Sample records for instruments for measuring fluid properties or phenomena

  1. Noncontact temperature measurements in the microgravity fluids and transport phenomena discipline

    NASA Technical Reports Server (NTRS)

    Salzman, Jack

    1988-01-01

    The program of activities within the Microgravity Fluids and Transport Phenomena Discipline has been structured to enable the systematic pursuit of an increased understanding of low gravity fluid behavior/phenomena in a way which ensures that the results are appropriate to the widest range of applications. This structure is discussed and an overview of some of the activities which are underway is given. Of significance is the fact that in the majority of the current and planned activities, the measurement and, or control of the fluid temperature is a key experiment requirement. In addition, many of the experiments require that the temperature measurement be nonintrusive. A description of these requirements together with the current techniques which are being employed or under study to make these measurements is also discussed.

  2. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  3. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties.

    PubMed

    Bautista, Mary Ann C; Nurjono, Milawaty; Lim, Yee Wei; Dessers, Ezra; Vrijhoef, Hubertus Jm

    2016-12-01

    -centered care (49%); fewer studies measured care continuity/comprehensive care (15%) and care coordination/case management (3%). We mapped 84% of the measured constructs to the clinical integration domain of the RMIC, with fewer constructs related to the domains of professional (3.7%), organizational (3.4%), and functional (0.5%) integration. Only 8% of the instruments were mapped to a combination of domains; none were mapped exclusively to the system or normative integration domains. The majority of instruments were administered to either patients (60%) or health care providers (20%). Of the measurement properties, responsiveness (4%), measurement error (7%), and criterion (12%) and cross-cultural validity (14%) were less commonly reported. We found <50% of the validation studies to be of good or excellent quality for any of the measurement properties. Only a minority of index instruments showed strong evidence of positive findings for internal consistency (15%), content validity (19%), and structural validity (7%); with moderate evidence of positive findings for internal consistency (14%) and construct validity (14%). Our results suggest that the quality of measurement properties of instruments measuring integrated care is in need of improvement with the less-studied constructs and domains to become part of newly developed instruments. © 2016 Milbank Memorial Fund.

  4. Instruments Measuring Integrated Care: A Systematic Review of Measurement Properties

    PubMed Central

    BAUTISTA, MARY ANN C.; NURJONO, MILAWATY; DESSERS, EZRA; VRIJHOEF, HUBERTUS JM

    2016-01-01

    integration (33%) and patient‐centered care (49%); fewer studies measured care continuity/comprehensive care (15%) and care coordination/case management (3%). We mapped 84% of the measured constructs to the clinical integration domain of the RMIC, with fewer constructs related to the domains of professional (3.7%), organizational (3.4%), and functional (0.5%) integration. Only 8% of the instruments were mapped to a combination of domains; none were mapped exclusively to the system or normative integration domains. The majority of instruments were administered to either patients (60%) or health care providers (20%). Of the measurement properties, responsiveness (4%), measurement error (7%), and criterion (12%) and cross‐cultural validity (14%) were less commonly reported. We found <50% of the validation studies to be of good or excellent quality for any of the measurement properties. Only a minority of index instruments showed strong evidence of positive findings for internal consistency (15%), content validity (19%), and structural validity (7%); with moderate evidence of positive findings for internal consistency (14%) and construct validity (14%). Conclusions Our results suggest that the quality of measurement properties of instruments measuring integrated care is in need of improvement with the less‐studied constructs and domains to become part of newly developed instruments. PMID:27995711

  5. Measurement properties of adult quality-of-life measurement instruments for eczema: protocol for a systematic review.

    PubMed

    Apfelbacher, Christian J; Heinl, Daniel; Prinsen, Cecilia A C; Deckert, Stefanie; Chalmers, Joanne; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Chamlin, Sarah; Schmitt, Jochen

    2015-04-16

    Eczema is a common chronic or chronically relapsing skin disease that has a substantial impact on quality of life (QoL). By means of a consensus-based process, the Harmonising Outcome Measures in Eczema (HOME) initiative has identified QoL as one of the four core outcome domains to be assessed in all eczema trials (Allergy 67(9):1111-7, 2012). Various measurement instruments exist to measure QoL in adults with eczema, but there is a great variability in both content and quality (for example, reliability and validity) of the instruments used, and it is not always clear if the best instrument is being used. Therefore, the aim of the proposed research is a comprehensive systematic assessment of the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in adults with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for adults with eczema. Medline via PubMed and EMBASE will be searched using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for adult patients with eczema. Eligibility assessment and data abstraction will be performed independently by two reviewers. Evidence tables will be generated for study characteristics, instrument characteristics, measurement properties, and interpretability. The quality of the measurement properties will be assessed using predefined criteria. Methodological quality of studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis will be undertaken if more than one study has investigated a particular measurement property. The proposed systematic review will produce a comprehensive assessment of measurement properties of existing QoL instruments in

  6. Instruments assessing attitudes toward or capability regarding self-management of osteoarthritis: a systematic review of measurement properties.

    PubMed

    Eyles, J P; Hunter, D J; Meneses, S R F; Collins, N J; Dobson, F; Lucas, B R; Mills, K

    2017-08-01

    To make a recommendation on the "best" instrument to assess attitudes toward and/or capabilities regarding self-management of osteoarthritis (OA) based on available measurement property evidence. Electronic searches were performed in MEDLINE, EMBASE, CINAHL and PsychINFO (inception to 27 December 2016). Two reviewers independently rated measurement properties using the Consensus-based Standards for the selection of Health Measurement Instruments (COSMIN) 4-point scale. Best evidence synthesis was determined by considering COSMIN ratings for measurement property results and the level of evidence available for each measurement property of each instrument. Eight studies out of 5653 publications met the inclusion criteria, with eight instruments identified for evaluation: Multidimensional Health Locus of Control (MHLC), Perceived Behavioural Control (PBC), Patient Activation Measure (PAM), Educational Needs Assessment (ENAT), Stages of Change Questionnaire in Osteoarthritis (SCQOA), Effective Consumer Scale (EC-17) and Perceived Efficacy in Patient-Physician Interactions five item (PEPPI-5) and ten item scales. Measurement properties assessed for these instruments included internal consistency (k = 8), structural validity (k = 8), test-retest reliability (k = 2), measurement error (k = 1), hypothesis testing (k = 3) and cross-cultural validity (k = 3). No information was available for content validity, responsiveness or minimal important change (MIC)/minimal important difference (MID). The Dutch PEPPI-5 demonstrated the best measurement property evidence; strong evidence for internal consistency and structural validity but limited evidence for reliability and construct validity. Although PEPPI-5 was identified as having the best measurement properties, overall there is a poor level of evidence currently available concerning measurement properties of instruments to assess attitudes toward and/or capabilities regarding osteoarthritis self-management. Further

  7. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics

  8. Measuring the Optical Properties of Astrophysical Dust Analogues: Instrumentation and Methods

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Benford, D. J.; Cataldo, G.; Dwek, E.; Henry, R.; Kinzer, R. E., Jr.; Nuth, J.; Silverberg, R.; Wheeler, C.; Wollack, E.

    2011-01-01

    Dust is found throughout the universe and plays an important role for a wide range of astrophysical phenomena. In recent years, new infrared facilities have provided powerful new data for understanding these phenomena. However, interpretation of these data is often complicated by a lack of complementary information about the optical properties of astronomically relevant materials. The Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T) program at NASA's Goddard Space Flight Center is designed to provide new high-quality laboratory data from which we can derive the optical properties of astrophysical dust analogues. This program makes use of multiple instruments, including new equipment designed and built specifically for this purpose. The suite of instruments allows us to derive optical properties over a wide wavelength range, from the near-infrared through the millimeter, also providing the capability for exploring how these properties depend upon the temperature of the sample. In this paper, we discuss the overall structure of the research program, describe the new instruments that have been developed to meet the science goals, and demonstrate the efficacy of these tools.

  9. Measurement properties of adult quality-of-life measurement instruments for eczema: a systematic review.

    PubMed

    Heinl, D; Prinsen, C A C; Deckert, S; Chalmers, J R; Drucker, A M; Ofenloch, R; Humphreys, R; Sach, T; Chamlin, S L; Schmitt, J; Apfelbacher, C

    2016-03-01

    The Harmonising Outcome Measures for Eczema (HOME) initiative has identified quality of life (QoL) as a core outcome domain to be evaluated in every eczema trial. It is unclear which of the existing QoL instruments is most appropriate for this domain. Thus, the aim of this review was to systematically assess the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in adult eczema. We conducted a systematic literature search in PubMed and Embase identifying studies on measurement properties of adult eczema QoL instruments. For all eligible studies, we assessed the adequacy of the measurement properties and the methodological quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis summarizing findings from different studies was the basis to assign four degrees of recommendation (A-D). A total of 15 articles reporting on 17 instruments were included. No instrument fulfilled the criteria for category A. Six instruments were placed in category B, meaning that they have the potential to be recommended depending on the results of further validation studies. Three instruments had poor adequacy in at least one required adequacy criterion and were therefore put in category C. The remaining eight instruments were minimally validated and were thus placed in category D. Currently, no QoL instrument can be recommended for use in adult eczema. The Quality of Life Index for Atopic Dermatitis (QoLIAD) and the Dermatology Life Quality Index (DLQI) are recommended for further validation research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Advanced optical measuring systems for measuring the properties of fluids and structures

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1986-01-01

    Four advanced optical models are reviewed for the measurement of visualization of flow and structural properties. Double-exposure, diffuse-illumination, holographic interferometry can be used for three-dimensional flow visualization. When this method is combined with optical heterodyning, precise measurements of structural displacements or fluid density are possible. Time-average holography is well known as a method for displaying vibrational mode shapes, but it also can be used for flow visualization and flow measurements. Deflectometry is used to measure or visualize the deflection of light rays from collimation. Said deflection occurs because of refraction in a fluid or because of reflection from a tilted surface. The moire technique for deflectometry, when combined with optical heterodyning, permits very precise measurements of these quantities. The rainbow schlieren method of deflectometry allows varying deflection angles to be encoded with colors for visualization.

  11. Measurement properties of quality of life measurement instruments for infants, children and adolescents with eczema: protocol for a systematic review.

    PubMed

    Heinl, Daniel; Prinsen, Cecilia A C; Drucker, Aaron M; Ofenloch, Robert; Humphreys, Rosemary; Sach, Tracey; Flohr, Carsten; Apfelbacher, Christian

    2016-02-09

    Eczema is a common chronic or chronically relapsing, inflammatory skin disease that exerts a substantial negative impact on quality of life (QoL). The Harmonising Outcome Measures for Eczema (HOME) initiative has used a consensus-based process which identified QoL as one of the four core outcome domains to be assessed in all eczema clinical trials. A number of measurement instruments exist to measure QoL in infants, children, and adolescents with eczema, and there is a great variability in both content and quality of the instruments used. Therefore, the objective of the proposed research is to comprehensively and systematically assess the measurement properties of the existing measurement instruments that were developed and/or validated for the measurement of patient-reported QoL in infants, children, and adolescents with eczema. This study is a systematic review of the measurement properties of patient-reported measures of QoL developed and/or validated for infants, children, and adolescents with eczema. A systematic literature search will be carried out in MEDLINE via PubMed and EMBASE using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing, or comparing measurement properties of QoL instruments for infants, children, and adolescents with eczema. Two reviewers will independently perform eligibility assessment and data abstraction. Evidence tables will be used to record study characteristics, instrument characteristics, measurement properties, and interpretability. The adequacy of the measurement properties will be assessed using predefined criteria. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist will be used to evaluate the methodological quality of included studies. A best evidence synthesis will be undertaken if more than one study has examined a particular measurement property. The proposed systematic review will yield a comprehensive assessment

  12. System for Measuring Conditional Amplitude, Phase, or Time Distributions of Pulsating Phenomena

    PubMed Central

    Van Brunt, Richard J.; Cernyar, Eric W.

    1992-01-01

    A detailed description is given of an electronic stochastic analyzer for use with direct “real-time” measurements of the conditional distributions needed for a complete stochastic characterization of pulsating phenomena that can be represented as random point processes. The measurement system described here is designed to reveal and quantify effects of pulse-to-pulse or phase-to-phase memory propagation. The unraveling of memory effects is required so that the physical basis for observed statistical properties of pulsating phenomena can be understood. The individual unique circuit components that comprise the system and the combinations of these components for various measurements, are thoroughly documented. The system has been applied to the measurement of pulsating partial discharges generated by applying alternating or constant voltage to a discharge gap. Examples are shown of data obtained for conditional and unconditional amplitude, time interval, and phase-of-occurrence distributions of partial-discharge pulses. The results unequivocally show the existence of significant memory effects as indicated, for example, by the observations that the most probable amplitudes and phases-of-occurrence of discharge pulses depend on the amplitudes and/or phases of the preceding pulses. Sources of error and fundamental limitations of the present measurement approach are analyzed. Possible extensions of the method are also discussed. PMID:28053450

  13. Measurement Properties of Instruments for Measuring of Lymphedema: Systematic Review.

    PubMed

    Hidding, Janine T; Viehoff, Peter B; Beurskens, Carien H G; van Laarhoven, Hanneke W M; Nijhuis-van der Sanden, Maria W G; van der Wees, Philip J

    2016-12-01

    Lymphedema is a common complication of cancer treatment, resulting in swelling and subjective symptoms. Reliable and valid measurement of this side effect of medical treatment is important. The purpose of this study was to provide best evidence regarding which measurement instruments are most appropriate in measuring lymphedema in its different stages. The PubMed and Web of Science databases were used, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Clinical studies on measurement instruments assessing lymphedema were reviewed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) scoring instrument for quality assessment. Data on reliability, concurrent validity, convergent validity, sensitivity, specificity, applicability, and costs were extracted. Pooled data showed good intrarater intraclass correlation coefficients (ICCs) (.89) for bioimpedance spectroscopy (BIS) in the lower extremities and high intrarater and interrater ICCs for water volumetry, tape measurement, and perometry (.98-.99) in the upper extremities. In the upper extremities, the standard error of measurement was 3.6% (σ=0.7%) for water volumetry, 5.6% (σ=2.1%) for perometry, and 6.6% (σ=2.6%) for tape measurement. Sensitivity of tape measurement in the upper extremities, using different cutoff points, varied from 0.73 to 0.90, and specificity values varied from 0.72 to 0.78. No uniform definition of lymphedema was available, and a gold standard as a reference test was lacking. Items concerning risk of bias were study design, patient selection, description of lymphedema, blinding of test outcomes, and number of included participants. Measurement instruments with evidence for good reliability and validity were BIS, water volumetry, tape measurement, and perometry, where BIS can detect alterations in extracellular fluid in stage 1 lymphedema and the other measurement instruments can detect alterations in volume

  14. Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments

    NASA Astrophysics Data System (ADS)

    Block, Gareth I.; Harris, John G.

    2006-01-01

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study the conductivity dependence of the electrokinetic (EK) effect are described, and outcomes for studies in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves and (2) the electromagnetic waves produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores; this feature is characteristic of poroelastic (Biot) media but is not predicted by either viscoelastic fluid or solid models. A model of plane wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both loose glass microspheres and medium-grain sand.

  15. Systematic review of measurement properties of self-reported instruments for evaluating self-care in adults.

    PubMed

    Matarese, Maria; Lommi, Marzia; De Marinis, Maria Grazia

    2017-06-01

    The aims of this study were as follows: to identify instruments developed to assess self-care in healthy adults; to determine the theory on which they were based; their validity and reliability properties and to synthesize the evidence on their measurement properties. Many instruments have been developed to assess self-care in many different populations and conditions. Clinicians and researchers should select the most appropriate self-care instrument based on the knowledge of their measurement properties. Systematic review of measurement instruments according to the protocol recommended by the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. PubMed, Embase, PsycINFO, Scopus and CINAHL databases were searched from inception to December 2015. Studies testing measurement properties of self-report instruments assessing self-care in healthy adults, published in the English language and in peer review journals were selected. Two reviewers independently appraised the methodological quality of the studies with the COSMIN checklist and the quality of results using specific quality criteria. Twenty-six articles were included in the review testing the measurement properties of nine instruments. Seven instruments were based on Orem's Self-care theory. Not all the measurement properties were evaluated for the identified instruments. No self-care instrument showed strong evidence supporting the evaluated measurement properties. Despite the development of several instruments to assess self-care in the adult population, no instrument can be fully recommended to clinical nurses and researchers. Further studies of high methodological quality are needed to confirm the measurement properties of these instruments. © 2016 John Wiley & Sons Ltd.

  16. Measurement properties of quality-of-life measurement instruments for infants, children and adolescents with eczema: a systematic review.

    PubMed

    Heinl, D; Prinsen, C A C; Sach, T; Drucker, A M; Ofenloch, R; Flohr, C; Apfelbacher, C

    2017-04-01

    Quality of life (QoL) is one of the core outcome domains identified by the Harmonising Outcome Measures for Eczema (HOME) initiative to be assessed in every eczema trial. There is uncertainty about the most appropriate QoL instrument to measure this domain in infants, children and adolescents. To systematically evaluate the measurement properties of existing measurement instruments developed and/or validated for the measurement of QoL in infants, children and adolescents with eczema. A systematic literature search in PubMed and Embase, complemented by a thorough hand search of reference lists, retrieved studies on measurement properties of eczema QoL instruments for infants, children and adolescents. For all eligible studies, we judged the adequacy of the measurement properties and the methodological study quality with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Results from different studies were summarized in a best-evidence synthesis and formed the basis to assign four degrees of recommendation. Seventeen articles, three of which were found by hand search, were included. These 17 articles reported on 24 instruments. No instrument can be recommended for use in all eczema trials because none fulfilled all required adequacy criteria. With adequate internal consistency, reliability and hypothesis testing, the U.S. version of the Childhood Atopic Dermatitis Impact Scale (CADIS), a proxy-reported instrument, has the potential to be recommended depending on the results of further validation studies. All other instruments, including all self-reported ones, lacked significant validation data. Currently, no QoL instrument for infants, children and adolescents with eczema can be highly recommended. Future validation research should primarily focus on the CADIS, but also attempt to broaden the evidence base for the validity of self-reported instruments. © 2016 British Association of Dermatologists.

  17. Informal caregiving in COPD: A systematic review of instruments and their measurement properties.

    PubMed

    Cruz, Joana; Marques, Alda; Machado, Ana; O'Hoski, Sachi; Goldstein, Roger; Brooks, Dina

    2017-07-01

    Increasing symptoms and activity restriction associated with COPD progression greatly impact on the lives of their informal caregivers, who play a vital role in maintaining their health. An understanding of this impact is important for clinicians to support caregivers and maintain a viable patient environment at home. This systematic review aimed to identify the instruments commonly used to assess informal caregiving in COPD and describe their measurement properties in this population. Searches were conducted in PubMed, Scopus, Web of Science, CINAHL and PsycINFO and in references of key articles, until November 2016 (PROSPERO: CRD42016041401). Instruments used to assess the impact of COPD on caregivers were identified and their properties described. Quality of studies was rated using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. Quality of the measurement properties of instruments was rated as 'positive', 'negative' or 'indeterminate'. Patients cared for, had moderate to very severe COPD and the sample of caregivers ranged from 24 to 406. Thirty-five instruments were used in fifty studies to assess caregivers' psychological status and mood (9 instruments), burden/distress (12 instruments), quality of life (5 instruments) or other (9 instruments). Eighteen studies assessed the measurement properties of 21 instruments, most commonly hypothesis testing (known validity) and internal consistency. Study quality varied from 'poor' to 'fair' and with many properties rated as 'indeterminate'. Although several instruments have been used to assess the impact of COPD on caregivers, an increased understanding of their properties is needed before their widespread implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of the measurement properties of symptom measurement instruments for atopic eczema: a systematic review.

    PubMed

    Gerbens, L A A; Prinsen, C A C; Chalmers, J R; Drucker, A M; von Kobyletzki, L B; Limpens, J; Nankervis, H; Svensson, Å; Terwee, C B; Zhang, J; Apfelbacher, C J; Spuls, P I

    2017-01-01

    Symptoms have been identified as a core outcome domain for atopic eczema (AE) trials. Various instruments exist to measure symptoms in AE, but they vary in quality and there is a lack of standardization between clinical trials. Our objective was to systematically evaluate the quality of the evidence on the measurement properties of AE symptom instruments, thereby informing consensus discussions within the Harmonising Outcome Measures for Eczema (HOME) initiative regarding the most appropriate instruments for the core outcome domain symptoms. Using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist and predefined criteria for good measurement properties on identified development and validation studies of AE symptom instruments, a best evidence synthesis was performed to draw an overall conclusion on quality of the instruments and to provide recommendations. Eighteen instruments were identified and evaluated. When the quality and results of the studies were considered, only five of these instruments had sufficient validation data to consider them for the core outcome set for the core outcome domain symptoms. These were the paediatric Itch Severity Scale (ISS), Patient-Oriented Eczema Measure (POEM), Patient-Oriented SCOring Atopic Dermatitis (PO-SCORAD), Self-Administered Eczema Area and Severity Index (SA-EASI) and adapted SA-EASI. ISS (paediatric version), POEM, PO-SCORAD, SA-EASI and adapted SA-EASI are currently the most appropriate instruments and therefore have the potential to be recommended as core symptom instrument in future clinical trials. These findings will be utilized for the development of a core outcome set for AE. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Fluid property measurements study

    NASA Technical Reports Server (NTRS)

    Devaney, W. E.

    1976-01-01

    Fluid properties of refrigerant-21 were investigated at temperatures from the freezing point to 423 Kelvin and at pressures to 1.38 x 10 to the 8th power N/sq m (20,000 psia). The fluid properties included were: density, vapor pressure, viscosity, specific heat, thermal conductivity, thermal expansion coefficient, freezing point and bulk modulus. Tables of smooth values are reported.

  20. Topics in Chemical Instrumentation--An Introduction to Supercritical Fluid Chromatography: Part 1: Principles and Instrumentation.

    ERIC Educational Resources Information Center

    Palmieri, Margo D.

    1988-01-01

    Identifies the properties and characteristics of supercritical fluids. Discusses the methodology for supercritical fluid chromatography including flow rate, plate height, column efficiency, viscosity, and other factors. Reviews instruments, column types, and elution conditions. Lists supercritical fluid data for 22 compounds, mostly organic. (MVL)

  1. Self-administered health literacy instruments for people with diabetes: systematic review of measurement properties.

    PubMed

    Lee, Eun-Hyun; Kim, Chun-Ja; Lee, Jiyeon; Moon, Seung Hei

    2017-09-01

    The aims of this study were to identify all available self-administered instruments measuring health literacy in people with diabetes and to determine the current instrument that is the most appropriate for applying to this population in both practice and research. A systematic review of measurement properties. MEDLINE, EMBASE and CINAHL electronic databases from their inception up to 28 March 2016. The methodological quality of each included study was assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. The reported results for measurement properties in the studies were assessed according to Terwee's quality criteria. Thirteen self-administered instruments measuring health literacy in people with diabetes were identified, of which six (44%) were diabetes-specific instruments. The instruments that covered the broadest contents of health literacy were the Health Literacy Scale and Health Literacy Questionnaire. The (test-retest) reliability, measurement error and responsiveness were not evaluated for any instrument, while internal consistency and hypothesis testing validity were the most frequently assessed measurement properties. With the current evidence, the Health Literacy Scale may be the most appropriate instrument for patients with diabetes in practice and research. However, the structural validity of this scale needs to be further established, particularly in other language versions. It is also recommended to use the Diabetes Numeracy Test-15 along with the Health Literacy Scale to complement the lack of numeracy measures in the Health Literacy Scale. © 2017 John Wiley & Sons Ltd.

  2. Diabetes-related emotional distress instruments: a systematic review of measurement properties.

    PubMed

    Lee, Jiyeon; Lee, Eun-Hyun; Kim, Chun-Ja; Moon, Seung Hei

    2015-12-01

    The objectives of this study were to identify all available diabetes-related emotional distress instruments and evaluate the evidence regarding their measurement properties to help in the selection of the most appropriate instrument for use in practice and research. A systematic literature search was performed. PubMed, Embase, CINAHL, and PsycINFO were searched systematically for articles on diabetes-related emotional distress instruments. The Consensus-based Standards for the Selection of Health Measurement Instruments checklist was used to evaluate the methodological quality of the identified studies. The quality of results with respect to the measurement properties of each study was evaluated using Terwee's quality criteria. An ancillary meta-analysis was performed. Of the 2345 articles yielded by the search, 19 full-text articles evaluating 6 diabetes-related emotional distress instruments were included in this study. No instrument demonstrated evidence for all measurement properties. The Problem Areas in Diabetes scale (PAID) was the most frequently studied and the best validated of the instruments. Pooled summary estimates of the correlation coefficient between the PAID and serum glycated hemoglobin revealed a positive but weak correlation. No diabetes-related emotional distress instrument demonstrated evidence for all measurement properties. No instrument was better than another, although the PAID was the best validated and is thus recommended for use. Further psychometric studies of the diabetes-related emotional distress instruments with rigorous methodologies are required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Transport properties at fluids interfaces: a molecular study for a macroscopic modelling

    NASA Astrophysics Data System (ADS)

    Russo, Antonio; Morciano, Matteo; Sibley, David N.; Nold, Andreas; Goddard, Benjamin D.; Asinari, Pietro; Kalliadasis, Serafim

    2017-11-01

    Rapid developments in the field of micro- and nano-fluidics require detailed analysis of the properties of matter at the molecular level. But despite numerous works in the literature, appropriate macroscopic relations able to integrate a microscopic description of fluid and soft matter properties at liquid-vapour and multi-fluid interfaces are missing. As a consequence, studies on interfacial phenomena and micro-device designs often rely on oversimplified assumptions, e.g. that the viscosities can be considered constant across interfaces. In our work, we present non-equilibrium MD simulations to scrutinise efficiently and systematically, through the tools of statistical mechanics, the anisotropic properties of fluids, namely density variations, stress tensor, and shear viscosity, at the fluid interfaces between liquid and vapour and between two partially miscible fluids. Our analysis has led to the formulation of a general relation between shear viscosity and density variations validated for a wide spectrum of interfacial fluid problems. In addition, it provides a rational description of other interfacial quantities of interest, including surface tension and its origins, and more generally, it offers valuable insight of molecular transport phenomena at interfaces.

  4. Assessing medical professionalism: A systematic review of instruments and their measurement properties.

    PubMed

    Li, Honghe; Ding, Ning; Zhang, Yuanyuan; Liu, Yang; Wen, Deliang

    2017-01-01

    Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments' measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations. A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990-2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument's usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee's criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments. After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar's instrument for nursing students, Nurse Practitioners' Roles and Competencies Scale, and Perceived Faculty Competency Inventory. Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing instruments and to longitudinal studies.

  5. An integrative review of literature examining psychometric properties of instruments measuring anxiety or fear in hospitalized children.

    PubMed

    Foster, Roxie L; Park, Jeong-hwan

    2012-06-01

    Anxiety and fear are among the most frequently reported emotional responses to hospitalization and are known to be contributing factors to pain and other negative patient outcomes. The first step in confronting unnecessary anxiety and fear is to identify valid and clinically feasible assessment instruments. The purpose of this paper is to review and evaluate instruments that measure children's fear or anxiety associated with hospitalization or painful procedures. A search was conducted of published English-language literature from 1980 through 2010 with the use of Ovid Health and Psychosocial Instruments, Medline, Nursing/Academic Edition, Cinahl, and Google Scholar. Inclusion criteria specified that the self-report instrument: 1) was developed in English; 2) was developed for and/or widely used with hospitalized children or children undergoing medical procedures or treatment; and 3) had research evidence of psychometric properties from at least five different studies. A comprehensive review of the literature revealed only five fear or anxiety instruments with adequate testing for evaluation of reliability and validity. Although all instruments have beginning psychometric adequacy, no one tool stands out as superior to the others. Therefore, we recommend that researchers and clinicians exercise caution in choosing assessment instruments, balancing potential strengths with reported limitations. Using more than one tool (triangulating) may be one way to achieve more credible results. Knowledge of credible existing instruments alerts us to what is possible today and to the imperative for research that will improve communication with children tomorrow. Copyright © 2012 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  6. Instruments to assess self-care among healthy children: A systematic review of measurement properties.

    PubMed

    Urpí-Fernández, Ana-María; Zabaleta-Del-Olmo, Edurne; Montes-Hidalgo, Javier; Tomás-Sábado, Joaquín; Roldán-Merino, Juan-Francisco; Lluch-Canut, María-Teresa

    2017-12-01

    To identify, critically appraise and summarize the measurement properties of instruments to assess self-care in healthy children. Assessing self-care is a proper consideration for nursing practice and nursing research. No systematic review summarizes instruments of measurement validated in healthy children. Psychometric review in accordance with the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. MEDLINE, CINAHL, PsycINFO, Web of Science and Open Grey were searched from their inception to December 2016. Validation studies with a healthy child population were included. Search was not restricted by language. Two reviewers independently assessed the methodological quality of included studies using the COSMIN checklist. Eleven studies were included in the review assessing the measurement properties of ten instruments. There was a maximum of two studies per instrument. None of the studies evaluated the properties of test-retest reliability, measurement error, criterion validity and responsiveness. Internal consistency and structural validity were rated as "excellent" or "good" in four studies. Four studies were rated as "excellent" in content validity. Cross-cultural validity was rated as "poor" in the two studies (three instruments) which cultural adaptation was carried out. The evidence available does not allow firm conclusions about the instruments identified in terms of reliability and validity. Future research should focus on generate evidence about a wider range of measurement properties of these instruments using a rigorous methodology, as well as instrument testing on different countries and child population. © 2017 John Wiley & Sons Ltd.

  7. Assessing medical professionalism: A systematic review of instruments and their measurement properties

    PubMed Central

    Li, Honghe; Liu, Yang; Wen, Deliang

    2017-01-01

    Background Over the last three decades, various instruments were developed and employed to assess medical professionalism, but their measurement properties have yet to be fully evaluated. This study aimed to systematically evaluate these instruments’ measurement properties and the methodological quality of their related studies within a universally acceptable standardized framework and then provide corresponding recommendations. Methods A systematic search of the electronic databases PubMed, Web of Science, and PsycINFO was conducted to collect studies published from 1990–2015. After screening titles, abstracts, and full texts for eligibility, the articles included in this study were classified according to their respective instrument’s usage. A two-phase assessment was conducted: 1) methodological quality was assessed by following the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist; and 2) the quality of measurement properties was assessed according to Terwee’s criteria. Results were integrated using best-evidence synthesis to look for recommendable instruments. Results After screening 2,959 records, 74 instruments from 80 existing studies were included. The overall methodological quality of these studies was unsatisfactory, with reasons including but not limited to unknown missing data, inadequate sample sizes, and vague hypotheses. Content validity, cross-cultural validity, and criterion validity were either unreported or negative ratings in most studies. Based on best-evidence synthesis, three instruments were recommended: Hisar’s instrument for nursing students, Nurse Practitioners’ Roles and Competencies Scale, and Perceived Faculty Competency Inventory. Conclusion Although instruments measuring medical professionalism are diverse, only a limited number of studies were methodologically sound. Future studies should give priority to systematically improving the performance of existing

  8. The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.

    PubMed

    Walters, Stephen John; Stern, Cindy; Robertson-Malt, Suzanne

    2016-04-01

    There is a growing call by consumers and governments for healthcare to adopt systems and approaches to care to improve patient safety. Collaboration within healthcare settings is an important factor for improving systems of care. By using validated measurement instruments a standardized approach to assessing collaboration is possible, otherwise it is only an assumption that collaboration is occurring in any healthcare setting. The objective of this review was to evaluate and compare measurement properties of instruments that measure collaboration within healthcare settings, specifically those which have been psychometrically tested and validated. Participants could be healthcare professionals, the patient or any non-professional who contributes to a patient's care, for example, family members, chaplains or orderlies. The term participant type means the designation of any one participant; for example 'nurse', 'social worker' or 'administrator'. More than two participant types was mandatory. The focus of this review was the validity of tools used to measure collaboration within healthcare settings. The types of studies considered for inclusion were validation studies, but quantitative study designs such as randomized controlled trials, controlled trials and case studies were also eligible for inclusion. Studies that focused on Interprofessional Education, were published as an abstract only, contained patient self-reporting only or were not about care delivery were excluded. The outcome of interest was validation and interpretability of the instrument being assessed and included content validity, construct validity and reliability. Interpretability is characterized by statistics such as mean and standard deviation which can be translated to a qualitative meaning. The search strategy aimed to find both published and unpublished studies. A three-step search strategy was utilized in this review. The databases searched included PubMed, CINAHL, Embase, Cochrane Central

  9. Fluid-Structure Analysis of Opening Phenomena in a Collapsible Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir N.; Banks, Julie; Swarts, J. Douglas

    2003-11-01

    Several physiological functions require the opening of collapsed respiratory airways. For example, the Eustachian tube (ET), which connects the nasopharynx with the middle ear (ME), must be periodically opened to maintain ambient ME pressures. These openings normally occur during swallowing when muscle contraction deforms the surrounding soft tissue. The inability to open the ET results in the most common and costly ear disease in children, Otitis Media. Although tissue-based treatments have been purposed, the influence of the various tissue mechanical properties on flow phenomena has not been investigated. A computational model of ET opening was developed using in-vivo structural data to investigate these fluid-structure interactions. This model accounts for both tissue deformation and the resulting airflow in a non-circular conduit. Results indicate that ET opening is more sensitive to the applied muscle forces than elastic tissue properties. These models have therefore identified how different tissue elements alter ET opening phenomena, which elements should be targeted for treatment and the optimal mechanical properties of these tissue constructs. Research supported by NIH grant DC005345.

  10. Systematic Review of Measurement Property Evidence for 8 Financial Management Instruments in Populations With Acquired Cognitive Impairment.

    PubMed

    Engel, Lisa; Chui, Adora; Beaton, Dorcas E; Green, Robin E; Dawson, Deirdre R

    2018-03-07

    To critically appraise the measurement property evidence (ie, psychometric) for 8 observation-based financial management assessment instruments. Seven databases were searched in May 2015. Two reviewers used an independent decision-agreement process to select studies of measurement property evidence relevant to populations with adulthood acquired cognitive impairment, appraise the quality of the evidence, and extract data. Twenty-one articles were selected. This review used the COnsensus-based Standards for the selection of health Measurement Instruments review guidelines and 4-point tool to appraise evidence. After appraising the methodologic quality, the adequacy of results and volume of evidence per instrument were synthesized. Measurement property evidence with high risk of bias was excluded from the synthesis. The volume of measurement property evidence per instrument is low; most instruments had 1 to 3 included studies. Many included studies had poor methodologic quality per measurement property evidence area examined. Six of the 8 instruments reviewed had supporting construct validity/hypothesis-testing evidence of fair methodologic quality. There is a dearth of acceptable quality content validity, reliability, and responsiveness evidence for all 8 instruments. Rehabilitation practitioners assess financial management functions in adults with acquired cognitive impairments. However, there is limited published evidence to support using any of the reviewed instruments. Practitioners should exercise caution when interpreting the results of these instruments. This review highlights the importance of appraising the quality of measurement property evidence before examining the adequacy of the results and synthesizing the evidence. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Inflammatory bowel disease-specific health-related quality of life instruments: a systematic review of measurement properties.

    PubMed

    Chen, Xin-Lin; Zhong, Liang-Huan; Wen, Yi; Liu, Tian-Wen; Li, Xiao-Ying; Hou, Zheng-Kun; Hu, Yue; Mo, Chuan-Wei; Liu, Feng-Bin

    2017-09-15

    This review aims to critically appraise and compare the measurement properties of inflammatory bowel disease (IBD)-specific health-related quality of life instruments. Medline, EMBASE and ISI Web of Knowledge were searched from their inception to May 2016. IBD-specific instruments for patients with Crohn's disease, ulcerative colitis or IBD were enrolled. The basic characteristics and domains of the instruments were collected. The methodological quality of measurement properties and measurement properties of the instruments were assessed. Fifteen IBD-specific instruments were included, which included twelve instruments for adult IBD patients and three for paediatric IBD patients. All of the instruments were developed in North American and European countries. The following common domains were identified: IBD-related symptoms, physical, emotional and social domain. The methodological quality was satisfactory for content validity; fair in internal consistency, reliability, structural validity, hypotheses testing and criterion validity; and poor in measurement error, cross-cultural validity and responsiveness. For adult IBD patients, the IBDQ-32 and its short version (SIBDQ) had good measurement properties and were the most widely used worldwide. For paediatric IBD patients, the IMPACT-III had good measurement properties and had more translated versions. Most methodological quality should be promoted, especially measurement error, cross-cultural validity and responsiveness. The IBDQ-32 was the most widely used instrument with good reliability and validity, followed by the SIBDQ and IMPACT-III. Further validation studies are necessary to support the use of other instruments.

  12. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review.

    PubMed

    Lima, Elaine; Teixeira-Salmela, Luci F; Simões, Luan; Guerra, Ana C C; Lemos, Andrea

    2016-03-15

    While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed.

  13. Assessment of the measurement properties of the post stroke motor function instruments available in Brazil: a systematic review

    PubMed Central

    Lima, Elaine; Teixeira-Salmela, Luci F.; Simões, Luan; Guerra, Ana C. C.; Lemos, Andrea

    2016-01-01

    Background While there are several instruments in Brazil that measure motor function in patients after stroke, it is unknown whether the measurement properties of these instruments are appropriate. Objective To identify the motor function instruments available in Brazil for patients after stroke. To assess the methodological quality of the studies and the results related to the measurement properties of these instruments. Method Two independent reviewers conducted searches on PubMed, LILACS, CINAHL, Web of Science, and Scopus. Studies that aimed to cross-culturally adapt an existing instrument or create a Brazilian instrument and test at least one measurement property related to motor function in patients after stroke were included. The methodological quality of these studies was checked by the COSMIN checklist with 4-point rating scale and the results of the measurement properties were analyzed by the criteria developed by Terwee et al. Results A total of 11 instruments were considered eligible, none of which were created in Brazil. The process of cross-cultural adaptation was inadequate in 10 out of 11 instruments due to the lack of back-translation or due to inappropriate target population. All of the instruments presented flaws in the measurement properties, especially reliability, internal consistency, and construct validity. Conclusion The flaws observed in both cross-cultural adaptation process and testing measurement properties make the results inconclusive on the validity of the available instruments. Adequate procedures of cross-cultural adaptation and measurement properties of these instruments are strongly needed. PMID:26982452

  14. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: an international Delphi study.

    PubMed

    Mokkink, Lidwine B; Terwee, Caroline B; Patrick, Donald L; Alonso, Jordi; Stratford, Paul W; Knol, Dirk L; Bouter, Lex M; de Vet, Henrica C W

    2010-05-01

    Aim of the COSMIN study (COnsensus-based Standards for the selection of health status Measurement INstruments) was to develop a consensus-based checklist to evaluate the methodological quality of studies on measurement properties. We present the COSMIN checklist and the agreement of the panel on the items of the checklist. A four-round Delphi study was performed with international experts (psychologists, epidemiologists, statisticians and clinicians). Of the 91 invited experts, 57 agreed to participate (63%). Panel members were asked to rate their (dis)agreement with each proposal on a five-point scale. Consensus was considered to be reached when at least 67% of the panel members indicated 'agree' or 'strongly agree'. Consensus was reached on the inclusion of the following measurement properties: internal consistency, reliability, measurement error, content validity (including face validity), construct validity (including structural validity, hypotheses testing and cross-cultural validity), criterion validity, responsiveness, and interpretability. The latter was not considered a measurement property. The panel also reached consensus on how these properties should be assessed. The resulting COSMIN checklist could be useful when selecting a measurement instrument, peer-reviewing a manuscript, designing or reporting a study on measurement properties, or for educational purposes.

  15. Assessment of sexual difficulties associated with multi-modal treatment for cervical or endometrial cancer: A systematic review of measurement instruments.

    PubMed

    White, Isabella D; Sangha, Amrit; Lucas, Grace; Wiseman, Theresa

    2016-12-01

    Practitioners and researchers require an outcome measure that accurately identifies the range of common treatment-induced changes in sexual function and well-being experienced by women after cervical or endometrial cancer. This systematic review critically appraised the measurement properties and clinical utility of instruments validated for the measurement of female sexual dysfunction (FSD) in this clinical population. A bibliographic database search for questionnaire development or validation papers was completed and methodological quality and measurement properties of selected studies rated using the Consensus-based Standards for the selection of health Measurement Instrument (COSMIN) checklist. 738 articles were screened, 13 articles retrieved for full text assessment and 7 studies excluded, resulting in evaluation of 6 papers; 2 QoL and 4 female sexual morbidity measures. Five of the six instruments omitted one or more dimension of female sexual function and only one instrument explicitly measured distress associated with sexual changes as per DSM V (APA 2013) diagnostic criteria. None of the papers reported measurement error, responsiveness data was available for only two instruments, three papers failed to report on criterion validity, and test-retest reliability reporting was inconsistent. Heterosexual penile-vaginal intercourse remains the dominant sexual activity focus for sexual morbidity PROMS terminology and instruments lack explicit reference to solo or non-coital sexual expression or validation in a non-heterosexual sample. Four out of six instruments included mediating treatment or illness items such as vaginal changes, menopause or altered body image. Findings suggest that the Female Sexual Function Index (FSFI) remains the most robust sexual morbidity outcome measure, for research or clinical use, in sexually active women treated for cervical or endometrial cancer. Development of an instrument that measures sexual dysfunction in women who are

  16. Acoustic properties of a crack containing magmatic or hydrothermal fluids

    USGS Publications Warehouse

    Kumagai, H.; Chouet, B.A.

    2000-01-01

    We estimate the acoustic properties of a crack containing maginatic or hydrothermal fluids to quantify the source properties of long-period (LP) events observed in volcanic areas assuming that a crack-like structure is the source of LP events. The tails of synthetic waveforms obtained from a model of a fluid-driven crack are analyzed by the Sompi method to determine the complex frequencies of one of the modes of crack resonance over a wide range of the model parameters ??/a and ??f/??s, where ?? is the P wave velocity of the rock matrix, a is the sound speed of the fluid, and ??f and ??s are the densities of the fluid and rock matrix, respectively. The quality factor due to radiation loss (Qr) for the selected mode almost monotonically increases with increasing ??/a, while the dimensionless frequency (??) of the mode decreases with increasing ??/a and ??f/??s. These results are used to estimate Q and ?? for a crack containing various types of fluids (gas-gas mixtures, liquid-gas mixtures, and dusty and misty gases) for values of a, ??f, and quality factor due to intrinsic losses (Qi) appropriate for these types of fluids, in which Q is given by Q-1 = Qr-1 + Qi-1. For a crack containing such fluids, we obtain Q ranging from almost unity to several hundred, which consistently explains the wide variety of quality factors measured in LP events observed at various volcanoes. We underscore the importance of dusty and misty gases containing small-size particles with radii around 1 ??m to explain long-lasting oscillations with Q significantly larger than 100. Our results may provide a basis for the interpretation of spatial and temporal variations in the observed complex frequencies of LP events in terms of fluid compositions beneath volcanoes. Copyright 2000 by the American Geophysical Union.

  17. The quality of evidence of psychometric properties of three-dimensional spinal posture-measuring instruments

    PubMed Central

    2011-01-01

    Background Psychometric properties include validity, reliability and sensitivity to change. Establishing the psychometric properties of an instrument which measures three-dimensional human posture are essential prior to applying it in clinical practice or research. Methods This paper reports the findings of a systematic literature review which aimed to 1) identify non-invasive three-dimensional (3D) human posture-measuring instruments; and 2) assess the quality of reporting of the methodological procedures undertaken to establish their psychometric properties, using a purpose-build critical appraisal tool. Results Seventeen instruments were identified, of which nine were supported by research into psychometric properties. Eleven and six papers respectively, reported on validity and reliability testing. Rater qualification and reference standards were generally poorly addressed, and there was variable quality reporting of rater blinding and statistical analysis. Conclusions There is a lack of current research to establish the psychometric properties of non-invasive 3D human posture-measuring instruments. PMID:21569486

  18. Measurement properties of outcome measures for vitiligo. A systematic review.

    PubMed

    Vrijman, Charlotte; Linthorst Homan, May W; Limpens, Jacqueline; van der Veen, Wietze; Wolkerstorfer, Albert; Terwee, Caroline B; Spuls, Phyllis I

    2012-11-01

    OBJECTIVE To summarize and critically appraise the evidence on the measurement properties of clinician-, patient-, and observer-reported outcomes, measuring any construct of interest in patients with all types of vitiligo. DATA SOURCES Electronic databases including PubMed (1948 to July 2011), OVID EMBASE (1980 to July 2011), and CINAHL (EBSCOhost) (1982 to July 2011) were searched. STUDY SELECTION Two authors independently screened all records for eligibility. For inclusion, the study population had to include patients with vitiligo, for which outcome measures were developed or evaluated on their measurement properties. The initial search retrieved 1249 records, of which 14 articles met the inclusion criteria. DATA EXTRACTION Characteristics of the included instruments, study population, and results of the measurement properties were extracted. The Consensus-Based Standards for the Selection of Health Status Measurement Instruments (COSMIN) 4-point checklist, combined with quality criteria for measurement properties, was used to calculate the overall level of evidence per measurement property of each instrument. Independent extraction and assessment was performed by 2 authors. DATA SYNTHESIS Eleven different measurement instruments were identified. Strong evidence was found for a positive internal consistency of the Dermatology Life Quality Index. For other instruments, the evidence of measurement properties was limited or unknown. CONCLUSIONS Recommendations on the use of specific outcome measures for vitiligo should be formulated with caution because current evidence is insufficient owing to a low number of studies with poor methodological quality and unclear clinical relevance. To recommend outcome measures for vitiligo, further research on measurement properties of clinical relevant outcome measures for vitiligo according to COSMIN quality criteria is needed.

