Sample records for insulin secretory dysfunction

  1. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1.

    PubMed

    Wei, Jie; Ding, Dongxiao; Wang, Tao; Liu, Qiong; Lin, Yi

    2017-12-01

    Bisphenol A (BPA) can disrupt glucose homeostasis and impair pancreatic islet function; however, the mechanisms behind these effects are poorly understood. Male mice (4 wk old) were treated with BPA (50 or 500 μg/kg/d) for 8 wk. Whole-body glucose homeostasis, pancreatic islet morphology and function, and miR-338-mediated molecular signal transduction analyses were examined. We showed that BPA treatment led to a disruption of glucose tolerance and a compensatory increase of pancreatic islets insulin secretion and pancreatic and duodenal homeobox 1 ( Pdx1 ) expression in mice. Inhibition of Pdx1 reduced glucose-stimulated insulin secretion and ATP production in the islets of BPA-exposed mice. Based on primary pancreatic islets, we also confirmed that miR-338 regulated Pdx1 and thus contributed to BPA-induced insulin secretory dysfunction from compensation to decompensation. Short-term BPA exposure downregulated miR-338 through activation of G-protein-coupled estrogen receptor 1 (Gpr30), whereas long-term BPA exposure upregulated miR-338 through suppression of glucagon-like peptide 1 receptor (Glp1r). Taken together, our results reveal a molecular mechanism, whereby BPA regulates Gpr30/Glp1r to mediate the expression of miR-338, which acts to control Pdx1-dependent insulin secretion. The Gpr30/Glp1r-miR-338-Pdx1 axis should be represented as a novel mechanism by which BPA induces insulin secretory dysfunction in pancreatic islets.-Wei, J., Ding, D., Wang, T., Liu, Q., Lin, Y. MiR-338 controls BPA-triggered pancreatic islet insulin secretory dysfunction from compensation to decompensation by targeting Pdx-1. © FASEB.

  2. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  3. Glucose and Insulin Secretory Response Patterns Following Diet and Tolazamide Therapy in Diabetes

    PubMed Central

    Turtle, J. R.

    1970-01-01

    Glucose and insulin secretory response patterns during glucose tolerance tests were determined in 28 maturity-onset diabetics, and the sequential effects of diet and a sulphonylurea, tolazamide, were assessed. Untreated diabetics showed hyperglycaemia, increased serum immunoreactive insulin response patterns, delayed insulin release, and relative insulin deficiency. Diet alone partially corrected the hyperglycaemia and serum immunoreactive insulin response but had no effect on the delayed insulin release or relative insulin deficiency. Tolazamide plus diet restored all values towards normal. The net effect of maintenance tolazamide therapy was to (1) restore the insulin secretory response pattern to normal, (2) reduce total pancreatic insulin output, and (3) improve the efficiency of insulin secretion. The results suggest that there is a rational basis for the use of sulphonylurea in all maturity-onset diabetics, including patients with mild carbohydrate intolerance and those who are apparently controlled by diet alone. PMID:5470087

  4. Alpha-SNAP functions in insulin exocytosis from mature, but not immature secretory granules in pancreatic beta cells.

    PubMed

    Nakamichi, Y; Nagamatsu, S

    1999-06-24

    To explore alpha-SNAP function in insulin exocytosis from either immature or mature secretory granules in pancreatic beta cells, we studied the effects of overexpression of adenovirus-mediated wild-type alpha-SNAP and C-terminally deleted alpha-SNAP mutant (1-285) on newly synthesized proinsulin and insulin release by rat islets and MIN6 cells. Rat islets overexpressing alpha-SNAP and mutant alpha-SNAP were pulse-chased. Exocytosis from immature and mature insulin secretory granules was measured as fractional (%) labeled-proinsulin release immediately after the pulse-labeling and percentage labeled-insulin release after a 3-h chase period, respectively. There was no difference in percentage labeled-proinsulin release between the control and alpha-SNAP or mutant alpha-SNAP-overexpressed islets. Although percentage labeled-insulin release after a 3-h chase period was significantly increased in alpha-SNAP-overexpressed islets, it was decreased in mutant alpha-SNAP-overexpressed islets. Thus, the results demonstrated that alpha-SNAP overexpression in rat islets primarily increased exocytosis from mature, but not immature insulin secretory granules. On the other hand, in MIN6 cells, alpha-SNAP overexpression scarcely affected glucose-stimulated insulin release; therefore, we examined the effect of mutant alpha-SNAP overexpression as the dominant-negative inhibitor on the newly synthesized proinsulin/insulin release using the same protocol as in the rat islet experiments. alpha-SNAP mutant (1-285) overexpression in MIN6 cells decreased the percentage labeled insulin release from mature secretory granules, but not percentage labeled proinsulin release from immature secretory granules. Thus, our data demonstrate that alpha-SNAP functions mainly in the mature insulin secretory granules in pancreatic beta cells. Copyright 1999 Academic Press.

  5. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes

    PubMed Central

    Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin

    2014-01-01

    Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox-1(PDX-1), MafA, and B-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling-dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes. PMID:22974359

  6. Insulin Resistance and Mitochondrial Dysfunction.

    PubMed

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  7. The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.

    PubMed

    Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B

    2017-09-05

    The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty

    PubMed Central

    Stout, Michael B.; Justice, Jamie N.; Nicklas, Barbara J.; Kirkland, James L.

    2016-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. PMID:27927801

  9. Glucokinase is an integral component of the insulin granules in glucose-responsive insulin secretory cells and does not translocate during glucose stimulation.

    PubMed

    Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne

    2004-09-01

    The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.

  10. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.

    PubMed

    Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L

    2017-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  11. Relationships of the early insulin secretory response and oral disposition index with gastric emptying in subjects with normal glucose tolerance.

    PubMed

    Marathe, Chinmay S; Rayner, Christopher K; Lange, Kylie; Bound, Michelle; Wishart, Judith; Jones, Karen L; Kahn, Steven E; Horowitz, Michael

    2017-02-01

    The oral disposition index, the product of the early insulin secretory response during an oral glucose tolerance test and insulin sensitivity, is used widely for both the prediction of, and evaluation of the response to interventions, in type 2 diabetes. Gastric emptying, which determines small intestinal exposure of nutrients, modulates postprandial glycemia. The aim of this study was to determine whether the insulin secretory response and the disposition index (DI) related to gastric emptying in subjects with normal glucose tolerance. Thirty-nine subjects consumed a 350 mL drink containing 75 g glucose labeled with 99m Tc-sulfur colloid. Gastric emptying (by scintigraphy), blood glucose (G) and plasma insulin (I) were measured between t  = 0-120 min. The rate of gastric emptying was derived from the time taken for 50% emptying ( T 50 ) and expressed as kcal/min. The early insulin secretory response was estimated by the ratio of the change in insulin (∆I 0-30 ) to that of glucose at 30 min (∆G 0-30 ) represented as ∆I 0-30 /∆G 0-30 Insulin sensitivity was estimated as 1/fasting insulin and the DI was then calculated as ∆I 0-30 /∆G 0-30  × 1/fasting insulin. There was a direct relationship between ∆G 0-30 and gastric emptying ( r  = 0.47, P  = 0.003). While there was no association of either ∆I 0-30 ( r  = -0.16, P  = 0.34) or fasting insulin ( r  = 0.21, P  = 0.20), there were inverse relationships between the early insulin secretory response ( r  = -0.45, P  = 0.004) and the DI ( r  = -0.33, P  = 0.041), with gastric emptying. We conclude that gastric emptying is associated with both insulin secretion and the disposition index in subjects with normal glucose tolerance, such that when gastric emptying is relatively more rapid, both the early insulin secretory response and the disposition index are less. These findings should be interpreted as "hypothesis generating" and provide the rationale for longitudinal studies to

  12. Insulin dysfunction and Tau pathology.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2014-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia.

  13. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  14. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somanath, Sangeeta; Partridge, Christopher J.; Marshall, Catriona

    Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the SNAP-25 accessory protein, snapin, C-terminal H2 domain binds SNAP-25 through its N-terminal Sn-1 domain. Interestingly whilst snapin binds SNAP-25, there is only modest binding of this complex with syntaxin-1A under resting conditions. Instead synataxin-1A appears to be recruited in response to secretory stimulation.more » These results indicate that snapin plays a role in tethering insulin granules to the plasma membrane through coiled coil interaction of snapin with SNAP-25, with full granule fusion competency only resulting after subsequent syntaxin-1A recruitment triggered by secretory stimulation. - Highlights: • Snapin mediates granule docking. • Snapin binds SNAP-25. • SNARE complex forms downstream.« less

  15. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  16. Quantification of β-cell insulin secretory function using a graded glucose infusion with C-peptide deconvolution in dysmetabolic, and diabetic cynomolgus monkeys.

    PubMed

    Wang, Xiaoli; Hansen, Barbara C; Shi, Da; Fang, Yupeng; Du, Fenglai; Wang, Bingdi; Chen, Yaxiong Michael; Gregoire, Francine M; Wang, Yi-Xin Jim

    2013-07-25

    Quantitation of β-cell function is critical in better understanding of the dynamic interactions of insulin secretion, clearance and action at different phases in the progression of diabetes. The present study aimed to quantify β-cell secretory function independently of insulin sensitivity in the context of differential metabolic clearance rates of insulin (MCRI) in nonhuman primates (NHPs). Insulin secretion rate (ISR) was derived from deconvolution of serial C-peptide concentrations measured during a 5 stage graded glucose infusion (GGI) in 12 nondiabetic (N), 8 prediabetic or dysmetabolic (DYS) and 4 overtly diabetic (DM) cynomolgus monkeys. The characterization of the monkeys was based on the fasting glucose and insulin concentrations, glucose clearance rate measured by intravenous glucose tolerance test, and insulin resistance indices measured in separate experiments. The molar ratio of C-peptide/insulin (C/I) was used as a surrogate index of hepatic MCRI. Compared to the N monkeys, the DYS with normal glycemia and hyperinsulinemia had significantly higher basal and GGI-induced elevation of insulin and C-peptide concentrations and lower C/I, however, each unit of glucose-stimulated ISR increment was not significantly different from that in the N monkeys. In contrast, the DM monkeys with β-cell failure and hyperglycemia had a depressed GGI-stimulated ISR response and elevated C/I. The present data demonstrated that in addition to β-cell hypersecretion of insulin, reduced hepatic MCRI may also contribute to the development of hyperinsulinemia in the DYS monkeys. On the other hand, hyperinsulinemia may cause the saturation of hepatic insulin extraction capacity, which in turn reduced MCRI in the DYS monkeys. The differential contribution of ISR and MCRI in causing hyperinsulinemia provides a new insight into the trajectory of β-cell dysfunction in the development of diabetes. The present study was the first to use the GGI and C-peptide deconvolution method to

  17. Rab27a mediates the tight docking of insulin granules onto the plasma membrane during glucose stimulation.

    PubMed

    Kasai, Kazuo; Ohara-Imaizumi, Mica; Takahashi, Noriko; Mizutani, Shin; Zhao, Shengli; Kikuta, Toshiteru; Kasai, Haruo; Nagamatsu, Shinya; Gomi, Hiroshi; Izumi, Tetsuro

    2005-02-01

    The monomeric small GTPase Rab27a is specifically localized on both secretory granules and lysosome-related organelles. Although natural mutations of the Rab27a gene in human Griscelli syndrome and in ashen mice cause partial albinism and immunodeficiency reflecting the dysfunction of lysosome-related organelles, phenotypes resulting from the defective exocytosis of secretory granules have not been reported. To explore the roles of Rab27a in secretory granules, we analyzed insulin secretion profiles in ashen mice. Ashen mice showed glucose intolerance after a glucose load without signs of insulin resistance in peripheral tissues or insulin deficiency in the pancreas. Insulin secretion from isolated islets was decreased specifically in response to high glucose concentrations but not other nonphysiological secretagogues such as high K+ concentrations, forskolin, or phorbol ester. Neither the intracellular Ca2+ concentration nor the dynamics of fusion pore opening after glucose stimulation were altered. There were, however, marked reductions in the exocytosis from insulin granules predocked on the plasma membrane and in the replenishment of docked granules during glucose stimulation. These results provide the first genetic evidence to our knowledge for the role of Rab27a in the exocytosis of secretory granules and suggest that the Rab27a/effector system mediates glucose-specific signals for the exocytosis of insulin granules in pancreatic beta cells.

  18. Monitoring of exocytosis and endocytosis of insulin secretory granules in the pancreatic beta-cell line MIN6 using pH-sensitive green fluorescent protein (pHluorin) and confocal laser microscopy.

    PubMed

    Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya

    2002-04-01

    The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.

  19. Celastrol attenuates mitochondrial dysfunction and inflammation in palmitate-mediated insulin resistance in C3A hepatocytes.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji; Tan, Joo Shun; Mohamad Rosdi, Mohamad Norisham

    2017-03-15

    Accumulating evidence indicates that mitochondrial dysfunction-induced inflammation is among the convergence points for the greatest hallmarks of hepatic insulin resistance. Celastrol, an anti-inflammatory compound from the root of Tripterygium Wilfordii has been reported to mitigate insulin resistance and inflammation in animal disease models. Nevertheless, the specific mechanistic actions of celastrol in modulating such improvements at the cellular level remain obscure. The present study sought to explore the mechanistic roles of celastrol upon insulin resistance induced by palmitate in C3A human hepatocytes. The hepatocytes exposed to palmitate (0.75mM) for 48h exhibited reduced both basal and insulin-stimulated glucose uptake, mitochondrial dysfunction, leading to increased mitochondrial oxidative stress with diminished fatty acid oxidation. Elevated expressions of nuclear factor-kappa B p65 (NF-κB p65), c-Jun NH(2)-terminal kinase (JNK) signaling pathways and the amplified release of pro-inflammatory cytokines including IL-8, IL-6, TNF-α and CRP were observed following palmitate treatment. Consistently, palmitate reduced and augmented phosphorylated Tyrosine-612 and Serine-307 of insulin receptor substrate-1 (IRS-1) proteins, respectively in hepatocytes. However, celastrol at the optimum concentration of 30nM was able to reverse these deleterious occasions and protected the cells from mitochondrial dysfunction and insulin resistance. Importantly, we presented evidence for the first time that celastrol efficiently prevented palmitate-induced insulin resistance in hepatocytes at least, via improved mitochondrial functions and insulin signaling pathways. In summary, the present investigation underlines a conceivable mechanism to elucidate the cytoprotective potential of celastrol in attenuating mitochondrial dysfunction and inflammation against the development of hepatic insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules.

    PubMed

    Chang, Guoying; Yang, Rui; Cao, Yanan; Nie, Aifang; Gu, Xuefan; Zhang, Huiwen

    2016-04-01

    The Sidt2 global knockout mouse (Sidt2(-/-)) has impaired insulin secretion. The aim of this study was to assess the role of SIDT2 protein in glucose-induced insulin secretion in primary cultured mouse β-cells. The major metabolic and electrophysiological steps of glucose-induced insulin secretion of primary cultured β-cells from Sidt2(-/-) mice were investigated. The β-cells from Sidt2(-/-) mice had normal NAD(P)H responses and KATP and KV currents. However, they exhibited a lower [Ca(2+)]i peak height when stimulated with 20mM glucose compared with those from WT mice. Furthermore, it took a longer time for the [Ca(2+)]i of β-cell from Sidt2(-/-) mice to reach the peak. Pretreatment with ryanodine or 2-aminoethoxydiphenyl borate (2-APB) did not change [Ca(2+)]i the response pattern to glucose in Sidt2(-/-) cells. Extraordinarily, pretreatment with bafilomycin A1(Baf-A1) led to a comparable [Ca(2+)]i increase pattern between these two groups, suggesting that calcium traffic from the intracellular acidic compartment is defective in Sidt2(-/-) β-cells. Bath-mediated application of 50nM nicotinic acid adenine dinucleotide phosphate (NAADP) normalized the [Ca(2+)]i response of Sidt2(-/-) β-cells. Finally, glucose-induced CD38 expression increased to a comparable level between Sidt2(-/-) and WT islets, suggesting that Sidt2(-/-) islets generated NAADP normally. We conclude that Sidt2 is involved in NAADP-mediated release of calcium from insulin secretory granules and thus regulates insulin secretion. © 2016 Society for Endocrinology.

  1. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  2. Neurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.

    PubMed

    Houtz, Jessica; Borden, Philip; Ceasrine, Alexis; Minichiello, Liliana; Kuruvilla, Rejji

    2016-11-07

    Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculature while its TrkA receptor is localized to islet β cells. High glucose rapidly enhances NGF secretion and increases TrkA phosphorylation in mouse and human islets. Tissue-specific deletion of NGF or TrkA, or acute disruption of TrkA signaling, impairs glucose tolerance and insulin secretion in mice. We show that internalized TrkA receptors promote insulin granule exocytosis via F-actin reorganization. Furthermore, NGF treatment augments glucose-induced insulin secretion in human islets. These findings reveal a non-neuronal role for neurotrophins and identify a new regulatory pathway in insulin secretion that can be targeted to ameliorate β cell dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Complex mechanisms linking neurocognitive dysfunction to insulin resistance and other metabolic dysfunction

    PubMed Central

    Stoeckel, Luke E.; Arvanitakis, Zoe; Gandy, Sam; Small, Dana; Kahn, C. Ronald; Pascual-Leone, Alvaro; Pawlyk, Aaron; Sherwin, Robert; Smith, Philip

    2016-01-01

    Scientific evidence has established several links between metabolic and neurocognitive dysfunction, and epidemiologic evidence has revealed an increased risk of Alzheimer’s disease and vascular dementia in patients with diabetes. In July 2015, the National Institute of Diabetes, Digestive, and Kidney Diseases gathered experts from multiple clinical and scientific disciplines, in a workshop entitled “The Intersection of Metabolic and Neurocognitive Dysfunction”, to clarify the state-of-the-science on the mechanisms linking metabolic dysfunction, and insulin resistance and diabetes in particular, to neurocognitive impairment and dementia. This perspective is intended to serve as a summary of the opinions expressed at this meeting, which focused on identifying gaps and opportunities to advance research in this emerging area with important public health relevance. PMID:27303627

  4. Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells.

    PubMed

    Hatanaka, Masayuki; Tanabe, Katsuya; Yanai, Akie; Ohta, Yasuharu; Kondo, Manabu; Akiyama, Masaru; Shinoda, Koh; Oka, Yoshitomo; Tanizawa, Yukio

    2011-04-01

    Wolfram syndrome is an autosomal recessive disorder characterized by juvenile-onset insulin-dependent diabetes mellitus and optic atrophy. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER) resident transmembrane protein. The Wfs1-null mouse exhibits progressive insulin deficiency causing diabetes. Previous work suggested that the function of the WFS1 protein is connected to unfolded protein response and to intracellular Ca(2+) homeostasis. However, its precise molecular function in pancreatic β-cells remains elusive. In our present study, immunofluorescent and electron-microscopic analyses revealed that WFS1 localizes not only to ER but also to secretory granules in pancreatic β-cells. Intragranular acidification was assessed by measuring intracellular fluorescence intensity raised by the acidotrophic agent, 3-[2,4-dinitroanilino]-3'-amino-N-methyldipropyramine. Compared with wild-type β-cells, there was a 32% reduction in the intensity in WFS1-deficient β-cells, indicating the impairment of granular acidification. This phenotype may, at least partly, account for the evidence that Wfs1-null islets have impaired proinsulin processing, resulting in an increased circulating proinsulin level. Morphometric analysis using electron microscopy evidenced that the density of secretory granules attached to the plasma membrane was significantly reduced in Wfs1-null β-cells relative to that in wild-type β-cells. This may be relevant to the recent finding that granular acidification is required for the priming of secretory granules preceding exocytosis and may partly explain the fact that glucose-induced insulin secretion is profoundly impaired in young prediabetic Wfs1-null mice. These results thus provide new insights into the molecular mechanisms of β-cell dysfunction in patients with Wolfram syndrome.

  5. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  6. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  7. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    PubMed Central

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  8. Novel secretory granule morphology in physically fixed pancreatic islets.

    PubMed

    Dudek, R W; Boyne, A F; Charles, T M

    1984-09-01

    Protein A-gold immunocytochemistry has been applied to physically fixed beta cells from rat islets of Langerhans. The punctate nature of the gold particles permits improved resolution of the antigenic sites without obscuring the fine ultrastructural preservation obtained by physical fixation. There is a filamentous material within the halo of the secretory granules that is not preserved by aqueous, chemical fixation. When viewed in stereo the filaments appear as an annular cobweb or a series of wheel spokes attached to a centrally located hub (the dense core of the granule). The filaments demonstrate insulin-like immunoreactivity using the protein A-gold technique. The immunoreactivity appears to be restricted to the filaments and the surface of the dense cores. This may be a consequence of the preservation of a solid, insolubilized core state that resists penetration by the antibody and/or the protein A-gold complex. However, the evidence that there is a halo pool of insulin which is separate from the massive core aggregate suggests that i) correspondingly massive exocytotic pits may not be as mandatory for insulin release as has been assumed and ii) the complex kinetics of insulin secretion may be, in part, a reflection of multiple insulin compartments within secretory granules.

  9. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    PubMed

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial.

    PubMed

    Sawada, Takahiro; Tsubata, Hideo; Hashimoto, Naoko; Takabe, Michinori; Miyata, Taishi; Aoki, Kosuke; Yamashita, Soichiro; Oishi, Shogo; Osue, Tsuyoshi; Yokoi, Kiminobu; Tsukishiro, Yasue; Onishi, Tetsuari; Shimane, Akira; Taniguchi, Yasuyo; Yasaka, Yoshinori; Ohara, Takeshi; Kawai, Hiroya; Yokoyama, Mitsuhiro

    2016-08-26

    Recent experimental studies have revealed that n-3 fatty acids, such as eicosapentaenoic acid (EPA) regulate postprandial insulin secretion, and correct postprandial glucose and lipid abnormalities. However, the effects of 6-month EPA treatment on postprandial hyperglycemia and hyperlipidemia, insulin secretion, and concomitant endothelial dysfunction remain unknown in patients with impaired glucose metabolism (IGM) and coronary artery disease (CAD). We randomized 107 newly diagnosed IGM patients with CAD to receive either 1800 mg/day of EPA (EPA group, n = 53) or no EPA (n = 54). Cookie meal testing (carbohydrates: 75 g, fat: 28.5 g) and endothelial function testing using fasting-state flow-mediated dilatation (FMD) were performed before and after 6 months of treatment. The primary outcome of this study was changes in postprandial glycemic and triglyceridemic control and secondary outcomes were improvement of insulin secretion and endothelial dysfunction. After 6 months, the EPA group exhibited significant improvements in EPA/arachidonic acid, fasting triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). The EPA group also exhibited significant decreases in the incremental TG peak, area under the curve (AUC) for postprandial TG, incremental glucose peak, AUC for postprandial glucose, and improvements in glycometabolism categorization. No significant changes were observed for hemoglobin A1c and fasting plasma glucose levels. The EPA group exhibited a significant increase in AUC-immune reactive insulin/AUC-plasma glucose ratio (which indicates postprandial insulin secretory ability) and significant improvements in FMD. Multiple regression analysis revealed that decreases in the TG/HDL-C ratio and incremental TG peak were independent predictors of FMD improvement in the EPA group. EPA corrected postprandial hypertriglyceridemia, hyperglycemia and insulin secretion ability. This amelioration of several metabolic abnormalities was accompanied by

  12. Epigenetics: The missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes

    PubMed Central

    Gilbert, Elizabeth R.; Liu, Dongmin

    2012-01-01

    Type 2 diabetes (T2D) is a growing health problem worldwide. While peripheral insulin resistance is common during obesity and aging in both animals and people, progression to T2D is largely due to insulin secretory dysfunction and significant apoptosis of functional β-cells, leading to an inability to compensate for insulin resistance. It is recognized that environmental factors and nutrition play an important role in the pathogenesis of diabetes. However, our knowledge surrounding molecular mechanisms by which these factors trigger β-cell dysfunction and diabetes is still limited. Recent discoveries raise the possibility that epigenetic changes in response to environmental stimuli may play an important role in the development of diabetes. In this paper, we review emerging knowledge regarding epigenetic mechanisms that may be involved in β-cell dysfunction and pathogenesis of diabetes, including the role of nutrition, oxidative stress and inflammation. We will mainly focus on the role of DNA methylation and histone modifications but will also briefly review data on miRNA effects on the pancreatic islets. Further studies aimed at better understanding how epigenetic regulation of gene expression controls β-cell function may reveal potential therapeutic targets for prevention and treatment of diabetes. PMID:22810088

  13. β-Cell Failure in Diet-Induced Obese Mice Stratified According to Body Weight Gain: Secretory Dysfunction and Altered Islet Lipid Metabolism Without Steatosis or Reduced β-Cell Mass

    PubMed Central

    Peyot, Marie-Line; Pepin, Emilie; Lamontagne, Julien; Latour, Martin G.; Zarrouki, Bader; Lussier, Roxane; Pineda, Marco; Jetton, Thomas L.; Madiraju, S.R. Murthy; Joly, Erik; Prentki, Marc

    2010-01-01

    OBJECTIVE C57Bl/6 mice develop obesity and mild hyperglycemia when fed a high-fat diet (HFD). Although diet-induced obesity (DIO) is a widely studied model of type 2 diabetes, little is known about β-cell failure in these mice. RESEARCH DESIGN AND METHODS DIO mice were separated in two groups according to body weight gain: low- and high-HFD responders (LDR and HDR). We examined whether mild hyperglycemia in HDR mice is due to reduced β-cell mass or function and studied islet metabolism and signaling. RESULTS HDR mice were more obese, hyperinsulinemic, insulin resistant, and hyperglycemic and showed a more altered plasma lipid profile than LDR. LDR mice largely compensated insulin resistance, whereas HDR showed perturbed glucose homeostasis. Neither LDR nor HDR mice showed reduced β-cell mass, altered islet glucose metabolism, and triglyceride deposition. Insulin secretion in response to glucose, KCl, and arginine was impaired in LDR and almost abolished in HDR islets. Palmitate partially restored glucose- and KCl-stimulated secretion. The glucose-induced rise in ATP was reduced in both DIO groups, and the glucose-induced rise in Ca2+ was reduced in HDR islets relatively to LDR. Glucose-stimulated lipolysis was decreased in LDR and HDR islets, whereas fat oxidation was increased in HDR islets only. Fatty acid esterification processes were markedly diminished, and free cholesterol accumulated in HDR islets. CONCLUSIONS β-Cell failure in HDR mice is not due to reduced β-cell mass and glucose metabolism or steatosis but to a secretory dysfunction that is possibly due to altered ATP/Ca2+ and lipid signaling, as well as free cholesterol deposition. PMID:20547980

  14. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion.

    PubMed

    Xie, Li; Zhu, Dan; Kang, Youhou; Liang, Tao; He, Yu; Gaisano, Herbert Y

    2013-01-01

    The exocyst complex subunit Sec5 is a downstream effector of RalA-GTPase which promotes RalA-exocyst interactions and exocyst assembly, serving to tether secretory granules to docking sites on the plasma membrane. We recently reported that RalA regulates biphasic insulin secretion in pancreatic islet β cells in part by tethering insulin secretory granules to Ca(2+) channels to assist excitosome assembly. Here, we assessed β cell exocytosis by patch clamp membrane capacitance measurement and total internal reflection fluorescence microscopy to investigate the role of Sec5 in regulating insulin secretion. Sec5 is present in human and rodent islet β cells, localized to insulin granules. Sec5 protein depletion in rat INS-1 cells inhibited depolarization-induced release of primed insulin granules from both readily-releasable pool and mobilization from the reserve pool. This reduction in insulin exocytosis was attributed mainly to reduction in recruitment and exocytosis of newcomer insulin granules that undergo minimal docking time at the plasma membrane, but which encompassed a larger portion of biphasic glucose stimulated insulin secretion. Sec5 protein knockdown had little effect on predocked granules, unless vigorously stimulated by KCl depolarization. Taken together, newcomer insulin granules in β cells are more sensitive than predocked granules to Sec5 regulation.

  15. Reduced β-Cell Secretory Capacity in Pancreatic-Insufficient, but Not Pancreatic-Sufficient, Cystic Fibrosis Despite Normal Glucose Tolerance.

    PubMed

    Sheikh, Saba; Gudipaty, Lalitha; De Leon, Diva D; Hadjiliadis, Denis; Kubrak, Christina; Rosenfeld, Nora K; Nyirjesy, Sarah C; Peleckis, Amy J; Malik, Saloni; Stefanovski, Darko; Cuchel, Marina; Rubenstein, Ronald C; Kelly, Andrea; Rickels, Michael R

    2017-01-01

    Patients with pancreatic-insufficient cystic fibrosis (PI-CF) are at increased risk for developing diabetes. We determined β-cell secretory capacity and insulin secretory rates from glucose-potentiated arginine and mixed-meal tolerance tests (MMTTs), respectively, in pancreatic-sufficient cystic fibrosis (PS-CF), PI-CF, and normal control subjects, all with normal glucose tolerance, in order to identify early pathophysiologic defects. Acute islet cell secretory responses were determined under fasting, 230 mg/dL, and 340 mg/dL hyperglycemia clamp conditions. PI-CF subjects had lower acute insulin, C-peptide, and glucagon responses compared with PS-CF and normal control subjects, indicating reduced β-cell secretory capacity and α-cell function. Fasting proinsulin-to-C-peptide and proinsulin secretory ratios during glucose potentiation were higher in PI-CF, suggesting impaired proinsulin processing. In the first 30 min of the MMTT, insulin secretion was lower in PI-CF compared with PS-CF and normal control subjects, and glucagon-like peptide 1 and gastric inhibitory polypeptide were lower compared with PS-CF, and after 180 min, glucose was higher in PI-CF compared with normal control subjects. These findings indicate that despite "normal" glucose tolerance, adolescents and adults with PI-CF have impairments in functional islet mass and associated early-phase insulin secretion, which with decreased incretin responses likely leads to the early development of postprandial hyperglycemia in CF. © 2017 by the American Diabetes Association.

  16. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    PubMed Central

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75–81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.—Vernochet, C., Damilano, F., Mourier, A., Bezy, O., Mori, M. A., Smyth, G., Rosenzweig, A., Larsson, N.-G., Kahn, C. R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. PMID:25005176

  17. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    PubMed

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  18. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible

  19. Secretory expression and surface display of a new and biologically active single-chain insulin (SCI-59) analog by lactic acid bacteria.

    PubMed

    Mao, Ruifeng; Wu, Dongli; Hu, Shimeng; Zhou, Kangping; Wang, Man; Wang, Yefu

    2017-04-01

    Insulin plays an important role in drug therapies for diabetes mellitus and as the main route of insulin delivery, subcutaneous injection may cause local discomfort, hypoglycemia, hyperinsulinemia, and patient non-compliance. Therefore, oral delivery of insulin is more preferred. However, there is a low bioavailability due to insulin degradation by proteolytic enzymes and severe pH conditions along the gastrointestinal tract. In order to use the food-grade bacteria lactic acid bacteria (LAB) as oral delivery vehicles, a new and bioactive single-chain insulin (SCI-59) analog, containing the insulin B- and A-chains connected by an eight-residue linker (RSRGLPFR), was secretory expressed in Lactococcus lactis NZ3900 without using an antibiotic resistance gene and displayed onto the surface of various non-viable bacteria (NVBs) without genetic modification. Both the free SCI-59 and SCI-59 displayed on the surface of NVBs are biologically active as assayed by their ability to stimulate Akt signaling in differentiated 3T3-L1 adipocytes. Modification of the pH of the medium by NaOH addition at early time during induction can enhance the bioactivity of SCI-59. The C-terminal fused anchoring domain, three LysM repeats, does not affect the formation of disulfide bonds and/or the folding of SCI-59, and SCI-59 could be exposed properly and fully when SCI-59-3LysM bound to the surface of NVBs. Compared to the free form SCI-59, SCI-59 displayed on the surface of NVBs is more stable in simulate gastric juice. It may open new prospects for possible oral treatments of diabetes using live LAB secreting or NVBs carrying bioactive SCI analogs.

  20. Sex-specific incidence rates and risk factors of insulin resistance and β-cell dysfunction: a decade follow-up in a Middle Eastern population.

