost of the robot, so as the price of its maintenance and instruments is high. This increases healthcare costs in comparison to open surgery, however not dramatically since patients stay less time in hospital and go back to work earlier.

  10. Experiment Automation with a Robot Arm using the Liquids Reflectometer Instrument at the Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolnierczuk, Piotr A; Vacaliuc, Bogdan; Sundaram, Madhan

    The Liquids Reflectometer instrument installed at the Spallation Neutron Source (SNS) enables observations of chemical kinetics, solid-state reactions and phase-transitions of thin film materials at both solid and liquid surfaces. Effective measurement of these behaviors requires each sample to be calibrated dynamically using the neutron beam and the data acquisition system in a feedback loop. Since the SNS is an intense neutron source, the time needed to perform the measurement can be the same as the alignment process, leading to a labor-intensive operation that is exhausting to users. An update to the instrument control system, completed in March 2013, implementedmore » the key features of automated sample alignment and robot-driven sample management, allowing for unattended operation over extended periods, lasting as long as 20 hours. We present a case study of the effort, detailing the mechanical, electrical and software modifications that were made as well as the lessons learned during the integration, verification and testing process.« less

  11. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  12. Robotic surgery for lung resections—total port approach: advantages and disadvantages

    PubMed Central

    Ramadan, Omar I.; Cerfolio, Robert J.

    2017-01-01

    Minimally invasive thoracic surgery, when compared with open thoracotomy, has been shown to have improved perioperative outcomes as well as comparable long-term survival. Robotic surgery represents a powerful advancement of minimally invasive surgery, with vastly improved visualization and instrument maneuverability, and is increasingly popular for thoracic surgery. However, there remains debate over the best robotic approaches for lung resection, with several different techniques evidenced and described in the literature. We delineate our method for total port approach with four robotic arms and discuss how its advantages outweigh its disadvantages. We conclude that it is preferred to other robotic approaches, such as the robotic assisted approach, due to its enhanced visualization, improved instrument range of motion, and reduced potential for injury. PMID:29078585

  13. Robotic surgery for lung resections-total port approach: advantages and disadvantages.

    PubMed

    Ramadan, Omar I; Wei, Benjamin; Cerfolio, Robert J

    2017-01-01

    Minimally invasive thoracic surgery, when compared with open thoracotomy, has been shown to have improved perioperative outcomes as well as comparable long-term survival. Robotic surgery represents a powerful advancement of minimally invasive surgery, with vastly improved visualization and instrument maneuverability, and is increasingly popular for thoracic surgery. However, there remains debate over the best robotic approaches for lung resection, with several different techniques evidenced and described in the literature. We delineate our method for total port approach with four robotic arms and discuss how its advantages outweigh its disadvantages. We conclude that it is preferred to other robotic approaches, such as the robotic assisted approach, due to its enhanced visualization, improved instrument range of motion, and reduced potential for injury.

  14. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  15. Investigations Using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C. N.

    2012-01-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Moessbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter Missions and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fephyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 C

  16. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  17. The Typical General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Turnbull, Andrew

    1999-01-01

    The reliability of General Aviation aircraft is unknown. In order to "assist the development of future GA reliability and safety requirements", a reliability study needs to be performed. Before any studies on General Aviation aircraft reliability begins, a definition of a typical aircraft that encompasses most of the general aviation characteristics needs to be defined. In this report, not only is the typical general aviation aircraft defined for the purpose of the follow-on reliability study, but it is also separated, or "sifted" into several different categories where individual analysis can be performed on the reasonably independent systems. In this study, the typical General Aviation aircraft is a four-place, single engine piston, all aluminum fixed-wing certified aircraft with a fixed tricycle landing gear and a cable operated flight control system. The system breakdown of a GA aircraft "sifts" the aircraft systems and components into five categories: Powerplant, Airframe, Aircraft Control Systems, Cockpit Instrumentation Systems, and the Electrical Systems. This breakdown was performed along the lines of a failure of the system. Any component that caused a system to fail was considered a part of that system.

  18. Operational overview of NASA GTE/CITE 1 airborne instrument intercomparisons - Carbon monoxide, nitric oxide, and hydroxyl instrumentation. [Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Beck, Sherwin M.; Bendura, Richard J.; Mcdougal, David S.; Hoell, James M., Jr.; Gregory, Gerald L.; Sachse, Glen W.; Hill, Gerald F.; Curfman, Howard J., Jr.; Torres, Arnold L.; Condon, Estelle P.

    1987-01-01

    An overview of the airborne intercomparisons of CO, NO, and OH instrumentation is presented in this first paper of the series on the NASA Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 1). This paper provides the reader with background information about several important characteristics of the project. These include the overall objectives and approach, the measurements taken, the intercomparison protocol, aircraft platform, profiles of each aircraft flight, and the participants. A synopsis of the overall results of the CO, NO, and OH instrument intercomparisons is also included. Companion papers discuss the detailed results of the CO and NO intercomparison tests as well as pertinent scientific findings.

  19. Application of Unmanned Aircraft System Instrumentation to Study Coastal Geochemistry

    NASA Astrophysics Data System (ADS)

    Coffin, R. B.; Osburn, C. L.; Smith, J. P.

    2016-02-01

    Coastal evaluation of key geochemical cycles is in strong need for thorough spatial data to address diverse topics. In many field studies we find that fixed station data taken from ship operations does not provide complete understanding of key research questions. In complicated systems where there is a need to integrate physical, chemical and biological parameters data taken from research vessels needs to be interpreted across large spatial areas. New technology in Unmanned Aircraft System (UAS) instrumentation coupled with ship board data can provide the thorough spatial data needed for a thorough evaluation of coastal sciences. This presentation will provide field data related to UAS application in two diverse environments. One study focuses on the flux of carbon dioxide and methane from Alaskan Arctic tundra and shallow Beaufort Sea coastal region to the atmosphere. In this study gas chemistry from samples is used to predict the relative fluxes to the atmosphere. A second study applies bio-optical analyses to differentiate between Gulf of Mexico coastal water column DOC and Lignin. This wide range of parameters in diverse ecosystems is selected to show current capability for application of UAS and the potential for understanding large scale questions about climate change and carbon cycling in coastal waters.

  20. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  1. Stray electrical currents in laparoscopic instruments used in da Vinci® robot-assisted surgery: an in vitro study.

    PubMed

    Mendez-Probst, Carlos E; Vilos, George; Fuller, Andrew; Fernandez, Alfonso; Borg, Paul; Galloway, David; Pautler, Stephen E

    2011-09-01

    The da Vinci(®) surgical system requires the use of electrosurgical instruments. The re-use of such instruments creates the potential for stray electrical currents from capacitive coupling and/or insulation failure. We used objective measures to report the prevalence and magnitude of such stray currents. Thirty-seven robotic instruments were tested using an electrosurgical unit (ESU) at pure coagulation and cut waveforms at four different settings. Conductive gel-coated instruments were tested at 40W, 80W, and maximum ESU output (coagulation 120W, cut 300W). The magnitude of stray currents was measured by an electrosurgical analyzer. At coagulation waveform in open air, 86% of instruments leaked a mean of 0.4W. In the presence of gel-coated instruments, stray currents were detected in all instruments with means (and standard deviation) of 3.4W (± 2), 4.1W (± 2.3), and 4.1W (± 2.3) at 40W, 80W, and 120W, respectively. At cut waveform in open air, none of the instruments leaked current, while gel-coated instruments leaked a mean of 2.2W (± 1.3), 2.2W (± 1.9) and 3.2W (± 1.9) at 40W, 80W, and 300W, respectively. All tested instruments in our study demonstrated energy leakage. Stray currents were higher during coagulation (high voltage) waveforms, and the magnitude was not always proportionate to the ESU settings. Stray currents have the potential to cause electrical burns. We support the programmed end of life of da Vinci instruments on the basis of safety. Consideration should be given to alternate energy sources or the adoption of active electrode monitoring technology to all monopolar instruments.

  2. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-30

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  3. Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)

    DTIC Science & Technology

    2015-11-01

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  4. Recent and Future Enhancements in NDI for Aircraft Structures (POSTPRINT)

    DTIC Science & Technology

    2015-11-16

    accomplish NDI of aircraft structure. This includes improved eddy current probes, improved eddy current instrumentation, as well as other...Aircraft Structures,” which is currently in Revision C [8]. The document divides various inspection methods, such as eddy current and fluorescent...efforts at AFRL to address technology shortfalls include improved eddy current probes, improved eddy current instrumentation, as well as other

  5. Flexible robotics: a new paradigm.

    PubMed

    Aron, Monish; Haber, Georges-Pascal; Desai, Mihir M; Gill, Inderbir S

    2007-05-01

    The use of robotics in urologic surgery has seen exponential growth over the last 5 years. Existing surgical robots operate rigid instruments on the master/slave principle and currently allow extraluminal manipulations and surgical procedures. Flexible robotics is an entirely novel paradigm. This article explores the potential of flexible robotic platforms that could permit endoluminal and transluminal surgery in the future. Computerized catheter-control systems are being developed primarily for cardiac applications. This development is driven by the need for precise positioning and manipulation of the catheter tip in the three-dimensional cardiovascular space. Such systems employ either remote navigation in a magnetic field or a computer-controlled electromechanical flexible robotic system. We have adapted this robotic system for flexible ureteropyeloscopy and have to date completed the initial porcine studies. Flexible robotics is on the horizon. It has potential for improved scope-tip precision, superior operative ergonomics, and reduced occupational radiation exposure. In the near future, in urology, we believe that it holds promise for endoluminal therapeutic ureterorenoscopy. Looking further ahead, within the next 3-5 years, it could enable transluminal surgery.

  6. Endometrial cancer surgery costs: robot vs laparoscopy.

    PubMed

    Holtz, David O; Miroshnichenko, Gennady; Finnegan, Mark O; Chernick, Michael; Dunton, Charles J

    2010-01-01

    To compare surgical costs for endometrial cancer staging between robotic-assisted and traditional laparoscopic methods. Retrospective chart review from November 2005 to July 2006 (Canadian Task Force classification II-3). Non-university-affiliated teaching hospital. Thirty-three women with diagnosed endometrial cancer undergoing hysterectomy, bilateral salpingo-oophorectomy, and pelvic and paraaortic lymph node resection. Patients underwent either robotic or traditional laparoscopic surgery without randomization. Hospital cost data were obtained for operating room time, instrument use, and disposable items from hospital billing records and provided by the finance department. Separate overall hospital stay costs were also obtained. Mean operative costs were higher for robotic procedures ($3323 vs $2029; p<.001), due in part to longer operating room time ($1549 vs $1335; p=.03). The more significant cost difference was due to disposable instrumentation ($1755 vs $672; p<.001). Total hospital costs were also higher for robotic-assisted procedures ($5084 vs $ 3615; p=.002). Robotic surgery costs were significantly higher than traditional laparoscopy costs for staging of endometrial cancer in this small cohort of patients. Copyright (c) 2010 AAGL. Published by Elsevier Inc. All rights reserved.

  7. Advancements in Magnetic Resonance–Guided Robotic Interventions in the Prostate

    PubMed Central

    Macura, Katarzyna J.; Stoianovici, Dan

    2011-01-01

    Magnetic resonance imaging (MRI) provides more detailed anatomical images of the prostate compared with the transrectal ultrasound imaging. Therefore, for the purpose of intervention in the prostate gland, diagnostic or therapeutic, MRI guidance offers a possibility of more precise targeting that may be crucial to the success of prostate interventions. However, access within the scanner is limited for manual instrument handling and the MR environment is most demanding among all imaging equipment with respect to the instrumentation used. A solution to this problem is the use of MR-compatible robots purposely designed to operate in the space and environmental restrictions inside the MR scanner allowing real-time interventions. Building an MRI-compatible robot is a very challenging engineering task because, in addition to the material restrictions that MRI instruments have, the robot requires actuators and sensors that limit the type of energies that can be used. Several important design problems have to be overcome before a successful MR-compatible robot application can be built. A number of MR-compatible robots, ranging from a simple manipulator to a fully automated system, have been developed, proposing ingenious solutions to the design challenge. Several systems have been already tested clinically for prostate biopsy and brachytherapy. As technology matures, precise image guidance for prostate interventions performed or assisted by specialized MR-compatible robotic devices may provide a uniquely accurate solution for guiding the intervention directly based on MR findings and feedback. Such an instrument would become a valuable clinical tool for biopsies directly targeting imaged tumor foci and delivering tumor-centered focal therapy. PMID:19512852

  8. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.

    PubMed

    Marcus, Hani J; Seneci, Carlo A; Payne, Christopher J; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong

    2014-03-01

    Over the past decade, advances in image guidance, endoscopy, and tube-shaft instruments have allowed for the further development of keyhole transcranial endoscope-assisted microsurgery, utilizing smaller craniotomies and minimizing exposure and manipulation of unaffected brain tissue. Although such approaches offer the possibility of shorter operating times, reduced morbidity and mortality, and improved long-term outcomes, the technical skills required to perform such surgery are inevitably greater than for traditional open surgical techniques, and they have not been widely adopted by neurosurgeons. Surgical robotics, which has the ability to improve visualization and increase dexterity, therefore has the potential to enhance surgical performance. To evaluate the role of surgical robots in keyhole transcranial endoscope-assisted microsurgery. The technical challenges faced by surgeons utilizing keyhole craniotomies were reviewed, and a thorough appraisal of presently available robotic systems was performed. Surgical robotic systems have the potential to incorporate advances in augmented reality, stereoendoscopy, and jointed-wrist instruments, and therefore to significantly impact the field of keyhole neurosurgery. To date, over 30 robotic systems have been applied to neurosurgical procedures. The vast majority of these robots are best described as supervisory controlled, and are designed for stereotactic or image-guided surgery. Few telesurgical robots are suitable for keyhole neurosurgical approaches, and none are in widespread clinical use in the field. New robotic platforms in minimally invasive neurosurgery must possess clear and unambiguous advantages over conventional approaches if they are to achieve significant clinical penetration.

  9. Evaluation of a completely robotized neurosurgical operating microscope.

    PubMed

    Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf

    2013-01-01

    Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.

  10. Remote sensing technology research and instrumentation platform design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An instrumented pallet concept and definition of an aircraft with performance and payload capability to meet NASA's airborne turbulent flux measurement needs for advanced multiple global climate research and field experiments is presented. The report addresses airborne measurement requirements for general circulation model sub-scale parameterization research, specifies instrumentation capable of making these measurements, and describes a preliminary support pallet design. Also, a review of aircraft types and a recommendation of a manned and an unmanned aircraft capable of meeting flux parameterization research needs is given.

  11. A bio-inspired flying robot sheds light on insect piloting abilities.

    PubMed

    Franceschini, Nicolas; Ruffier, Franck; Serres, Julien

    2007-02-20

    When insects are flying forward, the image of the ground sweeps backward across their ventral viewfield and forms an "optic flow," which depends on both the groundspeed and the groundheight. To explain how these animals manage to avoid the ground by using this visual motion cue, we suggest that insect navigation hinges on a visual-feedback loop we have called the optic-flow regulator, which controls the vertical lift. To test this idea, we built a micro-helicopter equipped with an optic-flow regulator and a bio-inspired optic-flow sensor. This fly-by-sight micro-robot can perform exacting tasks such as take-off, level flight, and landing. Our control scheme accounts for many hitherto unexplained findings published during the last 70 years on insects' visually guided performances; for example, it accounts for the fact that honeybees descend in a headwind, land with a constant slope, and drown when travelling over mirror-smooth water. Our control scheme explains how insects manage to fly safely without any of the instruments used onboard aircraft to measure the groundheight, groundspeed, and descent speed. An optic-flow regulator is quite simple in terms of its neural implementation and just as appropriate for insects as it would be for aircraft.

  12. The decisive role of the patient-side surgeon in robotic surgery.

    PubMed

    Sgarbura, Olivia; Vasilescu, Catalin

    2010-12-01

    Minimally invasive technology literature is mainly concerned about the feasibility of the robotic procedures and the performance of the console surgeon. However, few of these technologies could be applied without a well-trained team. Our goal was to demonstrate that robotic surgery depends more on the patient-side assistant surgeon's abilities than has been previously reported. In our department, 280 interventions in digestive, thoracic, and gynecological surgery were performed since the acquisition of the robotic equipment. There are three teams trained in robotic surgery with three console surgeons and four certified patient-side surgeons. Four more patient-side assistants were trained at our center. Trocar placement, docking and undocking of the robot, insertion of the laparoscopic instruments, and hemostatic maneuvers with various devices were quantified and compared. Assistants trained by using animal or cadaver surgery are more comfortable with the robotic instruments handling and with docking and undocking of the robot. Assistants who finalized their residency or attend their final year are more accurate with the insertion of the laparoscopic instrument to the targeted organ and more skillful with LigaSure or clip applier devices. Interventions that require vivid participation of the assistants have shorter assistant-depending time intervals at the end of the learning curve than at the beginning. Robotic surgery is a team effort and is greatly dependant on the performance of assistant surgeons. Interventions that have the benefit of a trained team are more rapid and secure.

  13. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...

  14. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...

  15. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...

  16. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... must make provision for the installation of instrumentation necessary to ensure operation in compliance... other requirement, dependence is placed on instrumentation that is not otherwise mandatory in the assumed aircraft installation, then the applicant must specify this instrumentation in the engine...

  17. The Arrival of Robotics in Spine Surgery: A Review of the Literature.

    PubMed

    Ghasem, Alexander; Sharma, Akhil; Greif, Dylan N; Alam, Milad; Maaieh, Motasem Al

    2018-04-18

    Systematic Review. The authors aim to review comparative outcome measures between robotic and free-hand spine surgical procedures including: accuracy of spinal instrumentation, radiation exposure, operative time, hospital stay, and complication rates. Misplacement of pedicle screws in conventional open as well as minimally invasive surgical procedures has prompted the need for innovation and allowed the emergence of robotics in spine surgery. Prior to incorporation of robotic surgery in routine practice, demonstration of improved instrumentation accuracy, operative efficiency, and patient safety is required. A systematic search of the PubMed, OVID-MEDLINE, and Cochrane databases was performed for papers relevant to robotic assistance of pedicle screw placement. Inclusion criteria were constituted by English written randomized control trials, prospective and retrospective cohort studies involving robotic instrumentation in the spine. Following abstract, title, and full-text review, 32 articles were selected for study inclusion. Intrapedicular accuracy in screw placement and subsequent complications were at least comparable if not superior in the robotic surgery cohort. There is evidence supporting that total operative time is prolonged in robot assisted surgery compared to conventional free-hand. Radiation exposure appeared to be variable between studies; radiation time did decrease in the robot arm as the total number of robotic cases ascended, suggesting a learning curve effect. Multi-level procedures appeared to tend toward earlier discharge in patients undergoing robotic spine surgery. The implementation of robotic technology for pedicle screw placement yields an acceptable level of accuracy on a highly consistent basis. Surgeons should remain vigilant about confirmation of robotic assisted screw trajectory, as drilling pathways have been shown to be altered by soft tissue pressures, forceful surgical application, and bony surface skiving. However, the effective

  18. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  19. Review of factors affecting aircraft wet runway performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  20. Three-Dimensional Images For Robot Vision

    NASA Astrophysics Data System (ADS)

    McFarland, William D.

    1983-12-01

    Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.

  1. Robot Manipulator Technologies for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.

    1999-01-01

    NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.

  2. Robotic general surgery: current practice, evidence, and perspective.

    PubMed

    Jung, M; Morel, P; Buehler, L; Buchs, N C; Hagen, M E

    2015-04-01

    Robotic technology commenced to be adopted for the field of general surgery in the 1990s. Since then, the da Vinci surgical system (Intuitive Surgical Inc, Sunnyvale, CA, USA) has remained by far the most commonly used system in this domain. The da Vinci surgical system is a master-slave machine that offers three-dimensional vision, articulated instruments with seven degrees of freedom, and additional software features such as motion scaling and tremor filtration. The specific design allows hand-eye alignment with intuitive control of the minimally invasive instruments. As such, robotic surgery appears technologically superior when compared with laparoscopy by overcoming some of the technical limitations that are imposed on the surgeon by the conventional approach. This article reviews the current literature and the perspective of robotic general surgery. While robotics has been applied to a wide range of general surgery procedures, its precise role in this field remains a subject of further research. Until now, only limited clinical evidence that could establish the use of robotics as the gold standard for procedures of general surgery has been created. While surgical robotics is still in its infancy with multiple novel systems currently under development and clinical trials in progress, the opportunities for this technology appear endless, and robotics should have a lasting impact to the field of general surgery.

  3. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  4. Robotic right middle lobectomy with a subxiphoid utility port.

    PubMed

    Jayakumar, Shruti; Nardini, Marco; Papoulidis, Pavlos; Dunning, Joel

    2018-06-01

    We present the case of a 74-year-old man with Stage IIa pulmonary adenocarcinoma, for which he underwent a robotic right middle lobectomy. A 4-armed, 5-port approach was used. Four intercostal ports were created above the ninth rib using the Cerfolio's technique. The subxiphoid port was created in the midline, 5 cm down from the xiphisternum. The robot offers higher image quality, depth perception and improved articulation of the instruments, allowing for more accurate dissection and stitching. The usage of a subxiphoid utility port reduces the clashing between instruments, offers a good angle for stapling and provides a direct view of the instruments entering into the chest. Specimen removal through the subxiphoid port may reduce postoperative pain and enhance patient recovery. The use of the subxiphoid approach as a utility port for robotic surgery is promising and may be a suitable replacement for the traditional utility port.

  5. Pilot performance and heart rate during in-flight use of a compact instrument display.

    DOT National Transportation Integrated Search

    1975-11-01

    Instrument panels in many general aviation aircraft are becoming increasingly crowded, presenting the pilot with an instrument scanning problem. Because most aircraft instruments require use of central (foveal) vision, the pilot must look directly at...

  6. Sample acquisition and instrument deployment

    NASA Technical Reports Server (NTRS)

    Boyd, Robert C.

    1995-01-01

    Progress is reported in developing the Sample Acquisition and Instrument Deployment (SAID) system, a robotic system for deploying science instruments and acquiring samples for analysis. The system is a conventional four degree of freedom manipulator 2 meters in length. A baseline design has been achieved through analysis and trade studies. The design considers environmental operating conditions on the surface of Mars, as well as volume constraints on proposed Mars landers. Control issues have also been studied, and simulations of joint and tip movements have been performed. The systems have been fabricated and tested in environmental chambers, as well as soil testing and robotic control testing.

  7. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  8. Designing for aircraft structural crashworthiness

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Caiafa, C.

    1981-01-01

    This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.

  9. Cost-effectiveness of robotic-assisted laparoscopic procedures in urologic surgery in the USA.

    PubMed

    Sleeper, Joshua; Lotan, Yair

    2011-01-01

    New technologies such as robotic-assisted surgery are constantly introduced clinically without a complete understanding of benefits and costs. This article will discuss general concepts of health economics and apply them to the application of robotic-assisted surgery to urologic procedures. Utilization of robotic surgery has increased dramatically in recent years. This has been most dramatic in the treatment of prostate cancer. The robot adds significant costs from acquisition, maintenance and recurrent instrument costs. These added costs, thus far, have not been associated with significant improvement in outcomes over 'pure' laparoscopy or open procedures. In order for the robot to be cost effective, there needs to be an improvement in efficacy over alternative approaches, and a decrease in costs of the robot or instrumentation. Robotic surgery has not been found to be cost effective in urology. Future studies may yet reveal indirect benefits that are not yet obvious.

  10. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument lights...

  11. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument lights...

  12. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument lights...

  13. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument lights...

  14. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument lights...

  15. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument lights...

  16. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument lights...

  17. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument lights...

  18. 14 CFR 29.1381 - Instrument lights.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instrument lights. 29.1381 Section 29.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Lights § 29.1381 Instrument lights. The instrument lights...

  19. 14 CFR 27.1381 - Instrument lights.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instrument lights. 27.1381 Section 27.1381 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Lights § 27.1381 Instrument lights. The instrument lights...

  20. Sustainable Cooperative Robotic Technologies for Human and Robotic Outpost Infrastructure Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley W.; Okon, Avi; Robinson, Matthew; Huntsberger, Terry; Aghazarian, Hrand; Baumgartner, Eric

    2004-01-01

    Robotic Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous acquisition, transport, and precision mating of components in construction tasks. RCC minimizes resources constrained in a space environment such as computation, power, communication and, sensing. A behavior-based architecture provides adaptability and robustness despite low computational requirements. RCC successfully performs several construction related tasks in an emulated outdoor environment despite high levels of uncertainty in motions and sensing. Quantitative results are provided for formation keeping in component transport, precision instrument placement, and construction tasks.

  1. Advanced Applications of Robotics in Digestive Surgery

    PubMed Central

    Patriti, Alberto; Addeo, Pietro; Buchs, Nicolas; Casciola, Luciano; Morel, Philippe

    2011-01-01

    Laparoscopy is widely recognized as feasible and safe approach to many oncologic and benign digestive conditions and is associated with an improved early outcome. Robotic surgery promises to overcome intrinsic limitations of laparoscopic surgery by a three-dimensional view and wristed instruments widening indications for a minimally invasive approach. To date, the more interesting applications of robotic surgery are those operations restricted to one abdominal quadrant and requiring a fine dissection and digestive reconstruction. While robot-assisted rectal and gastric surgery are becoming well-accepted options among the surgical community, applications of robotics in hepato-biliary and pancreatic surgery are still debated. PMID:23905029

  2. Robotics and tele-manipulation: update and perspectives in urology.

    PubMed

    Frede, T; Jaspers, J; Hammady, A; Lesch, J; Teber, D; Rassweiler, J

    2007-06-01

    Robotic surgery in urology has become a reality in the year 2007 with several thousand robotic prostatectomies having been performed already worldwide. Compared to conventional laparoscopy, the process of learning the robotic technique is short and the operative results are comparable to those of conventional laparoscopy or even open surgery. However, there are still some disadvantages with the robotic systems, mainly technical (tactile feedback) and financial (investment and running costs). Alternative and more inexpensive technologies must be considered in order to overcome the difficulties of conventional laparoscopy (instrument handling, degrees of freedom, 3-D vision), while also integrating advantages of the robotic systems.

  3. 14 CFR 47.13 - Signatures and instruments made by representatives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.13 Signatures and instruments made by representatives. (a) Each person signing an Aircraft Registration Application, AC Form 8050-1, or a document submitted... signed in ink, the Aircraft Registration Application must also have the typed or legibly printed name of...

  4. 14 CFR 47.13 - Signatures and instruments made by representatives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.13 Signatures and instruments made by representatives. (a) Each person signing an Aircraft Registration Application, AC Form 8050-1, or a document submitted... signed in ink, the Aircraft Registration Application must also have the typed or legibly printed name of...

  5. [Robotic laparoscopic cholecystectomy].

    PubMed

    Langer, D; Pudil, J; Ryska, M

    2006-09-01

    Laparoscopic approach profusely utilized in many surgical fields was enhanced by da Vinci robotic surgical system in range of surgery wards, imprimis in the United States today. There was multispecialized robotic centre program initiated in the Central Military Hospital in Prague in December 2005. Within the scope of implementing the da Vinci robotic system to clinical practice we executed robotic-assisted laparoscopic cholecystectomy. We have accomplished elective laparoscopic cholecystectomy using the da Vinci robotic surgical system. Operating working group (two doctors, two scrub nurses) had completed certificated foreign training. Both of the surgeons have many years experience of laparoscopic cholecystectomy. Operator controlled instruments from the surgeon's console, assistant placed clips on ends of cystic duct and cystic artery from auxiliary port after capnoperitoneum installation. We evacuated gallbladder in plastic bag from abdominal cavity in place of original paraumbilical port. We were exploiting three working arms in all our cases, holding surgical camera, electrocautery hook and Cadiere forceps. We had been observing procedure time, technical complications connected with robotic system, length of hospital stay and complication incidence rate. We managed to finish all operations in laparoscopic way. Group of our patients formed 11 male patients (35.5%) and 20 women (64.5%), mean aged 52.5 years in range of 27 77 years. The average operation procedure lasted 100 minutes, in the group of last 11 patients only 69 minutes. We recorded paraumbilical wound infections in 3 (9.7 %) patients. We had not experienced any technical problems with robotic surgical system. Length of hospital stay was 3 days. Considering our initial experience with robotic lasparoscopic cholecystectomy we evaluate da Vinci robotic surgical system to be safe and sophisticated operating manipulator which however does not substitute the surgeon key-role of controlling position and

  6. Caater: Arat - Fokker 27, aircraft facility

    NASA Astrophysics Data System (ADS)

    Penazzi, G.; Joussaume, S.