  19. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well

  20. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  1. In-line monitoring of (MR) fluid properties

    NASA Astrophysics Data System (ADS)

    Kordonski, William; Gorodkin, Sergei; Behlok, Ray

    2015-05-01

    Proper functionality of devices and processes based on (MR) fluids greatly depends, along with other factors, on stability of fluid characteristics such as concentration of magnetic particles and magnetic properties of the particles. The concentration of magnetic particles may change due to evaporation or leakage of carrier fluid, as well as particle sedimentation. Magnetic properties may change due to temperature, corrosion of particles or irreversible aggregation. In-line noninvasive monitoring of particle concentration and magnetic properties allows, in one way or another, compensation for the impact of destabilizing factors and provides system stable output. Two novel methods of in-line measurement of MR fluid magnetic permeability or magnetic particle concentration are considered in this presentation. The first one is based on the principle of mutual inductance and is intended for monitoring MR fluid flowing in pipes or channels. In the second one, permeability is measured by a flash-mount sensor which reacts on changes in the reluctance of the MR fluid layer adjacent to the wall. The use of the methods for stabilization of the material removal rate in high precision finishing process employing aqueous MR fluid is discussed.

  2. Evaluation of the measurement properties of self-reported health-related work-functioning instruments among workers with common mental disorders.

    PubMed

    Abma, Femke I; van der Klink, Jac J L; Terwee, Caroline B; Amick, Benjamin C; Bültmann, Ute

    2012-01-01

    During the past decade, common mental disorders (CMD) have emerged as a major public and occupational health problem in many countries. Several instruments have been developed to measure the influence of health on functioning at work. To select appropriate instruments for use in occupational health practice and research, the measurement properties (eg, reliability, validity, responsiveness) must be evaluated. The objective of this study is to appraise critically and compare the measurement properties of self-reported health-related work-functioning instruments among workers with CMD. A systematic review was performed searching three electronic databases. Papers were included that: (i) mainly focused on the development and/or evaluation of the measurement properties of a self-reported health-related work-functioning instrument; (ii) were conducted in a CMD population; and (iii) were fulltext original papers. Quality appraisal was performed using the consensus-based standards for the selection of health status measurement instruments (COSMIN) checklist. Five papers evaluating measurement properties of five self-reported health-related work-functioning instruments in CMD populations were included. There is little evidence available for the measurement properties of the identified instruments in this population, mainly due to low methodological quality of the included studies. The available evidence on measurement properties is based on studies of poor-to-fair methodological quality. Information on a number of measurement properties, such as measurement error, content validity, and cross-cultural validity is still lacking. Therefore, no evidence-based decisions and recommendations can be made for the use of health-related work functioning instruments. Studies of high methodological quality are needed to properly assess the existing instruments' measurement properties.

  3. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    NASA Technical Reports Server (NTRS)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  4. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  5. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument.

    PubMed

    Mokkink, Lidwine B; Prinsen, Cecilia A C; Bouter, Lex M; Vet, Henrica C W de; Terwee, Caroline B

    2016-01-19

    COSMIN (COnsensus-based Standards for the selection of health Measurement INstruments) is an initiative of an international multidisciplinary team of researchers who aim to improve the selection of outcome measurement instruments both in research and in clinical practice by developing tools for selecting the most appropriate available instrument. In this paper these tools are described, i.e. the COSMIN taxonomy and definition of measurement properties; the COSMIN checklist to evaluate the methodological quality of studies on measurement properties; a search filter for finding studies on measurement properties; a protocol for systematic reviews of outcome measurement instruments; a database of systematic reviews of outcome measurement instruments; and a guideline for selecting outcome measurement instruments for Core Outcome Sets in clinical trials. Currently, we are updating the COSMIN checklist, particularly the standards for content validity studies. Also new standards for studies using Item Response Theory methods will be developed. Additionally, in the future we want to develop standards for studies on the quality of non-patient reported outcome measures, such as clinician-reported outcomes and performance-based outcomes. In summary, we plea for more standardization in the use of outcome measurement instruments, for conducting high quality systematic reviews on measurement instruments in which the best available outcome measurement instrument is recommended, and for stopping the use of poor outcome measurement instruments.

  6. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument

    PubMed Central

    Mokkink, Lidwine B.; Prinsen, Cecilia A. C.; Bouter, Lex M.; de Vet, Henrica C. W.; Terwee, Caroline B.

    2016-01-01

    Background: COSMIN (COnsensus-based Standards for the selection of health Measurement INstruments) is an initiative of an international multidisciplinary team of researchers who aim to improve the selection of outcome measurement instruments both in research and in clinical practice by developing tools for selecting the most appropriate available instrument. Method: In this paper these tools are described, i.e. the COSMIN taxonomy and definition of measurement properties; the COSMIN checklist to evaluate the methodological quality of studies on measurement properties; a search filter for finding studies on measurement properties; a protocol for systematic reviews of outcome measurement instruments; a database of systematic reviews of outcome measurement instruments; and a guideline for selecting outcome measurement instruments for Core Outcome Sets in clinical trials. Currently, we are updating the COSMIN checklist, particularly the standards for content validity studies. Also new standards for studies using Item Response Theory methods will be developed. Additionally, in the future we want to develop standards for studies on the quality of non-patient reported outcome measures, such as clinician-reported outcomes and performance-based outcomes. Conclusions: In summary, we plea for more standardization in the use of outcome measurement instruments, for conducting high quality systematic reviews on measurement instruments in which the best available outcome measurement instrument is recommended, and for stopping the use of poor outcome measurement instruments. PMID:26786084

  7. Measuring the youth bullying experience: a systematic review of the psychometric properties of available instruments.

    PubMed

    Vessey, Judith; Strout, Tania D; DiFazio, Rachel L; Walker, Allison

    2014-12-01

    Bullying is a significant problem in schools and measuring this concept remains problematic. The purposes of this study were to (1) identify the published self-report measures developed to assess youth bullying; (2) evaluate their psychometric properties and instrument characteristics; and (3) evaluate the quality of identified psychometric papers evaluating youth bullying measures. A systematic review of the literature was conducted using 4 electronic databases. Data extraction and appraisal of identified instruments were completed using a standardized method and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Thirty-one articles describing 27 self-report instruments were evaluated in our analysis. Quality assessments ranged from 18% to 91%, with 6 papers reaching or exceeding a quality score of 75%. Limited evidence supporting the reliability, validity, and responsiveness of existing youth bullying measures was identified. Evidence supporting the psychometric soundness of the instruments identified was limited. Many measures were in early development and additional evaluation is necessary to validate their psychometric properties. A pool of instruments possesses acceptable initial psychometric dependability for selected assessment purposes. These findings have significant implications for assessing youth bullying and designing and evaluating school-based interventions. © 2014, American School Health Association.

  8. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOEpatents

    Campbell, M.D.

    1994-01-11

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.

  9. Apparatus for in-situ calibration of instruments that measure fluid depth

    DOEpatents

    Campbell, Melvin D.

    1994-01-01

    The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.

  10. Method and apparatus for continuous fluid leak monitoring and detection in analytical instruments and instrument systems

    DOEpatents

    Weitz, Karl K [Pasco, WA; Moore, Ronald J [West Richland, WA

    2010-07-13

    A method and device are disclosed that provide for detection of fluid leaks in analytical instruments and instrument systems. The leak detection device includes a collection tube, a fluid absorbing material, and a circuit that electrically couples to an indicator device. When assembled, the leak detection device detects and monitors for fluid leaks, providing a preselected response in conjunction with the indicator device when contacted by a fluid.

  11. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).

  12. Measurement properties of instruments that assess participation in young people with autism spectrum disorder: a systematic review.

    PubMed

    Lami, Francesca; Egberts, Kristine; Ure, Alexandra; Conroy, Rowena; Williams, Katrina

    2018-03-01

    To systematically review the measurement properties of instruments assessing participation in young people with autism spectrum disorder (ASD). A search was performed in MEDLINE, PsycINFO, and PubMed combining three constructs ('ASD', 'test of participation', 'measurement properties'). Results were restricted to articles including people aged 6 to 29 years. The 2539 identified articles were independently screened by two reviewers. For the included articles, data were extracted using standard forms and their risk of bias was assessed. Nine studies (8 cross-sectional) met the inclusion criteria, providing information on seven different instruments. The total sample included 634 participants, with sex available for 600 (males=494; females=106) and age available for 570, with mean age for these participants 140.58 months (SD=9.11; range=36-624). Included instruments were the school function assessment, vocational index, children's assessment of participation and enjoyment/preferences for activities of children, experience sampling method, Pediatric Evaluation of Disability Inventory, Computer Adaptive Test, adolescent and young adult activity card sort, and Patient-Reported Outcomes Measurement Information System parent-proxy peer relationships. Seven studies assessed reliability and validity; good properties were reported for half of the instruments considered. Most studies (n=6) had high risk of bias. Overall the quality of the evidence for each tool was limited. Validation of these instruments, or others that comprehensively assess participation, is needed. Future studies should follow recommended methodological standards. Seven instruments have been used to assess participation in young people with autism. One instrument, with excellent measurement properties in one study, does not comprehensively assess participation. Studies of three instruments that incorporate a more comprehensive assessment of participation have methodological limitations. Overall, limited

  13. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  14. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  15. A novel rheometer design for yield stress fluids

    Treesearch

    Joseph R. Samaniuk; Timothy W. Shay; Thatcher W. Root; Daniel J. Klingenberg; C. Tim Scott

    2014-01-01

    An inexpensive, rapid method for measuring the rheological properties of yield stress fluids is described and tested. The method uses an auger that does not rotate during measurements, and avoids material and instrument-related difficulties, for example, wall slip and the presence of large particles, associated with yield stress fluids. The method can be used...

  16. Quality-of-life measures for use within care homes: a systematic review of their measurement properties.

    PubMed

    Aspden, Trefor; Bradshaw, Siobhan A; Playford, E Diane; Riazi, Afsane

    2014-09-01

    the aims of this review were (i) to identify quality-of-life (QoL) measures which have had their measurement properties validated in people residing in care homes or nursing homes, and to critically compare and summarise these instruments and (ii) to make recommendations for measurement instruments. bibliographic databases PsycINFO, PubMed, Cochrane, CINAHL and Embase were searched for articles evaluating measurement properties of QoL instruments in people residing in care homes. Methodological quality of studies was assessed using the consensus-based standards for the selection of health measurement instruments checklist. Measurement properties of instruments were appraised using a systematic checklist. the search strategy resulted in 3252 unique citations, of which 15 articles were included in this review. These articles assessed 13 instruments, 8 of which were dementia or Alzheimer specific instruments. The QUALIDEM, a dementia-specific observational instrument, had the widest array of information available on its measurement properties, which were mostly satisfactory. Most measurement instruments lacked information on hypotheses testing and content validity. Information on responsiveness and measurement error was not available for any instrument. for people with dementia living in care homes, the QUALIDEM is recommended for measuring QoL. For residents without dementia, we recommend Kane et al.'s Psychosocial Quality of Life Domains questionnaire. Studies of higher methodological quality, assessing a wider range of measurement properties are needed to allow a more fully informed choice of QoL instrument. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Fluid Flow Phenomena during Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction andmore » speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.« less

  18. Free-Surface Fluid-Object Interaction for the Large-Scale Computation of Ship Hydrodynamics Phenomena

    DTIC Science & Technology

    2014-05-21

    simulating air-water free -surface flow, fluid-object interaction (FOI), and fluid-structure interaction (FSI) phenomena for complex geometries, and...with no limitations on the motion of the free surface, and with particular emphasis on ship hydrodynamics. The following specific research objectives...were identified for this project: 1) Development of a theoretical framework for free -surface flow, FOI and FSI that is a suitable starting point

  19. A systematic review finds limited data on measurement properties of instruments measuring outcomes in adult intensive care unit survivors.

    PubMed

    Robinson, Karen A; Davis, Wesley E; Dinglas, Victor D; Mendez-Tellez, Pedro A; Rabiee, Anahita; Sukrithan, Vineeth; Yalamanchilli, Ramakrishna; Turnbull, Alison E; Needham, Dale M

    2017-02-01

    There is a growing number of studies evaluating the physical, cognitive, mental health, and health-related quality of life (HRQOL) outcomes of adults surviving critical illness. However, there is little consensus on the most appropriate instruments to measure these outcomes. To inform the development of such consensus, we conducted a systematic review of the performance characteristics of instruments measuring physical, cognitive, mental health, and HRQOL outcomes in adult intensive care unit (ICU) survivors. We searched PubMed, Embase, PsycInfo, Cumulative Index of Nursing and Allied Health Literature, and The Cochrane Library in March 2015. We also conducted manual searches of reference lists of eligible studies and relevant review articles. Two people independently selected studies, completed data abstraction, and assessed the quality of eligible studies using the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) initiative checklist. We identified 20 studies which explicitly evaluated measurement properties for 21 different instruments assessing outcomes in ICU survivors. Eleven of the instruments assessed quality of life, with few instruments assessing other domains. Of the nine measurement properties evaluated on the COSMIN checklist, six were assessed in <10% of the evaluations. Overall quality of eligible studies was generally poor to fair based on the COSMIN checklist. Although an increasing number of studies measure physical, cognitive, mental health, and HRQOL outcomes in adult ICU survivors, data on the measurement properties of such instruments are sparse and generally of poor to fair quality. Empirical analyses evaluating the performance of instruments in adult ICU survivors are needed to advance research in this field. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ultrasonic techniques for measuring physical properties of fluids in harsh environments

    NASA Astrophysics Data System (ADS)

    Pantea, Cristian

    Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.

  1. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  2. Measurement properties of instruments assessing permanent functional impairment of the spine: a systematic review protocol.

    PubMed

    Goes, Suelen Meira; Trask, Catherine M; Boden, Catherine; Bath, Brenna; Ribeiro, Daniel Cury; Hendrick, Paul; Clay, Lynne; Zeng, Xiaoke; Milosavljevic, Stephan

    2018-01-27

    Permanent functional impairment (PFI) of the spine is a rating system used by compensation authorities, such as workers compensation boards, to establish an appropriate level of financial compensation for persistent loss of function. Determination of PFI of the spine is commonly based on the assessment of spinal movement combined with other measures of physical and functional impairments; however, the reliability and validity of the measurement instruments used for these evaluations have yet to be established. The aim of this study is to systematically review and synthesise the literature concerning measurement properties of the various and different instruments used for assessing PFI of the spine. Three conceptual groups of terms (1) PFI, (2) spinal disorder and (3) measurement properties will be combined to search Medline, EMBASE, CINAHL, Web of Science, Scopus, PEDro, OTSeeker and Health and Safety Science Abstracts. We will examine peer-reviewed, full-text articles over the full available date range. Two reviewers will independently screen citations (title, abstract and full text) and perform data extraction. Included studies will be appraised as to their methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments criteria. Findings will be summarised and presented descriptively, with meta-analysis pursued as appropriate. This review will summarise the current level of evidence of measurement properties of instruments used for assessing PFI of the spine. Findings of this review may be applicable to clinicians, policy-makers, workers' compensation boards, other insurers and health and safety organisations. The findings will likely provide a foundation and direction for future research priorities for assessing spinal PFI. CRD42017060390. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  3. Instruments to assess patients with rotator cuff pathology: a systematic review of measurement properties.

    PubMed

    Longo, Umile Giuseppe; Saris, Daniël; Poolman, Rudolf W; Berton, Alessandra; Denaro, Vincenzo

    2012-10-01

    The aims of this study were to obtain an overview of the methodological quality of studies on the measurement properties of rotator cuff questionnaires and to describe how well various aspects of the design and statistical analyses of studies on measurement properties are performed. A systematic review of published studies on the measurement properties of rotator cuff questionnaires was performed. Two investigators independently rated the quality of the studies using the Consensus-based Standards for the selection of health Measurement Instruments checklist. This checklist was developed in an international Delphi consensus study. Sixteen studies were included, in which two measurement instruments were evaluated, namely the Western Ontario Rotator Cuff Index and the Rotator Cuff Quality-of-Life Measure. The methodological quality of the included studies was adequate on some properties (construct validity, reliability, responsiveness, internal consistency, and translation) but need to be improved on other aspects. The most important methodological aspects that need to be developed are as follows: measurement error, content validity, structural validity, cross-cultural validity, criterion validity, and interpretability. Considering the importance of adequate measurement properties, it is concluded that, in the field of rotator cuff pathology, there is room for improvement in the methodological quality of studies measurement properties. II.

  4. Measurement Properties of Questionnaires Measuring Continuity of Care: A Systematic Review

    PubMed Central

    Uijen, Annemarie A.; Heinst, Claire W.; Schellevis, Francois G.; van den Bosch, Wil J.H.M.; van de Laar, Floris A.; Terwee, Caroline B.; Schers, Henk J.

    2012-01-01

    Background Continuity of care is widely acknowledged as a core value in family medicine. In this systematic review, we aimed to identify the instruments measuring continuity of care and to assess the quality of their measurement properties. Methods We did a systematic review using the PubMed, Embase and PsycINFO databases, with an extensive search strategy including ‘continuity of care’, ‘coordination of care’, ‘integration of care’, ‘patient centered care’, ‘case management’ and its linguistic variations. We searched from 1995 to October 2011 and included articles describing the development and/or evaluation of the measurement properties of instruments measuring one or more dimensions of continuity of care (1) care from the same provider who knows and follows the patient (personal continuity), (2) communication and cooperation between care providers in one care setting (team continuity), and (3) communication and cooperation between care providers in different care settings (cross-boundary continuity). We assessed the methodological quality of the measurement properties of each instrument using the COSMIN checklist. Results We included 24 articles describing the development and/or evaluation of 21 instruments. Ten instruments measured all three dimensions of continuity of care. Instruments were developed for different groups of patients or providers. For most instruments, three or four of the six measurement properties were assessed (mostly internal consistency, content validity, structural validity and construct validity). Six instruments scored positive on the quality of at least three of six measurement properties. Conclusions Most included instruments have problems with either the number or quality of its assessed measurement properties or the ability to measure all three dimensions of continuity of care. Based on the results of this review, we recommend the use of one of the four most promising instruments, depending on the target

  5. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  6. Measurement properties of instruments evaluating self-care and related concepts in people with chronic obstructive pulmonary disease: A systematic review.

    PubMed

    Clari, Marco; Matarese, Maria; Alvaro, Rosaria; Piredda, Michela; De Marinis, Maria Grazia

    2016-01-01

    The use of valid and reliable instruments for assessing self-care is crucial for the evaluation of chronic obstructive pulmonary disease (COPD) management programs. The aim of this review is to evaluate the measurement properties and theoretical foundations of instruments for assessing self-care and related concepts in people with COPD. A systematic review was conducted of articles describing the development and validation of self-care instruments. The methodological quality of the measurement properties was assessed using the COSMIN checklist. Ten studies were included evaluating five instruments: three for assessing self-care and self-management and two for assessing self-efficacy. The COPD Self-Efficacy Scale was the most studied instrument, but due to poor study methodological quality, evidence about its measurement properties is inconclusive. Evidence from the COPD Self-Management Scale is more promising, but only one study tested its properties. Due to inconclusive evidence of their measurement properties, no instrument can be recommended for clinical use. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Predicting structural properties of fluids by thermodynamic extrapolation

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Jiao, Sally; Hatch, Harold W.; Blanco, Marco A.; Shen, Vincent K.

    2018-05-01

    We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.

  8. Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." The conference publication consists of the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference. Ninety papers are presented in 21 technical sessions, and a special exposition session presents 32 posters describing the work of principal investigators new to NASA's program in this discipline. Eighty-eight papers and 25 posters are presented in their entirety on the CD-ROM.

  9. [Adhesive properties and related phenomena for powdered pharmaceuticals].

    PubMed

    Otsuka, A

    1998-04-01

    This report deals with adhesive properties and related phenomena of powdered materials including pharmaceuticals. The adhesive force between a powder particle and substrate as well as the tensile strength of a powder bed and tablet was measured. Various factors were found to affect powder adhesion. Physical properties such as the size, shape and surface roughness were examined. The adhesive force between a particle and substrate decreased remarkably in the presence of ultrafine particles, which is of interest since the addition of adequate amount of "glidant" causes an increase in powder fluidity. From a pharmaceutical point of view, temperature and humidity were essential to particle adhesion. For several organic substances, the adhesive force increased significantly at homologous temperatures more than ca. 0.7, suggesting the sintering mechanism to be operative. The adhsive force between polymer films and glass beads varied according to polymer and relative humidity. A close correlation of water sorbed by the polymer film with adhesive force was noted. In connection with powder fluidity, compaction properties were studied by the centrifugal and tapping methods. Apparent adhesion defined as the ratio of the adhesive force between two contacting particles to the external force acting on a particle was noted to be the primary determinant of the void fraction or the porosity of the powder bed, indicating that the probability of particle displacement essentially depended on apparent adhesion.

  10. Instruments for measuring mental health recovery: a systematic review.

    PubMed

    Sklar, Marisa; Groessl, Erik J; O'Connell, Maria; Davidson, Larry; Aarons, Gregory A

    2013-12-01

    Persons in recovery, providers, and policymakers alike are advocating for recovery-oriented mental health care, with the promotion of recovery becoming a prominent feature of mental health policy in the United States and internationally. One step toward creating a recovery-oriented system of care is to use recovery-oriented outcome measures. Numerous instruments have been developed to assess progress towards mental health recovery. This review identifies instruments of mental health recovery and evaluates the appropriateness of their use including their psychometric properties, ease of administration, and service-user involvement in their development. A literature search using the Medline and Psych-INFO databases was conducted, identifying 21 instruments for potential inclusion in this review, of which thirteen met inclusion criteria. Results suggest only three instruments (25%) have had their psychometric properties assessed in three or more unique samples of participants. Ease of administration varied between instruments, and for the majority of instruments, development included service user involvement. This review updates and expands previous reviews of instruments to assess mental health recovery. As mental health care continues to transform to a recovery-oriented model of service delivery, this review may facilitate selection of appropriate assessments of mental health recovery for systems to use in evaluating and improving the care they provide. © 2013.

  11. Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management

    USGS Publications Warehouse

    McAnally, W.H.; Teeter, A.; Schoellhamer, David H.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.

    2007-01-01

    Techniques for measurement, modeling, and management of fluid mud are available, but research is needed to improve them. Fluid mud can be difficult to detect, measure, or sample, which has led to new instruments and new ways of using existing instruments. Multifrequency acoustic fathometers sense neither density nor viscosity and are, therefore, unreliable in measuring fluid mud. Nuclear density probes, towed sleds, seismic, and drop probes equipped with density meters offer the potential for accurate measurements. Numerical modeling of fluid mud requires solving governing equations for flow velocity, density, pressure, salinity, water surface, plus sediment submodels. A number of such models exist in one-, two-, and three-dimensional form, but they rely on empirical relationships that require substantial site-specific validation to observations. Management of fluid mud techniques can be classified as those that accomplish: Source control, formation control, and removal. Nautical depth, a fourth category, defines the channel bottom as a specific fluid mud density or alternative parameter as safe for navigation. Source control includes watershed management measures to keep fine sediment out of waterways and in-water measures such as structures and traps. Formation control methods include streamlined channels and structures plus other measures to reduce flocculation and structures that train currents. Removal methods include the traditional dredging and transport of dredged material plus agitation that contributes to formation control and/or nautical depth. Conditioning of fluid mud by dredging and aerating offers the possibility of improved navigability. Two examples—the Atchafalaya Bar Channel and Savannah Harbor—illustrate the use of measurements and management of fluid mud.

  12. Measurement of activity limitations and participation restrictions: examination of ICF-linked content and scale properties of the FIM and PC-PART instruments.

    PubMed

    Darzins, Susan W; Imms, Christine; Di Stefano, Marilyn

    2017-05-01

    To explore the operationalization of activity and participation-related measurement constructs through comparison of item phrasing, item response categories and scoring (scale properties) for two separate instruments targeting activities of daily living. Personal Care Participation Assessment and Resource Tool (PC-PART) item content was linked to ICF categories using established linking rules. Previously reported ICF-linked FIM content categories and ICF-linked PC-PART content categories were compared to identify common ICF categories between the instruments. Scale properties of both instruments were compared using a patient scenario to explore the instruments' separate measurement constructs. The PC-PART and FIM shared 15 of the 53 level two ICF-linked categories identified across both instruments. Examination of the instruments' scale properties for items with overlapping ICF content, and exploration through a patient scenario, provided supportive evidence that the instruments measure different constructs. While the PC-PART and FIM share common ICF-linked content, they measure separate constructs. Measurement construct was influenced by the instruments' scale properties. The FIM was observed to measure activity limitations and the PC-PART measured participation restrictions. Scrutiny of instruments' scale properties in addition to item content is critical in the operationalization of activity and participation-related measurement constructs. Implications for Rehabilitation When selecting outcome measures for use in rehabilitation it is necessary to examine both the content of the instruments' items and item phrasing, response categories and scoring, to clarify the construct being measured. Measurement of activity limitations as well as participation restrictions in activities of daily living required for community life provides a more comprehensive measurement of rehabilitation outcomes than measurement of either construct alone. To measure the effects of

  13. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  14. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  15. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  16. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  17. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  18. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  19. Dielectric Rheo-SANS: An Instrument for the Simultaneous Interrogation of Rheology, Microstructure and Electronic Properties of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Richards, Jeffrey; Hipp, Julie; Butler, Paul

    In situ measurements are an increasingly important tool to inform the complex relationship between nanoscale properties and macroscopic measurements. For conducting colloidal suspensions, we seek intrinsic relationships between the measured electrical and mechanical response of a material both in quiescence and under applied shear. These relationships can be used to inform the development of new materials with enhanced electrical and mechanical performance. In order to study these relationships, we have developed a dielectric rheology instrument that is compatible with small angle neutron scattering (SANS) experiments. This Dielectric RheoSANS instrument consists of a Couette geometry mounted on an ARES G2 strain controlled rheometer enclosed in a modified Forced Convection Oven (FCO). In this talk, we outline the development of the Dielectric RheoSANS instruments and demonstrate its operation using two systems - a suspension of carbon black particles in propylene carbonate and poly(3-hexylthiophene) organogel - where there is interest in how shear influences the microstructure state of the material. By monitoring the conductivity and rheological response of these materials at the same time, we can capture the entire evolution of the material response to an applied deformation. NCNR NIST Cooperative Agreement #70NANB12H239.

  20. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  1. ASRDI oxygen technology survey. Volume 6: Flow measurement instrumentation

    NASA Technical Reports Server (NTRS)

    Mann, D. B.

    1974-01-01

    A summary is provided of information available on liquid and gaseous oxygen flowmetering including an evaluation of commercial meters. The instrument types, physical principles of measurement, and performance characteristics are described. Problems concerning flow measurements of less than plus or minus two percent uncertainty are reviewed. Recommendations concerning work on flow reference systems, the use of surrogate fluids, and standard tests for oxygen flow measurements are also presented.

  2. Instruments for measuring meaningful learning in healthcare students: a systematic psychometric review.

    PubMed

    Cadorin, Lucia; Bagnasco, Annamaria; Tolotti, Angela; Pagnucci, Nicola; Sasso, Loredana

    2016-09-01

    To identify, evaluate and describe the psychometric properties of instruments that measure learning outcomes in healthcare students. Meaningful learning is an active process that enables a wider and deeper understanding of concepts. It is the result of an interaction between new and prior knowledge and produces a long-standing change in knowledge and skills. In the field of education, validated and reliable instruments for assessing meaningful learning are needed. A psychometric systematic review. MEDLINE CINAHL, SCOPUS, ERIC, Cochrane Library, Psychology & Behavioural Sciences Collection Database from 1990-December 2013. Using pre-determined inclusion criteria, three reviewers independently identified studies for full-text review. Then they extracted data for quality appraisal and graded instrument validity using the Consensus-based Standards for the selection of the health status Measurement INstruments checklist and the Psychometric Grading Framework. Of the 57 studies identified for full-text review, 16 met the inclusion criteria and 13 different instruments were assessed. Following quality assessment, only one instrument was considered of good quality but it measured meaningful learning only in part; the others were either fair or poor. The Psychometric Grading Framework indicated that one instrument was weak, while the others were very weak. No instrument displayed adequate validity. The systematic review produced a synthesis of the psychometric properties of tools that measure learning outcomes in students of healthcare disciplines. Measuring learning outcomes is very important when educating health professionals. The identified tools may constitute a starting point for the development of other assessment tools. © 2016 John Wiley & Sons Ltd.

  3. Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6. Volume 2

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.

  4. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.

  5. Fluid models and simulations of biological cell phenomena

    NASA Technical Reports Server (NTRS)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  6. Psychometric properties of instruments used to measure fatigue in children and adolescents with cancer: a systematic review.

    PubMed

    Tomlinson, Deborah; Hinds, Pamela S; Ethier, Marie-Chantal; Ness, Kirsten K; Zupanec, Sue; Sung, Lillian

    2013-01-01

    Despite the recognized distressing symptom of fatigue in children with cancer, little information is available to assist in the selection of an instrument to be used to measure fatigue. The objectives of this study were to 1) describe the instruments that have been used to measure cancer-related fatigue in children and adolescents and 2) summarize the psychometric properties of the most commonly used instruments used to measure fatigue in children and adolescents with cancer. Five major electronic databases were systematically searched for studies using a fatigue measurement scale in a population of children or adolescents with cancer. Fatigue scales used in those studies were included in the review. From a total of 1753 articles, 25 were included. We identified two main fatigue measurement instruments used in a pediatric oncology population: 1) the Fatigue Scale-Child/Fatigue Scale-Adolescent and the proxy report versions for parents and staff and 2) the PedsQL™ Multidimensional Fatigue Scale. These two scales show similar attributes with reasonably good internal consistency and responsiveness. Either the Fatigue Scale or PedsQL Multidimensional Fatigue Scale can be incorporated into clinical research. Future research should focus on identifying specific fatigue measures more suited to different purposes such as comparative trials or identification of high-risk groups. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  7. Measurement properties of asthma-specific quality-of-life measures: protocol for a systematic review.

    PubMed

    Apfelbacher, Christian; Paudyal, Priya; Bülbül, Alpaslan; Smith, Helen

    2014-07-24

    Asthma is a frequent chronic inflammatory disease of the airways, and the assessment of health-related quality of life (HrQoL) is important in both research and routine care. Various asthma-specific measures of HrQoL exist but there is uncertainty which measures are best suited for use in research and routine care. Therefore, the aim of the proposed research is a comprehensive systematic assessment of the measurement properties of the existing measures that were developed to measure asthma-specific quality of life. This study is a systematic review of the measurement properties of asthma-specific measures of health-related quality of life. PubMed and Embase will be searched using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing or comparing measurement properties of asthma-specific HRQL tools. Eligibility assessment and data abstraction will be performed independently by two reviewers. Evidence tables will be generated for study characteristics, instrument characteristics, measurement properties and interpretability. The quality of the measurement properties will be assessed using predefined criteria. Methodological quality of studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis will be undertaken if more than one study have investigated a particular measurement property. The proposed systematic review will produce a comprehensive assessment of measurement properties of existing measures of asthma-specific health-related quality of life. We also aim to derive recommendations in order to help researchers and practitioners alike in the choice of instrument. PROSPERO registration number: CRD42014010491.

  8. Core outcome measurement instruments for clinical trials in nonspecific low back pain

    PubMed Central

    Chiarotto, Alessandro; Boers, Maarten; Deyo, Richard A.; Buchbinder, Rachelle; Corbin, Terry P.; Costa, Leonardo O.P.; Foster, Nadine E.; Grotle, Margreth; Koes, Bart W.; Kovacs, Francisco M.; Lin, C.-W. Christine; Maher, Chris G.; Pearson, Adam M.; Peul, Wilco C.; Schoene, Mark L.; Turk, Dennis C.; van Tulder, Maurits W.; Terwee, Caroline B.; Ostelo, Raymond W.

    2018-01-01

    Abstract To standardize outcome reporting in clinical trials of patients with nonspecific low back pain, an international multidisciplinary panel recommended physical functioning, pain intensity, and health-related quality of life (HRQoL) as core outcome domains. Given the lack of a consensus on measurement instruments for these 3 domains in patients with low back pain, this study aimed to generate such consensus. The measurement properties of 17 patient-reported outcome measures for physical functioning, 3 for pain intensity, and 5 for HRQoL were appraised in 3 systematic reviews following the COSMIN methodology. Researchers, clinicians, and patients (n = 207) were invited in a 2-round Delphi survey to generate consensus (≥67% agreement among participants) on which instruments to endorse. Response rates were 44% and 41%, respectively. In round 1, consensus was achieved on the Oswestry Disability Index version 2.1a for physical functioning (78% agreement) and the Numeric Rating Scale (NRS) for pain intensity (75% agreement). No consensus was achieved on any HRQoL instrument, although the Short Form 12 (SF12) approached the consensus threshold (64% agreement). In round 2, a consensus was reached on an NRS version with a 1-week recall period (96% agreement). Various participants requested 1 free-to-use instrument per domain. Considering all issues together, recommendations on core instruments were formulated: Oswestry Disability Index version 2.1a or 24-item Roland-Morris Disability Questionnaire for physical functioning, NRS for pain intensity, and SF12 or 10-item PROMIS Global Health form for HRQoL. Further studies need to fill the evidence gaps on the measurement properties of these and other instruments. PMID:29194127

  9. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  10. Patient-reported outcome instruments that evaluate adherence behaviours in adults with asthma: A systematic review of measurement properties.

    PubMed

    Gagné, Myriam; Boulet, Louis-Philippe; Pérez, Norma; Moisan, Jocelyne

    2018-04-30

    To systematically identify the measurement properties of patient-reported outcome instruments (PROs) that evaluate adherence to inhaled maintenance medication in adults with asthma. We conducted a systematic review of six databases. Two reviewers independently included studies on the measurement properties of PROs that evaluated adherence in asthmatic participants aged ≥18 years. Based on the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN), the reviewers (1) extracted data on internal consistency, reliability, measurement error, content validity, structural validity, hypotheses testing, cross-cultural validity, criterion validity, and responsiveness; (2) assessed the methodological quality of the included studies; (3) assessed the quality of the measurement properties (positive or negative); and (4) summarised the level of evidence (limited, moderate, or strong). We screened 6,068 records and included 15 studies (14 PROs). No studies evaluated measurement error or responsiveness. Based on methodological and measurement property quality assessments, we found limited positive evidence of: (a) internal consistency of the Adherence Questionnaire, Refined Medication Adherence Reason Scale (MAR-Scale), Medication Adherence Report Scale for Asthma (MARS-A), and Test of the Adherence to Inhalers (TAI); (b) reliability of the TAI; and (c) structural validity of the Adherence Questionnaire, MAR-Scale, MARS-A, and TAI. We also found limited negative evidence of: (d) hypotheses testing of Adherence Questionnaire; (e) reliability of the MARS-A; and (f) criterion validity of the MARS-A and TAI. Our results highlighted the need to conduct further high-quality studies that will positively evaluate the reliability, validity, and responsiveness of the available PROs. This article is protected by copyright. All rights reserved.

  11. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

    NASA Technical Reports Server (NTRS)

    Lally, J.; Meister, R.

    1983-01-01

    The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

  12. Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S. (Editor)

    2000-01-01

    The Fifth Microgravity Fluid Physics and Transport Phenomena Conference provided the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program and research opportunities and plans for the near future. Consistent with the conference theme "Microgravity Research an Agency-Wide Asset" the conference focused not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. The conference included 14 invited plenary talks, 61 technical paper presentations, 61 poster presentations, exhibits and a forum on emerging research themes focusing on nanotechnology and biofluid mechanics. This web-based proceeding includes the presentation and poster charts provided by the presenters of technical papers and posters that were scanned at the conference site. Abstracts of all the papers and posters are included and linked to the presentations charts. The invited and plenary speakers were not required to provide their charts and are generally not available for scanning and hence not posted. The conference program is also included.

  13. The MOPITT instrument as a Prototype for Long-Term Space-Based Atmospheric Measurements in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Drummond, James

    2016-07-01

    One of the major characteristics of the Anthropocene will be changes in all the Earth systems on many timescales. Changes that occur within a generation will be very significant for policy decisions and these will require measurements on corresponding timescales from space-based instruments, but these times are long compared to traditional satellite lifetimes. Whether by luck or by good design there are now a number of satellite missions that are recording data over long time periods. With a single instrument, decadal and longer time series of relevant atmospheric parameters have been achieved and the Measurements Of Pollution In The Troposphere (MOPITT) instrument is one such instrument. Launched on 18th December 1999 on the Terra spacecraft, MOPITT has now completed more than 16 years of operation measuring carbon monoxide (CO) over the planet and the mission continues. It is entirely possible that these measurements will span two decades before completion. MOPITT therefore offers a case study of a very long single-instrument time series, albeit one with challenges because this longevity was not part of the original design criteria: The original design specified about a five year life and this has already been considerably exceeded. MOPITT does enable us to look at long term trends and intermittent phenomena over the planet for an extended period of tie encompassing an entire solar cycle and many cycles of El Niño and other quasi-periodic phenomena. This presentation will consider, with examples, some of the advantages and some of the problems of these long-term space measurements with an eye to the future and the needs of future generations. MOPITT was provided to NASA's Terra spacecraft by the Canadian Space Agency and was built by COMDEV of Cambridge, Ontario. Data processing is performed by the MOPITT team at the National Center for Atmospheric Research, Boulder, CO. Instrument control is by the team at the University of Toronto.

  14. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for

  15. Implementation outcome assessment instruments used in physical healthcare settings and their measurement properties: a systematic review protocol.

    PubMed

    Khadjesari, Zarnie; Vitoratou, Silia; Sevdalis, Nick; Hull, Louise

    2017-10-08

    Over the past 10 years, research into methods that promote the uptake, implementation and sustainability of evidence-based interventions has gathered pace. However, implementation outcomes are defined in different ways and assessed by different measures; the extent to which these measures are valid and reliable is unknown. The aim of this systematic review is to identify and appraise studies that assess the measurement properties of quantitative implementation outcome instruments used in physical healthcare settings, to advance the use of precise and accurate measures. The following databases will be searched from inception to March 2017: MEDLINE, EMBASE, PsycINFO, CINAHL and the Cochrane Library. Grey literature will be sought via HMIC, OpenGrey, ProQuest for theses and Web of Science Conference Proceedings Citation Index-Science. Reference lists of included studies and relevant reviews will be hand searched. Three search strings will be combined to identify eligible studies: (1) implementation literature, (2) implementation outcomes and (3) measurement properties. Screening of titles, abstracts and full papers will be assessed for eligibility by two reviewers independently and any discrepancies resolved via consensus with the wider team. The methodological quality of the studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. A set of bespoke criteria to determine the quality of the instruments will be used, and the relationship between instrument usability and quality will be explored. Ethical approval is not necessary for systematic review protocols. Researchers and healthcare professionals can use the findings of this systematic review to guide the selection of implementation outcomes instruments, based on their psychometric quality, to assess the impact of their implementation efforts. The findings will also provide a useful guide for reviewers of papers and grants to determine the

  16. New findings and instrumentation from the NASA Lewis microgravity facilities

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Greenberg, Paul S.

    1990-01-01

    The study of fundamental combustion and fluid physics in a microgravity environment is a relatively new scientific endeavor. The microgravity environment enables a new range of experiments to be performed since: buoyancy-induced flows are nearly eliminated; normally obscured forces and flows may be isolated; gravitational settling or sedimentation is nearly eliminated; and larger time or length scales in experiments become permissible. Unexpected phenomena have been observed, with surprising frequency, in microgravity experiments, raising questions about the degree of accuracy and completeness of the classical understanding. An overview is provided of some new phenomena found through ground-based, microgravity research, the instrumentation used in this research, and plans for new instrumentation.

  17. Method for noninvasive determination of acoustic properties of fluids inside pipes

    DOEpatents

    None

    2016-08-02

    A method for determining the composition of fluids flowing through pipes from noninvasive measurements of acoustic properties of the fluid is described. The method includes exciting a first transducer located on the external surface of the pipe through which the fluid under investigation is flowing, to generate an ultrasound chirp signal, as opposed to conventional pulses. The chirp signal is received by a second transducer disposed on the external surface of the pipe opposing the location of the first transducer, from which the transit time through the fluid is determined and the sound speed of the ultrasound in the fluid is calculated. The composition of a fluid is calculated from the sound speed therein. The fluid density may also be derived from measurements of sound attenuation. Several signal processing approaches are described for extracting the transit time information from the data with the effects of the pipe wall having been subtracted.

  18. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Christine Cardinal; Graham, Alan; Nemer, Martin

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  19. FLUID: A numerical interpolation procedure for obtaining thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1977-01-01

    A computer program subroutine, FLUID, was developed to calculate thermodynamic and transport properties of pure fluid substances. It provides for determining the thermodynamic state from assigned values for temperature-density, pressure-density, temperature-pressure, pressure-entropy, or pressure-enthalpy. Liquid or two-phase (liquid-gas) conditions are considered as well as the gas phase. A van der Waals model is used to obtain approximate state values; these values are then corrected for real gas effects by model-correction factors obtained from tables based on experimental data. Saturation conditions, specific heat, entropy, and enthalpy data are included in the tables for each gas. Since these tables are external to the FLUID subroutine itself, FLUID can implement any gas for which a set of tables has been generated. (A setup phase is used to establish pointers dynamically to the tables for a specific gas.) Data-table preparation is described. FLUID is available in both SFTRAN and FORTRAN

  20. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  1. Correlated selection response of fiber properties measured by high volume instrument and advanced fiber information system in Upland cotton

    USDA-ARS?s Scientific Manuscript database

    Fiber properties measured by high volume instrument (HVI) and advanced fiber information system (AFIS) are currently being used in Upland cotton (Gossypium hirsutum L.) breeding. It would be interesting to know if selections for parameters measured by the two instrumental systems are equally effici...

  2. Measuring women's childbirth experiences: a systematic review for identification and analysis of validated instruments.

    PubMed

    Nilvér, Helena; Begley, Cecily; Berg, Marie

    2017-06-29

    Women's childbirth experience can have immediate as well as long-term positive or negative effects on their life, well-being and health. When evaluating and drawing conclusions from research results, women's experiences of childbirth should be one aspect to consider. Researchers and clinicians need help in finding and selecting the most suitable instrument for their purpose. The aim of this study was therefore to systematically identify and present validated instruments measuring women's childbirth experience. A systematic review was conducted in January 2016 with a comprehensive search in the bibliographic databases PubMed, CINAHL, Scopus, The Cochrane Library and PsycINFO. Included instruments measured women's childbirth experiences. Papers were assessed independently by two reviewers for inclusion, and quality assessment of included instruments was made by two reviewers independently and in pairs using Terwee et al's criteria for evaluation of psychometric properties. In total 5189 citations were screened, of which 5106 were excluded by title and abstract. Eighty-three full-text papers were reviewed, and 37 papers were excluded, resulting in 46 included papers representing 36 instruments. These instruments demonstrated a wide range in purpose and content as well as in the quality of psychometric properties. This systematic review provides an overview of existing instruments measuring women's childbirth experiences and can support researchers to identify appropriate instruments to be used, and maybe adapted, in their specific contexts and research purpose.