    PubMed

    Derakhshan, A; Tohidi, M; Hajebrahimi, M A; Saadat, N; Azizi, F; Hadaegh, F

    2017-02-01

    To examine the incidence of and risk factors for insulin resistance and β-cell dysfunction in a representative Iranian population over a median follow-up of 9.2 years. In total, 3662 people (1528 men) without known diabetes with a baseline homeostasis model assessment of insulin resistance (HOMA-IR) level < 75th percentile and, when β-cell dysfunction was the outcome of interest, 3664 people (1530 men) with a homeostasis model assessment of β-cell function (HOMA-β) level ≥ 25th percentile were included in the study (HOMA-IR < 2.20 and HOMA-β ≥ 64.3 among men, and HOMA-IR < 2.39 and HOMA-β ≥ 81.7 among women). The incidence rates of insulin resistance and β-cell dysfunction were 56.3 and 33.6/1000 person-years among men and 48.6 and 50.3/1000 person-years among women, respectively. Applying multivariable Cox regression in both sexes, fasting insulin, triglyceride/HDL cholesterol ratio and lower education were positive predictors of insulin resistance, whereas age was a negative predictor. Moreover, fasting plasma glucose, waist-to-height ratio, wrist circumference and lower hip circumference were significantly associated with incident insulin resistance only among women (all P < 0.05). Considering β-cell dysfunction in both sexes, age and fasting plasma glucose increased the risk, whereas 2-h post-challenge plasma glucose was a positive predictor only among men, and waist-to-height ratio and triglyceride/HDL cholesterol ratio were negative predictors only among women (all P < 0.05). Modifiable risk factors are related to the incidence of insulin resistance and β-cell dysfunction, which can be prevented with proper strategies although the difference between men and women should be taken into account. © 2016 Diabetes UK.

  1. The relationship between insulin resistance and endothelial dysfunction in obese adolescents.

    PubMed

    Brar, Preneet Cheema; Patel, Payal; Katz, Stuart

    2017-05-24

    Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.

  2. Quercetin ameliorates chronic unpredicted stress-induced behavioral dysfunction in male Swiss albino mice by modulating hippocampal insulin signaling pathway.

    PubMed

    Mehta, Vineet; Singh, Tiratha Raj; Udayabanu, Malairaman

    2017-12-01

    Chronic stress is associated with impaired neurogenesis, neurodegeneration and behavioral dysfunction, whereas the mechanism underlying stress-mediated neurological complications is still not clear. In the present study, we aimed to investigate whether chronic unpredicted stress (CUS) mediated neurological alterations are associated with impaired hippocampal insulin signaling or not, and studied the effect of quercetin in this scenario. Male Swiss albino mice were subjected to 21day CUS, during which 30mg/kg quercetin treatment was given orally. After 21days, behavioral functions were evaluated in terms of locomotor activity (Actophotometer), muscle coordination (Rota-rod), depression (Tail Suspension Test (TST), Forced Swim Test (FST)) and memory performance (Passive-avoidance step-down task (PASD)). Further, hippocampal insulin signaling was evaluated in terms of protein expression of insulin, insulin receptor (IR) and glucose transporter 4 (GLUT-4) and neurogenesis was evaluated in terms of doublecortin (DCX) expression. 21day CUS significantly impaired locomotion and had no effect on muscle coordination. Stressed animals were depressed and showed markedly impaired memory functions. Quercetin treatment significantly improvement stress-mediated behavior dysfunction as indicated by improved locomotion, lesser immobility time and greater frequency of upward turning in TST and FST and increased transfer latency on the day 2 (short-term memory) and day 5 (long-term memory) in PASD test. We observed significantly higher IR expression and significantly lower GLUT-4 expression in the hippocampus of stressed animals, despite of nonsignificant difference in insulin levels. Further, chronic stress impaired hippocampal neurogenesis, as indicated by the significantly reduced levels of hippocampal DCX expression. Quercetin treatment significantly lowered insulin and IR expression and significantly enhanced GLUT-4 and DCX expression in the hippocampus, when compared to CUS. In

  3. Elovl6 Deficiency Improves Glycemic Control in Diabetic db/db Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity.

    PubMed

    Zhao, Hui; Matsuzaka, Takashi; Nakano, Yuta; Motomura, Kaori; Tang, Nie; Yokoo, Tomotaka; Okajima, Yuka; Han, Song-Iee; Takeuchi, Yoshinori; Aita, Yuichi; Iwasaki, Hitoshi; Yatoh, Shigeru; Suzuki, Hiroaki; Sekiya, Motohiro; Yahagi, Naoya; Nakagawa, Yoshimi; Sone, Hirohito; Yamada, Nobuhiro; Shimano, Hitoshi

    2017-07-01

    Dysfunctional fatty acid (FA) metabolism plays an important role in the pathogenesis of β-cell dysfunction and loss of β-cell mass in type 2 diabetes (T2D). Elovl6 is a microsomal enzyme that is responsible for converting C16 saturated and monounsaturated FAs into C18 species. We previously showed that Elovl6 played a critical role in the development of obesity-induced insulin resistance by modifying FA composition. To further define its role in T2D development, we assessed the effects of Elovl6 deletion in leptin receptor-deficient C57BL/KsJ db / db mice, a model of T2D. The db / db ; Elovl6 -/- mice had a markedly increased β-cell mass with increased proliferation and decreased apoptosis, an adaptive increase in insulin, and improved glycemic control. db / db islets were characterized by a prominent elevation of oleate (C18:1n-9), cell stress, and inflammation, which was completely suppressed by Elovl6 deletion. As a mechanistic ex vivo experiment, isolated islets from Elovl6 -/- mice exhibited reduced susceptibility to palmitate-induced inflammation, endoplasmic reticulum stress, and β-cell apoptosis. In contrast, oleate-treated islets resulted in impaired glucose-stimulated insulin secretion with suppressed related genes irrespective of the Elovl6 gene. Taken together, Elovl6 is a fundamental factor linking dysregulated lipid metabolism to β-cell dysfunction, islet inflammation, and β-cell apoptosis in T2D, highlighting oleate as the potential culprit of β-cell lipotoxicity. © 2017 by the American Diabetes Association.

  4. Endothelial dysfunction occurs independently of adipose tissue inflammation and insulin resistance in ovariectomized Yucatan miniature-swine.

    PubMed

    Jurrissen, Thomas J; Olver, T Dylan; Winn, Nathan C; Grunewald, Zachary I; Lin, Gabriela S; Hiemstra, Jessica A; Edwards, Jenna C; Gastecki, Michelle L; Welly, Rebecca J; Emter, Craig A; Vieira-Potter, Victoria J; Padilla, Jaume

    2018-01-02

    In rodents, experimentally-induced ovarian hormone deficiency increases adiposity and adipose tissue (AT) inflammation, which is thought to contribute to insulin resistance and increased cardiovascular disease risk. However, whether this occurs in a translationally-relevant large animal model remains unknown. Herein, we tested the hypothesis that ovariectomy would promote visceral and perivascular AT (PVAT) inflammation, as well as subsequent insulin resistance and peripheral vascular dysfunction in female swine. At sexual maturity (7 months of age), female Yucatan mini-swine either remained intact (control, n = 9) or were ovariectomized (OVX, n = 7). All pigs were fed standard chow (15-20 g/kg), and were euthanized 6 months post-surgery. Uterine mass and plasma estradiol levels were decreased by ∼10-fold and 2-fold, respectively, in OVX compared to control pigs. Body mass, glucose homeostasis, and markers of insulin resistance were not different between control and OVX pigs; however, OVX animals exhibited greater plasma triglycerides and triglyceride:HDL ratio. Ovariectomy enhanced visceral adipocyte expansion, although this was not accompanied by brachial artery PVAT adipocyte expansion, AT inflammation in either depot, or increased systemic inflammation assessed by plasma C-reactive protein concentrations. Despite the lack of AT inflammation and insulin resistance, OVX pigs exhibited depressed brachial artery endothelial-dependent vasorelaxation, which was rescued with blockade of endothelin receptor A. Together, these findings indicate that in female Yucatan mini-swine, increased AT inflammation and insulin resistance are not required for loss of ovarian hormones to induce endothelial dysfunction.

  5. Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consitt, Leslie A., E-mail: consitt@ohio.edu; Diabetes Institute, Ohio University, Athens, OH, 45701; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701

    The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19–29 years) and fifteen middle-to older-aged (57–82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number ofmore » MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (−24% vs. −56%, P < 0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. - Highlights: • Plasma acylcarnitine profiling reveals metabolic inflexibility in aged individuals. • Time course acylcarnitine profiling is critical to identify metabolic dysfunction. • Acetyl-CoA carboxylase phosphorylation status is related to metabolic dysfunction.« less

  6. Potent Insulin Secretagogue from Scoparia dulcis Linn of Nepalese Origin.

    PubMed

    Sharma, Khaga Raj; Adhikari, Achyut; Hafizur, Rahman M; Hameed, Abdul; Raza, Sayed Ali; Kalauni, Surya Kant; Miyazaki, Jun-Ichi; Choudhary, M Iqbal

    2015-10-01

    Ethno-botanical inspired isolation from plant Scoparia dulcis Linn. (Sweet Broomweed) yielded six compounds, coixol (1), glutinol (2), glutinone (3), friedelin (4), betulinic acid (5), and tetratriacontan-1-ol (6). There structures were identified using mass and 1D- and 2D-NMR spectroscopy techniques. Compounds 1-6 were evaluated for their insulin secretory activity on isolated mice islets and MIN-6 pancreatic β-cell line, and compounds 1 and 2 were found to be potent and mildly active, respectively. Compound 1 was further evaluated for insulin secretory activity on MIN-6 cells. Compound 1 was subjected to in vitro cytotoxicity assay against MIN-6, 3T3 cell lines, and islet cells, and in vivo acute toxicity test in mice that was found to be non-toxic. The insulin secretory activity of compounds 1 and 2 supported the ethno-botanic uses of S. dulcis as an anti-diabetic agent. Copyright © 2015 John Wiley & Sons, Ltd.

  7. A Role for Glutamate Transporters in the Regulation of Insulin Secretion

    PubMed Central

    Gammelsaeter, Runhild; Coppola, Thierry; Marcaggi, Païkan; Storm-Mathisen, Jon; Chaudhry, Farrukh A.; Attwell, David; Regazzi, Romano; Gundersen, Vidar

    2011-01-01

    In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs). In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules. PMID:21853059

  8. Impairment of glucose-induced insulin secretion in human pancreatic islets transplanted to diabetic nude mice.

    PubMed

    Jansson, L; Eizirik, D L; Pipeleers, D G; Borg, L A; Hellerström, C; Andersson, A

    1995-08-01

    Hyperglycemia-induced beta-cell dysfunction may be an important component in the pathogenesis of non-insulin-dependent diabetes mellitus. However, most available data in this field were obtained from rodent islets. To investigate the relevance of this hypothesis for human beta-cells in vivo, human pancreatic islets were transplanted under the renal capsule of nude mice. Experimental groups were chosen so that grafted islets were exposed to either hyper- or normoglycemia or combinations of these for 4 or 6 wk. Grafts of normoglycemic recipients responded with an increased insulin release to a glucose stimulus during perfusion, whereas grafts of hyperglycemic recipients failed to respond to glucose. The insulin content of the grafts in the latter groups was only 10% of those observed in controls. Recipients initially hyperglycemic (4 wk), followed by 2 wk of normoglycemia regained a normal graft insulin content, but a decreased insulin response to glucose remained. No ultrastructural signs of beta-cell damage were observed, with the exception of increased glycogen deposits in animals hyperglycemic at the time of killing. It is concluded that prolonged exposure to a diabetic environment induces a long-term secretory defect in human beta-cells, which is not dependent on the size of the islet insulin stores.

  9. Impairment of glucose-induced insulin secretion in human pancreatic islets transplanted to diabetic nude mice.

    PubMed Central

    Jansson, L; Eizirik, D L; Pipeleers, D G; Borg, L A; Hellerström, C; Andersson, A

    1995-01-01

    Hyperglycemia-induced beta-cell dysfunction may be an important component in the pathogenesis of non-insulin-dependent diabetes mellitus. However, most available data in this field were obtained from rodent islets. To investigate the relevance of this hypothesis for human beta-cells in vivo, human pancreatic islets were transplanted under the renal capsule of nude mice. Experimental groups were chosen so that grafted islets were exposed to either hyper- or normoglycemia or combinations of these for 4 or 6 wk. Grafts of normoglycemic recipients responded with an increased insulin release to a glucose stimulus during perfusion, whereas grafts of hyperglycemic recipients failed to respond to glucose. The insulin content of the grafts in the latter groups was only 10% of those observed in controls. Recipients initially hyperglycemic (4 wk), followed by 2 wk of normoglycemia regained a normal graft insulin content, but a decreased insulin response to glucose remained. No ultrastructural signs of beta-cell damage were observed, with the exception of increased glycogen deposits in animals hyperglycemic at the time of killing. It is concluded that prolonged exposure to a diabetic environment induces a long-term secretory defect in human beta-cells, which is not dependent on the size of the islet insulin stores. Images PMID:7635965

  10. N-acyl Taurines and Acylcarnitines Cause an Imbalance in Insulin Synthesis and Secretion Provoking β Cell Dysfunction in Type 2 Diabetes.

    PubMed

    Aichler, Michaela; Borgmann, Daniela; Krumsiek, Jan; Buck, Achim; MacDonald, Patrick E; Fox, Jocelyn E Manning; Lyon, James; Light, Peter E; Keipert, Susanne; Jastroch, Martin; Feuchtinger, Annette; Mueller, Nikola S; Sun, Na; Palmer, Andrew; Alexandrov, Theodore; Hrabe de Angelis, Martin; Neschen, Susanne; Tschöp, Matthias H; Walch, Axel

    2017-06-06

    The processes contributing to β cell dysfunction in type 2 diabetes (T2D) are uncertain, largely because it is difficult to access β cells in their intact immediate environment. We examined the pathophysiology of β cells under T2D progression directly in pancreatic tissues. We used MALDI imaging of Langerhans islets (LHIs) within mouse tissues or from human tissues to generate in situ-omics data, which we supported with in vitro experiments. Molecular interaction networks provided information on functional pathways and molecules. We found that stearoylcarnitine accumulated in β cells, leading to arrest of insulin synthesis and energy deficiency via excessive β-oxidation and depletion of TCA cycle and oxidative phosphorylation metabolites. Acetylcarnitine and an accumulation of N-acyl taurines, a group not previously detected in β cells, provoked insulin secretion. Thus, β cell dysfunction results from enhanced insulin secretion combined with an arrest of insulin synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Proteasome Dysfunction Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin Sensitivity in Human Obesity

    PubMed Central

    Díaz-Ruiz, Alberto; Guzmán-Ruiz, Rocío; Moreno, Natalia R.; García-Rios, Antonio; Delgado-Casado, Nieves; Membrives, Antonio; Túnez, Isaac; El Bekay, Rajaa; Fernández-Real, José M.; Tovar, Sulay; Diéguez, Carlos; Tinahones, Francisco J.; Vázquez-Martínez, Rafael; López-Miranda, José

    2015-01-01

    Abstract Aims: Obesity is characterized by a low-grade systemic inflammatory state and adipose tissue (AT) dysfunction, which predispose individuals to the development of insulin resistance (IR) and metabolic disease. However, a subset of obese individuals, referred to as metabolically healthy obese (MHO) individuals, are protected from obesity-associated metabolic abnormalities. Here, we aim at identifying molecular factors and pathways in adipocytes that are responsible for the progression from the insulin-sensitive to the insulin-resistant, metabolically unhealthy obese (MUHO) phenotype. Results: Proteomic analysis of paired samples of adipocytes from subcutaneous (SC) and omental (OM) human AT revealed that both types of cells are altered in the MUHO state. Specifically, the glutathione redox cycle and other antioxidant defense systems as well as the protein-folding machinery were dysregulated and endoplasmic reticulum stress was increased in adipocytes from IR subjects. Moreover, proteasome activity was also compromised in adipocytes of MUHO individuals, which was associated with enhanced accumulation of oxidized and ubiquitinated proteins in these cells. Proteasome activity was also impaired in adipocytes of diet-induced obese mice and in 3T3-L1 adipocytes exposed to palmitate. In line with these data, proteasome inhibition significantly impaired insulin signaling in 3T3-L1 adipocytes. Innovation: This study provides the first evidence of the occurrence of protein homeostasis deregulation in adipocytes in human obesity, which, together with oxidative damage, interferes with insulin signaling in these cells. Conclusion: Our results suggest that proteasomal dysfunction and impaired proteostasis in adipocytes, resulting from protein oxidation and/or misfolding, constitute major pathogenic mechanisms in the development of IR in obesity. Antioxid. Redox Signal. 23, 597–612. PMID:25714483

  12. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    PubMed Central

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  13. Postprandial endothelial dysfunction: role of glucose, lipids and insulin.

    PubMed

    Nitenberg, A; Cosson, E; Pham, I

    2006-09-01

    Endothelium plays a key role in the regulation of vascular tone and development of atherosclerosis. Endothelial function is impaired early in patients with risk factors and endothelial dysfunction is a strong and independent predictor of cardiovascular events. Because in normal subjects blood concentrations of glucose, lipids and insulin are increased after each meals, and postprandial changes last a long time after the meals, these changes might be of importance in the process of atherosclerosis initiation and development. Experimental and human studies have shown that a transient increase of blood concentrations of glucose, triglycerides and fatty acids, and insulin are able to depress endothelium-dependent vasodilation in healthy subjects and that hyperglycemia, hypertriglyceridemia and hyperinsulinemia are generator of reactive oxygen species at the origin of a cascade of pathophysiological events resulting in the activation of nuclear factor-kappaB. Nuclear factor-kappaB is an ubiquitous transcription factor controlling the expression of numerous genes and is involved in immunity, inflammation, regulation of cell proliferation and growth and apoptosis. These mechanisms may be involved in the development of atherosclerosis in normal subjects when food intake is chronically modified towards glucids and lipids with cumulative effects both on depression of endothelium dependent dilation and oxidative stress.

  14. β-Cell secretory defects are present in pancreatic insufficient cystic fibrosis with 1-hour oral glucose tolerance test glucose ≥155 mg/dL.

    PubMed

    Nyirjesy, Sarah C; Sheikh, Saba; Hadjiliadis, Denis; De Leon, Diva D; Peleckis, Amy J; Eiel, Jack N; Kubrak, Christina; Stefanovski, Darko; Rubenstein, Ronald C; Rickels, Michael R; Kelly, Andrea

    2018-06-08

    Patients with pancreatic insufficient cystic fibrosis (PI-CF) meeting standard criteria for normal glucose tolerance display impaired β-cell secretory capacity and early-phase insulin secretion defects. We sought evidence of impaired β-cell secretory capacity, a measure of functional β-cell mass, among those with early glucose intolerance (EGI), defined as 1-hour oral glucose tolerance test (OGTT) glucose ≥155 mg/dL (8.6 mmol/L). A cross-sectional study was conducted in the Penn and CHOP Clinical & Translational Research Centers. PI-CF categorized by OGTT as normal (PI-NGT: 1-hour glucose <155 mg/dL and 2-hour <140 mg/dL [7.8 mmol/L]; n = 13), PI-EGI (1-hour ≥155 mg/dL and 2-hour <140 mg/dL; n = 13), impaired (PI-IGT: 2-hour ≥140 and <200 mg/dL [11.1 mmol/L]; n = 8), and diabetic (cystic fibrosis-related diabetes, CFRD: 2-hour ≥200 mg/dL; n = 8) participated. Post-prandial glucose tolerance and insulin secretion, and β-cell secretory capacity and demand were derived from mixed-meal tolerance tests (MMTTs), and glucose-potentiated arginine (GPA) tests, respectively. PI-EGI had elevated post-prandial glucose with reduced early-phase insulin secretion during MMTT compared to PI-NGT (P < .05). PI-EGI also exhibited impaired acute insulin and C-peptide responses to GPA (P < .01 vs PI-NGT), measures of β-cell secretory capacity. Proinsulin secretory ratios were higher under hyperglycemic clamp conditions in PI-IGT and CFRD (P < .05 vs PI-NGT), and correlated with 1-hour glucose in PI-CF (P < .01). PI-CF patients with 1-hour OGTT glucose ≥155 mg/dL already manifest impaired β-cell secretory capacity with associated early-phase insulin secretion defects. Avoiding hyperglycemia in patients with EGI may be important for preventing excessive insulin demand indicated by disproportionately increased proinsulin secretion. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction.

    PubMed

    Wang, Qingtong; Liu, Yongming; Fu, Qin; Xu, Bing; Zhang, Yuan; Kim, Sungjin; Tan, Ruensern; Barbagallo, Federica; West, Toni; Anderson, Ethan; Wei, Wei; Abel, E Dale; Xiang, Yang K

    2017-01-03

    Type 2 diabetes mellitus (DM) and obesity independently increase the risk of heart failure by incompletely understood mechanisms. We propose that hyperinsulinemia might promote adverse consequences in the hearts of subjects with type-2 DM and obesity. High-fat diet feeding was used to induce obesity and DM in wild-type mice or mice lacking β 2 -adrenergic receptor (β 2 AR) or β-arrestin2. Wild-type mice fed with high-fat diet were treated with a β-blocker carvedilol or a GRK2 (G-protein-coupled receptor kinase 2) inhibitor. We examined signaling and cardiac contractile function. High-fat diet feeding selectively increases the expression of phosphodiesterase 4D (PDE4D) in mouse hearts, in concert with reduced protein kinase A phosphorylation of phospholamban, which contributes to systolic and diastolic dysfunction. The expression of PDE4D is also elevated in human hearts with DM. The induction of PDE4D expression is mediated by an insulin receptor, insulin receptor substrate, and GRK2 and β-arrestin2-dependent transactivation of a β 2 AR-extracellular regulated protein kinase signaling cascade. Thus, pharmacological inhibition of β 2 AR or GRK2, or genetic deletion of β 2 AR or β-arrestin2, all significantly attenuate insulin-induced phosphorylation of extracellular regulated protein kinase and PDE4D induction to prevent DM-related contractile dysfunction. These studies elucidate a novel mechanism by which hyperinsulinemia contributes to heart failure by increasing PDE4D expression and identify β 2 AR or GRK2 as plausible therapeutic targets for preventing or treating heart failure in subjects with type 2 DM. © 2016 American Heart Association, Inc.

  16. Abnormality of adipokines and endothelial dysfunction in Mexican obese adolescents with insulin resistance.

    PubMed

    Ortiz Segura, Maria Del Carmen; Del Río Navarro, Blanca Estela; Rodríguez Espino, Benjamín Antonio; Marchat, Laurence A; Sánchez Muñoz, Fausto; Villafaña, Santiago; Hong, Enrique; Meza-Cuenca, Fabián; Mailloux Salinas, Patrick; Bolaños-Jiménez, Francisco; Zambrano, Elena; Arredondo-López, Abel Armando; Bravo, Guadalupe; Huang, Fengyang

    2017-08-01

    The aim of this study was to investigate the possible relationship among insulin resistance (IR), endothelial dysfunction, and alteration of adipokines in Mexican obese adolescents and their association with metabolic syndrome (MetS). Two hundred and twenty-seven adolescents were classified according to the body mass index (BMI) (control: N=104; obese: N=123) and homeostasis model of the assessment-insulin resistance index (HOMA-IR) (obese with IR: N=65). The circulating concentrations of leptin, adiponectin, soluble intercellular adhesion molecule-1 (sICAM-1), and IR were determined by standard methods. The obese adolescents with IR presented increased presence of MetS and higher circulating concentrations in sICAM-1 in comparison with the obese subjects without IR. The lowest concentrations of adiponectin were observed in the obese with IR. In multivariate linear regression models, sICAM-1 along with triglycerides, total cholesterol, and waist circumference was strongly associated with HOMA-IR (R 2 =0.457, P=0.008). Similarly, after adjustment for age, BMI-SDS, lipids, and adipokines, HOMA-IR remained associated with sICAM-1 (R 2 =0.372, P=0.008). BMI-SDS was mildly associated with leptin (R 2 =0.176, P=0.002) and the waist circumference was mild and independent determinant of adiponectin (R 2 =0.136, P=0.007). Our findings demonstrated that the obese adolescents, particularly the obese subjects with IR exhibited increased presence of MetS, abnormality of adipokines, and endothelial dysfunction. The significant interaction between IR and endothelial dysfunction may suggest a novel therapeutic approach to prevent or delay systemic IR and the genesis of cardiovascular diseases in obese patients.

  17. Memory dysfunction and autonomic neuropathy in non-insulin-dependent (type 2) diabetic patients.

    PubMed

    Zaslavsky, L M; Gross, J L; Chaves, M L; Machado, R

    1995-11-01

    Considering the nervous system as a unit, it might be expected that diabetic patients with autonomic neuropathy could have a central abnormality expressed as cognitive dysfunction. To determine whether autonomic neuropathy is independently associated with cognitive dysfunction, we studied a cross-section of 20 non-insulin-dependent diabetic patients with autonomic neuropathy (14 males and six females; age (mean) = 60 + or - 1 years); 29 non-insulin-dependent diabetic patients without autonomic neuropathy (14 males and 15 females; age = 59 + or - 1 years) and 34 non-diabetic patients (10 males and 24 females; age = 58 + or - 1 years), matched by age, education and duration of disease. Cognitive function was evaluated by tests of immediate, recent and remote memory: verbal (digit span; word span) and visual (recognition of towers and famous faces). Diabetic patients with autonomic neuropathy scored (median) lower in visual memory tests than diabetic patients without autonomic neuropathy and controls (towers immediate = 5 versus 7 and 6; towers recent = 4 versus 6 and 6; faces = 16 versus 18 and 18; respectively; Kruskal-Wallis; P < 0.05). There was no difference in verbal memory performance (Kruskal-Wallis; P > 0.05). Entering age, education, duration of disease and fasting plasma glucose in a stepwise multiple regression, the performance in these tests remained associated with autonomic neuropathy (towers immediate, P = 0.0054, partial r2 = 0.166; towers recent, P = 0.0076, partial r2 = 0.163). Scores in visual tests correlated negatively with the number of abnormal cardiovascular tests (faces, r = -0.25; towers recent, r = -0.24; Spearman; P < 0.05). Decreased visual cognitive function in non-insulin-dependent diabetic patients is associated with the presence and degree of autonomic neuropathy.

  18. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    PubMed

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  19. Insulin resistance, β-cell dysfunction and differences in curves of plasma glucose and insulin in the intermediate points of the standard glucose tolerance test in adults with cystic fibrosis.

    PubMed

    Cano Megías, Marta; González Albarrán, Olga; Guisado Vasco, Pablo; Lamas Ferreiro, Adelaida; Máiz Carro, Luis

    2015-02-01

    diabetes has become a co-morbidity with a negative impact on nutritional status, lung function and survival in cystic fibrosis. To identify any changes in intermediate points after a 2-hour oral glucose tolerance test (OGTT), pancreatic β-cell dysfunction, and insulin resistance in cystic fibrosis-related diabetes. It was carried out a retrospective analysis in a cohort of 64 patients affected of cystic fibrosis, older than 14 years, using the first pathological OGTT. Peripheral insulin resistance was measured using the homeostasis model assessment for insulin resistance (HOMA- IR), and pancreatic β-cell function was calculated according to Wareham. Time to maximum plasma insulin and glucose levels and area under the curve (AUC0-120) were also measured. Twenty-eight women and 36 men with a mean age of 26.8 years were enrolled, of whom 26.7% had normal glucose tolerance (NGT), 18.3% cystic fibrosis-related diabetes without fasting hyperglycemia (CFRD w/o FPG), 10% indeterminate (INDET), and 45% impaired glucose tolerance (IGT). HOMA-IR values were not significantly different between the diagnostic categories. Patients with any pathological change had worse β cell function, with a significant delay in insulin secretion, although there were no differences in total insulin production (AUC0-120). Time to maximum glucose levels was significantly shorter in NGT patients as compared to other categories, with glucose AUC0-120 being higher in the different diagnostic categories as compared to NGT. In over half the cases, peak blood glucose levels during a standard OGTT are reached in the intermediate time points, rather than at the usual time of 120minutes. Patients with cystic fibrosis and impaired glucose metabolism have a delayed insulin secretion during the standard OGTT due to loss of first-phase insulin secretion, with no differences in total insulin production. Absence of significant changes in HOMA-IR suggests that β-cell dysfunction is the main pathogenetic

  20. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  1. Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage.

    PubMed

    Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima

    2015-07-03

    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage*

    PubMed Central

    Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima

    2015-01-01

    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. PMID:25971976

  3. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  4. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    PubMed Central

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  5. Resveratrol prevents high-fructose corn syrup-induced vascular insulin resistance and dysfunction in rats.

    PubMed

    Babacanoglu, C; Yildirim, N; Sadi, G; Pektas, M B; Akar, F

    2013-10-01

    Dietary intake of fructose and sucrose can cause development of metabolic and cardiovascular disorders. The consequences of high-fructose corn syrup (HFCS), a commonly consumed form of fructose and glucose, have poorly been examined. Therefore, in this study, we investigated whether HFCS intake (10% and 20% beverages for 12 weeks) impacts vascular reactivity to insulin and endothelin-1 in conjunction with insulin receptor substrate-1(IRS-1), endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) mRNA/proteins levels in aorta of rats. At challenge, we tested the effectiveness of resveratrol (28-30 mg/kg body weight/day) on outcomes of HFCS feeding. HFCS (20%) diet feeding increased plasma triglyceride, VLDL, cholesterol, insulin and glucose levels, but not body weights of rats. Impaired nitric oxide-mediated relaxation to insulin (10⁻⁹ to 3×10⁻⁶ M), and enhanced contraction to endothelin-1 (10⁻¹¹ to 10⁻⁸ M) were associated with decreased expression of IRS-1 and eNOS mRNA and protein, but increased expression of iNOS, in aortas of rats fed with HFCS. Resveratrol supplementation restored many features of HFCS-induced disturbances, probably by regulating eNOS and iNOS production. In conclusion, dietary HFCS causes vascular insulin resistance and endothelial dysfunction through attenuating IRS-1 and eNOS expressions as well as increasing iNOS in rats. Resveratrol has capability to recover HFCS-induced disturbances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2011-03-01

    Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction. These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.

  7. Ionic and secretory response of pancreatic islet cells to minoxidil sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoine, M.H.; Hermann, M.; Herchuelz, A.

    Minoxidil sulfate is an antihypertensive agent belonging to the new class of vasodilators, the K+ channel openers. The present study was undertaken to characterize the effects of minoxidil sulfate on ionic and secretory events in rat pancreatic islets. The drug unexpectedly provoked a concentration-dependent decrease in 86Rb outflow. This inhibitory effect was reduced in a concentration-dependent manner by glucose and tolbutamide. Minoxidil sulfate did not affect 45Ca outflow from islets perfused in the presence of extracellular Ca++ and absence or presence of glucose. However, in islets exposed to a medium deprived of extracellular Ca++, the drug provoked a rise inmore » 45Ca outflow. Whether in the absence or presence of extracellular Ca++, minoxidil sulfate increased the cytosolic free Ca++ concentration of islet cells. Lastly, minoxidil sulfate increased the release of insulin from glucose-stimulated pancreatic islets. These results suggest that minoxidil sulfate reduces the activity of the ATP-sensitive K+ channels and promotes an intracellular translocation of Ca++. The latter change might account for the effect of the drug on the insulin-releasing process. However, the secretory response to minoxidil sulfate could also be mediated, at least in part, by a modest Ca++ entry.« less

  8. Salivary Secretory Disorders, Inducing Drugs, and Clinical Management

    PubMed Central

    Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Lahor-Soler, Eduard; Farré, Magí

    2015-01-01

    Background: Salivary secretory disorders can be the result of a wide range of factors. Their prevalence and negative effects on the patient's quality of life oblige the clinician to confront the issue. Aim: To review the salivary secretory disorders, inducing drugs and their clinical management. Methods: In this article, a literature search of these dysfunctions was conducted with the assistance of a research librarian in the MEDLINE/PubMed Database. Results: Xerostomia, or dry mouth syndrome, can be caused by medication, systemic diseases such as Sjögren's Syndrome, glandular pathologies, and radiotherapy of the head and neck. Treatment of dry mouth is aimed at both minimizing its symptoms and preventing oral complications with the employment of sialogogues and topical acting substances. Sialorrhea and drooling, are mainly due to medication or neurological systemic disease. There are various therapeutic, pharmacologic, and surgical alternatives for its management. The pharmacology of most of the substances employed for the treatment of salivary disorders is well-known. Nevertheless, in some cases a significant improvement in salivary function has not been observed after their administration. Conclusion: At present, there are numerous frequently prescribed drugs whose unwanted effects include some kind of salivary disorder. In addition, the differing pathologic mechanisms, and the great variety of existing treatments hinder the clinical management of these patients. The authors have designed an algorithm to facilitate the decision making process when physicians, oral surgeons, or dentists face these salivary dysfunctions. PMID:26516310

  9. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  10. Modulation of neuronal pentraxin 1 expression in rat pancreatic β-cells submitted to chronic glucotoxic stress.