    2003-04-01

    ARAT (Avion de Recherche Atmosphérique et de Télédétection), is owned and operated by IGN (Institut Géographique National) and managed by INSU, an institute of CNRS (Centre National de la Recherche Scientifique). ARAT is a versatile flying laboratory offering several scientific configurations: basic meteorological instrumentation, turbulent flux equipment, radiation measurement (Visible, Red, IR, UV, J(NO_2), radiance, ground temperature), microphysics sensors, in-situ and remote sensing chemistry instruments (NO-NO_2-NOy and PAN, Water Vapour and Ozone Lidars), Aerosol Lidar, Earth Observation Instrumentation (Visible, Microwave, POLDER), etc. Access to ARAT was offered through the EC-funded IHP-ARI contract, under a co-ordinated aircraft project (with MRF, U.K.; DLR, Germany and Meteo France) called CAATER (Co-ordinated Access to Aircraft for Transnational Environmental Research). Since 2000 access to ARAT has been offered to 6 research groups from different EU Member States for about 10 flight hours each. This project is a follow-on to STAAARTE (1996-2000), which gave access to ARAT to 14 user groups for about 8 flight hours per group. A new project, with new aircraft, within the frame of an Integrated Infrastructure Initiative of the Sixth Framework Programme is currently in preparation.

  7. Malfunction and failure of robotic systems during general surgical procedures.

    PubMed

    Agcaoglu, Orhan; Aliyev, Shamil; Taskin, Halit Eren; Chalikonda, Sricharan; Walsh, Matthew; Costedio, Meagan M; Kroh, Matthew; Rogula, Tomasz; Chand, Bipan; Gorgun, Emre; Siperstein, Allan; Berber, Eren

    2012-12-01

    There has been recent interest in using robots for general surgical procedures. This shift in technique raises the issue of patient safety with automated instrumentation. Although the safety of robotics has been established for urologic procedures, there are scant data on its use in general surgical procedures. The aim of this study is to analyze the incidence of robotic malfunction and its consequences for general surgical procedures. All robotic general surgical procedures performed at a tertiary center between 2008 and 2011 were reviewed from institutional review board (IRB)-approved prospective databases. A total of 223 cases were done robotically, including 102 endocrine, 83 hepatopancreaticobiliary, 17 upper gastrointestinal, and 21 lower gastrointestinal colorectal procedures. There were 10 cases of robotic malfunction (4.5%). These failures were related to robotic instruments (n = 4), optical system (n = 3), robotic arms (n = 2), and robotic console (n = 1). None of these failures led to adverse patient consequences or conversion to open. Six (2.7%) cases were converted to open due to bleeding (n = 3), difficult dissection plane (n = 1), invasion of tumor to surrounding structures (n = 1), and intolerance of pneumoperitoneum due to CO(2) retention (n = 1). There was no mortality, and morbidity was 1% (n = 2). To our knowledge, this is the largest North American report to date on robotic general surgical procedures. Our results show that robotic malfunction occurs in a minority of cases, with no adverse consequences. We believe that awareness of these failures and knowing how to troubleshoot are important to maintain the efficiency of these procedures.

  8. 30 Years of Robotic Surgery.

    PubMed

    Leal Ghezzi, Tiago; Campos Corleta, Oly

    2016-10-01

    The idea of reproducing himself with the use of a mechanical robot structure has been in man's imagination in the last 3000 years. However, the use of robots in medicine has only 30 years of history. The application of robots in surgery originates from the need of modern man to achieve two goals: the telepresence and the performance of repetitive and accurate tasks. The first "robot surgeon" used on a human patient was the PUMA 200 in 1985. In the 1990s, scientists developed the concept of "master-slave" robot, which consisted of a robot with remote manipulators controlled by a surgeon at a surgical workstation. Despite the lack of force and tactile feedback, technical advantages of robotic surgery, such as 3D vision, stable and magnified image, EndoWrist instruments, physiologic tremor filtering, and motion scaling, have been considered fundamental to overcome many of the limitations of the laparoscopic surgery. Since the approval of the da Vinci(®) robot by international agencies, American, European, and Asian surgeons have proved its factibility and safety for the performance of many different robot-assisted surgeries. Comparative studies of robotic and laparoscopic surgical procedures in general surgery have shown similar results with regard to perioperative, oncological, and functional outcomes. However, higher costs and lack of haptic feedback represent the major limitations of current robotic technology to become the standard technique of minimally invasive surgery worldwide. Therefore, the future of robotic surgery involves cost reduction, development of new platforms and technologies, creation and validation of curriculum and virtual simulators, and conduction of randomized clinical trials to determine the best applications of robotics.

  9. Concepts for multi-IFU robotic positioning systems

    NASA Astrophysics Data System (ADS)

    Miziarski, Stan; Brzeski, Jurek; Bland Hawthorn, Joss; Gilbert, James; Goodwin, Michael; Heijmans, Jeroen; Horton, Anthony; Lawrence, Jon; Saunders, Will; Smith, Greg A.; Staszak, Nicholas

    2012-09-01

    Following the successful commissioning of SAMI (Sydney-AAO Multi-object IFU) the AAO has undertaken concept studies leading to a design of a new instrument for the AAT (Hector). It will use an automated robotic system for the deployment of fibre hexabundles to the focal plane. We have analysed several concepts, which could be applied in the design of new instruments or as a retrofit to existing positioning systems. We look at derivatives of Starbugs that could handle a large fibre bundle as well as modifications to pick and place robots like 2dF or OzPoz. One concept uses large magnetic buttons that adhere to a steel field plate with substantial force. To move them we replace the gripper with a pneumatic device, which engages with the button and injects it with compressed air, thus forming a magnet preloaded air bearing allowing virtually friction-less repositioning of the button by a gantry or an R-Theta robot. New fibre protection, guiding and retraction systems are also described. These developments could open a practical avenue for the upgrade to a number of instruments.

  10. 14 CFR 47.13 - Signatures and instruments made by representatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.13 Signatures and instruments made by representatives... sign in ink or by other means acceptable to the FAA. If signed in ink, the Aircraft Registration... one or more persons doing business under a trade name submits an Aircraft Registration Application, a...

  11. 14 CFR 47.13 - Signatures and instruments made by representatives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.13 Signatures and instruments made by representatives... sign in ink or by other means acceptable to the FAA. If signed in ink, the Aircraft Registration... one or more persons doing business under a trade name submits an Aircraft Registration Application, a...

  12. Aircraft cabin ozone measurements on B747-100 and B747-SP aircraft: Correlations with atmospheric ozone and ozone encounter statistics

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.

    1978-01-01

    Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.

  13. Distributed Automated Medical Robotics to Improve Medical Field Operations

    DTIC Science & Technology

    2010-04-01

    ROBOT PATIENT INTERFACE Robotic trauma diagnosis and intervention is performed using instruments and tools mounted on the end of a robotic manipulator...manipulator to respond quickly enough to accommodate for motion due to high inertia and inaccuracies caused by low stiffness at the tool point. Ultrasonic...program was licensed to Intuitive Surgical, Inc and subsequently morphed into the daVinci surgical system. The daVinci has been widely applied in

  14. Karolinska prostatectomy: a robot-assisted laparoscopic radical prostatectomy technique.

    PubMed

    Nilsson, Andreas E; Carlsson, Stefan; Laven, Brett A; Wiklund, N Peter

    2006-01-01

    The last decade has witnessed an increasing trend towards minimally invasive management of prostate cancer, including laparoscopic and, more recently, robot-assisted laparoscopic prostatectomy. Several different laparoscopic approaches have been continuously developed during the last 5 years and it is still unclear which technique yields the best outcome. We present our current technique of robot-assisted laparoscopic radical prostatectomy. The technique described has evolved during the course of >400 robotic prostatectomies performed by the robotic team since the robot-assisted laparoscopic radical prostatectomy program was introduced at Karolinska University Hospital in January 2002. Our procedure comprises several modifications of previously reported ones, and we utilize fewer robotic instruments to reduce costs. An extended posterior dissection is performed to aid in the bladder neck-sparing dissection. In nerve-sparing procedures the vesicles are divided to avoid damage to the erectile nerves. In order to preserve the apical anatomy the dorsal venous complex is incised sharply and is first over-sewn after the apical dissection is completed. Our technique enables a more fluent dissection than previously described robotic techniques. Minimizing changes of instruments and the camera not only cuts costs but also reduces inefficient operating maneuvers, such as switching between 30 degrees and 0 degrees lenses during the procedure. We present a technique which in our hands has achieved excellent functional and oncological results.

  15. "MRI Stealth" robot for prostate interventions.

    PubMed

    Stoianovici, Dan; Song, Danny; Petrisor, Doru; Ursu, Daniel; Mazilu, Dumitru; Muntener, Michael; Mutener, Michael; Schar, Michael; Patriciu, Alexandru

    2007-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep 1, designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the "MRI stealth" robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager's room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  16. Development of a medical robot system for minimally invasive surgery.

    PubMed

    Feng, Mei; Fu, Yili; Pan, Bo; Liu, Chang

    2012-03-01

    Robot-assisted systems have been widely used in minimally invasive surgery (MIS) practice, and with them the precision and accuracy of surgical procedures can be significantly improved. Promoting the development of robot technology in MIS will improve robot performance and help in tackling problems from complex surgical procedures. A medical robot system with a new mechanism for MIS was proposed to achieve a two-dimensional (2D) remote centre of motion (RCM). An improved surgical instrument was designed to enhance manipulability and eliminate the coupling motion between the wrist and the grippers. The control subsystem adopted a master-slave control mode, upon which a new method with error compensation of repetitive feedback can be based for the inverse kinematics solution. A unique solution with less computation and higher satisfactory accuracy was also obtained. Tremor filtration and trajectory planning were also addressed with regard to the smoothness of the surgical instrument movement. The robot system was tested on pigs weighing 30-45 kg. The experimental results show that the robot can successfully complete a cholecystectomy and meet the demands of MIS. The results of the animal experiments were excellent, indicating a promising clinical application of the robot with high manipulability. Copyright © 2011 John Wiley & Sons, Ltd.

  17. The 1981 direct strike lightning data. [utilizing the F-106 aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.

    1982-01-01

    Data waveforms obtained during the 1981 direct strike lightning tests, utilizing the NASA F-106B aircraft specially instrumented for lightning electromagnetic measurements are presented. The aircraft was operated in a thunderstorm environment to elicit strikes. Electromagnetic field data were recorded for both attached lightning and free field excitation of the aircraft.

  18. Exploiting Discrete Structure for Learning On-Line in Distributed Robot Systems

    DTIC Science & Technology

    2009-10-21

    accelerating rate over the next 20 years. Service robotics currently shares some important characteristics with the automobile industry in the early...Authorization Act for Fiscal Year 2001, S. 2549, Sec. 217). The same impact is expected for pilotless air and water vehicles, where drone aircraft for

  19. Ground robotic measurement of aeolian processes

    NASA Astrophysics Data System (ADS)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  20. Instrument Failures for the da Vinci Surgical System: a Food and Drug Administration MAUDE Database Study.

    PubMed

    Friedman, Diana C W; Lendvay, Thomas S; Hannaford, Blake

    2013-05-01

    Our goal was to analyze reported instances of the da Vinci robotic surgical system instrument failures using the FDA's MAUDE (Manufacturer and User Facility Device Experience) database. From these data we identified some root causes of failures as well as trends that may assist surgeons and users of the robotic technology. We conducted a survey of the MAUDE database and tallied robotic instrument failures that occurred between January 2009 and December 2010. We categorized failures into five main groups (cautery, shaft, wrist or tool tip, cable, and control housing) based on technical differences in instrument design and function. A total of 565 instrument failures were documented through 528 reports. The majority of failures (285) were of the instrument's wrist or tool tip. Cautery problems comprised 174 failures, 76 were shaft failures, 29 were cable failures, and 7 were control housing failures. Of the reports, 10 had no discernible failure mode and 49 exhibited multiple failures. The data show that a number of robotic instrument failures occurred in a short period of time. In reality, many instrument failures may go unreported, thus a true failure rate cannot be determined from these data. However, education of hospital administrators, operating room staff, surgeons, and patients should be incorporated into discussions regarding the introduction and utilization of robotic technology. We recommend institutions incorporate standard failure reporting policies so that the community of robotic surgery companies and surgeons can improve on existing technologies for optimal patient safety and outcomes.

  1. Project ARES 2: High-altitude battery-powered aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A high-altitude, battery-powered, propeller-driven aircraft was designed and is being built by undergraduate students at California State University, Northridge. The aircraft will fly at an altitude of 104,000 ft at Mach 0.2 (190 ft/sec) and will be instrumented to record flight performance data, including low Reynolds number propeller and airfoil information. This project will demonstrate the feasibility of electric-powered flight in a low-density, low-temperature Earth environment that models the atmosphere of Mars. Data collected will be used to design a Mars aircraft to investigate the surface of Mars prior to manned missions. The instrumented payload and the mission profile for the high-altitude Earth flight were determined. Detailed aerodynamic and structural analyses were performed. Control, tracking, and data recording subsystems were developed. Materials were obtained and fabrication begun. The aircraft has a 32-ft wing span, a wing area of 105 sq ft, is 17.5 ft long, has a 12-in payload bay, and weighs 42 lb. It is composed primarily of lightweight materials, including Mylar, and composite materials, including graphite/epoxy and aramid core honeycomb sandwich. Low-altitude flight testing to check guidance and control systems and to calibrate data-gathering instruments will take place this summer, followed shortly by the 104,000-ft flight.

  2. Detailed design of a Ride Quality Augmentation System for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Suikat, Reiner; Donaldson, Kent E.; Downing, David R.

    1989-01-01

    The design of a Ride Quality Augmentation System (RQAS) for commuter aircraft is documented. The RQAS is designed for a Cessna 402B, an 8 passenger prop twin representative to this class of aircraft. The purpose of the RQAS is the reduction of vertical and lateral accelerations of the aircraft due to atmospheric turbulence by the application of active control. The detailed design of the hardware (the aircraft modifications, the Ride Quality Instrumentation System (RQIS), and the required computer software) is examined. The aircraft modifications, consisting of the dedicated control surfaces and the hydraulic actuation system, were designed at Cessna Aircraft by Kansas University-Flight Research Laboratory. The instrumentation system, which consist of the sensor package, the flight computer, a Data Acquisition System, and the pilot and test engineer control panels, was designed by NASA-Langley. The overall system design and the design of the software, both for flight control algorithms and ground system checkout are detailed. The system performance is predicted from linear simulation results and from power spectral densities of the aircraft response to a Dryden gust. The results indicate that both accelerations are possible.

  3. Robotic Anterior and Midline Skull Base Surgery: Preclinical Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Bert W.; Weinstein, Gregory S.

    Purpose: To develop a minimally invasive surgical technique to access the midline and anterior skull base using the optical and technical advantages of robotic surgical instrumentation. Methods and Materials: Ten experimental procedures focusing on approaches to the nasopharynx, clivus, sphenoid, pituitary sella, and suprasellar regions were performed on one cadaver and one live mongrel dog. Both the cadaver and canine procedures were performed in an approved training facility using the da Vinci Surgical Robot. For the canine experiments, a transoral robotic surgery (TORS) approach was used, and for the cadaver a newly developed combined cervical-transoral robotic surgery (C-TORS) approach wasmore » investigated and compared with standard TORS. The ability to access and dissect tissues within the various areas of the midline and anterior skull base were evaluated, and techniques to enhance visualization and instrumentation were developed. Results: Standard TORS approaches did not provide adequate access to the midline and anterior skull base; however, the newly developed C-TORS approach was successful in providing the surgical access to these regions of the skull base. Conclusion: Robotic surgery is an exciting minimally invasive approach to the skull base that warrants continued preclinical investigation and development.« less

  4. Mineralogy and astrobiology detection using laser remote sensing instrument.

    PubMed

    Abedin, M Nurul; Bradley, Arthur T; Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; McKay, Christopher P; Ismail, Syed; Sandford, Stephen P

    2015-09-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100  m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20  km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters.

  5. Topics in Chemical Instrumentation: Robots in the Laboratory--An Overview.

    ERIC Educational Resources Information Center

    Strimaitis, Janet R.

    1989-01-01

    Describes the current use of automation in the laboratory. Discusses the need, flexibility, and benefits of automation. Presents a generic system description. Lists commercially available laboratory robots. (MVL)

  6. Cellular-level surgery using nano robots.

    PubMed

    Song, Bo; Yang, Ruiguo; Xi, Ning; Patterson, Kevin Charles; Qu, Chengeng; Lai, King Wai Chiu

    2012-12-01

    The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.

  7. Robotics in general thoracic surgery procedures.

    PubMed

    Latif, M Jawad; Park, Bernard J

    2017-01-01

    The use of robotic technology in general thoracic surgical practice continues to expand across various institutions and at this point many major common thoracic surgical procedures have been successfully performed by general thoracic surgeons using the robotic technology. These procedures include lung resections, excision of mediastinal masses, esophagectomy and reconstruction for malignant and benign esophageal pathologies. The success of robotic technology can be attributed to highly magnified 3-D visualization, dexterity afforded by 7 degrees of freedom that allow difficult dissections in narrow fields and the ease of reproducibility once the initial set up and instruments become familiar to the surgeon. As the application of robotic technology trickle downs from major academic centers to community hospitals, it becomes imperative that its role, limitations, learning curve and financial impact are understood by the novice robotic surgeon. In this article, we share our experience as it relates to the setup, common pitfalls and long term results for more commonly performed robotic assisted lung and thymic resections using the 4 arm da Vinci Xi robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA) to help guide those who are interested in adopting this technology.

  8. 14 CFR 135.297 - Pilot in command: Instrument proficiency check requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilot in command: Instrument proficiency... ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.297 Pilot in command: Instrument... pilot in command of an aircraft under IFR unless, since the beginning of the 6th calendar month before...

  9. 14 CFR 135.297 - Pilot in command: Instrument proficiency check requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilot in command: Instrument proficiency... ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.297 Pilot in command: Instrument... pilot in command of an aircraft under IFR unless, since the beginning of the 6th calendar month before...

  10. 14 CFR 135.297 - Pilot in command: Instrument proficiency check requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilot in command: Instrument proficiency... ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.297 Pilot in command: Instrument... pilot in command of an aircraft under IFR unless, since the beginning of the 6th calendar month before...

  11. 14 CFR 135.297 - Pilot in command: Instrument proficiency check requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilot in command: Instrument proficiency... ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.297 Pilot in command: Instrument... pilot in command of an aircraft under IFR unless, since the beginning of the 6th calendar month before...

  12. 14 CFR 135.297 - Pilot in command: Instrument proficiency check requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilot in command: Instrument proficiency... ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.297 Pilot in command: Instrument... pilot in command of an aircraft under IFR unless, since the beginning of the 6th calendar month before...

  13. Robotic lateral pancreaticojejunostomy (Puestow).

    PubMed

    Meehan, John J; Sawin, Robert

    2011-06-01

    A lateral pancreaticojejunostomy (LPJ), also known as the Puestow procedure, is a complex procedure performed for chronic pancreatitis when the pancreatic duct is dilated and unable to drain properly. Traditionally, these procedures are performed with open surgery. A minimally invasive approach to the LPJ using rigid handheld nonarticulating instruments is tedious and rarely performed. In fact, there are no prior laparoscopic case reports for LPJ in children and only a small handful of cases in the adult literature. This lack of laparoscopic information may be an indication of the difficulty in performing this complex operation with nonarticulating laparoscopic instruments. The advantages of robotic surgery may help overcome these difficulties. We present the first robotic LPJ ever reported in a 14-year-old child with idiopathic chronic pancreatitis. This case demonstrates the utility of this advanced surgical technology and may lead to a new minimally invasive option for both adults and children with chronic pancreatitis requiring surgical intervention. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Problems inherent in using aircraft for radio oceanography studies

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1977-01-01

    Some of the disadvantages relating to altitude stability and proximity to the ocean are described for radio oceanography studies using aircraft. The random oscillatory motion introduced by the autopilot in maintaining aircraft altitude requires a more sophisticated range tracker for a radar altimeter than would be required in a satellite application. One-dimensional simulations of the sea surface (long-crested waves) are performed using both the JONSWAP spectrum and the Pierson-Moskowitz spectrum. The results of the simulation indicate that care must be taken in trying to experimentally verify instrument measurement accuracy. Because of the relatively few wavelengths examined from an aircraft due to proximity to the ocean and low velocity compared to a satellite, the random variation in the sea surface parameters being measured can far exceed an instrument's ability to measure them.

  15. Review of emerging surgical robotic technology.

    PubMed

    Peters, Brian S; Armijo, Priscila R; Krause, Crystal; Choudhury, Songita A; Oleynikov, Dmitry

    2018-04-01

    The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development. This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described. A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot. The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

  16. The development of an airborne instrumentation computer system for flight test

    NASA Technical Reports Server (NTRS)

    Bever, G. A.

    1984-01-01

    Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.

  17. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  18. Aircraft wake RCS measurement

    NASA Astrophysics Data System (ADS)

    Gilson, William H.

    1994-07-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  19. 14 CFR 33.29 - Instrument connection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must make provision for the installation of instrumentation necessary to ensure operation in compliance... assumed aircraft installation, then the applicant must specify this instrumentation in the engine installation instructions and declare it mandatory in the engine approval documentation. (f) As part of the...

  20. Wind shear detection using measurement of aircraft total energy change

    NASA Technical Reports Server (NTRS)

    Joppa, R. G.

    1976-01-01

    Encounters with wind shears are of concern and have caused major accidents, particularly during landing approaches. Changes in the longitudinal component of the wind affect the aircraft by changing its kinetic energy with respect to the air. It is shown that an instrument which will measure and display the rate of change of total energy of the aircraft with respect to the air will give a leading indication of wind shear problems. The concept is outlined and some instrumentation and display considerations are discussed.

  1. [Robotic splenectomy--a personal view].

    PubMed

    Vasilescu, C

    2010-01-01

    Until now 40 robotic splenectomies were performed in our department, the first case being done on February 25, 2008. Our data show that robotic splenectomy with the DaVinci surgical system is technically feasible and safe, with good results and without complications. The main advantages are a better tridimensional view and an increased versatility of the surgical instruments. The DaVinci system allows an accurate dissection around the splenic hilum and preservation of the splenic remnant vessels in partial splenectomy. Robotic splenectomy will probably not replace the laparoscopic splenectomy for the most common indications like ITP, hemolytic anemia. It may be a very useful surgical tool in difficult splenectomy: partial splenectomy, splenectomy in liver cirrhosis, splenic tumors or malignant hemopathies. In these cases the robotic approach may shorten the operative time, decrease the blood loss and the risk of remorrhagic complications during surgery and even make possible a minimally invasive splenectomy very difficult to be performed by classical laparoscopy.

  2. Intelligent pump test system based on virtual instrument

    NASA Astrophysics Data System (ADS)

    Ma, Jungong; Wang, Shifu; Wang, Zhanlin

    2003-09-01

    The intelligent pump system is the key component of the aircraft hydraulic system that can solve the problem, such as the temperature sharply increasing. As the performance of the intelligent pump directly determines that of the aircraft hydraulic system and seriously affects fly security and reliability. So it is important to test all kinds of performance parameters of intelligent pump during design and development, while the advanced, reliable and complete test equipments are the necessary instruments for achieving the goal. In this paper, the application of virtual instrument and computer network technology in aircraft intelligent pump test is presented. The composition of the hardware, software, hydraulic circuit in this system are designed and implemented.

  3. “MRI Stealth” robot for prostate interventions

    PubMed Central

    STOIANOVICI, DAN; SONG, DANNY; PETRISOR, DORU; URSU, DANIEL; MAZILU, DUMITRU; MUTENER, MICHAEL; SCHAR, MICHAEL; PATRICIU, ALEXANDRU

    2011-01-01

    The paper reports an important achievement in MRI instrumentation, a pneumatic, fully actuated robot located within the scanner alongside the patient and operating under remote control based on the images. Previous MRI robots commonly used piezoelectric actuation limiting their compatibility. Pneumatics is an ideal choice for MRI compatibility because it is decoupled from electromagnetism, but pneumatic actuators were hardly controllable. This achievement was possible due to a recent technology breakthrough, the invention of a new type of pneumatic motor, PneuStep (1), designed for the robot reported here with uncompromised MRI compatibility, high-precision, and medical safety. MrBot is one of the “MRI stealth” robots today (the second is described in this issue by Zangos et al.). Both of these systems are also multi-imager compatible, being able to operate with the imager of choice or cross-imaging modalities. For MRI compatibility the robot is exclusively constructed of nonmagnetic and dielectric materials such as plastics, ceramics, crystals, rubbers and is electricity free. Light-based encoding is used for feedback, so that all electric components are distally located outside the imager’s room. MRI robots are modern, digital medical instruments in line with advanced imaging equipment and methods. These allow for accessing patients within closed bore scanners and performing interventions under direct (in scanner) imaging feedback. MRI robots could allow e.g. to biopsy small lesions imaged with cutting edge cancer imaging methods, or precisely deploy localized therapy at cancer foci. Our robot is the first to show the feasibility of fully automated in-scanner interventions. It is customized for the prostate and operates transperineally for needle interventions. It can accommodate various needle drivers for different percutaneous procedures such as biopsy, thermal ablations, or brachytherapy. The first needle driver is customized for fully automated low

  4. Application of robotics in gastrointestinal endoscopy: A review

    PubMed Central

    Yeung, Baldwin Po Man; Chiu, Philip Wai Yan

    2016-01-01

    Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endoscopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service. PMID:26855540

  5. Archival of aircraft scatterometer data from AAFE RADSCAT missions

    NASA Technical Reports Server (NTRS)

    Schroeder, L. C.; Mitchell, J. L.

    1983-01-01

    Aircraft scatterometer data obtained over the ocean with the Radiometer-Scatterometer (RADSCAT) instrument is documented. The normalized radar cross section data was obtained at 13.9 GHz for a variety of ocean surface wind conditions, which are also presented. All such valid RADSCAT ocean scatterometer data for which surface truth was obtained are included, except for ice research missions during the last year of RADSCAT's lifetime. Aircraft scatterometer data obtained for the SEASAT underflights were with a second instrument, the Airborne Microwave Scatterometer (AMSCAT). The RADSCAT data are archived on card image computer tapes and on microfiche.

  6. 14 CFR 29.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight and navigation instruments. 29.1303... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1303 Flight and navigation instruments. The following are required flight and navigational instruments: (a) An airspeed...

  7. 14 CFR 29.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight and navigation instruments. 29.1303... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1303 Flight and navigation instruments. The following are required flight and navigational instruments: (a) An airspeed...

  8. 14 CFR 27.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight and navigation instruments. 27.1303... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1303 Flight and navigation instruments. The following are the required flight and navigation instruments: (a) An airspeed...

  9. 14 CFR 27.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight and navigation instruments. 27.1303... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1303 Flight and navigation instruments. The following are the required flight and navigation instruments: (a) An airspeed...