  3. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  4. Measuring Aerosol Optical Properties with the Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Torres, O.; Syniuk, A.; Decae, R.; deLeeuw, G.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OM1 is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13x24 sq km at nadir) and daily global coverage. OM1 will make a major contribution to our understanding of atmospheric chemistry and to climate research. OM1 will provide data continuity with the TOMS instruments. One of the pleasant surprises of the TOMS data record was its information on aerosol properties. First, only the absorbing aerosol index, which is sensitive to elevated lay- ers of aerosols such as desert dust and smoke aerosols, was derived. Recently these methods were further improved to yield aerosol optical thickness and single scattering albedo over land and ocean for 19 years of TOMS data (1979-1992,1997-2002), making it one of the longest and most valuable time series for aerosols presently available. Such long time series are essential to quantify the effect of aerosols on the Earth& climate. The OM1 instrument is better suited to measure aerosols than the TOMS instruments because of the smaller footprint, and better spectral coverage. The better capabilities of OMI will enable us to provide an improved aerosol product, but the knowledge will also be used for further analysis of the aerosol record from TOMS. The OM1 aerosol product that is currently being developed for OM1 combines the TOMS experience and the multi-spectral techniques that are used in the visible and near infrared. The challenge for this new product is to provide aerosol optical thickness and single scattering albedo from the near ultraviolet to the visible (330-500 nm) over land and ocean. In this presentation the methods for deriving the OM1 aerosol product will be presented. Part of these methods developed for OM1 can already be applied to TOMS data and results of such analysis will be shown.

  5. Measuring quality of life in opioid-dependent people: a systematic review of assessment instruments.

    PubMed

    Strada, Lisa; Vanderplasschen, Wouter; Buchholz, Angela; Schulte, Bernd; Muller, Ashley E; Verthein, Uwe; Reimer, Jens

    2017-12-01

    Opioid dependence is a chronic relapsing disorder. Despite increasing research on quality of life (QOL) in people with opioid dependence, little attention has been paid to the instruments used. This systematic review examines the suitability of QOL instruments for use in opioid-dependent populations and the instruments' quality. A systematic search was performed in the databases Medline, PsycInfo, The Cochrane Library, and CINAHL. Articles were eligible if they assessed QOL of opioid-dependent populations using a validated QOL instrument. Item content relevance to opioid-dependent people was evaluated by means of content analysis, and instrument properties were assessed using minimum standards for patient-reported outcome measures. Eighty-nine articles were retrieved, yielding sixteen QOL instruments, of which ten were assessed in this review. Of the ten instruments, six were disease specific, but none for opioid dependence. Two instruments had good item content relevance. The conceptual and measurement model were described in seven instruments. Four instruments were developed with input from the respective target population. Eight instruments had low respondent and administrator burden. Psychometric properties were either not assessed in opioid-dependent populations or were inconclusive or moderate. No instrument scored perfectly on both the content and properties. The limited suitability of instruments for opioid-dependent people hinders accurate and sensitive measurement of QOL in this population. Future research is in need of an opioid dependence-specific QOL instrument to measure the true impact of the disease on people's lives and to evaluate treatment-related services.

  6. Instruments measuring spirituality in clinical research: a systematic review.

    PubMed

    Monod, Stéfanie; Brennan, Mark; Rochat, Etienne; Martin, Estelle; Rochat, Stéphane; Büla, Christophe J

    2011-11-01

    Numerous instruments have been developed to assess spirituality and measure its association with health outcomes. This study's aims were to identify instruments used in clinical research that measure spirituality; to propose a classification of these instruments; and to identify those instruments that could provide information on the need for spiritual intervention. A systematic literature search in MEDLINE, CINHAL, PsycINFO, ATLA, and EMBASE databases, using the terms "spirituality" and "adult$," and limited to journal articles was performed to identify clinical studies that used a spiritual assessment instrument. For each instrument identified, measured constructs, intended goals, and data on psychometric properties were retrieved. A conceptual and a functional classification of instruments were developed. Thirty-five instruments were retrieved and classified into measures of general spirituality (N = 22), spiritual well-being (N = 5), spiritual coping (N = 4), and spiritual needs (N = 4) according to the conceptual classification. Instruments most frequently used in clinical research were the FACIT-Sp and the Spiritual Well-Being Scale. Data on psychometric properties were mostly limited to content validity and inter-item reliability. According to the functional classification, 16 instruments were identified that included at least one item measuring a current spiritual state, but only three of those appeared suitable to address the need for spiritual intervention. Instruments identified in this systematic review assess multiple dimensions of spirituality, and the proposed classifications should help clinical researchers interested in investigating the complex relationship between spirituality and health. Findings underscore the scarcity of instruments specifically designed to measure a patient's current spiritual state. Moreover, the relatively limited data available on psychometric properties of these instruments highlight the need for additional research to

  7. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid

  8. Physical activity measurement instruments for children with cerebral palsy: a systematic review.

    PubMed

    Capio, Catherine M; Sit, Cindy H P; Abernethy, Bruce; Rotor, Esmerita R

    2010-10-01

    this paper is a systematic review of physical activity measurement instruments for field-based studies involving children with cerebral palsy (CP). database searches using PubMed Central, MEDLINE, CINAHL Plus, PsycINFO, EMBASE, Cochrane Library, and PEDro located 12 research papers, identifying seven instruments that met the inclusion criteria of (1) having been developed for children aged 0 to 18 years, (2) having been used to evaluate a physical activity dimension, and (3) having been used in a field-based study involving children with CP. The instruments reviewed were the Activities Scale for Kids - Performance version (ASKp), the Canada Fitness Survey, the Children's Assessment of Participation and Enjoyment/Preferences for Activities of Children (CAPE/PAC), the Compendium of Physical Activities, the Physical Activity Questionnaire - Adolescents (PAQ-A), StepWatch, and the Uptimer. Second-round searches yielded 11 more papers, providing reliability and validity evidence for the instruments. the instruments measure physical activity frequency, mode, domain, and duration. Although most instruments demonstrated adequate reliability and validity, only the ASKp and CAPE/PAC have established reliability and validity for children with physical disabilities; the Uptimer has established concurrent validity. No instrument measuring intensity in free-living has been validated or found reliable for children with CP. the findings suggest that further studies are needed to examine the methodological properties of physical activity measurement in children with CP. Combining subjective and objective instruments is recommended to achieve better understanding of physical activity participation.

  9. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  10. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  11. Fluids and their Effect on Measurements on Lunar Soil Particle size Distribution

    NASA Technical Reports Server (NTRS)

    Cooper, B. L.; McKay, D. S.; Wallace, W. T.; Gonzalex, C. P.

    2011-01-01

    From the late 1960s until now, lunar soil particle size distributions have typically been determined by sieving sometimes dry, and at other times with fluids such as water or Freon. Laser diffraction instruments allow rapid assessment of particle size distribution, and eventually may replace sieve measurements. However, when measuring lunar soils with laser diffraction instruments, care must be taken in choosing a carrier fluid that is compatible with lunar material. Distilled water is the fluid of choice for laser diffraction measurements of substances when there is no concern about adverse effects of water on the material being measured. When we began our analyses of lunar soils using laser diffraction, our first measurements were made with distilled water. Although the medians that we measured were comparable to earlier sieve data, the means tended to be significantly larger than expected. The effect of water vapor on lunar soil has been studied extensively. The particles interact strongly with water vapor, and subsequent adsorptions of nitrogen showed that the specific surface area increased as much as threefold after exposure to moisture. It was observed that significant porosity had been generated by this exposure to water vapor. The possibility of other physical changes in the surfaces of the grains was not studied.

  12. Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Doiron, Terence a.

    2007-01-01

    In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.

  13. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  14. Patient perspective workshop: moving towards OMERACT guidelines for choosing or developing instruments to measure patient-reported outcomes.

    PubMed

    Kirwan, John R; Fries, James F; Hewlett, Sarah E; Osborne, Richard H; Newman, Stanton; Ciciriello, Sabina; van de Laar, Mart A; Dures, Emma; Minnock, Patricia; Heiberg, Turid; Sanderson, Tessa C; Flurey, Caroline A; Leong, Amy L; Montie, Pamela; Richards, Pam

    2011-08-01

    The workshop Choosing or Developing Instruments held at the Outcome Measures in Rheumatology (OMERACT) 10 meeting was designed to help participants think about the underlying methods of instrument development. Conference pre-reading material and 3 brief introductory presentations elaborated the issues, and participants broke into discussion groups before reconvening to share insights, engage in a more general discussion of the issues, and vote on recommendations. Tradeoffs between using current imperfect measures and the long and complex process of developing new instruments were considered, together with the need for rigor in patient-reported outcome (PRO) instrument development. The main considerations for PRO instrument development were listed and a research agenda for action produced. As part of the agenda for action, it is recommended that researchers and patient partners work together to tackle these issues, and that OMERACT bring forward proposals for acceptable instrument development protocols that would meet an enhanced "Truth" statement in the OMERACT Filter.

  15. Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.

    1998-03-01

    Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Metermore » design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.« less

  16. Measuring the Youth Bullying Experience: A Systematic Review of the Psychometric Properties of Available Instruments

    ERIC Educational Resources Information Center

    Vessey, Judith; Strout, Tania D.; DiFazio, Rachel L.; Walker, Allison

    2014-01-01

    Background: Bullying is a significant problem in schools and measuring this concept remains problematic. The purposes of this study were to (1) identify the published self-report measures developed to assess youth bullying; (2) evaluate their psychometric properties and instrument characteristics; and (3) evaluate the quality of identified…

  17. Instrumentation For Measuring Finish, Defects And Gloss

    NASA Astrophysics Data System (ADS)

    Whitehouse, David J.

    1985-09-01

    The measurement of fine surfaces optical finishes and flaws is becoming more important because of a number of factors. One of these is the hunt for better quality of conformance another is the smoother surfaces required in present day applications such as found in the computer and video industries. Defects such as scratches, pits or cracks cannot only impair the cosmetic appearance of the object, they can actually cause premature failure as in fatigue or corrosion. These new measuring criteria have caused some real problems to instrument makers. In the case of defects the problem is that of spatial bandwidth; that is the problem of searching for a small scratch over a wide area. When measuring fine surfaces the problem is usually the signal to noise ratio of the instrument itself. In many instances the search for defects or the measurement of fine surfaces has been left to human judgement - a powerful if unpredictable measuring tool. This is becoming unsatisfactory because standards have sometimes been built into commercial evaluation of quality based upon the eye. This is rather unfortunate; it ties the hands of the instrument maker who for compatibility has to try to simulate the eye or use indirect measurements.

  18. Fluid Merging Viscosity Measurement (FMVM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  19. Instrumentation for detailed bridge-scour measurements

    USGS Publications Warehouse

    Landers, Mark N.; Mueller, David S.; Trent, Roy E.; ,

    1993-01-01

    A portable instrumentation system is being developed to obtain channel bathymetry during floods for detailed bridge-scour measurements. Portable scour measuring systems have four components: sounding instrument, horizontal positioning instrument, deployment mechanisms, and data storage device. The sounding instrument will be a digital fathometer. Horizontal position will be measured using a range-azimuth based hydrographic survey system. The deployment mechanism designed for this system is a remote-controlled boat using a small waterplane area, twin-hull design. An on-board computer and radio will monitor the vessel instrumentation, record measured data, and telemeter data to shore.

  20. Multisensor Instrument for Real-Time Biological Monitoring

    NASA Technical Reports Server (NTRS)

    Zhang, Sean (Zhanxiang); Xu, Guoda; Qiu, Wei; Lin, Freddie

    2004-01-01

    The figure schematically depicts an instrumentation system, called a fiber optic-based integration system (FOBIS), that is undergoing development to enable real-time monitoring of fluid cell cultures, bioprocess flows, and the like. The FOBIS design combines a micro flow cytometer (MFC), a microphotometer (MP), and a fluorescence-spectrum- or binding-force-measuring micro-sensor (MS) in a single instrument that is capable of measuring multiple biological parameters simultaneously or sequentially. The fiber-optic-based integration system is so named because the MFC, the MP, and the MS are integrated into a single optical system that is coupled to light sources and photometric equipment via optical fibers. The optical coupling components also include a wavelength-division multiplexer and diffractive optical elements. The FOBIS includes a laserdiode- and fiber-optic-based optical trapping subsystem (optical tweezers ) with microphotometric and micro-sensing capabilities for noninvasive confinement and optical measurement of relevant parameters of a single cell or other particle. Some of the measurement techniques implemented together by the FOBIS have long been used separately to obtain basic understanding of the optical properties of individual cells and other organisms, the optical properties of populations of organisms, and the interrelationships among these properties, physiology of the organisms, and physical processes that govern the media that surround the organisms. For example, flow cytometry yields information on numerical concentrations, cross-sectional areas, and types of cells or other particles. Micro-sensing can be used to measure pH and concentrations of oxygen, carbon dioxide, glucose, metabolites, calcium, and antigens in a cell-culture fluid, thereby providing feedback that can be helpful in improving control over a bioprocess. Microphotometry (including measurements of scattering and fluorescence) can yield further information about optically

  1. Experimental Analysis of the Role of Fluid Transport Properties in Fluid-Induced Fracture Initiation and Propagation

    NASA Astrophysics Data System (ADS)

    Boutt, D.; McPherson, B. J.; Cook, B. K.; Goodwin, L. B.; Williams, J. R.; Lee, M. Y.; Patteson, R.

    2003-12-01

    It is well known that pore fluid pressure fundamentally influences a rock's mechanical response to stress. However, most measures of the mechanical behavior of rock (e.g. shear strength, Young's modulus) do not incorporate, either explicitly or implicitly, pore fluid pressure or transport properties of rock. Current empirical and theoretical criteria that define the amount of stress a given body of rock can support before fracturing also lack a direct connection between fluid transport and mechanical properties. Our research goal is to use laboratory experimental results to elucidate correlations between rock transport properties and fracture behavior under idealized loading conditions. In strongly coupled fluid-solid systems the evolution of the solid framework is influenced by the fluid and vice versa. These couplings often result in changes of the bulk material properties (i.e. permeability and failure strength) with respect to the fluid's ability to move through the solid and the solids ability to transmit momentum. Feedbacks between fluid and solid framework ultimately play key roles in understanding the spatial and temporal evolution of the coupled fluid-solid system. Discretely coupled models of fluid and solid mechanics were developed a priori to design an experimental approach for testing the role of fluid transport parameters in rock fracture. The experimental approach consists of first loading a fluid saturated cylindrical rock specimen under hydrostatic conditions and then applying a differential stress such that the maximum stress is perpendicular to the cylinder long axis. At the beginning of the test the minimum stress and the fluid pressure are dropped at the same time such that the resulting difference in the initial fluid pressure and the final fluid pressure is greater than the final minimum stress. These loading conditions should produce a fluid driven tensile fracture that is perpendicular to the cylinder long axis. Initial analyses using

  2. Building a Low-Cost, Six-Electrode Instrument to Measure Electrical Properties of Self-Assembled Monolayers of Gold Nanoparticles

    ERIC Educational Resources Information Center

    Gerber, Ralph W.; Oliver-Hoyo, Maria

    2007-01-01

    The development of a new low-cost, six-electrode instrument for measuring the electrical properties of the self-assembled monolayers of gold particles is being described. The system can also be used to measure conductive liquids, except for those that contain aqua region.

  3. The Clinimetric Properties of Instruments Measuring Home Hazards for Older People at Risk of Falling: A Systematic Review.

    PubMed

    Romli, Muhammad Hibatullah; Mackenzie, Lynette; Lovarini, Meryl; Tan, Maw Pin; Clemson, Lindy

    2018-03-01

    Home hazards are associated with falls among older people living in the community. However, evaluating home hazards is a complex process as environmental factors vary according to geography, culture, and architectural design. As a result, many health practitioners commonly use nonstandardized assessment methods that may lead to inaccurate findings. Thus, the aim of this systematic review was to identify standardized instruments for evaluating home hazards related to falls and evaluate the clinimetric properties of these instruments for use by health practitioners. A systematic search was conducted in the Medline, CINAHL, AgeLine, Web of Science databases, and the University of Sydney Library CrossSearch Engine. Study screening, assessment, and quality ratings were conducted independently. Thirty-six studies were identified describing 19 instruments and three assessment techniques. The clinimetric properties varied between instruments. The Home Falls and Accidents Screening Tool, Home Safety Self-Assessment Tool, In-Home Occupational Performance Evaluation, and Westmead Home Safety Assessment were the instruments with high potential for evaluating home hazards associated with falls. Health practitioners can choose the most appropriate instruments for their practice, as a range of standardized instruments with established clinimetric properties are available.

  4. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.

    1978-01-01

    Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.

  5. Portable digital lock-in instrument to determine chemical constituents with single-color absorption measurements for Global Health Initiatives

    NASA Astrophysics Data System (ADS)

    Vacas-Jacques, Paulino; Linnes, Jacqueline; Young, Anna; Gerrard, Victoria; Gomez-Marquez, Jose

    2014-03-01

    Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

  6. A Wireless Fluid-Level Measurement Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    This paper presents the application of a recently developed wireless measurement acquisition system to fluid-level measurement. This type of fluid-level measurement system alleviates many shortcomings of fluid-level measurement methods currently being used, including limited applicability of any one fluid-level sensor design. Measurement acquisition shortcomings include the necessity for power to be supplied to each sensor and for the measurement to be extracted from each sensor via a physical connection to the sensor. Another shortcoming is existing measurement systems require that a data channel and signal conditioning electronics be dedicated to each sensor. Use of wires results in other shortcomings such as logistics needed to add or replace sensors, weight, potential for electrical arcing and wire degradations. The fluid level sensor design is a simple passive inductor-capacitor circuit that is not subject to mechanical failure that is possible when float and lever-arm systems are used. Methods are presented for using the sensor in caustic, acidic or cryogenic fluids. Oscillating magnetic fields are used to power the sensor. Once electrically excited, the sensor produces a magnetic field response. The response frequency corresponds to the amount to fluid within the capacitor s electric field. The sensor design can be modified for measuring the level of any fluid or fluent substance that can be stored in a non-conductive reservoir. The interrogation method for discerning changes in the sensor response frequency is also presented.

  7. How to select outcome measurement instruments for outcomes included in a "Core Outcome Set" - a practical guideline.

    PubMed

    Prinsen, Cecilia A C; Vohra, Sunita; Rose, Michael R; Boers, Maarten; Tugwell, Peter; Clarke, Mike; Williamson, Paula R; Terwee, Caroline B

    2016-09-13

    In cooperation with the Core Outcome Measures in Effectiveness Trials (COMET) initiative, the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) initiative aimed to develop a guideline on how to select outcome measurement instruments for outcomes (i.e., constructs or domains) included in a "Core Outcome Set" (COS). A COS is an agreed minimum set of outcomes that should be measured and reported in all clinical trials of a specific disease or trial population. Informed by a literature review to identify potentially relevant tasks on outcome measurement instrument selection, a Delphi study was performed among a panel of international experts, representing diverse stakeholders. In three consecutive rounds, panelists were asked to rate the importance of different tasks in the selection of outcome measurement instruments, to justify their choices, and to add other relevant tasks. Consensus was defined as being achieved when 70 % or more of the panelists agreed and when fewer than 15 % of the panelists disagreed. Of the 481 invited experts, 120 agreed to participate of whom 95 (79 %) completed the first Delphi questionnaire. We reached consensus on four main steps in the selection of outcome measurement instruments for COS: Step 1, conceptual considerations; Step 2, finding existing outcome measurement instruments, by means of a systematic review and/or a literature search; Step 3, quality assessment of outcome measurement instruments, by means of the evaluation of the measurement properties and feasibility aspects of outcome measurement instruments; and Step 4, generic recommendations on the selection of outcome measurement instruments for outcomes included in a COS (consensus ranged from 70 to 99 %). This study resulted in a consensus-based guideline on the methods for selecting outcome measurement instruments for outcomes included in a COS. This guideline can be used by COS developers in defining how to measure core outcomes.

  8. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    NASA Technical Reports Server (NTRS)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  9. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    NASA Astrophysics Data System (ADS)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Lant, Christian T.; Ling, Jerri S.

    1998-01-01

    The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics.

  11. Implementation outcome assessment instruments used in physical healthcare settings and their measurement properties: a systematic review protocol

    PubMed Central

    Vitoratou, Silia; Sevdalis, Nick; Hull, Louise

    2017-01-01

    Introduction Over the past 10 years, research into methods that promote the uptake, implementation and sustainability of evidence-based interventions has gathered pace. However, implementation outcomes are defined in different ways and assessed by different measures; the extent to which these measures are valid and reliable is unknown. The aim of this systematic review is to identify and appraise studies that assess the measurement properties of quantitative implementation outcome instruments used in physical healthcare settings, to advance the use of precise and accurate measures. Methods and analysis The following databases will be searched from inception to March 2017: MEDLINE, EMBASE, PsycINFO, CINAHL and the Cochrane Library. Grey literature will be sought via HMIC, OpenGrey, ProQuest for theses and Web of Science Conference Proceedings Citation Index-Science. Reference lists of included studies and relevant reviews will be hand searched. Three search strings will be combined to identify eligible studies: (1) implementation literature, (2) implementation outcomes and (3) measurement properties. Screening of titles, abstracts and full papers will be assessed for eligibility by two reviewers independently and any discrepancies resolved via consensus with the wider team. The methodological quality of the studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. A set of bespoke criteria to determine the quality of the instruments will be used, and the relationship between instrument usability and quality will be explored. Ethics and dissemination Ethical approval is not necessary for systematic review protocols. Researchers and healthcare professionals can use the findings of this systematic review to guide the selection of implementation outcomes instruments, based on their psychometric quality, to assess the impact of their implementation efforts. The findings will also provide a useful guide for

  12. Fluid mechanics phenomena in microgravity; ASME Winter Annual Meeting, Anaheim, CA, Nov. 8-13, 1992

    NASA Technical Reports Server (NTRS)

    Siginer, Dennis A. (Editor); Weislogel, Mark M. (Editor)

    1992-01-01

    This paper is the first in a series of symposia presenting research activity in microgravity fluid mechanics. General topics addressed include two-phase flow and transport phenomena, thermo-capillary flow, and interfacial stability. Papers present mathmatical models of fluid dynamics in the microgravity environment. Applications suggested include space manufacturing and storage of liquids in low gravity.

  13. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  14. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  15. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  16. Interactive FORTRAN IV computer programs for the thermodynamic and transport properties of selected cryogens (fluids pack)

    NASA Technical Reports Server (NTRS)

    Mccarty, R. D.

    1980-01-01

    The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.

  17. Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1985-01-01

    An ultrasonic levitation device operable in both ordinary ground-based as well as in potential space-borne laboratories is described together with its various applications in the fields of fluid dynamics, material science, and light scattering. Some of the phenomena which can be studied by this instrument include surface waves on freely suspended liquids, the variations of the surface tension with temperature and contamination, the deep undercooling of materials with the temperature variations of their density and viscosity, and finally some of the optical diffraction properties of transparent substances.

  18. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  19. Measuring Asian nurses' organizational commitment: a critical analysis of the psychometric properties of two organizational commitment instruments.

    PubMed

    Liou, Shwu-Ru; Tsai, Hsiu-Min; Cheng, Ching-Yu

    2013-01-01

    To analyze and compare the psychometric properties and cultural attributes of the Organizational Commitment Questionnaire and the Organizational Commitment Scale to determine their appropriateness for measuring commitment of Asian nurses, the biggest portion of international nurses. The Organizational Commitment Questionnaire was cross-culturally cross-validated when compared with the Organizational Commitment Scale. Both instruments were not tested on Asian nurses. More studies are needed to validate the cultural properties of the Organizational Commitment Scale. Healthcare administrators can use culturally validated instruments, which concern cultural context, including languages and cultural values, to understand Asian nurses' organizational commitment and further lower turnover behavior among them. © 2013 Wiley Periodicals, Inc.

  20. A novel instrumentation circuit for electrochemical measurements.

    PubMed

    Yin, Li-Te; Wang, Hung-Yu; Lin, Yang-Chiuan; Huang, Wen-Chung

    2012-01-01

    In this paper, a novel signal processing circuit which can be used for the measurement of H(+) ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H(+) ions and urea by using H(+) ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost.

  1. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  2. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  3. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  4. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  5. Flow-induced birefringence measurement system using dual-crystal transverse electro-optic modulator for microgravity fluid physics applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.

    1999-01-01

    We have developed a new instrument that can measure fast transient birefringence and polymer chain orientation angle in complex fluids. The instrument uses a dual-crystal transverse electro-optic modulator with the second crystal's modulation voltage applied 180 deg out of phase from that of the first crystal. In this manner, the second crystal compensates for the intrinsic static birefringence of the first crystal, and it doubles the modulation depth. By incorporating a transverse electro-optic modulator with two lithium-niobate (LiNbO3) crystals oriented orthogonal to each other with a custom-designed optical system, we have produced a very small robust instrument capable of fast transient retardation measurements. By measuring the sample thickness or optical path length through the sample, we can calculate the transient birefringence. This system can also measure dichroism. We have compared the calibration results and retardation and orientation angle measurements of this instrument with those of a photoelastic modulator (PEM) based system using a quarter wave plate and a high-precision 1/16-wave plate to simulate a birefringent sample. Transient birefringence measurements on the order of 10(exp -9) can be measured using either modulator.

  6. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  7. Recommendations on the most suitable quality-of-life measurement instruments for bariatric and body contouring surgery: a systematic review.

    PubMed

    de Vries, C E E; Kalff, M C; Prinsen, C A C; Coulman, K D; den Haan, C; Welbourn, R; Blazeby, J M; Morton, J M; van Wagensveld, B A

    2018-06-08

    The objective of this study is to systematically assess the quality of existing patient-reported outcome measures developed and/or validated for Quality of Life measurement in bariatric surgery (BS) and body contouring surgery (BCS). We conducted a systematic literature search in PubMed, EMBASE, PsycINFO, CINAHL, Cochrane Database Systematic Reviews and CENTRAL identifying studies on measurement properties of BS and BCS Quality of Life instruments. For all eligible studies, we evaluated the methodological quality of the studies by using the COnsensus-based Standards for the selection of health Measurement INstruments checklist and the quality of the measurement instruments by applying quality criteria. Four degrees of recommendation were assigned to validated instruments (A-D). Out of 4,354 articles, a total of 26 articles describing 24 instruments were included. No instrument met all requirements (category A). Seven instruments have the potential to be recommended depending on further validation studies (category B). Of these seven, the BODY-Q has the strongest evidence for content validity in BS and BCS. Two instruments had poor quality in at least one required quality criterion (category C). Fifteen instruments were minimally validated (category D). The BODY-Q, developed for BS and BCS, possessed the strongest evidence for quality of measurement properties and has the potential to be recommended in future clinical trials. © 2018 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

  8. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  9. Analysis of instruments measuring nurses' attitudes towards research utilization: a systematic review.

    PubMed

    Frasure, Jamey

    2008-01-01

    This paper is a report of a systematic review describing instruments used to measure nurses' attitudes towards research utilization. Researchers need to have the tools to measure nurses' attitudes. However, limited literature critically analyses instruments and the concepts that comprise nurses' attitudes towards research utilization. A search of the literature from 1982 to 2007 was performed using the Cumulative Index to Nursing and Allied Health Literature, Health and Psychosocial Instruments, PubMed and MEDLINE data bases. The search terms were nursing research, research utilization, instruments, and nurses' attitudes. A total of 186 sources were identified, of which 25 were reviewed. Fourteen instruments met the criteria for in-depth critical analysis of psychometric properties and concepts, and were included in the final review. Each instrument item was judged to be relevant to direct, indirect, persuasive and overall research utilization as defined by Estabrooks. Instruments were arranged from the strongest to the weakest reliability of the subscales to determine the instrument with the strongest psychometric properties. Indirect and overall research utilization was measured by all of the instruments. Ten instruments measured direct research utilization and nine instruments measured persuasive research utilization. The Research Utilization in Nursing Survey by Estabrooks, as adapted by Kenny, was an instrument with strong psychometric properties measuring all four concepts of nurses' attitudes towards using and participating in research and was clinically feasible. Many published instruments are available for use by nurse researchers to measure nurses' attitude towards research utilization, but only one has been subjected to rigorous testing: the Research Utilization in Nursing Survey by Estabrooks.

  10. Interfacial Phenomena of Magnetic Fluid with Permanent Magnet in a Longitudinally Excited Container

    NASA Astrophysics Data System (ADS)

    Sudo, Seiichi; Wakuda, Hirofumi; Yano, Tetsuya

    2008-02-01

    This paper describes the magnetic fluid sloshing in a longitudinally excited container. Liquid responses of magnetic fluid with a permanent magnet in a circular cylindrical container subject to vertical vibration are investigated. Experiments are performed on a vibration- testing system which provided longitudinal excitation. A cylindrical container made with the acrylic plastic is used in the experiment. A permanent magnet is in the state of floating in a magnetic fluid. The disk-shaped and ring-shaped magnets are examined. The different interfacial phenomena from the usual longitudinal liquid sloshing are observed. It is found that the wave motion frequency of magnetic fluid with a disk-shaped magnet in the container subject to vertical vibration is exactly same that of the excitation. In the case of ring-shaped magnet, the first symmetrical mode of one-half subharmonic response is dominant at lower excitation frequencies. The magnetic fluid disintegration of the free surface was also observed by a high-speed video camera system.

  11. Properties of forced convection experimental with silicon carbide based nano-fluids

    NASA Astrophysics Data System (ADS)

    Soanker, Abhinay

    . The nano-fluid properties were tested at three different volume concentrations; 0.55%, 1% and 1.6%. Thermal conductivity was measured for the three-volume concentration as function of temperature. Thermal conductivity enhancement increased with the temperature and may be attributed to increased Brownian motion of colloidal particles at higher temperatures. Measured thermal conductivity values are compared with results obtained by theoretical model derived in this work. Effect of temperature and volume concentration on viscosity was also measured and reported. Viscosity increase and related consequences are important issues for the use of nano-fluids. Extensive measurements of heat transfer and pressure drop for forced convection in circular pipes with nano-fluids was also conducted. Parameters such as heat transfer coefficient, Nusselt number, pressure drop and a thermal hydraulic performance factor that takes into account the gains made by increase in thermal conductivity as well as penalties related to increase in pressure drop are evaluated for laminar and transition flow regimes. No significant improvement in heat transfer (Nusselt number) compared to its based fluid was observed. It is also observed that the values evaluated for the thermal-hydraulic performance factor (change in heat transfer/change in pressure drop) was under unity for many flow conditions indicating poor overall applicability of SiC based nano-fluids.

  12. Integrating Validity Theory with Use of Measurement Instruments in Clinical Settings

    PubMed Central

    Kelly, P Adam; O'Malley, Kimberly J; Kallen, Michael A; Ford, Marvella E

    2005-01-01

    Objective To present validity concepts in a conceptual framework useful for research in clinical settings. Principal Findings We present a three-level decision rubric for validating measurement instruments, to guide health services researchers step-by-step in gathering and evaluating validity evidence within their specific situation. We address construct precision, the capacity of an instrument to measure constructs it purports to measure and differentiate from other, unrelated constructs; quantification precision, the reliability of the instrument; and translation precision, the ability to generalize scores from an instrument across subjects from the same or similar populations. We illustrate with specific examples, such as an approach to validating a measurement instrument for veterans when prior evidence of instrument validity for this population does not exist. Conclusions Validity should be viewed as a property of the interpretations and uses of scores from an instrument, not of the instrument itself: how scores are used and the consequences of this use are integral to validity. Our advice is to liken validation to building a court case, including discovering evidence, weighing the evidence, and recognizing when the evidence is weak and more evidence is needed. PMID:16178998

  13. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Yannick; Carine Vandaele, Ann; Depiesse, Cedric; Gillotay, Didier; Kochenova, Svetlana; Montmessin, Franck

    2013-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. Part of such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), can be a tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we started studying their opacity and the influence of its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties using EPF data from SPICAM.

  14. Measuring team factors thought to influence the success of quality improvement in primary care: a systematic review of instruments

    PubMed Central

    2013-01-01

    Background Measuring team factors in evaluations of Continuous Quality Improvement (CQI) may provide important information for enhancing CQI processes and outcomes; however, the large number of potentially relevant factors and associated measurement instruments makes inclusion of such measures challenging. This review aims to provide guidance on the selection of instruments for measuring team-level factors by systematically collating, categorizing, and reviewing quantitative self-report instruments. Methods Data sources: We searched MEDLINE, PsycINFO, and Health and Psychosocial Instruments; reference lists of systematic reviews; and citations and references of the main report of instruments. Study selection: To determine the scope of the review, we developed and used a conceptual framework designed to capture factors relevant to evaluating CQI in primary care (the InQuIRe framework). We included papers reporting development or use of an instrument measuring factors relevant to teamwork. Data extracted included instrument purpose; theoretical basis, constructs measured and definitions; development methods and assessment of measurement properties. Analysis and synthesis: We used qualitative analysis of instrument content and our initial framework to develop a taxonomy for summarizing and comparing instruments. Instrument content was categorized using the taxonomy, illustrating coverage of the InQuIRe framework. Methods of development and evidence of measurement properties were reviewed for instruments with potential for use in primary care. Results We identified 192 potentially relevant instruments, 170 of which were analyzed to develop the taxonomy. Eighty-one instruments measured constructs relevant to CQI teams in primary care, with content covering teamwork context (45 instruments measured enabling conditions or attitudes to teamwork), team process (57 instruments measured teamwork behaviors), and team outcomes (59 instruments measured perceptions of the team or

  15. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  16. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions

    NASA Technical Reports Server (NTRS)

    Szekely, Julian

    1988-01-01

    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  17. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  18. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  19. Scoping review of instruments measuring attitudes toward disability.

    PubMed

    Palad, Yves Y; Barquia, Rensyl B; Domingo, Harvey C; Flores, Clinton K; Padilla, Levin I; Ramel, Jonas Mikko D

    2016-07-01

    Negative attitudes toward disability cause difficulties in integrating persons with disabilities (PWDs) into society and limit their access to health care, education, employment, and leisure. Being aware of societal attitudes toward disability may help explain discrimination against PWDs and draw attention to the solutions needed to address these. Good measures of attitudes are vital for this purpose. The aim is to synthesize published information, including evidences on psychometric properties and overall utility on instruments that measure attitudes toward disability. A two-tiered search process was performed to identify instruments that measure attitudes toward disability and retrieve articles that describe their development and/or validation. The CanChild Outcome Measures Rating Form was utilized to determine the overall utility of the instruments. Results were synthesized using a self-constructed data extraction form. Thirty-one instruments were included in the study. Five measured attitudes toward communication disability, 7 toward intellectual disability, 4 toward mental illness, and 15 toward disability in general. Target respondents ranged from children to adults, and included respondents from different occupations and cultural backgrounds. Twenty-three were found to have adequate overall utility, while 8 have poor overall utility. Several instruments are available in literature and all may be used for their intended purposes as long as their limitations are considered. Many still require further validation to ascertain their validity and responsiveness to change. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Means and Method for Measurement of Drilling Fluid Properties

    NASA Astrophysics Data System (ADS)

    Lysyannikov, A.; Kondrashov, P.; Pavlova, P.

    2016-06-01

    The paper addresses the problem on creation of a new design of the device for determining rheological parameters of drilling fluids and the basic requirements which it must meet. The key quantitative parameters that define the developed device are provided. The algorithm of determining the coefficient of the yield point from the rheological Shvedov- Bingam model at a relative speed of rotation of glasses from the investigated drilling fluid of 300 and 600 rpm is presented.

  1. Microcomputer control soft tube measuring-testing instrument

    NASA Astrophysics Data System (ADS)

    Zhou, Yanzhou; Jiang, Xiu-Zhen; Wang, Wen-Yi

    1993-09-01

    Soft tube are key and easily spoiled parts used by the vehicles in the transportation with large numbers. Measuring and testing of the tubes were made by hands for a long time. Cooperating with Harbin Railway Bureau recently we have developed a new kind of automatical measuring and testing instrument In the paper the instrument structure property and measuring principle are presented in details. Centre of the system is a singlechip processor INTEL 80C31 . It can collect deal with data and display the results on LED. Furthermore it brings electromagnetic valves and motors under control. Five soft tubes are measured and tested in the same time all the process is finished automatically. On the hardware and software counter-electromagnetic disturbance methods is adopted efficiently so the performance of the instrument is improved significantly. In the long run the instrument is reliable and practical It solves a quite difficult problem in the railway transportation.

  2. Low-gravity fluid dynamics and transport phenomena. Progress in Astronautics and Aeronautics. Vol. 130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koster, J.N.; Sani, R.L.

    1990-01-01

    Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less

  3. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the

  4. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  5. An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anna, Shelley L.; McKinley, Gareth H.; Nguyen, Duc A.

    2001-01-01

    Following development of a filament-stretching extensional rheometer at Monash University, similar rheometers have been designed and built in other laboratories. To help validate the basic technique, a collaborative program was undertaken to compare results from several instruments. First, three test fluids prepared at the University of California at Berkeley were characterized in steady and transient shear flows there and at the Massachusetts Institute of Technology (M.I.T.), and then tested in extensional rheometers at M.I.T., Monash and the University of Toronto. Each fluid is a constant-viscosity solution of narrow-molecular-weight-distribution polystyrene dissolved in oligomeric polystyrene. The solute molecular weights are 2.0, 6.5,more » and 20 million g/mol, and the polymer concentration in each fluid is 0.05 wt.%. From linear viscoelastic measurements, the Zimm relaxation times of the fluids are found to be 3.7, 31, and 150 s, respectively. The scaling of relaxation times with molecular weight indicates better-than-theta solvent quality, a finding consistent with independent intrinsic viscometry measurements of equilibrium coil size. Each fluid was tested in the three filament stretching rheometers at similar Deborah numbers. Despite variations in instrument design and the general difficulty of the technique, transient Trouton ratios measured in the three instruments are shown to agree quantitatively.« less

  6. Thermophysical properties of fluids: dynamic viscosity and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Latini, G.

    2017-11-01

    Thermophysical properties of fluids strongly depend upon atomic and molecular structure, complex systems governed by physics laws providing the time evolution. Theoretically the knowledge of the initial position and velocity of each atom, of the interaction forces and of the boundary conditions, leads to the solution; actually this approach contains too many variables and it is generally impossible to obtain an acceptable solution. In many cases it is only possible to calculate or to measure some macroscopic properties of fluids (pressure, temperature, molar volume, heat capacities...). The ideal gas “law,” PV = nRT, was one of the first important correlations of properties and the deviations from this law for real gases were usefully proposed. Moreover the statistical mechanics leads for example to the “hard-sphere” model providing the link between the transport properties and the molecular size and speed of the molecules. Further approximations take into account the intermolecular interactions (the potential functions) which can be used to describe attractions and repulsions. In any case thermodynamics reduces experimental or theoretical efforts by relating one physical property to another: the Clausius-Clapeyron equation provides a classical example of this method and the PVT function must be known accurately. However, in spite of the useful developments in molecular theory and computers technology, often it is usual to search for physical properties when the existing theories are not reliable and experimental data are not available: the required value of the physical or thermophysical property must be estimated or predicted (very often estimation and prediction are improperly used as synonymous). In some cases empirical correlations are useful, if it is clearly defined the range of conditions on which they are based. This work is concerned with dynamic viscosity µ and thermal conductivity λ and is based on clear and important rules to be respected

  7. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  8. Prototype instrument for noninvasive ultrasonic inspection and identification of fluids in sealed containers

    NASA Astrophysics Data System (ADS)

    Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.

    2006-05-01

    Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.

  9. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  10. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    predictions of White's model. The results illustrate the non-unique relationships between saturation and velocity in sandstones dependent on texture and fluid displacement history: fuller understanding of these phenomena is needed for accurate assessment of time lapse seismic measurements, be they for oil and gas recovery or for CO2 disposal purposes. Gassmann, F., 1951, Elastic waves through a packing of spheres. Geophysics 16, 673-685; Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The Rock Physics Handbook: Tools for seismic analysis in porous media: Cambridge University Press. Wood, A. W., 1955, A Textbook of Sound, The MacMillan Co., New York, 360 pp. Hill, R., 1963, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, 357-372. Hill, R., 1952, The elastic behavior of crystalline aggregates. Proc. Physical Soc., London, A65, 349-354. J. Toms, T.M. Mueller, B. Gurevich, 2007 Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55, 671-678.

  11. Mindfulness: A systematic review of instruments to measure an emergent patientreported outcome (PRO)

    PubMed Central

    Park, Taehwan; Reilly-Spong, Maryanne

    2013-01-01

    Purpose Mindfulness has emerged as an important health concept based on evidence that mindfulness interventions reduce symptoms and improve health-related quality of life. The objectives of this study were to systematically assess and compare the properties of instruments to measure self-reported mindfulness. Methods Ovid Medline®, CINAHL®, and PsycINFO® were searched through May 2012, and articles were selected if their primary purpose was development or evaluation of the measurement properties (validity, reliability, responsiveness) of a self-report mindfulness scale. Two reviewers independently evaluated the methodological quality of the selected studies using the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist. Discrepancies were discussed with a third reviewer, and scored by consensus. Finally, a level of evidence approach was used to synthesize results and study quality. Results Our search strategy identified a total of 2,588 articles. Forty-six articles, reporting 79 unique studies, met inclusion criteria. Ten instruments quantifying mindfulness as a unidimensional scale (n=5) or as a set of 2 to 5 subscales (n=5) were reviewed. The Mindful Attention Awareness Scale (MAAS) was evaluated by the most studies (n=27), and had positive overall quality ratings for most of the psychometric properties reviewed. The Five Facet Mindfulness Questionnaire (FFMQ) received the highest possible rating (“consistent findings in multiple studies of good methodological quality”) for two properties, internal consistency and construct validation by hypothesis testing. However, none of the instruments had sufficient evidence of content validity. Comprehensiveness of construct coverage had not been assessed; qualitative methods to confirm understanding and relevance were absent. In addition, estimates of test-retest reliability, responsiveness, or measurement error to guide users in protocol development or

  12. Spectroelectrochemical Instrument Measures TOC

    NASA Technical Reports Server (NTRS)

    Kounaves, Sam

    2011-01-01

    A spectroelectrochemical instrument has been developed for measuring the total organic carbon (TOC) content of an aqueous solution. Measurements of TOC are frequently performed in environmental, clinical, and industrial settings. Until now, techniques for performing such measurements have included, various ly, the use of hazardous reagents, ultraviolet light, or ovens, to promote reactions in which the carbon contents are oxidized. The instrument now being developed is intended to be a safer, more economical means of oxidizing organic carbon and determining the TOC levels of aqueous solutions and for providing a low power/mass unit for use in planetary missions.

  13. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    NASA Astrophysics Data System (ADS)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  14. A systematic review of psychometric testing of instruments that measure intention to work with older people.

    PubMed

    Che, Chong Chin; Hairi, Noran Naqiah; Chong, Mei Chan

    2017-09-01

    To review systematically the psychometric properties of instruments used to measure intention to work with older people. Nursing students are part of the future healthcare workforce; thus, being aware of their intention to work with older people would give valuable insights to nursing education and practice. Despite a plethora of research on measuring intention to work with older people, a valid and reliable instrument has not been identified. A systematic literature review of evidence and psychometric properties. Eight database searches were conducted between 2006 - 2016. English articles were selected based on inclusion and exclusion criteria. The COSMIN checklist was used to assess instruments reporting a psychometric evaluation of validity and reliability. Of 41 studies identified for full text review, 36 met the inclusion criteria. Seven different types of instruments were identified for psychometric evaluation. Measures of reliability were reported in eight papers and validity in five papers. Evidence for each measurement property was limited, with each instrument demonstrating a lack of information on measurement properties. Based on the COSMIN checklist, the overall quality of the psychometric properties was rated as poor to good. No single instrument was found to be optimal for use. Studies of high methodological quality are needed to properly assess the measurement properties of the instruments that are currently available. Until such studies are available, we recommend using existing instruments with caution. © 2017 John Wiley & Sons Ltd.

  15. The quantitative measurement of organizational culture in health care: a review of the available instruments.

    PubMed

    Scott, Tim; Mannion, Russell; Davies, Huw; Marshall, Martin

    2003-06-01

    To review the quantitative instruments available to health service researchers who want to measure culture and cultural change. A literature search was conducted using Medline, Cinahl, Helmis, Psychlit, Dhdata, and the database of the King's Fund in London for articles published up to June 2001, using the phrase "organizational culture." In addition, all citations and the gray literature were reviewed and advice was sought from experts in the field to identify instruments not found on the electronic databases. The search focused on instruments used to quantify culture with a track record, or potential for use, in health care settings. For each instrument we examined the cultural dimensions addressed, the number of items for each questionnaire, the measurement scale adopted, examples of studies that had used the tool, the scientific properties of the instrument, and its strengths and limitations. Thirteen instruments were found that satisfied our inclusion criteria, of which nine have a track record in studies involving health care organizations. The instruments varied considerably in terms of their grounding in theory, format, length, scope, and scientific properties. A range of instruments with differing characteristics are available to researchers interested in organizational culture, all of which have limitations in terms of their scope, ease of use, or scientific properties. The choice of instrument should be determined by how organizational culture is conceptualized by the research team, the purpose of the investigation, intended use of the results, and availability of resources.

  16. Preliminary results of aerosols' properties studied with EPF measurements from the SPICAM/UV instrument

    NASA Astrophysics Data System (ADS)

    Willame, Y.; Vandaele, A.-C.; Depiesse, C.; Gillotay, D.; Kochenova, S.; Montmessin, F.