    PubMed

    Schvartz, Domitille; Couté, Yohann; Brunner, Yannick; Wollheim, Claes B; Sanchez, Jean-Charles

    2012-08-01

    Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.

  11. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    PubMed

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  12. Ca(2+) mishandling and cardiac dysfunction in obesity and insulin resistance: role of oxidative stress.

    PubMed

    Carvajal, Karla; Balderas-Villalobos, Jaime; Bello-Sanchez, Ma Dolores; Phillips-Farfán, Bryan; Molina-Muñoz, Tzindilu; Aldana-Quintero, Hugo; Gómez-Viquez, Norma L

    2014-11-01

    Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effects of insulin combined with ethyl pyruvate on inflammatory response and oxidative stress in multiple-organ dysfunction syndrome rats with severe burns.

    PubMed

    Wang, Zhanke; Chen, Rongjian; Zhu, Zhongzhen; Zhang, Xiaoyun; Wang, Shiliang

    2016-11-01

    Inflammation response and oxidative stress promote the occurrence and development of multiple-organ dysfunction syndrome (MODS). Eighty MODS rats with third-degree burns were divided randomly into 4 groups: insulin, ethyl pyruvate (EP), insulin combined with EP, and control. Blood levels of glucose, alanine aminotransferase (ALT), creatine (CRE), creatine kinase (CK), tumor necrosis factor α (TNF-α), high-mobility group box 1 (HMGB-1), malondialdehyde (MDA), and total antioxidant capacity (TAC) before as well as 1, 3, 5, and 7 days after burns were measured. Blood levels of ALT, CRE, CK, TNF-α, HMGB-1, and MDA in INS, EP, and INS+EP groups at different time points were significantly lower, and TAC was significantly higher than that in the control group (C) (P<.01). These parameters in the INS+EP group were significantly lower, and TAC was significantly higher than that in INS and EP groups (P<.01). Blood levels of TNF-α, HMGB-1, and TAC in the INS group at different time points after burns were significantly lower, and MDA was significantly higher than that in the EP group (P<.01). Insulin combined with EP can effectively reduce the inflammatory response, oxidative stress, and main organ dysfunctions in MODS rats after severe burns. The therapeutic effect of insulin combined with EP is superior to single-agent treatment. The insulin anti-inflammatory effect is better than that of pyruvic acid ethyl ester, and the ethyl pyruvate antioxidation effect is better than that of insulin. The insulin can treat inflammation, whereas EP can reduce oxidative stress in MODS rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Glinide, but Not Sulfonylurea, Can Evoke Insulin Exocytosis by Repetitive Stimulation: Imaging Analysis of Insulin Exocytosis by Secretagogue-Induced Repetitive Stimulations

    PubMed Central

    Aoyagi, Kyota; Ohara-Imaizumi, Mica; Nishiwaki, Chiyono; Nakamichi, Yoko; Nagamatsu, Shinya

    2009-01-01

    To investigate the different effects between sulfonylurea (SU) and glinide drugs in insulin secretion, pancreatic β-cells were repeatedly stimulated with SU (glimepiride) or glinide (mitiglinide). Total internal reflection fluorescent (TIRF) microscopy revealed that secondary stimulation with glimepiride, but not glucose and mitiglinide, failed to evoke fusions of insulin granules although primary stimulation with glucose, glimepiride, and mitiglinide induced equivalent numbers of exocytotic responses. Glimepiride, but not glucose and mitiglinide, induced abnormally sustained [Ca2+]i elevations and reductions of docked insulin granules on the plasma membrane. Our data suggest that the effect of glinide on insulin secretory mechanisms is similar to that of glucose. PMID:20069052

  16. Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction.

    PubMed

    Liu, Yilin; Steinbusch, Laura K M; Nabben, Miranda; Kapsokalyvas, Dimitris; van Zandvoort, Marc; Schönleitner, Patrick; Antoons, Gudrun; Simons, Peter J; Coumans, Will A; Geomini, Amber; Chanda, Dipanjan; Glatz, Jan F C; Neumann, Dietbert; Luiken, Joost J F P

    2017-06-01

    Dietary fat overconsumption leads to myocardial lipid accumulation through mechanisms that are incompletely resolved. Previously, we identified increased translocation of the fatty acid transporter CD36 from its endosomal storage compartment to the sarcolemma as the primary mechanism of excessive myocellular lipid import. Here, we show that increased CD36 translocation is caused by alkalinization of endosomes resulting from inhibition of proton pumping activity of vacuolar-type H + -ATPase (v-ATPase). Endosomal alkalinization was observed in hearts from rats fed a lard-based high-fat diet and in rodent and human cardiomyocytes upon palmitate overexposure, and appeared as an early lipid-induced event preceding the onset of insulin resistance. Either genetic or pharmacological inhibition of v-ATPase in cardiomyocytes exposed to low palmitate concentrations reduced insulin sensitivity and cardiomyocyte contractility, which was rescued by CD36 silencing. The mechanism of palmitate-induced v-ATPase inhibition involved its dissociation into two parts: the cytosolic V 1 and the integral membrane V 0 subcomplex. Interestingly, oleate also inhibits v-ATPase function, yielding triacylglycerol accumulation but not insulin resistance. In conclusion, lipid oversupply increases CD36-mediated lipid uptake that directly impairs v-ATPase function. This feeds forward to enhanced CD36 translocation and further increased lipid uptake. In the case of palmitate, its accelerated uptake ultimately precipitates into cardiac insulin resistance and contractile dysfunction. © 2017 by the American Diabetes Association.

  17. Insulin Signaling and Heart Failure

    PubMed Central

    Riehle, Christian; Abel, E. Dale

    2016-01-01

    Heart failure is associated with generalized insulin resistance. Moreover, insulin resistant states such as type 2 diabetes and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes alters the systemic and neurohumoral milieu leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead (FOXO) transcriptional signaling or glucose transport which may also impair cardiac metabolism, structure and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed. PMID:27034277

  18. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  19. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature1234

    PubMed Central

    2016-01-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. PMID:26980825

  20. Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats.

    PubMed

    Chen, Yong-song; Zhu, Xu-xin; Zhao, Xiao-yun; Xing, Han-ying; Li, Yu-guang

    2008-02-05

    Under an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states. Sprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta

  1. High prevalence of abnormal glucose homeostasis secondary to decreased insulin secretion in individuals with hereditary haemochromatosis.

    PubMed

    McClain, D A; Abraham, D; Rogers, J; Brady, R; Gault, P; Ajioka, R; Kushner, J P

    2006-07-01

    The prevalence and mechanisms of diabetes in hereditary haemochromatosis are not known. We therefore measured glucose tolerance, insulin secretory capacity and insulin sensitivity in adults with haemochromatosis. Subjects recruited from referrals to a haemochromatosis clinic underwent OGTT and frequently sampled IVGTT. A chart review of former clinic patients was also performed. The prevalence of diabetes (23%) and IGT (30%) was increased in haemochromatosis compared with matched control subjects (0% diabetes and 14% IGT). Subjects with haemochromatosis and diabetes were overweight (14%) or obese (86%). The prevalence of diabetes, as determined by chart review of fasting glucose values, in subjects who had haemochromatosis and were in the 40-79 years age range was 26%. Overall, patients with haemochromatosis and control subjects had similar values for acute insulin response to glucose and insulin sensitivity. However, patients with haemochromatosis and IGT had a 68% decrease in acute insulin response to glucose (p<0.02) compared with those with NGT. They were not insulin-resistant, exhibiting instead a 62% increase in insulin sensitivity (NS). Haemochromatosis subjects with diabetes exhibited further declines in acute insulin response to glucose, insulin resistance, or both. Diabetes and IGT are common in haemochromatosis, justifying screening for diabetes and therapeutic phlebotomy. The major abnormality associated with IGT is decreased insulin secretory capacity. Diabetes is usually associated with obesity and concomitant insulin resistance.

  2. Does Insulin Explain the Relation between Maternal Obesity and Poor Lactation Outcomes? An Overview of the Literature.

    PubMed

    Nommsen-Rivers, Laurie A

    2016-03-01

    It is well established that obese women are at increased risk of delayed lactogenesis and short breastfeeding duration, but the underlying causal contributors remain unclear. This review summarizes the literature examining the role of insulin in lactation outcomes. Maternal obesity is a strong risk factor for insulin resistance and prediabetes, but until recently a direct role for insulin in milk production had not been elucidated. Over the past 6 y, studies in both animal models and humans have shown insulin-sensitive gene expression to be dramatically upregulated specifically during the lactation cycle. Insulin is now considered to play a direct role in lactation, including essential roles in secretory differentiation, secretory activation, and mature milk production. At the same time, emerging clinical research suggests an important association between suboptimal glucose tolerance and lactation difficulty. To develop effective interventions to support lactation success in obese women further research is needed to identify how, when, and for whom maternal insulin secretion and sensitivity affect lactation ability. © 2016 American Society for Nutrition.

  3. Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes.

    PubMed

    Mørkrid, Kjersti; Jenum, Anne K; Sletner, Line; Vårdal, Mari H; Waage, Christin W; Nakstad, Britt; Vangen, Siri; Birkeland, Kåre I

    2012-10-01

    To assess changes in insulin resistance and β-cell function in a multiethnic cohort of women in Oslo, Norway, from early to 28 weeks' gestation and 3 months post partum and relate the findings to gestational diabetes mellitus (GDM). Population-based cohort study of 695 healthy pregnant women from Western Europe (41%), South Asia (25%), Middle East (15%), East Asia (6%) and elsewhere (13%). Blood samples and demographics were recorded at mean 15 (V1) and 28 (V2) weeks' gestation and 3 months post partum (V3). Universal screening was by 75 g oral glucose tolerance test at V2, GDM with modified IADPSG criteria (no 1-h measurement): fasting plasma glucose (PG) ≥5.1 or 2-h PG ≥8.5 mmol/l. Homeostatic model assessment (HOMA)-β (β-cell function) and HOMA-IR (insulin resistance) were calculated from fasting glucose and C-peptide. Characteristics were comparable across ethnic groups, except age (South Asians: younger, P<0.001) and prepregnant BMI (East Asians: lower, P=0.040). East and South Asians were more insulin resistant than Western Europeans at V1. From V1 to V2, the increase in insulin resistance was similar across the ethnic groups, but the increase in β-cell function was significantly lower for the East and South Asians compared with Western Europeans. GDM women compared with non-GDM women were more insulin resistant at V1; from V1 to V2, their β-cell function increased significantly less and the percentage increase in β-cell function did not match the change in insulin resistance. Pregnant women from East Asia and South Asia were more insulin resistant and showed poorer HOMA-β-cell function than Western Europeans.

  4. Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells

    NASA Astrophysics Data System (ADS)

    Suarez Castellanos, Ivan M.

    Type 2 diabetes (T2D) mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. Controlling T2D is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this dissertation was to explore a novel, non-pharmacological approach that utilizes the application of ultrasound energy to stimulate insulin release. Our experiments have focused on determination of effectiveness and safety of ultrasound application in stimulation of insulin release from the pancreatic beta cells. Our results showed that ultrasound treatment, applied at frequencies of 800 kHz and 1 MHz and intensities of 0.5 W/cm2 and 1 W/cm2, did not produce any significant effects on cell viability compared to sham group as assessed with trypan blue dye exclusion test and MTT cytotoxicity assay. ELISA quantification of insulin release from beta cells resulting from ultrasound treatment showed clinically-significant amounts of released insulin as compared to sham-treated beta cells. Carbon fiber amperometry detection of secretory events from dopamine-loaded beta cells treated with ultrasound showed that release of secretory content could be temporally controlled by careful selection of ultrasound parameters. Both ELISA and amperometry experiments demonstrated that ultrasound-stimulated insulin release is a calcium-dependent process, potentially mediated by the mechanical effects of ultrasound. This study demonstrated that therapeutic ultrasound is a technique capable of stimulating the release of insulin from pancreatic beta cells in a safe, effective and controlled manner.

  5. Sleep Architecture and Glucose and Insulin Homeostasis in Obese Adolescents

    PubMed Central

    Koren, Dorit; Levitt Katz, Lorraine E.; Brar, Preneet C.; Gallagher, Paul R.; Berkowitz, Robert I.; Brooks, Lee J.

    2011-01-01

    OBJECTIVE Sleep deprivation is associated with increased risk of adult type 2 diabetes mellitus (T2DM). It is uncertain whether sleep deprivation and/or altered sleep architecture affects glycemic regulation or insulin sensitivity or secretion. We hypothesized that in obese adolescents, sleep disturbances would associate with altered glucose and insulin homeostasis. RESEARCH DESIGN AND METHODS This cross-sectional observational study of 62 obese adolescents took place at the Clinical and Translational Research Center and Sleep Laboratory in a tertiary care children’s hospital. Subjects underwent oral glucose tolerance test (OGTT), anthropometric measurements, overnight polysomnography, and frequently sampled intravenous glucose tolerance test (FSIGT). Hemoglobin A1c (HbA1c) and serial insulin and glucose levels were obtained, indices of insulin sensitivity and secretion were calculated, and sleep architecture was assessed. Correlation and regression analyses were performed to assess the association of total sleep and sleep stages with measures of insulin and glucose homeostasis, adjusted for confounding variables. RESULTS We found significant U-shaped (quadratic) associations between sleep duration and both HbA1c and serial glucose levels on OGTT and positive associations between slow-wave sleep (N3) duration and insulin secretory measures, independent of degree of obesity, pubertal stage, sex, and obstructive sleep apnea measures. CONCLUSIONS Insufficient and excessive sleep was associated with short-term and long-term hyperglycemia in our obese adolescents. Decreased N3 was associated with decreased insulin secretion. These effects may be related, with reduced insulin secretory capacity leading to hyperglycemia. We speculate that optimizing sleep may stave off the development of T2DM in obese adolescents. PMID:21933909

  6. Treatment of spontaneously hypertensive rats with rosiglitazone and/or enalapril restores balance between vasodilator and vasoconstrictor actions of insulin with simultaneous improvement in hypertension and insulin resistance.

    PubMed

    Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica

    2006-12-01

    Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.

  7. Insulin release: the receptor hypothesis.

    PubMed

    Malaisse, Willy J

    2014-07-01

    It is currently believed that the stimulation of insulin release by nutrient secretagogues reflects their capacity to act as fuel in pancreatic islet beta cells. In this review, it is proposed that such a fuel concept is not incompatible with a receptor hypothesis postulating the participation of cell-surface receptors in the recognition of selected nutrients as insulinotropic agents. Pursuant to this, attention is drawn to such matters as the anomeric specificity of the beta cell secretory response to D-glucose and its perturbation in diabetes mellitus, the insulinotropic action of artificial sweeteners, the possible role of bitter taste receptors in the stimulation of insulin secretion by L-glucose pentaacetate, the recently documented presence of cell-surface sweet taste receptors in insulin-producing cells, the multimodal signalling process resulting from the activation of these latter receptors, and the presence in beta cells of a sweet taste receptor mediating the fructose-induced potentiation of glucose-stimulated insulin secretion.

  8. Effect of intensive insulin treatment on plasma levels of lipoprotein-associated phospholipase A2 and secretory phospholipase A2 in patients with newly diagnosed type 2 diabetes.

    PubMed

    Lin, Xiu-Hong; Xu, Ming-Tong; Tang, Jv-Ying; Mai, Li-Fang; Wang, Xiao-Yi; Ren, Meng; Yan, Li

    2016-11-23

    China has the highest absolute disease burden of diabetes worldwide. For diabetic patients, diabetes-related vascular complications are major causes of morbidity and mortality. The roles of lipoprotein-associated phospholipase A 2 (Lp-PLA 2 ) and secretory phospholipase A 2 (sPLA 2 ) as inflammatory markers have been recently evaluated in the pathogenesis of both diabetes and atherosclerosis. We aimed to determine the mechanism through which patients with newly diagnosed type 2 diabetes gain long-term vascular benefit from intensive insulin therapy by evaluating the change in Lp-PLA 2 and sPLA 2 levels after early intensive insulin treatment and its relevance with insulin resistance and pancreatic β-cell function. In total, 90 patients with newly diagnosed type 2 diabetes mellitus were enrolled. All patients received continuous subcutaneous insulin infusion (CSII) for approximately 2 weeks. Intravenous glucose-tolerance test (IVGTT) and oral glucose-tolerance test (OGTT) were performed, and plasma concentrations of Lp-PLA 2 and sPLA 2 were measured before and after CSII. Levels of Lp-PLA 2 and sPLA 2 were significantly higher in diabetic patients with macroangiopathy than in those without (P < 0.05). After CSII, the sPLA 2 level decreased significantly in all diabetic patients (P < 0.05), while the Lp-PLA2 level changed only in those with macroangiopathy (P < 0.05). The area under the curve of insulin in IVGTT and OGTT, the acute insulin response (AIR 3-5 ), early phase of insulin secretion (ΔIns30/ΔG30), modified β-cell function index, and homeostatic model assessment for β-cell function (HOMA-β) increased after treatment even when adjusted for the influence of insulin resistance (IR; P < 0.001). The HOMA-IR was lower after treatment, and the three other indicators adopted to estimate insulin sensitivity (ISI ced , IAI, and QUICKI) were higher after treatment (P < 0.05). Correlation analysis showed that the decrease in the Lp-PLA 2 and s

  9. Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.

    PubMed

    Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2008-07-01

    We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.

  10. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  11. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    PubMed

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β 1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  12. Population-based cross-sectional study on insulin resistance and insulin-secretory capacity in Japanese school children.

    PubMed

    Nishimura, Rimei; Sano, Hironari; Onda, Yoshiko; Tsujino, Daisuke; Ando, Kiyotaka; Ebara, Futoshi; Matsudaira, Toru; Ishikawa, Shinichiro; Sakamoto, Takuya; Tajima, Naoko; Utsunomiya, Kazunori

    2017-09-01

    Little information is available regarding the status of insulin resistance (IR) and insulin deficiency (ID), as well as their relationship with obesity in children using the homeostasis model assessment (HOMA) in a population-based setting. The study included a total of 445 ninth-grade children participating in health check-up programs implemented in Tsunan Town, Niigata, Japan (boys/girls, 252/193 [participation rates: 98.1/95.5%]). HOMA of insulin resistance ≥2.5 was defined as IR, and HOMA of β-cell function <40 defined as ID. The medians (25-75th percentiles) of HOMA of insulin resistance, HOMA of β-cell function, Disposition Index and body mass index in boys were 1.2 (0.8-1.7), 64 (44-93), 52 (43-64) and 19.2 (18.0-20.7) kg/m 2 , respectively, vs 1.5 (1.0-2.0), 86 (63-120), 60 (50-74) and 20.4 (18.9-22.0) kg/m 2 , respectively, in girls. The HOMA of insulin resistance, HOMA of β-cell function and Disposition Index values were significantly higher in the girls (P = 0.002, P < 0.001 and P < 0.001, respectively). Those with IR accounted for a significantly higher proportion of girls than boys (15.5/8.7%; P = 0.027); those with obesity accounted for 9.9/10.7% (boys/girls); and those with IR and obesity accounted for 2.4/4.7%. Those with ID accounted for a significantly higher proportion of boys than girls (20.6/8.8%; P = 0.001), whereas those with ID and obesity accounted for a very small proportion of either group (0.4/0.5%). The presence of IR was higher among the girls. In contrast, ID was more frequent among the boys. The infrequent presence of ID among children might support the presence of non-obese type 2 diabetes adults in Japan. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  13. VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2+)-but not for GTP gamma S-induced insulin secretion.

    PubMed Central

    Regazzi, R; Wollheim, C B; Lang, J; Theler, J M; Rossetto, O; Montecucco, C; Sadoul, K; Weller, U; Palmer, M; Thorens, B

    1995-01-01

    VAMP proteins are important components of the machinery controlling docking and/or fusion of secretory vesicles with their target membrane. We investigated the expression of VAMP proteins in pancreatic beta-cells and their implication in the exocytosis of insulin. cDNA cloning revealed that VAMP-2 and cellubrevin, but not VAMP-1, are expressed in rat pancreatic islets and that their sequence is identical to that isolated from rat brain. Pancreatic beta-cells contain secretory granules that store and secrete insulin as well as synaptic-like microvesicles carrying gamma-aminobutyric acid. After subcellular fractionation on continuous sucrose gradients, VAMP-2 and cellubrevin were found to be associated with both types of secretory vesicle. The association of VAMP-2 with insulin-containing granules was confirmed by confocal microscopy of primary cultures of rat pancreatic beta-cells. Pretreatment of streptolysin-O permeabilized insulin-secreting cells with tetanus and botulinum B neurotoxins selectively cleaved VAMP-2 and cellubrevin and abolished Ca(2+)-induced insulin release (IC50 approximately 15 nM). By contrast, the pretreatment with tetanus and botulinum B neurotoxins did not prevent GTP gamma S-stimulated insulin secretion. Taken together, our results show that pancreatic beta-cells express VAMP-2 and cellubrevin and that one or both of these proteins selectively control Ca(2+)-mediated insulin secretion. Images PMID:7796801

  14. Rapid association of protein kinase C-epsilon with insulin granules is essential for insulin exocytosis.

    PubMed

    Mendez, Carlos F; Leibiger, Ingo B; Leibiger, Barbara; Høy, Marianne; Gromada, Jesper; Berggren, Per-Olof; Bertorello, Alejandro M

    2003-11-07

    Glucose-dependent exocytosis of insulin requires activation of protein kinase C (PKC). However, because of the great variety of isoforms and their ubiquitous distribution within the beta-cell, it is difficult to predict the importance of a particular isoform and its mode of action. Previous data revealed that two PKC isoforms (alpha and epsilon) translocate to membranes in response to glucose (Zaitzev, S. V., Efendic, S., Arkhammar, P., Bertorello, A. M., and Berggren, P. O. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9712-9716). Using confocal microscopy, we have now established that in response to glucose, PKC-epsilon but not PKC-alpha associates with insulin granules and that green fluorescent protein-tagged PKC-epsilon changes its distribution within the cell periphery upon stimulation of beta-cells with glucose. Definite evidence of PKC-epsilon requirement during insulin granule exocytosis was obtained by using a dominant negative mutant of this isoform. The presence of this mutant abolished glucose-induced insulin secretion, whereas transient expression of the wild-type PKC-epsilon led to a significant increase in insulin exocytosis. These results suggest that association of PKC-epsilon with insulin granule membranes represents an important component of the secretory network because it is essential for insulin exocytosis in response to glucose.

  15. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  16. Progressive enhancement in the secretory functions of the digestive system of the rat in the course of cold acclimation.

    PubMed Central

    Harada, E; Kanno, T

    1976-01-01

    1. The secretory function of the exocrine pancreas and the stomach have been studied in the course of cold acclimation of rats that had been fed at an ambient temperature of 1 degree C in a climatic room. 2. The secretory responses of pancreatic enzymes evoked by continuous infusion of pancreozymin (PZ, 2-5 mu./kg. hr) and a rapid single injection of PZ (1.7 mu./kg) reached a maximum in the group of rats fed at 1 degree C for 4 weeks, and fell to the control levels after 8 weeks. The increase in the flow of pancreatic juice evoked by single injection of PZ was maximal at 4 weeks and slightly decreased after 8 weeks. 3. The insulin (3-0 i.u./kg) evoked secretion of pancreatic enzymes gradually increased after cold exposure, reached a maximum at 4 weeks and fell to the control levels after 8 weeks. The flow of pancreatic juice after insulin injection was almost the same in every group throughout the course of cold exposure. 4. The ratio of amylase to the total amount of the protein in the pancreatic juice decreased abruptly, in contrast to an increase in the ratio of protease in the process of cold acclimation. The change in the ratio of enzyme activity in the pancreatic juice may reflect parallel changes in enzyme activity in the exocrine pancreas. 5. The gastric secretion in response to insulin and bile secretion in the group fed at 1 degree C for 7 weeks was significantly higher than that in the control group. 6. It was thus concluded that the secretory activities of digestive system were enhanced by prolonged cold exposure and then returned to control level, and that the activites of the pancreatic enzymes were altered in the process of cold acclimation in rats. PMID:978571

  17. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  18. Metabolic syndrome, insulin resistance, and chronic allograft dysfunction.

    PubMed

    Porrini, Esteban; Delgado, Patricia; Torres, Armando

    2010-12-01

    Metabolic syndrome (MS) is a cluster of cardiovascular (CV) risk factors (hypertension, dyslipidemia, obesity, and glucose homeostasis alterations), and insulin resistance (IR) is suggested to be a common pathogenic background. In the general population, MS and IR have been proven to be risk factors for diabetes, CV disease, and chronic kidney disease. In the renal transplant setting, few studies have analyzed the relevance of MS and IR. According to the few data available, the prevalence of MS in renal transplant patients has been described as 22.6% at 12 months, 37.7% at 36 months, and 64% at 6 years after transplantation. Importantly, MS has been shown to be an independent risk factor for chronic allograft dysfunction (CAD), graft failure, new-onset diabetes, and CV disease. Also, persistent hyperinsulinemia during the first posttransplant year has been related to an increase in glomerular filtration rate, probably reflecting glomerular hyperfiltration as observed in prediabetes and early type 2 diabetes. Importantly, prediabetes (impaired fasting glucose and impaired glucose tolerance), a state hallmarked by IR, proved to be highly frequent among stable renal transplant recipients (30%), which is nearly three times its incidence in the general population. Posttransplant IR has been associated with subclinical atheromatosis as assessed by carotid intima-media thickness, and with chronic subclinical inflammation. In conclusion, MS and IR are important modifiable risk factors in renal transplant recipients, and prompt interventions to avoid its deleterious effects at the metabolic, CV, and graft function levels are needed.

  19. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  20. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  1. Teucrium polium complex with molybdate enhance cultured islets secretory function.

    PubMed

    Mohseni Salehi Monfared, Seyed Sajad; Pournourmohammadi, Shirin

    2010-02-01

    Islet transplantation has become a promising treatment in the therapy of type 1 diabetes. Its function improvement, after isolation and before transplantation, is crucial because of their loss both in number and function of islets after isolation procedures. Trace elements sodium orthovanadate (SOV) and sodium molybdate (SM), as well as medicinal plant Teucrium polium L. (TP), showed and possessed high beneficial antioxidative potential and even hypoglycemic properties via their effect on islets. We evaluated the effect of these components in combination on cultured islet function in order to improve pancreatic islet transplantation. Rat pancreatic islets were cultured for 24 h then incubated with different concentrations of TP (0.01 and 0.1 mg/mL) alone and in combination with SOV (1 mM) or SM (1 mM). Insulin concentration in buffer media was measured as islet secretory function. Administration of TP (0.01 mg/mL), SM, and SOV alone or in combination with each other significantly increased insulin secretion at high glucose concentration (16.7 mM); insulin secretion was significantly greater in the group containing both TP and SM than other treated groups (p < 0.05). The combination of the mentioned trace elements especially molybdate with TP could improve islet cells function before transplantation.

  2. Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance

    PubMed Central

    Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.

    2008-01-01

    OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811

  3. Transcriptional and Functional Plasticity Induced by Chronic Insulin Exposure in a Mast Cell-Like Basophilic Leukemia Cell Model

    PubMed Central

    Jansen, Chad; Speck, Mark; Greineisen, William E; Maaetoft-Udsen, Kristina; Cordasco, Edward; Shimoda, Lori MN; Stokes, Alexander J; Turner, Helen

    2018-01-01

    Objective Secretory granules (SG) and lipid bodies (LB) are the primary organelles that mediate functional responses in mast cells. SG contains histamine and matrix-active proteases, while LB are reservoirs of arachidonic acid and its metabolites, precursors for rapid synthesis of eicosanoids such as LTC4. Both of these compartments can be dynamically or ontologically regulated, with metabolic and immunological stimuli altering lipid body content and granule numbers responding to contextual signals from tissue. We previously described that chronic in vitro or in vivo hyperinsulinemia expands the LB compartment with a concomitant loss of SG capacity, suggesting that this ratio is dynamically regulated. The objective of the current study is to determine if chronic insulin exposure initiates a transcriptional program that biases model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Methods We used a basophilic leukemic cell line with mucosal mast cell-like features as a model system. We tested the hypothesis that chronic insulin exposure initiates a transcriptional program that biases these model mast cells towards a lipogenic state with accompanying loss of secretory granule biogenesis. Transcriptional arrays were used to map gene expression patterns. Biochemical, immunocytochemical and mediator release assays were used to evaluate organelle numbers and functional responses. Results In a mucosal mast cell model, the rat basophilic leukemia line RBL2H3, mast cell granularity and SG numbers are inversely correlated with LB numbers. Chronic insulin exposure appears to modulate gene networks involved in both lipid body biogenesis and secretory granule formation. Western blot analysis confirms upregulation of protein levels for LB proteins, and decreases in proteins that are markers for SG cargo. Conclusions The levels of insulin in the extracellular milieu may modify the phenotype of mast cell-like cells in vitro. PMID

  4. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats.

    PubMed

    Xia, Tongjia; Zhang, Xue; Wang, Youmin; Deng, Datong

    2018-05-21

    This study aimed to investigate the effect of maternal hypothyroidism during pregnancy on thyroid function of the fetal rat. Female Sprague-Dawley rats were randomized into two groups. PTU group received propylthiouracil (PTU) in drinking water for 6 weeks (n = 90), normal group received drinking normal water (n = 50). The pregnant rats were obtained and had a cesarean-section to get at gestational age of 8.5 d, 13d and 21 d, following blood samples and skeletal muscle were obtained from fetal rats. Levels of thyroid hormone, insulin, mitochondrial protein and adipokines were detected using ELISA. Western blotting was performed to analyze mitochondria and insulin signal transduction-related protein in fetal rat skeletal muscle. Immunostaining of periodic acid-Schiff (PAS) and Oil Red O was used to observe accumulation of muscle glycogen and lipid in the fetal rat. The results showed that levels of thyroid hormone, insulin, insulin signal transduction-related protein, mitochondrial protein and adipokines increased with the fetus developed, but had no statistical differences in PTU the group compared to the normal group. In conclusion, pregnant rats with hypothyroidism have not an influence on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats. ©2018 The Author(s).

  5. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  6. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  7. PtdIns(4,5)P2 is not required for secretory granule docking.

    PubMed

    Omar-Hmeadi, Muhmmad; Gandasi, Nikhil R; Barg, Sebastian

    2018-06-01

    Phosphoinositides (PtdIns) play important roles in exocytosis and are thought to regulate secretory granule docking by co-clustering with the SNARE protein syntaxin to form a docking receptor in the plasma membrane. Here we tested this idea by high-resolution total internal reflection imaging of EGFP-labeled PtdIns markers or syntaxin-1 at secretory granule release sites in live insulin-secreting cells. In intact cells, PtdIns markers distributed evenly across the plasma membrane with no preference for granule docking sites. In contrast, syntaxin-1 was found clustered in the plasma membrane, mostly beneath docked granules. We also observed rapid accumulation of syntaxin-1 at sites where granules arrived to dock. Acute depletion of plasma membrane phosphatidylinositol (4,5) bisphosphate (PtdIns(4,5)P 2 ) by recruitment of a 5'-phosphatase strongly inhibited Ca 2+ -dependent exocytosis, but had no effect on docked granules or the distribution and clustering of syntaxin-1. Cell permeabilization by α-toxin or formaldehyde-fixation caused PtdIns marker to slowly cluster, in part near docked granules. In summary, our data indicate that PtdIns(4,5)P 2 accelerates granule priming, but challenge a role of PtdIns in secretory granule docking or clustering of syntaxin-1 at the release site. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Insulin protects against hepatic damage postburn.

    PubMed

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes.