  10. 14 CFR 27.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight and navigation instruments. 27.1303... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment General § 27.1303 Flight and navigation instruments. The following are the required flight and navigation instruments: (a) An airspeed...

  11. 14 CFR 29.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight and navigation instruments. 29.1303... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment General § 29.1303 Flight and navigation instruments. The following are required flight and navigational instruments: (a) An airspeed...

  12. Review of the role of robotic surgery in male infertility.

    PubMed

    Etafy, Mohamed; Gudeloglu, Ahmet; Brahmbhatt, Jamin V; Parekattil, Sijo J

    2018-03-01

    To present the current state of the art in various robot-assisted microsurgical procedures in male infertility and review the latest literature, as the technology in infertility procedures has substantially developed since the incorporation of the Vinci® robotic platform (Intuitive Surgical, Inc., Sunnyvale, CA, USA). The search strategy in this review was conducted in accordance with Cochrane guidelines and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A search strategy was conducted in MEDLINE, PubMed and the Cochrane electronic databases (from 2000 to present) to identify studies that included both robotic and male infertility. In all, 23 studies were found, 12 of which met our inclusion criteria. Articles were excluded if the study did not include both male infertility and robotics. Robotic assistance for microsurgical procedures in male infertility appears to be safe and feasible. It has several advantages including elimination of tremor, multi-view magnification, additional instrument arms, and enhanced dexterity with articulating instrument arms. It also has a short learning curve with a small skin incision. However, larger, prospective studies are needed to establish the clinical benefits over standard microsurgery.

  13. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  14. Single-port plus an additional port robotic complete mesocolic excision and intracorporeal anastomosis using a robotic stapler for right-sided colon cancer

    PubMed Central

    Bae, Sung Uk; Jeong, Woon Kyung

    2016-01-01

    The concept of complete mesocolic excision and central vascular ligation for colonic cancer has been recently introduced. The paper describes a technique of right-sided complete mesocolic excision and intracorporeal anastomosis by using a single-port robotic approach with an additional conventional robotic port. We performed a single-port plus an additional port robotic surgery using the Da Vinci Single-Site platform via the Pfannenstiel incision and the wristed robotic instruments via an additional robotic port in the left lower quadrant. The total operative and docking times were 280 and 25 minutes, respectively. The total number of lymph nodes harvested was 36 and the proximal and distal resection margins were 31 and 50 cm, respectively. Single-port plus an additional port robotic surgery for right-sided complete mesocolic excision and intracorporeal anastomosis appears to be feasible and safe. This system can overcome certain limitations of the previous robotic systems and conventional single-port laparoscopic surgery. PMID:27757400

  15. Single-port plus an additional port robotic complete mesocolic excision and intracorporeal anastomosis using a robotic stapler for right-sided colon cancer.

    PubMed

    Bae, Sung Uk; Jeong, Woon Kyung; Baek, Seong Kyu

    2016-10-01

    The concept of complete mesocolic excision and central vascular ligation for colonic cancer has been recently introduced. The paper describes a technique of right-sided complete mesocolic excision and intracorporeal anastomosis by using a single-port robotic approach with an additional conventional robotic port. We performed a single-port plus an additional port robotic surgery using the Da Vinci Single-Site platform via the Pfannenstiel incision and the wristed robotic instruments via an additional robotic port in the left lower quadrant. The total operative and docking times were 280 and 25 minutes, respectively. The total number of lymph nodes harvested was 36 and the proximal and distal resection margins were 31 and 50 cm, respectively. Single-port plus an additional port robotic surgery for right-sided complete mesocolic excision and intracorporeal anastomosis appears to be feasible and safe. This system can overcome certain limitations of the previous robotic systems and conventional single-port laparoscopic surgery.

  16. The MVACS Robotic Arm Camera

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Hartwig, H.; Kramm, R.; Koschny, D.; Markiewicz, W. J.; Thomas, N.; Fernades, M.; Smith, P. H.; Reynolds, R.; Lemmon, M. T.; Weinberg, J.; Marcialis, R.; Tanner, R.; Boss, B. J.; Oquest, C.; Paige, D. A.

    2001-08-01

    The Robotic Arm Camera (RAC) is one of the key instruments newly developed for the Mars Volatiles and Climate Surveyor payload of the Mars Polar Lander. This lightweight instrument employs a front lens with variable focus range and takes images at distances from 11 mm (image scale 1:1) to infinity. Color images with a resolution of better than 50 μm can be obtained to characterize the Martian soil. Spectral information of nearby objects is retrieved through illumination with blue, green, and red lamp sets. The design and performance of the camera are described in relation to the science objectives and operation. The RAC uses the same CCD detector array as the Surface Stereo Imager and shares the readout electronics with this camera. The RAC is mounted at the wrist of the Robotic Arm and can characterize the contents of the scoop, the samples of soil fed to the Thermal Evolved Gas Analyzer, the Martian surface in the vicinity of the lander, and the interior of trenches dug out by the Robotic Arm. It can also be used to take panoramic images and to retrieve stereo information with an effective baseline surpassing that of the Surface Stereo Imager by about a factor of 3.

  17. Robotic pancreas drainage procedure for chronic pancreatitis: robotic lateral pancreaticojejunostomy (Puestow procedure).

    PubMed

    Khan, Adeel S; Siddiqui, Imran; Vrochides, Dionisios; Martinie, John B

    2018-01-01

    Lateral pancreaticojejunostomy (LPJ), also known as the Puestow procedure, is a complex surgical procedure reserved for patients with refractory chronic pancreatitis (CP) and a dilated pancreatic duct. Traditionally, this operation is performed through an open incision, however, recent advancements in minimally invasive techniques have made it possible to perform the surgery using laparoscopic and robotic techniques with comparable safety. Though we do not have enough data yet to prove superiority of one over the other, the robotic approach appears to have an advantage over the laparoscopic technique in better visualization through 3-dimensional (3D) imaging and availability of wristed instruments for more precise actions, which may translate into superior outcomes. This paper is a description of our technique for robotic LPJ in patients with refractory CP. Important principles of patient selection, preoperative workup, surgical technique and post-operative management are discussed. A short video with a case presentation and highlights of the important steps of the surgery is included.

  18. Robotic pancreas drainage procedure for chronic pancreatitis: robotic lateral pancreaticojejunostomy (Puestow procedure)

    PubMed Central

    Khan, Adeel S.; Siddiqui, Imran; Vrochides, Dionisios

    2018-01-01

    Lateral pancreaticojejunostomy (LPJ), also known as the Puestow procedure, is a complex surgical procedure reserved for patients with refractory chronic pancreatitis (CP) and a dilated pancreatic duct. Traditionally, this operation is performed through an open incision, however, recent advancements in minimally invasive techniques have made it possible to perform the surgery using laparoscopic and robotic techniques with comparable safety. Though we do not have enough data yet to prove superiority of one over the other, the robotic approach appears to have an advantage over the laparoscopic technique in better visualization through 3-dimensional (3D) imaging and availability of wristed instruments for more precise actions, which may translate into superior outcomes. This paper is a description of our technique for robotic LPJ in patients with refractory CP. Important principles of patient selection, preoperative workup, surgical technique and post-operative management are discussed. A short video with a case presentation and highlights of the important steps of the surgery is included. PMID:29780718

  19. 14 CFR 25.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight and navigation instruments. 25.1303... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1303 Flight and navigation instruments. (a) The following flight and navigation instruments must be installed so that the...

  20. 14 CFR 25.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight and navigation instruments. 25.1303... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment General § 25.1303 Flight and navigation instruments. (a) The following flight and navigation instruments must be installed so that the...

  1. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  2. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  3. Vision-based aircraft guidance

    NASA Technical Reports Server (NTRS)

    Menon, P. K.

    1993-01-01

    Early research on the development of machine vision algorithms to serve as pilot aids in aircraft flight operations is discussed. The research is useful for synthesizing new cockpit instrumentation that can enhance flight safety and efficiency. With the present work as the basis, future research will produce low-cost instrument by integrating a conventional TV camera together with off-the=shelf digitizing hardware for flight test verification. Initial focus of the research will be on developing pilot aids for clear-night operations. Latter part of the research will examine synthetic vision issues for poor visibility flight operations. Both research efforts will contribute towards the high-speed civil transport aircraft program. It is anticipated that the research reported here will also produce pilot aids for conducting helicopter flight operations during emergency search and rescue. The primary emphasis of the present research effort is on near-term, flight demonstrable technologies. This report discusses pilot aids for night landing and takeoff and synthetic vision as an aid to low visibility landing.

  4. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  5. Tips on robotic single-site surgery suture technique: Screwing and clockwise direction suture technique for Robotic single-site surgery.

    PubMed

    Moon, Hye-Sung

    2018-06-01

    Using the da Vinci single-site platform, surgeons can perform more minimally invasive surgery. However, surgical challenges exist due to the limitations of single-site instrumental movements. To aid in the performance of successful robotic single-site hysterectomy, a new suturing technique using the current set of limited instruments is introduced in this study. New vaginal cuff suturing techniques have been used in 55 robotic single-site hysterectomies in our institute over the past 2 years. A needle driver approach utilizing screwing and advancing the needle driver in the correct direction at an increasing angle from the transverse cuff margin with dragging and formation of an adequate loop of thread was used when suturing the vaginal cuff. Using the new vaginal suturing techniques, easy and firm vaginal cuff closure with reduced operative time relative to previous hysterectomies was achieved. The new vaginal cuff suturing techniques may convince more surgeons to perform robotic single-site hysterectomies more frequently and with greater ease. Copyright © 2018. Published by Elsevier B.V.

  6. The First Korean Experience of Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using the da Vinci System

    PubMed Central

    Kang, Chang Moo; Chi, Hoon Sang; Hyeung, Woo Jin; Kim, Kyung Sik; Choi, Jin Sub; Kim, Byong Ro

    2007-01-01

    With the advancement of laparoscopic instruments and computer sciences, complex surgical procedures are expected to be safely performed by robot assisted telemanipulative laparoscopic surgery. The da Vinci system (Intuitive Surgical, Mountain View, CA, USA) became available at the many surgical fields. The wrist like movements of the instrument's tip, as well as 3-dimensional vision, could be expected to facilitate more complex laparoscopic procedure. Here, we present the first Korean experience of da Vinci robotic assisted laparoscopic cholecystectomy and discuss the introduction and perspectives of this robotic system. PMID:17594166

  7. [Robotic fundoplication for gastro-oesophageal reflux disease].

    PubMed

    Costi, Renato; Himpens, Jacques; Iusco, Domenico; Sarli, Leopoldo; Violi, Vincenzo; Roncoroni, Luigi; Cadière, Guy Bernard

    2004-01-01

    Presented as a possible "second" revolution in general surgery after the introduction of laparoscopy during the last few years, the robotic approach to mini-invasive surgery has not yet witnessed wide, large-scale diffusion among general surgeons and is still considered an "experimental approach". In general surgery, the laparoscopic treatment of gastrooesophageal reflux is the second most frequently performed robot-assisted procedure after cholecystectomy. A review of the literature and an analysis of the costs may allow a preliminary evaluation of the pros and cons of robotic fundoplication, which may then be applicable to other general surgery procedures. Eleven articles report 91 cases of robotic fundoplication (75 Nissen, 9 Thal, 7 Toupet). To date, there is no evidence of benefit in terms of duration of surgery, rate of complications and hospital stay. Moreover, robotic fundoplication is more expensive than the traditional laparoscopic approach (the additional cost per procedure due to robotics is 1,882.97 euros). Only further technological upgrades and advances will make the use of robotics competitive in general surgery. The development of multi-functional instruments and of tactile feedback at the console, enlargement of the three-dimensional laparoscopic view and specific "team" training will enable the use of robotic surgery to be extended to increasingly difficult procedures and to non-specialised environments.

  8. Robot-Assisted Transoral Odontoidectomy : Experiment in New Minimally Invasive Technology, a Cadaveric Study

    PubMed Central

    Yang, Moon Sul; Yoon, Tae Ho; Yoon, Do Heum; Kim, Keung Nyun; Pennant, William

    2011-01-01

    Objective In the field of spinal surgery, a few laboratory results or clinical cases about robotic spinal surgery have been reported. In vivo trials and development of related surgical instruments for spinal surgery are required before its clinical application. We investigated the use of the da Vinci® Surgical System in spinal surgery at the craniovertebral junction in a human cadaver to demonstrate the efficacy and pitfalls of robotic surgery. Methods Dissection of pharyngeal wall to the exposure of C1 and odontoid process was performed with full robotic procedure. Although assistance of another surgeon was necessary for drilling and removal of odontoid process due to the lack of appropriate end-effectors, successful robotic procedures for dural sutures and exposing spinal cord proved its safety and dexterity. Results Robot-assisted odontoidectomy was successfully performed in a human cadaver using the da Vinci® Surgical System with few robotic arm collisions and minimal soft tissue damages. Da Vinci® Surgical System manifested more dexterous movement than human hands in the deep and narrow oral cavity. Furthermore, sutures with robotic procedure in the oral cavity demonstrated the advantage over conventional procedure. Conclusion Presenting cadaveric study proved the probability of robot-assisted transoral approach. However, the development of robotic instruments specific to spinal surgery must first precede its clinical application. PMID:21607188

  9. Robotics in general surgery: an evidence-based review.

    PubMed

    Baek, Se-Jin; Kim, Seon-Hahn

    2014-05-01

    Since its introduction, robotic surgery has been rapidly adopted to the extent that it has already assumed an important position in the field of general surgery. This rapid progress is quantitative as well as qualitative. In this review, we focus on the relatively common procedures to which robotic surgery has been applied in several fields of general surgery, including gastric, colorectal, hepato-biliary-pancreatic, and endocrine surgery, and we discuss the results to date and future possibilities. In addition, the advantages and limitations of the current robotic system are reviewed, and the advanced technologies and instruments to be applied in the near future are introduced. Such progress is expected to facilitate the widespread introduction of robotic surgery in additional fields and to solve existing problems.

  10. Earth Viewing Applications Laboratory (EVAL). Instrument catalog

    NASA Technical Reports Server (NTRS)

    1976-01-01

    There were 87 instruments described that are used in earth observation, with an additional 51 instruments containing references to programs and their major functions. These instruments were selected from such sources as: (1) earth observation flight program, (2) operational satellite improvement programs, (3) advanced application flight experiment program, (4) shuttle experiment definition program, and (5) earth observation aircraft program.

  11. B-70 Aircraft Study. Volume 4

    NASA Technical Reports Server (NTRS)

    Taube, L. J.

    1972-01-01

    This volume contains cost, schedule, and technical information on the following B-70 aircraft subsystems: air induction system, flight control, personnel accommodation and escape, alighting and arresting, mission and traffic control, flight indication, test instrumentation, and installation, checkout, and pre-flight.

  12. Robotic applications in abdominal surgery: their limitations and future developments.

    PubMed

    Taylor, G W; Jayne, D G

    2007-03-01

    In the past 20 years, the technical aspects of abdominal surgery have changed dramatically. Operations are now routinely performed by laparoscopic techniques utilizing small abdominal incisions, with less patient discomfort, earlier recovery, improved cosmesis, and in many cases reduced economic burden on the healthcare provider. These benefits have largely been seen in the application of laparoscopic techniques to relatively straightforward procedures. It is not clear whether the same benefits carry through to more complex abdominal operations, which are more technically demanding and for which current laparoscopic instrumentation is less well adapted. The aim of surgical robotics is to address these problems and allow the advantages of minimal access surgery to be seen in a greater range of operations. A literature search was performed to ascertain the current state of the art in surgical robotics for the abdomen, and the technologies emerging within this field. The reference lists of the sourced articles were also searched for further relevant papers. Currently available robotic devices for abdominal surgery are limited to large, costly 'slave-master' or telemanipulator systems, such as the da Vinci (Intuitive Surgical, Sunny Vale, CA). In addition to their size and expense, these systems share the same limitation, by virtue of the fulcrum effect on instrument manipulation inherent in the use of ports by which external instruments gain access to the abdominal cavity. In order to overcome these limitations several smaller telemanipulator systems are being developed, and progress towards freely mobile intracorporeal devices is being made. While current robotic systems have considerable advantages over conventional laparoscopic techniques, they are not without limitations. Miniaturisation of robotic components and systems is feasible and necessary to allow minimally invasive techniques to reach full potential. The ultimate extrapolation of this progress is the

  13. The design of sport and touring aircraft

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Guenther, W.

    1984-01-01

    General considerations concerning the design of a new aircraft are discussed, taking into account the objective to develop an aircraft can satisfy economically a certain spectrum of tasks. Requirements related to the design of sport and touring aircraft included in the past mainly a high cruising speed and short take-off and landing runs. Additional requirements for new aircraft are now low fuel consumption and optimal efficiency. A computer program for the computation of flight performance makes it possible to vary automatically a number of parameters, such as flight altitude, wing area, and wing span. The appropriate design characteristics are to a large extent determined by the selection of the flight altitude. Three different wing profiles are compared. Potential improvements with respect to the performance of the aircraft and its efficiency are related to the use of fiber composites, the employment of better propeller profiles, more efficient engines, and the utilization of suitable instrumentation for optimal flight conduction.

  14. Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation

    NASA Technical Reports Server (NTRS)

    Tang, Adrian J.

    2013-01-01

    Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits

  15. Advanced Terrain Displays for Transport Category Aircraft

    DOT National Transportation Integrated Search

    1992-02-01

    A preliminary evaluation of terrain information presentation methods was conducted in a part-task simulation study. Pilots qualified on autoflight aircraft used both paper and prototypical electronic instrument approach plate formats to obtain terrai...

  16. Optimization of Process Parameters of Edge Robotic Deburring with Force Control

    NASA Astrophysics Data System (ADS)

    Burghardt, A.; Szybicki, D.; Kurc, K.; Muszyńska, M.

    2016-12-01

    The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.

  17. 14 CFR 61.65 - Instrument rating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Aircraft Ratings and Pilot Authorizations § 61.65 Instrument rating requirements. (a) General. A person who applies for an instrument rating must: (1) Hold at least a private pilot certificate with an airplane, helicopter, or...

  18. Load test set-up for the Airmass Sunburst Ultra-Light Aircraft

    NASA Technical Reports Server (NTRS)

    Krug, Daniel W.; Smith, Howard W.

    1993-01-01

    The purpose of this project was to set up, instrument, and test a Sunburst Ultra-Light aircraft. The intentions of the project were that the aircraft would need to be suspended from the test stand, leveled in the stand, the strain gauges tested and wired to the test equipment, and finally, the aircraft would be destroyed to obtain the failing loads. All jobs were completed, except for the destruction of the aircraft. This notebook shows the group's progress as these tasks were completed, and the following section attempts to explain the photographs in the notebook.

  19. [Haptic tracking control for minimally invasive robotic surgery].

    PubMed

    Xu, Zhaohong; Song, Chengli; Wu, Wenwu

    2012-06-01

    Haptic feedback plays a significant role in minimally invasive robotic surgery (MIRS). A major deficiency of the current MIRS is the lack of haptic perception for the surgeon, including the commercially available robot da Vinci surgical system. In this paper, a dynamics model of a haptic robot is established based on Newton-Euler method. Because it took some period of time in exact dynamics solution, we used a digital PID arithmetic dependent on robot dynamics to ensure real-time bilateral control, and it could improve tracking precision and real-time control efficiency. To prove the proposed method, an experimental system in which two Novint Falcon haptic devices acting as master-slave system has been developed. Simulations and experiments showed proposed methods could give instrument force feedbacks to operator, and bilateral control strategy is an effective method to master-slave MIRS. The proposed methods could be used to tele-robotic system.

  20. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  1. Instrument Development of Real Time Holographic Water Drop Size Measurement System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springston, Stephen

    2007-02-09

    BNL participated with multiple correspondences with Physical Optics Corporation (POC) on the design considerations of an airbome instrument. A pod for extemal deployment ofthe POC unit on the DOE Research Aircraft Facility (RAF), an instrumented, Grumman G-1 aircraft was loaned to POC. BNL proposed evaluation flight tests between the POC unit and the BNL Cloud Aerosol Probe Spectrometer (CAPS) as a reference method. BNL's involvement is described in the semi-annual report ofPOC to DOE. Because of unanticipated technical and engineering difficulties, POC was unable to fit their instrument into an aircraft pod. As a result they are now focusing onmore » a ground-based version first. A prototype laboratory version of the Real-Time Holographic Water Drop Size Measurement (WDSM) System has been constructed.« less

  2. Human-Robot Planetary Exploration Teams

    NASA Technical Reports Server (NTRS)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  3. 3D Printer Instrumentation to Create Varied Geometries of Robotic Limbs and Heterogeneous Granular Media

    DTIC Science & Technology

    2015-05-20

    Transfer Robo Ant The 3D printer was used to rapidly prototype a robot ant . The robot ant was used to model the behavior of the fire ant and to model...computer models and 3D printed ant robots are shown below. Snake Bot We used the 3D printed to rapidly design a modular, easily-modified snake...living organism (modern mudskippers, a terrestrial fish) and extinct early tetrapods (e.g. Ichthyostega, Acanthostega) while allowing us to explore

  4. Walter C. Williams Research Aircraft Integration Facility (RAIF)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  5. Recommendations for field measurements of aircraft noise

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1982-01-01

    Specific recommendations for environmental test criteria, data acquisition procedures, and instrument performance requirements for measurement of noise levels produced by aircraft in flight are provided. Recommendations are also given for measurement of associated airplane and engine parameters and atmospheric conditions. Recommendations are based on capabilities which were available commercially in 1981; they are applicable to field tests of aircraft flying subsonically past microphones located near the surface of the ground either directly under or to the side of a flight path. Aircraft types covered by the recommendations include fixed-wing airplanes powered by turbojet or turbofan engines or by propellers. The recommended field-measurement procedures are consistent with assumed requirements for data processing and analysis.

  6. Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Bradley, Arthur T.; Sharma, Shiv K.; Misra, Anupam K.; Lucey, Paul G.; Mckay, Chistopher P.; Ismail, Syed; Sandford, Stephen P.

    2015-01-01

    A multispectral instrument based on Raman, laser-induced fluorescence (LIF), laser-induced breakdown spectroscopy (LIBS), and a lidar system provides high-fidelity scientific investigations, scientific input, and science operation constraints in the context of planetary field campaigns with the Jupiter Europa Robotic Lander and Mars Sample Return mission opportunities. This instrument conducts scientific investigations analogous to investigations anticipated for missions to Mars and Jupiter's icy moons. This combined multispectral instrument is capable of performing Raman and fluorescence spectroscopy out to a >100 m target distance from the rover system and provides single-wavelength atmospheric profiling over long ranges (>20 km). In this article, we will reveal integrated remote Raman, LIF, and lidar technologies for use in robotic and lander-based planetary remote sensing applications. Discussions are focused on recently developed Raman, LIF, and lidar systems in addition to emphasizing surface water ice, surface and subsurface minerals, organics, biogenic, biomarker identification, atmospheric aerosols and clouds distributions, i.e., near-field atmospheric thin layers detection for next robotic-lander based instruments to measure all the above-mentioned parameters. OCIS codes: (120.0280) Remote sensing and sensors; (130.0250) Optoelectronics; (280.3640) Lidar; (300.2530) Fluorescence, laser-induced; (300.6450) Spectroscopy, Raman; (300.6365) Spectroscopy, laser induced breakdown

  7. Robotic Recon for Human Exploration

    NASA Technical Reports Server (NTRS)

    Deans, Matthew; Fong, Terry; Ford, Ken; Heldmann, Jennifer; Helper, Mark; Hodges, Kip; Landis, Rob; Lee, Pascal; Schaber, Gerald; Schmitt, Harrison H.

    2009-01-01

    Robotic reconnaissance has the potential to significantly improve scientific and technical return from lunar surface exploration. In particular, robotic recon may increase crew productivity and reduce operational risk for exploration. However, additional research, development and field-testing is needed to mature robot and ground control systems, refine operational protocols, and specify detailed requirements. When the new lunar surface campaign begins around 2020, and before permanent outposts are established, humans will initially be on the Moon less than 10% of the time. During the 90% of time between crew visits, robots will be available to perform surface operations under ground control. Understanding how robotic systems can best address surface science needs, therefore, becomes a central issue Prior to surface missions, lunar orbiters (LRO, Kaguya, Chandrayyan-1, etc.) will map the Moon. These orbital missions will provide numerous types of maps: visible photography, topographic, mineralogical and geochemical distributions, etc. However, remote sensing data will not be of sufficient resolution, lighting, nor view angle, to fully optimize pre-human exploration planning, e.g., crew traverses for field geology and geophysics. Thus, it is important to acquire supplemental and complementary surface data. Robotic recon can obtain such data, using robot-mounted instruments to scout the surface and subsurface at resolutions and at viewpoints not achievable from orbit. This data can then be used to select locations for detailed field activity and prioritize targets to improve crew productivity. Surface data can also help identify and assess terrain hazards, and evaluate alternate routes to reduce operational risk. Robotic recon could be done months in advance, or be part of a continuing planning process during human missions.

  8. The Development of Instrumentation and Methods for Measurement of Air-Sea Interaction and Coastal Processes from Manned and Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Reineman, Benjamin D.

    I present the development of instrumentation and methods for the measurement of coastal processes, ocean surface phenomena, and air-sea interaction in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at Mc

  9. Tele-surgery simulation with a patient organ model for robotic surgery training.

    PubMed

    Suzuki, S; Suzuki, N; Hattori, A; Hayashibe, M; Konishi, K; Kakeji, Y; Hashizume, M

    2005-12-01

    Robotic systems are increasingly being incorporated into general laparoscopic and thoracoscopic surgery to perform procedures such as cholecystectomy and prostatectomy. Robotic assisted surgery allows the surgeon to conduct minimally invasive surgery with increased accuracy and with potential benefits for patients. However, current robotic systems have their limitations. These include the narrow operative field of view, which can make instrument manipulation difficult. Current robotic applications are also tailored to specific surgical procedures. For these reasons, there is an increasing demand on surgeons to master the skills of instrument manipulation and their surgical application within a controlled environment. This study describes the development of a surgical simulator for training and mastering procedures performed with the da Vinci surgical system. The development of a tele-surgery simulator and the construction of a training center are also described, which will enable surgeons to simulate surgery from or in remote places, to collaborate over long distances, and for off-site expert assistance. Copyright 2005 John Wiley & Sons, Ltd.

  10. A fuzzy neural network sliding mode controller for vibration suppression in robotically assisted minimally invasive surgery.

    PubMed

    Sang, Hongqiang; Yang, Chenghao; Liu, Fen; Yun, Jintian; Jin, Guoguang

    2016-12-01

    It is very important for robotically assisted minimally invasive surgery to achieve a high-precision and smooth motion control. However, the surgical instrument tip will exhibit vibration caused by nonlinear friction and unmodeled dynamics, especially when the surgical robot system is attempting low-speed, fine motion. A fuzzy neural network sliding mode controller (FNNSMC) is proposed to suppress vibration of the surgical robotic system. Nonlinear friction and modeling uncertainties are compensated by a Stribeck model, a radial basis function (RBF) neural network and a fuzzy system, respectively. Simulations and experiments were performed on a 3 degree-of-freedom (DOF) minimally invasive surgical robot. The results demonstrate that the FNNSMC is effective and can suppress vibrations at the surgical instrument tip. The proposed FNNSMC can provide a robust performance and suppress the vibrations at the surgical instrument tip, which can enhance the quality and security of surgical procedures. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Wyoming Cloud Lidar: instrument description and applications.