    2012-04-01

    Aerosols on Mars have an important impact on the radiative transfer properties of its atmosphere. Today their spectral properties and therefore their interaction with UV radiation are only poorly known. Improving the radiative transfer modeling requires a better knowledge of their characteristics, in particular of their opacity, phase function and single scattering albedo. We will show that such information can be accessed by using EPF observations. The SPICAM instrument on board of the Mars-Express satellite is a 2 channel spectrometer. One channel operates in the ultraviolet (118-320 nm) and the second one in the infrared (1.0-1.7μm). SPICAM has been orbiting around the red planet since 2003 and has thus provided a large set of data. The instrument is capable of measuring under different geometries (nadir, limb, occultation) and one of them, called EPF (Emission Phase Function), is a practical tool to study aerosols' properties. We have developed a new retrieval algorithm for nadir measurements based on the radiative transfer model LIDORT. This new code performs simulations of spectra taking into account gas absorption, surface reflection and scattering by aerosols and gases. The retrieval method, based on the optimal estimation, allows us up to now to deduce the ozone column density, the aerosols' optical depth and the surface albedo (with fixed wavelength dependencies). We are developing our model further in order to better study the aerosols' characteristics using EPF observations, which consist in looking at the same point on the planet while the satellite moves along the orbit. As the attempt to study all the aerosols' properties simultaneously was not convincing, we will start with studying their opacity and its altitude distribution with the other characteristics fixed. We will present preliminary results of our study on aerosols' properties and their wavelength dependencies, using EPF data. The method will be illustrated by investigating SPICAM

  17. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 4; Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.

  18. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  19. Assessment of the wish to hasten death in patients with advanced disease: A systematic review of measurement instruments.

    PubMed

    Bellido-Pérez, Mercedes; Monforte-Royo, Cristina; Tomás-Sábado, Joaquín; Porta-Sales, Josep; Balaguer, Albert

    2017-06-01

    Patients with advanced conditions may present a wish to hasten death. Assessing this wish is complex due to the nature of the phenomenon and the difficulty of conceptualising it. To identify and analyse existing instruments for assessing the wish to hasten death and to rate their reported psychometric properties. Systematic review based on PRISMA guidelines. The COnsensus-based Standards for the selection of health Measurement INstruments checklist was used to evaluate the methodological quality of validation studies and the measurement properties of the instrument described. The CINAHL, PsycINFO, Pubmed and Web of Science databases were searched from inception to November 2015. A total of 50 articles involving assessment of the wish to hasten death were included. Eight concerned instrument validation and were evaluated using COnsensus-based Standards for the selection of health Measurement INstruments criteria. They reported data for between two and seven measurement properties, with ratings between fair and excellent. Of the seven instruments identified, the Desire for Death Rating Scale or the Schedule of Attitudes toward Hastened Death feature in 48 of the 50 articles. The Schedule of Attitudes toward Hastened Death is the most widely used and is the instrument whose psychometric properties have been most often analysed. Versions of the Schedule of Attitudes toward Hastened Death are available in five languages other than the original English. This systematic review has analysed existing instruments for assessing the wish to hasten death. It has also explored the methodological quality of studies that have examined the measurement properties of these instruments and offers ratings of the reported properties. These results will be useful to clinicians and researchers with an interest in a phenomenon of considerable relevance to advanced patients.

  20. Assessment of the wish to hasten death in patients with advanced disease: A systematic review of measurement instruments

    PubMed Central

    Bellido-Pérez, Mercedes; Monforte-Royo, Cristina; Tomás-Sábado, Joaquín; Porta-Sales, Josep; Balaguer, Albert

    2016-01-01

    Background: Patients with advanced conditions may present a wish to hasten death. Assessing this wish is complex due to the nature of the phenomenon and the difficulty of conceptualising it. Aim: To identify and analyse existing instruments for assessing the wish to hasten death and to rate their reported psychometric properties. Design: Systematic review based on PRISMA guidelines. The COnsensus-based Standards for the selection of health Measurement INstruments checklist was used to evaluate the methodological quality of validation studies and the measurement properties of the instrument described. Data sources: The CINAHL, PsycINFO, Pubmed and Web of Science databases were searched from inception to November 2015. Results: A total of 50 articles involving assessment of the wish to hasten death were included. Eight concerned instrument validation and were evaluated using COnsensus-based Standards for the selection of health Measurement INstruments criteria. They reported data for between two and seven measurement properties, with ratings between fair and excellent. Of the seven instruments identified, the Desire for Death Rating Scale or the Schedule of Attitudes toward Hastened Death feature in 48 of the 50 articles. The Schedule of Attitudes toward Hastened Death is the most widely used and is the instrument whose psychometric properties have been most often analysed. Versions of the Schedule of Attitudes toward Hastened Death are available in five languages other than the original English. Conclusion: This systematic review has analysed existing instruments for assessing the wish to hasten death. It has also explored the methodological quality of studies that have examined the measurement properties of these instruments and offers ratings of the reported properties. These results will be useful to clinicians and researchers with an interest in a phenomenon of considerable relevance to advanced patients. PMID:28124578

  1. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  2. Micromechanical transient sensor for measuring viscosity and density of a fluid

    DOEpatents

    Thundat, Thomas G.; Oden, Patrick I.; Warmack, Robert J.; Finot, Eric Laurent

    2001-01-01

    A method and apparatus for measuring the viscosity and/or specific density of a fluid utilizes a microcantilever vibrated in the analyte fluid. The source of vibration is switched on and off and the transient behavior or decay in amplitude of the vibration is monitored. The method is particularly useful for the measurement of process conditions in remote locations in real time.

  3. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  4. A critical appraisal of instruments to measure outcomes of interprofessional education.

    PubMed

    Oates, Matthew; Davidson, Megan

    2015-04-01

    Interprofessional education (IPE) is believed to prepare health professional graduates for successful collaborative practice. A range of instruments have been developed to measure the outcomes of IPE. An understanding of the psychometric properties of these instruments is important if they are to be used to measure the effectiveness of IPE. This review set out to identify instruments available to measure outcomes of IPE and collaborative practice in pre-qualification health professional students and to critically appraise the psychometric properties of validity, responsiveness and reliability against contemporary standards for instrument design. Instruments were selected from a pool of extant instruments and subjected to critical appraisal to determine whether they satisfied inclusion criteria. The qualitative and psychometric attributes of the included instruments were appraised using a checklist developed for this review. Nine instruments were critically appraised, including the widely adopted Readiness for Interprofessional Learning Scale (RIPLS) and the Interdisciplinary Education Perception Scale (IEPS). Validity evidence for instruments was predominantly based on test content and internal structure. Ceiling effects and lack of scale width contribute to the inability of some instruments to detect change in variables of interest. Limited reliability data were reported for two instruments. Scale development and scoring protocols were generally reported by instrument developers, but the inconsistent application of scoring protocols for some instruments was apparent. A number of instruments have been developed to measure outcomes of IPE in pre-qualification health professional students. Based on reported validity evidence and reliability data, the psychometric integrity of these instruments is limited. The theoretical test construction paradigm on which instruments have been developed may be contributing to the failure of some instruments to detect change in

  5. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  6. The Effects of Fluid Absorption on the Mechanical Properties of Joint Prostheses Components

    NASA Astrophysics Data System (ADS)

    Yarbrough, David; Viano, Ann

    2010-02-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is the material playing the role of cartilage in human prosthetic joints. Wear debris from UHMWPE is a common reason for joint arthroplasty failure, and the exact mechanism responsible for wear remains an area of investigation. In this study, the microstructure of UHMWPE was examined as a function of fluid absorption. Samples with varying exposure to e-beam radiation (as part of the manufacturing process) were soaked for forty days in saline or artificial synovial fluid, under zero or 100 lbs load. Samples were then tensile-tested according to ASTM D-3895. The post-stressed material was then examined by transmission electron microscopy to evaluate the molecular response to stress, which correlates with macroscopic mechanical properties. Three parameters of the crystalline lamellae were measured: thickness, stacking ratio, and alignment to stress direction. Results indicate that fluid absorption does affect the mechanical properties of UHMWPE at both the microscopic and microscopic levels. )

  7. Traceable measurements of small forces and local mechanical properties

    NASA Astrophysics Data System (ADS)

    Campbellová, Anna; Valtr, Miroslav; Zůda, Jaroslav; Klapetek, Petr

    2011-09-01

    Measurement of local mechanical properties is an important topic in the fields of nanoscale device fabrication, thin film deposition and composite material development. Nanoindentation instruments are commonly used to study hardness and related mechanical properties at the nanoscale. However, traceability and uncertainty aspects of the measurement process often remain left aside. In this contribution, the use of a commercial nanoindentation instrument for metrology purposes will be discussed. Full instrument traceability, provided using atomic force microscope cantilevers and a mass comparator (normal force), interferometer (depth) and atomic force microscope (area function) is described. The uncertainty of the loading/unloading curve measurements will be analyzed and the resulting uncertainties for quantities, that are computed from loading curves such as hardness or elastic modulus, are studied. For this calculation a combination of uncertainty propagation law and Monte Carlo uncertainty evaluations are used.

  8. On-line fast response device and method for measuring dissolved gas in a fluid

    DOEpatents

    Tutu, Narinder Kumar [Manorville, NY

    2011-01-11

    A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.

  9. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  10. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  11. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    NASA Technical Reports Server (NTRS)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  12. Measuring temporal variability in pore-fluid chemistry to assess gas hydrate stability: development of a continuous pore-fluid array.

    PubMed

    Lapham, Laura L; Chanton, Jeffrey P; Martens, Christopher S; Higley, Paul D; Jannasch, Hans W; Woolsey, J Robert

    2008-10-01

    A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site. A 170 day record was acquired from the overlying water and 1.3 m below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and methane concentrations and dissolved inorganic carbon and methane stable carbon and deuterium isotope ratios. Chloride and sulfate did not change significantly over time, suggesting the absence of gas hydrate formation or decomposition events. Over the temporal record, methane concentrations averaged 4 mM at 1.3 mbsf, and methane was thermogenic in origin (delta13C-CH4 = -32.4 +/- 3.4 per thousand). The timing of an anomalous 14 mM methane spike coincided with a nearby earthquake (Mw = 5.8), consistent with the hypothesis that pore-fluid chemistry reflects seismic events.

  13. The PEACE project review of clinical instruments for hospice and palliative care.

    PubMed

    Hanson, Laura C; Scheunemann, Leslie P; Zimmerman, Sheryl; Rokoske, Franziska S; Schenck, Anna P

    2010-10-01

    Hospice and palliative care organizations are expanding their use of standardized instruments and other approaches to measure quality. We undertook a systematic review and evaluation of published patient-level instruments for potential application in hospice and palliative care clinical quality measurement. We searched prior reviews and computerized reference databases from 1990 through February 2007 for studies of instruments relevant to physical, psychological, social, cultural, spiritual, or ethical aspects of palliative care, or measuring prognosis, function or continuity of care. Publications were selected for full review if they provided evidence of psychometric properties or practical application of an instrument tested in or appropriate for a hospice or palliative care population. Selected instruments were evaluated and scored for scientific soundness and potential application in clinical quality measurement. The search found 1427 publications, with 229 selected for full manuscript review. Manuscripts provided information on 129 instruments which were evaluated using a structured scoring guide for psychometric properties. Thirty-nine instruments scoring near or above the 75th percentile were recommended. Most instruments covered multiple domains or focused on care for physical symptoms, psychological or social aspects of care. Few instruments were available to measure cultural aspects of care, structure and process of care, and continuity of care. Numerous patient-level instruments are available to measure physical, psychological and social aspects of palliative care with adequate evidence for scientific soundness and practical clinical use for quality improvement and research. Other aspects of palliative care may benefit from further instrument development research.

  14. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; St. Cyr, William; Rahman, Shamim; McVay, Gregory; Van Dyke, David; Mitchell, William; Langford, Lester

    2004-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method may be of two types: foil and fiber-optic. Four foil gauges (full bridge) are mounted on each of the tank-supporting legs. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. One or more fiber-optic gauges may be used instead of the foil gauges. The resolution of the fiber-optic and foil gauges is approximately the same, but the fiber-optic gauges are immune to EMI (electromagnetic interference), are linear with respect to temperature over their entire dynamic range (as defined by the behavior of the sample), and measure thermally induced deformations as predictable signals. Conversely, long term testing has demonstrated that the foil gauges exhibit an erratic behavior whenever subjected to direct sun radiation (even if protected with a rubberized cover). Henceforth, for deployment in outdoor conditions, fiber-optic gauges are the only option if one is to rely on the

  15. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  16. The Quantitative Measurement of Organizational Culture in Health Care: A Review of the Available Instruments

    PubMed Central

    Scott, Tim; Mannion, Russell; Davies, Huw; Marshall, Martin

    2003-01-01

    Objective To review the quantitative instruments available to health service researchers who want to measure culture and cultural change. Data Sources A literature search was conducted using Medline, Cinahl, Helmis, Psychlit, Dhdata, and the database of the King's Fund in London for articles published up to June 2001, using the phrase “organizational culture.” In addition, all citations and the gray literature were reviewed and advice was sought from experts in the field to identify instruments not found on the electronic databases. The search focused on instruments used to quantify culture with a track record, or potential for use, in health care settings. Data Extraction For each instrument we examined the cultural dimensions addressed, the number of items for each questionnaire, the measurement scale adopted, examples of studies that had used the tool, the scientific properties of the instrument, and its strengths and limitations. Principal Findings Thirteen instruments were found that satisfied our inclusion criteria, of which nine have a track record in studies involving health care organizations. The instruments varied considerably in terms of their grounding in theory, format, length, scope, and scientific properties. Conclusions A range of instruments with differing characteristics are available to researchers interested in organizational culture, all of which have limitations in terms of their scope, ease of use, or scientific properties. The choice of instrument should be determined by how organizational culture is conceptualized by the research team, the purpose of the investigation, intended use of the results, and availability of resources. PMID:12822919

  17. Advanced instrumentation for aeronautical propulsion research

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1986-01-01

    The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.

  18. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  19. A novel method for calculating and measuring the second-order buoyancy experienced by a magnet immersed in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Yu, Jun; Hao, Du; Li, Decai

    2018-01-01

    The phenomenon whereby an object whose density is greater than magnetic fluid can be suspended stably in magnetic fluid under the magnetic field is one of the peculiar properties of magnetic fluids. Examples of applications based on the peculiar properties of magnetic fluid are sensors and actuators, dampers, positioning systems and so on. Therefore, the calculation and measurement of magnetic levitation force of magnetic fluid is of vital importance. This paper concerns the peculiar second-order buoyancy experienced by a magnet immersed in magnetic fluid. The expression for calculating the second-order buoyancy was derived, and a novel method for calculating and measuring the second-order buoyancy was proposed based on the expression. The second-order buoyancy was calculated by ANSYS and measured experimentally using the novel method. To verify the novel method, the second-order buoyancy was measured experimentally with a nonmagnetic rod stuck on the top surface of the magnet. The results of calculations and experiments show that the novel method for calculating the second-order buoyancy is correct with high accuracy. In addition, the main causes of error were studied in this paper, including magnetic shielding of magnetic fluid and the movement of magnetic fluid in a nonuniform magnetic field.

  20. Computer program for computing the properties of seventeen fluids. [cryogenic liquids

    NASA Technical Reports Server (NTRS)

    Brennan, J. A.; Friend, D. G.; Arp, V. D.; Mccarty, R. D.

    1992-01-01

    The present study describes modifications and additions to the MIPROPS computer program for calculating the thermophysical properties of 17 fluids. These changes include adding new fluids, new properties, and a new interface to the program. The new program allows the user to select the input and output parameters and the units to be displayed for each parameter. Fluids added to the MIPROPS program are carbon dioxide, carbon monoxide, deuterium, helium, normal hydrogen, and xenon. The most recent modifications to the MIPROPS program are the addition of viscosity and thermal conductivity correlations for parahydrogen and the addition of the fluids normal hydrogen and xenon. The recently added interface considerably increases the program's utility.

  1. Probing Reliability of Transport Phenomena Based Heat Transfer and Fluid Flow Analysis in Autogeneous Fusion Welding Process

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2010-09-01

    The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.

  2. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain

    2017-04-01

    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical

  3. Psychometric Properties of an Instrument to Measure Mother-Infant Togetherness After Childbirth.

    PubMed

    Lawrence, Carol L; Norris, Anne E

    2016-01-01

    The purpose of this research was to evaluate the psychometric properties of a new instrument to measure mother-infant togetherness, Mother-Infant Togetherness Survey (MITS). Stage 1 examined content validity. Stage 2 pretested the readability and understandability and further examined content validity. Stage 3 examined women's ability to accurately self-report on the Delivery Events subscale. Stages 4 and 5 examined construct validity. Good content validity was obtained at the scale/subscale level (CVI = .91-1.00). Internal consistency reliability was evaluated at the scale/subscale level (α = .62-.89). Construct validity was supported with known groups testing and factor analysis. Study findings provide support for the reliability and validity of the MITS. Future research should be done to improve the internal consistency reliability of the Postpartum Events subscale.

  4. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  5. Phoresis in fluids.

    PubMed

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  6. An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys

    NASA Astrophysics Data System (ADS)

    Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.

    2002-05-01

    Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.

  7. Mabs monograph, air blast instrumentation, 1943-1993 measurement techniques and instrumentation. Volume 1. The nuclear era. 1945-1963. Technical report, 17 September 1992-31 May 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisler, R.E.; Keefer, J.H.; Ethridge, N.H.

    1995-03-01

    Blast wave measurement techniques and instrumentation developed by Military Applications of Blast Simulators (MABS) participating countries to study blast phenomena during the nuclear era are summarized. Passive and active gages both mechanical self-recording and electronic systems deployed on kiloton and megaton explosive tests during the period 1945-1963 are presented. The country and the year the gage was introduced are included with the description. References are also provided. Volume 2 covers measurement techniques and instrumentation for the period 1959-1993 and Volume 3 covers structural target and gage calibration from 1943 to 1993.

  8. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  9. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.

    1994-01-01

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  10. Instruments evaluating the quality of the clinical learning environment in nursing education: A systematic review of psychometric properties.

    PubMed

    Mansutti, Irene; Saiani, Luisa; Grassetti, Luca; Palese, Alvisa

    2017-03-01

    The clinical learning environment is fundamental to nursing education paths, capable of affecting learning processes and outcomes. Several instruments have been developed in nursing education, aimed at evaluating the quality of the clinical learning environments; however, no systematic review of the psychometric properties and methodological quality of these studies has been performed to date. The aims of the study were: 1) to identify validated instruments evaluating the clinical learning environments in nursing education; 2) to evaluate critically the methodological quality of the psychometric property estimation used; and 3) to compare psychometric properties across the instruments available. A systematic review of the literature (using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines) and an evaluation of the methodological quality of psychometric properties (using the COnsensus-based Standards for the selection of health Measurement INstruments guidelines). The Medline and CINAHL databases were searched. Eligible studies were those that satisfied the following criteria: a) validation studies of instruments evaluating the quality of clinical learning environments; b) in nursing education; c) published in English or Italian; d) before April 2016. The included studies were evaluated for the methodological quality of the psychometric properties measured and then compared in terms of both the psychometric properties and the methodological quality of the processes used. The search strategy yielded a total of 26 studies and eight clinical learning environment evaluation instruments. A variety of psychometric properties have been estimated for each instrument, with differing qualities in the methodology used. Concept and construct validity were poorly assessed in terms of their significance and rarely judged by the target population (nursing students). Some properties were rarely considered (e.g., reliability, measurement error

  11. A combination dielectric and acoustic laboratory instrument for petrophysics

    NASA Astrophysics Data System (ADS)

    Josh, Matthew

    2017-12-01

    Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric

  12. Measurement of interstage fluid-annulus dynamical properties

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Makay, E.; Diaz-Tous, I. A.

    1982-01-01

    The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.

  13. Career Instruments and High School Students with Learning Disabilities: Support for the Utility of Three Vocational Measures

    ERIC Educational Resources Information Center

    Dipeolu, Abiola O.

    2007-01-01

    Conventional wisdom in the area of assessment strongly supports the notion that instruments used for vocational or career decision-making purposes should possess sound psychometric properties. This study is a preliminary attempt to examine the reliability and validity of three important career decision-making measures administered to high school…

  14. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; hide

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  15. A portable instrument for measuring emissivities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perinic, G.; Schulz, K.; Scherber, W.

    1995-12-01

    The quality control of surface emissivities is an important aspect in the manufacturing of cryopumps and other cryogenics equipment. It is particularly important in fusion reactor applications where standard coating techniques cannot be applied for the cryocondensation panels and for the thermal shielding baffles. The paper describes the working principle of a table top instrument developed by Dornier for measuring the mean emissivity in the spectral range 0.6-40 {mu}m at ambient temperature and the further development of the instrument to a portable version which can be used for on site measurements.

  16. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    round-table discussion sessions were organized to discuss issues that have special impact on our current understanding (or lack of it) of the dynamics of glass transition: 'Low-energy excitations and relaxations in glasses' and 'An assessment of current theories: interconnections and relevance to experiments'. We are very grateful to M A Ramos and R Bömer, and to P G Debenedetti and H Z Cummins for organizing and leading these two activities. Two very active and profitable poster sessions collected contributions on the themes of relaxation processes, cooperativity in polymers and mixtures, polyamorphism and water, biomaterials, relaxation, aging phenomena in thin films, confined and complex systems, and theoretical aspect, energy landscape and molecular dynamics, low temperature, glass and PT procedures, tracer dynamics, heterogeneity and relaxation in glass formers We acknowledge the generous support given to the workshop by our institutions, and in particular by Scuola Normale Superiore. The organization of the events in its beautiful rooms and corridors, as well as the lunches and coffee breaks held in its courtyard, especially favoured meetings and discussions between the participants. Several public and private Institutions have also supported our efforts and we would like to thank them warmly: they are the 'Soft Matter' Center of Rome, the INFN Section in Pisa, the CNR/INFM Polylab, and Ital Scientifica, TA Instruments, Novocontrol Technologies, Up Group, Isole e Olena. Finally, we express our gratitude to all those individuals—we mention here in particular Dr Ciro Autiero, Dr Massimo Faetti, Dr Fabio Zulli, Ms Patrizia Pucci, and Ms Caterina D'Elia—who have given their work and time to the making and running of the Workshop.

  17. Thermal transport phenomena in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  18. Searching for Electrical Properties, Phenomena and Mechanisms in the Construction and Function of Chromosomes

    PubMed Central

    Kanev, Ivan; Mei, Wai-Ning; Mizuno, Akira; DeHaai, Kristi; Sanmann, Jennifer; Hess, Michelle; Starr, Lois; Grove, Jennifer; Dave, Bhavana; Sanger, Warren

    2013-01-01

    Our studies reveal previously unidentified electrical properties of chromosomes: (1) chromosomes are amazingly similar in construction and function to electrical transformers; (2) chromosomes possess in their construction and function, components similar to those of electric generators, conductors, condensers, switches, and other components of electrical circuits; (3) chromosomes demonstrate in nano-scale level electromagnetic interactions, resonance, fusion and other phenomena similar to those described by equations in classical physics. These electrical properties and phenomena provide a possible explanation for unclear and poorly understood mechanisms in clinical genetics including: (a) electrically based mechanisms responsible for breaks, translocations, fusions, and other chromosomal abnormalities associated with cancer, intellectual disability, infertility, pregnancy loss, Down syndrome, and other genetic disorders; (b) electrically based mechanisms involved in crossing over, non-disjunction and other events during meiosis and mitosis; (c) mechanisms demonstrating heterochromatin to be electrically active and genetically important. PMID:24688715

  19. Systematic review of studies on measurement properties of instruments for adults published in the American Journal of Occupational Therapy, 2009-2013.

    PubMed

    Yuen, Hon K; Austin, Sarah L

    2014-01-01

    We describe the methodological quality of recent studies on instrument development and testing published in the American Journal of Occupational Therapy (AJOT). We conducted a systematic review using the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist to appraise 48 articles on measurement properties of assessments for adults published in AJOT between 2009 and 2013. Most studies had adequate methodological quality in design and statistical analysis. Common methodological limitations included that methods used to examine internal consistency were not consistently linked to the theoretical constructs underpinning assessments; participants in some test-retest reliability studies were not stable during the interim period; and in several studies of reliability and convergent validity, sample sizes were inadequate. AJOT's dissemination of psychometric research evidence has made important contributions to moving the profession toward the American Occupational Therapy Association's Centennial Vision. This study's results provide a benchmark by which to evaluate future accomplishments. Copyright © 2014 by the American Occupational Therapy Association, Inc.

  20. Antagonistic Phenomena in Network Dynamics

    NASA Astrophysics Data System (ADS)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  1. Cavity-Enhanced Quantum-Cascade Laser-Based Instrument for Trace gas Measurements

    NASA Astrophysics Data System (ADS)

    Provencal, R.; Gupta, M.; Owano, T.; Baer, D.; Ricci, K.; O'Keefe, A.

    2005-12-01

    An autonomous instrument based on Off-Axis Integrated Cavity Output Spectroscopy has been successfully deployed for measurements of CO in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument consists of a measurement cell comprised of two high reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data acquisition electronics, and data analysis software. The instrument reports CO mixing ratio at a 1-Hz rate based on measured absorption, gas temperature and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41000 ft, the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights. We will also present recent development efforts to extend the instrument's capabilities for the measurements of CH4, N2O and CO in real time.

  2. The Rheological Properties of the Biopolymers in Synovial Fluid

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Wetsch, Julie; Oates, Katherine M. N.; Colby, Ralph H.

    2005-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid and the synovial fluid model indicate that the fluids are highly viscoeleastic and rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine affect the rheology of the synovial fluid model and its components. The potential implications of these results will be discussed.

  3. A review of instruments to measure interprofessional collaboration for chronic disease management for community-living older adults.

    PubMed

    Bookey-Bassett, Sue; Markle-Reid, Maureen; McKey, Colleen; Akhtar-Danesh, Noori

    2016-01-01

    It is acknowledged internationally that chronic disease management (CDM) for community-living older adults (CLOA) is an increasingly complex process. CDM for older adults, who are often living with multiple chronic conditions, requires coordination of various health and social services. Coordination is enabled through interprofessional collaboration (IPC) among individual providers, community organizations, and health sectors. Measuring IPC is complicated given there are multiple conceptualisations and measures of IPC. A literature review of several healthcare, psychological, and social science electronic databases was conducted to locate instruments that measure IPC at the team level and have published evidence of their reliability and validity. Five instruments met the criteria and were critically reviewed to determine their strengths and limitations as they relate to CDM for CLOA. A comparison of the characteristics, psychometric properties, and overall concordance of each instrument with salient attributes of IPC found the Collaborative Practice Assessment Tool to be the most appropriate instrument for measuring IPC for CDM in CLOA.

  4. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  5. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  6. Impact of measurable physical phenomena on contact thermal comfort

    NASA Astrophysics Data System (ADS)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  7. Effects of real fluid properties on axial turbine meanline design and off-design analysis

    NASA Astrophysics Data System (ADS)

    MacLean, Cameron

    The effects of real fluid properties on axial turbine meanline analysis have been investigated employing two meanline analysis codes, namely Turbine Meanline Design (TMLD) and Turbine Meanline Off-Design (TMLO). The previously developed TMLD code assumed the working fluid was an ideal gas. Therefore it was modified to use real fluid properties. TMLO was then developed from TMLD Both codes can be run using either the ideal gas assumption or real fluid properties. TMLD was employed for the meanline design of several axial turbines for a range of inlet conditions, using both the ideal gas assumption and real fluid properties. The resulting designs were compared to see the effects of real fluid properties. Meanline designs, generated using the ideal gas assumption, were then analysed with TMLO using real fluid properties. This was done over a range of inlet conditions that correspond to varying degrees of departure from ideal gas conditions. The goal was to show how machines designed with the ideal gas assumption would perform with the real working fluid. The working fluid used in both investigations was supercritical carbon dioxide. Results from the investigation show that real fluid properties had a strong effect on the gas path areas of the turbine designs as well as the performance of turbines designed using the ideal gas assumption. Specifically, power output and the velocities of the working fluid were affected. It was found that accounting for losses tended to lessen the effects of the real fluid properties.

  8. Health related quality of life measures in Arabic speaking populations: a systematic review on cross-cultural adaptation and measurement properties.

    PubMed

    Al Sayah, Fatima; Ishaque, Sana; Lau, Darren; Johnson, Jeffrey A

    2013-02-01

    This systematic review was conducted to identify generic health related quality of life (HRQL) measures translated into Arabic, and evaluate their cross-cultural adaptation and measurement properties. Six databases were searched, relevant journals were hand searched, and reference lists of included studies were reviewed. Previously established criteria were used to evaluate the cross-cultural adaptation of the identified instruments and their measurement properties. Twenty studies that reported the Arabic translations and adaptations of HRQL measures and/or their measurement properties were included in this review. The identified instruments were SF-36, RAND-36, WHOQOL-Bref, COOP/WONCA charts, EQ-5D, and QLI. Cross-cultural adaptations of all measures were of moderate to good quality, and evaluation of measurement properties was limited due to insufficiency of evidence. Based on cross-cultural adaptation evaluation, each instrument is more applicable to the population for whom it was adapted, and to other Arabic populations of similar culture and language specific idioms. This review facilitates the selection among existing Arabic versions of generic HRQL for use in particular Arabic countries. However, each of the translated versions requires further investigation of measurement properties before more concrete recommendations could be made.

  9. Five instruments for measuring tree height: an evaluation

    Treesearch

    Michael S. Williams; William A. Bechtold; V.J. LaBau

    1994-01-01

    Five instruments were tested for reliability in measuring tree heights under realistic conditions. Four linear models were used to determine if tree height can be measured unbiasedly over all tree sizes and if any of the instruments were more efficient in estimating tree height. The laser height finder was the only instrument to produce unbiased estimates of the true...

  10. Measuring organizational and individual factors thought to influence the success of quality improvement in primary care: a systematic review of instruments

    PubMed Central

    2012-01-01

    Background Continuous quality improvement (CQI) methods are widely used in healthcare; however, the effectiveness of the methods is variable, and evidence about the extent to which contextual and other factors modify effects is limited. Investigating the relationship between these factors and CQI outcomes poses challenges for those evaluating CQI, among the most complex of which relate to the measurement of modifying factors. We aimed to provide guidance to support the selection of measurement instruments by systematically collating, categorising, and reviewing quantitative self-report instruments. Methods Data sources: We searched MEDLINE, PsycINFO, and Health and Psychosocial Instruments, reference lists of systematic reviews, and citations and references of the main report of instruments. Study selection: The scope of the review was determined by a conceptual framework developed to capture factors relevant to evaluating CQI in primary care (the InQuIRe framework). Papers reporting development or use of an instrument measuring a construct encompassed by the framework were included. Data extracted included instrument purpose; theoretical basis, constructs measured and definitions; development methods and assessment of measurement properties. Analysis and synthesis: We used qualitative analysis of instrument content and our initial framework to develop a taxonomy for summarising and comparing instruments. Instrument content was categorised using the taxonomy, illustrating coverage of the InQuIRe framework. Methods of development and evidence of measurement properties were reviewed for instruments with potential for use in primary care. Results We identified 186 potentially relevant instruments, 152 of which were analysed to develop the taxonomy. Eighty-four instruments measured constructs relevant to primary care, with content measuring CQI implementation and use (19 instruments), organizational context (51 instruments), and individual factors (21 instruments

  11. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  12. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  13. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Measurement instrumentation. 201.22 Section 201.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT... Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level measurement...

  14. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Measurement instrumentation. 201.22 Section 201.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT... Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level measurement...

  15. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Measurement instrumentation. 201.22 Section 201.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT... Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level measurement...

  16. Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Casini, R.; Alemán, T. del Pino

    We investigate atomic transitions that have previously been identified as having zero polarization from the Zeeman effect. Our goal is to identify spectral lines that can be used for the calibration of instrumental polarization of large astronomical and solar telescopes, such as the Daniel K. Inouye Solar Telescope, which is currently under construction on Haleakala. We use a numerical model that takes into account the generation of scattering polarization and its modification by the presence of a magnetic field of arbitrary strength. We adopt values for the Landé factors from spectroscopic measurements or semi-empirical results, thus relaxing the common assumptionmore » of LS-coupling previously used in the literature. The mechanisms dominating the polarization of particular transitions are identified, and we summarize groups of various spectral lines useful for the calibration of spectropolarimetric instruments, classified according to their polarization properties.« less

  17. Psychometric properties concerning four instruments measuring job satisfaction, strain, and stress of conscience in a residential care context.

    PubMed

    Orrung Wallin, Anneli; Edberg, Anna-Karin; Beck, Ingela; Jakobsson, Ulf

    2013-01-01

    There are many instruments assessing the wellbeing of staff, but far from all have been psychometrically investigated. When evaluating supportive interventions directed toward nurse assistants in residential care, valid and reliable instruments are needed in order to detect possible changes. The aim of the study was to investigate validity in terms of data quality, construct validity, convergent and divergent validity and reliability in terms of the internal consistency and stability of the Job Satisfaction Questionnaire, the Psychosocial Aspects of Job Satisfaction, the Strain in Dementia Care Scale (SDCS), and the Stress of Conscience Questionnaire (SCQ) in a residential care context. The psychometric properties of the instruments were investigated in terms of data quality, construct validity, convergent and divergent validity and reliability, including test-retest reliability, in a residential care context with a sample consisting of nurse assistants (n=114). The four instruments responded with different psychometric-related problems such as internal missing data, floor and ceiling effects, problems with construct validity and low test-retest reliability, especially when assessed on the item level. These problems were however reduced or disappeared completely when assessed for total and factor scores. From a psychometric perspective, the SDCS seemed to stand out as the best instrument. However, it should be modified in order to reduce floor effects on item level and thereby gain sensitivity. The Job Satisfaction Questionnaire seemed to have problems both with the construct validity and test-retest reliability. The final choice of instrument must, however, be made dependent on what one intends to measure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Refractive-index-matched hydrogel materials for measuring flow-structure interactions

    NASA Astrophysics Data System (ADS)

    Byron, Margaret L.; Variano, Evan A.

    2013-02-01

    In imaging-based studies of flow around solid objects, it is useful to have materials that are refractive-index-matched to the surrounding fluid. However, materials currently in use are usually rigid and matched to liquids that are either expensive or highly viscous. This does not allow for measurements at high Reynolds number, nor accurate modeling of flexible structures. This work explores the use of two hydrogels (agarose and polyacrylamide) as refractive-index-matched models in water. These hydrogels are inexpensive, can be cast into desired shapes, and have flexibility that can be tuned to match biological materials. The use of water as the fluid phase allows this method to be implemented immediately in many experimental facilities and permits investigation of high-Reynolds-number phenomena. We explain fabrication methods and present a summary of the physical and optical properties of both gels, and then show measurements demonstrating the use of hydrogel models in quantitative imaging.

  19. Quality appraisal of generic self-reported instruments measuring health-related productivity changes: a systematic review

    PubMed Central

    2014-01-01

    Background Health impairments can result in disability and changed work productivity imposing considerable costs for the employee, employer and society as a whole. A large number of instruments exist to measure health-related productivity changes; however their methodological quality remains unclear. This systematic review critically appraised the measurement properties in generic self-reported instruments that measure health-related productivity changes to recommend appropriate instruments for use in occupational and economic health practice. Methods PubMed, PsycINFO, Econlit and Embase were systematically searched for studies whereof: (i) instruments measured health-related productivity changes; (ii) the aim was to evaluate instrument measurement properties; (iii) instruments were generic; (iv) ratings were self-reported; (v) full-texts were available. Next, methodological quality appraisal was based on COSMIN elements: (i) internal consistency; (ii) reliability; (iii) measurement error; (iv) content validity; (v) structural validity; (vi) hypotheses testing; (vii) cross-cultural validity; (viii) criterion validity; and (ix) responsiveness. Recommendations are based on evidence syntheses. Results This review included 25 articles assessing the reliability, validity and responsiveness of 15 different generic self-reported instruments measuring health-related productivity changes. Most studies evaluated criterion validity, none evaluated cross-cultural validity and information on measurement error is lacking. The Work Limitation Questionnaire (WLQ) was most frequently evaluated with moderate respectively strong positive evidence for content and structural validity and negative evidence for reliability, hypothesis testing and responsiveness. Less frequently evaluated, the Stanford Presenteeism Scale (SPS) showed strong positive evidence for internal consistency and structural validity, and moderate positive evidence for hypotheses testing and criterion validity. The

  20. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  1. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  2. An Electronic Measurement Instrumentation of the Impedance of a Loaded Fuel Cell or Battery

    PubMed Central

    Aglzim, El-Hassane; Rouane, Amar; El-Moznine, Reddad

    2007-01-01

    In this paper we present an inexpensive electronic measurement instrumentation developed in our laboratory, to measure and plot the impedance of a loaded fuel cell or battery. Impedance measurements were taken by using the load modulation method. This instrumentation has been developed around a VXI system stand which controls electronic cards. Software under Hpvee® was developed for automatic measurements and the layout of the impedance of the fuel cell on load. The measurement environment, like the ambient temperature, the fuel cell temperature, the level of the hydrogen, etc…, were taken with several sensors that enable us to control the measurement. To filter the noise and the influence of the 50Hz, we have implemented a synchronous detection which filters in a very narrow way around the useful signal. The theoretical result obtained by a simulation under Pspice® of the method used consolidates the choice of this method and the possibility of obtaining correct and exploitable results. The experimental results are preliminary results on a 12V vehicle battery, having an inrush current of 330A and a capacity of 40Ah (impedance measurements on a fuel cell are in progress, and will be the subject of a forthcoming paper). The results were plotted at various nominal voltages of the battery (12.7V, 10V, 8V and 5V) and with two imposed currents (0.6A and 4A). The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical) enables us to validate our electronic measurement instrumentation. One of the future uses for this instrumentation is to integrate it with several control sensors, on a vehicle as an embedded system to monitor the degradation of fuel cell membranes. PMID:28903231

  3. Measurement properties of patient reported outcome measures for spondyloarthritis: A systematic review.

    PubMed

    Png, Kelly; Kwan, Yu Heng; Leung, Ying Ying; Phang, Jie Kie; Lau, Jia Qi; Lim, Ka Keat; Chew, Eng Hui; Low, Lian Leng; Tan, Chuen Seng; Thumboo, Julian; Fong, Warren; Østbye, Truls

    2018-03-21

    This systematic review aimed to identify studies investigating measurement properties of patient reported outcome measures (PROMs) for spondyloarthritis (SpA), and to evaluate their methodological quality and level of evidence relating to the measurement properties of PROMs. This systematic review was guided by the preferred reporting items for systematic review and meta-analysis (PRISMA). Articles published before 30 June 2017 were retrieved from PubMed ® , Embase ® , and PsychINFO ® (Ovid). Methodological quality and level of evidence were evaluated according to recommendations from the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). We identified 60 unique PROMs from 125 studies in 39 countries. Twenty-one PROMs were validated for two or more SpA subtypes. The literature examined hypothesis testing (82.4%) most frequently followed by reliability (60.0%). A percentage of 77.7% and 42.7% of studies that assessed PROMs for hypothesis testing and reliability, respectively had "fair" or better methodological quality. Among the PROMs identified, 41.7% were studied in ankylosing spondylitis (AS) only and 23.3% were studied in psoriatic arthritis (PsA) only. The more extensively assessed PROMs included the ankylosing spondylitis quality of life (ASQoL) and bath ankylosing spondylitis functional index (BASFI) for ankylosing spondylitis, and the psoriatic arthritis quality of life questionnaire (VITACORA-19) for psoriatic arthritis. This study identified 60 unique PROMs through a systematic review and synthesized evidence of the measurement properties of the PROMs. There is a lack of validation of PROMs for use across SpA subtypes. Future studies may consider validating PROMs for use across different SpA subtypes. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. The development of new, low-cost perfluoroalkylether fluids with excellent low and high-temperature properties

    NASA Technical Reports Server (NTRS)

    Bierschenk, Thomas R.; Kawa, Hajimu; Juhlke, Timothy J.; Lagow, Richard J.

    1988-01-01

    A series of perfluoroalkylether (PFAE) fluids were synthesized by direct fluorination. Viscosity-temperature properties, oxidation stabilities, oxidation-corrosion properties, and lubricity were determined. The fluids were tested in the presence of common elastomers to check for compatibility. The bulk modulus of each was measured to determine if any could be used as nonflammable aircraft hydraulic fluid. It was determined that as the carbon to oxygen ratio decreases, the viscometric properties improve, the fluids may become poor lubricants, the bulk modulus increases, the surface tension increases, and the fluid density increases. The presence of difluoromethylene oxide units in the polymer does not seriously lower the oxidation and oxidation-corrosion stabilities as long as the difluoromethylene oxide units are separated by other units.

  5. Psychosocial measures used to assess the effectiveness of school-based nutrition education programs: review and analysis of self-report instruments for children 8 to 12 years old.

    PubMed

    Hernández-Garbanzo, Yenory; Brosh, Joanne; Serrano, Elena L; Cason, Katherine L; Bhattarai, Ranju

    2013-01-01

    To identify the psychometric properties of evaluation instruments that measure mediators of dietary behaviors in school-aged children. Systematic search of scientific databases limited to 1999-2010. Psychometric properties related to development and testing of self-report instruments for children 8-12 years old. Systematic search of 189 articles and review of 15 instruments (20 associated articles) meeting the inclusion criteria. Search terms used included children, school, nutrition, diet, nutrition education, and evaluation. Fourteen studies used a theoretical framework to guide the instrument's development. Knowledge and self-efficacy were the most commonly used psychosocial measures. Twelve instruments focused on specific nutrition-related behaviors. Eight instruments included over 40 items and used age-appropriate response formats. Acceptable reliability properties were most commonly reported for attitude and self-efficacy measures. Although most of the instruments were reviewed by experts (n = 8) and/or pilot-tested (n = 9), only 7 were tested using both rigorous types of validity and with low-income youth. Results from this review suggest that additional research is needed to develop more robust psychosocial measures for dietary behaviors, for low-income youth audiences. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  6. FluidCam 1&2 - UAV-based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.; Instrella, R.

    2016-02-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  7. FluidCam 1&2 - UAV-Based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2015-12-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  8. Measuring Approaches to Learning in Preschoolers: Validating the Structure of an Instrument for Teachers and Parents

    ERIC Educational Resources Information Center

    Barbu, Otilia C.; Marx, Ronald W.; Yaden, David B., Jr.; Levine-Donnerstein, Deborah

    2016-01-01

    This study examined a 13-item instrument measuring approaches to learning (AtL) as a component of school readiness in the context of early childhood socio-emotional development. Few instruments, limited to preschool teacher ratings, measure AtL among kindergarteners with short easy-to-use questionnaires. We investigated psychometric properties of…

  9. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    PubMed Central

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  10. Advances in instrumentation for nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pain, S. D.

    The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentationmore » necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.« less

  11. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  12. Voice-Related Patient-Reported Outcome Measures: A Systematic Review of Instrument Development and Validation

    PubMed Central

    Daniero, James J.; Hovis, Kristen L.; Sathe, Nila; Jacobson, Barbara; Penson, David F.; Feurer, Irene D.; McPheeters, Melissa L.

    2017-01-01

    Purpose The purpose of this study was to perform a comprehensive systematic review of the literature on voice-related patient-reported outcome (PRO) measures in adults and to evaluate each instrument for the presence of important measurement properties. Method MEDLINE, the Cumulative Index of Nursing and Allied Health Literature, and the Health and Psychosocial Instrument databases were searched using relevant vocabulary terms and key terms related to PRO measures and voice. Inclusion and exclusion criteria were developed in consultation with an expert panel. Three independent investigators assessed study methodology using criteria developed a priori. Measurement properties were examined and entered into evidence tables. Results A total of 3,744 studies assessing voice-related constructs were identified. This list was narrowed to 32 PRO measures on the basis of predetermined inclusion and exclusion criteria. Questionnaire measurement properties varied widely. Important thematic deficiencies were apparent: (a) lack of patient involvement in the item development process, (b) lack of robust construct validity, and (c) lack of clear interpretability and scaling. Conclusions PRO measures are a principal means of evaluating treatment effectiveness in voice-related conditions. Despite their prominence, available PRO measures have disparate methodological rigor. Care must be taken to understand the psychometric and measurement properties and the applicability of PRO measures before advocating for their use in clinical or research applications. PMID:28030869

  13. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  14. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  15. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Anderson, William G.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  16. An instrument for measuring the complex permittivity of the Martian top soil

    NASA Technical Reports Server (NTRS)

    Grard, R.