  9. Insulin Protects against Hepatic Damage Postburn

    PubMed Central

    Jeschke, Marc G; Kraft, Robert; Song, Juquan; Gauglitz, Gerd G; Cox, Robert A; Brooks, Natasha C; Finnerty, Celeste C; Kulp, Gabriela A; Herndon, David N; Boehning, Darren

    2011-01-01

    Burn injury causes hepatic dysfunction associated with endoplasmic reticulum (ER) stress and induction of the unfolded protein response (UPR). ER stress/UPR leads to hepatic apoptosis and activation of the Jun-N-terminal kinase (JNK) signaling pathway, leading to vast metabolic alterations. Insulin has been shown to attenuate hepatic damage and to improve liver function. We therefore hypothesized that insulin administration exerts its effects by attenuating postburn hepatic ER stress and subsequent apoptosis. Male Sprague Dawley rats received a 60% total body surface area (TBSA) burn injury. Animals were randomized to receive saline (controls) or insulin (2.5 IU/kg q. 24 h) and euthanized at 24 and 48 h postburn. Burn injury induced dramatic changes in liver structure and function, including induction of the ER stress response, mitochondrial dysfunction, hepatocyte apoptosis, and up-regulation of inflammatory mediators. Insulin decreased hepatocyte caspase-3 activation and apoptosis significantly at 24 and 48 h postburn. Furthermore, insulin administration decreased ER stress significantly and reversed structural and functional changes in hepatocyte mitochondria. Finally, insulin attenuated the expression of inflammatory mediators IL-6, MCP-1, and CINC-1. Insulin alleviates burn-induced ER stress, hepatocyte apoptosis, mitochondrial abnormalities, and inflammation leading to improved hepatic structure and function significantly. These results support the use of insulin therapy after traumatic injury to improve patient outcomes. PMID:21267509

  10. Secretory expression of the non-secretory-type Lentinula edodes laccase by Aspergillus oryzae.

    PubMed

    Yano, Akira; Kikuchi, Sayaka; Nakagawa, Yuko; Sakamoto, Yuichi; Sato, Toshitsugu

    2009-01-01

    The shiitake mushroom, Lentinula edodes, has an extracelluar secretory-type laccase, Lcc1, and a fruiting-body-accumulation-type laccase, Lcc4. We previously reported the production of Lcc1 by plant cells, but had difficulty producing Lcc4. Here, we report the production of Lcc1 and Lcc4 by Aspergillus oryzae and the extracellular secretory production of Lcc4 using a modified secretion signal peptide (SP) from Lcc1. Sp-Lcc4 produced by A. oryzae had biochemical activities similar to Lcc4 produced by L. edodes. Lcc1 did not react with beta-(3,4-dihydroxyphenol) alanine (DOPA), but Lcc4 from L. edodes and A. oryzae could oxidize DOPA. K(M) values for the substrates 2,2'-azino-di-(3-ethylbenzthiazolinsulfonate), 2,6-dimethoxyphenol, guaiacol, pyrogallol, and catechol were similar for Lcc4 and Sp-Lcc4. In conclusion, a non-secretory-type fungal laccase is secreted into the culture media with its original enzymatic properties by exploiting modified secretory signal peptide. 2008 Elsevier GmbH.

  11. Adventures with Insulin in the Islets of Langerhans

    PubMed Central

    Steiner, Donald F.

    2011-01-01

    Insulin is a small but beautifully organized protein with a unique two-chain structure, the first protein to be sequenced. The mechanism of its biosynthesis invited much initial speculation but was finally clarified by the discovery of proinsulin, its single-chain precursor. The rich present-day field of protein precursor processing via post-translational proteolysis within the secretory pathway arose in the early 1970s as an offshoot of studies on insulin biosynthesis, which provided a novel paradigm for the generation of many other small neuroendocrine peptides. Before long, this mechanism was also found to play a role in the production of a much wider spectrum of proteins traversing the secretory pathway (receptors, growth factors, blood-clotting components, and even many viral envelope proteins) occurring in almost all eukaryotic cells. Indeed, yeast provided a key clue in the search for the proprotein convertases, the endoproteases that work along with carboxypeptidases and other modifying enzymes, such as the amidating enzyme complex (PAM), in converting inactive or less active precursor proteins into their fully active peptide products. In this “Reflections” article, I have tried to recount the people and events in my life that led to my involvement first in basic biochemical research and then on to insulin, proinsulin, and many relevant related areas that continue to fascinate and challenge my colleagues and me, as well as many other biomedical scientists today, as diabetes mellitus increasingly threatens human health throughout our contemporary world. PMID:21454641

  12. Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages.

    PubMed

    Neth, Bryan J; Craft, Suzanne

    2017-01-01

    Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.

  13. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  14. Effect of hyperglycaemia on muscarinic M3 receptor expression and secretory sensitivity to cholinergic receptor activation in islets.

    PubMed

    Hauge-Evans, A C; Reers, C; Kerby, A; Franklin, Z; Amisten, S; King, A J; Hassan, Z; Vilches-Flores, A; Tippu, Z; Persaud, S J; Jones, P M

    2014-10-01

    Islets are innervated by parasympathetic nerves which release acetylcholine (ACh) to amplify glucose-induced insulin secretion, primarily via muscarinic M3 receptors (M3R). Here we investigate the consequence of chronic hyperglycaemia on islet M3R expression and secretory sensitivity of mouse islets to cholinergic receptor activation. The impact of hyperglycaemia was studied in (i) islets isolated from ob/ob mice, (ii) alginate-encapsulated mouse islets transplanted intraperitoneally into streptozotocin-induced diabetic mice and (iii) mouse and human islets maintained in vitro at 5.5 or 16 mmol/l glucose. Blood glucose levels were assessed by a commercial glucose meter, insulin content by RIA and M3R expression by qPCR and immunohistochemistry. M3R mRNA expression was reduced in both ob/ob islets and islets maintained at 16 mmol/l glucose for 3 days (68 and 50% control, respectively). In all three models of hyperglycaemia the secretory sensitivity to the cholinergic receptor agonist, carbachol, was reduced by 60-70% compared to control islets. Treatment for 72 h with the irreversible PKC activator, PMA, or the PKC inhibitor, Gö6983, did not alter islet M3R mRNA expression nor did incubation with the PI3K-inhibitor, LY294002, although enhancement of glucose-induced insulin secretion by LY294002 was reduced in islets maintained at 16 mmol/l glucose, as was mRNA expression of the PI3K regulatory subunit, p85α. Cholinergic regulation of insulin release is impaired in three experimental islet models of hyperglycaemia consistent with reduced expression of M3 receptors. Our data suggest that the receptor downregulation is a PKC- and PI3K-independent consequence of the hyperglycaemic environment, and they imply that M3 receptors could be potential targets in the treatment of type 2 diabetes. © 2014 John Wiley & Sons Ltd.

  15. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise?

    PubMed

    da Silva, Márcia F; Natali, Antônio J; da Silva, Edson; Gomes, Gilton J; Teodoro, Bruno G; Cunha, Daise N Q; Drummond, Lucas R; Drummond, Filipe R; Moura, Anselmo G; Belfort, Felipe G; de Oliveira, Alessandro; Maldonado, Izabel R S C; Alberici, Luciane C

    2015-07-15

    We tested the effects of swimming training and insulin therapy, either alone or in combination, on the intracellular calcium ([Ca(2+)]i) homeostasis, oxidative stress, and mitochondrial functions in diabetic rat hearts. Male Wistar rats were separated into control, diabetic, or diabetic plus insulin groups. Type 1 diabetes mellitus was induced by streptozotocin (STZ). Insulin-treated groups received 1 to 4 UI of insulin daily for 8 wk. Each group was divided into sedentary or exercised rats. Trained groups were submitted to swimming (90 min/day, 5 days/wk, 8 wk). [Ca(2+)]i transient in left ventricular myocytes (LVM), oxidative stress in LV tissue, and mitochondrial functions in the heart were assessed. Diabetes reduced the amplitude and prolonged the times to peak and to half decay of the [Ca(2+)]i transient in LVM, increased NADPH oxidase-4 (Nox-4) expression, decreased superoxide dismutase (SOD), and increased carbonyl protein contents in LV tissue. In isolated mitochondria, diabetes increased Ca(2+) uptake, susceptibility to permeability transition pore (MPTP) opening, uncoupling protein-2 (UCP-2) expression, and oxygen consumption but reduced H2O2 release. Swimming training corrected the time course of the [Ca(2+)]i transient, UCP-2 expression, and mitochondrial Ca(2+) uptake. Insulin replacement further normalized [Ca(2+)]i transient amplitude, Nox-4 expression, and carbonyl content. Alongside these benefits, the combination of both therapies restored the LV tissue SOD and mitochondrial O2 consumption, H2O2 release, and MPTP opening. In conclusion, the combination of swimming training with insulin replacement was more effective in attenuating intracellular Ca(2+) disruptions, oxidative stress, and mitochondrial dysfunctions in STZ-induced diabetic rat hearts. Copyright © 2015 the American Physiological Society.

  16. Insulin response to a spontaneously ingested standard meal during the development of obesity in GTG-injected mice.

    PubMed

    Blair, S C; Caterson, I D; Cooney, G J

    1996-04-01

    (1) To determine glucose and insulin levels in response to ingestion of a standard meal during the development of gold-thioglucose (GTG)-induced obesity. (2) To examine whether the pancreatic beta-cells of GTG-injected mice possess sufficient insulin secretory capacity to compensate for the increasing tissue insulin resistance that occurs with the development of this obesity. The insulin secretory response to a standard meal of chow was examined in chronically catheterised conscious mice 2, 5 and 10 weeks after induction of obesity by a single injection of GTG. At 2 weeks after administration of GTG both the basal insulinaemia and the incremental area under the curve (iAUC) of insulin release after a chow meal were increased compared with age-matched lean control mice (2 week control: 1004 +/- 316 min/microU/ml; 2 week GTG: 1968 +/- 300 min/microU/ml; P < 0.05). By 5 weeks, the GTG-injected mice were approximately 42% heavier than their lean controls and showed a marked glucose intolerance. This was accompanied by hyperinsulinaemia in both the basal state and also in response to ingestion of the chow meal as indicated by the increase in the iAUC of insulin (5 week control: 1113 +/- 331 min/microU/ml; 5 week GTG: 2682 +/- 295 min/microU/ml; P < 0.05). At 10 weeks after GTG administration body weight was further increased, as was the degree of glucose intolerance. Plasma insulin levels, in both the basal state and in response to the ingestion of chow, were also further elevated by 10 weeks following GTG injection (10 week control: 1234 +/- 311 min/microU/ml; 10 week GTG: 6640 +/- 1198 min/microU/ml; P < 0.05). It is apparent that the secretion of insulin in response to a standard chow meal increases progressively with the development of obesity. This finding, in conjunction with an earlier study showing that the insulin secretory response to intravenously administered glucose becomes impaired in the latter stages of the development of obesity in GTG-injected mice

  17. Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice.

    PubMed Central

    Pontoglio, M; Sreenan, S; Roe, M; Pugh, W; Ostrega, D; Doyen, A; Pick, A J; Baldwin, A; Velho, G; Froguel, P; Levisetti, M; Bonner-Weir, S; Bell, G I; Yaniv, M; Polonsky, K S

    1998-01-01

    Mutations in the gene for the transcription factor hepatocyte nuclear factor (HNF) 1alpha cause maturity-onset diabetes of the young (MODY) 3, a form of diabetes that results from defects in insulin secretion. Since the nature of these defects has not been defined, we compared insulin secretory function in heterozygous [HNF-1alpha (+/-)] or homozygous [HNF-1alpha (-/-)] mice with null mutations in the HNF-1alpha gene with their wild-type littermates [HNF-1alpha (+/+)]. Blood glucose concentrations were similar in HNF-1alpha (+/+) and (+/-) mice (7.8+/-0.2 and 7.9+/-0.3 mM), but were significantly higher in the HNF-1alpha (-/-) mice (13.1+/-0.7 mM, P < 0.001). Insulin secretory responses to glucose and arginine in the perfused pancreas and perifused islets from HNF-1alpha (-/-) mice were < 15% of the values in the other two groups and were associated with similar reductions in intracellular Ca2+ responses. These defects were not due to a decrease in glucokinase or insulin gene transcription. beta cell mass adjusted for body weight was not reduced in the (-/-) animals, although pancreatic insulin content adjusted for pancreas weight was slightly lower (0.06+/-0.01 vs. 0.10+/-0.01 microg/mg, P < 0.01) than in the (+/+) animals. In summary, a null mutation in the HNF-1alpha gene in homozygous mice leads to diabetes due to alterations in the pathways that regulate beta cell responses to secretagogues including glucose and arginine. These results provide further evidence in support of a key role for HNF-1alpha in the maintenance of normal beta cell function. PMID:9593777

  18. Altered K+ fluxes and insulin release in pancreatic islets from omega3 fatty acid-depleted rats.

    PubMed

    Sener, Abdullah; Zhang, Ying; Louchami, Karim; Oguzhan, Berrin; Courtois, Philippe; Portois, Laurence; Chardigny, Jean-Michel; Carpentier, Yvon A; Malaisse, Willy J

    2006-10-01

    A low intake of long-chain polyunsaturated omega3 fatty acid often prevails in Western populations. Its consequences in terms of the control of fuel homeostasis led us to explore functional events in pancreatic islets isolated from either normal or omega3-depleted rats (second generation). In the latter rats, the inflow of K+ by both ouabain-sensitive and ouabain-resistant modalities was decreased, this coinciding with an impaired insulin secretory response to ouabain. The intravenous injection of a medium-chain triglyceride:fish oil emulsion to omega3-depleted rats 2 h before sacrifice restored a normal value for the inflow of K+ by the ouabainsensitive modality, i.e., that linked to the activity of the Na,K-ATPase, but failed to correct the entry of K+ by the ouabain-resistant modality and the defect of the insulin secretory response to ouabain. In conclusion, an impaired activity of the Na,K-ATPase in insulin-producing cells apparently represents a key determinant of altered islet function in omega3-depleted rats.

  19. Interventions for the metabolic dysfunction in polycystic ovary syndrome.

    PubMed

    Bozdag, Gurkan; Yildiz, Bulent O

    2013-08-01

    Polycystic ovary syndrome (PCOS) is associated with metabolic disturbances including obesity, insulin resistance, diabetes and dyslipidemia. Cardiometabolic risk should be assessed at regular intervals starting from diagnosis. A comprehensive clinical evaluation includes determination of body mass index, waist circumference, blood pressure and measurement of serum lipid and glucose levels in all women with PCOS. A standard 2-h 75g oral glucose tolerance test is required for women with a body mass index over 25kg/m(2) and with other risk factors for glucose intolerance. No long-term data are available for the risk or benefit of any medical intervention for metabolic dysfunction of PCOS. For the initial management of metabolic dysfunction in PCOS, available guidelines recommend lifestyle intervention which improves androgen excess and insulin resistance without significant effect on glucose intolerance or dyslipidemia. Pharmacological interventions include insulin sensitizing agents and statins. Metformin is the most commonly prescribed insulin sensitizer in PCOS. Available randomized controlled trials suggest that metformin improves insulin resistance without any effect on body mass index, fasting glucose or lipid levels. Short term use of statins alone or in combination with metformin decreases total cholesterol, low-density lipoprotein-cholesterol and triglycerides in PCOS patients with dyslipidemia. Low dose oral contraception in PCOS appears not to be associated with clinically significant metabolic dysfunction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Insulin Resistance and Alzheimer’s Disease: Bioenergetic Linkages

    PubMed Central

    Neth, Bryan J.; Craft, Suzanne

    2017-01-01

    Metabolic dysfunction is a well-established feature of Alzheimer’s disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets. PMID:29163128

  1. The Secretory System of Arabidopsis

    PubMed Central

    Bassham, Diane C.; Brandizzi, Federica; Otegui, Marisa S.; Sanderfoot, Anton A.

    2008-01-01

    Over the past few years, a vast amount of research has illuminated the workings of the secretory system of eukaryotic cells. The bulk of this work has been focused on the yeast Saccharomyces cerevisiae, or on mammalian cells. At a superficial level, plants are typical eukaryotes with respect to the operation of the secretory system; however, important differences emerge in the function and appearance of endomembrane organelles. In particular, the plant secretory system has specialized in several ways to support the synthesis of many components of the complex cell wall, and specialized kinds of vacuole have taken on a protein storage role—a role that is intended to support the growing seedling, but has been co-opted to support human life in the seeds of many crop plants. In the past, most research on the plant secretory system has been guided by results in mammalian or fungal systems but recently plants have begun to stand on their own as models for understanding complex trafficking events within the eukaryotic endomembrane system. PMID:22303241

  2. Diastolic dysfunction is associated with insulin resistance, but not with aldosterone level in normotensive offspring of hypertensive families.

    PubMed

    Zizek, Bogomir; Poredos, Pavel; Trojar, Andrej; Zeljko, Tadej

    2008-01-01

    We investigated left ventricular (LV) morphology and function in association with insulin level/insulin resistance (IR) and aldosterone level in normotensive offspring of subjects with essential hypertension (familial trait, FT). The study encompassed 76 volunteers of whom 44 were normotensive with FT (aged 28-39 years) and 32 age-matched controls without FT. LV mass and function were measured using conventional echocardiography and tissue Doppler imaging. LV diastolic function was reported as peak septal annular velocities (E(m) and E(m)/A(m) ratio) in tissue Doppler imaging. Fasting insulin and aldosterone were determined. In subjects with FT, the LV mass was higher than in controls (92.14 +/- 24.02 vs. 70.08 +/- 20.58 g; p < 0.001). The study group had a worse LV diastolic function than control subjects (lower E(m) and E(m)/A(m) ratio; p < 0.001). In subjects with FT, the E(m)/A(m) ratio was independently associated with IR (partial p = 0.029 in multivariate model, R(2) = 0.51), but not with LV mass. The aldosterone level was comparable in both groups. In normotensive individuals with FT, LV morphological and functional abnormalities were found. LV dysfunction but not an increase in LV mass is associated with IR. The aldosterone level is probably not responsible for the development of early hypertensive heart disease. (c) 2008 S. Karger AG, Basel.

  3. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat

    PubMed Central

    Warren, Blair E.; Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Clanachan, Alexander S.; Affolter, Andreas; Hersberger, Martin; Zaugg, Michael

    2014-01-01

    Although evidence that type 2 diabetes mellitus (T2DM) is accompanied by mitochondrial dysfunction in skeletal muscle has been accumulating, a causal link between mitochondrial dysfunction and the pathogenesis of the disease remains unclear. Our study focuses on an early stage of the disease to determine whether mitochondrial dysfunction contributes to the development of T2DM. The fructose-fed (FF) rat was used as an animal model of early T2DM. Mitochondrial respiration and acylcarnitine species were measured in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscle. Although FF rats displayed characteristic signs of T2DM, including hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, mitochondrial content was preserved in both muscles from FF rats. The EDL muscle had reduced complex I and complex I and II respiration in the presence of pyruvate but not glutamate. The decrease in pyruvate-supported respiration was due to a decrease in pyruvate dehydrogenase activity. Accumulation of C14:1 and C14:2 acylcarnitine species and a decrease in respiration supported by long-chain acylcarnitines but not acetylcarnitine indicated dysfunctional β-oxidation in the EDL muscle. In contrast, the soleus muscle showed preserved mitochondrial respiration, pyruvate dehydrogenase activity, and increased fatty acid oxidation, as evidenced by overall reduced acylcarnitine levels. Aconitase activity, a sensitive index of reactive oxygen species production in mitochondria, was reduced exclusively in EDL muscle, which showed lower levels of the antioxidant enzymes thioredoxin reductase and glutathione peroxidase. Here, we show that the glycolytic EDL muscle is more prone to an imbalance between energy supply and oxidation caused by insulin resistance than the oxidative soleus muscle. PMID:24425766

  4. Rac1 Regulates Endometrial Secretory Function to Control Placental Development.

    PubMed

    Davila, Juanmahel; Laws, Mary J; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N; Bagchi, Milan K; Bagchi, Indrani C

    2015-08-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal

  5. A Sustained Activation of Pancreatic NMDARs Is a Novel Factor of β-Cell Apoptosis and Dysfunction.

    PubMed

    Huang, Xiao-Ting; Yue, Shao-Jie; Li, Chen; Huang, Yan-Hong; Cheng, Qing-Mei; Li, Xiao-Hong; Hao, Cai-Xia; Wang, Ling-Zhi; Xu, Jian-Ping; Ji, Ming; Chen, Chen; Feng, Dan-Dan; Luo, Zi-Qiang

    2017-11-01

    Type 2 diabetes, which features β-cell failure, is caused by the decrease of β-cell mass and insulin secretory function. Current treatments fail to halt the decrease of functional β-cell mass. Strategies to prevent β-cell apoptosis and dysfunction are highly desirable. Recently, our group and others have reported that blockade of N-methyl-d-aspartate receptors (NMDARs) in the islets has been proposed to prevent the progress of type 2 diabetes through improving β-cell function. It suggests that a sustained activation of the NMDARs may exhibit deleterious effect on β-cells. However, the exact functional impact and mechanism of the sustained NMDAR stimulation on islet β-cells remains unclear. Here, we identify a sustained activation of pancreatic NMDARs as a novel factor of apoptotic β-cell death and function. The sustained treatment with NMDA results in an increase of intracellular [Ca2+] and reactive oxygen species, subsequently induces mitochondrial membrane potential depolarization and a decrease of oxidative phosphorylation expression, and then impairs the mitochondrial function of β-cells. NMDA specifically induces the mitochondrial-dependent pathway of apoptosis in β-cells through upregulation of the proapoptotic Bim and Bax, and downregulation of antiapoptotic Bcl-2. Furthermore, a sustained stimulation of NMDARs impairs β-cell insulin secretion through decrease of pancreatic duodenal homeobox-1 (Pdx-1) and adenosine triphosphate synthesis. The activation of nuclear factor-κB partly contributes to the reduction of Pdx-1 expression induced by overstimulation of NMDARs. In conclusion, we show that the sustained stimulation of NMDARs is a novel mediator of apoptotic signaling and β-cell dysfunction, providing a mechanistic insight into the pathological role of NMDARs activation in diabetes. Copyright © 2017 Endocrine Society.

  6. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    PubMed Central

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

  7. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    PubMed

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  8. Comparison of β-cell dysfunction and insulin resistance correlating obesity with type 2 diabetes: A cross-sectional study.

    PubMed

    Liu, Jia; Wang, Ying; Hu, Yanjin; Leng, Song; Wang, Guang

    2016-07-01

    To assess the contribution of β-cell dysfunction and insulin resistance to type 2 diabetes (T2D) in obese and non-obese Chinese people. In this cross-sectional study, we recruited 1384 newly diagnosed T2D patients and 1712 healthy controls. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA-IR). β-cell function was estimated by homeostasis model assessment of β-cell function (HOMA-β) and 60min insulinogenic index (IGI60). We compared the insulin resistance and β-cell function of obese and non-obese Chinese patients with and without T2D. 50.18% of control participants and 62.28% of T2D patients were obese (BMI≥25kg/m(2)). HOMA-IR, HOMA-β and IGI60 were significantly higher in obese than non-obese, irrespective of T2D. Non-obese T2D patients had significantly greater HOMA-IR, and lower HOMA-β and IGI60 than non-obese control participants. The obese T2D group had lower HOMA-β and IGI60 than the obese control group. There was no significant difference in HOMA-IR between the obese T2D and obese control groups. Multivariate logistic regression analysis revealed that HOMA-IR was associated with T2D only in non-obese group, and HOMA-β and IGI60 were associated with T2D in both non-obese and obese groups. HOMA-β and IGI60 were associated with T2D in obese and non-obese patients, but HOMA-IR was associated with T2D in non-obese Chinese. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Peripheral insulin resistance rather than beta cell dysfunction accounts for geographical differences in impaired fasting blood glucose among sub-Saharan African individuals: findings from the RODAM study.

    PubMed

    Meeks, Karlijn A C; Stronks, Karien; Adeyemo, Adebowale; Addo, Juliet; Bahendeka, Silver; Beune, Erik; Owusu-Dabo, Ellis; Danquah, Ina; Galbete, Cecilia; Henneman, Peter; Klipstein-Grobusch, Kerstin; Mockenhaupt, Frank P; Osei, Kwame; Schulze, Matthias B; Spranger, Joachim; Smeeth, Liam; Agyemang, Charles

    2017-05-01

    The aim of this study was to assess the extent to which insulin resistance and beta cell dysfunction account for differences in impaired fasting blood glucose (IFBG) levels in sub-Saharan African individuals living in different locations in Europe and Africa. We also aimed to identify determinants associated with insulin resistance and beta cell dysfunction among this population. Data from the cross-sectional multicentre Research on Obesity and Diabetes among African Migrants (RODAM) study were analysed. Participants included Ghanaian individuals without diabetes, aged 18-96 years old, who were residing in Amsterdam (n = 1337), Berlin (n = 502), London (n = 961), urban Ghana (n = 1309) and rural Ghana (n = 970). Glucose and insulin were measured in fasting venous blood samples. Anthropometrics were assessed during a physical examination. Questionnaires were used to assess demographics, physical activity, smoking status, alcohol consumption and energy intake. Insulin resistance and beta cell function were determined using homeostatic modelling (HOMA-IR and HOMA-B, respectively). Logistic regression analysis was used to study the contribution of HOMA-IR and inverse HOMA-B (beta cell dysfunction) to geographical differences in IFBG (fasting glucose 5.6-6.9 mmol/l). Multivariate linear regression analysis was used to identify determinants associated with HOMA-IR and inverse HOMA-B. IFBG was more common in individuals residing in urban Ghana (OR 1.41 [95% CI 1.08, 1.84]), Amsterdam (OR 3.44 [95% CI 2.69, 4.39]) and London (OR 1.58 [95% CI 1.20 2.08), but similar in individuals living in Berlin (OR 1.00 [95% CI 0.70, 1.45]), compared with those in rural Ghana (reference population). The attributable risk of IFBG per 1 SD increase in HOMA-IR was 69.3% and in inverse HOMA-B was 11.1%. After adjustment for HOMA-IR, the odds for IFBG reduced to 0.96 (95% CI 0.72, 1.27), 2.52 (95%CI 1.94, 3.26) and 1.02 (95% CI 0.78, 1.38) for individuals in Urban Ghana

  10. SOME ULTRASTRUCTURAL EFFECTS OF INSULIN, HYDROCORTISONE, AND PROLACTIN ON MAMMARY GLAND EXPLANTS

    PubMed Central

    Mills, Elinor S.; Topper, Yale J.

    1970-01-01

    The effects of insulin, hydrocortisone, and prolactin on the morphology of explants from midpregnant mouse mammary glands were studied. Insulin promotes the formation of daughter cells within the alveolar epithelium which are ultrastructurally indistinguishable from the parent cells. The addition of hydrocortisone to the medium containing insulin brings the daughter cells to a new, intermediate level of ultrastructural development by effecting an extensive increase of the rough endoplasmic reticulum (RER) throughout the cytoplasm and an increase in the lateral paranuclear Golgi apparatus. When prolactin is added to the insulin-hydrocortisone medium, the daughter cells complete their ultrastructural differentiation. There is a translocation of the RER, Golgi apparatus, and nucleus and the appearance of secretory protein granules within the cytoplasm. There is excellent correlation between the ultrastructural appearance of the alveoli and their capacity to synthesize casein. PMID:5460752

  11. Vascular Function, Insulin Action and Exercise: An Intricate Interplay

    PubMed Central

    Zheng, Chao; Liu, Zhenqi

    2015-01-01

    Insulin enhances the compliance of conduit arteries, relaxes resistance arterioles to increase tissue blood flow and dilates precapillary arterioles to expand muscle microvascular blood volume. These actions are impaired in the insulin resistant states. Exercise ameliorates endothelial dysfunction and improves insulin responses in insulin resistant patients, but the precise underlying mechanisms remain unclear. The microvasculature critically regulates insulin action in muscle by modulating insulin delivery to the capillaries nurturing the myocytes and trans-endothelial insulin transport. Recent data suggest that exercise may exert its insulin-sensitizing effect via recruiting muscle microvasculature to increase insulin delivery to and action in muscle. The current review focuses on how the interplay among exercise, insulin action and the vasculature contributes to exercise-mediated insulin sensitization in muscle. PMID:25735473

  12. Discovery and characterization of secretory IgD in rainbow trout: secretory IgD is produced through a novel splicing mechanism

    USGS Publications Warehouse

    Ramirez-Gomez, F.; Greene, W.; Rego, K.; Hansen, J.D.; Costa, G.; Kataria, P.; Bromage, E.S.

    2012-01-01

    The gene encoding IgH δ has been found in all species of teleosts studied to date. However, catfish (Ictalurus punctatus) is the only species of fish in which a secretory form of IgD has been characterized, and it occurs through the use of a dedicated δ-secretory exon, which is absent from all other species examined. Our studies have revealed that rainbow trout (Oncorhynchus mykiss) use a novel strategy for the generation of secreted IgD. The trout secretory δ transcript is produced via a run-on event in which the splice donor site at the end of the last constant domain exon (D7) is ignored and transcription continues until a stop codon is reached 33 nt downstream of the splice site, resulting in the production of an in-frame, 11-aa secretory tail at the end of the D7 domain. In silico analysis of several published IgD genes suggested that this unique splicing mechanism may also be used in other species of fish, reptiles, and amphibians. Alternative splicing of the secretory δ transcript resulted in two δ-H chains, which incorporated Cμ1 and variable domains. Secreted IgD was found in two heavily glycosylated isoforms, which are assembled as monomeric polypeptides associated with L chains. Secretory δ mRNA and IgD+ plasma cells were detected in all immune tissues at a lower frequency than secretory IgM. Our data demonstrate that secretory IgD is more prevalent and widespread across taxa than previously thought, and thus illustrate the potential that IgD may have a conserved role in immunity.

  13. Pancreatic β-Cell Electrical Activity and Insulin Secretion: of Mice and Men

    PubMed Central

    Rorsman, Patrik; Ashcroft, Frances M

    2018-01-01

    The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycaemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM. PMID:29212789

  14. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. © 2013.

  15. Porosome: The Universal Secretory Portal in Cells

    NASA Astrophysics Data System (ADS)

    Jena, Bhanu

    2012-10-01

    In the past 50 years it was believed that during cell secretion, membrane-bound secretory vesicles completely merge at the cell plasma membrane resulting in the diffusion of intra-vesicular contents to the cell exterior and the compensatory retrieval of the excess membrane by endocytosis. This explanation made no sense or logic, since following cell secretion partially empty vesicles accumulate as demonstrated in electron micrographs. Furthermore, with the ``all or none'' mechanism of cell secretion by complete merger of secretory vesicle membrane at the cell plasma membrane, the cell is left with little regulation and control of the amount of content release. Moreover, it makes no sense for mammalian cells to possess such `all or none' mechanism of cell secretion, when even single-cell organisms have developed specialized and sophisticated secretory machinery, such as the secretion apparatus of Toxoplasma gondii, the contractile vacuoles in paramecium, or the various types of secretory structures in bacteria. Therefore, in 1993 in a News and Views article in Nature, E. Neher wrote ``It seems terribly wasteful that, during the release of hormones and neurotransmitters from a cell, the membrane of a vesicle should merge with the plasma membrane to be retrieved for recycling only seconds or minutes later.'' This conundrum in the molecular mechanism of cell secretion was finally resolved in 1997 following discovery of the ``Porosome,'' the universal secretory machinery in cells. Porosomes are supramolecular lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. Since porosomes in exocrine and neuroendocrine cells measure 100-180 nm

  16. Repaglinide acutely amplifies pulsatile insulin secretion by augmentation of burst mass with no effect on burst frequency.

    PubMed

    Juhl, C B; Pørksen, N; Hollingdal, M; Sturis, J; Pincus, S; Veldhuis, J D; Dejgaard, A; Schmitz, O

    2000-05-01

    Repaglinide is a new oral hypoglycemic agent that acts as a prandial glucose regulator proposed for the treatment of type 2 diabetes by stimulating insulin secretion. The aim of this study was to explore actions of repaglinide on the rapid pulsatile insulin release by high-frequency insulin sampling and analysis of insulin-concentration time series. We examined 8 healthy lean male subjects in a single-dose double-blind placebo-controlled crossover design. After the subjects underwent an overnight fast, blood sampling was initiated and continued every minute for 120 min. After 40 min, a single dose (0.5 mg) of repaglinide or placebo was given. Serum insulin-concentration time series were assessed by deconvolution analyses and the regularity statistic by approximate entropy (ApEn). Average insulin concentration was increased after repaglinide administration (basal vs. stimulated period, P values are placebo vs. repaglinide) (25.1 +/- 3.6 vs. 33.5 +/- 4.1 pmol/l, P < 0.001). Insulin secretory burst mass (15.8 +/- 2.2 vs. 19.6 +/- 2.8 pmol x l(-1) x pulse(-1), P = 0.02) and amplitude (6.1 +/- 0.9 vs. 7.7 +/- 1.2 pmol x l(-1) x min(-1), P = 0.008) were augmented after repaglinide administration. A concomitant trend toward an increase in basal insulin secretion was observed (2.5 +/- 0.3 vs. 3.2 +/- 0.4 pmol x l(-1) x min(-1), p = 0.06), while the interpulse interval was unaltered (6.8 +/- 1.0 vs. 5.4 +/- 0.4 min/pulse, P = 0.38). ApEn increased significantly after repaglinide administration (0.623 +/- 0.045 vs. 0.670 +/- 0.034, P = 0.04), suggesting less orderly oscillatory patterns of insulin release. In conclusion, a single dose of repaglinide amplifies insulin secretory burst mass (and basal secretion) with no change in burst frequency. The possible importance of these mechanisms in the treatment of type 2 diabetes characterized by disrupted pulsatile insulin secretion remains to be clarified.