    PubMed

    Wang, Zhien; Wechsler, Perry; Kuestner, William; French, Jeffrey; Rodi, Alfred; Glover, Brent; Burkhart, Matthew; Lukens, Donal

    2009-08-03

    The Wyoming Cloud Lidar (WCL), a compact two-channel elastic lidar, was designed to obtain cloud measurements together with the Wyoming Cloud Radar (WCR) on the University of Wyoming King Air and the National Science Foundation/National Center of Atmospheric Research C-130 aircraft. The WCL has been deployed in four field projects under a variety of atmospheric and cloud conditions during the last two years. Throughout these campaigns, it has exhibited the needed reliability for turn-key operation from aircraft. We provide here an overview of the instrument and examples to illustrate the measurements capability of the WCL. Although the WCL as a standalone instrument can provide unique measurements for cloud and boundary layer aerosol studies, the synergy of WCL and WCR measurements coupled with in situ sampling from an aircraft provide a significant step forward in our ability to observe and understand cloud microphysical property evolution.

  12. Sprinkle Test by Phoenix Robotic Arm Movie

    NASA Image and Video Library

    2008-06-10

    NASA Phoenix Mars Lander used its Robotic Arm during the mission 15th Martian day since landing June 9, 2008 to test a prinkle method for delivering small samples of soil to instruments on the lander deck.

  13. Robotic Exploration of Moon and Mars: Thematic Education Approach

    NASA Technical Reports Server (NTRS)

    Allen, J S.; Tobola, K. W.; Lowes, L. L.; Betrue, R.

    2008-01-01

    Safe, sustained, affordable human and robotic exploration of the Moon, Mars, and beyond is a major NASA goal. Robotic exploration of the Moon and Mars will help pave the way for an expanded human presence in our solar system. To help share the robotic exploration role in the Vision for Space Exploration with classrooms, informal education groups, and the public, our team researched and consolidated the thematic story components and associated education activities into a useful education materials set for educators. We developed the set of materials for a workshop combining NASA Science Mission Directorate and Exploration Systems Mission Directorate engineering, science, and technology to train informal educators on education activities that support the robotic exploration themes. A major focus is on the use of robotic spacecraft and instruments to explore and prepare for the human exploration of the Moon and Mars.

  14. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery.

    PubMed

    Tan, Youri P A; Liverneaux, Philippe; Wong, Jason K F

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality.

  15. How to prepare the patient for robotic surgery: before and during the operation.

    PubMed

    Lim, Peter C; Kang, Elizabeth

    2017-11-01

    Robotic surgery in the treatment of gynecologic diseases continues to evolve and has become accepted over the last decade. The advantages of robotic-assisted laparoscopic surgery over conventional laparoscopy are three-dimensional camera vision, superior precision and dexterity with EndoWristed instruments, elimination of operator tremor, and decreased surgeon fatigue. The drawbacks of the technology are bulkiness and lack of tactile feedback. As with other surgical platforms, the limitations of robotic surgery must be understood. Patient selection and the types of surgical procedures that can be performed through the robotic surgical platform are critical to the success of robotic surgery. First, patient selection and the indication for gynecologic disease should be considered. Discussion with the patient regarding the benefits and potential risks of robotic surgery and of complications and alternative treatments is mandatory, followed by patient's signature indicating informed consent. Appropriate preoperative evaluation-including laboratory and imaging tests-and bowel cleansing should be considered depending upon the type of robotic-assisted procedure. Unlike other surgical procedures, robotic surgery is equipment-intensive and requires an appropriate surgical suite to accommodate the patient side cart, the vision system, and the surgeon's console. Surgical personnel must be properly trained with the robotics technology. Several factors must be considered to perform a successful robotic-assisted surgery: the indication and type of surgical procedure, the surgical platform, patient position and the degree of Trendelenburg, proper port placement configuration, and appropriate instrumentation. These factors that must be considered so that patients can be appropriately prepared before and during the operation are described. Copyright © 2017. Published by Elsevier Ltd.

  16. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-05-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  17. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-12-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.

  18. New Developments in Robotics and Single-site Gynecologic Surgery.

    PubMed

    Matthews, Catherine A

    2017-06-01

    Within the last 10 years there have been significant advances in minimal-access surgery. Although no emerging technology has demonstrated improved outcomes or fewer complications than standard laparoscopy, the introduction of the robotic surgical platform has significantly lowered abdominal hysterectomy rates. While operative time and cost were higher in robotic-assisted procedures when the technology was first introduced, newer studies demonstrate equivalent or improved robotic surgical efficiency with increased experience. Single-port hysterectomy has not improved postoperative pain or subjective cosmetic results. Emerging platforms with flexible, articulating instruments may increase the uptake of single-port procedures including natural orifice transluminal endoscopic cases.

  19. The evolving application of single-port robotic surgery in general surgery.

    PubMed

    Qadan, Motaz; Curet, Myriam J; Wren, Sherry M

    2014-01-01

    Advances in the field of minimally invasive surgery have grown since the original advent of conventional multiport laparoscopic surgery. The recent development of single incision laparoscopic surgery remains a relatively novel technique, and has had mixed reviews as to whether it has been associated with lower pain scores, shorter hospital stays, and higher satisfaction levels among patients undergoing procedures through cosmetically-appeasing single incisions. However, due to technical difficulties that arise from the clustering of laparoscopic instruments through a confined working space, such as loss of instrument triangulation, poor surgical exposure, and instrument clashing, uptake by surgeons without a specific interest and expertise in cutting-edge minimally invasive approaches has been limited. The parallel use of robotic surgery with single-port platforms, however, appears to counteract technical issues associated with single incision laparoscopic surgery through significant ergonomic improvements, including enhanced instrument triangulation, organ retraction, and camera localization within the surgical field. By combining the use of the robot with the single incision platform, the recognized challenges of single incision laparoscopic surgery are simplified, while maintaining potential advantages of the single-incision minimally invasive approach. This review provides a comprehensive report of the evolving application single-port robotic surgery in the field of general surgery today. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  20. Robot-assisted antegrade in-situ fenestrated stent grafting.

    PubMed

    Riga, Celia V; Bicknell, Colin D; Wallace, Daniel; Hamady, Mohamad; Cheshire, Nicholas

    2009-05-01

    To determine the technical feasibility of a novel approach of in-situ fenestration of aortic stent grafts by using a remotely controlled robotic steerable catheter system in the porcine model. A 65-kg pig underwent robot-assisted bilateral antegrade in-situ renal fenestration of an abdominal aortic stent graft with subsequent successful deployment of a bare metal stent into the right renal artery. A 16-mm iliac extension covered stent served as the porcine aortic endograft. Under fluoroscopic guidance, the graft was punctured with a 20-G customized diathermy needle that was introduced and kept in place by the robotic arm. The needle was exchanged for a 4 x 20 mm cutting balloon before successful deployment of the renal stent. Robot-assisted antegrade in-situ fenestration is technically feasible in a large mammalian model. The robotic system enables precise manipulation, stable positioning, and minimum instrumentation of the aorta and its branches while minimizing radiation exposure.

  1. Robot-Assisted Antegrade In-Situ Fenestrated Stent Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riga, Celia V., E-mail: c.riga@imperial.ac.uk; Bicknell, Colin D.; Wallace, Daniel

    2009-05-15

    To determine the technical feasibility of a novel approach of in-situ fenestration of aortic stent grafts by using a remotely controlled robotic steerable catheter system in the porcine model. A 65-kg pig underwent robot-assisted bilateral antegrade in-situ renal fenestration of an abdominal aortic stent graft with subsequent successful deployment of a bare metal stent into the right renal artery. A 16-mm iliac extension covered stent served as the porcine aortic endograft. Under fluoroscopic guidance, the graft was punctured with a 20-G customized diathermy needle that was introduced and kept in place by the robotic arm. The needle was exchanged formore » a 4 x 20 mm cutting balloon before successful deployment of the renal stent. Robot-assisted antegrade in-situ fenestration is technically feasible in a large mammalian model. The robotic system enables precise manipulation, stable positioning, and minimum instrumentation of the aorta and its branches while minimizing radiation exposure.« less

  2. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Instruments Overboard On July 26, 2014, scientists worked past dusk to prepare and deploy the optical instruments and ocean water sensors during NASA's SABOR experiment. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific . NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Electrosurgical injuries during robot assisted surgery: insights from the FDA MAUDE database

    NASA Astrophysics Data System (ADS)

    Fuller, Andrew; Vilos, George A.; Pautler, Stephen E.

    2012-02-01

    Introduction: The da Vinci surgical system requires the use of electrosurgical instruments. The re-use of such instruments creates the potential for stray electrical currents from capacitive coupling and/or insulation failure with subsequent injury. The morbidity of such injuries may negate many of the benefits of minimally invasive surgery. We sought to evaluate the rate and nature of electrosurgical injury (ESI) associated with this device. Methods: The Manufacturer and User Facility Device Experience (MAUDE) database is administered by the US Food and Drug Administration (FDA) and reports adverse events related to medical devices in the United States. We analyzed all incidents in the context of robotic surgery between January 2001 and June 2011 to identify those related to the use of electrosurgery. Results: In the past decade, a total of 605 reports have been submitted to the FDA with regard to adverse events related to the da Vinci robotic surgical platform. Of these, 24 (3.9%) were related to potential or actual ESI. Nine out of the 24 cases (37.5%) resulted in additional surgical intervention for repair. There were 6 bowel injuries of which only one was recognized and managed intra-operatively. The remainder required laparotomy between 5 and 8 days after the initial robotic procedure. Additionally, there were 3 skin burns. The remaining cases required conservative management or resulted in no harm. Conclusion: ESI in the context of robotic surgery is uncommon but remains under-recognized and under-reported. Surgeons performing robot assisted surgery should be aware that ESI can occur with robotic instruments and vigilance for intra- and post-operative complications is paramount.

  4. Robots in food systems: a review and assessment of potential uses.

    PubMed

    Adams, E A; Messersmith, A M

    1986-04-01

    Management personnel in foodservice, food processing, and robot industries were surveyed to evaluate potential job functions for robots in the food industry. The survey instrument listed 64 different food-related job functions that participants were asked to assess as appropriate or not appropriate for robotic implementation. Demographic data were collected from each participant to determine any positive or negative influence on job function responses. The survey responses were statistically evaluated using frequencies and the chi-square test of significance. Sixteen of the 64 job functions were identified as appropriate for robot implementation in food industries by both robot manufacturing and food managers. The study indicated, first, that food managers lack knowledge about robots and robot manufacturing managers lack knowledge about food industries. Second, robots are not currently being used to any extent in the food industry. Third, analysis of the demographic data in relation to the 16 identified job functions showed no significant differences in responses.

  5. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  6. {open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacker, J.M.

    1996-11-01

    {open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally andmore » externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.« less

  7. An Integrated Fault Tolerant Robotic Controller System for High Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam S.; Hecht, Myron

    1994-01-01

    This paper describes the concepts and features of a fault-tolerant intelligent robotic control system being developed for applications that require high dependability (reliability, availability, and safety). The system consists of two major elements: a fault-tolerant controller and an operator workstation. The fault-tolerant controller uses a strategy which allows for detection and recovery of hardware, operating system, and application software failures.The fault-tolerant controller can be used by itself in a wide variety of applications in industry, process control, and communications. The controller in combination with the operator workstation can be applied to robotic applications such as spaceborne extravehicular activities, hazardous materials handling, inspection and maintenance of high value items (e.g., space vehicles, reactor internals, or aircraft), medicine, and other tasks where a robot system failure poses a significant risk to life or property.

  8. A pilot's opinion - VTOL control design requirements for the instrument approach task.

    NASA Technical Reports Server (NTRS)

    Patton, J. M., Jr.

    1972-01-01

    This paper presents pilot opinion supported by test data concerning flight control and display concepts and control system design requirements for VTOL aircraft in the instrument approach task. Material presented is drawn from research flights in the following aircraft: Dornier DO-31, Short SC-1, LTV XC-142A, and Boeing-Vertol CH-46. The control system concepts and mechanizations employed in the above aircraft are discussed, and the effect of control system augmentation is shown on performance. Operational procedures required in the instrument approach task are described, with comments on need for automation and combining of control functions.

  9. Hydraulic Robotic Surgical Tool Changing Manipulator

    PubMed Central

    Pourghodrat, Abolfazl; Nelson, Carl A.; Oleynikov, Dmitry

    2017-01-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a surgical technique to perform “scarless” abdominal operations. Robotic technology has been exploited to improve NOTES and circumvent its limitations. Lack of a multitasking platform is a major limitation. Manual tool exchange can be time consuming and may lead to complications such as bleeding. Previous multifunctional manipulator designs use electric motors. These designs are bulky, slow, and expensive. This paper presents design, prototyping, and testing of a hydraulic robotic tool changing manipulator. The manipulator is small, fast, low-cost, and capable of carrying four different types of laparoscopic instruments. PMID:28450979

  10. Control Architecture for Robotic Agent Command and Sensing

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel

    2008-01-01

    Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to

  11. Long-term greenhouse gas measurements from aircraft

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Wolter, S.; Newberger, T.; Chen, H.; Andrews, A.; Kofler, J.; Neff, D.; Tans, P.

    2012-10-01

    In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to

  12. Recent Progress Towards Predicting Aircraft Ground Handling Performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques.

  13. Robotic Surgery in Gynecology

    PubMed Central

    Bouquet de Joliniere, Jean; Librino, Armando; Dubuisson, Jean-Bernard; Khomsi, Fathi; Ben Ali, Nordine; Fadhlaoui, Anis; Ayoubi, J. M.; Feki, Anis

    2016-01-01

    Minimally invasive surgery (MIS) can be considered as the greatest surgical innovation over the past 30 years. It revolutionized surgical practice with well-proven advantages over traditional open surgery: reduced surgical trauma and incision-related complications, such as surgical-site infections, postoperative pain and hernia, reduced hospital stay, and improved cosmetic outcome. Nonetheless, proficiency in MIS can be technically challenging as conventional laparoscopy is associated with several limitations as the two-dimensional (2D) monitor reduction in-depth perception, camera instability, limited range of motion, and steep learning curves. The surgeon has a low force feedback, which allows simple gestures, respect for tissues, and more effective treatment of complications. Since the 1980s, several computer sciences and robotics projects have been set up to overcome the difficulties encountered with conventional laparoscopy, to augment the surgeon’s skills, achieve accuracy and high precision during complex surgery, and facilitate widespread of MIS. Surgical instruments are guided by haptic interfaces that replicate and filter hand movements. Robotically assisted technology offers advantages that include improved three-dimensional stereoscopic vision, wristed instruments that improve dexterity, and tremor canceling software that improves surgical precision. PMID:27200358

  14. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  15. Robotics in Cardiac Surgery: Past, Present, and Future

    PubMed Central

    Bush, Bryan; Nifong, L. Wiley; Chitwood, W. Randolph

    2013-01-01

    Robotic cardiac operations evolved from minimally invasive operations and offer similar theoretical benefits, including less pain, shorter length of stay, improved cosmesis, and quicker return to preoperative level of functional activity. The additional benefits offered by robotic surgical systems include improved dexterity and degrees of freedom, tremor-free movements, ambidexterity, and the avoidance of the fulcrum effect that is intrinsic when using long-shaft endoscopic instruments. Also, optics and operative visualization are vastly improved compared with direct vision and traditional videoscopes. Robotic systems have been utilized successfully to perform complex mitral valve repairs, coronary revascularization, atrial fibrillation ablation, intracardiac tumor resections, atrial septal defect closures, and left ventricular lead implantation. The history and evolution of these procedures, as well as the present status and future directions of robotic cardiac surgery, are presented in this review. PMID:23908867

  16. Electromagnetic navigational bronchoscopy and robotic-assisted thoracic surgery.

    PubMed

    Christie, Sara

    2014-06-01

    With the use of electromagnetic navigational bronchoscopy and robotics, lung lesions can be diagnosed and resected during one surgical procedure. Global positioning system technology allows surgeons to identify and mark a thoracic tumor, and then robotics technology allows them to perform minimally invasive resection and cancer staging procedures. Nurses on the perioperative robotics team must consider the logistics of providing safe and competent care when performing combined procedures during one surgical encounter. Instrumentation, OR organization and room setup, and patient positioning are important factors to consider to complete the procedure systematically and efficiently. This revolutionary concept of combining navigational bronchoscopy with robotics requires a team of dedicated nurses to facilitate the sequence of events essential for providing optimal patient outcomes in highly advanced surgical procedures. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  17. 14 CFR 23.1303 - Flight and navigation instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... navigation instruments: (a) An airspeed indicator. (b) An altimeter. (c) A magnetic direction indicator. (d... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight and navigation instruments. 23.1303... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment...

  18. Costs of Robotic-Assisted Versus Traditional Laparoscopy in Endometrial Cancer.

    PubMed

    Vuorinen, Riikka-Liisa K; Mäenpää, Minna M; Nieminen, Kari; Tomás, Eija I; Luukkaala, Tiina H; Auvinen, Anssi; Mäenpää, Johanna U

    2017-10-01

    The purpose of this study was to compare the costs of traditional laparoscopy and robotic-assisted laparoscopy in the treatment of endometrial cancer. A total of 101 patients with endometrial cancer were randomized to the study and operated on starting from 2010 until 2013, at the Department of Obstetrics and Gynecology of Tampere University Hospital, Tampere, Finland. Costs were calculated based on internal accounting, hospital database, and purchase prices and were compared using intention-to-treat analysis. Main outcome measures were item costs and total costs related to the operation, including a 6-month postoperative follow-up. The total costs including late complications were 2160 &OV0556; higher in the robotic group (median for traditional 5823 &OV0556;, vs robot median 7983 &OV0556;, P < 0.001). The difference was due to higher costs for instruments and equipment as well as to more expensive operating room and postanesthesia care unit time. Traditional laparoscopy involved higher costs for operation personnel, general costs, medication used in the operation, and surgeon, although these costs were not substantial. There was no significant difference in in-patient stay, laboratory, radiology, blood products, or costs related to complications. According to this study, robotic-assisted laparoscopy is 37% more expensive than traditional laparoscopy in the treatment of endometrial cancer. The cost difference is mainly explained by amortization of the robot and its instrumentation.

  19. Automated site characterization for robotic sample acquisition systems

    NASA Astrophysics Data System (ADS)

    Scholl, Marija S.; Eberlein, Susan J.

    1993-04-01

    A mobile, semiautonomous vehicle with multiple sensors and on-board intelligence is proposed for performing preliminary scientific investigations on extraterrestrial bodies prior to human exploration. Two technologies, a hybrid optical-digital computer system based on optical correlator technology and an image and instrument data analysis system, provide complementary capabilities that might be part of an instrument package for an intelligent robotic vehicle. The hybrid digital-optical vision system could perform real-time image classification tasks using an optical correlator with programmable matched filters under control of a digital microcomputer. The data analysis system would analyze visible and multiband imagery to extract mineral composition and textural information for geologic characterization. Together these technologies would support the site characterization needs of a robotic vehicle for both navigational and scientific purposes.

  20. JETCAL 2000R Analyzer H337PA-603 Operational Test and Evaluation (OT&E) on H-53 E/J Aircraft and H46 D/E Aircraft

    DTIC Science & Technology

    2003-01-28

    Proposal Title PORTABLE TEST CELL - JETCAL 2000(R) Lead Proposer HOWELL INSTRUMENTS Military Customer NAVY/MARINE H53...B-4 Proposal Title PORTABLE TEST CELL - JETCAL 2000(R) Lead Proposer HOWELL INSTRUMENTS Military Customer...TEST CELL - JETCAL 2000(R) Lead Proposer HOWELL INSTRUMENTS Military Customer NAVY/MARINE H53 AIRCRAFT Baseline Costs -- DoD’s Costs When COSSI is NOT

  1. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    NASA Astrophysics Data System (ADS)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  2. Radio Wavelength Studies of the Galactic Center Source N3, Spectroscopic Instrumentation For Robotic Telescope Systems, and Developing Active Learning Activities for Astronomy Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Ludovici, Dominic Alesio

    2017-08-01

    The mysterious radio source N3 appears to be located within the vicinity of the Radio Arc region of the Galactic Center. To investigate the nature of this source, we have conducted radio observations with the VLA and the VLBA. Continuum observations between 2 and 50 GHz reveal that N3 is an extremely compact and bright source with a non-thermal spectrum. Molecular line observations with the VLA reveal a compact molecular cloud adjacent to N3 in projection. The properties of this cloud are consistent with other galactic center clouds. We are able to rule out several hypotheses for the nature of N3, though a micro-blazar origin cannot be ruled out. Robotic Telescope systems are now seeing widespread deployment as both teaching and research instruments. While these systems have traditionally been able to produce high quality images, these systems have lacked the capability to conduct spectroscopic observations. To enable spectroscopic observations on the Iowa Robotic Observatory, we have developed a low cost (˜ 500), low resolution (R ˜ 300) spectrometer which mounts inside a modified filter wheel and a moderate cost (˜ 5000), medium resolution (R ˜ 8000) fiber-fed spectrometer. Software has been developed to operate both instruments robotically and calibration pipelines are being developed to automate calibration of the data. The University of Iowa offers several introductory astronomy laboratory courses taken by many hundreds of students each semester. To improve student learning in these laboratory courses, we have worked to integrate active learning into laboratory activities. We present the pedagogical approaches used to develop and update the laboratory activities and present an inventory of the current laboratory exercises. Using the inventory, we make observations of the strengths and weaknesses of the current exercises and provide suggestions for future refinement of the astronomy laboratory curriculum.

  3. Space robotics: Recent accomplishments and opportunities for future research

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Buttrill, Carey S.; Dorsey, John T.; Juang, Jer-Nan; Lallman, Frederick J.; Moerder, Daniel D.; Scott, Michael A.; Troutman, Patrick; Williams, Robert L., II

    1992-01-01

    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.)

  4. A scanning laser rangefinder for a robotic vehicle

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Johnston, A. R.

    1977-01-01

    A scanning Laser Rangefinder (LRF) which operates in conjunction with a minicomputer as part of a robotic vehicle is described. The description, in sufficient detail for replication, modification, and maintenance, includes both hardware and software. Also included is a discussion of functional requirements relative to a detailing of the instrument and its performance, a summary of the robot system in which the LRF functions, the software organization, interfaces and description, and the applications to which the LRF has been put.

  5. Using robots to understand animal cognition.

    PubMed

    Frohnwieser, Anna; Murray, John C; Pike, Thomas W; Wilkinson, Anna

    2016-01-01

    In recent years, robotic animals and humans have been used to answer a variety of questions related to behavior. In the case of animal behavior, these efforts have largely been in the field of behavioral ecology. They have proved to be a useful tool for this enterprise as they allow the presentation of naturalistic social stimuli whilst providing the experimenter with full control of the stimulus. In interactive experiments, the behavior of robots can be controlled in a manner that is impossible with real animals, making them ideal instruments for the study of social stimuli in animals. This paper provides an overview of the current state of the field and considers the impact that the use of robots could have on fundamental questions related to comparative psychology: namely, perception, spatial cognition, social cognition, and early cognitive development. We make the case that the use of robots to investigate these key areas could have an important impact on the field of animal cognition. © 2016 Society for the Experimental Analysis of Behavior.

  6. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  7. Current Limitations of Surgical Robotics in Reconstructive Plastic Microsurgery

    PubMed Central

    Tan, Youri P. A.; Liverneaux, Philippe; Wong, Jason K. F.

    2018-01-01

    Surgical robots have the potential to provide surgeons with increased capabilities, such as removing physiologic tremor, scaling motion and increasing manual dexterity. Several surgical specialties have subsequently integrated robotic surgery into common clinical practice. Plastic and reconstructive microsurgical procedures have not yet  benefitted significantly from technical developments observed over the last two decades. Several studies have successfully demonstrated the feasibility of utilising surgical robots in plastic surgery procedures, yet limited work has been done to identify and analyse current barriers that have prevented wide-scale adaptation of surgical robots for microsurgery. Therefore, a systematic review using PubMed, MEDLINE, Embase and Web of Science databases was performed, in order to evaluate current state of surgical robotics within the field of reconstructive microsurgery and their limitations. Despite the theoretical potential of surgical robots, current commercially available robotic systems are suboptimal for plastic or reconstructive microsurgery. Absence of bespoke microsurgical instruments, increases in operating time, and high costs associated with robotic-assisted provide a barrier to using such systems effectively for reconstructive microsurgery. Consequently, surgical robots provide currently little overall advantage over conventional microsurgery. Nevertheless, if current barriers can be addressed and systems are specifically designed for microsurgery, surgical robots may have the potential of meaningful impact on clinical outcomes within  this surgical subspeciality. PMID:29740585

  8. Miniature surgical robot for laparoendoscopic single-incision colectomy.

    PubMed

    Wortman, Tyler D; Meyer, Avishai; Dolghi, Oleg; Lehman, Amy C; McCormick, Ryan L; Farritor, Shane M; Oleynikov, Dmitry

    2012-03-01

    This study aimed to demonstrate the effectiveness of using a multifunctional miniature in vivo robotic platform to perform a single-incision colectomy. Standard laparoscopic techniques require multiple ports. A miniature robotic platform to be inserted completely into the peritoneal cavity through a single incision has been designed and built. The robot can be quickly repositioned, thus enabling multiquadrant access to the abdominal cavity. The miniature in vivo robotic platform used in this study consists of a multifunctional robot and a remote surgeon interface. The robot is composed of two arms with shoulder and elbow joints. Each forearm is equipped with specialized interchangeable end effectors (i.e., graspers and monopolar electrocautery). Five robotic colectomies were performed in a porcine model. For each procedure, the robot was completely inserted into the peritoneal cavity, and the surgeon manipulated the user interface to control the robot to perform the colectomy. The robot mobilized the colon from its lateral retroperitoneal attachments and assisted in the placement of a standard stapler to transect the sigmoid colon. This objective was completed for all five colectomies without any complications. The adoption of both laparoscopic and single-incision colectomies currently is constrained by the inadequacies of existing instruments. The described multifunctional robot provides a platform that overcomes existing limitations by operating completely within one incision in the peritoneal cavity and by improving visualization and dexterity. By repositioning the small robot to the area of the colon to be mobilized, the ability of the surgeon to perform complex surgical tasks is improved. Furthermore, the success of the robot in performing a completely in vivo colectomy suggests the feasibility of using this robotic platform to perform other complex surgeries through a single incision.

  9. Ultrawideband Electromagnetic Interference to Aircraft Radios

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Fuller, Gerald L.; Shaver, Timothy W.

    2002-01-01

    A very recent FCC Final Rule now permits marketing and operation of new products that incorporate Ultrawideband (UWB) technology into handheld devices. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This paper provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  10. The EDOP radar system on the high-altitude NASA ER-2 aircraft

    USGS Publications Warehouse

    Heymsfield, G.M.; Bidwell, S.W.; Caylor, I.J.; Ameen, S.; Nicholson, S.; Boncyk, W.; Miller, L.; Vandemark, D.; Racette, P.E.; Dod, L.R.

    1996-01-01

    The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-2 Doppler radar (EDOP) has been developed and flown on the ER-2 aircraft. EDOP is a fully coherent Doppler weather radar with fixed nadir and forward pointing (33?? off nadir) beams that map out Doppler winds and reflectivities in the vertical plane along the aircraft motion vector. Doppler winds from the two beams can be used to derive vertical and along-track air motions. In addition, the forward beam provides linear depolarization measurements that are useful in discriminating microphysical characteristics of the precipitation. This paper deals with a general description of the EDOP instrument including the measurement concept, the system configuration and hardware, and recently obtained data examples from the instrument. The combined remote sensing package on the ER-2, along with EDOP, provides a unique platform for simulating spaceborne remote sensing of precipitation.

  11. 14 CFR 25.1331 - Instruments using a power supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25... may be accomplished automatically or by manual means. (3) If an instrument presenting navigation data... gyroscopic direction indicator that includes a magnetic sensing element, a gyroscopic unit, an amplifier and...

  12. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery.