    1988-01-01

    This permittivity measuring instrument measures the resistivity rho and the relative dielectric constant epsilon sub r of the Martian top soil along the path of a rover. This aim is achieved by measuring the real and imaginary parts of the complex permittivity epsilon = epsilon sub r - j epsilon sub i where epsilon sub i = omega epsilon sub o rho/1; epsilon sub 1 is the permittivity of vacuum and omega is a variable angular working frequency. The experimental technique consists in evaluating the mutual, or transfer, impedance of a quadrupolar probe, i.e., in quantifying the influence of the Martian ground on the electrical coupling of two Hertz dipoles. The horizontal and vertical spatial resolutions are of the order of the length and separation of the dipoles, typically 1 to 2 metres. The four-electrode method for measuring the ground resistivity on earth was first applied by Wenner and Schlumberger, but the proposed investigation bears closer resemblance to a similar instrument developed for ground surveying at shallow depth, in connection with archaelogical and pedological research. A quadrupolar probe will provide essential information about the electric properties of the Martian ground and will contribute usefully to the identification of the soil structure and composition in association with other experimental equipment (camera, infra-red detector, gamma and X-ray spectrometers, chemical analyzers, ground temperature probes).

  17. Compact Instruments Measure Helium-Leak Rates

    NASA Technical Reports Server (NTRS)

    Stout, Stephen; Immer, Christopher

    2003-01-01

    Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.

  18. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  19. Comparison of pleural pressure measuring instruments.

    PubMed

    Lee, Hans J; Yarmus, Lonny; Kidd, David; Ortiz, Ricardo; Akulian, Jason; Gilbert, Christopher; Hughes, Andrew; Thompson, Richard E; Arias, Sixto; Feller-Kopman, David

    2014-10-01

    The objective of this study was to compare the accuracy of a handheld digital manometer (DM) and U-tube (UT) manometer with an electronic transducer (ET) manometer during thoracentesis. Thirty-three consecutive patients undergoing thoracentesis were enrolled in the study. Pleural pressure (Ppl) measurements were made using a handheld DM (Compass; Mirador Biomedical), a UT water manometer, and an ET (reference instrument). End-expiratory Ppl was recorded after catheter insertion, after each aspiration of 240 mL, and prior to catheter removal. Volume of fluid removed, symptoms during thoracentesis, pleural elastance, and pleural fluid chemistry were also evaluated. A total of 594 Ppl measurements were made in 30 patients during their thoracenteses. There was a strong linear correlation coefficient between elastance for the DM and ET (r = 0.9582, P < .001). Correlation was poor between the UT and ET (r = 0.0448, P = .84). Among the 15 patients who developed cough, recorded ET pressures ranged from -9 to +9 cm H2O at the time of symptom development, with a mean (SD) of -2.93 (4.89) cm H2O. ET and DM measurements among those patients with cough had a low correlation between these measurements (R2 = 0.104, P = .24). Nine patients developed chest discomfort and had ET pressures that ranged from -26 to +6 cm H2O, with a mean (SD) of -7.89 (9.97) cm H2O. The handheld DM provided a valid and easy-to-use method to measure Ppl during thoracentesis. Future studies are needed to investigate its usefulness in predicting clinically meaningful outcomes.

  20. Multipurpose Spectroradiometer for Satellite Instrument Calibration and Zenith Sky Remote Sensing Measurements

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Ahmad, Zia

    2001-01-01

    In the early 1990s a series of surface-based direct sun and zenith sky measurements of total column ozone were made with SBUV/2 flight models and the SSBUV Space Shuttle instrument in Boulder, Colorado which were compared with NOAA Dobson Instrument direct sun observations and TOMS instrument overpass observations of column ozone. These early measurements led to the investigation of the accuracy of derived total column ozone amounts and aerosol optical depths from zenith sky observations. Following the development and availability of radiometrically stable IAD narrow band interference filter and nitrided silicon photodiodes a simple compact multifilter spectroradiometer was developed which can be used as a calibration transfer standard spectroradiometer (CTSS) or as a surface based instrument remote sensing instruments for measurements of total column ozone and aerosol optical depths. The total column ozone derived from zenith sky observations agrees with Dobson direct sun AD double wavelength pair measurements and with TOMS overpass ozone amounts within uncertainties of about 1%. When used as a calibration transfer standard spectroradiometer the multifilter spectroradiometer appears to be capable of establishing instrument radiometric calibration uncertainties of the order of 1% or less relative to national standards laboratory radiometric standards.

  1. Direct measurement of the ballistic motion of a freely floating colloid in Newtonian and viscoelastic fluids.

    PubMed

    Hammond, Andrew P; Corwin, Eric I

    2017-10-01

    A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.

  2. A new instrument for measuring atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Jacobs, Danny C.; Edwards, Brett; Stelly, Zak; Gorgievska, Ivana; Westpfahl, David J.; Klinglesmith, Daniel A., III; Creech-Eakman, Michelle J.

    2004-10-01

    The Magdalena Ridge Observatory is a congressionally funded project to deliver a state-of-the-art observatory on the Magdalena Ridge in New Mexico to provide astronomical research, educational and outreach programs to the state. In this paper we report results from one of our undergraduate projects being run at New Mexico Tech. This project focuses on the design and characterization of a novel instrument for sensing the atmospheric flow instabilities related to seeing at the observatory site. The instrument attempts to find the power of turbulence on millisecond time scales by measuring a voltage difference between two active microphones. The principles behind the instrument are explored here and a description of the limitations of the current experimental implementation is given. Initial results from the experiment are presented and compared with simultaneous measurements from a co-located Differential Image Motion Monitor. The instrument is shown to be a valuable and robust tool for monitoring the atmospheric conditions during site testing campaigns, but further data will be needed to confirm the precise nature of the correlation between measurements made with this system and more conventional seeing metrics.

  3. Characterization of fluids and fluid-fluid interaction by fiber optic refractive index sensor measurements

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Weiner, M.; Liebscher, A.; Spangenberg, E.

    2009-04-01

    A fiber optic refractive index sensor is tested for continuous monitoring of fluid-fluid and fluid-gas interactions within the frame of laboratory investigations of CO2 storage, monitoring and safety technology research (COSMOS project, "Geotechnologien" program). The sensor bases on a Fabry-Perot white light interferometer technique, where the refractive index (RI) of the solution under investigation is measured by variation of the liquid-filled Fabry-Perot optical cavity length. Such sensor system is typically used for measuring and controlling oil composition and also fluid quality. The aim of this study is to test the application of the fiber optic refractive index sensor for monitoring the CO2 dissolution in formation fluids (brine, oil, gas) of CO2 storage sites. Monitoring and knowledge of quantity and especially rate of CO2 dissolution in the formation fluid is important for any assessment of long-term risks of CO2 storage sites. It is also a prerequisite for any precise reservoir modelling. As a first step we performed laboratory experiments in standard autoclaves on a variety of different fluids and fluid mixtures (technical alcohols, pure water, CO2, synthetic brines, natural formation brine from the Ketzin test site). The RI measurements are partly combined with default electrical conductivity and sonic velocity measurements. The fiber optic refractive index sensor system allows for RI measurements within the range 1.0000 to 1.7000 RI with a resolution of approximately 0.0001 RI. For simple binary fluid mixtures first results indicate linear relationships between refractive indices and fluid composition. Within the pressure range investigated (up to 60 bar) the data suggest only minor changes of RI with pressure. Further, planned experiments will focus on the determination of i) the temperature dependency of RI, ii) the combined effects of pressure and temperature on RI, and finally iii) the kinetics of CO2 dissolution in realistic formation fluids.

  4. Person-centredness in the care of older adults: a systematic review of questionnaire-based scales and their measurement properties.

    PubMed

    Wilberforce, Mark; Challis, David; Davies, Linda; Kelly, Michael P; Roberts, Chris; Loynes, Nik

    2016-03-07

    Person-centredness is promoted as a central feature of the long-term care of older adults. Measures are needed to assist researchers, service planners and regulators in assessing this feature of quality. However, no systematic review exists to identify potential instruments and to provide a critical appraisal of their measurement properties. A systematic review of measures of person-centredness was undertaken. Inclusion criteria restricted references to multi-item instruments designed for older adult services, or otherwise with measurement properties tested in an older adult population. A two-stage critical appraisal was conducted. First, the methodological quality of included references was assessed using the COSMIN toolkit. Second, seven measurement properties were rated using widely-recognised thresholds of acceptability. These results were then synthesised to provide an overall appraisal of the strength of evidence for each measurement property for each instrument. Eleven measures tested in 22 references were included. Six instruments were designed principally for use in long-stay residential facilities, and four were for ambulatory hospital or clinic-based services. Only one measure was designed mainly for completion by users of home care services. No measure could be assessed across all seven measurement properties. Despite some instruments having promising measurement properties, this was consistently undermined by the poor methodological quality underpinning them. Testing of hypotheses to support construct validity was of particularly low quality, whilst measurement error was rarely assessed. Two measures were identified as having been the subject of the most rigorous testing. The review is unable to unequivocally recommend any measures of person-centredness for use in older adult care. Researchers are advised to improve methodological rigour when testing instruments. Efforts may be best focused on testing a narrower range of measurement properties but to a

  5. Convection in the Rayleigh-Bénard flow with all fluid properties variable

    NASA Astrophysics Data System (ADS)

    Sassos, Athanasios; Pantokratoras, Asterios

    2011-10-01

    In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Bénard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.

  6. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  7. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capobianco, Ryan; Gruszkiewicz, Miroslaw; Wesolowski, David J

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densitiesmore » were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.« less

  8. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1989-11-21

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

  9. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1991-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  10. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

  11. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery.

    PubMed

    Yates, D R A; Davies, S J; Milner, H E; Wilson, R J T

    2014-02-01

    Goal-directed fluid therapy has been shown to improve outcomes after colorectal surgery, but the optimal type of i.v. fluid to use is yet to be established. Theoretical advantages of using hydroxyethyl starch (HES) for goal-directed therapy include a reduction in the total volume of fluid required, resulting in less tissue oedema. Recent work has demonstrated that new generations of HES have a good safety profile, but their routine use in the perioperative setting has not been demonstrated to confer outcome benefit. We randomly assigned 202 medium to high-risk patients undergoing elective colorectal surgery to receive either balanced 6% HES (130/0.4, Volulyte) or balanced crystalloid (Hartmann's solution) as haemodynamic optimization fluid. The primary outcome measure was the incidence of gastrointestinal (GI) morbidity on postoperative day 5. Secondary outcome measures included the incidence of postoperative complications, hospital length of stay, and the effect of trial fluids on coagulation and inflammation. No difference was seen in the number of patients who suffered GI morbidity on postoperative day 5 [30% in the HES group vs 32% in the crystalloid group; adjusted odds ratio=0.96 (0.52-1.77)]. Subjects in the crystalloid group received more fluid [median (inter-quartile ranges) 3175 (2000-3700) vs 1875 (1500-3000) ml, P<0.001] and had a higher 24 h fluid balance [+4226 (3251-5779) vs +3610 (2443-4519) ml, P<0.001]. No difference in the incidence of postoperative complications was seen between the groups. Goal-directed fluid therapy is possible with either crystalloid or HES. There is no evidence of a benefit in using HES over crystalloid, despite its use resulting in a lower 24 h fluid balance.

  12. A systematic review of instruments for measuring outcomes in economic evaluation within aged care.

    PubMed

    Bulamu, Norma B; Kaambwa, Billingsley; Ratcliffe, Julie

    2015-11-09

    This paper describes the methods and results of a systematic review to identify instruments used to measure quality of life outcomes in older people. The primary focus of the review was to identify instruments suitable for application with older people within economic evaluations conducted in the aged care sector. Online databases searched were PubMed, Medline, Scopus, and Web of Science, PsycInfo, CINAHL, Embase and Informit. Studies that met the following criteria were included: 1) study population exclusively above 65 years of age 2) measured health status, health related quality of life or quality of life outcomes more broadly through use of an instrument developed for this purpose, 3) used a generic preference based instrument or an older person specific preference based or non-preference based instrument or both, and 4) published in journals in the English language after 2000. The most commonly applied generic preference based instrument in both the community and residential aged care context was the EuroQol - 5 Dimensions (EQ-5D), followed by the Adult Social Care Outcomes Toolkit (ASCOT) and the Health Utilities Index (HUI2/3). The most widely applied older person specific instrument was the ICEpop CAPability measure for Older people (ICECAP-O) in both community and residential aged care. In the absence of an ideal instrument for incorporating into economic evaluations in the aged care sector, this review recommends the use of a generic preference based measure of health related quality of life such as the EQ-5D to obtain quality adjusted life years, in combination with an instrument that has a broader quality of life focus like the ASCOT, which was designed specifically for evaluating interventions in social care or the ICECAP-O, a capability measure for older people.

  13. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  14. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  15. Instruments to measure behavioural and psychological symptoms of dementia.

    PubMed

    van der Linde, Rianne M; Stephan, Blossom C M; Dening, Tom; Brayne, Carol

    2014-03-01

    Reliable and valid measurement of behavioural and psychological symptoms of dementia (BPSD) is important for research and clinical practice. Here we provide an overview of the different instruments and discuss issues involved in the choice of the most appropriate instrument to measure BPSD in research. A list of BPSD instruments was generated. For each instrument Pubmed and SCOPUS were searched for articles that reported on their use or quality. Eighty-three instruments that are used to measure BPSD were identified. Instruments differ in length and detail, whether the interview is with participants, informants or by observation, the target sample and the time frames for use. Reliability and validity is generally good, but reported in few independent samples. When choosing a BPSD instrument for research the research question should be carefully scrutinised and the symptoms of interest, population, quality, detail, time frame and practical issues should be considered. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Generic Long-Range Interactions Between Passive Bodies in an Active Fluid.

    PubMed

    Baek, Yongjoo; Solon, Alexandre P; Xu, Xinpeng; Nikola, Nikolai; Kafri, Yariv

    2018-02-02

    A single nonspherical body placed in an active fluid generates currents via breaking of time-reversal symmetry. We show that, when two or more passive bodies are placed in an active fluid, these currents lead to long-range interactions. Using a multipole expansion, we characterize their leading-order behaviors in terms of single-body properties and show that they decay as a power law with the distance between the bodies, are anisotropic, and do not obey an action-reaction principle. The interactions lead to rich dynamics of the bodies, illustrated by the spontaneous synchronized rotation of pinned nonchiral bodies and the formation of traveling bound pairs. The occurrence of these phenomena depends on tunable properties of the bodies, thus opening new possibilities for self-assembly mediated by active fluids.

  17. The quality of dying and death measurement instruments: A systematic psychometric review.

    PubMed

    Gutiérrez Sánchez, Daniel; Pérez Cruzado, David; Cuesta-Vargas, Antonio I

    2018-04-19

    To identify instruments that could assess the quality of dying and death and their psychometric properties. To assess the methodological quality of studies on measurement properties. A high quality of death is regarded as a goal at the end of life and, therefore, an assessment of the end of life experience is essential. Many instruments have been developed to evaluate the quality of dying and death. The selection of the most appropriate measure to be used in clinical and research settings is crucial. Psychometric systematic review. We systematically searched ProQuest Medline, SciELO and ProQuest PsycINFO from 1970 - May 2016. Identification and evaluation of instruments that assessed quality of dying and death. Papers were evaluated by two independent reviewers according to the COSMIN checklist with a 4-point scale. A total of 19 studies were included in this review. Seven instruments were found that were specifically designed for assessing quality of dying and death. A retrospective carer proxy report to evaluate this construct was used in most of the papers. The methodological quality of the studies was fair for most of the psychometric characteristics analyzed. Many instruments have been developed to assess the quality of dying and death. The Quality of Dying and Death Questionnaire is the best available measure of the quality of dying and death. It is the only questionnaire identified in this review where all psychometric properties according to the COSMIN checklist have been evaluated. © 2018 John Wiley & Sons Ltd.

  18. Instruments measuring the disease-specific quality of life of family carers of people with neurodegenerative diseases: a systematic review.

    PubMed

    Page, Thomas E; Farina, Nicolas; Brown, Anna; Daley, Stephanie; Bowling, Ann; Basset, Thurstine; Livingston, Gill; Knapp, Martin; Murray, Joanna; Banerjee, Sube

    2017-03-29

    Neurodegenerative diseases, such as dementia, have a profound impact on those with the conditions and their family carers. Consequently, the accurate measurement of family carers' quality of life (QOL) is important. Generic measures may miss key elements of the impact of these conditions, so using disease-specific instruments has been advocated. This systematic review aimed to identify and examine the psychometric properties of disease-specific outcome measures of QOL of family carers of people with neurodegenerative diseases (Alzheimer's disease and other dementias; Huntington's disease; Parkinson's disease; multiple sclerosis; and motor neuron disease). Systematic review. Instruments were identified using 5 electronic databases (PubMed, PsycINFO, Web of Science, Scopus and the International Bibliography of the Social Sciences (IBSS)) and lateral search techniques. Only studies which reported the development and/or validation of a disease-specific measure for adult family carers, and which were written in English, were eligible for inclusion. The methodological quality of the included studies was evaluated using the COnsensus based Standards for the selection of health Measurement Instruments (COSMIN) checklist. The psychometric properties of each instrument were examined. 676 articles were identified. Following screening and lateral searches, a total of 8 articles were included; these reported 7 disease-specific carer QOL measures. Limited evidence was available for the psychometric properties of the 7 instruments. Psychometric analyses were mainly focused on internal consistency, reliability and construct validity. None of the measures assessed either criterion validity or responsiveness to change. There are very few measures of carer QOL that are specific to particular neurodegenerative diseases. The findings of this review emphasise the importance of developing and validating psychometrically robust disease-specific measures of carer QOL. Published by the BMJ

  19. Factor analyses of an Adult Epilepsy Self-Management Measurement Instrument (AESMMI).

    PubMed

    Escoffery, Cam; Bamps, Yvan; LaFrance, W Curt; Stoll, Shelley; Shegog, Ross; Buelow, Janice; Shafer, Patricia; Thompson, Nancy J; McGee, Robin E; Hatfield, Katherine

    2015-09-01

    The purpose of this study was to test the psychometric properties of an enhanced Adult Epilepsy Self-Management Measurement Instrument (AESMMI). An instrument of 113 items, covering 10 a priori self-management domains, was generated through a multiphase process, based on a review of the literature, validated epilepsy and other chronic condition self-management scales and expert input. Reliability and exploratory factor analyses were conducted on data collected from 422 adults with epilepsy. The instrument was reduced to 65 items, converging on 11 factors: Health-care Communication, Coping, Treatment Management, Seizure Tracking, Social Support, Seizure Response, Wellness, Medication Adherence, Safety, Stress Management, and Proactivity. Exploratory factors supported the construct validity for 6 a priori domains, albeit with significant changes in the retained items or in their scope and 3 new factors. One a priori domain was split in 2 subscales pertaining to treatment. The configuration of the 11 factors provides additional insight into epilepsy self-management behaviors. Internal consistency reliability of the 65-item instrument was high (α=.935). Correlations with independent measures of health status, quality of life, depression, seizure severity, and life impact of epilepsy further validated the instrument. This instrument shows potential for use in research and clinical settings and for assessing intervention outcomes and self-management behaviors in adults with epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Melts and fluids: An overview of recent advances

    NASA Astrophysics Data System (ADS)

    Brenan, James M.

    1995-07-01

    Owing to their capacity to transport mass and heat melts and low viscosity fluids profoundly influence such global processes as planetary heat loss, large and small-scale planetary differentiation as well as affecting the evolution of oceans and atmospheres. As such, these materials play a key role in the physical and chemical volution of Earth, the terrestrial planets and the meteorite parent bodies. In this context, a review chapter that deals exclusively with recent advances in our understanding of the composition, properties, origin and volution of melts and fluids is clearly relevant.1 Since 1991, a host of research advances has provided earth and planetary scientists with new and unique perspectives for understanding natural melts and low viscosity fluids. New instrumentation has provided the basis for several advances, and perhaps most notable is the development and application of reaction cells that allow measurement of melt or fluid properties in situ. Such devices have allowed workers to monitor properties at high pressure and temperature that are typically not preserved when samples are quenched to ambient conditions. In addition to the development of new machines, tried and true experimental and analytical technologies have also yielded significant new results on melts and fluids, largely as a result of their clever application to the solution of what had been longstanding problems in geochemistry and petrology. Although laboratory-based measurements have provided the basis for many recent advances, it is also clear that the Earth still yields provocative samples for our study, and new insights have also been gained concerning the behavior of melts and fluids in natural processes based on recent documentation of previously unobserved melt and fluid compositions. Along with new technologies, clever experiments and unique samples, it is also notable that strides have been made in certain research areas enjoying a resurgence of activity following new and

  1. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Davis, Douglas D.; Beltz, Nobert; Bandy, Alan R.; Ferek, Ronald J.; Thornton, Donald C.

    1993-01-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of 'potential' uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  2. A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.

    PubMed

    Weng, Huei Chu; Chen, Lu-Yu

    2016-05-01

    This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.

  3. Analysis of Skylab fluid mechanics science demonstrations

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Butz, J. R.

    1975-01-01

    The results of the data reduction and analysis of the Skylab fluid mechanics demonstrations are presented. All the fluid mechanics data available from the Skylab missions were identified and surveyed. The significant fluid mechanics phenomena were identified and reduced to measurable quantities wherever possible. Data correlations were performed using existing theories. Among the phenomena analyzed were: static low-g interface shapes, oscillation frequency and damping of a liquid drop, coalescence, rotating drop, liquid films and low-g ice melting. A survey of the possible applications of the results was made and future experiments are recommended.

  4. Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions

    NASA Astrophysics Data System (ADS)

    Angot, Philippe; Goyeau, Benoît; Ochoa-Tapia, J. Alberto

    2017-06-01

    We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of the interfacial transition region Ωfp of the one-domain representation is very small compared to the macroscopic length scale L . The analysis leads to an equivalent two-domain representation where transport phenomena in the transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive dividing interface Σ between the homogeneous fluid and porous regions. These jump conditions are thus stated up to first-order in O (d /L ) with d /L ≪1 . The originality and relevance of this asymptotic model lies in its general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that case, the comparison between the present model and the different models available in the literature gives explicit expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional flows, the general asymptotic model yields the different components of the jump conditions including a new specific equation for the cross-flow pressure jump on Σ .

  5. Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions.

    PubMed

    Angot, Philippe; Goyeau, Benoît; Ochoa-Tapia, J Alberto

    2017-06-01

    We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of the interfacial transition region Ω_{fp} of the one-domain representation is very small compared to the macroscopic length scale L. The analysis leads to an equivalent two-domain representation where transport phenomena in the transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive dividing interface Σ between the homogeneous fluid and porous regions. These jump conditions are thus stated up to first-order in O(d/L) with d/L≪1. The originality and relevance of this asymptotic model lies in its general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that case, the comparison between the present model and the different models available in the literature gives explicit expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional flows, the general asymptotic model yields the different components of the jump conditions including a new specific equation for the cross-flow pressure jump on Σ.

  6. Utilization of Space Station for industrial thermophysical property measurements

    NASA Astrophysics Data System (ADS)

    Overfelt, Tony; Watkins, John

    1996-03-01

    The International Space Station represents the largest cooperative space project in history and will be industry's only reasonable access to the low-g environment for long duration R&D. Such access will provide unique and competitive capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial research programs. The metal casting industry has identified the need for accurate thermophysical properties of molten alloys as a priority need. Research over the last decade has demonstrated that experimental techniques exist to containerlessly measure critical thermophysical and related properties of molten metals for improved process design. This paper describes the ``VULCAN'' concept, a proposed commercial instrument for thermophysical properties measurements on the Space Station. Finally, several issues regarding private sector utilization of the Space Station are also discussed.

  7. Transport phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Bear, Jacob; Corapcioglu, M. Yavuz

    The Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media, held July 14-23, 1985 in Newark, Del. and directed by Jacob Bear (Israel Institute of Technology, Haifa) and M. Yavuz Corapcioglu (City College of New York), under the auspices of NATO, was a sequel to the NATO Advanced Study Institute (ASI) held in 1982 (proceedings published as Fundamentals of Transport Phenomena in Porous Media, J. Bear, and M.Y. Corapcioglu (Ed.), Martinus Nijhoff, Dordrecht, the Netherlands, 1984). The meeting was attended by 106 participants and lecturers from 21 countries.As in the first NATO/ASI, the objective of this meeting—which was a combination of a conference of experts and a teaching institute— was to present and discuss selected topics of transport in porous media. In selecting topics and lecturers, an attempt was made to bridge the gap that sometimes exists between research and practice. An effort was also made to demonstrate the unified approach to the transport of mass of a fluid phase, components of a fluid phase, momentum, and heat in a porous medium domain. The void space may be occupied by a single fluid phase or by a number of such phases; each fluid may constitute a multicomponent system; the solid matrix may be deformable; and the whole process of transport in the system may take place under nonisothermal conditions, with or without phase changes. Such phenomena are encountered in a variety of disciplines, e.g., petroleum engineering, civil engineering (in connection with groundwater flow and contamination), soil mechanics, and chemical engineering. One of the goals of the 1985 NATO/ASI, as in the 1982 institute, was to bring together experts from all these disciplines and enhance communication among them.

  8. Astronaut Mike Fincke Conducts Fluid Merging Viscosity Measurement (FMVM) Experiment

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronaut Mike Fincke places droplets of honey onto the strings for the Fluid Merging Viscosity Measurement (FMVM) investigation onboard the International Space Station (ISS). The FMVM experiment measures the time it takes for two individual highly viscous fluid droplets to coalesce or merge into one droplet. Different fluids and droplet size combinations were tested in the series of experiments. By using the microgravity environment, researchers can measure the viscosity or 'thickness' of fluids without the influence of containers and gravity using this new technique. Understanding viscosity could help scientists understand industrially important materials such as paints, emulsions, polymer melts and even foams used to produce pharmaceutical, food, and cosmetic products.

  9. Measurements of Intensive Aerosol Optical Properties During TexAQS II

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Radney, J. G.; Wright, M. E.

    2007-12-01

    Time-resolved measurements of the bulk extensive aerosol optical properties - particle extinction coefficient (bext) and particle scattering coefficient (bscat) - and particle number concentrations were made as part of the six-week TRAMP experiment during the TexAQS II (2006) study. These measurements were done at a nominal surface site (the roof of an 18 story building) on the University of Houston campus near downtown Houston, Texas. Our ground-based tandem cavity ring-down transmissometer/nephelometer instrument (CRDT/N) provided the aerosol optical property measurements. A commercial Condensation Particle Counter (TSI 3007) was used to measure the number concentrations during part of the study period. The optical data was used to construct the intensive aerosol optical properties single scattering albedo ω0 at 532 nm and the Angstrom exponent for extinction between 532 nm and 1064 nm. Recent validation studies of size- selected laboratory generated aerosols are presented to illustrate the soundness of this approach using our instrument. The Angstrom exponent is compared to values from other instruments operating in the area and is found to be a characteristic of the regional air mass under some conditions. Size distributions measured during the study were used to create a new empirical adjustment to scattering measured by the Radiance Research nephelometer, resulting in improved results for particle absorption coefficient and single scattering albedo. The study average value of ω0(532 nm) = 0.78 is lower than expected from comparable field studies and even lower values are experienced during the study. Possible causes of this discrepancy are examined and the utility of using the current version of the CRDT/N instrument to measure the key radiative property ω0 is assessed. Observed episodes of rapid increases in particle number concentration with little corresponding growth in the optical properties can presumably be used to signal the occurrence of particle

  10. Instrument Selection for Randomized Controlled Trials Why This and Not That?

    PubMed Central

    Records, Kathie; Keller, Colleen; Ainsworth, Barbara; Permana, Paska

    2011-01-01

    A fundamental linchpin for obtaining rigorous findings in quantitative research involves the selection of survey instruments. Psychometric recommendations are available for the processes for scale development and testing and guidance for selection of established scales. These processes are necessary to address the validity link between the phenomena under investigation, the empirical measures and, ultimately, the theoretical ties between these and the world views of the participants. Detailed information is most often provided about study design and protocols, but far less frequently is a detailed theoretical explanation provided for why specific instruments are chosen. Guidance to inform choices is often difficult to find when scales are needed for specific cultural, ethnic, or racial groups. This paper details the rationale underlying instrument selection for measurement of the major processes (intervention, mediator and moderator variables, outcome variables) in an ongoing study of postpartum Latinas, Madres para la Salud [Mothers for Health]. The rationale underpinning our choices includes a discussion of alternatives, when appropriate. These exemplars may provide direction for other intervention researchers who are working with specific cultural, racial, or ethnic groups or for other investigators who are seeking to select the ‘best’ instrument. Thoughtful consideration of measurement and articulation of the rationale underlying our choices facilitates the maintenance of rigor within the study design and improves our ability to assess study outcomes. PMID:21986392

  11. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    NASA Astrophysics Data System (ADS)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  12. Systems and methods for thermal imaging technique for measuring mixing of fluids

    DOEpatents

    Booten, Charles; Tomerlin, Jeff; Winkler, Jon

    2016-06-14

    Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.

  13. The quality of systematic reviews of health-related outcome measurement instruments.

    PubMed

    Terwee, C B; Prinsen, C A C; Ricci Garotti, M G; Suman, A; de Vet, H C W; Mokkink, L B

    2016-04-01

    Systematic reviews of outcome measurement instruments are important tools for the selection of instruments for research and clinical practice. Our aim was to assess the quality of systematic reviews of health-related outcome measurement instruments and to determine whether the quality has improved since our previous study in 2007. A systematic literature search was performed in MEDLINE and EMBASE between July 1, 2013, and June 19, 2014. The quality of the reviews was rated using a study-specific checklist. A total of 102 reviews were included. In many reviews the search strategy was considered not comprehensive; in only 59 % of the reviews a search was performed in EMBASE and in about half of the reviews there was doubt about the comprehensiveness of the search terms used for type of measurement instruments and measurement properties. In 41 % of the reviews, compared to 30 % in our previous study, the methodological quality of the included studies was assessed. In 58 %, compared to 55 %, the quality of the included instruments was assessed. In 42 %, compared to 7 %, a data synthesis was performed in which the results from multiple studies on the same instrument were somehow combined. Despite a clear improvement in the quality of systematic reviews of outcome measurement instruments in comparison with our previous study in 2007, there is still room for improvement with regard to the search strategy, and especially the quality assessment of the included studies and the included instruments, and the data synthesis.

  14. Measuring parent food practices: a systematic review of existing measures and examination of instruments

    PubMed Central

    2013-01-01

    During the last decade, there has been a rapid increase in development of instruments to measure parent food practices. Because these instruments often measure different constructs, or define common constructs differently, an evaluation of these instruments is needed. A systematic review of the literature was conducted to identify existing measures of parent food practices and to assess the quality of their development. The initial search used terms capturing home environment, parenting behaviors, feeding practices and eating behaviors, and was performed in October of 2009 using PubMed/Medline, PsychInfo, Web of knowledge (ISI), and ERIC, and updated in July of 2012. A review of titles and abstracts was used to narrow results, after which full articles were retrieved and reviewed. Only articles describing development of measures of parenting food practices designed for families with children 2-12 years old were retained for the current review. For each article, two reviewers extracted data and appraised the quality of processes used for instrument development and evaluation. The initial search yielded 28,378 unique titles; review of titles and abstracts narrowed the pool to 1,352 articles; from which 57 unique instruments were identified. The review update yielded 1,772 new titles from which14 additional instruments were identified. The extraction and appraisal process found that 49% of instruments clearly identified and defined concepts to be measured, and 46% used theory to guide instrument development. Most instruments (80%) had some reliability testing, with internal consistency being the most common (79%). Test-retest or inter-rater reliability was reported for less than half the instruments. Some form of validity evidence was reported for 84% of instruments. Construct validity was most commonly presented (86%), usually with analysis of associations with child diet or weight/BMI. While many measures of food parenting practices have emerged, particularly in

  15. Measurement Properties of Indirect Assessment Methods for Functional Behavioral Assessment: A Review of Research

    ERIC Educational Resources Information Center

    Floyd, Randy G.; Phaneuf, Robin L.; Wilczynski, Susan M.

    2005-01-01

    Indirect assessment instruments used during functional behavioral assessment, such as rating scales, interviews, and self-report instruments, represent the least intrusive techniques for acquiring information about the function of problem behavior. This article provides criteria for examining the measurement properties of these instruments…

  16. The design of optimum remote-sensing instruments

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1983-01-01

    Remote-sensing instruments allow values for certain properties of a target to be retrieved from measurements of radiation emitted, reflected or transmitted by the target. The retrieval accuracy is affected by random variations in the many target properties which affect the measurements. A method is described, by which statistical properties of the target and theoretical models of its electromagnetic behavior can be used to choose values for the instrument parameters which maximize the retrieval accuracy. The technique is applicable to a wide range of remote-sensing instruments.

  17. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  18. Basic fluid system trainer

    DOEpatents

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  19. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    USGS Publications Warehouse

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  20. Instrumentation for air quality measurements.

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1973-01-01

    Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.

  1. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  2. In situ methods for measuring thermal properties and heat flux on planetary bodies

    PubMed Central

    Kömle, Norbert I.; Hütter, Erika S.; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-01-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP3 currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements. PMID:21760643

  3. In situ methods for measuring thermal properties and heat flux on planetary bodies.

    PubMed

    Kömle, Norbert I; Hütter, Erika S; Macher, Wolfgang; Kaufmann, Erika; Kargl, Günter; Knollenberg, Jörg; Grott, Matthias; Spohn, Tilman; Wawrzaszek, Roman; Banaszkiewicz, Marek; Seweryn, Karoly; Hagermann, Axel

    2011-06-01

    The thermo-mechanical properties of planetary surface and subsurface layers control to a high extent in which way a body interacts with its environment, in particular how it responds to solar irradiation and how it interacts with a potentially existing atmosphere. Furthermore, if the natural temperature profile over a certain depth can be measured in situ, this gives important information about the heat flux from the interior and thus about the thermal evolution of the body. Therefore, in most of the recent and planned planetary lander missions experiment packages for determining thermo-mechanical properties are part of the payload. Examples are the experiment MUPUS on Rosetta's comet lander Philae, the TECP instrument aboard NASA's Mars polar lander Phoenix, and the mole-type instrument HP(3) currently developed for use on upcoming lunar and Mars missions. In this review we describe several methods applied for measuring thermal conductivity and heat flux and discuss the particular difficulties faced when these properties have to be measured in a low pressure and low temperature environment. We point out the abilities and disadvantages of the different instruments and outline the evaluation procedures necessary to extract reliable thermal conductivity and heat flux data from in situ measurements.

  4. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  5. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  6. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  7. 40 CFR 1065.205 - Performance specifications for measurement instruments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Performance specifications for measurement instruments. 1065.205 Section 1065.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.205 Performance...

  8. Social profit in the context of the activities at Fluids Measurement Sector in Legal Metrology Department - Inmetro

    NASA Astrophysics Data System (ADS)

    Cinelli, L. R.; Silva, L. G.; Junior, E. A.; Almeida, R. O.

    2018-03-01

    This article was prepared in the context of the work of the Fluids Measurement Sector (Seflu) of the Legal Metrology Department of Inmetro (Dimel) in order to try to answer the following question: What is the magnitude of Social Profit generated for brazilian society from the existence of legal control of measuring instruments within the scope of this sector? In this sense, some examples of a case study containing the main measurement instruments related to the evaluation process of models performed at the Seflu are presented.

  9. A systematic review of clinimetric properties of measurements of motivation for children aged 5-16 years with a physical disability or motor delay.

    PubMed

    Miller, Laura; Ziviani, Jenny; Boyd, Roslyn Nancy

    2014-02-01

    The purpose of this systematical review was to appraise the clinimetric properties of measures of motivation in children aged 5-16 years with a physical disability or motor delay. Six electronic databases were searched. Studies were included if they reported measuring motivation in school-aged children across occupational performance areas. Two reviewers independently identified measures from included articles. Evaluation of measures was completed using the COSMIN (consensus-based standards for the selection of health measurement instruments) checklist. A total of 13,529 papers were retrieved, 15 reporting measurement of motivation in this population. Two measures met criteria: Dimensions of Mastery Questionnaire (DMQ) and Pediatric Volitional Questionnaire (PVQ). There was evidence of adequate validity for DMQ, and preliminary evidence of test-retest reliability. Psychometric evidence for PVQ was poor. Both measures demonstrated good clinical utility. The large number of retrieved papers highlights the importance being attributed to motivation in clinical studies, although measurement is seldom performed. Both identified measures show promise but further psychometric research is required.

  10. Use of an electrical resistance hygrometer to measure human sweat rates

    NASA Technical Reports Server (NTRS)

    Suga, T.

    1980-01-01

    The application of the resistance hygrometer as a tool to measure the localized sweat rate from the human body in both the active and passive sweat regions was studied. It was found that the physiological function of the skin membrane and fluid carrier transport phenomena from the outer skin have an indistinguishable effect on the observed findings from the instrument. The problems associated with the resistance hygrometer technique are identified and the usage of the instrument in the physiological experimentation from the engineering standpoint is evaluated.

  11. Cross-cultural adaptation and measurement properties of the Brazilian Version of the Michigan Neuropathy Screening Instrument.

    PubMed

    Sartor, Cristina D; Oliveira, Mariana D; Campos, Victoria; Ferreira, Jane S S P; Sacco, Isabel C N

    The Michigan Neuropathy Screening Instrument is an easy-to-use questionnaire aimed at screening and detecting diabetic polyneuropathy. To translate and cross-culturally adapt the MNSI to Brazilian Portuguese and evaluate its measurement properties. Two bilingual translators translated from English into Brazilian Portuguese and made a synthetic version. The synthetic version was back translated into English. A committee of specialists and the translator checked the cultural adaptations and developed a pre-final questionnaire in Brazilian Portuguese (prefinal version). In pretesting, the prefinal version was applied to a sample of 34 subjects in which each subject was interviewed to determine whether they understood each item. For the later assessment of measurement properties, 84 subjects were assessed. A final Brazilian Portuguese version of the instrument was produced after obtaining 80% agreement (SEM<0.01%) among diabetic patients and specialists. We obtained excellent intra-rater reliability (ICC 3,1 =0.90), inter-rater reliability (ICC 2,1 =0.90) and within-subject reliability ICC 3,1 =0.80, excellent internal consistency (Cronbach's alpha>0.92), reasonable construct validity for the association between the MNSI and Neuropathy Symptom Score (r=0.46, p<0.05) and excellent association between the MNSI and Neuropathy Disability Score (r=0.79, p<0.05). We did not detect floor and ceiling effects (<9.5% of patients with maximum scores). The Brazilian Portuguese version of the MNSI is suitable for application in the Brazilian diabetic population and is a reliable tool for the screening and detection of DPN. The MNSI can be used both in clinical practice and also for research purposes. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  12. Cavity-enhanced quantum-cascade laser-based instrument for carbon monoxide measurements.

    PubMed

    Provencal, Robert; Gupta, Manish; Owano, Thomas G; Baer, Douglas S; Ricci, Kenneth N; O'Keefe, Anthony; Podolske, James R

    2005-11-01

    An autonomous instrument based on off-axis integrated cavity output spectroscopy has been developed and successfully deployed for measurements of carbon monoxide in the troposphere and tropopause onboard a NASA DC-8 aircraft. The instrument (Carbon Monoxide Gas Analyzer) consists of a measurement cell comprised of two high-reflectivity mirrors, a continuous-wave quantum-cascade laser, gas sampling system, control and data-acquisition electronics, and data-analysis software. CO measurements were determined from high-resolution CO absorption line shapes obtained by tuning the laser wavelength over the R(7) transition of the fundamental vibration band near 2172.8 cm(-1). The instrument reports CO mixing ratio (mole fraction) at a 1-Hz rate based on measured absorption, gas temperature, and pressure using Beer's Law. During several flights in May-June 2004 and January 2005 that reached altitudes of 41,000 ft (12.5 km), the instrument recorded CO values with a precision of 0.2 ppbv (1-s averaging time) and an accuracy limited by the reference CO gas cylinder (uncertainty < 1.0%). Despite moderate turbulence and measurements of particulate-laden airflows, the instrument operated consistently and did not require any maintenance, mirror cleaning, or optical realignment during the flights.

  13. A Robust Magnetic Resonance Imager For Ground and Flight Based Measurements of Fluid Physics Phenomena

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nuclear magnetic resonance (NMR) is a powerful and versatile, noninvasive method for studying fluid transport problems, However, its applications to these types of investigations have been limited. A primary factor that limits the application of NMR has been the lack of a user-friendly, versatile, and inexpensive NMR imaging apparatus that can be used by scientists who are not familiar with sophisticated NMR. To rectify this situation, we developed a user-friendly, NMR imager for projects of relevance to the MRD science community. To that end, we performed preliminary collaborative experiments between NASA, NCMR, and New Mexico Resonance in the high field NMR set up at New Mexico Resonance to track wetting front dynamics in foams under gravity. The experiments were done in a 30 cm, 1.9T Oxford magnet with a TECMAG Libra spectrometer (Tecmag, Inc., Houston, TX). We used two different imaging strategies depending on whether the water in the foam sample was static or moving. Stationary water distributions were imaged with the standard Fourier imaging method, as used in medical MRI, in which data are acquired from all parts of the region of interest at all times and Fourier transformed into a static spatial image.

  14. Methods and apparatus for measurement of electronic properties of geological formations through borehole casing

    DOEpatents

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

  15. Line spread instrumentation for propagation measurements

    NASA Technical Reports Server (NTRS)

    Bailey, W. H., Jr.

    1980-01-01

    A line spread device capable of yielding direct measure of a laser beam's line spread function (LSF) was developed and employed in propagation tests conducted in a wind tunnel to examine optimal acoustical suppression techniques for laser cavities exposed to simulated aircraft aerodynamic environments. Measurements were made on various aerodynamic fences and cavity air injection techniques that effect the LSF of a propagating laser. Using the quiescent tunnel as a control, the relative effect of each technique on laser beam quality was determined. The optical instrument employed enabled the comparison of relative beam intensity for each fence or mass injection. It was found that fence height had little effect on beam quality but fence porosity had a marked effect, i.e., 58% porosity alleviated cavity resonance and degraded the beam the least. Mass injection had little effect on the beam LSF. The use of a direct LSF measuring device proved to be a viable means of determining aerodynamic seeing qualities of flow fields.

  16. Optical versus tactile geometry measurement: alternatives or counterparts

    NASA Astrophysics Data System (ADS)

    Lehmann, Peter

    2003-05-01

    This contribution deals with measuring strategies and methods for the determination of several geometrical features, covering the surface micro-topography and the form of mechanical objects. The measuring principles used in optical surface metrology include optical focusing profilers, confocal point measuring and areal measuring sensors as well as interferometrical principles such as white light interferometry and speckle techniques. In comparison with stylus instruments optical techniques provide certain advantages such as a fast data acquisition, in-process applicability or contactless measurement. However, the frequency response characteristics of optical and tactile measurement differ significantly. In addition, optical sensors are commonly more influenced by critical geometrical conditions and optical properties of an object. For precise form measurement mechanical instruments dominate till now. One reason for this may be, that commonly the complete 360 degrees geometry of the measuring object has to be analyzed. Another point is that optical principles such as form measuring interferometry fail in cases of complex object geometry or rougher object surfaces. Other methods, e.g. fringe projection or digital holography, till now do not meet the accuracy demands of precision engineered workpieces. Hence, a combination of mechanical concepts and optical sensors represents an interesting potential for current and future measuring tasks, which require high accuracy and maximum flexibility.

  17. Subsurface Scattered Photons: Friend or Foe? Improving visible light laser altimeter elevation estimates, and measuring surface properties using subsurface scattered photons

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Kurtz, N. T.; Neumann, T.; Cook, W. B.; Markus, T.

    2016-12-01

    Photon counting laser altimeters such as MABEL (Multiple Altimeter Beam Experimental Lidar) - a single photon counting simulator for ATLAS (Advanced Topographical Laser Altimeter System) - use individual photons with visible wavelengths to measure their range to target surfaces. ATLAS, the sole instrument on NASA's upcoming ICESat-2 mission, will provide scientists a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Precise calibration of these instruments is needed to understand rapidly changing parameters such as sea ice freeboard, and to measure optical properties of surfaces like snow covered ice sheets using subsurface scattered photons. Photons that travel through snow, ice, or water before scattering back to an altimeter receiving system travel farther than photons taking the shortest path between the observatory and the target of interest. These delayed photons produce a negative elevation bias relative to photons scattered directly off these surfaces. We use laboratory measurements of snow surfaces using a flight-tested laser altimeter (MABEL), and Monte Carlo simulations of backscattered photons from snow to estimate elevation biases from subsurface scattered photons. We also use these techniques to demonstrate the ability to retrieve snow surface properties like snow grain size.

  18. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

    National Institute of Standards and Technology Data Gateway

    SRD 23 NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) (PC database for purchase)   NIST 23 contains revised data in a Windows version of the database, including 105 pure fluids and allowing mixtures of up to 20 components. The fluids include the environmentally acceptable HFCs, traditional HFCs and CFCs and 'natural' refrigerants like ammonia

  19. Property Changes in Aqueous Solutions due to Surfactant Treatment of PCE: Implications to Geophysical Measurements

    NASA Astrophysics Data System (ADS)

    Werkema, D. D.