  17. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance.

    PubMed

    Lambert, Elisabeth A; Teede, Helena; Sari, Carolina Ika; Jona, Eveline; Shorakae, Soulmaz; Woodington, Kiri; Hemmes, Robyn; Eikelis, Nina; Straznicky, Nora E; De Courten, Barbora; Dixon, John B; Schlaich, Markus P; Lambert, Gavin W

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition underpinned by insulin resistance and associated with increased risk of obesity, type 2 diabetes and adverse cardiovascular risk profile. Previous data suggest autonomic imbalance [elevated sympathetic nervous system (SNS) activity and decreased heart rate variability (HRV)] as well as endothelial dysfunction in PCOS. However, it is not clear whether these abnormalities are driven by obesity and metabolic disturbance or whether they are independently related to PCOS. We examined multiunit and single-unit muscle SNS activity (by microneurography), HRV (time and frequency domain analysis) and endothelial function [ischaemic reactive hyperaemia index (RHI) using the EndoPAT device] in 19 overweight/obese women with PCOS (BMI: 31·3 ± 1·5 kg/m(2), age: 31·3 ± 1·6 years) and compared them with 21 control overweight/obese women (BMI: 33·0 ± 1·4 kg/m(2), age: 28·2 ± 1·6 years) presenting a similar metabolic profile (fasting total, HDL and LDL cholesterol, glucose, triglycerides, insulin sensitivity and blood pressure). Women with PCOS had elevated multiunit muscle SNS activity (41 ± 2 vs 33 ± 3 bursts per 100 heartbeats, P < 0·05). Single-unit analysis showed that vasoconstrictor neurons were characterized by elevated firing rate and probability and incidence of multiple spikes (P < 0·01 for all parameters). Women with PCOS also had impaired endothelial function (RHI: 1·77 ± 0·14 vs 2·18 ± 0·14, P < 0·05). HRV did not differ between the groups. Women with PCOS have increased sympathetic drive and impaired endothelial function independent of obesity and metabolic disturbances. Sympathetic activation and endothelial dysfunction may confer greater cardiovascular risk in women with PCOS. © 2015 John Wiley & Sons Ltd.

  18. Cellular and molecular mechanism for secretory autophagy.

    PubMed

    Kimura, Tomonori; Jia, Jingyue; Claude-Taupin, Aurore; Kumar, Suresh; Choi, Seong Won; Gu, Yuexi; Mudd, Michal; Dupont, Nicolas; Jiang, Shanya; Peters, Ryan; Farzam, Farzin; Jain, Ashish; Lidke, Keith A; Adams, Christopher M; Johansen, Terje; Deretic, Vojo

    2017-06-03

    Macroautophagy/autophagy plays a role in unconventional secretion of leaderless cytosolic proteins. Whether and how secretory autophagy diverges from conventional degradative autophagy is unclear. We have shown that the prototypical secretory autophagy cargo IL1B/IL-1β (interleukin 1 β) is recognized by TRIM16, and that this first to be identified secretory autophagy receptor interacts with the R-SNARE SEC22B to jointly deliver cargo to the MAP1LC3B-II-positive sequestration membranes. Cargo secretion is unaffected by knockdowns of STX17, a SNARE catalyzing autophagosome-lysosome fusion as a prelude to cargo degradation. Instead, SEC22B in combination with plasma membrane syntaxins completes cargo secretion. Thus, secretory autophagy diverges from degradative autophagy by using specialized receptors and a dedicated SNARE machinery to bypass fusion with lysosomes.

  19. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes.

    PubMed

    Mackenzie, Richard Wa; Elliott, Bradley T

    2014-01-01

    Type 2 diabetes is a metabolic disease categorized primarily by reduced insulin sensitivity, β-cell dysfunction, and elevated hepatic glucose production. Treatments reducing hyperglycemia and the secondary complications that result from these dysfunctions are being sought after. Two distinct pathways encourage glucose transport activity in skeletal muscle, ie, the contraction-stimulated pathway reliant on Ca(2+)/5'-monophosphate-activated protein kinase (AMPK)-dependent mechanisms and an insulin-dependent pathway activated via upregulation of serine/threonine protein kinase Akt/PKB. Metformin is an established treatment for type 2 diabetes due to its ability to increase peripheral glucose uptake while reducing hepatic glucose production in an AMPK-dependent manner. Peripheral insulin action is reduced in type 2 diabetics whereas AMPK signaling remains largely intact. This paper firstly reviews AMPK and its role in glucose uptake and then focuses on a novel mechanism known to operate via an insulin-dependent pathway. Inositol hexakisphosphate (IP6) kinase 1 (IP6K1) produces a pyrophosphate group at the position of IP6 to generate a further inositol pyrophosphate, ie, diphosphoinositol pentakisphosphate (IP7). IP7 binds with Akt/PKB at its pleckstrin homology domain, preventing interaction with phosphatidylinositol 3,4,5-trisphosphate, and therefore reducing Akt/PKB membrane translocation and insulin-stimulated glucose uptake. Novel evidence suggesting a reduction in IP7 production via IP6K1 inhibition represents an exciting therapeutic avenue in the treatment of insulin resistance. Metformin-induced activation of AMPK is a key current intervention in the management of type 2 diabetes. However, this treatment does not seem to improve peripheral insulin resistance. In light of this evidence, we suggest that inhibition of IP6K1 may increase insulin sensitivity and provide a novel research direction in the treatment of insulin resistance.

  20. Secretory Structure, Histochemistry and Phytochemistry Analyses of Stimulant Plant

    NASA Astrophysics Data System (ADS)

    Umah, C.; Dorly; Sulistyaningsih, Y. C.

    2017-03-01

    Plants that are used as stimulant supposed to contains various metabolit compounds that are produced or secreted by secretory structures. This study aimed to identify the secretory structure of plant used as stimulant and chemical compounds accumulated in it. The secretory structure and its histochemistry were observed on plant material that are used as herbal ingredient. Phytochemical content was analyzed by using a qualitative test. The result showed that the idioblast cells and secretory cavities were found in the leaves of Decaspermum fruticosum, and Polyalthia rumphii. Most idioblast cells contained lipophilic substances and terpenoids or alkaloids, while secretory cavity contained alkaloid. Phytochemical analysis for D. fruticosum, and P. rumphii contain terpenoids, phenols, steroids, and flavonoids

  1. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction*

    PubMed Central

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E.; Accili, Domenico

    2016-01-01

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo. The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725

  2. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    PubMed Central

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  3. Influence of experimental hypokinesia on gastric secretory function

    NASA Technical Reports Server (NTRS)

    Markova, O. O.; Vavryshchuk, V. I.; Rozvodovskyy, V. I.; Proshcheruk, V. A.

    1980-01-01

    The gastric secretory function of rats was studied in 4, 8, 16 and 30 day hypokinesia. Inhibition of both the gastric juice secretory and acid producing functions was found. The greatest inhibition was observed on day 8 of limited mobility. By days 16 and 30 of the experiment, a tendency of the gastric secretory activity to return to normal was observed, although it remained reduced.

  4. Vasorelaxation responses to insulin in laminar vessel rings from healthy, lean horses.

    PubMed

    Wooldridge, A A; Waguespack, R W; Schwartz, D D; Venugopal, C S; Eades, S C; Beadle, R E

    2014-10-01

    Hyperinsulinemia causes laminitis experimentally and is a risk factor for naturally occurring laminitis. The aim of this study was to investigate the effects of insulin on laminar vascular relaxation and to induce insulin-associated vascular dysfunction in vitro. Relaxation responses of isolated laminar arterial and venous rings to acetylcholine and insulin were evaluated. To alter vascular function in response to insulin, all vessel rings were incubated with insulin or vehicle, submaximally contracted, administered insulin again and relaxation responses recorded. Laminar arteries were also incubated with the mitogen-activated protein kinase (MAPK) inhibitor, PD-98059. Relaxation in response to acetylcholine was not different between arteries and veins, but veins relaxed less in response to insulin than arteries. In arteries incubated with insulin, the subsequent relaxation response to insulin was blunted. Veins had minimal relaxation to insulin regardless of incubation. Arteries incubated with PD-98059 relaxed more in response to insulin than arteries not exposed to PD-98059, indicating that MAPK plays a role in maintenance of basal tone in laminar arteries. A differing response of laminar veins and arteries to insulin-induced relaxation may be important in understanding the link between hyperinsulinemia and laminitis. In vitro induction of vascular dysfunction in response to insulin in laminar arteries may be useful for testing therapeutic interventions and for understanding the pathophysiology of laminitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Insulin resistance in obesity as the underlying cause for the metabolic syndrome.

    PubMed

    Gallagher, Emily J; Leroith, Derek; Karnieli, Eddy

    2010-01-01

    The metabolic syndrome affects more than a third of the US population, predisposing to the development of type 2 diabetes and cardiovascular disease. The 2009 consensus statement from the International Diabetes Federation, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, and the National Heart, Lung, and Blood Institute defines the metabolic syndrome as 3 of the following elements: abdominal obesity, elevated blood pressure, elevated triglycerides, low high-density lipoprotein cholesterol, and hyperglycemia. Many factors contribute to this syndrome, including decreased physical activity, genetic predisposition, chronic inflammation, free fatty acids, and mitochondrial dysfunction. Insulin resistance appears to be the common link between these elements, obesity and the metabolic syndrome. In normal circumstances, insulin stimulates glucose uptake into skeletal muscle, inhibits hepatic gluconeogenesis, and decreases adipose-tissue lipolysis and hepatic production of very-low-density lipoproteins. Insulin signaling in the brain decreases appetite and prevents glucose production by the liver through neuronal signals from the hypothalamus. Insulin resistance, in contrast, leads to the release of free fatty acids from adipose tissue, increased hepatic production of very-low-density lipoproteins and decreased high-density lipoproteins. Increased production of free fatty acids, inflammatory cytokines, and adipokines and mitochondrial dysfunction contribute to impaired insulin signaling, decreased skeletal muscle glucose uptake, increased hepatic gluconeogenesis, and β cell dysfunction, leading to hyperglycemia. In addition, insulin resistance leads to the development of hypertension by impairing vasodilation induced by nitric oxide. In this review, we discuss normal insulin signaling and the mechanisms by which insulin resistance contributes to the development of the metabolic

  6. The effect of high-dose sodium salicylate on chronically elevated plasma nonesterified fatty acid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2009-11-01

    Prolonged elevation of plasma nonesterified fatty acids (NEFA) induces insulin resistance and impairs pancreatic β-cell adaptation to insulin resistance. Studies in rodents suggest that inflammation may play a role in this "lipotoxicity." We studied the effects of sodium salicylate, an anti-inflammatory agent, on lipid-induced alterations in β-cell function and insulin sensitivity in six overweight and obese nondiabetic men. Each subject underwent four separate studies, 4-6 wk apart, in random order: 1) SAL, 1-wk placebo followed by intravenous (iv) infusion of saline for 48 h; 2) IH, 1-wk placebo followed by iv infusion of intralipid plus heparin for 48 h to raise plasma NEFA approximately twofold; 3) IH + SS, 1-wk sodium salicylate (4.5 g/day) followed by 48-h IH infusion; and 4) SS, 1-wk oral sodium salicylate followed by 48-h saline infusion. After 48-h saline or lipid infusion, insulin secretion and sensitivity were assessed by hyperglycemic clamp and euglycemic hyperinsulinemic clamp, respectively, in sequential order. Insulin sensitivity was reduced by lipid infusion (IH = 67% of SAL) and was not improved by salicylate (IH + SS = 56% of SAL). Lipid infusion also reduced the disposition index (P < 0.05), which was not prevented by sodium salicylate. Salicylate reduced insulin clearance. These data suggest that oral sodium salicylate at this dose impairs insulin clearance but does not ameliorate lipid-induced insulin resistance and β-cell dysfunction in overweight and obese nondiabetic men.

  7. Central arterial stiffness and diastolic dysfunction are associated with insulin resistance and abdominal obesity in young women but polycystic ovary syndrome does not confer additional risk.

    PubMed

    Rees, E; Coulson, R; Dunstan, F; Evans, W D; Blundell, H L; Luzio, S D; Dunseath, G; Halcox, J P; Fraser, A G; Rees, D A

    2014-09-01

    Are arterial stiffness, carotid intima-media thickness and diastolic dysfunction increased in young women with polycystic ovary syndrome (PCOS) independently of the effects of obesity? Insulin resistance and central obesity are associated with subclinical cardiovascular dysfunction in young women, but a diagnosis of PCOS does not appear to confer additional risk at this age. Some studies have shown that young women with PCOS may have increased measures of cardiovascular risk, including arterial stiffness, carotid intima-media thickness and myocardial dysfunction. However, it is difficult to establish how much of this risk is due to PCOS per se and how much is due to obesity and insulin resistance, which are common in PCOS and themselves associated with greater vascular risk. This cross-sectional study comprised 84 women with PCOS and 95 healthy volunteers, aged 16-45 years. The study was conducted in a university hospital. Subjects underwent a comprehensive assessment of body composition (including computed tomography (CT) assessment of visceral fat; VF), measurements of arterial stiffness (aortic pulse wave velocity; aPWV), common carotid intima-media thickness (ccIMT), diastolic function (longitudinal tissue velocity; e':a') and endocrinological measures. A sample size of 80 in each group gave 80% power for detecting a difference of 0.45 m/s in aPWV or a difference of 0.25 in e':a'. After adjustment for age and body mass index (BMI), PCOS subjects had a greater insulin response (insulin area under the curve-IAUC) following glucose challenge (adjusted difference [AD] 35 900 pmol min/l, P < 0.001) and higher testosterone (AD 0.57 nmol/l, P < 0.001) and high molecular weight adiponectin than controls (AD 3.01 µg/ml, P = 0.02), but no significant differences in aPWV (AD -0.13 m/s, P = 0.33), ccIMT (AD -0.01 mm, P = 0.13), or e':a' (AD -0.01, P = 0.86) were observed. After adjustment for age, height and central pulse pressure, e':a' and aPWV were associated with log

  8. Lipid-induced metabolic dysfunction in skeletal muscle.

    PubMed

    Muoio, Deborah M; Koves, Timothy R

    2007-01-01

    Insulin resistance is a hallmark of type 2 diabetes and commonly observed in other energy-stressed settings such as obesity, starvation, inactivity and ageing. Dyslipidaemia and 'lipotoxicity'--tissue accumulation of lipid metabolites-are increasingly recognized as important drivers of insulin resistant states. Mounting evidence suggests that lipid-induced metabolic dysfunction in skeletal muscle is mediated in large part by stress-activated serine kinases that interfere with insulin signal transduction. However, the metabolic and molecular events that connect lipid oversupply to stress kinase activation and glucose intolerance are as yet unclear. Application of transcriptomics and targeted mass spectrometry-based metabolomics tools has led to our finding that insulin resistance is a condition in which muscle mitochondria are persistently burdened with a heavy lipid load. As a result, high rates of beta-oxidation outpace metabolic flux through the TCA cycle, leading to accumulation of incompletely oxidized acyl-carnitine intermediates. In contrast, exercise training enhances mitochondrial performance, favouring tighter coupling between beta-oxidation and the TCA cycle, and concomitantly restores insulin sensitivity in animals fed a chronic high fat diet. The exercise-activated transcriptional co-activator, PGC1alpha, plays a key role in co-ordinating metabolic flux through these two intersecting metabolic pathways, and its suppression by overfeeding may contribute to obesity-associated mitochondrial dysfunction. Our emerging model predicts that muscle insulin resistance arises from mitochondrial lipid stress and a resultant disconnect between beta-oxidation and TCA cycle activity. Understanding this 'disconnect' and its molecular basis may lead to new therapeutic targets for combating metabolic disease.

  9. Endothelium dysfunction markers in patients with diabetic retinopathy.

    PubMed

    Siemianowicz, Krzysztof; Francuz, Tomasz; Gminski, Jan; Telega, Alicja; Syzdól, Marcin

    2005-03-01

    Diabetes mellitus leads to endothelium dysfunction and an accelerated progression of atherosclerosis. Vascular complications of diabetes mellitus can affect not only large and medium arteries resulting in coronary heart disease and peripheral arteries diseases, but also small vessels leading to retinopathy and nephropathy. Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-selectin and von Willebrand factor (vWF) are considered as markers of endothelium dysfunction. The aim of our study was to evaluate plasma levels of ICAM-1, VCAM-1, E-selectin and vWF in patients with type 2 diabetes mellitus receiving insulin therapy and who had diabetic non-proliferative retinopathy, proliferative retinopathy, or did not develop diabetic retinopathy. There were no statistically significant differences between studied groups in any of evaluated endothelium dysfunction markers. There was no statistically significant correlation between measured parameters and a period of diabetic history. None of the studied markers presented a significant correlation with a period of insulin treatment.

  10. Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation.

    PubMed

    Giordano, T; Brigatti, C; Podini, P; Bonifacio, E; Meldolesi, J; Malosio, M L

    2008-06-01

    We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli. The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media. Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin +/- high glucose release of chromogranin B predominated. Weak, Ca(2+)-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca(2+) sensitivity of the specific granules. The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.

  11. Simultaneous monitoring of insulin and islet amyloid polypeptide secretion from islets of Langerhans on a microfluidic device.

    PubMed

    Lomasney, Anna R; Yi, Lian; Roper, Michael G

    2013-08-20

    A method was developed that allowed simultaneous monitoring of the acute secretory dynamics of insulin and islet amyloid polypeptide (IAPP) from islets of Langerhans using a microfluidic system with two-color detection. A flow-switching feature enabled changes in the perfusion media within 5 s, allowing rapid exchange of the glucose concentrations delivered to groups of islets. The perfusate was continuously sampled by electroosmotic flow and mixed online with Cy5-labeled insulin, fluorescein isothiocyanate (FITC)-labeled IAPP, anti-insulin, and anti-IAPP antibodies in an 8.15 cm mixing channel maintained at 37 °C. The immunoassay mixture was injected for 0.3 s onto a 1.5 cm separation channel at 11.75 s intervals and immunoassay reagents detected using 488 and 635 nm lasers with two independent photomultiplier tubes for detection of the FITC and Cy5 signal. RSD of the bound-to-free immunoassay ratios ranged from 2 to 7% with LODs of 20 nM for insulin and 1 nM for IAPP. Simultaneous secretion profiles of the two peptides were monitored from groups of 4-10 islets during multiple step changes in glucose concentration. Insulin and IAPP were secreted in an approximately 10:1 ratio and displayed similar responses to step changes from 3 to 11 or 20 mM glucose. The ability to monitor the secretory dynamics of multiple peptides from islets of Langerhans in a highly automated fashion is expected to be a useful tool for investigating hormonal regulation of glucose homeostasis.

  12. Adipokines and insulin action: A sensitive issue.

    PubMed

    Knights, Alexander J; Funnell, Alister Pw; Pearson, Richard Cm; Crossley, Merlin; Bell-Anderson, Kim S

    2014-04-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease.

  13. Increased lipolysis, diminished adipose tissue insulin sensitivity and impaired B-cell function relative to adipose tissue insulin sensitivity in obese youth with impaired glucose tolerance (IGT)

    USDA-ARS?s Scientific Manuscript database

    Despite evidence of insulin resistance and B-cell dysfunction in glucose metabolism in youth with prediabetes, the relationship between adipose tissue insulin sensitivity (ATIS) and B-cell function remains unknown. We investigated whole-body lipolysis, ATIS and B-cell function relative to ATIS [adip...

  14. Cells in 3D-reconstitutued eccrine sweat gland cell spheroids differentiate into gross cystic disease fluid protein 15-expressing dark secretory cells and carbonic anhydrase II-expressing clear secretory cells.

    PubMed

    Li, Haihong; Chen, Liyun; Zhang, Mingjun; Zhang, Bingna

    2017-07-01

    Secretory coils of eccrine sweat glands are composed of myoepithelial cells, dark secretory cells and clear secretory cells. The two types of cells play important roles in sweat secretion. In our previous study, we demonstrated that the 3D-reconstituted eccrine sweat gland cell spheroids differentiate into secretory coil-like structures. However, whether the secretory coil-like structures further differentiate into dark secretory cells and clear secretory cells were is still unknown. In this study, we detected the differentiation of clear and dark secretory cells in the 3D-reconstituted eccrine sweat gland cell spheroids using the dark secretory cell-specific marker, GCDFP-15, and clear secretory cell-specific marker, CAII by immunofluorescence staining. Results showed that there were both GCDFP-15- and CAII-expressing cells in 12-week-old 3D spheroids, similar to native eccrine sweat glands, indicating that the spheroids possess a cellular structure capable of sweat secretion. We conclude that the 12-week 3D spheroids may have secretory capability. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  16. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    PubMed Central

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  17. Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and Metabolic Syndrome.

    PubMed

    Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W

    2017-11-01

    Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.

  18. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  19. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults

  1. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    PubMed

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  2. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    PubMed

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  3. Adrenal, metabolic and cardio-renal dysfunction develops after pregnancy in rats born small or stressed by physiological measurements during pregnancy.

    PubMed

    Cheong, Jean N; Cuffe, James S M; Jefferies, Andrew J; Moritz, Karen M; Wlodek, Mary E

    2016-10-15

    Women born small are at an increased risk of developing pregnancy complications. Stress may further increase a woman's likelihood for an adverse pregnancy. Adverse pregnancy adaptations can lead to long-term diseases even after her pregnancy. The current study investigated the effects of stress during pregnancy on the long-term adrenal, metabolic and cardio-renal health of female rats that were born small. Stress programmed increased adrenal Mc2r gene expression, a higher insulin secretory response to glucose during intraperitoneal glucose tolerance test (+36%) and elevated renal creatinine clearance after pregnancy. Females that were born small had increased homeostatic model assessment-insulin resistance and elevated systolic blood pressure after pregnancy, regardless of stress exposure. These findings suggest that being born small or being stressed during pregnancy programs long-term adverse health outcomes after pregnancy. However, stress in pregnancy does not exacerbate the long-term adverse health outcomes for females that were born small. Females born small are more likely to experience complications during their pregnancy, including pregnancy-induced hypertension, pre-eclampsia and gestational diabetes. The risk of developing complications is increased by stress exposure during pregnancy. In addition, pregnancy complications may predispose the mother to diseases after pregnancy. We determined whether stress during pregnancy would exacerbate the adrenal, metabolic and cardio-renal dysfunction of growth-restricted females in later life. Late gestation bilateral uterine vessel ligation was performed in Wistar Kyoto rats to induce growth restriction. At 4 months, growth-restricted and control female offspring were mated with normal males. Those allocated to the stressed group had physiological measurements [metabolic cage, tail cuff blood pressure, intraperitoneal glucose tolerance test (IPGTT)] conducted during pregnancy whilst the unstressed groups were

  4. Adrenal, metabolic and cardio‐renal dysfunction develops after pregnancy in rats born small or stressed by physiological measurements during pregnancy

    PubMed Central

    Cheong, Jean N.; Cuffe, James S. M.; Jefferies, Andrew J.; Moritz, Karen M.

    2016-01-01

    Key points Women born small are at an increased risk of developing pregnancy complications. Stress may further increase a woman's likelihood for an adverse pregnancy.Adverse pregnancy adaptations can lead to long‐term diseases even after her pregnancy.The current study investigated the effects of stress during pregnancy on the long‐term adrenal, metabolic and cardio‐renal health of female rats that were born small.Stress programmed increased adrenal Mc2r gene expression, a higher insulin secretory response to glucose during intraperitoneal glucose tolerance test (+36%) and elevated renal creatinine clearance after pregnancy.Females that were born small had increased homeostatic model assessment‐insulin resistance and elevated systolic blood pressure after pregnancy, regardless of stress exposure.These findings suggest that being born small or being stressed during pregnancy programs long‐term adverse health outcomes after pregnancy. However, stress in pregnancy does not exacerbate the long‐term adverse health outcomes for females that were born small. Abstract Females born small are more likely to experience complications during their pregnancy, including pregnancy‐induced hypertension, pre‐eclampsia and gestational diabetes. The risk of developing complications is increased by stress exposure during pregnancy. In addition, pregnancy complications may predispose the mother to diseases after pregnancy. We determined whether stress during pregnancy would exacerbate the adrenal, metabolic and cardio‐renal dysfunction of growth‐restricted females in later life. Late gestation bilateral uterine vessel ligation was performed in Wistar Kyoto rats to induce growth restriction. At 4 months, growth‐restricted and control female offspring were mated with normal males. Those allocated to the stressed group had physiological measurements [metabolic cage, tail cuff blood pressure, intraperitoneal glucose tolerance test (IPGTT)] conducted during pregnancy

  5. BAG3 regulates formation of the SNARE complex and insulin secretion

    PubMed Central

    Iorio, V; Festa, M; Rosati, A; Hahne, M; Tiberti, C; Capunzo, M; De Laurenzi, V; Turco, M C

    2015-01-01

    Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release. PMID:25766323

  6. Gastrointestinal dysfunction in liver cirrhosis

    PubMed Central

    Kalaitzakis, Evangelos

    2014-01-01

    Patients with liver cirrhosis exhibit several features of gut dysfunction which may contribute to the development of cirrhosis complications as well as have an impact on nutritional status and health-related quality of life. Gastrointestinal symptoms are common in cirrhosis and their pathophysiology probably involves factors related to liver disease severity, psychological distress, and gut dysfunction (e.g., increased gastric sensitivity to distension and delayed gut transit). They may lead to reduced food intake and, thus, may contribute to the nutritional status deterioration in cirrhotic patients. Although tense ascites appears to have a negative impact on meal-induced accommodation of the stomach, published data on gastric accommodation in cirrhotics without significant ascites are not unanimous. Gastric emptying and small bowel transit have generally been shown to be prolonged. This may be related to disturbances in postprandial glucose, insulin, and ghrelin levels, which, in turn, appear to be associated to insulin resistance, a common finding in cirrhosis. Furthermore, small bowel manometry disturbances and delayed gut transit may be associated with the development of small bowel bacterial overgrowth. Finally, several studies have reported intestinal barrier dysfunction in patients with cirrhosis (especially those with portal hypertension), which is related to bacterial translocation and permeation of intestinal bacterial products, e.g., endotoxin and bacterial DNA, thus potentially being involved in the pathogenesis of complications of liver cirrhosis. PMID:25356031

  7. Circulating osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction.

    PubMed

    Pepene, Carmen Emanuela; Ilie, Ioana Rada; Marian, Ioan; Duncea, Ileana

    2011-01-01

    There is plenty of evidence that osteoprotegerin (OPG) is linked to subclinical vascular damage and predicts cardiovascular disease in high-risk populations. Our aim is to investigate the relationships of OPG/free soluble receptor activator of nuclear factor κB ligand (sRANKL) to insulin resistance, brachial artery flow-mediated vasodilation (FMD), and the carotid artery intima-media thickness (CIMT) in polycystic ovary syndrome (PCOS), a disorder characterized by hyperandrogenism, impaired glucose control, and endothelial injury. A cross-sectional, observational study. Hormonal and metabolic profiles, FMD, CIMT, serum OPG, and ampli-sRANKL were assessed in 64 young PCOS patients and 20 controls of similar age. Body composition was measured by dual energy X-ray absorptiometry. OPG was significantly lower in PCOS and related negatively to free testosterone and positively to estradiol (E(2)) levels. In multivariate analysis, OPG but not ampli-sRANKL correlated positively to fasting insulin, insulin sensitivity indices, and FMD. Neither OPG nor ampli-sRANKL was associated with CIMT. Significantly lower adjusted FMD values were demonstrated in women in the upper OPG quartile group (>2.65 pmol/l) compared with all other quartile groups together (P=0.012). In PCOS, multiple regression analysis retained E(2)/sex hormone-binding globulin ratio, fat mass, and homeostasis model assessment of insulin resistance as independent predictors of OPG. In PCOS, circulating OPG is related to both endothelial dysfunction and insulin resistance, independent of obesity and androgen excess, suggesting OPG as a useful biomarker of these effects. Further studies are needed to evaluate OPG in relation to cardiovascular events and cardiovascular mortality in PCOS.

  8. MicroRNA‑29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ.

    PubMed

    Wu, Peng; Wang, Qianyi; Jiang, Cuilian; Chen, Chen; Liu, Yun; Chen, Yajun; Zeng, Yu

    2018-06-01

    MicroRNA‑29a (miR‑29a) expression has been reported to be closely associated with skeletal muscle insulin resistance and type 2 diabetes. The present study investigated the effect of miR‑29a on palmitic acid (PA)‑induced lipid metabolism dysfunction and insulin resistance in C2C12 myotubes via overexpressing or silencing of miR‑29a expression. Mouse C2C12 myoblasts were cultured, differentiated and transfected with miR‑29a or miR‑29a inhibitor lentiviral with or without subsequent palmitic acid (PA) treatment. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis were performed to assess the mRNA and protein levels of related genes, respectively. PA treatment increased the expression of miR‑29a in a time‑ and dose‑ dependent manner. miR‑29a silencing improved insulin‑induced glucose uptake and increased glucose transporter‑4 (GLUT4) transportation to the plasma membrane by upregulating its target peroxisome proliferator‑activated receptor δ (PPARδ). Furthermore, it was observed that miR‑29a regulated the expression of genes associated with lipid metabolism, including pyruvate dehydrogenase kinase isoform, mitochondrial uncoupling protein (UCP)2, UCP3, long chain specific acyl‑CoA dehydrogenase, mitochondrial and fatty acid transport protein 2. The results confirmed that silencing miR‑29a induced a decrease in glucose transport and affected lipid metabolism in PA‑treated C2C12 cells, and therefore may be involved in insulin resistance by targeting PPARδ in skeletal muscle. Therefore, the inhibition of miR‑29a may be a potential novel strategy for treating insulin resistance and type 2 diabetes.

  9. CB1 Cannabinoid Receptors Couple to Focal Adhesion Kinase to Control Insulin Release*

    PubMed Central

    Malenczyk, Katarzyna; Jazurek, Magdalena; Keimpema, Erik; Silvestri, Cristoforo; Janikiewicz, Justyna; Mackie, Ken; Di Marzo, Vincenzo; Redowicz, Maria J.; Harkany, Tibor; Dobrzyn, Agnieszka

    2013-01-01

    Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes. PMID:24089517

  10. Insulin resistance and the metabolism of branched-chain amino acids in humans.

    PubMed

    Adeva, María M; Calviño, Jesús; Souto, Gema; Donapetry, Cristóbal

    2012-07-01

    Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.

  11. Early pancreatic dysfunction after resection in trauma: An 18-year report from a Level I trauma center.

    PubMed

    Mansfield, Nicole; Inaba, Kenji; Berg, Regan; Beale, Elizabeth; Benjamin, Elizabeth; Lam, Lydia; Matsushima, Kazuhide; Demetriades, Demetrios

    2017-03-01

    Early pancreatic dysfunction after resection in trauma has not been well characterized. The objective of this study was to examine the incidence and clinical impact of new-onset endocrine and exocrine dysfunction after pancreatic resection for trauma. All patients sustaining a pancreatic injury from 1996 to 2013 were identified. Patients with preinjury diabetes were excluded. Survivors were divided into three groups according to the extent of anatomic resection-distal, proximal, or total pancreatectomy. Clinical demographics and outcome data were abstracted. Blood glucose levels, hemoglobin A1c, and insulin requirements were used to assess endocrine pancreatic function. Reported steatorrhea, diarrhea, or supplemental pancreatic enzyme requirements were used to assess exocrine pancreatic function. During the study period, 331 pancreatic injuries were identified, of which 109 (33%) required resection and 84 survived to hospital discharge. Four were excluded. Of 80 cases analyzed, 73 (91%) underwent distal pancreatectomy, 7 (9%) proximal pancreatectomy, and none a total pancreatectomy. The distal resection group was predominantly male (88%), median age 24 years, and mean BMI 27 (kg/m). Thirty-eight (52%) required insulin postoperatively, with the greatest proportion (47%) requiring insulin for ≤1 day; no patients were discharged on insulin. The proximal resection group was predominantly male (86%), median age 31 years, and mean BMI 32 (kg/m). Six of seven required insulin postoperatively and two of seven were insulin dependent at time of hospital discharge. For both distal and proximal resections, none had evidence of exocrine dysfunction or received pancreatic enzyme supplementation at discharge. Exocrine dysfunction after distal or proximal pancreatectomy for trauma is rare. The incidence of early onset endocrine dysfunction after traumatic distal pancreatectomy is also rare; however, it can be seen after proximal resection. Therapeutic study, level IV.