    PubMed

    Kim, Ho-Joong; Jung, Whan-Ik; Chang, Bong-Soon; Lee, Choon-Ki; Kang, Kyoung-Tak; Yeom, Jin S

    2017-09-01

    The purpose of this study was to compare the accuracy and safety of an instrumented posterior lumbar interbody fusion (PLIF) using a robot-assisted minimally invasive (Robot-PLIF) or a conventional open approach (Freehand-PLIF). Patients undergoing an instrumented PLIF were randomly assigned to be treated using a Robot-PLIF (37 patients) and a Freehand-PLIF (41 patients). For intrapedicular accuracy, there was no significant difference between the groups (P = 0.534). For proximal facet joint accuracy, none of the 74 screws in the Robot-PLIF group violated the proximal facet joint, while 13 of 82 in the Freehand-PLIF group violated the proximal facet joint (P < 0.001). The average distance of the screws from the facets was 5.2 ± 2.1 mm and 2.7 ± 1.6 mm in the Robot-PLIF and Freehand-PLIF groups, respectively (P < 0.001). Robotic-assisted pedicle screw placement was associated with fewer proximal facet joint violations and better convergence orientations. Copyright © 2016 John Wiley & Sons, Ltd.

  13. [Robotic assistance in gynaecological surgery: State-of-the-art].

    PubMed

    Monsarrat, N; Collinet, P; Narducci, F; Leblanc, E; Vinatier, D

    2009-05-01

    From the Automated Endoscopic System for Optimal Positioning (AESOP), a robotic arm which operates the laparoscope, to the robots Zeus and da Vinci, robotic assistance in gynaecological endoscopic surgery has continuously evolved for the last fifteen years or so. It has brought about new technical advancements: the last generation robots offer a steady three-dimensional image, improved instrument dexterity and precision, higher ergonomics and comfort for the surgeon. The da Vinci robotic system has been used without evincing any specific morbidity in various cases, notably for tubal reanastomosis, myomectomy, hysterectomy, pelvic and para-aortic lymphadenectomy or sacrocolpopexy amongst others. Robotic assistance in gynaecology is thus feasible. Like conventional laparoscopic surgery, it allows decreased blood loss and morbidity as well as shorter hospital stay, as compared to laparotomy. It might indeed allow many surgical teams to perform minimally invasive surgical procedures which they were not used to performing by laparoscopy. Randomized prospective studies are needed to define its indications more precisely. Besides, its medico-financial impact should be evaluated too.

  14. A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick.

    PubMed

    Kim, Myungjoon; Lee, Chiwon; Park, Woo Jung; Suh, Yun Suhk; Yang, Han Kwang; Kim, H Jin; Kim, Sungwan

    2016-05-20

    Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. The NMI was operated for 185 min and reflected the surgeon's decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. Various experiments were conducted and it is verified that the proposed assistant

  15. Initial experience using a robotic-driven laparoscopic needle holder with ergonomic handle: assessment of surgeons' task performance and ergonomics.

    PubMed

    Sánchez-Margallo, Juan A; Sánchez-Margallo, Francisco M

    2017-12-01

    The objective of this study is to assess the surgeons' performance and ergonomics during the use of a robotic-driven needle holder in laparoscopic suturing tasks. Six right-handed laparoscopic surgeons with different levels of experience took part in this study. Participants performed a set of three different intracorporeal suturing tasks organized in ten trials during a period of five weeks. Surgeons used both conventional (Conv) and robotic (Rob) laparoscopic needle holders. Precision using the surgical needle, quality of the intracorporeal suturing performance, execution time and leakage pressure for the urethrovesical anastomosis, as well as the ergonomics of the surgeon's hand posture, were analyzed during the first, fifth and last trials. No statistically significant differences in precision and quality of suturing performance were obtained between both groups of instruments. Surgeons required more time using the robotic instrument than using the conventional needle holder to perform the urethrovesical anastomosis, but execution time was significantly reduced after training ([Formula: see text] 0.05). There were no differences in leakage pressure for the anastomoses carried out by both instruments. After training, novice surgeons significantly improved the ergonomics of the wrist ([Formula: see text] 0.05) and index finger (Conv: 36.381[Formula: see text], Rob: 30.389[Formula: see text]; p = 0.024) when using the robotic instrument compared to the conventional needle holder. Results have shown that, although both instruments offer similar technical performance, the robotic-driven instrument results in better ergonomics for the surgeon's hand posture compared to the use of a conventional laparoscopic needle holder in intracorporeal suturing.

  16. Robot-assisted vitreoretinal surgery: current perspectives

    PubMed Central

    Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L

    2018-01-01

    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to “robotic medicine”. Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon’s capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society. PMID:29527537

  17. Robot-assisted vitreoretinal surgery: current perspectives.

    PubMed

    Roizenblatt, Marina; Edwards, Thomas L; Gehlbach, Peter L

    2018-01-01

    Vitreoretinal microsurgery is among the most technically challenging of the minimally invasive surgical techniques. Exceptional precision is required to operate on micron scale targets presented by the retina while also maneuvering in a tightly constrained and fragile workspace. These challenges are compounded by inherent limitations of the unassisted human hand with regard to dexterity, tremor and precision in positioning instruments. The limited human ability to visually resolve targets on the single-digit micron scale is a further limitation. The inherent attributes of robotic approaches therefore, provide logical, strategic and promising solutions to the numerous challenges associated with retinal microsurgery. Robotic retinal surgery is a rapidly emerging technology that has witnessed an exponential growth in capabilities and applications over the last decade. There is now a worldwide movement toward evaluating robotic systems in an expanding number of clinical applications. Coincident with this expanding application is growth in the number of laboratories committed to "robotic medicine". Recent technological advances in conventional retina surgery have also led to tremendous progress in the surgeon's capabilities, enhanced outcomes, a reduction of patient discomfort, limited hospitalization and improved safety. The emergence of robotic technology into this rapidly advancing domain is expected to further enhance important aspects of the retinal surgery experience for the patients, surgeons and society.

  18. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  19. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature

    PubMed Central

    Xie, Yu; Liu, Shuang; Sun, Dong

    2018-01-01

    Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future. PMID:29439539

  20. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature.

    PubMed

    Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong

    2018-02-12

    Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  1. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion.

    PubMed

    Graule, M A; Chirarattananon, P; Fuller, S B; Jafferis, N T; Ma, K Y; Spenko, M; Kornbluh, R; Wood, R J

    2016-05-20

    For aerial robots, maintaining a high vantage point for an extended time is crucial in many applications. However, available on-board power and mechanical fatigue constrain their flight time, especially for smaller, battery-powered aircraft. Perching on elevated structures is a biologically inspired approach to overcome these limitations. Previous perching robots have required specific material properties for the landing sites, such as surface asperities for spines, or ferromagnetism. We describe a switchable electroadhesive that enables controlled perching and detachment on nearly any material while requiring approximately three orders of magnitude less power than required to sustain flight. These electroadhesives are designed, characterized, and used to demonstrate a flying robotic insect able to robustly perch on a wide range of materials, including glass, wood, and a natural leaf. Copyright © 2016, American Association for the Advancement of Science.

  2. Applications of Evolving Robotic Technology for Head and Neck Surgery.

    PubMed

    Sharma, Arun; Albergotti, W Greer; Duvvuri, Umamaheswar

    2016-03-01

    Assess the use and potential benefits of a new robotic system for transoral radical tonsillectomy, transoral supraglottic laryngectomy, and retroauricular thyroidectomy in a cadaver dissection. Three previously described robotic procedures (transoral radical tonsillectomy, transoral supraglottic laryngectomy, and retroauricular thyroidectomy) were performed in a cadaver using the da Vinci Xi Surgical System. Surgical exposure and access, operative time, and number of collisions were examined objectively. The new robotic system was used to perform transoral radical tonsillectomy with dissection and preservation of glossopharyngeal nerve branches, transoral supraglottic laryngectomy, and retroauricular thyroidectomy. There was excellent exposure without any difficulties in access. Robotic operative times (excluding set-up and docking times) for the 3 procedures in the cadaver were 12.7, 14.3, and 21.2 minutes (excluding retroauricular incision and subplatysmal elevation), respectively. No robotic arm collisions were noted during these 3 procedures. The retroauricular thyroidectomy was performed using 4 robotic ports, each with 8 mm instruments. The use of updated and evolving robotic technology improves the ease of previously described robotic head and neck procedures and may allow surgeons to perform increasingly complex surgeries. © The Author(s) 2015.

  3. Aircraft measurements of pollution species near Bermuda and the east coast of the United States during CASE-WATOX. Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunter, R.L.; Boatman, J.F.

    1989-10-01

    Chemical, meteorological, and aerosol measurements were made with the NOAA King Air C-90 aircraft during July 1988 near Bermuda and the east coast of the U.S. The study extended the 1985 and 1986 Western Atlantic Ocean Experiment (WATOX) and initiated coordinated aircraft and ship measurements, following the design of the Coordinated Air Sea Experiment (CASE), in which flights were planned to be made in the vicinity of the NOAA ship Mt. Mitchell. The report lists the objectives of the CASE-WATOX program; the instrumentation used, and the data obtained with the aircraft; a general outline of ship and aircraft coordination andmore » instrumentation; and the aircraft data processing, quality and availability.« less

  4. Impact of Robotic Surgery on Decision Making: Perspectives of Surgical Teams

    PubMed Central

    Randell, Rebecca; Alvarado, Natasha; Honey, Stephanie; Greenhalgh, Joanne; Gardner, Peter; Gill, Arron; Jayne, David; Kotze, Alwyn; Pearman, Alan; Dowding, Dawn

    2015-01-01

    There has been rapid growth in the purchase of surgical robots in both North America and Europe in recent years. Whilst this technology promises many benefits for patients, the introduction of such a complex interactive system into healthcare practice often results in unintended consequences that are difficult to predict. Decision making by surgeons during an operation is affected by variables including tactile perception, visual perception, motor skill, and instrument complexity, all of which are changed by robotic surgery, yet the impact of robotic surgery on decision making has not been previously studied. Drawing on the approach of realist evaluation, we conducted a multi-site interview study across nine hospitals, interviewing 44 operating room personnel with experience of robotic surgery to gather their perspectives on how robotic surgery impacts surgeon decision making. The findings reveal both potential benefits and challenges of robotic surgery for decision making. PMID:26958244

  5. Impact of Robotic Surgery on Decision Making: Perspectives of Surgical Teams.

    PubMed

    Randell, Rebecca; Alvarado, Natasha; Honey, Stephanie; Greenhalgh, Joanne; Gardner, Peter; Gill, Arron; Jayne, David; Kotze, Alwyn; Pearman, Alan; Dowding, Dawn

    2015-01-01

    There has been rapid growth in the purchase of surgical robots in both North America and Europe in recent years. Whilst this technology promises many benefits for patients, the introduction of such a complex interactive system into healthcare practice often results in unintended consequences that are difficult to predict. Decision making by surgeons during an operation is affected by variables including tactile perception, visual perception, motor skill, and instrument complexity, all of which are changed by robotic surgery, yet the impact of robotic surgery on decision making has not been previously studied. Drawing on the approach of realist evaluation, we conducted a multi-site interview study across nine hospitals, interviewing 44 operating room personnel with experience of robotic surgery to gather their perspectives on how robotic surgery impacts surgeon decision making. The findings reveal both potential benefits and challenges of robotic surgery for decision making.

  6. Validation of a virtual reality-based robotic surgical skills curriculum.

    PubMed

    Connolly, Michael; Seligman, Johnathan; Kastenmeier, Andrew; Goldblatt, Matthew; Gould, Jon C

    2014-05-01

    The clinical application of robotic-assisted surgery (RAS) is rapidly increasing. The da Vinci Surgical System™ is currently the only commercially available RAS system. The skills necessary to perform robotic surgery are unique from those required for open and laparoscopic surgery. A validated laparoscopic surgical skills curriculum (fundamentals of laparoscopic surgery or FLS™) has transformed the way surgeons acquire laparoscopic skills. There is a need for a similar skills training and assessment tool specific for robotic surgery. Based on previously published data and expert opinion, we developed a robotic skills curriculum. We sought to evaluate this curriculum for evidence of construct validity (ability to discriminate between users of different skill levels). Four experienced surgeons (>20 RAS) and 20 novice surgeons (first-year medical students with no surgical or RAS experience) were evaluated. The curriculum comprised five tasks utilizing the da Vinci™ Skills Simulator (Pick and Place, Camera Targeting 2, Peg Board 2, Matchboard 2, and Suture Sponge 3). After an orientation to the robot and a period of acclimation in the simulator, all subjects completed three consecutive repetitions of each task. Computer-derived performance metrics included time, economy of motion, master work space, instrument collisions, excessive force, distance of instruments out of view, drops, missed targets, and overall scores (a composite of all metrics). Experienced surgeons significantly outperformed novice surgeons in most metrics. Statistically significant differences were detected for each task in regards to mean overall scores and mean time (seconds) to completion. The curriculum we propose is a valid method of assessing and distinguishing robotic surgical skill levels on the da Vinci Si™ Surgical System. Further study is needed to establish proficiency levels and to demonstrate that training on the simulator with the proposed curriculum leads to improved robotic

  7. Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer.

    PubMed

    Brown, Jeremy D; O Brien, Conor E; Leung, Sarah C; Dumon, Kristoffel R; Lee, David I; Kuchenbecker, Katherine J

    2017-09-01

    Most trainees begin learning robotic minimally invasive surgery by performing inanimate practice tasks with clinical robots such as the Intuitive Surgical da Vinci. Expert surgeons are commonly asked to evaluate these performances using standardized five-point rating scales, but doing such ratings is time consuming, tedious, and somewhat subjective. This paper presents an automatic skill evaluation system that analyzes only the contact force with the task materials, the broad-bandwidth accelerations of the robotic instruments and camera, and the task completion time. We recruited N = 38 participants of varying skill in robotic surgery to perform three trials of peg transfer with a da Vinci Standard robot instrumented with our Smart Task Board. After calibration, three individuals rated these trials on five domains of the Global Evaluative Assessment of Robotic Skill (GEARS) structured assessment tool, providing ground-truth labels for regression and classification machine learning algorithms that predict GEARS scores based on the recorded force, acceleration, and time signals. Both machine learning approaches produced scores on the reserved testing sets that were in good to excellent agreement with the human raters, even when the force information was not considered. Furthermore, regression predicted GEARS scores more accurately and efficiently than classification. A surgeon's skill at robotic peg transfer can be reliably rated via regression using features gathered from force, acceleration, and time sensors external to the robot. We expect improved trainee learning as a result of providing these automatic skill ratings during inanimate task practice on a surgical robot.

  8. Robotic Two-Wheeled Vehicle

    NASA Technical Reports Server (NTRS)

    Edlund, Jeffrey E. (Inventor); Burdick, Joel (Inventor); Abad-Manterola, Pablo (Inventor); Matthews, Jaret B. (Inventor); Nesnas, Issa A. D. (Inventor)

    2014-01-01

    A robotic two-wheeled vehicle comprising a connection body interposed between the two wheels are described. A drum can be coaxially located in a central region of the connection body and can support a hollow arm projecting radially from the drum. A tether can be inserted in the arm and connected to a second drum. Instruments and sensors can be accommodated in a case housed inside each wheel.

  9. Robotic Two-Wheeled Vehicle

    NASA Technical Reports Server (NTRS)

    Nesnas, Issa A. D. (Inventor); Matthews, Jaret B. (Inventor); Edlund, Jeffrey E. (Inventor); Burdick, Joel (Inventor); Abad-Manterola, Pablo (Inventor)

    2013-01-01

    A robotic two-wheeled vehicle comprising a connection body interposed between the two wheels are described. A drum can be coaxially located in a central region of the connection body and can support a hollow arm projecting radially from the drum. A tether can be inserted in the arm and connected to a second drum. Instruments and sensors can be accommodated in a case housed inside each wheel.

  10. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  11. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  12. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing

    PubMed Central

    Reyno, Tyler; Underhill, P. Ross; Krause, Thomas W.; Marsden, Catharine; Wowk, Diane

    2017-01-01

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm2 area with dents ranging in depth from 0.13–1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment. PMID:28906434

  13. Surface Profiling and Core Evaluation of Aluminum Honeycomb Sandwich Aircraft Panels Using Multi-Frequency Eddy Current Testing.

    PubMed

    Reyno, Tyler; Underhill, P Ross; Krause, Thomas W; Marsden, Catharine; Wowk, Diane

    2017-09-14

    Surface damage on honeycomb aircraft panels is often measured manually, and is therefore subject to variation based on inspection personnel. Eddy current testing (ECT) is sensitive to variations in probe-to-specimen spacing, or lift-off, and is thus promising for high-resolution profiling of surface damage on aluminum panels. Lower frequency testing also allows inspection through the face sheet, an advantage over optical 3D scanning methods. This paper presents results from the ECT inspection of surface damage on an approximately flat aluminum honeycomb aircraft panel, and compares the measurements to those taken using optical 3D scanning technology. An ECT C-Scan of the dented panel surface was obtained by attaching the probe to a robotic scanning apparatus. Data was taken simultaneously at four frequencies of 25, 100, 400 and 1600 kHz. A reference surface was then defined that approximated the original, undamaged panel surface, which also compensated for the effects of specimen tilt and thermal drift within the ECT instrument. Data was converted to lift-off using height calibration curves developed for each probe frequency. A damage region of 22,550 mm² area with dents ranging in depth from 0.13-1.01 mm was analyzed. The method was accurate at 1600 kHz to within 0.05 mm (2σ) when compared with 231 measurements taken via optical 3D scanning. Testing at 25 kHz revealed a 3.2 mm cell size within the honeycomb core, which was confirmed via destructive evaluation. As a result, ECT demonstrates potential for implementation as a method for rapid in-field aircraft panel surface damage assessment.

  14. A simple automated instrument for DNA extraction in forensic casework.

    PubMed

    Montpetit, Shawn A; Fitch, Ian T; O'Donnell, Patrick T

    2005-05-01

    The Qiagen BioRobot EZ1 is a small, rapid, and reliable automated DNA extraction instrument capable of extracting DNA from up to six samples in as few as 20 min using magnetic bead technology. The San Diego Police Department Crime Laboratory has validated the BioRobot EZ1 for the DNA extraction of evidence and reference samples in forensic casework. The BioRobot EZ1 was evaluated for use on a variety of different evidence sample types including blood, saliva, and semen evidence. The performance of the BioRobot EZ1 with regard to DNA recovery and potential cross-contamination was also assessed. DNA yields obtained with the BioRobot EZ1 were comparable to those from organic extraction. The BioRobot EZ1 was effective at removing PCR inhibitors, which often co-purify with DNA in organic extractions. The incorporation of the BioRobot EZ1 into forensic casework has streamlined the DNA analysis process by reducing the need for labor-intensive phenol-chloroform extractions.

  15. Using an A-10 Aircraft for Airborne Measurements of TGFs

    NASA Astrophysics Data System (ADS)

    Fishman, G. J.; Christian, H. J.; Blakeslee, R. J.; Grove, J.; Chekhtman, A.; Jonsson, H.; Detwiler, A. G.

    2012-12-01

    Work is underway to modify an A-10 combat attack aircraft to become a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft will be terrestrial gamma-ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x- and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into the TGF production mechanism. The A-10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  16. Using an A-10 Aircraft for Airborne measurements of TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.; Christian, Hugh, J.; Blakeslee, Richard J.; Grove, J. Eric; Chektman, Alexandre; Jonsson, Haflidi; Detwiler, Andrew G.

    2012-01-01

    Plans are underway to convert an A-10 combat attack aircraft into a research aircraft for thunderstorm research. This aircraft would be configured and instrumented for flights into large, convective thunderstorms. It would have the capabilities of higher altitude performance and protection for thunderstorm conditions that exceed those of aircraft now in use for this research. One area of investigation for this aircraft would be terrestrial gamma ]ray flashes (TGFs), building on the pioneering observations made by the Airborne Detector for Energetic Lightning Emissions (ADELE) project several years ago. A new and important component of the planned investigations are the continuous, detailed correlations of TGFs with the electric fields near the aircraft, as well as detailed measurements of nearby lightning discharges. Together, the x-and gamma-radiation environments, the electric field measurements, and the lightning observations (all measured on microsecond timescales) should provide new insights into this TGF production mechanism. The A -10 aircraft is currently being modified for thunderstorm research. It is anticipated that the initial test flights for this role will begin next year.

  17. Multipurpose surgical robot as a laparoscope assistant.

    PubMed

    Nelson, Carl A; Zhang, Xiaoli; Shah, Bhavin C; Goede, Matthew R; Oleynikov, Dmitry

    2010-07-01

    This study demonstrates the effectiveness of a new, compact surgical robot at improving laparoscope guidance. Currently, the assistant guiding the laparoscope camera tends to be less experienced and requires physical and verbal direction from the surgeon. Human guidance has disadvantages of fatigue and shakiness leading to inconsistency in the field of view. This study investigates whether replacing the assistant with a compact robot can improve the stability of the surgeon's field of view and also reduce crowding at the operating table. A compact robot based on a bevel-geared "spherical mechanism" with 4 degrees of freedom and capable of full dexterity through a 15-mm port was designed and built. The robot was mounted on the standard railing of the operating table and used to manipulate a laparoscope through a supraumbilical port in a porcine model via a joystick controlled externally by a surgeon. The process was videotaped externally via digital video recorder and internally via laparoscope. Robot position data were also recorded within the robot's motion control software. The robot effectively manipulated the laparoscope in all directions to provide a clear and consistent view of liver, small intestine, and spleen. Its range of motion was commensurate with typical motions executed by a human assistant and was well controlled with the joystick. Qualitative analysis of the video suggested that this method of laparoscope guidance provides highly stable imaging during laparoscopic surgery, which was confirmed by robot position data. Because the robot was table-mounted and compact in design, it increased standing room around the operation table and did not interfere with the workspace of other surgical instruments. The study results also suggest that this robotic method may be combined with flexible endoscopes for highly dexterous visualization with more degrees of freedom.

  18. Design of an integrated master-slave robotic system for minimally invasive surgery.

    PubMed

    Li, Jianmin; Zhou, Ningxin; Wang, Shuxin; Gao, Yuanqian; Liu, Dongchun

    2012-03-01

    Minimally invasive surgery (MIS) robots are commonly used in hospitals and medical centres. However, currently available robotic systems are very complicated and huge, greatly raising system costs and the requirements of operating rooms. These disadvantages have become the major impediments to the expansion of MIS robots. An integrated MIS robotic system is proposed based on the analysis of advantages and disadvantages of different MIS robots. In the proposed system, the master manipulators, slave manipulators, image display device and control system have been designed as a whole. Modular design is adopted for the control system for easy maintenance and upgrade. The kinematic relations between the master and the slave are also investigated and embedded in software to realize intuitive movements of hand and instrument. Finally, animal experiments were designed to test the effectiveness of the robot. The robot realizes natural hand-eye movements between the master and the slave to facilitate MIS operations. The experimental results show that the robot can realize similar functions to those of current commercialized robots. The integrated design simplifies the robotic system and facilitates use of the robot. Compared with the commercialized robots, the proposed MIS robot achieves similar functions and features but with a smaller size and less weight. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Varying ultrasound power level to distinguish surgical instruments and tissue.

    PubMed

    Ren, Hongliang; Anuraj, Banani; Dupont, Pierre E

    2018-03-01

    We investigate a new framework of surgical instrument detection based on power-varying ultrasound images with simple and efficient pixel-wise intensity processing. Without using complicated feature extraction methods, we identified the instrument with an estimated optimal power level and by comparing pixel values of varying transducer power level images. The proposed framework exploits the physics of ultrasound imaging system by varying the transducer power level to effectively distinguish metallic surgical instruments from tissue. This power-varying image-guidance is motivated from our observations that ultrasound imaging at different power levels exhibit different contrast enhancement capabilities between tissue and instruments in ultrasound-guided robotic beating-heart surgery. Using lower transducer power levels (ranging from 40 to 75% of the rated lowest ultrasound power levels of the two tested ultrasound scanners) can effectively suppress the strong imaging artifacts from metallic instruments and thus, can be utilized together with the images from normal transducer power levels to enhance the separability between instrument and tissue, improving intraoperative instrument tracking accuracy from the acquired noisy ultrasound volumetric images. We performed experiments in phantoms and ex vivo hearts in water tank environments. The proposed multi-level power-varying ultrasound imaging approach can identify robotic instruments of high acoustic impedance from low-signal-to-noise-ratio ultrasound images by power adjustments.

  20. Backscatter-depolarisation lidars on high-altitude research aircraft

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav

    2014-11-01

    This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.

  1. LED display for solo aircraft instrument navigation

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Kelly, W. L., VI; Lina, L. J.; Meredith, B. D.

    1979-01-01

    Solo pilot's task is made easier through convenient display of landing and navigation data. Use of display shows promise as more efficient means of presenting sequential instructions and data, such as course heading, altitude, and radio frequency, to minimize pilot's workload during solo instrument flight.

  2. Pilot tracking performance during successive in-flight simulated instrument approaches.

    DOT National Transportation Integrated Search

    1972-02-01

    Eight instrument rated pilots with flying experience ranging from 600 to 12,271 hours each flew 10 simulated ILS instrument approaches in a single engine, general aviation aircraft equipped with a primary flight display arranged in a conventional 'T'...

  3. Instruments for preparation of heterogeneous catalysts by an impregnation method

    NASA Astrophysics Data System (ADS)

    Yamada, Yusuke; Akita, Tomoki; Ueda, Atsushi; Shioyama, Hiroshi; Kobayashi, Tetsuhiko

    2005-06-01

    Instruments for the preparation of heterogeneous catalysts in powder form have been developed. The instruments consist of powder dispensing robot and an automated liquid handling machine equipped with an ultrasonic and a vortex mixer. The combination of these two instruments achieves the catalyst preparation by incipient wetness and ion exchange methods. The catalyst library prepared with these instruments were tested for dimethyl ether steam reforming and characterized by transmission electron microscopy observations.

  4. Systems of Geo Positioning of the Mobile Robot

    NASA Astrophysics Data System (ADS)

    Momot, M. V.; Proskokov, A. V.; Nesteruk, D. N.; Ganiyev, M.; Biktimirov, A. S.

    2017-07-01

    Article is devoted to the analysis of opportunities of electronic instruments, such as a gyroscope, the accelerometer, the magnetometer together, the video system of image identification and system of infrared indicators during creation of system of exact positioning of the mobile robot. Results of testing and the operating algorithms are given. Possibilities of sharing of these devices and their association in a single system are analyzed. Conclusions on development of opportunities and elimination of shortcomings of the received end-to-end system of positioning of the robot are drawn.

  5. A novel passive/active hybrid robot for orthopaedic trauma surgery.

    PubMed

    Kuang, Shaolong; Leung, Kwok-sui; Wang, Tianmiao; Hu, Lei; Chui, Elvis; Liu, Wenyong; Wang, Yu

    2012-12-01

    Image guided navigation systems (IGNS) have been implemented successfully in orthopaedic trauma surgery procedures because of their ability to help surgeons position and orient hand-held drills at optimal entry points. However, current IGNS cannot prevent drilling tools or instruments from slipping or deviating from the planned trajectory during the drilling process. A method is therefore needed to overcome such problems. A novel passive/active hybrid robot (the HybriDot) for positioning and supporting surgical tools and instruments while drilling and/or cutting in orthopaedic trauma surgery is presented in this paper. This new robot, consisting of a circular prismatic joint and five passive/active back-drivable joints, is designed to fulfill clinical needs. In this paper, a system configuration and three operational modes are introduced and analyzed. Workspace and layout in the operating theatre (OT) are also analyzed in order to validate the structure design. Finally, experiments to evaluate the feasibility of the robot system are described. Analysis, simulation, and experimental results show that the novel structure of the robot can provide an appropriate workspace without risk of collision within OT environments during operation. The back-drivable joint mechanism can provide surgeons with more safety and flexibility in operational modes. The mean square value of the positional accuracy of this robot is 0.811 mm, with a standard deviation (SD) of 0.361 mm; the orientation is accurate to within 2.186º, with a SD of 0.932º. Trials on actual patients undergoing surgery for distal locking of intramedullary nails were successfully conducted in one pass using the robot. This robot has the advantages of having an appropriate workspace, being well designed for human-robot cooperation, and having high accuracy, sufficient rigidity, and easy deployability within the OT for use in common orthopaedic trauma surgery tasks such as screw fixation and drilling assistance

  6. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery.