    2007-12-01

    the best suited to measure SEAR alterations in the subsurface because the conductivity of the pore fluid has the largest relative change. This research has provided predictive models for alterations in the physicochemical properties of the pore fluid to SEAR of PCE. Future investigations should address the contribution of the solid matrix in the subsurface and the solid-fluid interaction during SEAR of PCE contamination. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.

  20. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    PubMed

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  1. PROMs for pain in adult cancer patients: a systematic review of measurement properties.

    PubMed

    Abahussin, Asma A; West, Robert M; Wong, David C; Ziegler, Lucy E

    2018-05-17

    Pain is one of the most devastating symptoms for cancer patients. One-third of patients who experience pain do not receive effective treatment. A key barrier to effective pain management is lack of routine measurement and monitoring of pain. Patient-Reported Outcome Measures (PROMs) are recommended for measuring cancer pain. However, evidence to guide the selection of the most appropriate measure to identify and monitor cancer pain is limited. A systematic review of measurement properties of PROMs for pain in cancer patients is needed to identify the best validated measure for adoption to an electronic platform. Systematically review measurement properties of PROMs used for adult cancer patients to measure pain and, as a secondary goal, investigate the evidence of validated mobile health (mHealth) applications used to measure pain (registration number: CRD42017065575). Medline, EMBASE and CINAHL were systematically searched in March 2018 for studies examining measurement properties for PROMs for pain in adult cancer patients. Both of the methodological quality of the studies and their results were appraised using the COSMIN checklist and specific measurement properties criteria respectively. Sixteen studies evaluating eight instruments were included. No studies using a PROM in a mHealth application were identified. The methodological quality of the measurement properties ranged between poor and fair. No instrument showed strong positive evidence for all the evaluated measurement properties. Based on the available evidence, the Brief Pain Inventory-Short Form (BPI-SF) had the strongest evidence to support its selection for the measurement of cancer pain. The BPI-SF was the best performing measure across all proprieties evaluated through COSMIN. Better quality validation studies of PROMs for cancer pain are needed to explore the full range of measurement properties. Utilising mHealth applications for measuring pain for cancer patients is an innovative approach worth

  2. Is the Scale for Measuring Motivational Interviewing Skills a valid and reliable instrument for measuring the primary care professionals motivational skills?: EVEM study protocol.

    PubMed

    Pérula, Luis Á; Campiñez, Manuel; Bosch, Josep M; Barragán Brun, Nieves; Arboniés, Juan C; Bóveda Fontán, Julia; Martín Alvarez, Remedios; Prados, Jose A; Martín-Rioboó, Enrique; Massons, Josep; Criado, Margarita; Fernández, José Á; Parras, Juan M; Ruiz-Moral, Roger; Novo, Jesús M

    2012-11-22

    Lifestyle is one of the main determinants of people's health. It is essential to find the most effective prevention strategies to be used to encourage behavioral changes in their patients. Many theories are available that explain change or adherence to specific health behaviors in subjects. In this sense the named Motivational Interviewing has increasingly gained relevance. Few well-validated instruments are available for measuring doctors' communication skills, and more specifically the Motivational Interviewing. The hypothesis of this study is that the Scale for Measuring Motivational Interviewing Skills (EVEM questionnaire) is a valid and reliable instrument for measuring the primary care professionals skills to get behavior change in patients. To test the hypothesis we have designed a prospective, observational, multi-center study to validate a measuring instrument. - Thirty-two primary care centers in Spain. -Sampling and Size: a) face and consensual validity: A group composed of 15 experts in Motivational Interviewing. b) Assessment of the psychometric properties of the scale; 50 physician- patient encounters will be videoed; a total of 162 interviews will be conducted with six standardized patients, and another 200 interviews will be conducted with 50 real patients (n=362). Four physicians will be specially trained to assess 30 interviews randomly selected to test the scale reproducibility. -Measurements for to test the hypothesis: a) Face validity: development of a draft questionnaire based on a theoretical model, by using Delphi-type methodology with experts. b) Scale psychometric properties: intraobservers will evaluate video recorded interviews: content-scalability validity (Exploratory Factor Analysis), internal consistency (Cronbach alpha), intra-/inter-observer reliability (Kappa index, intraclass correlation coefficient, Bland & Altman methodology), generalizability, construct validity and sensitivity to change (Pearson product-moment correlation

  3. Is the Scale for Measuring Motivational Interviewing Skills a valid and reliable instrument for measuring the primary care professionals motivational skills?: EVEM study protocol

    PubMed Central

    2012-01-01

    Background Lifestyle is one of the main determinants of people’s health. It is essential to find the most effective prevention strategies to be used to encourage behavioral changes in their patients. Many theories are available that explain change or adherence to specific health behaviors in subjects. In this sense the named Motivational Interviewing has increasingly gained relevance. Few well-validated instruments are available for measuring doctors’ communication skills, and more specifically the Motivational Interviewing. Methods/Design The hypothesis of this study is that the Scale for Measuring Motivational Interviewing Skills (EVEM questionnaire) is a valid and reliable instrument for measuring the primary care professionals skills to get behavior change in patients. To test the hypothesis we have designed a prospective, observational, multi-center study to validate a measuring instrument. –Scope: Thirty-two primary care centers in Spain. -Sampling and Size: a) face and consensual validity: A group composed of 15 experts in Motivational Interviewing. b) Assessment of the psychometric properties of the scale; 50 physician- patient encounters will be videoed; a total of 162 interviews will be conducted with six standardized patients, and another 200 interviews will be conducted with 50 real patients (n=362). Four physicians will be specially trained to assess 30 interviews randomly selected to test the scale reproducibility. -Measurements for to test the hypothesis: a) Face validity: development of a draft questionnaire based on a theoretical model, by using Delphi-type methodology with experts. b) Scale psychometric properties: intraobservers will evaluate video recorded interviews: content-scalability validity (Exploratory Factor Analysis), internal consistency (Cronbach alpha), intra-/inter-observer reliability (Kappa index, intraclass correlation coefficient, Bland & Altman methodology), generalizability, construct validity and sensitivity to change

  4. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  5. [Measurement properties of self-report questionnaires published in Korean nursing journals].

    PubMed

    Lee, Eun-Hyun; Kim, Chun-Ja; Kim, Eun Jung; Chae, Hyun-Ju; Cho, Soo-Yeon

    2013-02-01

    The purpose of this study was to evaluate measurement properties of self-report questionnaires for studies published in Korean nursing journals. Of 424 Korean nursing articles initially identified, 168 articles met the inclusion criteria. The methodological quality of the measurements used in the studies and interpretability were assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. It consists of items on internal consistency, reliability, measurement error, content validity, construct validity including structural validity, hypothesis testing, cross-cultural validity, and criterion validity, and responsiveness. For each item of the COSMIN checklist, measurement properties are rated on a four-point scale: excellent, good, fair, and poor. Each measurement property is scored with worst score counts. All articles used the classical test theory for measurement properties. Internal consistency (72.6%), construct validity (56.5%), and content validity (38.2%) were most frequently reported properties being rated as 'excellent' by COSMIN checklist, whereas other measurement properties were rarely reported. A systematic review of measurement properties including interpretability of most instruments warrants further research and nursing-focused checklists assessing measurement properties should be developed to facilitate intervention outcomes across Korean studies.

  6. Comparative measurements using different particle size instruments

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    This paper discusses the measurement and comparison of particle size and velocity measurements in sprays. The general nature of sprays and the development of standard, consistent research sprays are described. The instruments considered in this paper are: pulsed laser photography, holography, television, and cinematography; laser anemometry and interferometry using visibility, peak amplitude, and intensity ratioing; and laser diffraction. Calibration is by graticule, reticle, powders with known size distributions in liquid cells, monosize sprays, and, eventually, standard sprays. Statistical analyses including spatial and temporal long-time averaging as well as high-frequency response time histories with conditional sampling are examined. Previous attempts at comparing instruments, the making of simultaneous or consecutive measurements with similar types and different types of imaging, interferometric, and diffraction instruments are reviewed. A program of calibration and experiments for comparing and assessing different instruments is presented.

  7. Microfluidic-based Broadband Measurements of Fluid Permittivity and Permeability to 100 GHz

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.

    This dissertation concerns the development of unique microfluidic microwave devices and associated microwave calibrations to quantitatively extract the broadband permittivity and permeability of fluids between 100 kHz and 110 GHz. The devices presented here consist of SU-8- and PDMS-based microfluidic channels integrated lithographically with coplanar waveguides (CPWs), measured via an external vector network analyzer (VNA). By applying our hybrid set of microwave calibrations to the raw data we extract distributed circuit parameters, representative of the electromagnetic response of the microfluidic channel. We then correlate these parameters to the permittivity and permeability of the fluid within the channels. We are primarily focused on developing devices, calibrations, and analyses to characterize various chemical and biological systems. The small fluid volumes and overall scale of our devices lends the technique to point-of-care blood and cell analysis, as well as to the analysis of high-value chemicals. Broadband microwave microfluidics is sensitive to three primary categories of phenomena: Ionic, dipolar, and magnetic resonances. All three can occur in complex fluids such as blood, proteins and particle suspensions. In order to make quantitative measurements, we need to be able to model and separate all three types of responses. Here we first measure saline solutions (NaCl and water) as an ideal system to better understanding both the ionic and dipolar response. Specifically, we are targeting the electrical double-layer (EDL) response, an ionic effect, which dominates over the intrinsic fluid response at lower frequencies. We have found that the EDL response for saline obeys a strict Debye-type relaxation model, the frequency response of which is dependent solely on the conductivity of the solution. To develop a better understanding of the magnetic response, we first measure magnetic nanoparticles; showing it is possible to detect the magnetic resonances of

  8. A Differential Pressure Instrument with Wireless Telemetry for In-Situ Measurement of Fluid Flow across Sediment-Water Boundaries

    PubMed Central

    Gardner, Alan T.; Karam, Hanan N.; Mulligan, Ann E.; Harvey, Charles F.; Hammar, Terence R.; Hemond, Harold F.

    2009-01-01

    An instrument has been built to carry out continuous in-situ measurement of small differences in water pressure, conductivity and temperature, in natural surface water and groundwater systems. A low-cost data telemetry system provides data on shore in real time if desired. The immediate purpose of measurements by this device is to continuously infer fluxes of water across the sediment-water interface in a complex estuarine system; however, direct application to assessment of sediment-water fluxes in rivers, lakes, and other systems is also possible. Key objectives of the design include both low cost, and accuracy of the order of ±0.5 mm H2O in measured head difference between the instrument's two pressure ports. These objectives have been met, although a revision to the design of one component was found to be necessary. Deployments of up to nine months, and wireless range in excess of 300 m have been demonstrated. PMID:22389608

  9. Direct measurement of shear properties of microfibers

    NASA Astrophysics Data System (ADS)

    Behlow, H.; Saini, D.; Oliveira, L.; Durham, L.; Simpson, J.; Serkiz, S. M.; Skove, M. J.; Rao, A. M.

    2014-09-01

    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar® 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

  10. Direct measurement of shear properties of microfibers.

    PubMed

    Behlow, H; Saini, D; Oliveira, L; Durham, L; Simpson, J; Serkiz, S M; Skove, M J; Rao, A M

    2014-09-01

    As novel fibers with enhanced mechanical properties continue to be synthesized and developed, the ability to easily and accurately characterize these materials becomes increasingly important. Here we present a design for an inexpensive tabletop instrument to measure shear modulus (G) and other longitudinal shear properties of a micrometer-sized monofilament fiber sample, such as nonlinearities and hysteresis. This automated system applies twist to the sample and measures the resulting torque using a sensitive optical detector that tracks a torsion reference. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers, for which G is well known. Two industrially important fibers, IM7 carbon fiber and Kevlar(®) 119, were also characterized with this system and were found to have G = 16.5 ± 2.1 and 2.42 ± 0.32 GPa, respectively.

  11. Do self-report instruments allow meaningful comparisons across diverse population groups? Testing measurement invariance using the confirmatory factor analysis framework.

    PubMed

    Gregorich, Steven E

    2006-11-01

    Comparative public health research makes wide use of self-report instruments. For example, research identifying and explaining health disparities across demographic strata may seek to understand the health effects of patient attitudes or private behaviors. Such personal attributes are difficult or impossible to observe directly and are often best measured by self-reports. Defensible use of self-reports in quantitative comparative research requires not only that the measured constructs have the same meaning across groups, but also that group comparisons of sample estimates (eg, means and variances) reflect true group differences and are not contaminated by group-specific attributes that are unrelated to the construct of interest. Evidence for these desirable properties of measurement instruments can be established within the confirmatory factor analysis (CFA) framework; a nested hierarchy of hypotheses is tested that addresses the cross-group invariance of the instrument's psychometric properties. By name, these hypotheses include configural, metric (or pattern), strong (or scalar), and strict factorial invariance. The CFA model and each of these hypotheses are described in nontechnical language. A worked example and technical appendices are included.

  12. Measuring and characterizing beat phenomena with a smartphone

    NASA Astrophysics Data System (ADS)

    Osorio, M.; Pereyra, C. J.; Gau, D. L.; Laguarda, A.

    2018-03-01

    Nowadays, smartphones are in everyone’s life. Apart from being excellent tools for work and communication, they can also be used to perform several measurements of simple physical magnitudes, serving as a mobile and inexpensive laboratory, ideal for use physics lectures in high schools or universities. In this article, we use a smartphone to analyse the acoustic beat phenomena by using a simple experimental setup, which can complement lessons in the classroom. The beats were created by the superposition of the waves generated by two tuning forks, with their natural frequencies previously characterized using different applications. After the characterization, we recorded the beats and analysed the oscillations in time and frequency.

  13. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  14. Investigation of converging and collimated beam instrument geometry on specular gloss measurements

    NASA Astrophysics Data System (ADS)

    Zwinkels, Joanne C.; Côté, Éric; Morgan, John

    2018-02-01

    Specular gloss is an important appearance property of a wide variety of manufactured goods. Depending upon the application, e.g. paints, paper, ceramics, etc. different instrument designs and measurement geometries are specified in standard test methods. For a given specular angle, these instrument designs can be broadly classified as converging beam (TAPPI method) and collimated beam (DIN method). In recent comparisons of specular gloss measurements using different glossmeters, very large standard deviations have been reported, well exceeding the manufacturers claims. In this paper, we investigate the effect of instrument beam geometry on gloss measurements. These results indicate that this difference in beam geometry can give the magnitude of gloss differences reported in these comparisons and highlights the importance of educating the user community of best measurement practices and obtaining appropriate traceability for their glossmeters.

  15. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  16. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed

  17. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  18. Evaluating measurement uncertainty in fluid phase equilibrium calculations

    NASA Astrophysics Data System (ADS)

    van der Veen, Adriaan M. H.

    2018-04-01

    The evaluation of measurement uncertainty in accordance with the ‘Guide to the expression of uncertainty in measurement’ (GUM) has not yet become widespread in physical chemistry. With only the law of the propagation of uncertainty from the GUM, many of these uncertainty evaluations would be cumbersome, as models are often non-linear and require iterative calculations. The methods from GUM supplements 1 and 2 enable the propagation of uncertainties under most circumstances. Experimental data in physical chemistry are used, for example, to derive reference property data and support trade—all applications where measurement uncertainty plays an important role. This paper aims to outline how the methods for evaluating and propagating uncertainty can be applied to some specific cases with a wide impact: deriving reference data from vapour pressure data, a flash calculation, and the use of an equation-of-state to predict the properties of both phases in a vapour-liquid equilibrium. The three uncertainty evaluations demonstrate that the methods of GUM and its supplements are a versatile toolbox that enable us to evaluate the measurement uncertainty of physical chemical measurements, including the derivation of reference data, such as the equilibrium thermodynamical properties of fluids.

  19. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  20. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  1. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  2. Densimetry for the Quantification of Sorption Phenomena on Nonporous Media Near the Dew Point of Fluid Mixtures.

    PubMed

    Richter, Markus; McLinden, Mark O

    2017-07-21

    Phase equilibria of fluid mixtures are important in numerous industrial applications and are, thus, a major focus of thermophysical property research. Improved data, particularly along the dew line, are needed to improve model predictions. Here we present experimental results utilizing highly accurate densimetry to quantify the effects of sorption and capillary condensation, which exert a distorting influence on measured properties near the dew line. We investigate the (pressure, density, temperature, composition) behaviour of binary (CH 4  + C 3 H 8 ) and (Ar + CO 2 ) mixtures over the temperature range from (248.15 to 273.15) K starting at low pressures and increasing in pressure towards the dew point along isotherms. Three distinct regions are observed: (1) minor sorption effects in micropores at low pressures; (2) capillary condensation followed by wetting in macro-scale surface scratches beginning approximately 2% below the dew-point pressure; (3) bulk condensation. We hypothesize that the true dew point lies within the second region.

  3. Trajectory-capture cell instrumentation for measurement of dust particle mass, velocity and trajectory, and particle capture

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Tuzzolino, A. J.

    1989-01-01

    The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.

  4. Laboratory Measurements of Cometary Photochemical Phenomena.

    DTIC Science & Technology

    1981-12-04

    PROGFIAM ELEMENT.PROJECT TASK Laser .Chemistry Division AREA & WORK UNIT NUMaZRS Department of Chemistry - Howard University NR.051-733 Wash’ ngtQn, D. C...William M. Jackson Laser Chemistry Division Department of Chemistry Howard University .Washington, D. C. 20059 / Published by Jet Propulsion Laboratory...MEASUREMENTS OF COMETARY PHOTOCHEMICAL PHENOMENA William M. Jackson Howard University Washington, DC 20059 Abstract Laboratory experiments are described

  5. Introduction to Instrumentation. Teacher Edition.

    ERIC Educational Resources Information Center

    Brown, A. O., III

    This module contains instructional materials on instrumentation to help teachers train students in the job skills they will need as beginning instrumentation technicians. The module addresses the nature of accessing, measuring, and controlling phenomena such as level, flow, pressure, and temperature. Students are introduced to the devices and…

  6. Magnetic properties of Magneto-Rheological fluids with uniformly dispersed Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Poddar, P.; Wilson, J. L.; Srikanth, H.; Wereley, N. M.; Radhakrishnan, R.

    2003-03-01

    A systematic study of the magnetic properties of MR fluids containing micron-size and nano-size iron particles is presented. Nano-particles with a size range of 15-20 nm were prepared using microwave plasma technique. The MR-fluids were prepared with hydraulic oil as the carrier liquid and lecithin as an effective surfactant medium that promotes uniform particle dispersion. Static and dynamic magnetic measurements clearly indicate that the replacement of the micron-size particles by nano-particles results in a much better suspension. The magnetization in the nanoparticulate MR fluid is dominated by superparamagnetic particle response. In addition, collective behavior due to strong dipolar interactions associated with chaining of the particles in the field direction was also observed. A sharp drop in susceptibility at 250K was noted and this is ascribed to the carrier fluid freezing transition. We also present optical micrographs of showing chain formation and rheological performance as measured by field-dependent yield stress experiments. Sharper magnetic response to applied fields and lower field requirement for saturation make nano-particles attractive candidates for improved MR-fluid based sensors, actuators and microfluidics for clinical diagnostics. HS acknowledges support from NSF through grants ECS-0140047 and ECS-0102622. NMW and RR acknowledge support from NSF grant DMI-0110447.

  7. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  8. Psychometric Evaluation of an Instrument for Measuring Organizational Climate for Quality: Evidence From a National Sample of Infection Preventionists.

    PubMed

    Pogorzelska-Maziarz, Monika; Nembhard, Ingrid M; Schnall, Rebecca; Nelson, Shanelle; Stone, Patricia W

    2016-09-01

    In recent years, there has been increased interest in measuring the climate for infection prevention; however, reliable and valid instruments are lacking. This study tested the psychometric properties of the Leading a Culture of Quality for Infection Prevention (LCQ-IP) instrument measuring the infection prevention climate in a sample of 972 infection preventionists from acute care hospitals. An exploratory principal component analysis showed that the instrument had structural validity and captured 4 factors related to the climate for infection prevention: Psychological Safety, Prioritization of Quality, Supportive Work Environment, and Improvement Orientation. LCQ-IP exhibited excellent internal consistency, with a Cronbach α of .926. Criterion validity was supported with overall LCQ-IP scores, increasing with the number of evidence-based prevention policies in place (P = .047). This psychometrically sound instrument may be helpful to researchers and providers in assessing climate for quality related to infection prevention. © The Author(s) 2015.

  9. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  10. Optical radiation measurements and instrumentation.

    PubMed

    Andersen, F A; Landry, R J

    1981-07-01

    Accurate measurement of optical radiation is required when sources of optical radiation are used in biological research. Such measurement of broad-band noncoherent optical radiations usually must be performed by a highly trained specialist using sophisticated, complex, and expensive instruments. Presentation of the results of such measurement requires correct use of quantities and units with which many biological researchers are unfamiliar. The measurement process, quantities, units, measurement systems and instruments, and uncertainties associated with optical radiation measurements are reviewed in this paper. A conventional technique for evaluating the potential hazards associated with broad-band sources of optical radiation and a spectroradiometer developed to measure spectral quantities is described. A new prototype ultraviolet radiation hazard monitor which has recently been developed is also presented. This new instrument utilizes a spectrograph and a spectral weighting mechanical mask and provides a direct reading of the effective irradiance for wavelengths less than 315 nm.

  11. Mechanical Properties of the Surface Material of Comet 67P/Churyumov-Gerasimenko Measured By the Casse Instrument Onboard the Philae Lander

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Fischer, H. H.; Seidensticker, K. J.; Arnold, W.; Faber, C.; Möhlmann, D.; Thiel, K.

    2014-12-01

    Satellite remote sensing of ocean color is a critical tool for assessing the productivity of marine ecosystems and monitoring changes resulting from climatic or environmental influences. Yet water-leaving radiance comprises less than 10% of the signal measured from space, making correction for absorption and scattering by the intervening atmosphere imperative. Traditional ocean color retrieval algorithms utilize a standard set of aerosol models and the assumption of negligible water-leaving radiance in the near-infrared. Modern improvements have been developed to handle absorbing aerosols such as urban particulates in coastal areas and transported desert dust over the open ocean, where ocean fertilization can impact biological productivity at the base of the marine food chain. Even so, imperfect knowledge of the absorbing aerosol optical properties or their height distribution results in well-documented sources of error. In the UV, the problem of UV-enhanced absorption and nonsphericity of certain aerosol types are amplified due to the increased Rayleigh and aerosol optical depth, especially at off-nadir view angles. Multi-angle spectro-polarimetric measurements have been advocated as an additional tool to better understand and retrieve the aerosol properties needed for atmospheric correction for ocean color retrievals. The central concern of the work to be described is the assessment of the effects of absorbing aerosol properties on water leaving radiance measurement uncertainty by neglecting UV-enhanced absorption of carbonaceous particles and by not accounting for dust nonsphericity. In addition, we evaluate the polarimetric sensitivity of absorbing aerosol properties in light of measurement uncertainties achievable for the next generation of multi-angle polarimetric imaging instruments, and demonstrate advantages and disadvantages of wavelength selection in the UV/VNIR range. The phase matrices for the spherical smoke particles were calculated using a standard

  12. Nanopore Confinement of C-O-H Fluids Relevant to Subsurface Energy Systems

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2016-12-01

    Complex intermolecular interactions of C-O-H fluids (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these fluids encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-fluid interfaces. The size, distribution and connectivity of these confined geometries dictate how fluids migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H fluids in nanpores. Key results include: (1) The addition of a second carbon-bearing phase or water has a profound effect on the competition for sorption sites, phase chemistry and the dynamical properties of all phases present in the pore. (2) Low solubility phases such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the hydrated pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the fluids in the

  13. Instruments measuring perceived racism/racial discrimination: review and critique of factor analytic techniques.

    PubMed

    Atkins, Rahshida

    2014-01-01

    Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis.

  14. INSTRUMENTS MEASURING PERCEIVED RACISM/RACIAL DISCRIMINATION: REVIEW AND CRITIQUE OF FACTOR ANALYTIC TECHNIQUES

    PubMed Central

    Atkins, Rahshida

    2015-01-01

    Several compendiums of instruments that measure perceived racism and/or discrimination are present in the literature. Other works have reviewed the psychometric properties of these instruments in terms of validity and reliability and have indicated if the instrument was factor analyzed. However, little attention has been given to the quality of the factor analysis performed. The aim of this study was to evaluate the exploratory factor analyses done on instruments measuring perceived racism/racial discrimination using guidelines from experts in psychometric theory. The techniques used for factor analysis were reviewed and critiqued and the adequacy of reporting was evaluated. Internet search engines and four electronic abstract databases were used to identify 16 relevant instruments that met the inclusion/exclusion criteria. Principal component analysis was the most frequent method of extraction (81%). Sample sizes were adequate for factor analysis in 81 percent of studies. The majority of studies reported appropriate criteria for the acceptance of un-rotated factors (81%) and justified the rotation method (75%). Exactly 94 percent of studies reported partially acceptable criteria for the acceptance of rotated factors. The majority of articles (69%) reported adequate coefficient alphas for the resultant subscales. In 81 percent of the studies, the conceptualized dimensions were supported by factor analysis. PMID:25626225

  15. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  16. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS

  17. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  18. The numerical modelling of mixing phenomena of nanofluids in passive micromixers

    NASA Astrophysics Data System (ADS)

    Milotin, R.; Lelea, D.

    2018-01-01

    The paper deals with the rapid mixing phenomena in micro-mixing devices with four tangential injections and converging tube, considering nanoparticles and water as the base fluid. Several parameters like Reynolds number (Re = 6 - 284) or fluid temperature are considered in order to optimize the process and obtain fundamental insight in mixing phenomena. The set of partial differential equations is considered based on conservation of momentum and species. Commercial package software Ansys-Fluent is used for solution of differential equations, based on a finite volume method. The results reveal that mixing index and mixing process is strongly dependent both on Reynolds number and heat flux. Moreover there is a certain Reynolds number when flow instabilities are generated that intensify the mixing process due to the tangential injections of the fluids.

  19. Corneal biomechanical properties in different ocular conditions and new measurement techniques.

    PubMed

    Garcia-Porta, Nery; Fernandes, Paulo; Queiros, Antonio; Salgado-Borges, Jose; Parafita-Mato, Manuel; González-Méijome, Jose Manuel

    2014-01-01

    Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties.

  20. Corneal Biomechanical Properties in Different Ocular Conditions and New Measurement Techniques

    PubMed Central

    Garcia-Porta, Nery; Salgado-Borges, Jose; Parafita-Mato, Manuel; González-Méijome, Jose Manuel

    2014-01-01

    Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties. PMID:24729900

  1. Measuring spirituality and religiosity in clinical research: a systematic review of instruments available in the Portuguese language.

    PubMed

    Lucchetti, Giancarlo; Lucchetti, Alessandra Lamas Granero; Vallada, Homero

    2013-01-01

    Despite numerous spirituality and/or religiosity (S/R) measurement tools for use in research worldwide, there is little information on S/R instruments in the Portuguese language. The aim of the present study was to map out the S/R scales available for research in the Portuguese language. Systematic review of studies found in databases. A systematic review was conducted in three phases. Phases 1 and 2: articles in Portuguese, Spanish and English, published up to November 2011, dealing with the Portuguese translation and/or validation of S/R measurement tools for clinical research, were selected from six databases. Phase 3: the instruments were grouped according to authorship, cross-cultural adaptation, internal consistency, concurrent and discriminative validity and test-retest procedures. Twenty instruments were found. Forty-five percent of these evaluated religiosity, 40% spirituality, 10% religious/spiritual coping and 5% S/R. Among these, 90% had been produced in (n = 3) or translated to (n = 15) Brazilian Portuguese and two (10%) solely to European Portuguese. Nevertheless, the majority of the instruments had not undergone in-depth psychometric analysis. Only 40% of the instruments presented concurrent validity, 45% discriminative validity and 15% a test-retest procedure. The characteristics of each instrument were analyzed separately, yielding advantages, disadvantages and psychometric properties. Currently, 20 instruments for measuring S/R are available in the Portuguese language. Most have been translated (n = 15) or developed (n = 3) in Brazil and present good internal consistency. Nevertheless, few instruments have been assessed regarding all their psychometric qualities.

  2. Fluid flow measurements by means of vibration monitoring

    NASA Astrophysics Data System (ADS)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  3. [Development of opened instrument for generating and measuring physiological signal].

    PubMed

    Chen, Longcong; Hu, Guohu; Gao, Bin

    2004-12-01

    An opened instrument with liquid crystal display (LCD) for generating and measuring physiological signal is introduced in this paper. Based on a single-chip microcomputer. the instrument uses the technique of LCD screen to display signal wave and information, and it realizes man-machine interaction by keyboard. This instrument can produce not only defined signal in common use by utilizing important saved data and relevant arithmetic, but also user-defined signal. Therefore, it is open to produce signal. In addition, this instrument has strong extension because of its modularized design as computer, which has much function such as displaying, measuring and saving physiological signal, and many features such as low power consumption, small volume, low cost and portability. Hence this instrument is convenient for experiment teaching, clinic examining, maintaining of medical instrument.

  4. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  5. Wireless Fluid-Level Measurement System Equips Boat Owners

    NASA Technical Reports Server (NTRS)

    2008-01-01

    While developing a measurement acquisition system to be used to retrofit aging aircraft with vehicle health monitoring capabilities, Langley Research Center developed an innovative wireless fluid-level measurement system. The NASA technology was of interest to Tidewater Sensors LLC, of Newport News, Virginia, because of its many advantages over conventional fuel management systems, including its ability to provide an accurate measurement of volume while a boat is experiencing any rocking motion due to waves or people moving about on the boat. These advantages led the company to license this novel fluid-level measurement system from NASA for marine applications.

  6. [Psychometric properties of Q-DIO, an instrument to measure the quality of documented nursing diagnoses, interventions and outcomes].

    PubMed

    Müller-Staub, Maria; Lunney, Margaret; Lavin, Mary Ann; Needham, Ian; Odenbreit, Matthias; van Achterberg, Theo

    2010-04-01

    The instrument Q-DIO was developed in the years 2005 till 2006 to measure the quality of documented nursing diagnoses, interventions, and nursing sensitive patient outcomes. Testing psychometric properties of the Q-DIO (Quality of nursing Diagnoses, Interventions and Outcomes.) was the study aim. Instrument testing included internal consistency, test-retest reliability, interrater reliability, item analyses, and an assessment of the objectivity. To render variation in scores, a random strata sample of 60 nursing documentations was drawn. The strata represented 30 nursing documentations with and 30 without application of theory based, standardised nursing language. Internal consistency of the subscale nursing diagnoses as process showed Cronbach's Alpha 0.83 [0.78, 0.88]; nursing diagnoses as product 0.98 [0.94, 0.99]; nursing interventions 0.90 [0.85, 0.94]; and nursing-sensitive patient outcomes 0.99 [0.95, 0.99]. With Cohen's Kappa of 0.95, the intrarater reliability was good. The interrater reliability showed a Kappa of 0.94 [0.90, 0.96]. Item analyses confirmed the fulfilment of criteria for degree of difficulty and discriminative validity of the items. In this study, Q-DIO has shown to be a reliable instrument. It allows measuring the documented quality of nursing diagnoses, interventions and outcomes with and without implementation of theory based, standardised nursing languages. Studies for further testing of Q-DIO in other settings are recommended. The results implicitly support the use of nursing classifications such as NANDA, NIC and NOC.

  7. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  8. Structural characterization/correlation of calorimetric properties of coal fluids: Final report, September 1, 1985--August 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal fluids and their molecular functional group composition. Coal fluid samples which have had their calorimetric properties measured are characterized using proton NMR, IR, and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal fluid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for ideal gas heat capacities are then examined withinmore » an existing equation of state methodology to determine an optimal correlation. The optimal correlation for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model is examined. 8 refs.« less

  9. Quality of life instruments used in mental health research: properties and utilization.

    PubMed

    Prigent, Amélie; Simon, Sandrine; Durand-Zaleski, Isabelle; Leboyer, Marion; Chevreul, Karine

    2014-01-30

    Quality of life (QoL) assessment is increasingly used in mental health. Multiple instruments exist, but the conditions for choosing one instrument over another for purposes of a specific study are not clear. We performed a systematic review to identify the QoL instruments used in mental health. The instruments were systematically described regarding their intrinsic properties (e.g., generic v. disease-specific) and their characteristics of utilization in studies (e.g., study objectives). Using cluster analyses, we investigated the existence of similar instruments with respect to each of these sets of characteristics and studied potential links between instruments' intrinsic properties and their characteristics of utilization. We included 149 studies in which 56 distinct instruments were used. Similarities were found among instruments in terms of their intrinsic properties as well as their characteristics of utilization, leading to the construction of four clusters of instruments in each case. However, no relevant links were identified between instruments' intrinsic properties and their characteristics of utilization, suggesting that the choice of QoL instruments did not depend on their properties. A consensus about common QoL instruments must be reached to facilitate the choice of instruments, the comparison of results and thus to have an impact on clinical and policy decision-making. © 2013 Published by Elsevier Ireland Ltd.

  10. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  11. Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.

    2002-01-01

    An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that is in the presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.

  12. The Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments (CINDI): Design, Execution, and Early Results

    NASA Technical Reports Server (NTRS)

    Piters, Ankie; Boersma, K.F.; Kroon, M.; Hains, J. C.; Roozendael, M. Van; Wittrock, F.; Abuhassan, N.; Adams, C.; Akrami, M.; Allaart, M. A. F.; hide

    2012-01-01

    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX

  13. Instruments to measure social support and related constructs in pregnant adolescents: a review.

    PubMed

    Perrin, K M; McDermott, R J

    1997-01-01

    This review examines some of the key issues related to measuring social support and identifies 28 instruments which have been used in research with pregnant adolescents. The major external and internal variables that affect social support for pregnant adolescents are defined. Relevant questions are offered to guide the researcher in the choice of a social support instrument, and the 28 social support instruments are described by author, availability, length and item type, psychometric properties, and selected references and notes. Although not an exhaustive list, these 28 instruments are representative of the broad spectrum of measurement tools available which were chosen because they have been used in a variety of social support research endeavors.

  14. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  15. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  16. A Systematic Review of Primary Care Safety Climate Survey Instruments: Their Origins, Psychometric Properties, Quality, and Usage.

    PubMed

    Curran, Ciara; Lydon, Sinéad; Kelly, Maureen; Murphy, Andrew; Walsh, Chloe; OʼConnor, Paul

    2018-06-01

    Safety climate (SC) measurement is a common and feasible method of proactive safety assessment in primary care. However, there is no consensus on which instrument is "best" to use. The aim of the study was to identify the origins, psychometric properties, quality, and SC domains measured by survey instruments used to assess SC in primary care settings. Systematic searches were conducted using Medline, Embase, CINAHL, and PsycInfo in February 2016. English-language, peer-reviewed studies that reported the development and/or use of a SC survey in a primary care setting were included. Two reviewers independently extracted data (survey characteristics, origins, and psychometric properties) from studies and applied the Quality Assessment Tool for Studies with Diverse Designs to assess methodological rigour. Safety climate domains within surveys were deductively analyzed and categorized into common healthcare SC themes. Seventeen SC surveys were identified, of which 16 had been adapted from 2 main U.S. hospital-based surveys. Only 1 survey was developed de novo for a primary care setting. The quantity and quality of psychometric testing varied considerably across the surveys. Management commitment to safety was the most frequently measured SC theme (87.5%). Workload was infrequently measured (25%). Valid and reliable instruments, which are context specific to the healthcare environment for intentional use, are essential to accurately assess SC. Key recommendations include further establishing the construct and criterion-related validity of existing instruments as opposed to developing additional surveys.

  17. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  18. Adaptivity and smart algorithms for fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley

    1990-01-01

    This paper reviews new approaches in CFD which have the potential for significantly increasing current capabilities of modeling complex flow phenomena and of treating difficult problems in fluid-structure interaction. These approaches are based on the notions of adaptive methods and smart algorithms, which use instantaneous measures of the quality and other features of the numerical flowfields as a basis for making changes in the structure of the computational grid and of algorithms designed to function on the grid. The application of these new techniques to several problem classes are addressed, including problems with moving boundaries, fluid-structure interaction in high-speed turbine flows, flow in domains with receding boundaries, and related problems.

  19. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  20. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level measurement...., 1430 Broadway, New York, NY 10018. Table 1—Sound Level Corrections When Using a Type 2 (or S2A... the sound level meter or (2) the manufacturer of the microphone. The choice of both devices must be...

  1. 40 CFR 201.22 - Measurement instrumentation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Criteria § 201.22 Measurement instrumentation. (a) A sound level meter or alternate sound level measurement...., 1430 Broadway, New York, NY 10018. Table 1—Sound Level Corrections When Using a Type 2 (or S2A... the sound level meter or (2) the manufacturer of the microphone. The choice of both devices must be...

  2. Projectile Measurements and Instrumentation Laboratory Mass Property Measurements

    DTIC Science & Technology

    1974-09-01

    STATEMENT (ol III* abalrael anlarad In Block 20, II dlllaranl Irom Rmpotl) 11. SUPPLEMENTARY NOTES Available in DDC . 1». KEY WORDS fConllnu* on...FORM I JAN 73 1473 EDITION OF I NOV SB IS OBSOLETE UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Whmn Dmlm Enlmrmd) ■auHHaUi^L^u^. ^^-..-^-i... CLASSIFICATION Of THIS PAQE(Whm> Dmlm Knltrmd) Item 19 (Continued): Top Loading Balance Center of Gravity Balance Moment of Inertia Instrument

  3. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  4. Zeta Potential Measurements on Solid Surfaces for in Vitro Biomaterials Testing: Surface Charge, Reactivity Upon Contact With Fluids and Protein Absorption

    PubMed Central

    Ferraris, Sara; Cazzola, Martina; Peretti, Veronica; Stella, Barbara; Spriano, Silvia

    2018-01-01

    Surface properties of biomaterials (e.g., roughness, chemical composition, charge, wettability, and hydroxylation degree) are key features to understand and control the complex interface phenomena that happens upon contact with physiological fluids. Numerous physico-chemical techniques can be used in order to investigate in depth these crucial material features. Among them, zeta potential measurements are widely used for the characterization of colloidal suspensions, but actually poorly explored in the study of solid surfaces, even if they can give significant information about surface charge in function of pH and indirectly about surface functional groups and reactivity. The aim of the present research is application of zeta potential measurements of solid surfaces for the in vitro testing of biomaterials. In particular, bare and surface modified Ti6Al4V samples have been compared in order to evaluate their isoelectric points (IEPs), surface charge at physiological pH, in vitro bioactivity [in simulated body fluid (SBF)] and protein absorption. Zeta potential titration was demonstrated as a suitable technique for the surface characterization of surface treated Ti6Al4V substrates. Significant shift of the isoelectric point was recorded after a chemical surface treatment (because of the exposition of hydroxyl groups), SBF soaking (because of apatite precipitation IEP moves close to apatite one) and protein absorption (IEP moves close to protein ones). Moreover, the shape of the curve gives information about exposed functional groups (e.g., a plateau in the basic range appears due to the exposition of acidic OH groups and in the acidic range due to exposition of basic NH2 groups). PMID:29868575

  5. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  6. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek, E-mail: vivek.agarwal@inl.gov; Tawfik, Magdy S., E-mail: magdy.tawfik@inl.gov; Smith, James A., E-mail: james.smith@inl.gov

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failuremore » modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.« less

  7. AC instrumentation amplifier for bioimpedance measurements.

    PubMed

    Pallás-Areny, R; Webster, J G

    1993-08-01

    We analyze the input impedance and CMRR requirements for an amplifier for bioimpedance measurements when considering the capacitive components of the electrode-skin contact impedance. We describe an ac-coupled instrumentation amplifier (IA) that, in addition to fulfilling those requirements, both provides interference and noise reduction, and yields a zero phase shift over a wide frequency band without using broadband op amps.

  8. Measures of upper limb function for people with neck pain. A systematic review of measurement and practical properties.

    PubMed

    Alreni, Ahmad Salah Eldin; Harrop, Deborah; Lowe, Anna; Tanzila Potia; Kilner, Karen; McLean, Sionnadh Mairi

    2017-06-01

    There is a strong relationship between neck pain (NP) and upper limb disability (ULD). Optimal management of NP should incorporate upper limb rehabilitation and therefore include the use of an ULD measure in the assessment and management process. Clear guidance regarding the suitability of available measures does not exist. The aim of this study was to identify all available measures of ULD for populations with NP, critically evaluate their measurement properties and finally recommend a list of suitable measures. This two-phase systematic review is reported in accordance with the PRISMA statement. Phase one identified clearly reproducible measures of ULD for patients with NP. Phase two identified evidence of their measurement properties. In total, 11 papers evaluating the measurement properties of five instruments were included in this review. The instruments identified were the DASH questionnaire, the QuickDASH questionnaire, the NULI questionnaire, the SFA and the SAMP test. There was limited positive evidence of validity of the DASH, QuickDASH, NULI, SFA and SAMP. There was limited positive evidence of reliability of the NULI, SFA and SAMP. There was unknown evidence of responsiveness of the DASH and QuickDASH. Although all measures are supported by a limited amount of low quality evidence, the DASH, QuickDASH, NULI questionnaires, and the SAMP test are promising measures, but they require further robust evaluation. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. The Fluids Integrated Rack and Light Microscopy Module Integrated Capabilities

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Gati, Frank; Snead, John H.; Hill, Myron E.; Griffin, DeVon W.

    2003-01-01

    The Fluids Integrated Rack (FIR), a facility class payload, and the Light Microscopy Module (LMM), a subrack payload, are scheduled to be launched in 2005. The LMM integrated into the FIR will provide a unique platform for conducting fluids and biological experiments on ISS. The FIR is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The first payload in the FIR will be the Light Microscopy Module (LMM). The LMM is planned as a remotely controllable, automated, on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within the FIR. Key diagnostic capabilities for meeting science requirements include video microscopy to observe microscopic phenomena and dynamic interactions, interferometry to make thin film measurements with nanometer resolution, laser tweezers for particle manipulation, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure photonic properties of materials. The LMM also provides experiment sample containment for frangibles and fluids. This paper will provide a description of the current FIR and LMM designs, planned capabilities and key features. In addition a brief description of the initial five experiments planned for LMM/FIR will be provided.

  10. Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.

    2014-12-01

    There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time

  11. Measurement properties of continuous text reading performance tests.

    PubMed

    Brussee, Tamara; van Nispen, Ruth M A; van Rens, Ger H M B

    2014-11-01

    Measurement properties of tests to assess reading acuity or reading performance have not been extensively evaluated. This study aims to provide an overview of the literature on available continuous text reading tests and their measurement properties. A literature search was performed in PubMed, Embase and PsycInfo. Subsequently, information on design and content of reading tests, study design and measurement properties were extracted using consensus-based standards for selection of health measurement instruments. Quality of studies, reading tests and measurement properties were systematically assessed using pre-specified criteria. From 2334 identified articles, 20 relevant articles were found on measurement properties of three reading tests in various languages: IReST, MNread Reading Test and Radner Reading Charts. All three reading tests scored high on content validity. Reproducibility studies (repeated measurements between different testing sessions) of the IReST and MNread of commercially available reading tests in different languages were missing. The IReST scored best on inter-language comparison, the MNread scored well in repeatability studies (repeated measurements under the same conditions) and the Radner showed good reproducibility in studies. Although in daily practice there are other continuous text reading tests available meeting the criteria of this review, measurement properties were described in scientific studies for only three of them. Of the few available studies, the quality and content of study design and methodology used varied. For testing existing reading tests and the development of new ones, for example in other languages, we make several recommendations, including careful description of patient characteristics, use of objective and subjective lighting levels, good control of working distance, documentation of the number of raters and their training, careful documentation of scoring rules and the use of Bland-Altman analyses or similar for

  12. Questionnaire for measuring organisational attributes in dental-care practices: psychometric properties and test-retest reliability.

    PubMed

    Goetz, Katja; Hasse, Philipp; Szecsenyi, Joachim; Campbell, Stephen M

    2016-04-01

    The consideration of organisational aspects, such as shared goals and clear communication, within the health care team is important to ensure good quality care. In primary health care, the instrument Survey of Organizational Attributes for Primary Care (SOAPC) is available to measure organisational attributes of care. However, there is no instrument available for dental care. The aim of the present study was to investigate psychometric properties and test-retest reliability of the version of SOAPC adapted for dental care, namely the Survey of Organizational Attributes in Dental Care (SOADC). The SOADC consists of 21 items in the following four subscales: communication; decision making; stress/chaos; and history of change. Convergent construct validity was measured using the job satisfaction scale. A total of 287 dental-care practices were asked to participate in the validation study. Psychometric properties and test-retest reliability were observed. A total of 43 dental-care practices responded to the survey. At baseline, 178 dental-care staff completed the questionnaire, and 4 weeks later 138 did so. Internal consistency, measured by Cronbach's alpha, was 0.718 or higher in the subscales. The test-retest reliability for each subscale and the overall SOADC score demonstrated good correlations over the 4-week test-retest interval, except for 'history of change'. A strong correlation with the aggregated job-satisfaction scale showed high convergent construct validity of SOADC. The consideration of organisational aspects from the perspective of dental-care teams is important for providing good quality of care. The SOADC is a reliable instrument with good psychometric properties and is suitable for the evaluation of organisational attributes in dental-care practices. © 2015 FDI World Dental Federation.