  12. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. ROLE OF CENTRAL NERVOUS SYSTEM INSULIN RESISTANCE IN FETAL ALCOHOL SPECTRUM DISORDERS

    PubMed Central

    de la Monte, Suzanne M; Wands, Jack R

    2011-01-01

    Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms: 1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the insulin receptor (IR) level and caused by both impaired receptor binding and increased activation of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired. The neurotoxicant effects of ethanol promote DNA damage, which could contribute to mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR) agonists which enhance insulin sensitivity by increasing expression and function of insulin-responsive genes, and reducing cellular oxidative stress. PMID:21063035

  14. Diabetes and sexual dysfunction: current perspectives

    PubMed Central

    Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine

    2014-01-01

    Diabetes mellitus is one of the most common chronic diseases in nearly all countries. It has been associated with sexual dysfunction, both in males and in females. Diabetes is an established risk factor for sexual dysfunction in men, as a threefold increased risk of erectile dysfunction was documented in diabetic men, as compared with nondiabetic men. Among women, evidence regarding the association between diabetes and sexual dysfunction are less conclusive, although most studies have reported a higher prevalence of female sexual dysfunction in diabetic women as compared with nondiabetic women. Female sexual function appears to be more related to social and psychological components than to the physiological consequence of diabetes. Hyperglycemia, which is a main determinant of vascular and microvascular diabetic complications, may participate in the pathogenetic mechanisms of sexual dysfunction in diabetes. Moreover, diabetic people may present several clinical conditions, including hypertension, overweight and obesity, metabolic syndrome, cigarette smoking, and atherogenic dyslipidemia, which are themselves risk factors for sexual dysfunction, both in men and in women. The adoption of healthy lifestyles may reduce insulin resistance, endothelial dysfunction, and oxidative stress – all of which are desirable achievements in diabetic patients. Improved well-being may further contribute to reduce and prevent sexual dysfunction in both sexes. PMID:24623985

  15. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  16. Insulin resistance adds to endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension.

    PubMed

    Zizek, B; Poredos, P

    2001-02-01

    To evaluate whether endothelium-dependent (nitric oxide-mediated) dilation of the brachial artery (BA) is impaired in patients being treated for essential hypertension (EH), and whether this abnormality can be detected in normotensive offspring of subjects with EH (familial trait, FT); and to investigate the interrelationship between flow-mediated vasodilation (FMD) and hyperinsulinaemia/insulin resistance. Cross-sectional study. Angiology department at a teaching hospital. The study encompassed 172 subjects, of whom 46 were treated hypertonics aged 40-55 (49) years, and 44 age-matched, normotensive volunteers as controls. We also investigated 41 normotonics with FT aged 20-30 (25) years and 41 age-and sex-matched controls without FT. Using high-resolution ultrasound, BA diameters at rest, during reactive hyperaemia (endothelium-dependent dilation) and after sublingual glyceryl trinitrate (GTN) application (endothelium-independent dilation) were measured. In hypertonics FMD was significantly lower than in controls [2.4 (2.9) vs. 7.4 (2.5)%; P < 0.00005], as was GTN-induced dilation [12.1 (4.3) vs. 16.1 (4.6)%; P=0.0007]. In subjects with FT, FMD was also decreased compared with the control group [5.8 (4.1) vs. 10.0 (3.0)%; P < 0.00005]. The response to GTN was comparable in both groups of young subjects. FMD was negatively related to insulin concentration in all subjects studied (P < 0.00005). In treated patients with EH, flow-mediated dilation of the BA as well as endothelium-independent dilation are decreased. In individuals with FT the endothelial function of the peripheral arteries is also altered in the absence of elevated blood pressure. Endothelial dysfunction is related to hyperinsulinaemia/insulin resistance, which could be one of the pathogenetic determinants of EH and its complications.

  17. Secretory structure and histochemistry test of some Zingiberaceae plants

    NASA Astrophysics Data System (ADS)

    Indriyani, Serafinah

    2017-11-01

    A secretory structure is a structure that produces a plant's metabolite substances. Secretory structures are grouped into an internal and external. Zingiberaceae plants are known as traditional medicine plants and as spice plants due to secretory structures in their tissues. The objective of the research were to describe the secretory structure of Zingiberaceae plants and to discover the qualitatively primary metabolite substances in plant's tissues via histochemistry test. The research was conducted by observation descriptive design, quantitative data including the density of secretory cells per mm². The quantitative data were analyzed by ANOVA and continued by Duncan at α = 5 %. The results showed that the secretory structures in leaves, rhizome, and the root of 14 species of Zingiberaceae plants are found in the mesophyll of leaves and cortex, and also pith in rhizome and roots. The type of secretory structure is internal. Within the root of Zingiber cassumunar Roxb.(bengle), Curcuma domestica Val. (kunyit), Curcuma zedoaria (Berg.) Roscoe (kunyit putih), Zingiber zerumbet (L.) J.E. Smith (lempuyang), Alpiniapurpurata K. Schum (lengkuas merah), and Curcuma aeruginosa Val. (temu ireng) were found amylum grains, while in Kaemferia galanga L. (kencur), Boesen bergiapandurata L. (temu kunci), and Curcuma xanthorrhiza Roxb. (temulawak) there were no amylum grains in the root as well as in the leaves. The roots of bengle had the greatest density of amylum grain, it had 248.1 ± 9.8 secretory cells of amylum grains per mm². Lipids (oil droplets) were found in the root of bengle, Zingiber officinale Roxb. Var. emprit (jahe emprit), Zingiber officinale Roxb. Var. Gajah (jahe gajah), Zingiber officinale Roxb. Var. Rubrum (jahe merah), Keampferia angustifolia L. (kunci pepet), kunyit, kunyit putih, lempuyang, lengkua smerah, Curcuma aeruginosa Val. (temu ireng), and Curcuma mangga Val. and van Zijp (temu mangga); the root of lempuyang had the greatest density of oil

  18. Mechanisms of insulin resistance in obesity

    PubMed Central

    Ye, Jianping

    2014-01-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy. PMID:23471659

  19. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    PubMed Central

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  20. Central insulin and leptin-mediated autonomic control of glucose homeostasis

    PubMed Central

    Marino, Joseph S.; Xu, Yong; Hill, Jennifer W.

    2016-01-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. PMID:21489811

  1. Sorting of the Neuroendocrine Secretory Protein Secretogranin II into the Regulated Secretory Pathway

    PubMed Central

    Courel, Maïté; Vasquez, Michael S.; Hook, Vivian Y.; Mahata, Sushil K.; Taupenot, Laurent

    2008-01-01

    Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative α-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane. PMID:18299326

  2. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    PubMed Central

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na+/K+-ATPase activity and basolateral K+ channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg−1) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  3. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  4. Distribution Profile of Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channels in α and β Cells of Pancreas: Dominant Localization in Secretory Granules and Common Error in Identification of Secretory Granule Membranes.

    PubMed

    Hur, Yong Suk; Yoo, Seung Hyun

    2015-01-01

    The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.

  5. Secretory glands and microvascular systems imaged in aqueous solution by atmospheric scanning electron microscopy (ASEM).

    PubMed

    Yamazawa, Toshiko; Nakamura, Naotoshi; Sato, Mari; Sato, Chikara

    2016-12-01

    Exocrine glands, e.g., salivary and pancreatic glands, play an important role in digestive enzyme secretion, while endocrine glands, e.g., pancreatic islets, secrete hormones that regulate blood glucose levels. The dysfunction of these secretory organs immediately leads to various diseases, such as diabetes or Sjögren's syndrome, by poorly understood mechanisms. Gland-related diseases have been studied by optical microscopy (OM), and at higher resolution by transmission electron microscopy (TEM) of Epon embedded samples, which necessitates hydrophobic sample pretreatment. Here, we report the direct observation of tissue in aqueous solution by atmospheric scanning electron microscopy (ASEM). Salivary glands, lacrimal glands, and pancreas were fixed, sectioned into slabs, stained with phosphotungstic acid (PTA), and inspected in radical scavenger d-glucose solution from below by an inverted scanning electron microscopy (SEM), guided by optical microscopy from above to target the tissue substructures. A 2- to 3-µm specimen thickness was visualized by the SEM. In secretory cells, cytoplasmic vesicles and other organelles were clearly imaged at high resolution, and the former could be classified according to the degree of PTA staining. In islets of Langerhans, the microvascular system used as an outlet by the secretory cells was also clearly observed. Microvascular system is also critically involved in the onset of diabetic complications and was clearly visible in subcutaneous tissue imaged by ASEM. The results suggest the use of in-solution ASEM for histology and to study vesicle secretion systems. Further, the high-throughput of ASEM makes it a potential tool for the diagnosis of exocrine and endocrine-related diseases. © 2016 Wiley Periodicals, Inc.

  6. Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells as a Potential Novel Treatment for Type 2 Diabetes.

    PubMed

    Suarez Castellanos, Ivan; Jeremic, Aleksandar; Cohen, Joshua; Zderic, Vesna

    2017-06-01

    Type 2 diabetes mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. This disease is characterized by loss of insulin secretion and, eventually, destruction of insulin-producing pancreatic beta cells. Controlling type 2 diabetes is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this study was to explore the effectiveness of a novel, non-pharmacological approach that uses the application of ultrasound energy to augment insulin release from rat INS 832/13 beta cells. The cells were exposed to unfocused ultrasound for 5 min at a peak intensity of 1 W/cm 2 and frequencies of 400 kHz, 600 kHz, 800 kHz and 1 MHz. Insulin release was measured with enzyme-linked immunosorbent assay and cell viability was assessed via the trypan blue dye exclusion test. A marked release (approximately 150 ng/10 6  cells, p < 0.05) of insulin was observed when beta cells were exposed to ultrasound at 400 and 600 kHz as compared with their initial control values; however, this release was accompanied by a substantial loss in cell viability. Ultrasound application at frequencies of 800 kHz resulted in 24 ng/10 6  cells released insulin (p < 0.05) as compared with its unstimulated base level, while retaining cell viability. Insulin release from beta cells caused by application of 800-kHz ultrasound was comparable to that reported by the secretagogue glucose, thus operating within physiological secretory capacity of these cells. Ultrasound has potential as a novel and alternative method to current approaches aimed at correcting secretory deficiencies in patients with type 2 diabetes. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Intranasal insulin treatment of an experimental model of moderate traumatic brain injury.

    PubMed

    Brabazon, Fiona; Wilson, Colin M; Jaiswal, Shalini; Reed, John; Frey, William H; Byrnes, Kimberly R

    2017-09-01

    Traumatic brain injury (TBI) results in learning and memory dysfunction. Cognitive deficits result from cellular and metabolic dysfunction after injury, including decreased cerebral glucose uptake and inflammation. This study assessed the ability of intranasal insulin to increase cerebral glucose uptake after injury, reduce lesion volume, improve memory and learning function and reduce inflammation. Adult male rats received a controlled cortical impact (CCI) injury followed by intranasal insulin or saline treatment daily for 14 days. PET imaging of [18F]-FDG uptake was performed at baseline and at 48 h and 10 days post-injury and MRI on days three and nine post injury. Motor function was tested with the beam walking test. Memory function was assessed with Morris water maze. Intranasal insulin after CCI significantly improved several outcomes compared to saline. Insulin-treated animals performed better on beam walk and demonstrated significantly improved memory. A significant increase in [18F]-FDG uptake was observed in the hippocampus. Intranasal insulin also resulted in a significant decrease in hippocampus lesion volume and significantly less microglial immunolabeling in the hippocampus. These data show that intranasal insulin improves memory, increases cerebral glucose uptake and decreases neuroinflammation and hippocampal lesion volume, and may therefore be a viable therapy for TBI.

  8. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance.

    PubMed

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol; Kim, Sung-Hoon

    2013-05-01

    The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance.

  9. Mechanisms linking brain insulin resistance to Alzheimer's disease

    PubMed Central

    Matioli, Maria Niures P.S.; Nitrini, Ricardo

    2015-01-01

    Several studies have indicated that Diabetes Mellitus (DM) can increase the risk of developing Alzheimer's disease (AD). This review briefly describes current concepts in mechanisms linking DM and insulin resistance/deficiency to AD. Insulin/insulin-like growth factor (IGF) resistance can contribute to neurodegeneration by several mechanisms which involve: energy and metabolism deficits, impairment of Glucose transporter-4 function, oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, accumulation of AGEs, ROS and RNS with increased production of neuro-inflammation and activation of pro-apoptosis cascade. Impairment in insulin receptor function and increased expression and activation of insulin-degrading enzyme (IDE) have also been described. These processes compromise neuronal and glial function, with a reduction in neurotransmitter homeostasis. Insulin/IGF resistance causes the accumulation of AβPP-Aβ oligomeric fibrils or insoluble larger aggregated fibrils in the form of plaques that are neurotoxic. Additionally, there is production and accumulation of hyper-phosphorylated insoluble fibrillar tau which can exacerbate cytoskeletal collapse and synaptic disconnection. PMID:29213950

  10. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat

    PubMed Central

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-01-01

    Background & objectives: Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Methods: Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Results: Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. Interpretation & conclusions: High

  11. Curcuma oil ameliorates insulin resistance & associated thrombotic complications in hamster & rat.

    PubMed

    Singh, Vishal; Jain, Manish; Misra, Ankita; Khanna, Vivek; Prakash, Prem; Malasoni, Richa; Dwivedi, Anil Kumar; Dikshit, Madhu; Barthwal, Manoj Kumar

    2015-06-01

    Curcuma oil (C. oil) isolated from turmeric (Curcuma longa L.) has been shown to have neuro-protective, anti-cancer, antioxidant and anti-hyperlipidaemic effects in experimental animal models. However, its effect in insulin resistant animals remains unclear. The present study was carried out to investigate the disease modifying potential and underlying mechanisms of the C. oil in animal models of diet induced insulin resistance and associated thrombotic complications. Male Golden Syrian hamsters on high fructose diet (HFr) for 12 wk were treated orally with vehicle, fenofibrate (30 mg/kg) or C. oil (300 mg/kg) in the last four weeks. Wistar rats fed HFr for 12 wk were treated orally with C. oil (300 mg/kg) in the last two weeks. To examine the protective effect of C. oil, blood glucose, serum insulin, platelet aggregation, thrombosis and inflammatory markers were assessed in these animals. Animals fed with HFr diet for 12 wk demonstrated hyperlipidaemia, hyperglycaemia, hyperinsulinaemia, alteration in insulin sensitivity indices, increased lipid peroxidation, inflammation, endothelial dysfunction, platelet free radical generation, tyrosine phosphorylation, aggregation, adhesion and intravascular thrombosis. Curcuma oil treatment for the last four weeks in hamsters ameliorated HFr-induced hyperlipidaemia, hyperglycaemia, insulin resistance, oxidative stress, inflammation, endothelial dysfunction, platelet activation, and thrombosis. In HFr fed hamsters, the effect of C. oil at 300 mg/kg [ ] was comparable with the standard drug fenofibrate. Curcuma oil treatment in the last two weeks in rats ameliorated HFr-induced hyperglycaemia and hyperinsulinaemia by modulating hepatic expression of sterol regulatory element binding protein 1c (SREBP-1c), peroxisome proliferator-activated receptor-gamma co-activator 1 (PGC-1)α and PGC-1β genes known to be involved in lipid and glucose metabolism. High fructose feeding to rats and hamsters led to the development of insulin

  12. Prokineticin Receptor‐1 Is a New Regulator of Endothelial Insulin Uptake and Capillary Formation to Control Insulin Sensitivity and Cardiovascular and Kidney Functions

    PubMed Central

    Dormishian, Mojdeh; Turkeri, Gulen; Urayama, Kyoji; Nguyen, Thu Lan; Boulberdaa, Mounia; Messaddeq, Nadia; Renault, Gilles; Henrion, Daniel; Nebigil, Canan G.

    2013-01-01

    Background Reciprocal relationships between endothelial dysfunction and insulin resistance result in a vicious cycle of cardiovascular, renal, and metabolic disorders. The mechanisms underlying these impairments are unclear. The peptide hormones prokineticins exert their angiogenic function via prokineticin receptor‐1 (PKR1). We explored the extent to which endothelial PKR1 contributes to expansion of capillary network and the transcapillary passage of insulin into the heart, kidney, and adipose tissues, regulating organ functions and metabolism in a specific mice model. Methods and Results By combining cellular studies and studies in endothelium‐specific loss‐of‐function mouse model (ec‐PKR1−/−), we showed that a genetically induced PKR1 loss in the endothelial cells causes the impaired capillary formation and transendothelial insulin delivery, leading to insulin resistance and cardiovascular and renal disorders. Impaired insulin delivery in endothelial cells accompanied with defective expression and activation of endothelial nitric oxide synthase in the ec‐PKR1−/− aorta, consequently diminishing endothelium‐dependent relaxation. Despite having a lean body phenotype, ec‐PKR1−/− mice exhibited polyphagia, polydipsia, polyurinemia, and hyperinsulinemia, which are reminiscent of human lipodystrophy. High plasma free fatty acid levels and low leptin levels further contribute to the development of insulin resistance at the later age. Peripheral insulin resistance and ectopic lipid accumulation in mutant skeletal muscle, heart, and kidneys were accompanied by impaired insulin‐mediated Akt signaling in these organs. The ec‐PKR1−/− mice displayed myocardial fibrosis, low levels of capillary formation, and high rates of apoptosis, leading to diastolic dysfunction. Compact fibrotic glomeruli and high levels of phosphate excretion were found in mutant kidneys. PKR1 restoration in ec‐PKR1−/− mice reversed the decrease in capillary

  13. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus

    PubMed Central

    Gerber, Philipp A.

    2017-01-01

    Abstract Significance: Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Critical Issues: Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene–environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Future Directions: Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501–518. PMID:27225690

  14. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  15. Central insulin and leptin-mediated autonomic control of glucose homeostasis.

    PubMed

    Marino, Joseph S; Xu, Yong; Hill, Jennifer W

    2011-07-01

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucose and insulin responsiveness. The preponderance of evidence indicates that the brain is the master regulator of glucose homeostasis, and that hypothalamic insulin and leptin signaling in particular play a crucial role in the development of insulin resistance. This review discusses the neuronal crosstalk between the hypothalamus, autonomic nervous system, and tissues associated with the pathogenesis of type 2 diabetes, and how hypothalamic insulin and leptin signaling are integral to maintaining normal glucose homeostasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Mitochondrial dysfunction and insulin resistance from the outside in: extracellular matrix, the cytoskeleton, and mitochondria

    PubMed Central

    Coletta, Dawn K.

    2011-01-01

    Insulin resistance in skeletal muscle is a prominent feature of obesity and type 2 diabetes. The association between mitochondrial changes and insulin resistance is well known. More recently, there is growing evidence of a relationship between inflammation, extracellular remodeling, and insulin resistance. The intent of this review is to propose a potentially novel mechanism for the development of insulin resistance, focusing on the underappreciated connections among inflammation, extracellular remodeling, cytoskeletal interactions, mitochondrial function, and insulin resistance in human skeletal muscle. Several sources of inflammation, including expansion of adipose tissue resulting in increased lipolysis and alterations in pro- and anti-inflammatory cytokines, contribute to the insulin resistance observed in obesity and type 2 diabetes. In the experimental model of lipid oversupply, an inflammatory response in skeletal muscle leads to altered expression extracellular matrix-related genes as well as nuclear encoded mitochondrial genes. A similar pattern also is observed in “naturally” occurring insulin resistance in muscle of obese nondiabetic individuals and patients with type 2 diabetes mellitus. More recently, alterations in proteins (including α-actinin-2, desmin, proteasomes, and chaperones) involved in muscle structure and function have been observed in insulin-resistant muscle. Some of these cytoskeletal proteins are mechanosignal transducers that allow muscle fibers to sense contractile activity and respond appropriately. The ensuing alterations in expression of genes coding for mitochondrial proteins and cytoskeletal proteins may contribute to the mitochondrial changes observed in insulin-resistant muscle. These changes in turn may lead to a reduction in fat oxidation and an increase in intramyocellular lipid, which contributes to the defects in insulin signaling in insulin resistance. PMID:21862724

  17. The use of lectins as markers for differentiated secretory cells in planarians.

    PubMed

    Zayas, Ricardo M; Cebrià, Francesc; Guo, Tingxia; Feng, Junjie; Newmark, Phillip A

    2010-11-01

    Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues. © 2010 Wiley-Liss, Inc.

  18. Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance

    PubMed Central

    Yang, Sae Jeong; Kim, Tae Nyun; Baik, Sei Hyun; Kim, Tae Sun; Lee, Kwan Woo; Nam, Moonsuk; Park, Yong Soo; Woo, Jeong-Teak; Kim, Young Seol

    2013-01-01

    Background/Aims The aim was to compare the insulin sensitivity and secretion index of pregnant Korean women with normal glucose tolerance (NGT), gestational impaired glucose tolerance (GIGT; only one abnormal value according to the Carpenter and Coustan criteria), and gestational diabetes mellitus (GDM). Methods A cross-sectional study was performed with 1,163 pregnant women with positive (1-hour plasma glucose ≥ 7.2 mmol/L) in a 50-g oral glucose challenge test (OGCT). The 100-g oral glucose tolerance test (OGTT) was used to stratify the participants into three groups: NGT (n = 588), GIGT (n = 294), and GDM (n = 281). Results The GDM group had higher homeostasis model assessment of insulin resistance and lower insulin sensitivity index (ISOGTT), quantitative insulin sensitivity check index, homeostasis model assessment for estimation of index β-cell secretion (HOMA-B), first and second phase insulin secretion, and insulin secretion-sensitivity index (ISSI) than the NGT group (p ≤ 0.001 for all). Moreover, the GIGT group had lower ISOGTT, HOMA-B, first and second phase insulin secretion, and ISSI than the NGT group (p < 0.001 for all). Among the GIGT subjects, the 1-hour plasma glucose abnormal levels group showed significantly greater weight gain during pregnancy and higher values in the 50-g OGCT than the other two groups. Moreover, the 1-hour and 2-hour abnormal levels groups had poorer insulin secretion status than the 3-hour abnormal levels group. Conclusions Korean women with GDM show impairments of both insulin secretion and insulin sensitivity. In addition, GIGT is associated with both β-cell dysfunction and insulin resistance. PMID:23682224

  19. How does brain insulin resistance develop in Alzheimer's disease?

    PubMed

    De Felice, Fernanda G; Lourenco, Mychael V; Ferreira, Sergio T

    2014-02-01

    Compelling preclinical and clinical evidence supports a pathophysiological connection between Alzheimer's disease (AD) and diabetes. Altered metabolism, inflammation, and insulin resistance are key pathological features of both diseases. For many years, it was generally considered that the brain was insensitive to insulin, but it is now accepted that this hormone has central neuromodulatory functions, including roles in learning and memory, that are impaired in AD. However, until recently, the molecular mechanisms accounting for brain insulin resistance in AD have remained elusive. Here, we review recent evidence that sheds light on how brain insulin dysfunction is initiated at a molecular level and why abnormal insulin signaling culminates in synaptic failure and memory decline. We also discuss the cellular basis underlying the beneficial effects of stimulation of brain insulin signaling on cognition. Discoveries summarized here provide pathophysiological background for identification of novel molecular targets and for development of alternative therapeutic approaches in AD. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  20. Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK.

    PubMed

    Ge, Wei; Li, Qun; Turdi, Subat; Wang, Xiao-Ming; Ren, Jun

    2011-08-01

    Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy. © 2011 The

  1. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    PubMed

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.

  2. Kir6.2 Variant E23K Increases ATP-Sensitive K+ Channel Activity and Is Associated With Impaired Insulin Release and Enhanced Insulin Sensitivity in Adults With Normal Glucose Tolerance

    PubMed Central

    Villareal, Dennis T.; Koster, Joseph C.; Robertson, Heather; Akrouh, Alejandro; Miyake, Kazuaki; Bell, Graeme I.; Patterson, Bruce W.; Nichols, Colin G.; Polonsky, Kenneth S.

    2009-01-01

    OBJECTIVE The E23K variant in the Kir6.2 subunit of the ATP-sensitive K+ channel (KATP channel) is associated with increased risk of type 2 diabetes. The present study was undertaken to increase our understanding of the mechanisms responsible. To avoid confounding effects of hyperglycemia, insulin secretion and action were studied in subjects with the variant who had normal glucose tolerance. RESEARCH DESIGN AND METHODS Nine subjects with the E23K genotype K/K and nine matched subjects with the E/E genotype underwent 5-h oral glucose tolerance tests (OGTTs), graded glucose infusion, and hyperinsulinemic-euglycemic clamp with stable-isotope–labeled tracer infusions to assess insulin secretion, action, and clearance. A total of 461 volunteers consecutively genotyped for the E23K variant also underwent OGTTs. Functional studies of the wild-type and E23K variant potassium channels were conducted. RESULTS Insulin secretory responses to oral and intravenous glucose were reduced by ∼40% in glucose-tolerant subjects homozygous for E23K. Normal glucose tolerance with reduced insulin secretion suggests a change in insulin sensitivity. The hyperinsulinemic-euglycemic clamp revealed that hepatic insulin sensitivity is ∼40% greater in subjects with the E23K variant, and these subjects demonstrate increased insulin sensitivity after oral glucose. The reconstituted E23K channels confirm reduced sensitivity to inhibitory ATP and increase in open probability, a direct molecular explanation for reduced insulin secretion. CONCLUSIONS The E23K variant leads to overactivity of the KATP channel, resulting in reduced insulin secretion. Initially, insulin sensitivity is enhanced, thereby maintaining normal glucose tolerance. Presumably, over time, as insulin secretion falls further or insulin resistance develops, glucose levels rise resulting in type 2 diabetes. PMID:19491206

  3. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?

    PubMed

    Dayeh, Tasnim; Ling, Charlotte

    2015-10-01

    β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.

  4. Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca(2+) Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity.

    PubMed

    Iwasaki, Yusaku; Shimomura, Kenju; Kohno, Daisuke; Dezaki, Katsuya; Ayush, Enkh-Amar; Nakabayashi, Hajime; Kubota, Naoto; Kadowaki, Takashi; Kakei, Masafumi; Nakata, Masanori; Yada, Toshihiko

    2013-01-01

    Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas

  5. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    PubMed

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  6. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    PubMed

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  7. Treating the dysfunctional placenta

    PubMed Central

    2017-01-01

    Placental dysfunction underlies major obstetric diseases such as pre-eclampsia and fetal growth restriction (FGR). Whilst there has been a little progress in prophylaxis, there are still no treatments for placental dysfunction in normal obstetric practice. However, a combination of increasingly well-described in vitro systems for studying the human placenta, together with the availability of more appropriate animal models of pre-eclampsia and FGR, has facilitated a recent surge in work aimed at repurposing drugs and therapies, developed for other conditions, as treatments for placental dysfunction. This review: (1) highlights potential candidate drug targets in the placenta – effectors of improved uteroplacental blood flow, anti-oxidants, heme oxygenase induction, inhibition of HIF, induction of cholesterol synthesis pathways, increasing insulin-like growth factor II availability; (2) proposes an experimental pathway for taking a potential drug or treatment for placental dysfunction from concept through to early phase clinical trials, utilizing techniques for studying the human placenta in vitro and small animal models, particularly the mouse, for in vivo studies; (3) describes the data underpinning sildenafil citrate and adenovirus expressing vascular endothelial growth as potential treatments for placental dysfunction and summarizes recent research on other potential treatments. The importance of sharing information from such studies even when no effect is found, or there is an adverse outcome, is highlighted. Finally, the use of adenoviral vectors or nanoparticle carriers coated with homing peptides to selectively target drugs to the placenta is highlighted: such delivery systems could improve efficacy and reduce the side effects of treating the dysfunctional placenta. PMID:28483805

  8. Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors.

    PubMed

    Hill, James R; Coll, Rebecca C; Sue, Nancy; Reid, Janet C; Dou, Jennifer; Holley, Caroline L; Pelingon, Ruby; Dickinson, Joshua B; Biden, Trevor J; Schroder, Kate; Cooper, Matthew A; Robertson, Avril A B

    2017-09-07

    Insulin-secretory sulfonylureas are widely used, cost-effective treatments for type 2 diabetes (T2D). However, pancreatic β-cells are continually depleted as T2D progresses, thereby rendering the sulfonylurea drug class ineffective in controlling glycaemia. Dysregulation of the innate immune system via activation of the NLRP3 inflammasome, and the consequent production of interleukin-1β, has been linked to pancreatic β-cell death and multiple inflammatory complications of T2D disease. One proposed strategy for treating T2D is the use of sulfonylurea insulin secretagogues that are also NLRP3 inhibitors. We report the synthesis and biological evaluation of nine sulfonylureas that inhibit NLRP3 activation in murine bone-marrow- derived macrophages in a potent, dose-dependent manner. Six of these compounds inhibited NLRP3 at nanomolar concentrations and can also stimulate insulin secretion from a murine pancreatic cell line (MIN6). These novel compounds possess unprecedented dual modes of action, paving the way for a new generation of sulfonylureas that may be useful as therapeutic candidates and/or tool compounds in T2D and its associated inflammatory complications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Control systems and coordination protocols of the secretory pathway.

    PubMed

    Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge

    2014-01-01

    Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.

  10. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses

    PubMed Central

    Bent, Eric H.; Gilbert, Luke A.; Hemann, Michael T.

    2016-01-01

    Cancer therapy targets malignant cells that are surrounded by a diverse complement of nonmalignant stromal cells. Therapy-induced damage of normal cells can alter the tumor microenvironment, causing cellular senescence and activating cancer-promoting inflammation. However, how these damage responses are regulated (both induced and resolved) to preserve tissue homeostasis and prevent chronic inflammation is poorly understood. Here, we detail an acute chemotherapy-induced secretory response that is self-limiting in vitro and in vivo despite the induction of cellular senescence. We used tissue-specific knockout mice to demonstrate that endothelial production of the proinflammatory cytokine IL-6 promotes chemoresistance and show that the chemotherapeutic doxorubicin induces acute IL-6 release through reactive oxygen species-mediated p38 activation in vitro. Doxorubicin causes endothelial senescence but, surprisingly, without a typical senescence secretory response. We found that endothelial cells repress senescence-associated inflammation through the down-regulation of PI3K/AKT/mTOR signaling and that reactivation of this pathway restores senescence-associated inflammation. Thus, we describe a mechanism by which damage-associated paracrine secretory responses are restrained to preserve tissue homeostasis and prevent chronic inflammation. PMID:27566778

  11. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    PubMed

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  12. Falling insulin requirements are associated with adverse obstetric outcomes in women with preexisting diabetes.

    PubMed

    Padmanabhan, Suja; McLean, Mark; Cheung, N Wah

    2014-10-01

    To investigate the clinical significance of falling insulin requirements in women with preexisting or overt diabetes in pregnancy. A retrospective review of 139 pregnancies was conducted in women, with preexisting diabetes, delivering between January 2010 and January 2013. Women with falling insulin requirements of 15% or more from the peak total daily dose in late pregnancy were considered case subjects (n = 35). The primary outcome consisted of a composite of clinical markers of placental dysfunction, including preeclampsia, small for gestational age (SGA, ≤5th percentile for gestational age), stillbirth (>20 weeks), and premature delivery (≤30 weeks). A total of 25.2% of women had >15% fall in insulin requirements with nulliparity as the only predictor at baseline (odds ratio [OR] 2.5 [95% CI 1.1-5.7], P = 0.03). Falling insulin requirements were associated with an increased risk of preeclampsia (OR 3.5 [1.1-10.7], P < 0.05) and the composite of clinical markers of placental dysfunction (4.4 [1.73-11.26], P = 0.002). Although falling insulin requirements were associated with higher rates of SGA (3.4 [1.0-11.3], P = 0.048), they were not associated with other adverse neonatal outcomes. However, there was a higher incidence of neonatal intensive care unit admission (15.5 [3.1-77.6], P = 0.001) and earlier delivery in this group (median 37.7 weeks [IQR 34.3-38.4] vs. 38.3 weeks [37.4-38.9], P = 0.014). Falling insulin requirements, in women with preexisting diabetes, are associated with an increased risk of complications related to placental dysfunction. Further prospective studies are needed to guide clinical management. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Localization of DNA and RNA in eosinophil secretory granules.