    PubMed

    Schurr, M O; Arezzo, A; Buess, G F

    1999-11-01

    The advent of endoscopic techniques changed surgery in many regards. This paper intends to describe an overview about technologies to facilitate endoscopic surgery. The systems described have been developed for the use in general surgery, but an easy application also in the field of cardiac surgery seems realistic. The introduction of system technology and robotic technology enables today to design a highly ergonomic solo-surgery platform. To relief the surgeon from fatigue we developed a new chair dedicated to the functional needs of endoscopic surgery. The foot pedals for high frequency, suction and irrigation are integrated into the basis of the chair. The chair is driven by electric motors controlled with an additional foot pedal joystick to achieve the desired position in the OR. A major enhancement for endoscopic technology is the introduction of robotic technology to design assisting devices for solo-surgery and manipulators for microsurgical instrumentation. A further step in the employment of robotic technology is the design of 'master-slave manipulators' to provide the surgeon with additional degrees of freedom of instrumentation. In 1996 a first prototype of an endoscopic manipulator system. named ARTEMIS, could be used in experimental applications. The system consists of a user station (master) and an instrument station (slave). The surgeon sits at a console which integrates endoscopic monitors, communication facilities and two master devices to control the two slave arms which are mounted to the operating table. Clinical use of the system, however, will require further development in the area of slave mechanics and the control system. Finally the implementation of telecommunication technology in combination with robotic instruments will open new frontiers, such as teleconsulting, teleassistance and telemanipulation.

  7. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    PubMed

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  8. COMPASS Final Report: Low Cost Robotic Lunar Lander

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Oleson, Steven R.

    2010-01-01

    The COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) team designed a robotic lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost in this 2006 design study. The purpose of the low cost lunar lander design was to investigate how much payload can an inexpensive chemical or Electric Propulsion (EP) system deliver to the Moon s surface. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10% of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

  9. How small is small enough? Role of robotics in paediatric urology

    PubMed Central

    Ganpule, Arvind P.; Sripathi, Venkat

    2015-01-01

    The well-known advantages of robotic surgery include improved dexterity, three-dimensional operating view and an improved degree of freedom. Robotic surgery is performed for a wide range of surgeries in urology, which include radical prostatectomy, radical cystectomy, and ureteric reimplantation. Robotic paediatric urology is evolving. The major hindrance in the development of paediatric robotics is, first, the differences in practice patterns in paediatric urology compared with adult urology thereby making development of expertise difficult and secondly it is challenging to conduct proper studies in the paediatric population because of the paucity of cases. The difficulties in conducting these studies include difficulty in designing a proper randomised study, difficulties with blinding, and finally, the ethical issues involved, finally the instruments although in the phase of evolution require a lot of improvement. In this article, we review the relevant articles for paediatric robotic surgery. We emphasise on the technical aspects and results in contemporary paediatric robotic case series. PMID:25598599

  10. How small is small enough? Role of robotics in paediatric urology.

    PubMed

    Ganpule, Arvind P; Sripathi, Venkat

    2015-01-01

    The well-known advantages of robotic surgery include improved dexterity, three-dimensional operating view and an improved degree of freedom. Robotic surgery is performed for a wide range of surgeries in urology, which include radical prostatectomy, radical cystectomy, and ureteric reimplantation. Robotic paediatric urology is evolving. The major hindrance in the development of paediatric robotics is, first, the differences in practice patterns in paediatric urology compared with adult urology thereby making development of expertise difficult and secondly it is challenging to conduct proper studies in the paediatric population because of the paucity of cases. The difficulties in conducting these studies include difficulty in designing a proper randomised study, difficulties with blinding, and finally, the ethical issues involved, finally the instruments although in the phase of evolution require a lot of improvement. In this article, we review the relevant articles for paediatric robotic surgery. We emphasise on the technical aspects and results in contemporary paediatric robotic case series.

  11. Crash response data system for the controlled impact demonstration (CID) of a full scale transport aircraft

    NASA Astrophysics Data System (ADS)

    Calloway, Raymond S.; Knight, Vernie H., Jr.

    NASA Langley's Crash Response Data System (CRDS) which is designed to acquire aircraft structural and anthropomorphic dummy responses during the full-scale transport CID test is described. Included in the discussion are the system design approach, details on key instrumentation subsystems and operations, overall instrumentation crash performance, and data recovery results. Two autonomous high-environment digital flight instrumentation systems, DAS 1 and DAS 2, were employed to obtain research data from various strain gage, accelerometer, and tensiometric sensors installed in the B-720 test aircraft. The CRDS successfully acquired 343 out of 352 measurements of dynamic crash data.

  12. Cost Savings of Standardization of Thoracic Surgical Instruments: The Process of Lean.

    PubMed

    Cichos, Kyle H; Linsky, Paul L; Wei, Benjamin; Minnich, Douglas J; Cerfolio, Robert J

    2017-12-01

    Our objective is to show the effect that standardization of surgical trays has on the number of instruments sterilized and on cost. We reviewed our most commonly used surgical trays with the 3 general thoracic surgeons in our division and agreed upon the least number of surgical instruments needed for mediastinoscopy, video-assisted thoracoscopic surgery, robotic thoracic surgery, and thoracotomy. We removed 59 of 79 instruments (75%) from the mediastinoscopy tray, 45 of 73 (62%) from the video-assisted thoracoscopic surgery tray, 51 of 84 (61%) from the robotic tray, and 50 of 113 (44%) from the thoracotomy tray. From January 2016 to December 2016, the estimated savings by procedure were video-assisted thoracoscopic surgery (n = 398) $21,890, robotic tray (n = 231) $19,400, thoracotomy (n = 163) $15,648, and mediastinoscopy (n = 162) $12,474. Estimated total savings were $69,412. The weight of the trays was reduced 70%, and the nonsteamed sterilization rate (opened trays that needed to be reprocessed) decreased from 2% to 0%. None of the surgeons requested any of the removed instruments. Standardization of thoracic surgical trays is possible despite having multiple thoracic surgeons. This process of lean (the removal of nonvalue steps or equipment) reduces the number of instruments cleaned and carried and reduces cost. It may also reduce the incidence of "wet loads" that require the resterilization of instruments. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Advantages of robotics in benign gynecologic surgery.

    PubMed

    Truong, Mireille; Kim, Jin Hee; Scheib, Stacey; Patzkowsky, Kristin

    2016-08-01

    The purpose of this article is to review the literature and discuss the advantages of robotics in benign gynecologic surgery. Minimally invasive surgery has become the preferred route over abdominal surgery. The laparoscopic or robotic approach is recommended when vaginal surgery is not feasible. Thus far, robotic gynecologic surgery data have demonstrated feasibility, safety, and equivalent clinical outcomes in comparison with laparoscopy and better clinical outcomes compared with laparotomy. Robotics was developed to overcome challenges of laparoscopy and has led to technological advantages such as improved ergonomics, visualization with three-dimensional capabilities, dexterity and range of motion with instrument articulation, and tremor filtration. To date, applications of robotics in benign gynecology include hysterectomy, myomectomy, endometriosis surgery, sacrocolpopexy, adnexal surgery, tubal reanastomosis, and cerclage. Though further data are needed, robotics may provide additional benefits over other approaches in the obese patient population and in higher complexity cases. Challenges that arose in the earlier adoption stage such as the steep learning curve, costs, and operative times are becoming more optimized with greater experience, with implementation of robotics in high-volume centers and with improved training of surgeons and robotic teams. Robotic laparoendoscopic single-site surgery, albeit still in its infancy where technical advantages compared with laparoscopic single-site surgery are still unclear, may provide a cost-reducing option compared with multiport robotics. The cost may even approach that of laparoscopy while still conferring similar perioperative outcomes. Advances in robotic technology such as the single-site platform and telesurgery, have the potential to revolutionize the field of minimally invasive gynecologic surgery. Higher quality evidence is needed to determine the advantages and disadvantages of robotic surgery in benign

  14. Documentation of Sensory Information in the Operation of Unmanned Aircraft Systems

    DTIC Science & Technology

    2008-10-01

    spercepton.s.a. msmatch.between.vsual.and.vestbular.or.proproceptve. stmul.(Reed,.1977) . Advantages and disadvantages of sensory Modes G...and that are approved for IFR operations, a third attitude instrument must be provided that: (i) Is powered from a source independent of the...indicator, if the aircraft has a retractable landing gear. … B-17 (d) Instrument flight rules. For IFR flight, the following instruments and equipment

  15. Robotics

    NASA Astrophysics Data System (ADS)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  16. Robot-assisted procedures in pediatric neurosurgery.

    PubMed

    De Benedictis, Alessandro; Trezza, Andrea; Carai, Andrea; Genovese, Elisabetta; Procaccini, Emidio; Messina, Raffaella; Randi, Franco; Cossu, Silvia; Esposito, Giacomo; Palma, Paolo; Amante, Paolina; Rizzi, Michele; Marras, Carlo Efisio

    2017-05-01

    OBJECTIVE During the last 3 decades, robotic technology has rapidly spread across several surgical fields due to the continuous evolution of its versatility, stability, dexterity, and haptic properties. Neurosurgery pioneered the development of robotics, with the aim of improving the quality of several procedures requiring a high degree of accuracy and safety. Moreover, robot-guided approaches are of special interest in pediatric patients, who often have altered anatomy and challenging relationships between the diseased and eloquent structures. Nevertheless, the use of robots has been rarely reported in children. In this work, the authors describe their experience using the ROSA device (Robotized Stereotactic Assistant) in the neurosurgical management of a pediatric population. METHODS Between 2011 and 2016, 116 children underwent ROSA-assisted procedures for a variety of diseases (epilepsy, brain tumors, intra- or extraventricular and tumor cysts, obstructive hydrocephalus, and movement and behavioral disorders). Each patient received accurate preoperative planning of optimal trajectories, intraoperative frameless registration, surgical treatment using specific instruments held by the robotic arm, and postoperative CT or MR imaging. RESULTS The authors performed 128 consecutive surgeries, including implantation of 386 electrodes for stereo-electroencephalography (36 procedures), neuroendoscopy (42 procedures), stereotactic biopsy (26 procedures), pallidotomy (12 procedures), shunt placement (6 procedures), deep brain stimulation procedures (3 procedures), and stereotactic cyst aspiration (3 procedures). For each procedure, the authors analyzed and discussed accuracy, timing, and complications. CONCLUSIONS To the best their knowledge, the authors present the largest reported series of pediatric neurosurgical cases assisted by robotic support. The ROSA system provided improved safety and feasibility of minimally invasive approaches, thus optimizing the surgical

  17. Phoenix Robotic Arm

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A vital instrument on NASA's Phoenix Mars Lander is the robotic arm, which will dig into the icy soil and bring samples back to the science deck of the spacecraft for analysis. In September 2006 at a Lockheed Martin Space Systems clean room facility near Denver, spacecraft technician Billy Jones inspects the arm during the assembly phase of the mission.

    Using the robotic arm -- built by the Jet Propulsion Laboratory, Pasadena -- the Phoenix mission will study the history of water and search for complex organic molecules in the ice-rich soil.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  18. How to get the best from robotic thoracic surgery.

    PubMed

    Ricciardi, Sara; Zirafa, Carmelina Cristina; Davini, Federico; Melfi, Franca

    2018-04-01

    The application of Robotic technology in thoracic surgery has become widespread in the last decades. Thanks to its advanced features, the robotic system allows to perform a broad range of complex operations safely and in a comfortable way, with valuable advantages related to low invasiveness. Regarding lung tumours, several studies have shown the benefits of robotic surgery including lower blood loss and improved lymph node removal when compared with other minimally invasive techniques. Moreover, the robotic instruments allow to reach deep and narrow spaces permitting safe and precise removal of tumours located in remote areas, such as retrosternal and posterior mediastinal spaces with outstanding postoperative and oncological results. One controversial finding about the application of robotic system is its high capital and running costs. For this reason, a limited number of centres worldwide are able to employ this groundbreaking technology and there are limited possibilities for the trainees to acquire the necessary skills in robotic surgery. Therefore, a training programme based on three steps of learning, associated with a solid surgical background and a consistent operating activity, are required to obtain effective results. Putting this highest technological innovation in the hand of expert surgeons we can assure safe and effective procedures getting the best from robotic thoracic surgery.

  19. Potassium-titanyl-phosphate laser assisted robotic partial nephrectomy in a porcine model: can robotic assistance optimize the power needed for effective cutting and hemostasis?

    PubMed

    Boris, Ronald S; Eun, Daniel; Bhandari, Akshay; Lyall, Kathryn; Bhandari, Mahendra; Rogers, Craig; Alassi, Osama; Menon, Mani

    2007-01-01

    A potassium-titanyl-phosphate (KTP) laser through robotic endo-wrist instrument has been evaluated as an ablative and hemostatic tool in robotic assisted laparoscopic partial nephrectomy (RALPN). Ten RALPN were performed in five domestic female pigs. The partial nephrectomies were performed with bulldog clamping of the pedicle. Flexible glass fiber carrying 532-nm green light laser was used through a robotic endowrist instrument in two cases. Power usage from 4 to 10 W was tested. The laser probe was explored both as a cutting knife and for hemostasis. The pelvicalyceal system was closed with a running suture. Partial nephrectomies using KTP laser were performed without complications. Mean operative times and warm ischemia times for laser cases were 96 and 18 min, respectively. Mean estimated blood loss was 60 ml compared with 50 ml for non-laser cases. Complete hemostasis with the laser alone could be achieved with a power of 4 W and was found to be effective. In our hands the laser fiber powered up to 10 W was not effective as a quick cutting agent. Histopathologic analysis of the renal remnant revealed a cauterized surface effect with average laser penetration depth less than 1 mm and minimal surrounding cellular injury. The new robotic endowrist instrument carrying flexible glass fiber transmitting 532-nm green light laser is a useful addition to the armamentarium of the robotic urologic setup. Its control by the console surgeon enables quicker and more complete hemostasis of the cut surface in renal sparing surgery using a porcine model. Histologically proven lased depth of less than 1 mm suggests minimal parenchyma damage in an acute setting. Laser application as a cutting agent, however, requires further investigation with interval power settings beyond the limits of this preliminary study. We estimate that effective cutting should be possible with a setting lower than traditionally recommended for solid organs.

  20. Unmanned reconnaissance aircraft, Predator B in flight.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. ALTAIR/PREDATOR B -- General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft, shown here, under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator testbed aircraft to validate a variety of command and control technologies for unmanned aerial vehicles (UAV), as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Ten-foot extensions have been added to each wing, giving the Altair an overall wingspan of 84 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of those basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  1. In vivo miniature robots for natural orifice surgery: State of the art and future perspectives.

    PubMed

    Tiwari, Manish M; Reynoso, Jason F; Lehman, Amy C; Tsang, Albert W; Farritor, Shane M; Oleynikov, Dmitry

    2010-06-27

    Natural orifice translumenal endoscopic surgery (NOTES) is the integration of laparoscopic minimally invasive surgery techniques with endoscopic technology. Despite the advances in NOTES technology, the approach presents several unique instrumentation and technique-specific challenges. Current flexible endoscopy platforms for NOTES have several drawbacks including limited stability, triangulation and dexterity, and lack of adequate visualization, suggesting the need for new and improved instrumentation for this approach. Much of the current focus is on the development of flexible endoscopy platforms that incorporate robotic technology. An alternative approach to access the abdominal viscera for either a laparoscopic or NOTES procedure is the use of small robotic devices that can be implanted in an intracorporeal manner. Multiple, independent, miniature robots can be simultaneously inserted into the abdominal cavity to provide a robotic platform for NOTES surgery. The capabilities of the robots include imaging, retraction, tissue and organ manipulation, and precise maneuverability in the abdominal cavity. Such a platform affords several advantages including enhanced visualization, better surgical dexterity and improved triangulation for NOTES. This review discusses the current status and future perspectives of this novel miniature robotics platform for the NOTES approach. Although these technologies are still in pre-clinical development, a miniature robotics platform provides a unique method for addressing the limitations of minimally invasive surgery, and NOTES in particular.

  2. The IAGOS Information System: From the aircraft measurements to the users.

    NASA Astrophysics Data System (ADS)

    Boulanger, Damien; Thouret, Valérie; Cammas, Jean-Pierre; Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Brenninkmeijer, Carl A. M.

    2013-04-01

    IAGOS (In-service Aircraft for a Global Observing System, http://www.iagos.org) aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of atmospheric chemical composition throughout the troposphere and in the UTLS. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation industry. IAGOS consists of two complementary building blocks proving a unique global observation system: IAGOS-CORE deploys newly developed instrumentation for regular in-situ measurements of atmospheric chemical species both reactive and greenhouse gases (O3, CO, NOx, NOy, H2O, CO2, CH4), aerosols and cloud particles. In IAGOS-CARIBIC a cargo container is deployed monthly as a flying laboratory aboard one aircraft. Involved airlines ensure global operation of the network. Today, 5 aircraft are flying with the MOZAIC (3) or IAGOS-CORE (2) instrumentation namely 3 aircraft from Lufthansa, 1 from Air Namibia, and 1 from China Airlines Taiwan. A main improvement and new aspect of the IAGOS-CORE instrumentation compared to MOZAIC is to deliver the raw data in near real time (i.e. as soon as the aircraft lands data are transmitted). After a first and quick validation of the O3 and CO measurements, preliminary data are made available in the central database for both the MACC project (Monitoring Atmospheric Composition and Climate) and scientific research groups. In addition to recorded measurements, the database also contains added-value products such as meteorological information (tropopause height, air mass backtrajectories) and lagrangian model outputs (FLEXPART). Data access is handled by open

  3. Value-based assessment of robotic pancreas and liver surgery

    PubMed Central

    Patti, James C.; Ore, Ana Sofia; Barrows, Courtney; Velanovich, Vic

    2017-01-01

    Current healthcare economic evaluations are based only on the perspective of a single stakeholder to the healthcare delivery process. A true value-based decision incorporates all of the outcomes that could be impacted by a single episode of surgical care. We define the value proposition for robotic surgery using a stakeholder model incorporating the interests of all groups participating in the provision of healthcare services: patients, surgeons, hospitals and payers. One of the developing and expanding fields that could benefit the most from a complete value-based analysis is robotic hepatopancreaticobiliary (HPB) surgery. While initial robot purchasing costs are high, the benefits over laparoscopic surgery are considerable. Performing a literature search we found a total of 18 economic evaluations for robotic HPB surgery. We found a lack of evaluations that were carried out from a perspective that incorporates all of the impacts of a single episode of surgical care and that included a comprehensive hospital cost assessment. For distal pancreatectomies, the two most thorough examinations came to conflicting results regarding total cost savings compared to laparoscopic approaches. The most thorough pancreaticoduodenectomy evaluation found non-significant savings for total hospital costs. Robotic hepatectomies showed no cost savings over laparoscopic and only modest savings over open techniques. Lastly, robotic cholecystectomies were found to be more expensive than the gold-standard laparoscopic approach. Existing cost accounting data associated with robotic HPB surgery is incomplete and unlikely to reflect the state of this field in the future. Current data combines the learning curves for new surgical procedures being undertaken by HPB surgeons with costs derived from a market dominated by a single supplier of robotic instruments. As a result, the value proposition for stakeholders in this process cannot be defined. In order to solve this problem, future studies

  4. Value-based assessment of robotic pancreas and liver surgery.

    PubMed

    Patti, James C; Ore, Ana Sofia; Barrows, Courtney; Velanovich, Vic; Moser, A James

    2017-08-01

    Current healthcare economic evaluations are based only on the perspective of a single stakeholder to the healthcare delivery process. A true value-based decision incorporates all of the outcomes that could be impacted by a single episode of surgical care. We define the value proposition for robotic surgery using a stakeholder model incorporating the interests of all groups participating in the provision of healthcare services: patients, surgeons, hospitals and payers. One of the developing and expanding fields that could benefit the most from a complete value-based analysis is robotic hepatopancreaticobiliary (HPB) surgery. While initial robot purchasing costs are high, the benefits over laparoscopic surgery are considerable. Performing a literature search we found a total of 18 economic evaluations for robotic HPB surgery. We found a lack of evaluations that were carried out from a perspective that incorporates all of the impacts of a single episode of surgical care and that included a comprehensive hospital cost assessment. For distal pancreatectomies, the two most thorough examinations came to conflicting results regarding total cost savings compared to laparoscopic approaches. The most thorough pancreaticoduodenectomy evaluation found non-significant savings for total hospital costs. Robotic hepatectomies showed no cost savings over laparoscopic and only modest savings over open techniques. Lastly, robotic cholecystectomies were found to be more expensive than the gold-standard laparoscopic approach. Existing cost accounting data associated with robotic HPB surgery is incomplete and unlikely to reflect the state of this field in the future. Current data combines the learning curves for new surgical procedures being undertaken by HPB surgeons with costs derived from a market dominated by a single supplier of robotic instruments. As a result, the value proposition for stakeholders in this process cannot be defined. In order to solve this problem, future studies

  5. Prospective Clinical Trial of Robotically Assisted Endoscopic Coronary Grafting With 1-Year Follow-Up

    PubMed Central

    Prasad, Sunil M.; Ducko, Christopher T.; Stephenson, Edward R.; Chambers, Charles E.; Damiano, Ralph J.

    2001-01-01

    Objective To follow up in prospective fashion patients with coronary artery anastomoses completed endoscopically with robotic assistance. The robotic system was evaluated for safety and its effectiveness in completing microsurgical coronary anastomoses. Summary Background Data Recently there has been an interest in using robotics and computers to enhance the surgeon’s ability to perform endoscopic cardiac surgery. This interest has stemmed from the rapid advancement of technology and the desire to make cardiac surgery less invasive. Using traditional endoscopic instruments, it has not been possible to perform coronary surgery. Methods Nineteen patients underwent robotically assisted endoscopic coronary artery bypass grafting of the left internal thoracic artery (LITA) to the left anterior descending artery (LAD). Two robotic instruments and one endoscopic camera were placed through three 5-mm ports. A robotic system was used to construct the LITA–LAD anastomosis. All other required grafts were completed by conventional techniques. Results Seventeen LITA–LAD grafts (89%) had adequate intraoperative flow. The mean LITA–LAD graft flow was 38.5 ± 5 mL/min. At 8 weeks, LITA–LAD grafts were assessed by angiography and showed 100% patency with thrombolysis in myocardial infarction (TIMI) I flow. At a mean follow-up of 17 ± 4.2 months, all patients were NYHA class I and there were no adverse cardiac events. Conclusions The results from the first prospective clinical trial of robotically assisted endoscopic coronary bypass surgery in the United States showed favorable short-term outcomes with no adverse events. Robotic assistance is an enabling technology allowing the performance of endoscopic coronary anastomoses. PMID:11371730

  6. The Automated Aircraft Rework System (AARS): A system integration approach

    NASA Technical Reports Server (NTRS)

    Benoit, Michael J.

    1994-01-01

    The Mercer Engineering Research Center (MERC), under contract to the United States Air Force (USAF) since 1989, has been actively involved in providing the Warner Robins Air Logistics Center (WR-ALC) with a robotic workcell designed to perform rework automated defastening and hole location/transfer operations on F-15 wings. This paper describes the activities required to develop and implement this workcell, known as the Automated Aircraft Rework System (AARS). AARS is scheduled to be completely installed and in operation at WR-ALC by September 1994.

  7. A compact, fast ozone UV photometer and sampling inlet for research aircraft

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Ballard, J.; Watts, L. A.; Thornberry, T. D.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2012-05-01

    In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, polarized, UV photometer instrument for in situ O3 measurements is described. The instrument has a fast sampling rate (2 Hz), high accuracy (3%), and precision (1.1 × 1010 O3 molecules cm-3). The size (36 l), weight (18 kg), and power (50-200 W) make the instrument suitable for many UAS and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000-50 mb) that optimize the sample flow rate to increase time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

  8. Novel uses of surgical robotics in head and neck surgery.

    PubMed

    Lobe, Thom E; Wright, Simon K; Irish, Michael S

    2005-12-01

    To demonstrate the utility of robotically assisted approaches in head and neck surgery. Two teenage patients, one with a solitary thyroid nodule who was scheduled for a right thyroid lobectomy and the other with intractable seizures who was scheduled for placement of a vagal nerve stimulator were offered the option of a robotically assisted technique using a transaxillary endoscopic approach. Both procedures were completed successfully using the da Vinci surgical system (Intuitive Surgical, Sunnyvale, California). A 12 mm telescope and 5 mm instruments were used. There was sufficient mobility of the robotic arms despite the small working space. There were no complications, minimal pain in the axillary incisions, and patient satisfaction was high. Operative times were 4.5 and 4.2 hours, respectively. Transaxillary, endoscopic, robotically assisted approaches to the head and neck are feasible. The addition of robotics improves surgical dexterity in a difficult-to-reach anatomic region. Patient satisfaction appears high because of the avoidance of a cervical incision.

  9. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.

    PubMed

    Lee, Su-Lin; Lerotic, Mirna; Vitiello, Valentina; Giannarou, Stamatia; Kwok, Ka-Wai; Visentini-Scarzanella, Marco; Yang, Guang-Zhong

    2010-01-01

    Minimally invasive surgery has been established as an important way forward in surgery for reducing patient trauma and hospitalization with improved prognosis. The introduction of robotic assistance enhances the manual dexterity and accuracy of instrument manipulation. Further development of the field in using pre- and intra-operative imaging guidance requires the integration of the general anatomy of the patient with clear pathologic indications and geometrical information for preoperative planning and intra-operative manipulation. It also requires effective visualization and the recreation of haptic and tactile sensing with dynamic active constraints to improve consistency and safety of the surgical procedures. This paper describes key technical considerations of tissue deformation tracking, 3D reconstruction, subject-specific modeling, image guidance and augmented reality for robotic assisted minimally invasive surgery. It highlights the importance of adapting preoperative surgical planning according to intra-operative data and illustrates how dynamic information such as tissue deformation can be incorporated into the surgical navigation framework. Some of the recent trends are discussed in terms of instrument design and the usage of dynamic active constraints and human-robot perceptual docking for robotic assisted minimally invasive surgery. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. URobotics—Urology Robotics at Johns Hopkins

    PubMed Central

    Stoianovici, D

    2011-01-01

    URobotics (Urology Robotics) is a program of the Urology Department at the Johns Hopkins Medical Institutions dedicated to the development of new technology for urologic surgery (http://urology.jhu.edu/urobotics). The program is unique in that it is the only academic engineering program exclusively applied to urology. The program combines efforts and expertise from the medical and engineering fields through a close partnership of clinical and technical personnel. Since its creation in 1996, the URobotics lab has created several devices, instruments, and robotic systems, several of which have been successfully used in the operating room. This article reviews the technology developed in our laboratory and its surgical applications, and highlights our future directions. PMID:11954067

  11. Rugged Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1990-01-01

    Proposed walking-beam robot simpler and more rugged than articulated-leg walkers. Requires less data processing, and uses power more efficiently. Includes pair of tripods, one nested in other. Inner tripod holds power supplies, communication equipment, computers, instrumentation, sampling arms, and articulated sensor turrets. Outer tripod holds mast on which antennas for communication with remote control site and video cameras for viewing local and distant terrain mounted. Propels itself by raising, translating, and lowering tripods in alternation. Steers itself by rotating raised tripod on turntable.