  13. PREFACE: 13th International Conference on Metrology and Properties of Engineering Surfaces

    NASA Astrophysics Data System (ADS)

    Leach, Richard

    2011-08-01

    The 13th International Conference on Metrology and Properties of Engineering Surfaces focused on the progress in surface metrology, surface characterisation instrumentation and properties of engineering surfaces. The conference provided an international forum for academics, industrialists and engineers from different disciplines to meet and exchange their ideas, results and latest research. The conference was held at Twickenham Stadium, situated approximately six miles from Heathrow Airport and approximately three miles from the National Physical Laboratory (NPL). This was the thirteenth in the very successful series of conferences, which have firmly established surface topography as a new and exciting interdisciplinary field of scientific and technological studies. Scientific Themes: Surface, Micro and Nano Metrology Measurement and Instrumentation Metrology for MST Devices Freeform Surface Measurement and Characterisation Uncertainty, Traceability and Calibration AFM/SPM Metrology Tribology and Wear Phenomena Functional Applications Stylus and Optical Instruments

  14. Thermodynamic properties and static structure factor for a Yukawa fluid in the mean spherical approximation.

    PubMed

    Montes-Perez, J; Cruz-Vera, A; Herrera, J N

    2011-12-01

    This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.

  15. Meteorological Instrumentation and Measurements Open Resource Training Modules for Undergraduate and Graduate Education

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Clark, R. D.; Stevermer, A.

    2017-12-01

    The National Center for Atmospheric Research Earth Observing Laboratory, Millersville University and The COMET Program are collaborating to produce a series of nine online modules on the the topic of meteorological instrumentation and measurements. These interactive, multimedia educational modules can be integrated into undergraduate and graduate meteorology courses on instrumentation, measurement science, and observing systems to supplement traditional pedagogies and enhance blended instruction. These freely available and open-source training tools are designed to supplement traditional pedagogies and enhance blended instruction. Three of the modules are now available and address the theory and application of Instrument Performance Characteristics, Meteorological Temperature Instrumentation and Measurements, and Meteorological Pressure Instrumentation and Measurements. The content of these modules is of the highest caliber as it has been developed by scientists and engineers who are at the forefront of the field of observational science. Communicating the availability of these unique and influential educational resources with the community is of high priority. These modules will have a profound effect on the atmospheric observational sciences community by fulfilling a need for contemporary, interactive, multimedia guided education and training modules integrating the latest instructional design and assessment tools in observational science. Thousands of undergraduate and graduate students will benefit, while course instructors will value a set of high quality modules to use as supplements to their courses. The modules can serve as an alternative to observational research training and fill the void between field projects or assist those schools that lack the resources to stage a field- or laboratory-based instrumentation experience.

  16. Measuring the stringency of states' indoor tanning regulations: instrument development and outcomes.

    PubMed

    Woodruff, Susan I; Pichon, Latrice C; Hoerster, Katherine D; Forster, Jean L; Gilmer, Todd; Mayer, Joni A

    2007-05-01

    We sought to describe the development of an instrument to quantify the stringency of state indoor tanning legislation in the United States, and the instrument's psychometric properties. The instrument was then used to rate the stringency of state laws. A 35-item instrument was developed. An overall stringency measure and 9 stringency subscales were developed, including one measuring minors' access to indoor tanning. Stringency measures showed good internal consistency and interrater reliability. In all, 55% of the 50 states and the District of Columbia had any indoor tanning law, and 41% had any law addressing minors' access. Oregon, Illinois, South Carolina, Florida, Indiana, Iowa, and Rhode Island had high overall stringency scores, and Texas and New Hampshire were the most restrictive with regard to minors' access. Measurement of actual enforcement of the laws was not included in this study. The instrument appears to be an easy-to-use, reliable, and valid methodology. Application of the instrument to actual laws showed that, in general, state laws are relatively weak, although there was considerable variability by state.

  17. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  18. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  19. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  20. The DC and AC insulating properties of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Tomo, L.; Marton, K.; Herchl, F.; Kopanský, P.; Potoová, I.; Koneracká, M.; Timko, M.

    2006-01-01

    The AC-dielectric breakdown was investigated in magnetic fluids based on transformer oil TECHNOL US 4000 for two orientations of external magnetic field (B E and B E) and in B = 0. The found results were compared with those obtained formerly for the DC-dielectric breakdown. The observations of the time development of the AC-dielectric breakdown showed the presence of partial discharges long before the complete breakdown occurrence, while for DC-dielectric breakdown a complete breakdown of the gap next to the onset of a measurable ionization was characteristic. The comparison of the AC-dielectric breakdown strengths of pure transformer oil and transformer-oil-based magnetic fluid showed better dielectric properties of magnetic fluid in external magnetic field and comparable, but not worse, in B = 0. Regarding to the better heat transfer, provided by magnetic fluids, they could be used in power transformers as insulating fluids.

  1. The Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2)

    NASA Astrophysics Data System (ADS)

    Van Roozendael, M.; Hendrick, F.; Apituley, A.; Kreher, K.; Friess, U.; Richter, A.; Wagner, T.; Fehr, T.

    2017-12-01

    For the validation of space borne UV-Vis observations of air quality gases, ground based remote-sensing instruments using the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. Over the last decade, MAXDOAS instruments of various designs (including PANDORA systems) have been deployed worldwide forming the basis for a global ground based reference network suitable for the validation of future satellite sensors, such as TROPOMI/Sentinel-5 precursor, GEMS, TEMPO, and Sentinel 4 and 5. To ensure proper traceability of these observations, assess their accuracy and progress towards harmonized data acquisition and delivery, a thorough intercomparison campaign known as the Second Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI-2) was held in Cabauw, The Netherlands during the month of September 2016. About 35 MAXDOAS instruments operated by 25 different groups were deployed, together with systems providing key ancillary in-situ measurements of NO2 and aerosol optical properties, as well as vertical profiles of NO2 by lidar and sonde and vertical profiles of aerosol optical properties by Raman lidar. We provide an overview of the main outcome of the campaign, which included a formal semi-blind slant column intercomparison and a number of additional exercises aiming at assessing the potential of the MAXDOAS technique for retrieving vertically-resolved information on NO2, aerosol, HCHO, O3 and a few other more challenging species such as HONO and glyoxal.

  2. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.

  3. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  4. Structural characterization/correlation of calorimetric properties of coal fluids: Second annual report, September 1, 1986-August 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starling, K.E.; Mallinson, R.G.; Li, M.H.

    The objective of this research is to examine the relationship between the calorimetric properties of coal fluids and their molecular functional group composition. Coal fluid samples which have had their calorimetric properties measured are characterized using proton NMR, ir, and elemental analysis. These characterizations are then used in a chemical structural model to determine the composition of the coal fluid in terms of the important molecular functional groups. These functional groups are particularly important in determining the intramolecular based properties of a fluid, such as ideal gas heat capacities. Correlational frameworks for ideal gas heat capacities are then examined withinmore » an existing equation of state methodology to determine an optimal correlation. The optimal correlation for obtaining the characterization/chemical structure information and the sensitivity of the correlation to the characterization and structural model is examined.« less

  5. Roland-Morris Disability Questionnaire and Oswestry Disability Index: Which Has Better Measurement Properties for Measuring Physical Functioning in Nonspecific Low Back Pain? Systematic Review and Meta-Analysis.

    PubMed

    Chiarotto, Alessandro; Maxwell, Lara J; Terwee, Caroline B; Wells, George A; Tugwell, Peter; Ostelo, Raymond W

    2016-10-01

    Physical functioning is a core outcome domain to be measured in nonspecific low back pain (NSLBP). A panel of experts recommended the Roland-Morris Disability Questionnaire (RMDQ) and Oswestry Disability Index (ODI) to measure this domain. The original 24-item RMDQ and ODI 2.1a are recommended by their developers. The purpose of this study was to evaluate whether the 24-item RMDQ or the ODI 2.1a has better measurement properties than the other to measure physical functioning in adult patients with NSLBP. Bibliographic databases (MEDLINE, Embase, CINAHL, SportDiscus, PsycINFO, and Google Scholar), references of existing reviews, and citation tracking were the data sources. Two reviewers selected studies performing a head-to-head comparison of measurement properties (reliability, validity, and responsiveness) of the 2 questionnaires. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist was used to assess the methodological quality of these studies. The studies' characteristics and results were extracted by 2 reviewers. A meta-analysis was conducted when there was sufficient clinical and methodological homogeneity among studies. Nine articles were included, for a total of 11 studies assessing 5 measurement properties. All studies were classified as having poor or fair methodological quality. The ODI displayed better test-retest reliability and smaller measurement error, whereas the RMDQ presented better construct validity as a measure of physical functioning. There was conflicting evidence for both instruments regarding responsiveness and inconclusive evidence for internal consistency. The results of this review are not generalizable to all available versions of these questionnaires or to patients with specific causes for their LBP. Based on existing head-to-head comparison studies, there are no strong reasons to prefer 1 of these 2 instruments to measure physical functioning in patients with NSLBP, but studies of higher

  6. Instruments to measure cancer management knowledge of rural health care providers.

    PubMed

    Elliott, T E; Regal, R R; Renier, C M; Crouse, B J; Gangeness, D E; Pharmd; Elliott, B A; Witrak, M

    2001-01-01

    Instruments to measure cancer management knowledge of rural physicians, nurses, and pharmacists were needed to evaluate the effect of an educational intervention. Since such instruments did not exist, the authors designed and validated a new instrument for each discipline. The design and validation process for these instruments are described. These three instruments were shown to be practical and to have high content and construct validity. Content validation demonstrated that all items were rated as essential or useful by 90% or more of the respondents. Construct validation show highly significant differences in mean scores among several levels of learners and practitioners as expected. These instruments may be useful to other investigators for measuring cancer management knowledge of rural physicians, nurses, and pharmacists.

  7. Meso-scale turbulence in living fluids

    PubMed Central

    Wensink, Henricus H.; Dunkel, Jörn; Heidenreich, Sebastian; Drescher, Knut; Goldstein, Raymond E.; Löwen, Hartmut; Yeomans, Julia M.

    2012-01-01

    Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum systems. Self-sustained turbulent motion in microbial suspensions presents an intriguing example of collective dynamical behavior among the simplest forms of life and is important for fluid mixing and molecular transport on the microscale. The mathematical characterization of turbulence phenomena in active nonequilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific or which generalizations of the Navier–Stokes equations are able to describe them adequately. Here, we combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence. PMID:22908244

  8. Meso-scale turbulence in living fluids.

    PubMed

    Wensink, Henricus H; Dunkel, Jörn; Heidenreich, Sebastian; Drescher, Knut; Goldstein, Raymond E; Löwen, Hartmut; Yeomans, Julia M

    2012-09-04

    Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum systems. Self-sustained turbulent motion in microbial suspensions presents an intriguing example of collective dynamical behavior among the simplest forms of life and is important for fluid mixing and molecular transport on the microscale. The mathematical characterization of turbulence phenomena in active nonequilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific or which generalizations of the Navier-Stokes equations are able to describe them adequately. Here, we combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence.

  9. Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David R; Herwig, Kenneth W; Mamontov, Eugene

    2006-01-01

    There can be no disputing the fact that neutron diffraction and scattering have made a clear contribution to our current understanding of the structural and dynamical characteristics of liquid water and water containing dissolved ions at ambient conditions and to a somewhat lesser degree other state conditions involving a change in temperature and pressure. Indeed, a molecular-level understanding of how fluids (e.g., water, CO{sub 2}, CH{sub 4}, higher hydrocarbons, etc.) interact with and participate in reactions with other solid earth materials are central to the development of predictive models that aim to quantify a wide array of geochemical processes. Inmore » the context of natural systems, interrogation of fluids and fluid-solid interactions at elevated temperatures and pressures is an area requiring much more work, particularly for complex solutions containing geochemically relevant cations, anions, and other important dissolved species such as CO{sub 2} or CH{sub 4}. We have tried to describe a series of prototypical interfacial and surface problems using neutron scattering to stimulate the thinking of earth scientists interested applying some of these approaches to confined systems of mineralogical importance. Our ability to predict the molecular-level properties of fluids and fluid-solid interactions relies heavily on the synergism between experiments such as neutron diffraction or inelastic neutron scattering and molecular-based simulations. Tremendous progress has been made in closing the gap between experimental observations and predicted behavior based on simulations due to improvements in the experimental methodologies and instrumentation on the one hand, and the development of new potential models of water and other simple and complex fluids on the other. For example there has been an emergence of studies taking advantage of advanced computing power that can accommodate the demands of ab initio molecular dynamics. On the neutron instrumentation

  10. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  11. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.

    2012-02-27

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption

  12. Advances in Measuring the Apparent Optical Properties (AOPs) of Optically Complex Waters

    NASA Technical Reports Server (NTRS)

    Morrow, John H.; Hooker, Stanford B.; Booth, Charles R.; Bernhard, Germar; Lind, Randall N.; Brown, James W.

    2010-01-01

    This report documents new technology used to measure the apparent optical properties (AOPs) of optically complex waters. The principal objective is to be prepared for the launch of next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation. An enhanced COTS radiometer was the starting point for designing and testing the new sensors. The follow-on steps were to apply the lessons learned towards a new in-water profiler based on a kite-shaped backplane for mounting the light sensors. The next level of sophistication involved evaluating new radiometers emerging from a development activity based on so-called microradiometers. The exploitation of microradiometers resulted in an in-water profiling system, which includes a sensor networking capability to control ancillary sensors like a shadowband or global positioning system (GPS) device. A principal advantage of microradiometers is their flexibility in producing, interconnecting, and maintaining instruments. The full problem set for collecting sea-truth data--whether in coastal waters or the open ocean-- involves other aspects of data collection that were improved for instruments measuring both AOPs and inherent optical properties (IOPs), if the uncertainty budget is to be minimized. New capabilities associated with deploying solar references were developed as well as a compact solution for recovering in-water instrument systems from small boats.

  13. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1984-01-01

    Efforts in measuring, analyzing, and mathematically modeling the specular, polarized, and diffuse light scattering properties of several plant canopies and their component parts (leaves, stems, fruit, soil) as a function of view angle and illumination angle are reported. Specific objectives were: (1) to demonstrate a technique for determining the specular and diffuse components of the reflectance factor of plant canopies; (2) to acquire the measurements and begin assembling a data set for developing and testing canopy reflectance models; (3) to design and build a new optical instrument to measure the light scattering properties of individual leaves; and (4) to use this instrument to survey and investigate the information in the light scattering properties of individual leaves of crops, forests, weeds, and horticulture.

  14. Self-mixing instrument for simultaneous distance and speed measurement

    NASA Astrophysics Data System (ADS)

    Norgia, Michele; Melchionni, Dario; Pesatori, Alessandro

    2017-12-01

    A novel instrument based on Self-mixing interferometry is proposed to simultaneously measure absolute distance and velocity. The measurement method is designed for working directly on each kind of surface, in industrial environment, overcoming also problems due to speckle pattern effect. The laser pump current is modulated at quite high frequency (40 kHz) and the estimation of the induced fringes frequency allows an almost instantaneous measurement (measurement time equal to 25 μs). A real time digital elaboration processes the measurement data and discards unreliable measurements. The simultaneous measurement reaches a relative standard deviation of about 4·10-4 in absolute distance, and 5·10-3 in velocity measurement. Three different laser sources are tested and compared. The instrument shows good performances also in harsh environment, for example measuring the movement of an opaque iron tube rotating under a running water flow.

  15. Design and validation of instruments to measure knowledge.

    PubMed

    Elliott, T E; Regal, R R; Elliott, B A; Renier, C M

    2001-01-01

    Measuring health care providers' learning after they have participated in educational interventions that use experimental designs requires valid, reliable, and practical instruments. A literature review was conducted. In addition, experience gained from designing and validating instruments for measuring the effect of an educational intervention informed this process. The eight main steps for designing, validating, and testing the reliability of instruments for measuring learning outcomes are presented. The key considerations and rationale for this process are discussed. Methods for critiquing and adapting existent instruments and creating new ones are offered. This study may help other investigators in developing valid, reliable, and practical instruments for measuring the outcomes of educational activities.

  16. MUPUS --- a Suite of Small Instruments for the ROSETTA Surface Science Package to Measure the Thermal and Mechanical Properties of a Comet Nucleus

    NASA Astrophysics Data System (ADS)

    Spohn, T.; MUPUS Team

    1996-09-01

    The Surface Science Package, which will be deployed in course of the ROSETTA mission on the surface of the target comet, offers the unprecedented opportunity to study the physical properties and dominating processes of a comet nucleus in situ. While most SSP experiments focuse on composition and chemistry, the MUPUS instrument package is aimed to study the energy balance of the nucleus/coma interface and the evolution of key thermal and mechanical parameters. Unlike planetary evolution, cometary evolution is influenced by the energy input at the surface. The near surface layers are accessible with some effort and may thus be directly studied. A penetrator equipped with temperature sensors and heaters (MUPUS--PEN) aims to measure the vertical temperature distribution (PEN--TP) and the thermal conductivity (PEN--THC) in the first tens of centimeters of the nucleus as they evolve with time. A combined evaluation of the PEN--TP and PEN--THC data will allow to understand vertical surface heat flow into or from the comet nucleus and the energy balance of the comet. The surface temperature will be measured with an infrared thermal mapper (MUPUS TM). Both thermal sensors will provide a ground truth for IR data from the orbiter. The PEN--M sensor will measure mechanical properties like hardness and grain size during penetration. A compton backscatter densitometer (CBD) will be used to measure the density. Additional temperature sensors and penetrometers in the SSP's anchor(s) will supplement the data and expand the volume probed. The results will help to understand the onset of activity, gas and dust emission, which will be measured by the orbiter. Understanding the dominating processes and their time scales allows to determine the present state of the surface material ("Is the matter found close to the surface pristine?") as well as extrapolation both into the past and the future.

  17. A systematic review evaluating the psychometric properties of measures of social inclusion.

    PubMed

    Cordier, Reinie; Milbourn, Ben; Martin, Robyn; Buchanan, Angus; Chung, Donna; Speyer, Renée

    2017-01-01

    Improving social inclusion opportunities for population health has been identified as a priority area for international policy. There is a need to comprehensively examine and evaluate the quality of psychometric properties of measures of social inclusion that are used to guide social policy and outcomes. To conduct a systematic review of the literature on all current measures of social inclusion for any population group, to evaluate the quality of the psychometric properties of identified measures, and to evaluate if they capture the construct of social inclusion. A systematic search was performed using five electronic databases: CINAHL, PsycINFO, Embase, ERIC and Pubmed and grey literature were sourced to identify measures of social inclusion. The psychometric properties of the social inclusion measures were evaluated against the COSMIN taxonomy of measurement properties using pre-set psychometric criteria. Of the 109 measures identified, twenty-five measures, involving twenty-five studies and one manual met the inclusion criteria. The overall quality of the reviewed measures was variable, with the Social and Community Opportunities Profile-Short, Social Connectedness Scale and the Social Inclusion Scale demonstrating the strongest evidence for sound psychometric quality. The most common domain included in the measures was connectedness (21), followed by participation (19); the domain of citizenship was covered by the least number of measures (10). No single instrument measured all aspects within the three domains of social inclusion. Of the measures with sound psychometric evidence, the Social and Community Opportunities Profile-Short captured the construct of social inclusion best. The overall quality of the psychometric properties demonstrate that the current suite of available instruments for the measurement of social inclusion are promising but need further refinement. There is a need for a universal working definition of social inclusion as an overarching

  18. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  19. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  20. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  1. Physical activity questionnaires for youth: a systematic review of measurement properties.

    PubMed

    Chinapaw, Mai J M; Mokkink, Lidwine B; van Poppel, Mireille N M; van Mechelen, Willem; Terwee, Caroline B

    2010-07-01

    Because of the diversity in available questionnaires, it is not easy for researchers to decide which instrument is most suitable for his or her specific demands. Therefore, we systematically summarized and appraised studies examining measurement properties of self-administered and proxy-reported physical activity (PA) questionnaires in youth. Literature was identified through searching electronic databases (PubMed, EMBASE using 'EMBASE only' and SportDiscus) until May 2009. Studies were included if they reported on the measurement properties of self-administered and proxy-reported PA questionnaires in youth (mean age <18 years) and were published in the English language. Methodological quality and results of included studies was appraised using a standardized checklist (qualitative attributes and measurement properties of PA questionnaires [QAPAQ]). We included 54 manuscripts examining 61 versions of questionnaires. None of the included questionnaires showed both acceptable reliability and validity. Only seven questionnaires received a positive rating for reliability. Reported validity varied, with correlations between PA questionnaires and accelerometers ranging from very low to high (previous day PA recall: correlation coefficient [r] = 0.77). In general, PA questionnaires for adolescents correlated better with accelerometer scores than did those for children. From this systematic review, we conclude that no questionnaires were available with both acceptable reliability and validity. Considerably more high-quality research is required to examine the validity and reliability of promising PA questionnaires for youth.

  2. [An instrument for estimating human body composition using impedance measurement].

    PubMed

    Yin, J; Peng, C

    1997-03-01

    According to the impedance feature of biological tissue, the instrument was designed at 1, 5, 10, 50, 100kHz to measure human impedance, and then to calculate human FAT, FFM, FAT%, TBW, ECW, ICW and so on. A 8031 singlechip microprocessor contacuting used as a control center in the instrument. The part of electric circuit contacuting human body in the instrument was unreally earthing. The instrument was safty, effective, repeatable, and easily manpulative. Prelimintary clinical experiment showed the results measured with the instrument could effectively reflect practical, status of human composition.

  3. A Systematic Review of Measurement Properties of Patient-Reported Outcome Measures Used in Patients Undergoing Total Knee Arthroplasty.

    PubMed

    Gagnier, Joel J; Mullins, Megan; Huang, Hsiaomin; Marinac-Dabic, Danica; Ghambaryan, Anna; Eloff, Benjamin; Mirza, Faisal; Bayona, Manuel

    2017-05-01

    While clinical research on total knee arthroplasty (TKA) outcomes is prevalent in the literature, studies often have poor methodological and reporting quality. A high-quality patient-reported outcome instrument is reliable, valid, and responsive. Many studies evaluate these properties, but none have done so with a systematic and accepted method. The objectives of this study were to identify patient-reported outcome measures (PROMs) for TKA, and to critically appraise, compare, and summarize their psychometric properties using accepted methods. MEDLINE, EMBASE, SCOPUS, Web of Science, PsycINFO, and SPORTDiscus were systematically searched for articles with the following inclusion criteria: publication before December 2014, English language, non-generic PRO, and evaluation in the TKA population. Methodological quality and evidence of psychometric properties were assessed with the COnsensus-based standards for the selection of health Status Measurement INstruments (COSMIN) checklist and criteria for psychometric evidence proposed by the COSMIN group and Terwee et al. One-hundred fifteen studies on 32 PROMs were included in this review. Only the Work, Osteoarthritis or joint-Replacement Questionnaire, the Oxford Knee Score, and the Western Ontario and McMaster Universities Arthritis Index had 4 or more properties with positive evidence. Most TKA PROMs have limited evidence for their psychometric properties. Although not all the properties were studied, the Work, Osteoarthritis or joint-Replacement Questionnaire, with the highest overall ratings, could be a useful PROM for evaluating patients undergoing TKA. The methods and reporting of this literature can improve by following accepted guidelines. Published by Elsevier Inc.

  4. Patient Evaluation of Emotional Comfort Experienced (PEECE): developing and testing a measurement instrument

    PubMed Central

    Lester, L; Bulsara, C; Petterson, A; Bennett, K; Allen, E; Joske, D

    2017-01-01

    Objectives The Patient Evaluation of Emotional Comfort Experienced (PEECE) is a 12-item questionnaire which measures the mental well-being state of emotional comfort in patients. The instrument was developed using previous qualitative work and published literature. Design Instrument development. Setting Acute Care Public Hospital, Western Australia. Participants Sample of 374 patients. Interventions A multidisciplinary expert panel assessed the face and content validity of the instrument and following a pilot study, the psychometric properties of the instrument were explored. Main outcome measures Exploratory and confirmatory factor analysis assessed the underlying dimensions of the PEECE instrument; Cronbach's α was used to determine the reliability; κ was used for test–retest reliability of the ordinal items. Results 2 factors were identified in the instrument and named ‘positive emotions’ and ‘perceived meaning’. A greater proportion of male patients were found to report positive emotions compared with female patients. The instrument was found to be feasible, reliable and valid for use with inpatients and outpatients. Conclusions PEECE was found to be a feasible instrument for use with inpatient and outpatients, being easily understood and completed. Further psychometric testing is recommended. PMID:28122833

  5. Noise evaluation of a point autofocus surface topography measuring instrument

    NASA Astrophysics Data System (ADS)

    Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard

    2018-06-01

    In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.

  6. Instrument for stable high temperature Seebeck coefficient and resistivity measurements under controlled oxygen partial pressure

    DOE PAGES

    Ihlefeld, Jon F.; Brown-Shaklee, Harlan James; Sharma, Peter Anand

    2015-04-28

    The transport properties of ceramic materials strongly depend on oxygen activity, which is tuned by changing the partial oxygen pressure (pO 2) prior to and during measurement. Within, we describe an instrument for highly stable measurements of Seebeck coefficient and electrical resistivity at temperatures up to 1300 K with controlled oxygen partial pressure. An all platinum construction is used to avoid potential materials instabilities that can cause measurement drift. Two independent heaters are employed to establish a small temperature gradient for Seebeck measurements, while keeping the average temperature constant and avoiding errors associated with pO 2-induced drifts in thermocouple readings.more » Oxygen equilibrium is monitored using both an O 2 sensor and the transient behavior of the resistance as a proxy. A pO 2 range of 10 -25–10 0 atm can be established with appropriate gas mixtures. Seebeck measurements were calibrated against a high purity platinum wire, Pt/Pt–Rh thermocouple wire, and a Bi 2Te3 Seebeck coefficient Standard Reference Material. To demonstrate the utility of this instrument for oxide materials we present measurements as a function of pO 2 on a 1 % Nb-doped SrTiO 3 single crystal, and show systematic changes in properties consistent with oxygen vacancy defect chemistry. Thus, an approximately 11% increase in power factor over a pO 2 range of 10 -19–10 -8 atm at 973 K for the donor-doped single crystals is observed.« less

  7. Light Microscopy Module: An On-Orbit Microscope Planned for the Fluids and Combustion Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Griffin, DeVon W.

    2001-01-01

    The Light Microscopy Module (LMM) is planned as a fully remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within NASA Glenn Research Center's Fluids and Combustion Facility on the International Space Station. Within the Fluids and Combustion Facility, four fluids physics experiments will utilize an instrument built around a light microscope. These experiments are the Constrained Vapor Bubble experiment (Peter C. Wayner of Rensselaer Polytechnic Institute), the Physics of Hard Spheres Experiment-2 (Paul M. Chaikin of Princeton University), the Physics of Colloids in Space-2 experiment (David A. Weitz of Harvard University), and the Low Volume Fraction Colloidal Assembly experiment (Arjun G. Yodh of the University of Pennsylvania). The first experiment investigates heat conductance in microgravity as a function of liquid volume and heat flow rate to determine, in detail, the transport process characteristics in a curved liquid film. The other three experiments investigate various complementary aspects of the nucleation, growth, structure, and properties of colloidal crystals in microgravity and the effects of micromanipulation upon their properties. Key diagnostic capabilities for meeting the science requirements of the four experiments include video microscopy to observe sample features including basic structures and dynamics, interferometry to measure vapor bubble thin film thickness, laser tweezers for colloidal particle manipulation and patterning, confocal microscopy to provide enhanced three-dimensional visualization of colloidal structures, and spectrophotometry to measure colloidal crystal photonic properties.

  8. [Influence of two positions for measuring instrument adapter on measurement of hand-transmitted vibration in grinding machine].

    PubMed

    Xie, X S; Zhang, M; Zheng, Y D; Du, X Y; Qi, C

    2016-06-20

    To investigate the influence of two positions for measuring instrument adapter on the measurement of hand-transmitted vibration in grinding machine using the intraclass correlation coefficient (ICC) of reliability assessment index, and to provide a basis for studies on the measurement standard for hand-transmitted vibration. With reference to the measurement standard for hand-transmitted vibration ISO 5349 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 1: General requirements and Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement at the workplace, the domestic AWA5936 hand-transmitted vibration measuring instrument and SVAN-106 hand-transmitted vibration measuring instrument from Poland were used to measure hand-transmitted vibration in 3 workers for grinding machine in a foundry for 5 days continuously from September to October, 2014, and Y-axis data were recorded and compared. In worker A, the "T" -shaped adapter had a significantly higher mean Y-axis accelerated speed effective value than the "O" -shaped adapter [4.34 m/s(2) (95%CI 4.05(-)4.63) vs 2.32 m/s(2) (95%CI 2.27~2.38) , t=13.781, P<0.01]. In workers B and C, AWA5936 "U" -shaped adapter (placed at the position of the handle of grinding machine) had lower degrees of data variation of 12.55% and 15.77%, respectively, suggesting good data stability. The measurement results showed significant differences across different positions of adapter (P<0.01) and between all adapters except "O" -shaped and line-shaped adapters (all P<0.01) , while the measurement results showed no significant differences between the "O" -shaped and line-shaped adapters (P>0.01). The comparison of the measurement results of AWA5936 vibration measuring instrument with an "U" -shaped adapter and SVAN-106 vibration measuring instrument with an "S" -shaped adapter showed an ICC of >0.80 (ICC=0

  9. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  10. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    NASA Astrophysics Data System (ADS)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  11. Psychometric testing of an instrument to measure the experience of home.

    PubMed

    Molony, Sheila L; McDonald, Deborah Dillon; Palmisano-Mills, Christine

    2007-10-01

    Research related to quality of life in long-term care has been hampered by a paucity of measurement tools sensitive to environmental interventions. The primary aim of this study was to test the psychometric properties of a new instrument, the Experience of Home (EOH) Scale, designed to measure the strength of the experience of meaningful person-environment transaction. The instrument was administered to 200 older adults in diverse dwelling types. Principal components analysis provided support for construct validity, eliciting a three-factor solution accounting for 63.18% of variance in scores. Internal consistency reliability was supported with Cronbach's alpha of .96 for the entire scale. The EOH Scale is a unique research tool to evaluate interventions to improve quality of living in residential environments.

  12. System for monitoring physical characteristics of fluids

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G. (Inventor)

    1983-01-01

    An apparatus and method are described for measuring physical characteristics of fluid, by placing a drop of the fluid in a batch of a second fluid and passing acoustic waves through the bath. The applied frequency of the acoustic waves is varied, to determine the precise value of a frequency at which the drop undergoes resonant oscillations. The resonant frequency indicates the interfacial tension of the drop in the bath, and the interfacial tension can indicate physical properties of the fluid in the drop.

  13. Generic health literacy measurement instruments for children and adolescents: a systematic review of the literature.

    PubMed

    Okan, Orkan; Lopes, Ester; Bollweg, Torsten Michael; Bröder, Janine; Messer, Melanie; Bruland, Dirk; Bond, Emma; Carvalho, Graça S; Sørensen, Kristine; Saboga-Nunes, Luis; Levin-Zamir, Diane; Sahrai, Diana; Bittlingmayer, Uwe H; Pelikan, Jürgen M; Thomas, Malcolm; Bauer, Ullrich; Pinheiro, Paulo

    2018-01-22

    Health literacy is an important health promotion concern and recently children and adolescents have been the focus of increased academic attention. To assess the health literacy of this population, researchers have been focussing on developing instruments to measure their health literacy. Compared to the wider availability of instruments for adults, only a few tools are known for younger age groups. The objective of this study is to systematically review the field of generic child and adolescent health literacy measurement instruments that are currently available. A systematic literature search was undertaken in five databases (PubMed, CINAHL, PsycNET, ERIC, and FIS) on articles published between January 1990 and July 2015, addressing children and adolescents ≤18 years old. Eligible articles were analysed, data was extracted, and synthesised according to review objectives. Fifteen generic health literacy measurement instruments for children and adolescents were identified. All, except two, are self-administered instruments. Seven are objective measures (performance-based tests), seven are subjective measures (self-reporting), and one uses a mixed-method measurement. Most instruments applied a broad and multidimensional understanding of health literacy. The instruments were developed in eight different countries, with most tools originating in the United States (n = 6). Among the instruments, 31 different components related to health literacy were identified. Accordingly, the studies exhibit a variety of implicit or explicit conceptual and operational definitions, and most instruments have been used in schools and other educational contexts. While the youngest age group studied was 7-year-old children within a parent-child study, there is only one instrument specifically designed for primary school children and none for early years. Despite the reported paucity of health literacy research involving children and adolescents, an unexpected number of health

  14. A systematic review on the quality of measurement techniques for the assessment of burn wound depth or healing potential.

    PubMed

    Jaspers, Mariëlle E H; van Haasterecht, Ludo; van Zuijlen, Paul P M; Mokkink, Lidwine B

    2018-06-22

    Reliable and valid assessment of burn wound depth or healing potential is essential to treatment decision-making, to provide a prognosis, and to compare studies evaluating different treatment modalities. The aim of this review was to critically appraise, compare and summarize the quality of relevant measurement properties of techniques that aim to assess burn wound depth or healing potential. A systematic literature search was performed using PubMed, EMBASE and Cochrane Library. Two reviewers independently evaluated the methodological quality of included articles using an adapted version of the Consensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A synthesis of evidence was performed to rate the measurement properties for each technique and to draw an overall conclusion on quality of the techniques. Thirty-six articles were included, evaluating various techniques, classified as (1) laser Doppler techniques; (2) thermography or thermal imaging; (3) other measurement techniques. Strong evidence was found for adequate construct validity of laser Doppler imaging (LDI). Moderate evidence was found for adequate construct validity of thermography, videomicroscopy, and spatial frequency domain imaging (SFDI). Only two studies reported on the measurement property reliability. Furthermore, considerable variation was observed among comparator instruments. Considering the evidence available, it appears that LDI is currently the most favorable technique; thereby assessing burn wound healing potential. Additional research is needed into thermography, videomicroscopy, and SFDI to evaluate their full potential. Future studies should focus on reliability and measurement error, and provide a precise description of which construct is aimed to measure. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  15. Meso-scale turbulence in living fluids

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Wensink, Rik; Heidenreich, Sebastian; Drescher, Knut; Goldstein, Ray; Loewen, Hartmut; Yeomans, Julia

    2012-11-01

    The mathematical characterization of turbulence phenomena in active non-equilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific, or which generalizations of the Navier-Stokes equations are able to describe them adequately. We combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence. Supported by the ERC, EPSRC and DFG.

  16. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  17. Rotating Balances Used for Fluid Pump Testing

    NASA Technical Reports Server (NTRS)

    Skelley, Stephen; Mulder, Andrew

    2014-01-01

    Marshall Space Flight Center has developed and demonstrated two direct read force and moment balances for sensing and resolving the hydrodynamic loads on rotating fluid machinery. These rotating balances consist of a series of stainless steel flexures instrumented with semiconductor type, unidirectional strain gauges arranged into six bridges, then sealed and waterproofed, for use fully submerged in degassed water at rotational speeds up to six thousand revolutions per minute. The balances are used to measure the forces and moments due to the onset and presence of cavitation or other hydrodynamic phenomena on subscale replicas of rocket engine turbomachinery, principally axial pumps (inducers) designed specifically to operate in a cavitating environment. The balances are inserted into the drive assembly with power to and signal from the sensors routed through the drive shaft and out through an air-cooled twenty-channel slip ring. High frequency data - balance forces and moments as well as extensive, flush-mounted pressures around the rotating component periphery - are acquired via a high-speed analog to digital data acquisition system while the test rig conditions are varied continuously. The data acquisition and correction process is described, including the in-situ verifications that are performed to quantify and correct for known system effects such as mechanical imbalance, "added mass," buoyancy, mechanical resonance, and electrical bias. Examples of four types of cavitation oscillations for two typical inducers are described in the laboratory (pressure) and rotating (force) frames: 1) attached, symmetric cavitation, 2) rotating cavitation, 3) attached, asymmetric cavitation, and 4) cavitation surge. Rotating and asymmetric cavitation generate a corresponding unbalanced radial force on the rotating assembly while cavitation surge generates an axial force. Attached, symmetric cavitation induces no measurable force. The frequency of the forces can be determined a

  18. The Second Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments — CINDI-2 — Overview

    NASA Astrophysics Data System (ADS)

    Apituley, Arnoud; van Roozendael, Michel; Hendrick, Francois; Kreher, Karin; Richter, Andreas; Wagner, Thomas; Friess, Udo; Participants, Cindi-2

    2017-04-01

    For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. In both cases, retrievals take into account the light path of scattered sunlight though the entire atmosphere. Since MAXDOAS instruments are relatively low cost and can be operated autonomously almost anywhere, they are credible candidates to form a world-wide ground based reference network for satellite observations. To ensure proper traceability of the MAXDOAS observations, a thorough intercomparison is mandatory. The Cabauw Experimental Site for Atmospheric Research (CESAR) site in centre of The Netherlands was the stage of the Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments (CINDI) in June-July 2009 and again for the second campaign, CINDI-2, in 2016. Cabauw was chosen because the flat terrain offered a free view of large parts of the horizon, needed to accommodate the viewing geometry of the MAXDOAS observations. The location is under influence of both clean as well as polluted airmasses. This gives a wide range of possible trace gas concentrations and mixtures. Furthermore, at CESAR a wide range of observations are routinely carried out that fulfil the requirement to provide the background necessary for unraveling the differences between the observations from different MAXDOAS instruments that can be quite diverse in design and data treatment. These observations include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, as well as vertical profiles of aerosol optical properties by (Raman) lidar. In addition, vertical profiles of NO2 could be measured during CINDI-2 using the unique NO2 sonde, and a NO2 lidar system. With the imminent launch of Sentinel-5 Precursor/TROPOMI, with a nadir pixelsize of 3.5 × 3

  19. VolcLab: A balloon-borne instrument package to measure ash, gas, electrical, and turbulence properties of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    Release of volcanic ash into the atmosphere poses a significant hazard to air traffic. Exposure to appreciable concentrations (≥4 mg m-3) of ash can result in engine shutdown, air data system loss, and airframe damage, with sustained lower concentrations potentially causing other long-term detrimental effects [1]. Disruption to flights also has a societal impact. For example, the closure of European airspace following the 2010 eruption of Eyjafjallajökull resulted in global airline industry losses of order £1100 million daily and disruption to 10 million passengers. Accurate and effective measurement of the mass of ash in a volcanic plume along with in situ characterisation of other plume properties such as charge, turbulence, and SO2 concentration can be used in combination with plume dispersion modelling, remote sensing, and more sophisticated flight ban thresholds to mitigate the impact of future events. VolcLab is a disposable instrument package that may be attached to a standard commercial radiosonde, for rapid emergency deployment on a weather balloon platform. The payload includes a newly developed gravimetric sensor using the oscillating microbalance principle to measure mass directly without assumptions about particles' optical properties. The package also includes an SO2 gas detector, an optical sensor to detect ash and cloud backscatter from an LED source [2], a charge sensor to characterise electrical properties of the plume [3], and an accelerometer to measure in-plume turbulence [4]. VolcLab uses the established PANDORA interface [5], to provide data exchange and power from the radiosonde. In addition to the VolcLab measurements, the radiosonde provides standard meteorological data of temperature, pressure, and relative humidity, and GPS location. There are several benefits of using this instrument suite in this design and of using this method of deployment. Firstly, this is an all-in-one device requiring minimal expertise on the part of the end

  20. Developing and validating an instrument for measuring mobile computing self-efficacy.

    PubMed

    Wang, Yi-Shun; Wang, Hsiu-Yuan

    2008-08-01

    IT-related self-efficacy has been found to have a critical influence on system use. However, traditional measures of computer self-efficacy and Internet-related self-efficacy are perceived to be inapplicable in the context of mobile computing and commerce because they are targeted primarily at either desktop computer or wire-based technology contexts. Based on previous research, this study develops and validates a multidimensional instrument for measuring mobile computing self-efficacy (MCSE). This empirically validated instrument will be useful to researchers in developing and testing the theories of mobile user behavior, and to practitioners in assessing the mobile computing self-efficacy of users and promoting the use of mobile commerce systems.

  1. Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2014-10-01

    In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.

  2. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  3. New type of measuring and intelligent instrument for curing tobacco

    NASA Astrophysics Data System (ADS)

    Yi, Chui-Jie; Huang, Xieqing; Chen, Tianning; Xia, Hong

    1993-09-01

    A new type of measuring intelligent instrument for cured tobacco is presented in this paper. Based on fuzzy linguistic control principles the instrument is used to controlling the temperature and humidity during cured tobacco taking 803 1 singlechip computer as a center controller. By using methods of fuzzy weighted factors the cross coupling in curing procedures is decoupled. Results that the instrument has producted indicate the fuzzy controller in the instrument has perfect performance for process of cured tobacco as shown in figure

  4. Measurement and Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkham, Harold

    This is a chapter for a book called the Standard Handbook for Electrical Engineering. Though it is not obvious from the title, the book deals mainly with power engineering. The first chapter (not mine) is about the fundamental quantities used in measurement. This chapter is about the process and the instrumentation.

  5. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    . Neuschaefer-Rube et al, also from PTB, present procedures and standards to test tactile and optical microsensors and micro-computed tomography systems, which are similar to the established tests for classical coordinate measuring machines and assess local and global sensor characteristics. The last three papers are related to micro/nano-metrology and intelligent instrumentation. Jiang et al from Tohoku University describe the fabrication of piezoresistive nanocantilevers for ultra-sensitive force detection by using spin-out diffusion, EB lithography and FAB etching, respectively. Y-C Liu et al from National Taiwan University develop an economical and highly sensitive optical accelerometer using a commercial optical pickup head. Michihata et al from Osaka University experimentally investigate the positioning sensing property and accuracy of a laser trapping probe for a nano-coordinate measuring machine. As guest editors, we believe that this special feature presents the newest information on advances in measurement technology and intelligent instruments from basic research to applied systems for Production Engineering. We would like to thank all the authors for their great contributions to this special feature and the referees for their careful reviews of the papers. We would also like to express our thanks and appreciation to Professor P Hauptmann, Editor-in-Chief of MST, for his kind offer to publish selected ISMTII 2007 papers in MST, and to the publishing staff of MST for their dedicated efforts that have made this special feature possible.

  6. Monitoring Fluid Flow in Fractured Carbonate Rocks Using Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2008-12-01

    The physical properties of carbonate rock are strongly influenced by the rock fabric which depends on the depositional environment, diagenetic and tectonic processes. The most common form of heterogeneity is layering caused by a variation in porosity among layers and within layers. The variation in porosity among layers leads to anisotropic behavior in the hydraulic, mechanical and seismic properties of carbonate rocks. We present the results of a laboratory study to examine the effect of fabric-controlled layering on fluid flow and seismic wave propagation through intact and fractured carbonate rock. Experiments were performed on cubic samples of Austin Chalk Cordova Cream. Samples AC1, AC5 and AC6 are cubic samples that measure 100 mm on edge. The samples were sealed and contained three inlet and three outlet ports for fluid invasion experiments. Two orthogonal seismic arrays were used to record both compressional and shear wave transmission through intact and fractured samples. The arrays used piezoelectric contact transducers with a central frequency 1.0 MHz. Between the two arrays, sixteen sources and sixteen receivers were used. Seismic measurements were made on the samples as a function of stress and during fluid saturation. The location of the invading fluid front as a function of time was monitored by using the peak-to-peak amplitude of the transmitted signals. The front was assumed to be between a source-receiver pair when the signal amplitude decreased by 50% over the initial value. The hydraulic gradient was parallel and perpendicular to the layers for AC5 and AC6, respectively. Sample AC1 was fractured and flow ports were established on the edges of the fracture plane. The weakly directed fabric controlled the rate at which fluid flowed through the samples. From the seismic data on AC6, the fluid first spread vertically along a layer before flowing across the layers. For AC6, it took the fluid two and half hours to flow between the inlet and the outlet

  7. Preparation and electrical properties of oil-based magnetic fluids

    NASA Astrophysics Data System (ADS)

    Sartoratto, P. P. C.; Neto, A. V. S.; Lima, E. C. D.; Rodrigues de Sá, A. L. C.; Morais, P. C.