    PubMed

    Behzad, Ali R; Walker, David C; Abraham, Thomas; McDonough, John; Mahmudi-Azer, Salahadin; Chu, Fanny; Shaheen, Furquan; Hogg, James C; Paré, Peter D

    2010-01-01

    Although the accepted paradigm is that the proteins stored in eosinophil crystalloid granules are translated from messenger RNA transcribed in the cell nucleus, recent ultrastructural evidence suggests that protein synthesis may also take place within eosinophilic granules. We used 2 different methods to detect the presence of DNA and RNA in eosinophil secretory granules. Using bromodeoxyuridine, a thymidine analogue, and bromouridine, a uracil analogue, we labeled the DNA and RNA in eosinophils in vivo in rabbits. Immunoelectron microscopy to localize these molecules was performed on ultrathin sections of blood and bone marrow eosinophils using monoclonal anti-bromodeoxyuridine antibody with IgG as a control. The immunogold grain density was measured in each subcellular compartment within the eosinophils and analyzed using image analysis software. A combination of DNA/CD63 immunofluorescence staining and a fluorescently labeled molecular probe that stains RNA was used to examine the presence of DNA and RNA in the secretory granules of human blood eosinophils. The mean density of bromodeoxyuridine-labeled DNA and bromouridine-labeled RNA immunogold grains in the secretory granules of blood and bone marrow eosinophils were significantly higher (p < 0.0005) than cytoplasmic or background staining. We also demonstrated the existence of DNA and RNA in the CD63-positive secretory granules of human peripheral blood eosinophils by means of immunofluorescent staining and a fluorescently labeled molecular probe. These results provide evidence that eosinophil granules are the site of DNA and RNA synthesis and suggest the potential for a new role(s) for eosinophil-secretory granules. Copyright 2009 S. Karger AG, Basel.

  14. Imaging Polarized Secretory Traffic at the Immune Synapse in Living T Lymphocytes.

    PubMed

    Calvo, Víctor; Izquierdo, Manuel

    2018-01-01

    Immune synapse (IS) formation by T lymphocytes constitutes a crucial event involved in antigen-specific, cellular and humoral immune responses. After IS formation by T lymphocytes and antigen-presenting cells, the convergence of secretory vesicles toward the microtubule-organizing center (MTOC) and MTOC polarization to the IS are involved in polarized secretion at the synaptic cleft. This specialized mechanism appears to specifically provide the immune system with a fine strategy to increase the efficiency of crucial secretory effector functions of T lymphocytes, while minimizing non-specific, cytokine-mediated stimulation of bystander cells, target cell killing and activation-induced cell death. The molecular bases involved in the polarized secretory traffic toward the IS in T lymphocytes have been the focus of interest, thus different models and several imaging strategies have been developed to gain insights into the mechanisms governing directional secretory traffic. In this review, we deal with the most widely used, state-of-the-art approaches to address the molecular mechanisms underlying this crucial, immune secretory response.

  15. Mesenchymal Stem Cell Differentiation into Adipocytes Is Equally Induced by Insulin and Proinsulin In Vitro.

    PubMed

    Pfützner, Andreas; Schipper, Dorothee; Pansky, Andreas; Kleinfeld, Claudia; Roitzheim, Barbara; Tobiasch, Edda

    2017-11-30

    In advanced β -cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β -cell dysfunction. Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β -cell dysfunction.

  16. Peripheral nervous system insulin resistance in ob/ob mice

    PubMed Central

    2013-01-01

    Background A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve using Western blot analysis. Results The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor expression could be contributory mechanisms of PNS insulin resistance within sensory neurons. Conclusions These findings contribute to the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key factor in the pathogenesis of diabetic neuropathy. PMID:24252636

  17. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice

    USDA-ARS?s Scientific Manuscript database

    Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...

  18. Sleep Restriction for 1 Week Reduces Insulin Sensitivity in Healthy Men

    PubMed Central

    Buxton, Orfeu M.; Pavlova, Milena; Reid, Emily W.; Wang, Wei; Simonson, Donald C.; Adler, Gail K.

    2010-01-01

    OBJECTIVE Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness. RESEARCH DESIGN AND METHODS This 12-day inpatient General Clinical Research Center study included 20 healthy men (age 20–35 years and BMI 20–30 kg/m2). Subjects spent 10 h/night in bed for ≥8 nights including three inpatient nights (sleep-replete condition), followed by 5 h/night in bed for 7 nights (sleep-restricted condition). Subjects received 300 mg/day modafinil or placebo during sleep restriction. Diet and activity were controlled. On the last 2 days of each condition, we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp. Salivary cortisol, 24-h urinary catecholamines, and neurobehavioral performance were measured. RESULTS IVGTT-derived insulin sensitivity was reduced by (means ± SD) 20 ± 24% after sleep restriction (P = 0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced by 11 ± 5.5% (P < 0.04) after sleep restriction. Glucose tolerance and the disposition index were reduced by sleep restriction. These outcomes were not affected by modafinil treatment. Changes in insulin sensitivity did not correlate with changes in salivary cortisol (increase of 51 ± 8% with sleep restriction, P < 0.02), urinary catecholamines, or slow wave sleep. CONCLUSIONS Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance. PMID:20585000

  19. Cysteine analogues potentiate glucose-induced insulin release in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammon, H.P.; Hehl, K.H.; Enz, G.

    1986-12-01

    In rat pancreatic islets, cysteine analogues, including glutathione, acetylcysteine, cysteamine, D-penicillamine, L-cysteine ethyl ester, and cysteine-potentiated glucose (11.1 mM) induced insulin secretion in a concentration-dependent manner. Their maximal effects were similar and occurred at approximately 0.05, 0.05, 0.1, 0.5, 1.0, 1.0 mM, respectively. At substimulatory glucose levels (2.8 mM), insulin release was not affected by these compounds. In contrast, thiol compounds, structurally different from cysteine and its analogues, such as mesna, tiopronin, meso-2,3-dimercaptosuccinic acid (DMSA), dimercaprol (BAL), beta-thio-D-glucose, as well as those cysteine analogues that lack a free-thiol group, including L-cystine, cystamine, D-penicillamine disulfide, S-carbocysteine, and S-carbamoyl-L-cysteine, did not enhancemore » insulin release at stimulatory glucose levels (11.1 mM); cystine (5 mM) was inhibitory. These in vitro data indicate that among the thiols tested here, only cysteine and its analogues potentiate glucose-induced insulin secretion, whereas thiols that are structurally not related to cysteine do not. This suggests that a cysteine moiety in the molecule is necessary for the insulinotropic effect. For their synergistic action to glucose, the availability of a sulfhydryl group is also a prerequisite. The maximal synergistic action is similar for all cysteine analogues tested, whereas the potency of action is different, suggesting similarity in the mechanism of action but differences in the affinity to the secretory system.« less

  20. RFP tags for labeling secretory pathway proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Liyang; Zhao, Yanhua; Zhang, Xi

    2014-05-09

    Highlights: • Membrane protein Orai1 can be used to report the fusion properties of RFPs. • Artificial puncta are affected by dissociation constant as well as pKa of RFPs. • Among tested RFPs mOrange2 is the best choice for secretory protein labeling. - Abstract: Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to anmore » environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.« less

  1. Acquisition of Lubrol insolubility, a common step for growth hormone and prolactin in the secretory pathway of neuroendocrine cells.

    PubMed

    Lee, M S; Zhu, Y L; Chang, J E; Dannies, P S

    2001-01-05

    Rat prolactin in the dense cores of secretory granules of the pituitary gland is a Lubrol-insoluble aggregate. In GH(4)C(1) cells, newly synthesized rat prolactin and growth hormone were soluble, but after 30 min about 40% converted to a Lubrol-insoluble form. Transport from the endoplasmic reticulum is necessary for conversion to Lubrol insolubility, since incubating cells with brefeldin A or at 15 degrees C reduced formation of insoluble rat (35)S-prolactin. Formation of Lubrol-insoluble aggregates has protein and cell specificity; newly synthesized human growth hormone expressed in AtT20 cells underwent a 40% conversion to Lubrol insolubility with time, but albumin did not, and human growth hormone expressed in COS cells underwent less than 10% conversion to Lubrol insolubility. del32-46 growth hormone, a naturally occurring form of growth hormone, and P89L growth hormone underwent conversion, although they were secreted more slowly, indicating that there is some tolerance in structural requirements for aggregation. An intracellular compartment with an acidic pH is not necessary for conversion to Lubrol insolubility, because incubation with chloroquine or bafilomycin slowed, but did not prevent, the conversion. GH(4)C(1) cells treated with estradiol, insulin, and epidermal growth factor accumulate more secretory granules and store more prolactin, but not more growth hormone, than untreated cells; Lubrol-insoluble aggregates of prolactin and growth hormone formed to the same extent in hormone-treated or untreated GH(4)C(1) cells, but prolactin was retained longer in hormone-treated cells. These findings indicate that aggregation alone is not sufficient to cause retention of secretory granule proteins, and there is an additional selective process.

  2. Effect of Pioglitazone on the Fructose-Induced Abdominal Adipose Tissue Dysfunction

    PubMed Central

    Alzamendi, Ana; Giovambattista, Andrés; García, María E.; Rebolledo, Oscar R.; Gagliardino, Juan J.; Spinedi, Eduardo

    2012-01-01

    Aim. To test the potential role of PPARγ in the endocrine abdominal tissue dysfunction induced by feeding normal rats with a fructose rich diet (FRD) during three weeks. Methodology. Adult normal male rats received a standard commercial diet (CD) or FRD, (10% in drinking water) without or with pioglitazone (PIO) (i.p. 0.25 mg/Kg BW/day; CD-PIO and FRD-PIO). Thereafter, we measured circulating metabolic, endocrine, and oxidative stress (OS) markers, abdominal adipose tissue (AAT) mass, leptin (LEP) and plasminogen activator inhibitor-1 (PAI-1) tissue content/expression, and leptin release by isolated adipocytes incubated with different concentrations of insulin. Results. Plasma glucose, insulin, triglyceride, TBARS, LEP, and PAI-1 levels were higher in FRD rats; PIO coadministration fully prevented all these increments. AAT adipocytes from FRD rats were larger, secreted a higher amount of LEP, and displayed decreased sensitivity to insulin stimulation; these effects were significantly ameliorated by PIO. Whereas AAT LEP and PAI-1 (mRNA) concentrations increased significantly in FRD rats, those of insulin-receptor-substrate- (IRS-) 1 and IRS-2 were reduced. PIO coadministration prevented FRD effects on LEP, PAI-1, and IRS-2 (fully) and IRS-1 (partially) mRNAs in AAT. Conclusion. PPARγ would play a relevant role in the development of the FRD-induced metabolic-endocrine dysfunction. PMID:23091482

  3. Effect of pioglitazone on the fructose-induced abdominal adipose tissue dysfunction.

    PubMed

    Alzamendi, Ana; Giovambattista, Andrés; García, María E; Rebolledo, Oscar R; Gagliardino, Juan J; Spinedi, Eduardo

    2012-01-01

    Aim. To test the potential role of PPARγ in the endocrine abdominal tissue dysfunction induced by feeding normal rats with a fructose rich diet (FRD) during three weeks. Methodology. Adult normal male rats received a standard commercial diet (CD) or FRD, (10% in drinking water) without or with pioglitazone (PIO) (i.p. 0.25 mg/Kg BW/day; CD-PIO and FRD-PIO). Thereafter, we measured circulating metabolic, endocrine, and oxidative stress (OS) markers, abdominal adipose tissue (AAT) mass, leptin (LEP) and plasminogen activator inhibitor-1 (PAI-1) tissue content/expression, and leptin release by isolated adipocytes incubated with different concentrations of insulin. Results. Plasma glucose, insulin, triglyceride, TBARS, LEP, and PAI-1 levels were higher in FRD rats; PIO coadministration fully prevented all these increments. AAT adipocytes from FRD rats were larger, secreted a higher amount of LEP, and displayed decreased sensitivity to insulin stimulation; these effects were significantly ameliorated by PIO. Whereas AAT LEP and PAI-1 (mRNA) concentrations increased significantly in FRD rats, those of insulin-receptor-substrate- (IRS-) 1 and IRS-2 were reduced. PIO coadministration prevented FRD effects on LEP, PAI-1, and IRS-2 (fully) and IRS-1 (partially) mRNAs in AAT. Conclusion. PPARγ would play a relevant role in the development of the FRD-induced metabolic-endocrine dysfunction.

  4. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats

    PubMed Central

    Malta, Ananda; Souza, Aline Amenencia de; Ribeiro, Tatiane Aparecida; Francisco, Flávio Andrade; Pavanello, Audrei; Prates, Kelly Valério; Tófolo, Laize Peron; Miranda, Rosiane Aparecida; Oliveira, Júlio Cezar de; Martins, Isabela Peixoto; Previate, Carina; Gomes, Rodrigo Mello; Franco, Claudinéia Conationi da Silva; Natali, Maria Raquel Marçal; Palma-Rigo, Kesia; Mathias, Paulo Cezar de Freitas

    2016-01-01

    We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets. PMID:27561682

  5. Quality control in the secretory assembly line.

    PubMed Central

    Helenius, A

    2001-01-01

    As a rule, only proteins that have reached a native, folded and assembled structure are transported to their target organelles and compartments within the cell. In the secretory pathway of eukaryotic cells, this type of sorting is particularly important. A variety of molecular mechanisms are involved that distinguish between folded and unfolded proteins, modulate their intracellular transport, and induce degradation if they fail to fold. This phenomenon, called quality control, occurs at several levels and involves different types of folding sensors. The quality control system provides a stringent and versatile molecular sorting system that guaranties fidelity of protein expression in the secretory pathway. PMID:11260794

  6. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  7. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    PubMed

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  8. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice

    PubMed Central

    Nohara, Kazunari; Waraich, Rizwana S.; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S.; Karsenty, Gérard; Burcelin, Rémy

    2013-01-01

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension. PMID:23612996

  9. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  10. The relationship between vitronectin and hepatic insulin resistance in type 2 diabetes mellitus.

    PubMed

    Cao, Yan; Li, Xinyu; Lu, Chong; Zhan, Xiaorong

    2018-05-18

    The World Health Organization (WHO) estimates that approximately 300 million people will suffer from diabetes mellitus by 2025. Type 2 diabetes mellitus (T2DM) is much more prevalent. T2DM comprises approximately 90% of diabetes mellitus cases, and it is caused by a combination of insulin resistance and inadequate compensatory insulin secretory response. In this study, we aimed to compare the plasma vitronectin (VN) levels between patients with T2DM and insulin resistance (IR) and healthy controls. Seventy patients with IR and 70 age- and body mass index (BMI)-matched healthy controls were included in the study. The insulin, Waist-to-Hip Ratio (WHR), C-peptide (CP) and VN levels of all participants were examined. The homeostasis model of assessment for insulin resistence index (HOMA-IR (CP)) formula was used to calculate insulin resistance. The levels of BMI, fasting plasma gluose (FPG), 2-hour postprandial glucose (2hPG), glycated hemoglobins (HbA1c), and HOMA-IR (CP) were significantly elevated in case group compared with controls. VN was found to be significantly decreased in case group. (VN Mean (Std): 8.55 (2.92) versus 12.88 (1.26) ng/mL p < 0.001). Multiple linear regression analysis was performed. This model explained 43.42% of the total variability of VN. Multiple linear regression analysis showed that HOMA-IR (CP) and age independently predicted VN levels. The VN may be a candidate target for the appraisal of hepatic insulin resistance in patients with T2DM.

  11. Progressive quality control of secretory proteins in the early secretory compartment by ERp44

    PubMed Central

    Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto

    2014-01-01

    ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval via interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here we show that also conserved histidines in the C-terminal tail regulate ERp44 in vivo. Mutants lacking these histidines are hyperactive in retaining substrates. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon over-expression of different partners. The ensuing gradients may help optimising folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. PMID:25097228

  12. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...

  13. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival.

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of ß-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense cores in secretory granules. In insulin-containing secretory granules, zinc ...

  14. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems § 866.5380 Free secretory component immuno-logical test system. (a) Identification. A free... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Free secretory component immuno-logical test...

  15. Leptin, Insulin, and Cinnamon Polyphenols Attenuate Glial Swelling and Mitochondrial Dysfunction in Ischemic Injury

    USDA-ARS?s Scientific Manuscript database

    Obesity is a major risk factor for stroke, and tissue injury following a stroke may be more severe in the obese. A key feature of obesity is increased serum levels of obesity-related hormones including leptin and insulin, indicating a state of resistance to these hormones. Insulin resistance is gen...

  16. Central insulin and leptin-mediated autonomic control of glucose homeostasis

    USDA-ARS?s Scientific Manuscript database

    Largely as a result of rising obesity rates, the incidence of type 2 diabetes is escalating rapidly. Type 2 diabetes results from multi-organ dysfunctional glucose metabolism. Recent publications have highlighted hypothalamic insulin- and adipokine-sensing as a major determinant of peripheral glucos...

  17. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women.

    PubMed

    Matuszek, Maria A; Anton, Angelyn; Thillainathan, Sobana; Armstrong, Nicola J

    2015-01-01

    To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15-120 min), in South East/East Asians (60-120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.

  18. Diminished parathyroid gland responsiveness to hypocalcemia in diabetic patients with uremia.

    PubMed

    Heidbreder, E; Götz, R; Schafferhans, K; Heidland, A

    1986-01-01

    The parathyroid gland responsiveness to hypocalcemia induced by short-term calcium-free hemodialysis in patients with insulin-dependent diabetes mellitus was investigated in comparison with 10 nondiabetic uremic patients and compared with test results from the autonomic nervous system. Diabetic patients had lower C-terminal parathyroid hormone (cPTH) levels before hemodialysis than uremic control patients and showed a significantly smaller increase in cPTH during hypocalcemia. The neurological tests revealed severe disturbances of the autonomic functions in the diabetic group. In conclusion, the disturbances observed in the parathyroid secretory pattern are probably caused by gland dysfunction; it is hypothesized that the defective autonomic nervous system has an additional effect on the development of this hormonal dysfunction.

  19. Diabetes mellitus, a complex and heterogeneous disease, and the role of insulin resistance as a determinant of diabetic kidney disease.

    PubMed

    Karalliedde, Janaka; Gnudi, Luigi

    2016-02-01

    Diabetes mellitus (DM) is increasingly recognized as a heterogeneous condition. The individualization of care and treatment necessitates an understanding of the individual patient's pathophysiology of DM that underpins their DM classification and clinical presentation. Classical type-2 diabetes mellitus is due to a combination of insulin resistance and an insulin secretory defect. Type-1 diabetes is characterized by a near-absolute deficiency of insulin secretion. More recently, advances in genetics and a better appreciation of the atypical features of DM has resulted in more categories of diabetes. In the context of kidney disease, patients with DM and microalbuminuria are more insulin resistant, and insulin resistance may be a pathway that results in accelerated progression of diabetic kidney disease. This review summarizes the updated classification of DM, including more rarer categories and their associated renal manifestations that need to be considered in patients who present with atypical features. The benefits and limitations of the tests utilized to make a diagnosis of DM are discussed. We also review the putative pathways and mechanisms by which insulin resistance drives the progression of diabetic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  20. The insulin secretagogues glibenclamide and repaglinide do not influence growth hormone secretion in humans but stimulate glucagon secretion during profound insulin deficiency.

    PubMed

    Østergård, Torben; Degn, Kristine B; Gall, Mari-Anne; Carr, Richard D; Veldhuis, Johannes D; Thomsen, Mads K; Rizza, Robert A; Schmitz, Ole

    2004-01-01

    In vitro data have recently suggested that sulfonylureas (SUs) enhance GH secretion by modulating the effects of GHRH and somatostatin in pituitary cells. The present study was undertaken to explore in more detail a possible influence of a single dose of SU (glibenclamide) and a non-SU (repaglinide) insulin secretagogue on circulating GH dynamics. Ten C-peptide-negative type 1 diabetic individuals were examined on three occasions in random order. Either glibenclamide (10.5 mg), repaglinide (8 mg), or placebo was administered after overnight normalization of plasma glucose by iv insulin infusion. Subsequently, GH concentrations were measured regularly after stimulation with GHRH (bolus 0.1 micro g/kg) alone and during concomitant infusion with somatostatin (7 ng.kg(-1).min(-1)). Insulin was replaced at baseline levels (0.25 mU.kg(-1).min(-1)) and plasma glucose clamped at 5-6 mmol/liter. Overall, there were no significant statistical differences in GH responses determined as either GH peak concentrations, integrated levels of GH, or secretory burst mass of GH during the experimental protocol. In contrast, plasma glucagon concentrations were significantly increased during glibenclamide and repaglinide exposure. The present experimental design does not support the hypothesis that acute administration of pharmacological doses of the oral antihyperglycemic agents glibenclamide and repaglinide per se enhance GH release in humans. Additionally, this study shows that these potassium channel inhibitors seem to stimulate glucagon secretion in people who have severe intraislet insulin deficiency (e.g. type 1 diabetes). However, extrapolation of our findings to type 2 diabetic individuals should be done with some caution.

  1. Glycosaminoglycan synthesis by adult rat submandibular salivary-gland secretory units.

    PubMed

    Cutler, L S; Christian, C P; Rendell, J K

    1987-01-01

    The synthesis of glycosaminoglycans (GAG) by a preparation of purified, functional submandibular-gland secretory units (acini and intercalated ducts) was examined. Such units were isolated from Sprague-Dawley rats by digestion of minced gland with hyaluronidase and collagenase followed by gentle sieving of the digest through a graded series of Teflon screens. They incorporated amino acids into exocrine proteins which could be released by stimulation with isoproterenol as in vivo, indicating their functional integrity. Secretory units, incubated for 2 h in medium containing [35S]-sodium sulphate alone or in combination with [3H]-glucosamine, were then washed, homogenized and digested in pronase. The resulting material was then sequentially digested by specific enzymic and chemical procedures and analysed by chromatography on Sephadex G-50 columns to identify the various GAG synthesized. Secretory units synthesized a GAG mixture which was 20-25 per cent hyaluronic acid, 70-75 per cent heparan sulphate, and only 3-5 per cent chondroitin or dermatan sulphates, similar to that synthesized in vivo. No GAG was present in the secretory material, suggesting that all the GAG synthesized was destined for the basement membrane or cell surface.

  2. Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji

    2017-08-22

    Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine

  3. Compensatory islet response to insulin resistance revealed by quantitative proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee

    Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less

  4. Compensatory islet response to insulin resistance revealed by quantitative proteomics

    DOE PAGES

    El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee; ...

    2015-07-07

    Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less

  5. Protein quality control in the early secretory pathway

    PubMed Central

    Anelli, Tiziana; Sitia, Roberto

    2008-01-01

    Eukaryotic cells are able to discriminate between native and non-native polypeptides, selectively transporting the former to their final destinations. Secretory proteins are scrutinized at the endoplasmic reticulum (ER)–Golgi interface. Recent findings reveal novel features of the underlying molecular mechanisms, with several chaperone networks cooperating in assisting the maturation of complex proteins and being selectively induced to match changing synthetic demands. ‘Public' and ‘private' chaperones, some of which enriched in specializes subregions, operate for most or selected substrates, respectively. Moreover, sequential checkpoints are distributed along the early secretory pathway, allowing efficiency and fidelity in protein secretion. PMID:18216874

  6. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. The insulin secretory action of novel polycyclic guanidines: discovery through open innovation phenotypic screening, and exploration of structure-activity relationships.

    PubMed

    Shaghafi, Michael B; Barrett, David G; Willard, Francis S; Overman, Larry E

    2014-02-15

    We report the discovery of the glucose-dependent insulin secretogogue activity of a novel class of polycyclic guanidines through phenotypic screening as part of the Lilly Open Innovation Drug Discovery platform. Three compounds from the University of California, Irvine, 1-3, having the 3-arylhexahydropyrrolo[1,2-c]pyrimidin-1-amine scaffold acted as insulin secretagogues under high, but not low, glucose conditions. Exploration of the structure-activity relationship around the scaffold demonstrated the key role of the guanidine moiety, as well as the importance of two lipophilic regions, and led to the identification of 9h, which stimulated insulin secretion in isolated rat pancreatic islets in a glucose-dependent manner. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Fenugreek lactone attenuates palmitate-induced apoptosis and dysfunction in pancreatic β-cells

    PubMed Central

    Gong, Jing; Dong, Hui; Jiang, Shu-Jun; Wang, Ding-Kun; Fang, Ke; Yang, De-Sen; Zou, Xin; Xu, Li-Jun; Wang, Kai-Fu; Lu, Fu-Er

    2015-01-01

    AIM: To investigate the effect of fenugreek lactone (FL) on palmitate (PA)-induced apoptosis and dysfunction in insulin secretion in pancreatic NIT-1 β-cells. METHODS: Cells were cultured in the presence or absence of FL and PA (0.25 mmol/L) for 48 h. Then, lipid droplets in NIT-1 cells were observed by oil red O staining, and the intracellular triglyceride content was measured by colorimetric assay. The insulin content in the supernatant was determined using an insulin radio-immunoassay. Oxidative stress-associated parameters, including total superoxide dismutase, glutathione peroxidase and catalase activity and malondialdehyde levels in the suspensions were also examined. The expression of upstream regulators of oxidative stress, such as protein kinase C-α (PKC-α), phospho-PKC-α and P47phox, were determined by Western blot analysis and real-time PCR. In addition, apoptosis was evaluated in NIT-1 cells by flow cytometry assays and caspase-3 viability assays. RESULTS: Our results indicated that compared to the control group, PA induced an increase in lipid accumulation and apoptosis and a decrease in insulin secretion in NIT-1 cells. Oxidative stress in NIT-1 cells was activated after 48 h of exposure to PA. However, FL reversed the above changes. These effects were accompanied by the inhibition of PKC-α, phospho-PKC-α and P47phox expression and the activation of caspase-3. CONCLUSION: FL attenuates PA-induced apoptosis and insulin secretion dysfunction in NIT-1 pancreatic β-cells. The mechanism for this action may be associated with improvements in levels of oxidative stress. PMID:26730156

  9. Lipotoxicity, β cell dysfunction, and gestational diabetes.

    PubMed

    Nolan, Christopher J

    2014-04-01

    Gestational diabetes (GDM) is caused by failure of islet β cells to meet the increased insulin requirements of pregnancy. Recently, Prentice et al. (2014) discovered a 7-fold elevation of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanopropanoic acid (CMPF) in plasma of women with GDM and showed that CMPF directly induces β cell dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Wheat germ supplementation alleviates insulin resistance and cardiac mitochondrial dysfunction in an animal model of diet-induced obesity.

    PubMed

    Ojo, Babajide; Simenson, Ashley J; O'Hara, Crystal; Wu, Lei; Gou, Xin; Peterson, Sandra K; Lin, Daniel; Smith, Brenda J; Lucas, Edralin A

    2017-08-01

    Obesity is strongly associated with insulin resistance (IR), along with mitochondrial dysfunction to metabolically active tissues and increased production of reactive O2 species (ROS). Foods rich in antioxidants such as wheat germ (WG), protect tissues from damage due to ROS and modulate some negative effects of obesity. This study examined the effects of WG supplementation on markers of IR, mitochondrial substrate metabolism and innate antioxidant markers in two metabolically active tissues (i.e. liver and heart) of C57BL/6 mice fed a high-fat-high-sucrose (HFS) diet. Male C57BL/6 mice, 6-week-old, were randomised into four dietary treatment groups (n 12 mice/group): control (C, 10 % fat kcal), C+10 % WG, HFS (60 % fat kcal) or HFS+10 % WG (HFS+WG). After 12 weeks of treatment, HFS+WG mice had significantly less visceral fat (-16 %, P=0·006) compared with the HFS group. WG significantly reduced serum insulin (P=0·009), the insulinotropic hormone, gastric inhibitory peptide (P=0·0003), and the surrogate measure of IR, homoeostatic model assessment of IR (P=0·006). HFS diet significantly elevated (45 %, P=0·02) cardiac complex 2 mitochondrial VO2, suggesting increased metabolic stress, whereas WG stabilised this effect to the level of control. Consequently, genes which mediate antioxidant defense and mitochondrial biogenesis (superoxide dismutase 2 (Sod2) and PPARγ coactivator 1-α (Pgc1a), respectively) were significantly reduced (P<0·05) in the heart of the HFS group, whereas WG supplementation tended to up-regulate both genes. WG significantly increased hepatic gene expression of Sod2 (P=0·048) but not Pgc1a. Together, these results showed that WG supplementation in HFS diet, reduced IR and improved cardiac mitochondrial metabolic functions.

  11. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance.

    PubMed

    Luan, Bing; Zhao, Jian; Wu, Haiya; Duan, Baoyu; Shu, Guangwen; Wang, Xiaoying; Li, Dangsheng; Jia, Weiping; Kang, Jiuhong; Pei, Gang

    2009-02-26

    Insulin resistance, a hallmark of type 2 diabetes, is a defect of insulin in stimulating insulin receptor signalling, which has become one of the most serious public health threats. Upon stimulation by insulin, insulin receptor recruits and phosphorylates insulin receptor substrate proteins, leading to activation of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway. Activated Akt phosphorylates downstream kinases and transcription factors, thus mediating most of the metabolic actions of insulin. Beta-arrestins mediate biological functions of G-protein-coupled receptors by linking activated receptors with distinct sets of accessory and effecter proteins, thereby determining the specificity, efficiency and capacity of signals. Here we show that in diabetic mouse models, beta-arrestin-2 is severely downregulated. Knockdown of beta-arrestin-2 exacerbates insulin resistance, whereas administration of beta-arrestin-2 restores insulin sensitivity in mice. Further investigation reveals that insulin stimulates the formation of a new beta-arrestin-2 signal complex, in which beta-arrestin-2 scaffolds Akt and Src to insulin receptor. Loss or dysfunction of beta-arrestin-2 results in deficiency of this signal complex and disturbance of insulin signalling in vivo, thereby contributing to the development of insulin resistance and progression of type 2 diabetes. Our findings provide new insight into the molecular pathogenesis of insulin resistance, and implicate new preventive and therapeutic strategies against insulin resistance and type 2 diabetes.

  12. Vasculogenesis and Diabetic Erectile Dysfunction: How Relevant Is Glycemic Control?

    PubMed

    Castela, Angela; Gomes, Pedro; Silvestre, Ricardo; Guardão, Luísa; Leite, Liliana; Chilro, Rui; Rodrigues, Ilda; Vendeira, Pedro; Virag, Ronald; Costa, Carla

    2017-01-01

    Erectile dysfunction (ED) is a complication of diabetes, condition responsible for causing endothelial dysfunction (EDys) and hampering repair mechanisms. However, scarce information is available linking vasculogenesis mediated by Endothelial Progenitor Cells (EPCs) and diabetes-associated ED. Furthermore, it remains to be elucidated if glycemic control plays a role on EPCs functions, EPCs modulators, and penile vascular health. We evaluated the effects of diabetes and insulin therapy on bone marrow (BM) and circulating EPCs, testosterone, and systemic/penile Stromal Derived Factor-1 alpha (SDF-1α) expression. Male Wistar rats were divided into groups: age-matched controls, 8-weeks streptozotocin-induced type 1 diabetics, and insulin-treated 8-weeks diabetics. EPCs were identified by flow cytometry for CD34/CD133/VEGFR2/CXCR4 antigens. Systemic SDF-1α and testosterone levels were evaluated by ELISA. Penile SDF-1α protein expression was assessed, in experimental and human diabetic cavernosal samples, by immunohistochemical techniques. Diabetic animals presented a reduction of BM-derived EPCs and an increase in putative circulating endothelial cells (CECs) sloughed from vessels wall. These alterations were rescued by insulin therapy. In addition, glycemic control promoted an increase in systemic testosterone and SDF-1α levels, which were significantly decreased in animals with diabetes. SDF-1α protein expression was reduced in experimental and human cavernosal diabetic samples, an effect prevented by insulin in treated animals. Insulin administration rescued the effects of diabetes on BM function, CECs levels, testosterone, and plasmatic/penile SDF-1α protein expression. This emphasizes the importance of glycemic control in the prevention of diabetes-induced systemic and penile EDys, by the amelioration of endothelial damage, and increase in protective pathways. J. Cell. Biochem. 118: 82-91, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Cholesterol in islet dysfunction and type 2 diabetes

    PubMed Central

    Brunham, Liam R.; Kruit, Janine K.; Verchere, C. Bruce; Hayden, Michael R.