  12. Exact nonlinear command generation and tracking for robot manipulators and spacecraft slewing maneuvers

    NASA Technical Reports Server (NTRS)

    Dywer, T. A. W., III; Lee, G. K. F.

    1984-01-01

    In connection with the current interest in agile spacecraft maneuvers, it has become necessary to consider the nonlinear coupling effects of multiaxial rotation in the treatment of command generation and tracking problems. Multiaxial maneuvers will be required in military missions involving a fast acquisition of moving targets in space. In addition, such maneuvers are also needed for the efficient operation of robot manipulators. Attention is given to details regarding the direct nonlinear command generation and tracking, an approach which has been successfully applied to the design of control systems for V/STOL aircraft, linearizing transformations for spacecraft controlled with external thrusters, the case of flexible spacecraft dynamics, examples from robot dynamics, and problems of implementation and testing.

  13. Coordinated perception by teams of aerial and ground robots

    NASA Astrophysics Data System (ADS)

    Grocholsky, Benjamin P.; Swaminathan, Rahul; Kumar, Vijay; Taylor, Camillo J.; Pappas, George J.

    2004-12-01

    Air and ground vehicles exhibit complementary capabilities and characteristics as robotic sensor platforms. Fixed wing aircraft offer broad field of view and rapid coverage of search areas. However, minimum operating airspeed and altitude limits, combined with attitude uncertainty, place a lower limit on their ability to detect and localize ground features. Ground vehicles on the other hand offer high resolution sensing over relatively short ranges with the disadvantage of slow coverage. This paper presents a decentralized architecture and solution methodology for seamlessly realizing the collaborative potential of air and ground robotic sensor platforms. We provide a framework based on an established approach to the underlying sensor fusion problem. This provides transparent integration of information from heterogeneous sources. An information-theoretic utility measure captures the task objective and robot inter-dependencies. A simple distributed solution mechanism is employed to determine team member sensing trajectories subject to the constraints of individual vehicle and sensor sub-systems. The architecture is applied to a mission involving searching for and localizing an unknown number of targets in an user specified search area. Results for a team of two fixed wing UAVs and two all terrain UGVs equipped with vision sensors are presented.

  14. Near Real Time Review of Instrument Performance using the Airborne Data Processing and Analysis Software Package

    NASA Astrophysics Data System (ADS)

    Delene, D. J.

    2014-12-01

    Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.

  15. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  16. Optimal Modality Selection for Cooperative Human-Robot Task Completion.

    PubMed

    Jacob, Mithun George; Wachs, Juan P

    2016-12-01

    Human-robot cooperation in complex environments must be fast, accurate, and resilient. This requires efficient communication channels where robots need to assimilate information using a plethora of verbal and nonverbal modalities such as hand gestures, speech, and gaze. However, even though hybrid human-robot communication frameworks and multimodal communication have been studied, a systematic methodology for designing multimodal interfaces does not exist. This paper addresses the gap by proposing a novel methodology to generate multimodal lexicons which maximizes multiple performance metrics over a wide range of communication modalities (i.e., lexicons). The metrics are obtained through a mixture of simulation and real-world experiments. The methodology is tested in a surgical setting where a robot cooperates with a surgeon to complete a mock abdominal incision and closure task by delivering surgical instruments. Experimental results show that predicted optimal lexicons significantly outperform predicted suboptimal lexicons (p <; 0.05) in all metrics validating the predictability of the methodology. The methodology is validated in two scenarios (with and without modeling the risk of a human-robot collision) and the differences in the lexicons are analyzed.

  17. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  18. A prototype supervised intelligent robot for helping astronauts

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Grimm, K. A.; Pendleton, T. W.

    1994-01-01

    The development status is described of a prototype supervised intelligent robot for space application for purposes of (1) helping the crew of a spacecraft such as the Space Station with various tasks such as holding objects and retrieving/replacing tools and other objects from/into storage, and for purposes of (2) retrieving detached objects, such as equipment or crew, that have become separated from their spacecraft. In addition to this set of tasks in this low Earth orbiting spacecraft environment, it is argued that certain aspects of the technology can be viewed as generic in approach, thereby offering insight into intelligent robots for other tasks and environments. Also described are characterization results on the usable reduced gravity environment in an aircraft flying parabolas (to simulate weightlessness) and results on hardware performance there. These results show it is feasible to use that environment for evaluative testing of dexterous grasping based on real-time visual sensing of freely rotating and translating objects.

  19. Structured training on the da Vinci Skills Simulator leads to improvement in technical performance of robotic novices.

    PubMed

    Walliczek-Dworschak, U; Mandapathil, M; Förtsch, A; Teymoortash, A; Dworschak, P; Werner, J A; Güldner, C

    2017-02-01

    The increasing use of minimally invasive techniques such as robotic-assisted devices raises the question of how to acquire robotic surgery skills. The da Vinci Skills Simulator has been demonstrated to be an effective training tool in previous reports. To date, little data are available on how to acquire proficiency through simulator training. We investigated the outcome of a structured training programme for robotic surgical skills by robotic novices. This prospective study was conducted from January to December 2013 using the da Vinci Skills Simulator. Twenty participants, all robotic novices, were enrolled in a 4-week training curriculum. After a brief introduction to the simulator system, three consecutive repetitions of five selected exercises (Match Board 1, 2, 3 and Ring and Rail 1, 2) were performed in a defined order on days 1, 8, 15 and 22. On day 22, one repetition of a previously unpractised more advanced module (Needle Targeting) was also performed. After completion of each study day, the overall performance, time to completion, economy in motion, instrument collisions, excessive instrument force, instruments out of view, master workspace range and number of drops were analysed. Comparing the first and final repetition, overall score and time needed to complete all exercises, economy of motion and instrument collisions were significantly improved in nearly all exercises. Regarding the new exercise, a positive training effect could be demonstrated. While its overall entry score was significantly higher, the time to completion and economy of motion were significantly lower than the scores on the first repetition of the previous 5 exercises. It could be shown that training on the da Vinci Skills Simulator led to an improvement in technical performance of robotic novices. With regard to a new exercise, the training had a positive effect on the technical performance. © 2016 John Wiley & Sons Ltd.

  20. The Evolution of Instrument Flying in the U.S. Army.

    DTIC Science & Technology

    1988-04-01

    had learned to fly in World War One without instruments. They either distrusted instruments and avoided clouds, or were "seat-of- the-pants" flyers...hooded flight training, Basic students received six hours, and Advanced students received fifteen. Primary and Basic students learned aircraft control and...instrument maneuvers while Advanced students learned radio-navigation.;’ The twenty-seven hours of instrument 23 flying represented 11 percent of the

  1. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  2. Developing stereo image based robot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suprijadi,; Pambudi, I. R.; Woran, M.

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based onmore » stereovision captures.« less

  3. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wind loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  4. Prior video game exposure does not enhance robotic surgical performance.

    PubMed

    Harper, Jonathan D; Kaiser, Stefan; Ebrahimi, Kamyar; Lamberton, Gregory R; Hadley, H Roger; Ruckle, Herbert C; Baldwin, D Duane

    2007-10-01

    Prior research has demonstrated that counterintuitive laparoscopic surgical skills are enhanced by experience with video games. A similar relation with robotic surgical skills has not been tested. The purpose of this study was to determine whether prior video-game experience enhances the acquisition of robotic surgical skills. A series of 242 preclinical medical students completed a self-reported video-game questionnaire detailing the frequency, duration, and peak playing time. The 10 students with the highest and lowest video-game exposure completed a follow-up questionnaire further quantifying video game, sports, musical instrument, and craft and hobby exposure. Each subject viewed a training video demonstrating the use of the da Vinci surgical robot in tying knots, followed by 3 minutes of proctored practice time. Subjects then tied knots for 5 minutes while an independent blinded observer recorded the number of knots tied, missed knots, frayed sutures, broken sutures, and mechanical errors. The mean playing time for the 10 game players was 15,136 total hours (range 5,840-30,000 hours). Video-game players tied fewer knots than nonplayers (5.8 v 9.0; P = 0.04). Subjects who had played sports for at least 4 years had fewer mechanical errors (P = 0.04), broke fewer sutures (P = 0.01), and committed fewer total errors (P = 0.01). Similarly, those playing musical instruments longer than 5 years missed fewer knots (P = 0.05). In the extremes of video-game experience tested in this study, game playing was inversely correlated with the ability to learn robotic suturing. This study suggests that advanced surgical skills such as robotic suturing may be learned more quickly by athletes and musicians. Prior extensive video-game exposure had a negative impact on robotic performance.

  5. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety.

    PubMed

    Marcus, Hani J; Hughes-Hallett, Archie; Cundy, Thomas P; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar

    2015-04-01

    The goal of this cadaver study was to evaluate the feasibility and safety of da Vinci robot-assisted keyhole neurosurgery. Several keyhole craniotomies were fashioned including supraorbital subfrontal, retrosigmoid and supracerebellar infratentorial. In each case, a simple durotomy was performed, and the flap was retracted. The da Vinci surgical system was then used to perform arachnoid dissection towards the deep-seated intracranial cisterns. It was not possible to simultaneously pass the 12-mm endoscope and instruments through the keyhole craniotomy in any of the approaches performed, limiting visualization. The articulated instruments provided greater dexterity than existing tools, but the instrument arms could not be placed in parallel through the keyhole craniotomy and, therefore, could not be advanced to the deep cisterns without significant clashing. The da Vinci console offered considerable ergonomic advantages over the existing operating room arrangement, allowing the operating surgeon to remain non-sterile and seated comfortably throughout the procedure. However, the lack of haptic feedback was a notable limitation. In conclusion, while robotic platforms have the potential to greatly enhance the performance of transcranial approaches, there is strong justification for research into next-generation robots, better suited to keyhole neurosurgery.

  6. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  7. Recent testing of a micro autonomous positioning system for multi-object instrumentation

    NASA Astrophysics Data System (ADS)

    Cochrane, W. A.; Atkinson, D. C.; Bailie, T. E. C.; Dickson, C.; Lim, T.; Luo, X.; Montgomery, D. M.; Schnetler, H.; Taylor, W. D.; Wilson, B.

    2012-09-01

    A multiple pick off mirror positioning sub-system has been developed as a solution for the deployment of mirrors within multi-object instrumentation such as the EAGLE instrument in the European Extremely Large Telescope (E-ELT). The positioning sub-system is a two wheeled differential steered friction drive robot with a footprint of approximately 20 x 20 mm. Controlled by RF communications there are two versions of the robot that exist. One is powered by a single cell lithium ion battery and the other utilises a power floor system. The robots use two brushless DC motors with 125:1 planetary gear heads for positioning in the coarse drive stages. A unique power floor allows the robots to be positioned at any location in any orientation on the focal plane. The design, linear repeatability tests, metrology and power continuity of the robot will be evaluated and presented in this paper. To gather photons from the objects of interest it is important to position POMs within a sphere of confusion of less than 10 μm, with an angular alignment better than 1 mrad. The robots potential of meeting these requirements will be described through the open-loop repeatability tests conducted with a Faro laser beam tracker. Tests have involved sending the robot step commands and automatically taking continuous measurements every three seconds. Currently the robot is capable of repeatedly travelling 233 mm within 0.307 mm at 5 mm/s. An analysis of the power floors reliability through the continuous monitoring of the voltage across the tracks with a Pico logger will also be presented.

  8. Transoral robotic surgery for neurogenic tumors of the prestyloid parapharyngeal space.

    PubMed

    Lee, Hyoung Shin; Kim, Jinna; Lee, Hyun Jin; Koh, Yoon Woo; Choi, Eun Chang

    2012-08-01

    The parapharyngeal space is a difficult area for a surgical approach due to anatomical complexity. We performed a minimally invasive and precise surgical technique to remove neurogenic tumors of the prestyloid parapharyngeal space using transoral robotic instrumentation. The mass was successfully removed in the two cases with three-dimensional visualization providing an excellent view of the resection margin and the dissection plane preserving the vital structures. An adequate resection margin was acquired, and no violation of the tumor capsule occurred. No significant complications were noted. Transoral robotic surgery was feasible for neurogenic tumors of the prestyloid parapharyngeal space, providing a sufficient resection margin and delicate dissection through excellent surgical views and instrumentation. Copyright © 2012. Published by Elsevier Ireland Ltd.

  9. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  10. Reliability of robotic system during general surgical procedures in a university hospital.

    PubMed

    Buchs, Nicolas C; Pugin, François; Volonté, Francesco; Morel, Philippe

    2014-01-01

    Data concerning the reliability of robotic systems are scarce, especially for general surgery. The aim of this study was to assess the incidence and consequences of robotic malfunction in a teaching institution. From January 2006 to September 2012, 526 consecutive robotic general surgical procedures were performed. All failures were prospectively recorded in a computerized database and reviewed retrospectively. Robotic malfunctions occurred in 18 cases (3.4%). These dysfunctions concerned the robotic instruments in 9 cases, the robotic arms in 4 cases, the surgical console in 3 cases, and the optical system in 2 cases. Two malfunctions were considered critical, and 1 led to a laparoscopic conversion (conversion rate due to malfunction, .2%). Overall, there were more dysfunctions at the beginning of the study period (2006 to 2010) than more recently (2011 to 2012) (4.2% vs 2.6%, P = .35). The robotic system malfunction rate was low. Most malfunctions could be resolved during surgery, allowing the procedures to be completed safely. With increased experience, the system malfunction rate seems to be reduced. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Unilateral robotic hybrid mini-maze: a novel experimental approach.

    PubMed

    Moslemi, Mohammad; Rawashdeh, Badi; Meyer, Mark; Nguyen, Duy; Poston, Robert; Gharagozloo, Farid

    2016-03-01

    A complete Cox maze IV procedure is difficult to accomplish using current endoscopic and minimally invasive techniques. These techniques are hampered by inability to adequately dissect the posterior structures of the heart and place all necessary lesions. We present a novel approach, using robotic technology, that achieves placement of all the lesions of the complete maze procedure. In three cadaveric human models, the technical feasibility of using robotic instruments through the right chest to dissect the posterior structures of the heart and place all Cox maze lesions was performed. The entire posterior aspect of the heart was dissected in the cadaveric model facilitating successful placement of all Cox maze IV lesions with robotic assistance through minimally invasive incisions. The robotic Cox maze IV procedure through the novel right thoracic approach is feasible. This obviates the need for sternotomy and avoids the associated morbidity of the conventional Cox-maze procedure. Copyright © 2015 John Wiley & Sons, Ltd.

  12. OLDER ADULTS’ PREFERENCES FOR AND ACCEPTANCE OF ROBOT ASSISTANCE FOR EVERYDAY LIVING TASKS

    PubMed Central

    Smarr, Cory-Ann; Prakash, Akanksha; Beer, Jenay M.; Mitzner, Tracy L.; Kemp, Charles C.; Rogers, Wendy A.

    2014-01-01

    Many older adults value their independence and prefer to age in place. Robots can be designed to assist older people with performing everyday living tasks and maintaining their independence at home. Yet, there is a scarcity of knowledge regarding older adults’ attitudes toward robots and their preferences for robot assistance. Twenty-one older adults (M = 80.25 years old, SD = 7.19) completed questionnaires and participated in structured group interviews investigating their openness to and preferences for assistance from a mobile manipulator robot. Although the older adults were generally open to robot assistance for performing home-based tasks, they were selective in their views. Older adults preferred robot assistance over human assistance for many instrumental (e.g., housekeeping, laundry, medication reminders) and enhanced activities of daily living (e.g., new learning, hobbies). However, older adults were less open to robot assistance for some activities of daily living (e.g., shaving, hair care). Results from this study provide insight into older adults’ attitudes toward robot assistance with home-based everyday living tasks. PMID:25284971

  13. Surgical Robotics Research in Cardiovascular Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohost, Gerald M; Guthrie, Barton L; Steiner, Charles

    This grant is to support a research in robotics at three major medical centers: the University of Southern California-USC- (Project 1); the University of Alabama at Birmingham-UAB-(Project 2); and the Cleveland Clinic Foundation-CCF-(Project 3). Project 1 is oriented toward cardiovascular applications, while projects 2 and 3 are oriented toward neurosurgical applications. The main objective of Project 1 is to develop an approach to assist patients in maintaining a constant level of stress while undergoing magnetic resonance imaging or spectroscopy. The specific project is to use handgrip to detect the changes in high energy phosphate metabolism between rest and stress. Themore » high energy phosphates, ATP and phosphocreatine (PCr) are responsible for the energy of the heart muscle (myocardium) responsible for its contractile function. If the blood supply to the myocardium in insufficient to support metabolism and contractility during stress, the high energy phosphates, particularly PCr, will decrease in concentration. The high energy phosphates can be tracked using phosphorus-31 magnetic resonance spectroscopy ({sup 31}P MRS). In Project 2 the UAB Surgical Robotics project focuses on the use of virtual presence to assist with remote surgery and surgical training. The goal of this proposal was to assemble a pilot system for proof of concept. The pilot project was completed successfully and was judged to demonstrate that the concept of remote surgical assistance as applied to surgery and surgical training was feasible and warranted further development. The main objective of Project 3 is to develop a system to allow for the tele-robotic delivery of instrumentation during a functional neurosurgical procedure (Figure 3). Instrumentation such as micro-electrical recording probes or deep brain stimulation leads. Current methods for the delivery of these instruments involve the integration of linear actuators to stereotactic navigation systems. The control of these

  14. Eclipse program C-141A aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the Air Force C-141A that was used in the Eclipse project as a tow vehicle. The project used a QF-106 interceptor aircraft to simulate a future orbiter, which would be towed to a high altitude and released to fire its own engines and carry a payload into space. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  15. International attitudes of early adopters to current and future robotic technologies in pediatric surgery.

    PubMed

    Cundy, Thomas P; Marcus, Hani J; Hughes-Hallett, Archie; Najmaldin, Azad S; Yang, Guang-Zhong; Darzi, Ara

    2014-10-01

    Perceptions toward surgical innovations are critical to the social processes that drive technology adoption. This study aims to capture attitudes of early adopter pediatric surgeons toward robotic technologies in order to clarify 1) specific features that are driving appeal, 2) limiting factors that are acting as diffusion barriers, and 3) future needs. Electronic surveys were distributed to pediatric surgeons with personal experience or exposure in robotic surgery. Participants were classified as experts or nonexperts for subgroup analysis. Coded Likert scale responses were analyzed using the Friedman or Mann-Whitney test. A total of 48 responses were received (22 experts, 26 nonexperts), with 14 countries represented. The most highly rated benefits of robot assistance were wristed instruments, stereoscopic vision, and magnified view. The most highly rated limitations were capital outlay expense, instrument size, and consumables/maintenance expenses. Future technologies of greatest interest were microbots, image guidance, and flexible snake robots. Putative benefits and limitations of robotic surgery are perceived with widely varied weightings. Insight provided by these responses will inform relevant clinical, engineering, and industry groups such that unambiguous goals and priorities may be assigned for the future. Pediatric surgeons seem most receptive toward technology that is smaller, less expensive, more intelligent and flexible. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.

    PubMed

    Ortmaier, T; Weiss, H; Döbele, S; Schreiber, U

    2006-12-01

    This article presents experimental results for robot-assisted navigated drilling and milling for pedicle screw placement. The preliminary study was carried out in order to gain first insights into positioning accuracies and machining forces during hands-on robotic spine surgery. Additionally, the results formed the basis for the development of a new robot for surgery. A simplified anatomical model is used to derive the accuracy requirements. The experimental set-up consists of a navigation system and an impedance-controlled light-weight robot holding the surgical instrument. The navigation system is used to position the surgical instrument and to compensate for pose errors during machining. Holes are drilled in artificial bone and bovine spine. A quantitative comparison of the drill-hole diameters was achieved using a computer. The interaction forces and pose errors are discussed with respect to the chosen machining technology and control parameters. Within the technological boundaries of the experimental set-up, it is shown that the accuracy requirements can be met and that milling is superior to drilling. It is expected that robot assisted navigated surgery helps to improve the reliability of surgical procedures. Further experiments are necessary to take the whole workflow into account. Copyright 2006 John Wiley & Sons, Ltd.

  17. Pros and Cons: A Balanced View of Robotics in Knee Arthroplasty.

    PubMed

    Lonner, Jess H; Fillingham, Yale A

    2018-07-01

    In both unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA), compared with conventional techniques robotic technology has been shown to optimize the precision of bone preparation and component alignment, reducing outliers and increasing the percentage of components aligned within 2° or 3° of the target goal. In addition, soft tissue balance can be quantified through a range of motion in UKA and TKA using the various robotic technologies available. Although the presumption has been that the improved alignment associated with robotics will improve function and implant durability, there are limited data to support that notion. Based on recent and emerging data, it may be unreasonable to presume that robotics is necessary for both UKA and TKA. In fact, despite improvements in various proxy measures, the precision of robotics may be more important for UKA than TKA, although if system costs and surgical efficiencies continue to improve, streamlining perioperative processes, reducing instrument inventory, and achieving comparable outcomes in TKA may be a reasonable goal of robotic surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Is the bipolar vessel sealer device an effective tool in robotic surgery? A retrospective analysis of our experience and a meta-analysis of the literature about different robotic procedures by investigating operative data and post-operative course.

    PubMed

    Ortenzi, Monica; Ghiselli, Roberto; Baldarelli, Maddalena; Cardinali, Luca; Guerrieri, Mario

    2018-04-01

    The latest robotic bipolar vessel sealing tools have been described to be effective allowing to perform procedures with reduced blood loss and shorter operative times. The aim of this study was to assess the efficacy and reliability of these devices applied in different robotic procedures. All robotic operations, between 2014 and 2016, were performed using the EndoWrist One VesselSealer (EWO, Intuitive Surgical, Sunnyvale, CA), a bipolar fully wristed device. Data, including age, gender, body mass index (BMI), were collected. Robot docking time, intraoperative blood loss, robot malfunctioning and overall operative time were analyzed. A meta-analysis of the literature was carried out to point the attention to three different parameters (mean blood loss, operating time and hospital stay) trying to identify how different coagulation devices may affect them. In 73 robotic procedures, the mean operative time was 118.2 minutes (75-125 minutes). Mean hospital stay was four days (2-10 days). There were two post-operative complications (2.74%). The bipolar vessel sealer offers the efficacy of bipolar diathermy and the advantages of a fully wristed instrument. It does not require any change of instruments for coagulation or involvement of the bedside assistant surgeon. These characteristics lead to a reduction in operative time.

  19. The NIST SPIDER, A Robot Crane

    PubMed Central

    Albus, James; Bostelman, Roger; Dagalakis, Nicholas

    1992-01-01

    The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed. PMID:28053439

  20. The NIST SPIDER, A Robot Crane.

    PubMed

    Albus, James; Bostelman, Roger; Dagalakis, Nicholas

    1992-01-01

    The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom ( x, y, z , roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.

  1. Robotic-assisted surgery in gynecologic oncology.

    PubMed

    Sinno, Abdulrahman K; Fader, Amanda N

    2014-10-01

    The quest for improved patient outcomes has been a driving force for adoption of novel surgical innovations across surgical subspecialties. Gynecologic oncology is one such surgical discipline in which minimally invasive surgery has had a robust and evolving role in defining standards of care. Robotic-assisted surgery has developed during the past two decades as a more technologically advanced form of minimally invasive surgery in an effort to mitigate the limitations of conventional laparoscopy and improved patient outcomes. Robotically assisted technology offers potential advantages that include improved three-dimensional stereoscopic vision, wristed instruments that improve surgeon dexterity, and tremor canceling software that improves surgical precision. These technological advances may allow the gynecologic oncology surgeon to perform increasingly radical oncologic surgeries in complex patients. However, the platform is not without limitations, including high cost, lack of haptic feedback, and the requirement for additional training to achieve competence. This review describes the role of robotic-assisted surgery in the management of endometrial, cervical, and ovarian cancer, with an emphasis on comparison with laparotomy and conventional laparoscopy. The literature on novel robotic innovations, special patient populations, cost effectiveness, and fellowship training is also appraised critically in this regard. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Thermodynamic correction of particle concentrations measured by underwing probes on fast-flying aircraft

    NASA Astrophysics Data System (ADS)

    Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan

    2016-10-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO

  3. Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)

    NASA Technical Reports Server (NTRS)

    Magenheim, B.; Rocks, J. K.

    1982-01-01

    The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.

  4. Computer assisted surgery with 3D robot models and visualisation of the telesurgical action.

    PubMed

    Rovetta, A

    2000-01-01

    This paper deals with the support of virtual reality computer action in the procedures of surgical robotics. Computer support gives a direct representation of the surgical theatre. The modelization of the procedure in course and in development gives a psychological reaction towards safety and reliability. Robots similar to the ones used by the manufacturing industry can be used with little modification as very effective surgical tools. They have high precision, repeatability and are versatile in integrating with the medical instrumentation. Now integrated surgical rooms, with computer and robot-assisted intervention, are operating. The computer is the element for a decision taking aid, and the robot works as a very effective tool.

  5. The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides a summary of conclusions from the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) Flight Experiment which NASA conducted to determine pilot acceptability of the HVO concept for normal conditions. The SATS HVO concept improves efficiency at non-towered, non-radar airports in Instrument Meteorological Conditions (IMC) while achieving a level of safety equal to today s system. Reported are results from flight experiment data that indicate that the SATS HVO concept is viable. The success of the SATS HVO concept is based on acceptable pilot workload, performance, and subjective criteria when compared to the procedural control operations in use today at non-towered, non-radar controlled airfields in IMC. The HVO Flight Experiment, flown on NASA's Cirrus SR22, used a subset of the HVO Simulation Experiment scenarios and evaluation pilots in order to validate the simulation experiment results. HVO and Baseline (today s system) scenarios flown included: single aircraft arriving for a GPS non-precision approach; aircraft arriving for the approach with multiple traffic aircraft; and aircraft arriving for the approach with multiple traffic aircraft and then conducting a missed approach. Results reveal that all twelve low-time instrument-rated pilots preferred SATS HVO when compared to current procedural separation operations. These pilots also flew the HVO procedures safely and proficiently without additional workload in comparison to today s system (Baseline). Detailed results of pilot flight technical error, and their subjective assessments of workload and situation awareness are presented in this paper.

  6. Robotics: a way to link the "islands of automation".

    PubMed

    O'Bryan, D

    1994-01-01

    This article looks at what the natural evolution of robots can do for the clinical testing industry, from performing simple functions to becoming the prime labor force of the clinical laboratory. Until now, robots have been applied to instrument processes as somewhat of an upgrade to accomplish a variety of laboratory tasks. Over the next 10 years, however, robotics development will respond to the internal and external influences expected to challenge the industry. A limited supply of human workers and the increased demands of testing volumes and cost-effectiveness will herald a new phase of robotics to link, as well as develop, technological capabilities. Since science fiction was invented, robots have teased the imagination-alternately as mindless automatons or as clones of their inventors endowed with minds of their own. The appeal in the first case was the seemingly infinite capacity for performing menial tasks too boring, complex, or dangerous for mankind. The appeal in the second was the fantasy of artificial intelligence. In both cases, the fictional concept has become reality--and, by the 21st century, should even be commonplace. Financial encouragement of robotics development might even be a mission for laboratories themselves, as they prepare for potential competition from even more complex technology.

  7. Process modeling KC-135 aircraft

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1991-01-01

    Instrumentation will be provided for KC-135 aircraft which will provide a quantitative measure of g-level variation during parabolic flights and its effect on experiments which demonstrate differences in results obtained with differences in convective flow. The flight apparatus will provide video recording of the effects of the g-level variations on varying fluid samples. The apparatus will be constructed to be available to fly on the KC-135 during most missions.