    2005-05-01

    This paper describes an improvement in the preparation of magnetic fluids for electrical transformers. The samples are based on surface-coated maghemite nanoparticles dispersed in transformer insulating oil. Colloidal stability at 90°C was higher for oleate-grafted maghemite-based magnetic fluid, whereas decanoate and dodecanoate-grafted samples were very unstable. Electrical properties were evaluated for samples containing 0.80%-0.0040% maghemite volume fractions. Relative permittivity varied from 8.8 to 2.1 and the minimum value of the loss factor was 12% for the most diluted sample. The resistivity falls in the range of 0.7-2.5×1010Ωm, whereas the ac dielectric strength varied from 70to79kV. These physical characteristics reveal remarkable step forward in the properties of the magnetic fluid samples and may result in better operation of electrical transformers.

  8. Python-based dynamic scheduling assistant for atmospheric measurements by Bruker instruments using OPUS.

    PubMed

    Geddes, Alexander; Robinson, John; Smale, Dan

    2018-02-01

    Atmospheric remote sensing by instruments such as spectrometers and interferometers often requires scheduling that is dependent on external factors, for example; time and solar (or lunar) zenith angle. Such instruments manufactured by Bruker often use the software package OPUS, which, while useful, is not flexible enough for automatic, repeated, atmospheric measurements of this nature. In this brief paper, we describe ASAP, a Python tool developed to run our network of Fourier transform interferometers in New Zealand and Antarctica. It allows the automated scheduling of measurements by time, lunar, or solar zenith angle while accounting for weather or other external parameters. There is a wide range of useful functions, all packaged in a simple graphical user interface; it is available on request.

  9. Measuring Development of Adolescent and Young Adult Cancer Patients: An Integrative Review of Available Instruments.

    PubMed

    Bell, Cynthia J; Bell, Ryan A; Zebrack, Brad; Kato, Ikuko; Morse, Alyssa; Borinstein, Scott C

    2018-06-01

    Adolescents and young adults (AYAs) 15-39 years old face unique challenges during cancer treatment as developmental and social needs are often disrupted to achieve cure. Developmentally appropriate supportive care for AYAs across the cancer trajectory is needed. The purpose of this review is to identify and describe instruments that measure AYA development across physical, psychological, and social domains, commenting on the instruments' psychometric properties and usefulness in clinical practice and research. A computerized literature search published in English from 1950 to January of 2017 was conducted utilizing the following databases: Mental Measurements Yearbook (MMY), Health and Psychosocial Instruments, PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, and Google Scholar. The following instruments were identified and described: the Child Health and Illness Profile-Adolescent Edition (CHIP-AE); the Course of Life Questionnaire; the Developmental Task Questionnaire (DTQ); the Impact of Cancer scale for childhood survivors and AYAs (IOC-CS and IOC-AYA); the McCleery Scale of Adolescent Development (MSAD); and the Minneapolis-Manchester Quality of Life Adolescent and Young Adult Form (MMQL-AF and MMQL-YA). Among currently available instruments, the IOC-AYA and MMQL-AF were relevant to AYAs undergoing or completing cancer therapy. However, validation for the IOC-AYA occurred in cancer survivors off treatment so further psychometric evaluation is needed in AYAs currently undergoing cancer treatment. Furthermore, the MMQL-AF has been validated for use during active cancer treatment, but is limited to adolescents 13-20 years. Further research may be needed to create or refine instruments measuring the developmental impact in AYAs, particularly emerging adults undergoing active cancer treatment.

  10. On the long-range dependence properties of annual precipitation using a global network of instrumental measurements

    NASA Astrophysics Data System (ADS)

    Tyralis, Hristos; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; O'Connell, Patrick Enda; Tzouka, Katerina; Iliopoulou, Theano

    2018-01-01

    The long-range dependence (LRD) is considered an inherent property of geophysical processes, whose presence increases uncertainty. Here we examine the spatial behaviour of LRD in precipitation by regressing the Hurst parameter estimate of mean annual precipitation instrumental data which span from 1916-2015 and cover a big area of the earth's surface on location characteristics of the instrumental data stations. Furthermore, we apply the Mann-Kendall test under the LRD assumption (MKt-LRD) to reassess the significance of observed trends. To summarize the results, the LRD is spatially clustered, it seems to depend mostly on the location of the stations, while the predictive value of the regression model is good. Thus when investigating for LRD properties we recommend that the local characteristics should be considered. The application of the MKt-LRD suggests that no significant monotonic trend appears in global precipitation, excluding the climate type D (snow) regions in which positive significant trends appear.

  11. Comparison of fluid-fluid interfacial areas measured with X-ray microtomography and interfacial partitioning tracer tests for the same samples: COMPARISON OF FLUID-FLUID INTERFACIAL AREAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Kieran; Carroll, Kenneth C.; Brusseau, Mark L.

    2016-07-01

    Two different methods are currently used for measuring interfacial areas between immiscible fluids within 3-D porous media, high-resolution microtomographic imaging and interfacial partitioning tracer tests (IPTT). Both methods were used in this study to measure nonwetting/wetting interfacial areas for a natural sand. The microtomographic imaging was conducted on the same packed columns that were used for the IPTTs. This is in contrast to prior studies comparing the two methods, for which in all cases different samples were used for the two methods. In addition, the columns were imaged before and after the IPTTs to evaluate the potential impacts of themore » tracer solution on fluid configuration and attendant interfacial area. The interfacial areas measured using IPTT are ~5 times larger than the microtomographic-measured values, which is consistent with previous work. Analysis of the image data revealed no significant impact of the tracer solution on NAPL configuration or interfacial area. Other potential sources of error were evaluated, and all were demonstrated to be insignificant. The disparity in measured interfacial areas between the two methods is attributed to the limitation of the microtomography method to characterize interfacial area associated with microscopic surface roughness due to resolution constraints.« less

  12. Antenna Characterization for the Wideband Instrument for Snow Measurements

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  13. A review of instruments developed to measure food neophobia.

    PubMed

    Damsbo-Svendsen, Marie; Frøst, Michael Bom; Olsen, Annemarie

    2017-06-01

    Food choices are influenced by an individual's attitude towards foods. Food neophobia may be associated with less variety of diets, inadequate nutrient intake and high product failure rate for new food products entering the market. To quantify the extent of these challenges, instruments to measure the food neophobia in different target groups are needed. Several such instruments with significantly different measurement outcomes and procedures have been developed. This review provides an overview and discusses strengths and weaknesses of these instruments. We evaluate strengths and weaknesses of previously developed instruments to measure neophobia and willingness to try unfamiliar foods. Literature was searched through the databases Web of Science and Google Scholar. We identified 255 studies concerning neophobia and willingness to try unfamiliar foods. Of these, 13 studies encompassing 13 instruments to measure neophobia and willingness to try unfamiliar foods were included in the review. Results are summarized and evaluated with a narrative approach. In the 13 instruments to assess neophobia and willingness to try unfamiliar foods, 113 to 16.644 subjects aged 2-65 years were involved, scales with 3-7 response categories were used and behavioral validation tests were included in 6 studies. Several instruments to measure neophobia and willingness to try unfamiliar foods exist. We recommend selecting one or more among the 13 instruments reviewed in this paper to assess relevant aspects of neophobia. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Instruments for measuring the amount of moisture in the air

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1978-01-01

    A summarization and discussion of the many systems available for measuring moisture in the atmosphere is presented. Conventional methods used in the field of meteorology and methods used in the laboratory are discussed. Performance accuracies, and response of the instruments were reviewed as well as the advantages and disadvantages of each. Methods of measuring humidity aloft by instrumentation onboard aircraft and balloons are given, in addition to the methods used to measure moisture at the Earth's surface.

  15. Measuring Room Area or Volume Electronically

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.

    1987-01-01

    Area- and volume-measuring instrument hand-held or mounted on tripod. Instrument rapidly measures distances to walls, ceiling, or floor at many viewing angles and automatically computes area or volume of room. Results obtained rapidly with minimal effort.

  16. Patient-Reported Outcome Measures in Dysphagia: A Systematic Review of Instrument Development and Validation

    PubMed Central

    Patel, Dhyanesh A.; Sharda, Rohit; Hovis, Kristen L.; Nichols, Erin E.; Sathe, Nila; Penson, David F.; Feurer, Irene D.; McPheeters, Melissa L.; Vaezi, Michael F.; Francis, David O.

    2017-01-01

    -related PRO measures. We identified several instruments with robust measurement properties in multiple diseases including achalasia, oropharyngeal dysphagia, post-surgical dysphagia, esophageal cancer, and dysphagia related to neurological diseases. Findings herein can assist clinicians and researchers in making more informed decisions in selecting the most fundamentally sound PRO measure for a given clinical, research, or quality initiative. PMID:28375450

  17. Leveraging Understanding of Flow of Variable Complex Fluid to Design Better Absorbent Hygiene Products

    NASA Astrophysics Data System (ADS)

    Krautkramer, C.; Rend, R. R.

    2014-12-01

    Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.

  18. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Connor J.

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm -1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm -1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm -1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141more » seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.« less

  19. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less

  20. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  1. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  2. Spatial measurement in rotating magnetic field plasma acceleration method by using two-dimensional scanning instrument and thrust stand

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Takizawa, K.; Yano, K.; Kuwahara, D.; Shinohara, S.

    2018-04-01

    A two-dimensional scanning probe instrument has been developed to survey spatial plasma characteristics in our electrodeless plasma acceleration schemes. In particular, diagnostics of plasma parameters, e.g., plasma density, temperature, velocity, and excited magnetic field, are essential for elucidating physical phenomena since we have been concentrating on next generation plasma propulsion methods, e.g., Rotating Magnetic Field plasma acceleration method, by characterizing the plasma performance. Moreover, in order to estimate the thrust performance in our experimental scheme, we have also mounted a thrust stand, which has a target type, on this movable instrument, and scanned the axial profile of the thrust performance in the presence of the external magnetic field generated by using permanent magnets, so as to investigate the plasma captured in a stand area, considering the divergent field lines in the downstream region of a generation antenna. In this paper, we will introduce the novel measurement instrument and describe how to measure these parameters.

  3. Brachial cuff measurements of blood pressure during passive leg raising for fluid responsiveness prediction.

    PubMed

    Lakhal, K; Ehrmann, S; Benzekri-Lefèvre, D; Runge, I; Legras, A; Dequin, P-F; Mercier, E; Wolff, M; Régnier, B; Boulain, T

    2012-05-01

    The passive leg raising maneuver (PLR) for fluid responsiveness testing relies on cardiac output (CO) measurements or invasive measurements of arterial pressure (AP) whereas the initial hemodynamic management during shock is often based solely on brachial cuff measurements. We assessed PLR-induced changes in noninvasive oscillometric readings to predict fluid responsiveness. Multicentre interventional study. In ICU sedated patients with circulatory failure, AP (invasive and noninvasive readings) and CO measurements were performed before, during PLR (trunk supine, not modified) and after 500-mL volume expansion. Areas under the ROC curves (AUC) were determined for fluid responsiveness (>10% volume expansion-induced increase in CO) prediction. In 112 patients (19% with arrhythmia), changes in noninvasive systolic AP during PLR (noninvasiveΔ(PLR)SAP) only predicted fluid responsiveness (cutoff 17%, n=21, positive likelihood ratio [LR] of 26 [18-38]), not unresponsiveness. If PLR-induced change in central venous pressure (CVP) was at least of 2 mm Hg (n=60), suggesting that PLR succeeded in altering cardiac preload, noninvasiveΔ(PLR)SAP performance was good: AUC of 0.94 [0.85-0.98], positive and negative LRs of 5.7 [4.6-6.8] and 0.07 [0.009-0.5], respectively, for a cutoff of 9%. Of note, invasive AP-derived indices did not outperform noninvasiveΔ(PLR)SAP. Regardless of CVP (i.e., during "blind PLR"), noninvasiveΔ(PLR)SAP more than 17% reliably identified fluid responders. During "CVP-guided PLR", in case of sufficient change in CVP, noninvasiveΔ(PLR)SAP performed better (cutoff of 9%). These findings, in sedated patients who had already undergone volume expansion and/or catecholamines, have to be verified during the early phase of circulatory failure (before an arterial line and/or a CO measuring device is placed). Copyright © 2012 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  4. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that

  5. Computer program for calculating thermodynamic and transport properties of fluids

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braon, A. K.; Peller, I. C.

    1975-01-01

    Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.

  6. A systematic review of instruments that measure attitudes toward homosexual men.

    PubMed

    Grey, Jeremy A; Robinson, Beatrice Bean E; Coleman, Eli; Bockting, Walter O

    2013-01-01

    Scientific interest in the measurement of homophobia and internalized homophobia has grown over the past 30 years, and new instruments and terms have emerged. To help researchers with the challenging task of identifying appropriate measures for studies in sexual-minority health, we reviewed measures of homophobia published in the academic literature from 1970 to 2012. Instruments that measured attitudes toward male homosexuals/homosexuality or measured homosexuals' internalized attitudes toward homosexuality were identified using measurement manuals and a systematic review. A total of 23 instruments met criteria for inclusion, and their features were summarized and compared. All 23 instruments met minimal criteria for adequate scale construction, including scale development, sampling, reliability, and evidence of validity. Validity evidence was diverse and was categorized as interaction with gay men, HIV/AIDS variables, mental health, and conservative religious or political beliefs. Homophobia was additionally correlated with authoritarianism and bias, gender ideology, gender differences, and reactions to homosexual stimuli. Internalized homophobia was validated by examining relationships with disclosing one's homosexuality and level of homosexual identity development. We hope this review will make the process of instrument selection more efficient by allowing researchers to easily locate, evaluate, and choose the proper measure based on their research question and population of interest.

  7. 21 CFR 886.1460 - Stereopsis measuring instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stereopsis measuring instrument. 886.1460 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1460 Stereopsis measuring instrument. (a) Identification. A stereopsis measuring instrument is a device intended to measure depth...

  8. Radiant Power Measuring Instrument (RPMI)

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1973-01-01

    There are no author-identified significant results in this report. The radiant power measuring instrument is a rugged, hand-carried instrument which provides an ERTS investigator with a capability of obtaining radiometric measurements needed to determine solar and atmospheric parameters that affect the ERTS radiance measurements. With these parameters, ERTS data can be transformed into absolute target reflectance signatures, making accurate unambiguous interpretations possible.

  9. Instrument for Aircraft-Icing and Cloud-Physics Measurements

    NASA Technical Reports Server (NTRS)

    Lilie, Lyle; Bouley, Dan; Sivo, Chris

    2006-01-01

    The figure shows a compact, rugged, simple sensor head that is part of an instrumentation system for making measurements to characterize the severity of aircraft-icing conditions and/or to perform research on cloud physics. The quantities that are calculated from measurement data acquired by this system and that are used to quantify the severity of icing conditions include sizes of cloud water drops, cloud liquid water content (LWC), cloud ice water content (IWC), and cloud total water content (TWC). The sensor head is mounted on the outside of an aircraft, positioned and oriented to intercept the ambient airflow. The sensor head consists of an open housing that is heated in a controlled manner to keep it free of ice and that contains four hot-wire elements. The hot-wire sensing elements have different shapes and sizes and, therefore, exhibit different measurement efficiencies with respect to droplet size and water phase (liquid, frozen, or mixed). Three of the hot-wire sensing elements are oriented across the airflow so as to intercept incoming cloud water. For each of these elements, the LWC or TWC affects the power required to maintain a constant temperature in the presence of cloud water.

  10. Foundations of measurement and instrumentation

    NASA Technical Reports Server (NTRS)

    Warshawsky, Isidore

    1990-01-01

    The user of instrumentation has provided an understanding of the factors that influence instrument performance, selection, and application, and of the methods of interpreting and presenting the results of measurements. Such understanding is prerequisite to the successful attainment of the best compromise among reliability, accuracy, speed, cost, and importance of the measurement operation in achieving the ultimate goal of a project. Some subjects covered are dimensions; units; sources of measurement error; methods of describing and estimating accuracy; deduction and presentation of results through empirical equations, including the method of least squares; experimental and analytical methods of determining the static and dynamic behavior of instrumentation systems, including the use of analogs.

  11. Time-Lapse Micro-Tomography Measurements and Determination of Effective Transport Properties of Snow Metamorphism Under Advective Conditions

    NASA Astrophysics Data System (ADS)

    Ebner, P. P.; Grimm, S.; Steen-Larsen, H. C.; Schneebeli, M.; Steinfeld, A.

    2014-12-01

    The metamorphism of snow under advective air flow, with and without temperature gradient, was never experimentally investigated. We developed a new sample holder where metamorphism under advective conditions can be observed and measured using time-lapse micro-tomography [1]. Long-term experiments were performed and direct pore-level simulation (DPLS) [2,3] was directly applied on the extracted 3D digital geometry of the snow to calculate the effective transport properties by solving the governing fluid flow equations. The results showed no effect of isothermal advection, compared to rates typical for isothermal metamorphism. Appling a temperature gradient, the results showed increased snow metamorphism compared to rates typical for temperature gradient metamorphism. However, for both cases a change in the isotopic composition in the air as well as in the snow sample could be observed. These measurements could be influential to better understand snow-air exchange processes relevant for atmospheric chemistry and isotopic composition. REFERENCES[1] Ebner P. P., Grimm S., Schneebeli M., and Steinfeld A.: An instrumented sample holder for time-lapse micro-tomography measurements of snow under advective airflow. Geoscientific Instrumentation, Methods and Data Systems 4(2014), 353-373. [2] Zermatten E., Haussener S., Schneebeli M., and Steinfeld A.: Tomography-based determination of permeability and Dupuit-Forchheimer coefficient of characteristic snow samples. Journal of Glaciology 57(2011), 811-816. [3] Zermatten E., Schneebeli M., Arakawa H., and Steinfeld A.: Tomography-based determination of porosity, specific area and permeability of snow and comparison with measurements. Cold Regions Science and Technology 97 (2014), 33-40. Fig. 1: 3-D surface rendering of a refrozen wet snow sample with fluid flow streamline.

  12. Locating Tests and Measurement Instruments for Assessment

    ERIC Educational Resources Information Center

    Mastel, Kristen; Morris-Knower, Jim; Marsalis, Scott

    2016-01-01

    Extension educators, staff, and specialists need to use surveys and other measurement instruments to assess their programming and conduct other research. Challenges in locating tests and measurement tools, however, include lack of time and lack of familiarity with techniques that can be used to find them. This article discusses library resources…

  13. Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.

    PubMed

    Saraghi, Mana

    2015-01-01

    Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.

  14. Consideration of Alternate Working Fluid Properties in Gas Lubricated Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.

    2004-01-01

    The Oil-Free Turbomachinery Program at the NASA Glenn Research center is committed to, revolutionary improvements in performance, efficiency and reliability of turbomachinery propulsion systems. One of the key breakthroughs by which this goal is being achieved is the maturation of air lubricated foil bearing technology. Through experimental testing, foil bearings have demonstrated a variety of exceptional qualities that show them to have an important role in the future of rotordynamic lubrication. Most of the work done with foil bearings thus far has considered ambient air at atmospheric pressure as the working fluid or lubricating fluid in the bearing. However, special applications of oil-free technology require the use of air at non- standard ambient conditions or completely different working fluids altogether. The NASA Jupiter Icy Moon Orbiter program presents power generation needs far beyond that of any previous space exploration effort. The proposed spacecraft will require significant power generation to provide the propulsion necessary to reach the moons of Jupiter and navigate between them. Once there, extensive scientific research will be conducted that will also present significant power requirements. Such extreme needs require exploring a new method for power generation in space. A proposed solution involves a Brayton cycle nuclear fission reactor. The nature of this application requires reliable performance of all reactor components for many years of operation under demanding conditions. This includes the bearings which will be operating with an alternative working fluid that is a combination of Helium and Xenon gases commonly known as HeXe. This fluid has transport and thermal properties that vary significantly from that of air and the effect of these property differences on bearing performance must be considered. One of the most promising applications of oil-free technology is in aircraft turbine engines. Eliminating the oil supply systems from

  15. 46 CFR 67.265 - Requirements for instruments evidencing satisfaction or release.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for instruments evidencing satisfaction or... for instruments evidencing satisfaction or release. An instrument satisfying or releasing a mortgage... claim of lien is recorded. If the recording information cannot be provided because the satisfaction or...

  16. Mechanical Properties of Gels; Stress from Confined Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George W. Scherer

    2009-12-01

    Abstract for Grant DE-FG02-97ER45642 Period: 1997-2002 Mechanical Properties of Gels 2002-2008 Stress from Confined Fluids Principal investigator: Prof. George W. Scherer Dept. Civil & Env. Eng./PRISM Eng. Quad. E-319 Princeton, NJ 08544 USA Recipient organization: Trustees of Princeton University 4 New South Princeton, NJ 08544 USA Abstract: The initial stage of this project, entitled Mechanical Properties of Gels, was dedicated to characterizing and explaining the properties of inorganic gels. Such materials, made by sol-gel processing, are of interest for fabrication of films, fibers, optical devices, advanced insulation and other uses. However, their poor mechanical properties are an impediment in somemore » applications, so understanding the origin of these properties could lead to enhanced performance. Novel experimental methods were developed and applied to measure the stiffness and permeability of gels and aerogels. Numerical simulations were developed to reproduce the growth process of the gels, resulting in structures whose mechanical properties matched the measurements. The models showed that the gels are formed by the growth of relatively robust clusters of molecules that are joined by tenuous links whose compliance compromises the stiffness of the structure. Therefore, synthetic methods that enhance the links could significantly increase the rigidity of such gels. The next stage of the project focused on Stress from Confined Fluids. The first problem of interest was the enhanced thermal expansion coefficient of water that we measured in the nanometric pores of cement paste. This could have a deleterious effect on the resistance of concrete to rapid heating in fires, because the excessive thermal expansion of water in the pores of the concrete could lead to spalling and collapse. A series of experiments demonstrated that the expansion of water increases as the pore size decreases. To explain this behavior, we undertook a collaboration with Prof

  17. Psychometric Properties of Patient-Facing eHealth Evaluation Measures: Systematic Review and Analysis

    PubMed Central

    Turvey, Carolyn L; Nazi, Kim M; Holman, John E; Hogan, Timothy P; Shimada, Stephanie L; Kennedy, Diana R

    2017-01-01

    Background Significant resources are being invested into eHealth technology to improve health care. Few resources have focused on evaluating the impact of use on patient outcomes A standardized set of metrics used across health systems and research will enable aggregation of data to inform improved implementation, clinical practice, and ultimately health outcomes associated with use of patient-facing eHealth technologies. Objective The objective of this project was to conduct a systematic review to (1) identify existing instruments for eHealth research and implementation evaluation from the patient’s point of view, (2) characterize measurement components, and (3) assess psychometrics. Methods Concepts from existing models and published studies of technology use and adoption were identified and used to inform a search strategy. Search terms were broadly categorized as platforms (eg, email), measurement (eg, survey), function/information use (eg, self-management), health care occupations (eg, nurse), and eHealth/telemedicine (eg, mHealth). A computerized database search was conducted through June 2014. Included articles (1) described development of an instrument, or (2) used an instrument that could be traced back to its original publication, or (3) modified an instrument, and (4) with full text in English language, and (5) focused on the patient perspective on technology, including patient preferences and satisfaction, engagement with technology, usability, competency and fluency with technology, computer literacy, and trust in and acceptance of technology. The review was limited to instruments that reported at least one psychometric property. Excluded were investigator-developed measures, disease-specific assessments delivered via technology or telephone (eg, a cancer-coping measure delivered via computer survey), and measures focused primarily on clinician use (eg, the electronic health record). Results The search strategy yielded 47,320 articles. Following

  18. A comparative review of measurement instruments to inform and evaluate effectiveness of disability inclusive development.

    PubMed

    Goujon, Nicolas; Devine, Alexandra; Baker, Sally M; Sprunt, Beth; Edmonds, Tanya J; Booth, Jennifer K; Keeffe, Jill E

    2014-01-01

    A review of existing measurement instruments was conducted to examine their suitability to measure disability prevalence and assess quality of life, protection of disability rights and community participation by people with disabilities, specifically within the context of development programs in low and middle-income countries. From a search of PubMed and the grey literature, potentially relevant measurement instruments were identified and examined for their content and psychometric properties, where possible. Criteria for inclusion were: based on the WHO's International Classification of Functioning Disability and Health (ICF), used quantitative methods, suitable for population-based studies of disability inclusive development in English and published after 1990. Characteristics of existing instruments were analysed according to components of the ICF and quality of life domains. Ten instruments were identified and reviewed according to the criteria listed above. Each version of instruments was analysed separately. Only three instruments included a component on quality of life. Domains from the ICF that were addressed by some but not all instruments included the environment, technology and communication. The measurement instruments reviewed covered the range of elements required to measure disability-inclusion within development contexts. However no single measurement instrument has the capacity to measure both disability prevalence and changes in quality of life according to contemporary disability paradigms. The review of measurement instruments supports the need for developing an instrument specifically intended to measure disability inclusive practice within development programs. Implications for Rehabilitation Surveys and tools are needed to plan disability inclusive development. Existing measurement tools to determine prevalence of disability, wellbeing, rights and access to the community were reviewed. No single validated tool exists for population

  19. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism

  20. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    ERIC Educational Resources Information Center

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  1. 21 CFR 886.1425 - Lens measuring instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lens measuring instrument. 886.1425 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1425 Lens measuring instrument. (a) Identification. A lens measuring instrument is an AC-powered device intended to measure the power of lenses...

  2. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report

    PubMed Central

    Ferraris, Chiara F.

    1999-01-01

    The rheological or flow properties of concrete in general and of high performance concrete (HPC) in particular, are important because many factors such as ease of placement, consolidation, durability, and strength depend on the flow properties. Concrete that is not properly consolidated may have defects, such as honeycombs, air voids, and aggregate segregation. Such an important performance attribute has triggered the design of numerous test methods. Generally, the flow behavior of concrete approximates that of a Bingham fluid. Therefore, at least two parameters, yield stress and viscosity, are necessary to characterize the flow. Nevertheless, most methods measure only one parameter. Predictions of the flow properties of concrete from its composition or from the properties of its components are not easy. No general model exists, although some attempts have been made. This paper gives an overview of the flow properties of a fluid or a suspension, followed by a critical review of the most commonly used concrete rheology tests. Particular attention is given to tests that could be used for HPC. Tentative definitions of terms such as workability, consistency, and rheological parameters are provided. An overview of the most promising tests and models for cement paste is given.

  3. Heat Transfer of Thermocapillary Convection in a Two-Layered Fluid System Under the Influence of Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ludovisis, D.; Cha, S. S.

    2006-01-01

    Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.

  4. Ad libitum fluid consumption via self- or external administration.

    PubMed

    Yeargin, Susan W; Finn, Megan E; Eberman, Lindsey E; Gage, Matthew J; McDermott, Brendon P; Niemann, Andrew

    2015-01-01

    During team athletic events, athletic trainers commonly provide fluids with water bottles. When a limited number of water bottles exist, various techniques are used to deliver fluids. To determine whether fluid delivered via water-bottle administration influenced fluid consumption and hydration status. Crossover study. Outdoor field (22.2°C ± 3.5°C). Nineteen participants (14 men, 5 women, age = 30 ± 10 years, height = 176 ± 8 cm, mass = 72.5 ± 10 kg) were recruited from the university and local running clubs. The independent variable was fluid delivery with 3 levels: self-administration with mouth-to-bottle direct contact (SA-DC), self-administration with no contact between mouth and bottle (SA-NC), and external administration with no contact between the mouth and the bottle (EA-NC). Participants warmed up for 10 minutes before completing 5 exercise stations, after which an ad libitum fluid break was given, for a total of 6 breaks. We measured the fluid variables of total volume consumed, total number of squirts, and average volume per squirt. Hydration status via urine osmolality and body-mass loss, and perceptual variables for thirst and fullness were recorded. We calculated repeated-measures analyses of variance to assess hydration status, fluid variables, and perceptual measures to analyze conditions across time. The total volume consumed for EA-NC was lower than for SA-DC (P = .001) and SA-NC (P = .001). The total number of squirts for SA-DC was lower than for SA-NC (P = .009). The average volume per squirt for EA-NC was lower than for SA-DC (P = .020) and SA-NC (P = .009). Participants arrived (601.0 ± 21.3 mOsm/L) and remained (622.3 ± 38.3 mOsm/L) hydrated, with no difference between conditions (P = .544); however, the EA-NC condition lost more body mass than did the SA-DC condition (P = .001). There was no main effect for condition on thirst (P = .147) or fullness (P = .475). External administration of fluid decreased total volume consumed via a

  5. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of variousmore » non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.« less

  6. Hydraulic pressures generated in magnetic ionic liquids by paramagnetic fluid/air interfaces inside of uniform tangential magnetic fields.

    PubMed

    Scovazzo, Paul; Portugal, Carla A M; Rosatella, Andreia A; Afonso, Carlos A M; Crespo, João G

    2014-08-15

    Magnetic Ionic Liquid (MILs), novel magnetic molecules that form "pure magnetic liquids," will follow the Ferrohydrodynamic Bernoulli Relationship. Based on recent literature, the modeling of this fluid system is an open issue and potentially controversial. We imposed uniform magnetic fields parallel to MIL/air interfaces where the capillary forces were negligible, the Quincke Problem. The size and location of the bulk fluid as well as the size and location of the fluid/air interface inside of the magnetic field were varied. MIL properties varied included the density, magnetic susceptibility, chemical structure, and magnetic element. Uniform tangential magnetic fields pulled the MILs up counter to gravity. The forces per area were not a function of the volume, the surface area inside of the magnetic field, or the volume displacement. However, the presence of fluid/air interfaces was necessary for the phenomena. The Ferrohydrodynamic Bernoulli Relationship predicted the phenomena with the forces being directly related to the fluid's volumetric magnetic susceptibility and the square of the magnetic field strength. [emim][FeCl4] generated the greatest hydraulic head (64-mm or 910 Pa at 1.627 Tesla). This work could aid in experimental design, when free surfaces are involved, and in the development of MIL applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  8. Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field - Multiple-instrument particle observations

    NASA Technical Reports Server (NTRS)

    Song, P.; Russell, C. T.; Fitzenreiter, R. J.; Gosling, J. T.; Thomsen, M. F.; Mitchell, D. G.; Fuselier, S. A.; Parks, G. K.; Anderson, R. R.; Hubert, D.

    1993-01-01

    The paper examines the structure and properties of the subsolar magnetopause for northward IMF on the basis of measurements from 10 different instrument for three ISEE crossings. It is shown that the overall structure and properties are similar for the three crossings, indicating that the magnetopause is relatively well determined in the subsolar region for strongly northward IMF. The combined data set suggests that the magnetopause region is best organized by defining a sheath transition layer and steplike boundary layers. The electron flux enhancements in the lowest energies in the boundary layers and magnetosphere are found to be ionospheric electrons and not photoelectrons from the spacecraft. For northward IMF, they are photoelectrons, but for southward IMF they may be secondary electrons. The density measurements from differential and integral techniques are similar, leaving no room for a significant 'invisible' population.

  9. Psychometric evaluation of a new instrument in Spanish to measure the wellness of university nursing faculty.

    PubMed

    Hurtado-Pardos, Barbara; Casas, Irma; Lluch-Canut, Teresa; Moreno-Arroyo, Carmen; Nebot-Bergua, Carlos; Roldán-Merino, Juan

    2018-01-02

    The aim of this study was to design and validate an instrument to measure the wellness among university nursing faculty. The study was performed in two phases. Phase I consisted of the development of the instrument with discussion groups and participant consensus. We designed an instrument including the 21 items or psychosocial risk factors identified and estimated an index by evaluating the frequency and intensity of each item. The items were grouped into 3 dimensions: teaching work demands, curricular demands, and organizational difficulties. Phase II, we evaluated the psychometric properties of the tool in a sample of 263 participants. Exploratory factor analysis showed a 3-factor structure that explained 53% of the total variance. The internal consistency of the instrument was 0.91 for the whole instrument. The results indicate that the tool developed is valid and reliable and may be a good instrument to monitor the wellness of university nursing faculty.

  10. Psychometric Properties of an Instrument to Measure Social and Pedagogical School Climate among Teachers (PESOC)

    ERIC Educational Resources Information Center

    Hultin, H.; Ferrer-Wreder, L.; Eichas, K.; Karlberg, M.; Grosin, L.; Galanti, M. R.

    2018-01-01

    This study investigated the psychometric properties of a teacher-reported version of a Swedish school climate instrument called the Pedagogical and Social Climate (PESOC), which consists of 95 items covering cultural, structural and social factors. A sample of 348 teachers from 19 Swedish secondary schools was used. Multilevel confirmatory factor…

  11. DeepPIV: Measuring in situ Biological-Fluid Interactions from the Surface to Benthos

    NASA Astrophysics Data System (ADS)

    Katija, K.; Sherman, A.; Graves, D.; Kecy, C. D.; Klimov, D.; Robison, B. H.

    2015-12-01

    The midwater region of the ocean (below the euphotic zone and above the benthos) is one of the largest ecosystems on our planet, yet it remains one of the least explored. Little known marine organisms that inhabit midwater have developed strategies for swimming and feeding that ultimately contributes to their evolutionary success, and may inspire engineering solutions for societally relevant challenges. Fluid mechanics governs the interactions that midwater organisms have with their physical environment, but limited access to midwater depths and lack of non-invasive methods to measure in situ small-scale fluid motions prevent these interactions from being better understood. Significant advances in underwater vehicle technologies have only recently improved access to midwater. Unfortunately, in situ small-scale fluid mechanics measurement methods are still lacking in the oceanographic community. Here we present DeepPIV, an instrumentation package that can be affixed to remotely operated underwater vehicles that quantifies small-scale fluid motions from the surface of the ocean down to 4000 m depths. Utilizing ambient, suspended particulate in the coastal regions of Monterey Bay, fluid-structure interactions are evaluated on a range of marine organisms in midwater. Initial science targets include larvaceans, biological equivalents of flapping flexible foils, that create mucus houses to filter food. Little is known about the structure of these mucus houses and the function they play in selectively filtering particles, and these dynamics can serve as particle-mucus models for human health. Using DeepPIV, we reveal the complex structures and flows generated within larvacean mucus houses, and elucidate how these structures function.

  12. Development of Low-Cost Instrumentation for Single Point Autofluorescence Lifetime Measurements.

    PubMed

    Lagarto, João; Hares, Jonathan D; Dunsby, Christopher; French, Paul M W

    2017-09-01

    Autofluorescence lifetime measurements, which can provide label-free readouts in biological tissues, contrasting e.g. different types and states of tissue matrix components and different cellular metabolites, may have significant clinical potential for diagnosis and to provide surgical guidance. However, the cost of the instrumentation typically used currently presents a barrier to wider implementation. We describe a low-cost single point time-resolved autofluorescence instrument, exploiting modulated laser diodes for excitation and FPGA-based circuitry for detection, together with a custom constant fraction discriminator. Its temporal accuracy is compared against a "gold-standard" instrument incorporating commercial TCSPC circuitry by resolving the fluorescence decays of reference fluorophores presenting single and double exponential decay profiles. To illustrate the potential to read out intrinsic contrast in tissue, we present preliminary measurements of autofluorescence lifetime measurements of biological tissues ex vivo. We believe that the lower cost of this instrument could enhance the potential of autofluorescence lifetime metrology for clinical deployment and commercial development.

  13. A systematic review evaluating the psychometric properties of measures of social inclusion

    PubMed Central

    Milbourn, Ben; Martin, Robyn; Buchanan, Angus; Chung, Donna; Speyer, Renée

    2017-01-01

    Introduction Improving social inclusion opportunities for population health has been identified as a priority area for international policy. There is a need to comprehensively examine and evaluate the quality of psychometric properties of measures of social inclusion that are used to guide social policy and outcomes. Objective To conduct a systematic review of the literature on all current measures of social inclusion for any population group, to evaluate the quality of the psychometric properties of identified measures, and to evaluate if they capture the construct of social inclusion. Methods A systematic search was performed using five electronic databases: CINAHL, PsycINFO, Embase, ERIC and Pubmed and grey literature were sourced to identify measures of social inclusion. The psychometric properties of the social inclusion measures were evaluated against the COSMIN taxonomy of measurement properties using pre-set psychometric criteria. Results Of the 109 measures identified, twenty-five measures, involving twenty-five studies and one manual met the inclusion criteria. The overall quality of the reviewed measures was variable, with the Social and Community Opportunities Profile-Short, Social Connectedness Scale and the Social Inclusion Scale demonstrating the strongest evidence for sound psychometric quality. The most common domain included in the measures was connectedness (21), followed by participation (19); the domain of citizenship was covered by the least number of measures (10). No single instrument measured all aspects within the three domains of social inclusion. Of the measures with sound psychometric evidence, the Social and Community Opportunities Profile-Short captured the construct of social inclusion best. Conclusions The overall quality of the psychometric properties demonstrate that the current suite of available instruments for the measurement of social inclusion are promising but need further refinement. There is a need for a universal working

  14. The effect of geothermal fluid composition in lime-pozzolan reactions on elastic and transport properties.

    NASA Astrophysics Data System (ADS)

    MacFarlane, J.; Vanorio, T.

    2016-12-01

    Calcium-Silicate-Hydrates (C-S-H) are a complex family of hydrates known to form within hyper-alkaline geothermal systems as well as concrete. Within both environments the formation of C-S-H can be linked to the lime-pozzolan reaction. Pozzolan's defined as a siliceous or alumino-siliceous material, which in itself possesses little or no cementing property, but in the presence of moisture chemically reacts with calcium hydroxide at ordinary temperatures to form cementitious compounds. C-S-H fibers have been discovered in a low permeability, caprock layer beneath the Campi Flegrei caldera, as well as within ancient Roman concrete made using volcanic ash and fluids from the Campi Flegrei region over 2000 years ago. By replicating the recipe for Roman concrete, fibrous minerals have been formed in laboratory experiments and imaged using a scanning electron microscope. The formation of C-S-H within concrete has been shown to depend on the mineral ions present, among other factors. Here, we report on how the geothermal fluid composition effects the elastic and transport properties of laboratory samples. Samples were made using the same volcanic ash as the Romans, called Pozzolana, slaked lime and geothermal fluid. Two geothermal fluids from the Campi Flegrei region were compared, as well as deionized water as a control. Preliminary results have shown changes in both the elastic and transport properties between sample sets made with geothermal fluid and the control. These changes are attributed to the structure of the C-S-H that forms in the lime-pozzolan reaction. Understanding how the geothermal fluid composition controls the properties of this reaction has implications for the understanding of both geothermal systems and concrete engineering.

  15. Lower hybrid wave phenomena associated with density depletions

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1994-01-01

    A fluid description of lower hybrid, whistler and magnetosonic waves is applied to study wave phenomena near the lower hybrid resonance associated with plasma density depletions. The goal is to understand the nature of lower hybrid cavitons and spikelets often associated with transverse ion acceleration events in the auroral ionosphere. Three-dimensional simulations show the ponderomotive force leads to the formation of a density cavity (caviton) in which lower hybrid wave energy is concentrated (spikelet) resulting in a three-dimensional collapse of the configuration. Plasma density depletions of the order of a few percent are shown to greatly modify the homogeneous linear properties of lower hybrid waves and account for many of the observed features of lower hybrid spikelets.

  16. Comparing measurement response and inverted results of electrical resistivity tomography instruments

    USGS Publications Warehouse

    Parsekian, Andrew D.; Claes, Niels; Singha, Kamini; Minsley, Burke J.; Carr, Bradley; Voytek, Emily; Harmon, Ryan; Kass, Andy; Carey, Austin; Thayer, Drew; Flinchum, Brady

    2017-01-01

    In this investigation, we compare the results of electrical resistivity measurements made by six commercially available instruments on the same line of electrodes to determine if there are differences in the measured data or inverted results. These comparisons are important to determine whether measurements made between different instruments are consistent. We also degraded contact resistance on one quarter of the electrodes to study how each instrument responds to different electrical connection with the ground. We find that each instrument produced statistically similar apparent resistivity results, and that any conservative assessment of the final inverted resistivity models would result in a similar interpretation for each. We also note that inversions, as expected, are affected by measurement error weights. Increased measurement errors were most closely associated with degraded contact resistance in this set of experiments. In a separate test we recorded the full measured waveform for a single four-electrode array to show how poor electrode contact and instrument-specific recording settings can lead to systematic measurement errors. We find that it would be acceptable to use more than one instrument during an investigation with the expectation that the results would be comparable assuming contact resistance remained consistent.

  17. A new instrument for measuring optical transmission in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kaurila, Timo A.

    2007-04-01

    It is an important task to measure optical transmission of the atmosphere when testing the performance of electro-optical systems such as thermal imagers. Only by knowing atmospheric transmission precisely enough, we will be able to eliminate effects of the atmosphere on test results. For this reason a new instrument that measures optical transmission in the atmosphere has been constructed. The transmissometer consists of a transmitter/receiver unit, a reflector and control software. The instrument measures atmospheric transmission at wavelength of 1 μm and 8-12 μm by comparing the intensity of the beam propagating through the atmosphere and the reference beam inside the transmitter/receiver unit. Calibration is carried out by the aid of a visibility meter and a special calibration algorithm. An important criterion for the design was to create an instrument which could be used flexibly in field measurements. The transmissometer was tested comprehensively in the field in March and June 2006. It can measure extinction coefficients up to 3 - 12 km -1 depending on the span between the transmitter/receiver unit and reflector with accuracy of 10 - 20 %. According to the test measurements the transmissometer also fulfills the other requirement specifications.

  18. A systematic review of instruments to assess organizational readiness for knowledge translation in health care.

    PubMed

    Gagnon, Marie-Pierre; Attieh, Randa; Ghandour, El Kebir; Légaré, France; Ouimet, Mathieu; Estabrooks, Carole A; Grimshaw, Jeremy

    2014-01-01

    The translation of research into practices has been incomplete. Organizational readiness for change (ORC) is a potential facilitator of effective knowledge translation (KT). However we know little about the best way to assess ORC. Therefore, we sought to systematically review ORC measurement instruments. We searched for published studies in bibliographic databases (Pubmed, Embase, CINAHL, PsychINFO, Web of Science, etc.) up to November 1st, 2012. We included publications that developed ORC measures and/or empirically assessed ORC using an instrument at the organizational level in the health care context. We excluded articles if they did not refer specifically to ORC, did not concern the health care domain or were limited to individual-level change readiness. We focused on identifying the psychometric properties of instruments that were developed to assess readiness in an organization prior to implementing KT interventions in health care. We used the Standards for Educational and Psychological Testing to assess the psychometric properties of identified ORC measurement instruments. We found 26 eligible instruments described in 39 publications. According to the Standards for Educational and Psychological Testing, 18 (69%) of a total of 26 measurement instruments presented both validity and reliability criteria. The Texas Christian University -ORC (TCU-ORC) scale reported the highest instrument validity with a score of 4 out of 4. Only one instrument, namely the Modified Texas Christian University - Director version (TCU-ORC-D), reported a reliability score of 2 out of 3. No information was provided regarding the reliability and validity of five (19%) instruments. Our findings indicate that there are few valid and reliable ORC measurement instruments that could be applied to KT in the health care sector. The TCU-ORC instrument presents the best evidence in terms of validity testing. Future studies using this instrument could provide more knowledge on its relevance to

  19. The "Intentionality Measurement Instrument" [or "IMI"]: A Comprehensive Psychometric Instrument Based upon the Dual Quadrant Scalar Model of Intentionality That Is Designed to Measure Intent, Motive Type, and Disposition

    ERIC Educational Resources Information Center

    Osler, James Edward, II

    2016-01-01

    The overall aim of this paper is to provide an epistemological rational for the measurement of intentionality. The purpose of this narrative is to identify "Intentionality" as an arena of action in the dispositional learning domain can be measured using an "Intentionality Measurement Instrument" [also referred by the acronym…

  20. An Analysis of Ionospheric Thermal Ions Using a SIMION-based Forward Instrument Model: In Situ Observations of Vertical Thermal Ion Flows as Measured by the MICA Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2013-12-01

    created with the Spacecraft Plasma Interaction Software (SPIS). Once we have coupled the instrument and forward models to this sophisticated sheath model, we can rigorously extract the properties of the background thermal plasma. These thermal plasma measurements are used to address questions of ionospheric-thermospheric coupling. These questions for MICA and its modeling efforts include the following: is the state of the ionosphere during the rocket flight a remnant of the westward traveling surge, or is it a direct response to localized drivers? How do the calculated ion flows compare to the flows derived from the electric field data, and what do these flows tell us about the state of the ionosphere? How do the MICA measurements of ion upflows and downflows tie into the broader sounding rocket ion parallel flow study presented by Lynch et al. (this session) and into the Zettergren and Semeter, [2012] 2D, ionospheric fluid/electrostatic model?