  8. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  9. Recommended procedures for measuring aircraft noise and associated parameters

    NASA Technical Reports Server (NTRS)

    Marsh, A. H.

    1977-01-01

    Procedures are recommended for obtaining experimental values of aircraft flyover noise levels (and associated parameters). Specific recommendations are made for test criteria, instrumentation performance requirements, data-acquisition procedures, and test operations. The recommendations are based on state-of-the-art measurement capabilities available in 1976 and are consistent with the measurement objectives of the NASA Aircraft Noise Prediction Program. The recommendations are applicable to measurements of the noise produced by an airplane flying subsonically over (or past) microphones located near the surface of the ground. Aircraft types covered by the recommendations are fixed-wing airplanes powered by turbojet or turbofan engines and using conventional aerodynamic means for takeoff and landing. Various assumptions with respect to subsequent data processing and analysis were made (and are described) and the recommended measurement procedures are compatible with the assumptions. Some areas where additional research is needed relative to aircraft flyover noise measurement techniques are also discussed.

  10. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  11. In-Human Robot-Assisted Retinal Vein Cannulation, A World First.

    PubMed

    Gijbels, Andy; Smits, Jonas; Schoevaerdts, Laurent; Willekens, Koen; Vander Poorten, Emmanuel B; Stalmans, Peter; Reynaerts, Dominiek

    2018-05-24

    Retinal Vein Occlusion (RVO) is a blinding disease caused by one or more occluded retinal veins. Current treatment methods only focus on symptom mitigation rather than targeting a solution for the root cause of the disorder. Retinal vein cannulation is an experimental eye surgical procedure which could potentially cure RVO. Its goal is to dissolve the occlusion by injecting an anticoagulant directly into the blocked vein. Given the scale and the fragility of retinal veins on one end and surgeons' limited positioning precision on the other, performing this procedure manually is considered to be too risky. The authors have been developing robotic devices and instruments to assist surgeons in performing this therapy in a safe and successful manner. This work reports on the clinical translation of the technology, resulting in the world-first in-human robot-assisted retinal vein cannulation. Four RVO patients have been treated with the technology in the context of a phase I clinical trial. The results show that it is technically feasible to safely inject an anticoagulant into a [Formula: see text]-thick retinal vein of an RVO patient for a period of 10 min with the aid of the presented robotic technology and instrumentation.

  12. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  13. Development and evaluation of a prototype in-flight instrument flight rules (IFR) procedures trainer

    NASA Technical Reports Server (NTRS)

    Aaron, J. B., Jr.; Morris, G. G.

    1981-01-01

    An in-flight instrument flight rules (IFR) procedures trainer capable of providing simulated indications of instrument flight in a typical general aviation aircraft independent of ground based navigation aids was developed. The IFR navaid related instruments and circuits from an ATC 610J table top simulator were installed in a Cessna 172 aircraft and connected to its electrical power and pitot static systems. The benefits expected from this hybridization concept include increased safety by reducing the number of general aviation aircraft conducting IFR training flights in congested terminal areas, and reduced fuel use and instruction costs by lessening the need to fly to and from navaid equipped airports and by increased efficiency of the required in-flight training. Technical feasibility was demonstrated and the operational feasibility of the concept was evaluated. Results indicated that the in-flight simulator is an effective training device for teaching IFR procedural skills.

  14. Cruise noise of an advanced counterrotation turboprop measured from an adjacent aircraft

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.

    1988-01-01

    Acoustic test results are presented for a full-scale counterrotation demonstrator engine installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Sideline acoustic data were acquired from a Learjet chase aircraft instrumented with noise and wing-tip flush mount microphones. Data are presented for a 47.2-m sideline at several engine operating conditions and flight Mach numbers of 0.50 and 0.72.

  15. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft

    NASA Astrophysics Data System (ADS)

    Wagner, N. L.; Dubé, W. P.; Washenfelder, R. A.; Young, C. J.; Pollack, I. B.; Ryerson, T. B.; Brown, S. S.

    2011-03-01

    This article presents a diode laser based, cavity ring-down spectrometer for simultaneous in situ measurements of four nitrogen oxide species, NO3, N2O5, NO, NO2, as well as O3, designed for deployment on aircraft. The instrument measures NO3 and NO2 by optical extinction at 662 nm and 405 nm, respectively; N2O5 is measured by thermal conversion to NO3, while NO and O3 are measured by chemical conversion to NO2. The instrument has several advantages over previous instruments developed by our group for measurement of NO2, NO3 and N2O5 alone, based on a pulsed Nd:YAG and dye laser. First, the use of continuous wave diode lasers reduces the requirements for power and weight and eliminates hazardous materials. Second, detection of NO2 at 405 nm is more sensitive than our previously reported 532 nm instrument, and does not have a measurable interference from O3. Third, the instrument includes chemical conversion of NO and O3 to NO2 to provide measurements of total NOx (= NO + NO2) and Ox (= NO2 + O3) on two separate channels; mixing ratios of NO and O3 are determined by subtraction of NO2. Finally, all five species are calibrated against a single standard based on 254 nm O3 absorption to provide high accuracy. Disadvantages include an increased sensitivity to water vapor on the 662 nm NO3 and N2O5 channels and a modest reduction in sensitivity for these species compared to the pulsed laser instrument. The measurement precision for both NO3 and N2O5 is below 1 pptv (2σ, 1 s) and for NO, NO2 and O3 is 170, 46, and 56 pptv (2σ, 1 s) respectively. The NO and NO2 measurements are less precise than research-grade chemiluminescence instruments. However, the combination of these five species in a single instrument, calibrated to a single analytical standard, provides a complete and accurate picture of nighttime nitrogen oxide chemistry. The instrument performance is demonstrated using data acquired during a recent field campaign in California.

  16. Remote measurement of pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Reichle, H. G., Jr.

    1976-01-01

    This paper discusses the problem of the remote measurement of tropospheric air pollution from aircraft platforms. Following a discussion of the energy sources available for passive remote sensing and the location of the absorption bands of the gases, it describes the spectral resolution that would be required and the relative merits of the shorter and longer infrared wavelengths. It then traces the evolution of one instrument concept (the gas filter correlation radiometer) to its present state, and describes flight results that show the technique to be capable of measuring carbon monoxide over water. A new instrument is described that will allow the measurements to be extended to areas over land.

  17. An intelligent robot for helping astronauts

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Grimm, K. A.; Pendleton, T. W.

    1994-01-01

    This paper describes the development status of a prototype supervised intelligent robot for space application for purposes of (1) helping the crew of a spacecraft such as the Space Station with various tasks, such as holding objects and retrieving/replacing tools and other objects from/into storage, and (2) for purposes of retrieving detached objects, such as equipment or crew, that have become separated from their spacecraft. In addition to this set of tasks in this low-Earth-orbiting spacecraft environment, it is argued that certain aspects of the technology can be viewed as generic in approach, thereby offering insight into intelligent robots for other tasks and environments. Candidate software architectures and their key technical issues which enable real work in real environments to be accomplished safely and robustly are addressed. Results of computer simulations of grasping floating objects are presented. Also described are characterization results on the usable reduced gravity environment in an aircraft flying parabola (to simulate weightlessness) and results on hardware performance there. These results show it is feasible to use that environment for evaluative testing of dexterous grasping based on real-time vision of freely rotating and translating objects.

  18. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.

    PubMed

    Daluja, Sachin; Golenberg, Lavie; Cao, Alex; Pandya, Abhilash K; Auner, Gregory W; Klein, Michael D

    2009-01-01

    Robotic surgery has gradually gained acceptance due to its numerous advantages such as tremor filtration, increased dexterity and motion scaling. There remains, however, a significant scope for improvement, especially in the areas of surgeon-robot interface and autonomous procedures. Previous studies have attempted to identify factors affecting a surgeon's performance in a master-slave robotic system by tracking hand movements. These studies relied on conventional optical or magnetic tracking systems, making their use impracticable in the operating room. This study concentrated on building an intrinsic movement capture platform using microcontroller based hardware wired to a surgical robot. Software was developed to enable tracking and analysis of hand movements while surgical tasks were performed. Movement capture was applied towards automated movements of the robotic instruments. By emulating control signals, recorded surgical movements were replayed by the robot's end-effectors. Though this work uses a surgical robot as the platform, the ideas and concepts put forward are applicable to telerobotic systems in general.

  19. Survey on Robot-Assisted Surgical Techniques Utilization in US Pediatric Surgery Fellowships.

    PubMed

    Maizlin, Ilan I; Shroyer, Michelle C; Yu, David C; Martin, Colin A; Chen, Mike K; Russell, Robert T

    2017-02-01

    Robotic technology has transformed both practice and education in many adult surgical specialties; no standardized training guidelines in pediatric surgery currently exist. The purpose of our study was to assess the prevalence of robotic procedures and extent of robotic surgery education in US pediatric surgery fellowships. A deidentified survey measured utilization of the robot, perception on the utility of the robot, and its incorporation in training among the program directors of Accreditation Council for Graduate Medical Education (ACGME) pediatric surgery fellowships in the United States. Forty-one of the 47 fellowship programs (87%) responded to the survey. While 67% of respondents indicated the presence of a robot in their facility, only 26% reported its utilizing in their surgical practice. Among programs not utilizing the robot, most common reasons provided were lack of clear supportive evidence, increased intraoperative time, and incompatibility of instrument size to pediatric patients. While 58% of program directors believe that there is a future role for robotic surgery in children, only 18% indicated that robotic training should play a part in pediatric surgery education. Consequently, while over 66% of survey respondents received training in robot-assisted surgical technique, only 29% of fellows receive robot-assisted training during their fellowship. A majority of fellowships have access to a robot, but few utilize the technology in their current practice or as part of training. Further investigation is required into both the technology's potential benefits in the pediatric population and its role in pediatric surgery training.

  20. Miniature chemical ionization mass spectrometer for light aircraft measurements of tropospheric ammonia

    NASA Astrophysics Data System (ADS)

    Silver, J. A.; Bomse, D. S.; Massick, S. M.; Zondlo, M. A.

    2003-12-01

    Tropospheric ammonia plays important roles in the nucleation, growth, composition, and chemistry of aerosol particles. Unfortunately, high frequency and sensitive measurements of gas phase ammonia are lacking in most airborne-based field campaigns. Chemical ionization mass spectrometers (CIMS) have shown great promise for ammonia measurements, but CIMS instruments typically consume large amounts of power, are highly labor intensive, and are very heavy for most airborne platforms. These characteristics of CIMS instruments severely limit their potential deployment on smaller and lighter aircraft, despite the strong desire for ammonia measurements in atmospheric chemistry field campaigns. To this end, a CIMS ammonia instrument for light aircraft is being developed using a double-focusing, miniature mass spectrometer. The size of the mass spectrometer, comparable to a small apple, allows for higher operating pressures (0.1 mTorr) and lower pumping requirements. Power usage, including pumps and electronics, is estimated to be around 300 W, and the overall instrument including pumps, electronics, and permeation cells is expected to be about the size of a small monitor. The ion source uses americium-241 to generate protonated water ions which proton transfer to form ammonium ions. The ion source is made with commercially available ion optics to minimize machining costs. Mass spectra over its working range (~ 5-120 amu) are well represented by Gaussian shaped peaks. By examining the peak widths as a function of mass location, the resolution of the instrument was determined experimentally to be around 110 (m/delta m). The sensitivity, selectivity, power requirements, size, and performance characteristics of the miniature mass spectrometer will be described along with the possibilities for CIMS measurements on light aircraft.

  1. INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.

    USGS Publications Warehouse

    Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.

    1987-01-01

    The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.

  2. Robotic Cholecystectomy Using the Newly Developed Korean Robotic Surgical System, Revo-i: A Preclinical Experiment in a Porcine Model.

    PubMed

    Kang, Chang Moo; Chong, Jae Uk; Lim, Jin Hong; Park, Dong Won; Park, Sung Jun; Gim, Suhyeon; Ye, Hye Jin; Kim, Se Hoon; Lee, Woo Jung

    2017-09-01

    One Korean company recently successfully produced a robotic surgical system prototype called Revo-i (MSR-5000). We, therefore, conducted a preclinical study for robotic cholecystectomy using Revo-i, and this is a report of the first case of robotic cholecystectomy performed using the Revo-i system in a preclinical porcine model. Revo-i consists of a surgeon console (MSRC-5000), operation cart (MSRO-5000) and vision cart (MSRV-5000), and a 40 kg-healthy female porcine was prepared for robotic cholecystectomy with general anesthesia. The primary end point was the safe completion of these procedures using Revo-i: The total operation time was 88 minutes. The dissection time was defined as the time from the initial dissection of the Calot area to the time to complete gallbladder detachment from the liver bed: The dissection time required 14 minutes. The surgical console time was 45 minutes. There was no gallbladder perforation or significant bleeding noted during the procedure. The porcine survived for two weeks postoperatively without any complications. Like the da Vinci surgical system, the Revo-i provides a three-dimensional operative view and allows for angulated instrument motion (forceps, needle-holders, clip-appliers, scissors, bipolar energy, and hook monopolar energy), facilitating an effective laparoscopic procedure. Our experience suggests that robotic cholecystectomy can be safely completed in a porcine model using Revo-i. © Copyright: Yonsei University College of Medicine 2017.

  3. Preliminary experience in transoral laryngeal surgery with a flexible robotic system for benign lesions of the vocal folds.

    PubMed

    Remacle, Marc; Prasad, Vyas M N

    2018-03-01

    This purpose of this case series is to present the first four cases utilizing micro-phonosurgical instrumentation designed specifically for use with a semi-flexible 'robotic' system-the Medrobotics Flex system and to evaluate the accessibility and feasibility of this platform in the context of transoral robotic surgery (TORS) for laryngeal surgery. Four patients (3 female, 1 male; age range 49-79 years) were operated by the senior author at CHL-a tertiary hospital centre between 2016 and 2017. The 'robot' was deployed in all cases to assess its accessibility and ability to perform surgery in the larynx. All four patients were successfully treated using the system along with newly developed instrumentation specifically focused on phonosurgery. This series has demonstrated accessibility and ability for laryngeal surgery using a novel semi-rigid operator-controlled 'robotic' system. We encountered no device failures and were able to perform all the selected cases uneventfully.

  4. Measurements of Radiation Exposure on Commercial Aircraft with the LIULIN-3M Instrument

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, C. A.; Dachev, T. P.; Brucker, G. J.; Tomov, B. T.; Dimitrov, P. G.

    1998-01-01

    This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.

  5. State estimation applications in aircraft flight-data analysis: A user's manual for SMACK

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.

    1991-01-01

    The evolution in the use of state estimation is traced for the analysis of aircraft flight data. A unifying mathematical framework for state estimation is reviewed, and several examples are presented that illustrate a general approach for checking instrument accuracy and data consistency, and for estimating variables that are difficult to measure. Recent applications associated with research aircraft flight tests and airline turbulence upsets are described. A computer program for aircraft state estimation is discussed in some detail. This document is intended to serve as a user's manual for the program called SMACK (SMoothing for AirCraft Kinematics). The diversity of the applications described emphasizes the potential advantages in using SMACK for flight-data analysis.

  6. How to decide which infant can have robotic surgery? Just do the math.

    PubMed

    Finkelstein, J B; Levy, A C; Silva, M V; Murray, L; Delaney, C; Casale, P

    2015-08-01

    In pediatric urology, robot-assisted surgery has overcome several impediments of conventional laparoscopy. However, workspace has a major impact on surgical performance. The limited space in an infant can significantly impede the mobility of robotic instruments. There is currently no consensus on which infant can undergo robotic intervention and no parameters to help make this decision, especially for those surgeons at the start of their learning curve. We sought to evaluate our experience with infants to create an objective standard to determine which patients may be most suitable for robotic surgery. We prospectively evaluated 45 infants (24 males, 21 females), aged 3-12 months old, who underwent a robotic intervention for either upper or lower urinary tract pathology. At the preoperative office visit the attending surgeon measured the distance between both anterior superior iliac spines (ASIS) as well as the puboxyphoid distance (PXD), regardless of whether the approach was for upper or lower tract disease. Patients' weights were also noted. During surgery, we recorded the number of robotic collisions as well as console time. All surgeries were performed utilizing the da Vinci Si Surgical System by a single surgeon. There were no differences in ASIS, PXD, collisions or console time when stratified by gender, age or weight. When arranging by upper or lower tract approach, there was no difference in the number of collisions. There was a strong inverse relationship between both ASIS distance and PXD and the number of collisions. Additionally, there was a strong correlation between the number of collisions and console time (Fig. 1). Using a cutoff of 13 cm for the ASIS, there were significantly fewer collisions in the >13 cm group as compared to the ≤13 cm group. This was also true for the PXD using a cutoff of 15 cm: there were significantly fewer collisions in the >15 cm group as compared to the ≤15 cm group. Safe proliferation of robotic technology in the

  7. Visual tracking of da Vinci instruments for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  8. Robot-assisted endoscope guidance versus manual endoscope guidance in functional endonasal sinus surgery (FESS).

    PubMed

    Eichhorn, Klaus Wolfgang; Westphal, Ralf; Rilk, Markus; Last, Carsten; Bootz, Friedrich; Wahl, Friedrich; Jakob, Mark; Send, Thorsten

    2017-10-01

    Having one hand occupied with the endoscope is the major disadvantage for the surgeon when it comes to functional endoscopic sinus surgery (FESS). Only the other hand is free to use the surgical instruments. Tiredness or frequent instrument changes can thus lead to shaky endoscopic images. We collected the pose data (position and orientation) of the rigid 0° endoscope and all the instruments used in 16 FESS procedures with manual endoscope guidance as well as robot-assisted endoscope guidance. In combination with the DICOM CT data, we tracked the endoscope poses and workspaces using self-developed tracking markers. All surgeries were performed once with the robot and once with the surgeon holding the endoscope. Looking at the durations required, we observed a decrease in the operating time because one surgeon doing all the procedures and so a learning curve occurred what we expected. The visual inspection of the specimens showed no damages to any of the structures outside the paranasal sinuses. Robot-assisted endoscope guidance in sinus surgery is possible. Further CT data, however, are desirable for the surgical analysis of a tracker-based navigation within the anatomic borders. Our marker-based tracking of the endoscope as well as the instruments makes an automated endoscope guidance feasible. On the subjective side, we see that RASS brings a relief for the surgeon.

  9. Development and application of linear and nonlinear methods for interpretation of lightning strikes to in-flight aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence; Perala, Rodney A.; Easterbrook, Calvin C.; Parker, Steven L.

    1986-01-01

    Since 1980, NASA has been collecting direct strike lightning data by flying an instrumented F-106B aircraft into thunderstorms. The continuing effort to interpret the measured data is reported here. Both linear and nonlinear finite difference modeling techniques are applied to the problem of lightning triggered by an aircraft in a thunderstorm. Five different aircraft are analyzed to determine the effect of aircraft size and shape on lightning triggering. The effect of lightning channel impedance on aircraft response is investigated. The particle environment in thunderstorms and electric field enhancements by typical ice particles is also investigated.

  10. Da Vinci Xi Robot-Assisted Penetrating Keratoplasty.

    PubMed

    Chammas, Jimmy; Sauer, Arnaud; Pizzuto, Joëlle; Pouthier, Fabienne; Gaucher, David; Marescaux, Jacques; Mutter, Didier; Bourcier, Tristan

    2017-06-01

    This study aims (1) to investigate the feasibility of robot-assisted penetrating keratoplasty (PK) using the new Da Vinci Xi Surgical System and (2) to report what we believe to be the first use of this system in experimental eye surgery. Robot-assisted PK procedures were performed on human corneal transplants using the Da Vinci Xi Surgical System. After an 8-mm corneal trephination, four interrupted sutures and one 10.0 monofilament running suture were made. For each procedure, duration and successful completion of the surgery as well as any unexpected events were assessed. The depth of the corneal sutures was checked postoperatively using spectral-domain optical coherence tomography (SD-OCT). Robot-assisted PK was successfully performed on 12 corneas. The Da Vinci Xi Surgical System provided the necessary dexterity to perform the different steps of surgery. The mean duration of the procedures was 43.4 ± 8.9 minutes (range: 28.5-61.1 minutes). There were no unexpected intraoperative events. SD-OCT confirmed that the sutures were placed at the appropriate depth. We confirm the feasibility of robot-assisted PK with the new Da Vinci Surgical System and report the first use of the Xi model in experimental eye surgery. Operative time of robot-assisted PK surgery is now close to that of conventional manual surgery due to both improvement of the optical system and the presence of microsurgical instruments. Experimentations will allow the advantages of robot-assisted microsurgery to be identified while underlining the improvements and innovations necessary for clinical use.

  11. Modeling of robotic fish propelled by an ionic polymer-metal composite caudal fin

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Shatara, Stephan; Tan, Xiaobo

    2009-03-01

    In this paper, a model is proposed for a biomimetic robotic fish propelled by an ionic polymer metal composite (IPMC) actuator with a rigid passive fin at the end. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state speed of the robot under a periodic actuation voltage. Experimental results have shown that the proposed model can predict the fish motion for different tail dimensions. Since its parameters are expressed in terms of physical properties and geometric dimensions, the model is expected to be instrumental in optimal design of the robotic fish.

  12. Robot-assisted partial nephrectomy: Superiority over laparoscopic partial nephrectomy.

    PubMed

    Shiroki, Ryoichi; Fukami, Naohiko; Fukaya, Kosuke; Kusaka, Mamoru; Natsume, Takahiro; Ichihara, Takashi; Toyama, Hiroshi

    2016-02-01

    Nephron-sparing surgery has been proven to positively impact the postoperative quality of life for the treatment of small renal tumors, possibly leading to functional improvements. Laparoscopic partial nephrectomy is still one of the most demanding procedures in urological surgery. Laparoscopic partial nephrectomy sometimes results in extended warm ischemic time and severe complications, such as open conversion, postoperative hemorrhage and urine leakage. Robot-assisted partial nephrectomy exploits the advantages offered by the da Vinci Surgical System to laparoscopic partial nephrectomy, equipped with 3-D vision and a better degree in the freedom of surgical instruments. The introduction of the da Vinci Surgical System made nephron-sparing surgery, specifically robot-assisted partial nephrectomy, safe with promising results, leading to the shortening of warm ischemic time and a reduction in perioperative complications. Even for complex and challenging tumors, robotic assistance is expected to provide the benefit of minimally-invasive surgery with safe and satisfactory renal function. Warm ischemic time is the modifiable factor during robot-assisted partial nephrectomy to affect postoperative kidney function. We analyzed the predictive factors for extended warm ischemic time from our robot-assisted partial nephrectomy series. The surface area of the tumor attached to the kidney parenchyma was shown to significantly affect the extended warm ischemic time during robot-assisted partial nephrectomy. In cases with tumor-attached surface area more than 15 cm(2) , we should consider switching robot-assisted partial nephrectomy to open partial nephrectomy under cold ischemia if it is imperative. In Japan, a nationwide prospective study has been carried out to show the superiority of robot-assisted partial nephrectomy to laparoscopic partial nephrectomy in improving warm ischemic time and complications. By facilitating robotic technology, robot-assisted partial nephrectomy

  13. Measurement of high altitude air quality using aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  14. Measurement of high-altitude air quality using aircraft.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Perkins, P. J.

    1973-01-01

    The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.

  15. Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2015-01-01

    Civilian aircraft are available in a variety of sizes, engine types, construction materials and instrumentation complexity. For the analysis reported here, eleven aircraft categories were developed based mostly on aircraft size and engine type, and these categories were applied to twenty consecutive years of civil aviation accidents. Differences in various factors were examined among these aircraft types, including accident severity, pilot characteristics and accident occurrence categories. In general, regional jets and very light sport aircraft had the lowest rates of adverse outcomes (injuries, fatal accidents, aircraft destruction, major accidents), while aircraft with twin (piston) engines or with a single (piston) engine and retractable landing gear carried the highest incidence of adverse outcomes. The accident categories of abnormal runway contact, runway excursions and non-powerplant system/component failures occur frequently within all but two or three aircraft types. In contrast, ground collisions, loss of control - on ground/water and powerplant system/component failure occur frequently within only one or two aircraft types. Although accidents in larger aircraft tend to have less severe outcomes, adverse outcome rates also differ among accident categories. It may be that the type of accident has as much or more influence on the outcome as the type of aircraft.

  16. Rates of Upper Facet Joint Violation in Minimally Invasive Percutaneous and Open Instrumentation: A Comparative Cohort Study of Different Insertion Techniques.

    PubMed

    Archavlis, Eleftherios; Amr, Nimer; Kantelhardt, Sven Rainer; Giese, Alf

    2018-01-01

     Minimally invasive pedicle screw placement may have a higher incidence of violation of the superior cephalad unfused facet joint.  We investigated the incidence and risk factors of upper facet joint violation in percutaneous robot-assisted instrumentation versus percutaneous fluoroscopy-guided and open transpedicular instrumentation.  A retrospective study including all consecutive patients who underwent lumbar instrumentation, fusion, and decompression for spondylolisthetic stenosis and degenerative disk disease was conducted between January 2012 and January 2016. All operations were performed by the same surgeon; the patients were divided into three groups according to the method of instrumentation. Group 1 involved the robot-assisted instrumentation in 58 patients, group 2 consisted of 64 patients treated with a percutaneous transpedicular instrumentation using fluoroscopic guidance, and 72 patients in group 3 received an open midline approach for pedicle screw insertion.  Superior segment facet joint violation occurred in 2 patients in the robot-assisted group 1 (7%), in 22 of the percutaneous fluoroscopy-guided group 2 (34%), and in 6 cases of the open group (8%). The incidence of facet joint violation was present in 5% (3) of the screws in group 1, 22% (28) of the screws in group 2, and 3% (4) of the screws in group 3.  Meticulous surgical planning of the appropriate entry site (Weinstein's method), trajectory planning, and proper robot-assisted instrumentation of pedicle screws reduced the risk of superior segment facet joint violation. Georg Thieme Verlag KG Stuttgart · New York.

  17. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  18. Experimental Research Regarding The Motion Capacity Of A Robotic Arm

    NASA Astrophysics Data System (ADS)

    Dumitru, Violeta Cristina

    2015-09-01

    This paper refers to the development of necessary experiments which obtained dynamic parameters (force, displacement) for a modular mechanism with multiple vertebrae. This mechanism performs functions of inspection and intervention in small spaces. Mechanical structure allows functional parameters to achieve precise movements to an imposed target. Will be analyzed the dynamic of the mechanisms using simulation instruments DimamicaRobot.tst under TestPoint programming environment and the elasticity of the tension cables. It will be changes on the mechanism so that spatial movement of the robotic arm is optimal.

  19. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  20. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system.

    PubMed

    Schuler, Patrick J; Hoffmann, Thomas K; Veit, Johannes A; Rotter, Nicole; Friedrich, Daniel T; Greve, Jens; Scheithauer, Marc O

    2017-06-01

    Total laryngectomy is a standard procedure in head-and-neck surgery for the treatment of cancer patients. Recent clinical experiences have indicated a clinical benefit for patients undergoing transoral robot-assisted total laryngectomy (TORS-TL) with commercially available systems. Here, a new hybrid procedure for total laryngectomy is presented. TORS-TL was performed in human cadavers (n = 3) using a transoral-transcervical hybrid procedure. The transoral approach was performed with a robotic flexible robot-assisted surgical system (Flex®) and compatible flexible instruments. Transoral access and visualization of anatomical landmarks were studied in detail. Total laryngectomy is feasible with a combined transoral-transcervical approach using the flexible robot-assisted surgical system. Transoral visualization of all anatomical structures is sufficient. The flexible design of the robot is advantageous for transoral surgery of the laryngeal structures. Transoral robot assisted surgery has the potential to reduce morbidity, hospital time and fistula rates in a selected group of patients. Initial clinical studies and further development of supplemental tools are in progress. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.