    2008-01-01

    Type 2 diabetes (T2D) frequently occurs in the context of abnormalities of plasma lipoproteins. However, a role for elevated levels of plasma cholesterol in the pathogenesis of this disease is not well established. Recent evidence suggests that alterations of plasma and islet cholesterol levels may contribute to islet dysfunction and loss of insulin secretion. A number of genes involved in lipid metabolism have been implicated in T2D. Recently an important role for ABCA1, a cellular cholesterol transporter, has emerged in regulating cholesterol homeostasis and insulin secretion in pancreatic β cells. Here we review the impact of cholesterol metabolism on islet function and its potential relationship to T2D. PMID:18246189

  14. An Arg for Gly substitution at position 31 in the insulin receptor, linked to insulin resistance, inhibits receptor processing and transport.

    PubMed

    van der Vorm, E R; van der Zon, G C; Möller, W; Krans, H M; Lindhout, D; Maassen, J A

    1992-01-05

    In a patient with Leprechaunism, we have characterized a new mutation in the insulin receptor substituting Arg for Gly at position 31. The proband, the mother, and the maternal grandfather were heterozygous for the mutation. Fibroblasts of the proband show a strongly reduced number of high affinity insulin receptors on the cell surface, whereas fibroblasts of the healthy mother and grandfather show moderately reduced insulin receptor numbers. In the other family members neither the binding defect nor the Arg31 mutation was found. The Arg31-mutant receptor was overexpressed in Chinese hamster ovary cells. In these cells the mutant alpha beta-proreceptor was not proteolytically cleaved and no transport to the cell surface took place. The proreceptor was unable to bind insulin and to undergo autophosphorylation. In addition, the proreceptor was not recognized by monoclonal antibodies directed against conformation-dependent epitopes. These findings suggest that the Gly31 to Arg31 mutant is involved in the insulin receptor dysfunction seen in the Leprechaun patient. The mutation seems to alter the conformation of the receptor in such way that the transport of the proreceptor to the Golgi compartment, where proteolytical processing occurs, is inhibited.

  15. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    PubMed

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Progressive quality control of secretory proteins in the early secretory compartment by ERp44.

    PubMed

    Sannino, Sara; Anelli, Tiziana; Cortini, Margherita; Masui, Shoji; Degano, Massimo; Fagioli, Claudio; Inaba, Kenji; Sitia, Roberto

    2014-10-01

    ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval through interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here, we show that conserved histidine residues in the C-terminal tail also regulate ERp44 in vivo. Mutants lacking these histidine residues retain substrates more efficiently. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon overexpression of different partners. The ensuing gradients might help to optimize folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes. © 2014. Published by The Company of Biologists Ltd.

  17. Metabolic dysfunction in obstructive sleep apnea: A critical examination of underlying mechanisms

    PubMed Central

    MESARWI, Omar A.; SHARMA, Ellora V.; JUN, Jonathan C.; POLOTSKY, Vsevolod Y.

    2015-01-01

    It has recently become clear that obstructive sleep apnea (OSA) is an independent risk factor for the development of metabolic syndrome, a disorder of defective energy storage and use. Several mechanisms have been proposed to explain this finding, drawing upon the characteristics that define OSA. In particular, intermittent hypoxia, sleep fragmentation, elevated sympathetic tone, and oxidative stress – all consequences of OSA – have been implicated in the progression of poor metabolic outcomes in OSA. In this review we examine the evidence to support each of these disease manifestations of OSA as a unique risk for metabolic dysfunction. Tissue hypoxia and sleep fragmentation are each directly connected to insulin resistance and hypertension, and each of these also may increase sympathetic tone, resulting in defective glucose homeostasis, excessive lipolysis, and elevated blood pressure. Oxidative stress further worsens insulin resistance and in turn, metabolic dysfunction also increases oxidative stress. However, despite many studies linking each of these individual components of OSA to the development of metabolic syndrome, there are very few reports that actually provide a coherent narrative about the mechanism underlying metabolic dysfunction in OSA. PMID:26412981

  18. Nutrient-Induced Inflammation in Polycystic Ovary Syndrome: Role in the Development of Metabolic Aberration and Ovarian Dysfunction.

    PubMed

    González, Frank

    2015-07-01

    A pathophysiology paradigm shift has emerged with the discovery that polycystic ovary syndrome (PCOS) is a proinflammatory state. Despite the dogma that the compensatory hyperinsulinemia of insulin resistance is the promoter of hyperandrogenism, physiological insulin infusion has no effect on androgen levels in PCOS. The dogma also does not explain the cause of hyperandrogenism and ovarian dysfunction in the 30 to 50% of women with PCOS who are of normal weight and lack insulin resistance. Inflammation is the underpinning of insulin resistance in obesity and type 2 diabetes, and may also be the cause of insulin resistance when present in PCOS. The origin of inflammation in PCOS has been ascribed to excess abdominal adiposity or frank obesity. However, nutrients such as glucose and saturated fat can incite inflammation from circulating mononuclear cells (MNC) of women with PCOS independent of excess adiposity and insulin resistance, and can also promote atherogenesis. Hyperandrogenism activates MNC in the fasting state to increase MNC sensitivity to nutrients, and is a potential mechanism for initiating inflammation in PCOS. However, chronic ovarian androgen suppression does not reduce inflammation in normal-weight women with PCOS. Direct exposure of ovarian theca cells to proinflammatory stimuli in vitro increases androgen production. These findings may be corroborated in vivo with anti-inflammatory therapy to normal-weight insulin-sensitive women with PCOS without abdominal adiposity to observe for amelioration of ovarian dysfunction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    PubMed

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  20. The importance of declining insulin requirements during pregnancy in patients with pre-gestational gestational diabetes mellitus.

    PubMed

    Ram, Maya; Feinmesser, Larissa; Shinar, Shiri; Maslovitz, Sharon

    2017-08-01

    In patients with pre-gestational and gestational diabetes mellitus (GDM), insulin requirements often increase during the third trimester of pregnancy in order to maintain proper glycemic control. However, a fraction of patients demonstrate a significant decrease in insulin requirements in late gestation. We aimed to evaluate the clinical significance of decreasing insulin requirements in patients with pre-gestational diabetes and GDM with respect to fetal wellbeing and pregnancy outcome. We performed a retrospective cohort study in a single referral center for gestational diabetes between 1/2010 and 12/2014. Healthy pregnant women with pre-gestational diabetes and GDMA2 and a decrease of at least 30% in insulin requirements over a period of two weeks during the third trimester (group A) were compared to women with stable or increasing insulin requirements (group B). The primary outcome was a composite of situations associated with feto-placental dysfunction (fetal growth restriction, oligohydramnios and cesarean section due to category 2-3 monitor). Secondary outcomes were maternal oral glucose tolerance test (OGTT) results 6 weeks postpartum, neonatal intensive care unit (NICU) admission rates, Apgar scores ≤7 at 5min, arterial blood pH≤7.1, macrosomia, neonatal hypoglycemia and a composite adverse neonatal outcomes (defined as one or more of the following: respiratory morbidity, cerebral morbidity, phototherapy, need for blood transfusion, necrotizing enterocolitis or death). Group A consisted of 101 women and group B - of 203 women. There were no differences between the groups in demographic characteristics or diagnostic characteristics of diabetes. The frequency of conditions related to feto-placental dysfunction did not differ between the groups (7.9% vs. 8.4%, p=0.61). Secondary outcome measures also did not differ between the groups, regardless of insulin requirements. Decreasing insulin requirements during the third trimester are not associated with

  1. Pro-hormone Secretogranin II Regulates Dense Core Secretory Granule Biogenesis in Catecholaminergic Cells*

    PubMed Central

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J.; O'Connor, Daniel T.; Taupenot, Laurent

    2010-01-01

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network. PMID:20061385

  2. Pro-hormone secretogranin II regulates dense core secretory granule biogenesis in catecholaminergic cells.

    PubMed

    Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L; Mahata, Sushil K; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J; O'Connor, Daniel T; Taupenot, Laurent

    2010-03-26

    Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.

  3. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  4. Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge.

    PubMed

    Pillai, Anil Kumar; Silvers, William; Christensen, Preston; Riegel, Matthew; Adams-Huet, Beverley; Lingvay, Ildiko; Sun, Xiankai; Öz, Orhan K

    2015-01-01

    Advances in noninvasive imaging modalities have provided opportunities to study β cell function through imaging zinc release from insulin secreting β cells. Understanding the temporal secretory pattern of insulin and zinc corelease after a glucose challenge is essential for proper timing of administration of zinc sensing probes. Portal venous sampling is an essential part of pharmacological and nutritional studies in animal models. The purpose of this study was to compare two different percutaneous image-guided techniques: transhepatic ultrasound guided portal vein access and transsplenic fluoroscopy guided splenic vein access for ease of access, safety, and evaluation of temporal kinetics of insulin and zinc release into the venous effluent from the pancreas. Both techniques were safe, reproducible, and easy to perform. The mean time required to obtain desired catheter position for venous sampling was 15 minutes shorter using the transsplenic technique. A clear biphasic insulin release profile was observed in both techniques. Statistically higher insulin concentration but similar zinc release after a glucose challenge was observed from splenic vein samples, as compared to the ones from the portal vein. To our knowledge, this is the first report of percutaneous methods to assess zinc release kinetics from the porcine pancreas.

  5. Secretory response and immunochemical heterogeneity of glucagon in plasma and tumor extracts of a patient with glucagonoma.

    PubMed

    Torre, L; Vazquez, J A; Blázquez, E

    1986-01-01

    The secretory response and immunoreactive heterogeneity of glucagon was investigated in a patient with glucagonoma syndrome. After glucose administration, abnormal insulin release accompanied by glucose intolerance were observed, whereas the high glucagon circulating levels were only partially blocked after glucose or somatostatin infusion. Chromatographic fractionation of plasma samples, before and after arginine administration showed that most of the immunoreactivity eluted as true glucagon. Furthermore, when aliquots of the tumor extracts were fractionated by column chromatography or by polyacrylamide gel electrophoresis, most of the immunoreactivity eluted in the 3,500 molecular weight peak. In contrast with previous reports, our results indicate that neoplasia A cells can also manufacture and release into the bloodstream great amounts of genuine glucagon rather than larger glucagon immunoreactive forms. In spite of such findings, in this patient neither diabetes nor hyperglycemia were present.

  6. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    PubMed

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.

  7. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    PubMed

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  8. Adaptive response of rat pancreatic β-cells to insulin resistance induced by monocrotophos: Biochemical evidence.

    PubMed

    Nagaraju, Raju; Rajini, Padmanabhan Sharda

    2016-11-01

    Our previous findings clearly suggested the role of duration of exposure to monocrotophos (MCP) in the development of insulin resistance. Rats exposed chronically to MCP developed insulin resistance with hyperinsulinemia without overt diabetes. In continuation of this vital observation, we sought to delineate the biochemical mechanisms that mediate heightened pancreatic β-cell response in the wake of MCP-induced insulin resistance in rats. Adult rats were orally administered (0.9 and 1.8mg/kgb.w/d) MCP for 180days. Terminally, MCP-treated rats exhibited glucose intolerance, hyperinsulinemia, and potentiation of glucose-induced insulin secretion along with elevated levels of circulating IGF1, free fatty acids, corticosterone, and paraoxonase activity. Biochemical analysis of islet extracts revealed increased levels of insulin, malate, pyruvate and ATP with a concomitant increase in activities of cytosolic and mitochondrial enzymes that are known to facilitate insulin secretion and enhanced shuttle activities. Interestingly, islets from MCP-treated rats exhibited increased insulin secretory potential ex vivo compared to those isolated from control rats. Further, MCP-induced islet hypertrophy was associated with increased insulin-positive cells. Our study demonstrates the impact of the biological interaction between MCP and components of metabolic homeostasis on pancreatic beta cell function/s. We speculate that the heightened pancreatic beta cell function evidenced may be mediated by increased IGF1 and paraoxonase activity, which effectively counters insulin resistance induced by chronic exposure to MCP. Our findings emphasize the need for focused research to understand the confounding environmental risk factors which may modulate heightened beta cell functions in the case of organophosphorus insecticide-induced insulin resistance. Such an approach may help us to explain the sharp increase in the prevalence of type II diabetes worldwide. Copyright © 2016 Elsevier

  9. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  10. Chromium Enhances Insulin Responsiveness via AMPK

    PubMed Central

    Hoffman, Nolan J.; Penque, Brent A.; Habegger, Kirk M.; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S.

    2014-01-01

    Trivalent chromium (Cr3+) is known to improve glucose homeostasis. Cr3+ has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5′ AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr3+ improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr3+ protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr3+ on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr3+ in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr3+, via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. PMID:24725432

  11. Chromium enhances insulin responsiveness via AMPK.

    PubMed

    Hoffman, Nolan J; Penque, Brent A; Habegger, Kirk M; Sealls, Whitney; Tackett, Lixuan; Elmendorf, Jeffrey S

    2014-05-01

    Trivalent chromium (Cr(3+)) is known to improve glucose homeostasis. Cr(3+) has been shown to improve plasma membrane-based aspects of glucose transporter GLUT4 regulation and increase activity of the cellular energy sensor 5' AMP-activated protein kinase (AMPK). However, the mechanism(s) by which Cr(3+) improves insulin responsiveness and whether AMPK mediates this action is not known. In this study we tested if Cr(3+) protected against physiological hyperinsulinemia-induced plasma membrane cholesterol accumulation, cortical filamentous actin (F-actin) loss and insulin resistance in L6 skeletal muscle myotubes. In addition, we performed mechanistic studies to test our hypothesis that AMPK mediates the effects of Cr(3+) on GLUT4 and glucose transport regulation. Hyperinsulinemia-induced insulin-resistant L6 myotubes displayed excess membrane cholesterol and diminished cortical F-actin essential for effective glucose transport regulation. These membrane and cytoskeletal abnormalities were associated with defects in insulin-stimulated GLUT4 translocation and glucose transport. Supplementing the culture medium with pharmacologically relevant doses of Cr(3+) in the picolinate form (CrPic) protected against membrane cholesterol accumulation, F-actin loss, GLUT4 dysregulation and glucose transport dysfunction. Insulin signaling was neither impaired by hyperinsulinemic conditions nor enhanced by CrPic, whereas CrPic increased AMPK signaling. Mechanistically, siRNA-mediated depletion of AMPK abolished the protective effects of CrPic against GLUT4 and glucose transport dysregulation. Together these findings suggest that the micronutrient Cr(3+), via increasing AMPK activity, positively impacts skeletal muscle cell insulin sensitivity and glucose transport regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats.

    PubMed

    Matveyenko, Aleksey V; Georgia, Senta; Bhushan, Anil; Butler, Peter C

    2010-11-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

  13. Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats

    PubMed Central

    Matveyenko, Aleksey V.; Georgia, Senta; Bhushan, Anil

    2010-01-01

    Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant. PMID:20587750

  14. The potential role of GLUT4 transporters and insulin receptors in the hypoglycaemic activity of Ficus lutea acetone leaf extract.

    PubMed

    Olaokun, Oyinlola O; McGaw, Lyndy J; Awouafack, Maurice D; Eloff, Jacobus N; Naidoo, Vinny

    2014-07-28

    Some Ficus species have been used in traditional African medicine in the treatment of diabetes. The antidiabetic potential of certain species has been confirmed in vivo but the mechanism of activity remains uncertain. The aim was to investigate the hypoglycaemic potential of ten Ficus species focussing on glucose uptake, insulin secretion and the possible mechanism of hypoglycaemic activity. The dried and ground leaves of ten Ficus species were extracted with acetone. The dried acetone extract was reconstituted with DMSO to a concentration of 100 mg/ml which was then serially diluted and used to assay for glucose uptake in muscle, fat and liver cells, and insulin secretion in pancreatic cells. Only the F. lutea extract was able to modulate glucose metabolism. In comparison to insulin in the primary muscle cells, the glucose uptake ability of the extract was 33% as effective. In the hepatoma cell line, the extract was as effective as metformin in decreasing extracellular glucose concentration by approximately 20%. In the pancreatic insulin secretory assay, the extract was 4 times greater in its secretory activity than commercial glibenclamide. With F. lutea extract significantly increasing glucose uptake in the primary muscle cells, primary fat cells, C2C12 muscle and H-4-II-E liver cells, the extract may act by increasing the activity of cell surface glucose transporters. When the 3T3-L1 pre-adipocytes were compared to the primary muscle, primary fat and C2C12 cells, the differences in the former's ability to transport glucose into the cell may be due to the absence of the GLUT4 transporter, which on activation via the insulin receptor decreases extracellular glucose concentrations. Because the pre-adipocytes failed to show any active increase in glucose uptake, the present effect has to be linked to the absence of the GLUT4 transporter. Only F. lutea possessed substantial in vitro activity related to glucose metabolism. Based on the effect produced in the various

  15. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes

    PubMed Central

    Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.

    2016-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D

  16. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  17. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart

  18. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    PubMed

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-07-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens.

  19. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines

    PubMed Central

    Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G; Hanus, Cyril

    2017-01-01

    Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. PMID:28875935

  20. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication

    PubMed Central

    Morosky, Stefanie; Lennemann, Nicholas J.

    2016-01-01

    ABSTRACT Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. IMPORTANCE Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of

  1. BPIFB6 Regulates Secretory Pathway Trafficking and Enterovirus Replication.

    PubMed

    Morosky, Stefanie; Lennemann, Nicholas J; Coyne, Carolyn B

    2016-05-15

    Bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 3 (BPIFB3) is an endoplasmic reticulum (ER)-localized host factor that negatively regulates coxsackievirus B (CVB) replication through its control of the autophagic pathway. Here, we show that another member of the BPIFB family, BPIFB6, functions as a positive regulator of CVB, and other enterovirus, replication by controlling secretory pathway trafficking and Golgi complex morphology. We show that similar to BPIFB3, BPIFB6 localizes exclusively to the ER, where it associates with other members of the BPIFB family. However, in contrast to our findings that RNA interference (RNAi)-mediated silencing of BPIFB3 greatly enhances CVB replication, we show that silencing of BPIFB6 expression dramatically suppresses enterovirus replication in a pan-viral manner. Mechanistically, we show that loss of BPIFB6 expression induces pronounced alterations in retrograde and anterograde trafficking, which correlate with dramatic fragmentation of the Golgi complex. Taken together, these data implicate BPIFB6 as a key regulator of secretory pathway trafficking and viral replication and suggest that members of the BPIFB family participate in diverse host cell functions to regulate virus infections. Enterovirus infections are associated with a number of severe pathologies, such as aseptic meningitis, dilated cardiomyopathy, type I diabetes, paralysis, and even death. These viruses, which include coxsackievirus B (CVB), poliovirus (PV), and enterovirus 71 (EV71), co-opt the host cell secretory pathway, which controls the transport of proteins from the endoplasmic reticulum to the Golgi complex, to facilitate their replication. Here we report on the identification of a novel regulator of the secretory pathway, bactericidal/permeability-increasing protein (BPI) fold-containing family B, member 6 (BPIFB6), whose expression is required for enterovirus replication. We show that loss of BPIFB6 expression

  2. Routing of the RAB6 secretory pathway towards the lysosome related organelle of melanocytes

    PubMed Central

    Patwardhan, Anand; Bardin, Sabine; Miserey-Lenkei, Stéphanie; Larue, Lionel; Goud, Bruno; Raposo, Graça; Delevoye, Cédric

    2017-01-01

    Exocytic carriers convey neo-synthesized components from the Golgi apparatus to the cell surface. While the release and anterograde movement of Golgi-derived vesicles require the small GTPase RAB6, its effector ELKS promotes the targeting and docking of secretory vesicles to particular areas of the plasma membrane. Here, we show that specialized cell types exploit and divert the secretory pathway towards lysosome related organelles. In cultured melanocytes, the secretory route relies on RAB6 and ELKS to directly transport and dock Golgi-derived carriers to melanosomes. By delivering specific cargos, such as MART-1 and TYRP2/ DCT, the RAB6/ELKS-dependent secretory pathway controls the formation and maturation of melanosomes but also pigment synthesis. In addition, pigmentation defects are observed in RAB6 KO mice. Our data together reveal for the first time that the secretory pathway can be directed towards intracellular organelles of endosomal origin to ensure their biogenesis and function. PMID:28607494

  3. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  4. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium.

    PubMed

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-06-01

    To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.

  5. Alpha-synuclein Toxicity in the Early Secretory Pathway: How It Drives Neurodegeneration in Parkinsons Disease

    PubMed Central

    Wang, Ting; Hay, Jesse C.

    2015-01-01

    Alpha-synuclein is a predominant player in the pathogenesis of Parkinson's Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the dysfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress, and others. Here we examine recent developments in alpha-synuclein's toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration. PMID:26617485

  6. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.

    PubMed

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-12-11

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*

    PubMed Central

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-01-01

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792

  8. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity.

  9. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion.

    PubMed

    Jaques, Fabienne; Jousset, Hélène; Tomas, Alejandra; Prost, Anne-Lise; Wollheim, Claes B; Irminger, Jean-Claude; Demaurex, Nicolas; Halban, Philippe A

    2008-05-01

    Cell-to-cell interactions play an important role in insulin secretion. Compared with intact islets, dispersed pancreatic beta-cells show increased basal and decreased glucose-stimulated insulin secretion. In this study, we used mouse MIN6B1 cells to investigate the mechanisms that control insulin secretion when cells are in contact with each other or not. RNAi-mediated silencing of the adhesion molecule E-cadherin in confluent cells reduced glucose-stimulated secretion to the levels observed in isolated cells but had no impact on basal secretion. Dispersed cells presented high cytosolic Ca(2+) activity, depolymerized cytoskeleton and ERK1/2 activation in low glucose conditions. Both the increased basal secretion and the spontaneous Ca(2+) activity were corrected by transient removal of Ca(2+) or prolonged incubation of cells in low glucose, a procedure that restored the ability of dispersed cells to respond to glucose (11-fold stimulation). In conclusion, we show that dispersed pancreatic beta-cells can respond robustly to glucose once their elevated basal secretion has been corrected. The increased basal insulin secretion of dispersed cells is due to spontaneous Ca(2+) transients that activate downstream Ca(2+) effectors, whereas engagement of cell adhesion molecules including E-cadherin contributes to the greater secretory response to glucose seen in cells with normal intercellular contacts.

  10. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    PubMed

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  11. Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction.

    PubMed

    Consitt, Leslie A; Koves, Timothy R; Muoio, Deborah M; Nakazawa, Masato; Newton, Christopher A; Houmard, Joseph A

    2016-10-28

    The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19-29 years) and fifteen middle-to older-aged (57-82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number of MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (-24% vs. -56%, P < 0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Plasma acylcarnitines during insulin stimulation in humans are reflective of age-related metabolic dysfunction

    PubMed Central

    Consitt, Leslie A.; Koves, Timothy R.; Muoio, Deborah M.; Nakazawa, Masato; Newton, Christopher A.; Houmard, Joseph A.

    2016-01-01

    The purpose of this study was to determine if plasma acylcarnitine (AC) profiling is altered under hyperinsulinemic conditions as part of the aging process. Fifteen young, lean (19–29 years) and fifteen middle- to older-aged (57–82 years) individuals underwent a 2-hr euglycemic-hyperinsulinemic clamp. Plasma samples were obtained at baseline, 20 min, 50 min, and 120 min for analysis of AC species and amino acids. Skeletal muscle biopsies were performed after 60 min of insulin-stimulation for analysis of acetyl-CoA carboxylase (ACC) phosphorylation. Insulin infusion decreased the majority of plasma short-, medium-, and long-chain (SC, MC, and LC, respectively) AC. However, during the initial 50 min, a number of MC and LC AC species (C10, C10:1, C12:1, C14, C16, C16:1, C18) remained elevated in aged individuals compared to their younger counterparts indicating a lag in responsiveness. Additionally, the insulin-induced decline in skeletal muscle ACC phosphorylation was blunted in the aged compared to young individuals (−24% vs. −56%, P<0.05). These data suggest that a desensitization to insulin during aging, possibly at the level of skeletal muscle ACC phosphorylation, results in a diminished ability to transition to glucose oxidation indicative of metabolic inflexibility. PMID:27693789

  13. Early Mitochondrial Adaptations in Skeletal Muscle to Diet-Induced Obesity Are Strain Dependent and Determine Oxidative Stress and Energy Expenditure But Not Insulin Sensitivity

    PubMed Central

    Sena, Sandra; Sloan, Crystal; Tebbi, Ali; Han, Yong Hwan; O'Neill, Brian T.; Cooksey, Robert C.; Jones, Deborah; Holland, William L.; McClain, Donald A.; Abel, E. Dale

    2012-01-01

    This study sought to elucidate the relationship between skeletal muscle mitochondrial dysfunction, oxidative stress, and insulin resistance in two mouse models with differential susceptibility to diet-induced obesity. We examined the time course of mitochondrial dysfunction and insulin resistance in obesity-prone C57B and obesity-resistant FVB mouse strains in response to high-fat feeding. After 5 wk, impaired insulin-mediated glucose uptake in skeletal muscle developed in both strains in the absence of any impairment in proximal insulin signaling. Impaired mitochondrial oxidative capacity preceded the development of insulin resistant glucose uptake in C57B mice in concert with increased oxidative stress in skeletal muscle. By contrast, mitochondrial uncoupling in FVB mice, which prevented oxidative stress and increased energy expenditure, did not prevent insulin resistant glucose uptake in skeletal muscle. Preventing oxidative stress in C57B mice treated systemically with an antioxidant normalized skeletal muscle mitochondrial function but failed to normalize glucose tolerance and insulin sensitivity. Furthermore, high fat-fed uncoupling protein 3 knockout mice developed increased oxidative stress that did not worsen glucose tolerance. In the evolution of diet-induced obesity and insulin resistance, initial but divergent strain-dependent mitochondrial adaptations modulate oxidative stress and energy expenditure without influencing the onset of impaired insulin-mediated glucose uptake. PMID:22510273

  14. Effect of dietary fiber and diet particle size on nutrient digestibility and gastrointestinal secretory function in growing pigs.

    PubMed

    Saqui-Salces, M; Luo, Z; Urriola, P E; Kerr, B J; Shurson, G C

    2017-06-01

    Reduction of diet particle size (PS) increases feed efficiency due to an increase in the apparent total tract (ATTD) of GE. However, other effects of PS on the gut secretory function are not known. Therefore, the objective of this experiment was to measure the effect of diet composition (DC) and PS on nutrient digestibility, gastrointestinal hormones, total bile acids (TBA), total cholesterol and glucose concentrations in plasma of finishing pigs ( = 8/diet). Pigs were fed finely (374 ± 29 µm) or coarsely (631 ± 35 µm) ground corn-soybean meal (CSB), CSB + 35% corn dried distillers' grains with solubles (DDGS), and CSB with 21% soybean hulls (SBH) diets for 49 d. Diet composition, nutrient digestibility, along with fasting plasma concentrations of gastrin, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), TBA, cholesterol, and glucose were measured. Fine ground diets had greater ( < 0.05) ATTD of GE as well as greater ( < 0.05) ME than coarse ground diets independent on the DC. Fine ground diets also had greater ( < 0.05) ATTD of DM, N, ether extract, and NDF, independent of DC. A decrease in PS also caused an increase ( < 0.05) in ATTD of N, K, and S, but it did not affect ATTD of Ca, P, or Na. The DC and PS affected plasma gastrin, insulin and TBA but not GIP, GLP-1, glucose, and cholesterol. Gastrin concentration was greater ( < 0.05) in pigs fed coarse DDGS compared with feeding coarse CSB and SBH diets. Insulin concentration of pigs fed CSB was greater ( < 0.01) in pigs fed fine compared with coarse DDGS, and was greater ( < 0.05) in coarse compared with fine SBH diets. Pigs fed DDGS had greater ( < 0.05) TBA than those fed SBH and fine CSB diets. Gastrin, insulin, TBA and cholesterol tended ( < 0.10), or correlated ( < 0.05) with P, K and Fe intake. Insulin, TBA, and cholesterol were correlated ( < 0.05) with Na and S intake. In conclusion, a decrease in diet PS increases the ATTD of nutrients independently of DC

  15. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose.

    PubMed

    Hao, Wei; Gitelman, Steven; DiMeglio, Linda A; Boulware, David; Greenbaum, Carla J

    2016-10-01

    We aimed to describe the natural history of residual insulin secretion in Type 1 Diabetes TrialNet participants over 4 years from diagnosis and relate this to previously reported alternative clinical measures reflecting β-cell secretory function. Data from 407 subjects from 5 TrialNet intervention studies were analyzed. All subjects had baseline stimulated C-peptide values of ≥0.2 nmol/L from mixed-meal tolerance tests (MMTTs). During semiannual visits, C-peptide values from MMTTs, HbA1c, and insulin doses were obtained. The percentage of individuals with stimulated C-peptide of ≥0.2 nmol/L or detectable C-peptide of ≥0.017 nmol/L continued to diminish over 4 years; this was markedly influenced by age. At 4 years, only 5% maintained their baseline C-peptide secretion. The expected inverse relationships between C-peptide and HbA1c or insulin doses varied over time and with age. Combined clinical variables, such as insulin-dose adjusted HbA1c (IDAA1C) and the relationship of IDAA1C to C-peptide, also were influenced by age and time from diagnosis. Models using these clinical measures did not fully predict C-peptide responses. IDAA1C ≤9 underestimated the number of individuals with stimulated C-peptide ≥0.2 nmol/L, especially in children. Current trials of disease-modifying therapy for type 1 diabetes should continue to use C-peptide as a primary end point of β-cell secretory function. Longer duration of follow-up is likely to provide stronger evidence of the effect of disease-modifying therapy on preservation of β-cell function. © 2016 by the American Diabetes Association.

  16. Intrahepatic vascular changes in non-alcoholic fatty liver disease: Potential role of insulin-resistance and endothelial dysfunction.

    PubMed

    Pasarín, Marcos; Abraldes, Juan G; Liguori, Eleonora; Kok, Beverley; La Mura, Vincenzo

    2017-10-07

    Metabolic syndrome is a cluster of several clinical conditions characterized by insulin-resistance and high cardiovascular risk. Non-alcoholic fatty liver disease is the liver expression of the metabolic syndrome, and insulin resistance can be a frequent comorbidity in several chronic liver diseases, in particular hepatitis C virus infection and/or cirrhosis. Several studies have demonstrated that insulin action is not only relevant for glucose control, but also for vascular homeostasis. Insulin regulates nitric oxide production, which mediates to a large degree the vasodilating, anti-inflammatory and antithrombotic properties of a healthy endothelium, guaranteeing organ perfusion. The effects of insulin on the liver microvasculature and the effects of IR on sinusoidal endothelial cells have been studied in animal models of non-alcoholic fatty liver disease. The hypotheses derived from these studies and the potential translation of these results into humans are critically discussed in this review.

  17. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-12-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.

  18. Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity

    PubMed Central

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong

    2015-01-01

    Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791

  19. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  20. [Biliary dysfunction in obese children].

    PubMed

    Aleshina, E I; Gubonina, I V; Novikova, V P; Vigurskaia, M Iu

    2014-01-01

    To examine the state of the biliary system, a study of properties of bile "case-control") 100 children and adolescents aged 8 to 18 years, held checkup in consultative and diagnostic center for chronic gastroduodenitis. BMI children were divided into 2 groups: group 1-60 children with obesity (BMI of 30 to 40) and group 2-40 children with normal anthropometric indices. Survey methods included clinical examination pediatrician, endocrinologist, biochemical parameters (ALT, AST, alkaline phosphatase level, total protein, bilirubin, lipidogram, glucose, insulin, HOMA-index), ultrasound of the abdomen and retroperitoneum, EGD with aspiration of gallbladder bile. Crystallography bile produced by crystallization of biological substrates micromethods modification Prima AV, 1992. Obese children with chronic gastroduodenita more likely than children of normal weight, had complaints and objective laboratory and instrumental evidence of insulin resistance and motor disorders of the upper gastrointestinal and biliary tract, liver enlargement and biliary "sludge". Biochemical parameters of obese children indicate initial metabolic changes in carbohydrate and fat metabolism and cholestasis, as compared to control children. Colloidal properties of bile in obese children with chronic gastroduodenita reduced, as indicated by the nature of the crystallographic pattern. Conclusions: Obese children with chronic gastroduodenitis often identified enlarged liver, cholestasis and biliary dysfunction, including with the presence of sludge in the gallbladder; most often--hypertonic bile dysfunction. Biochemical features of carbohydrate and fat metabolism reflect the features of the metabolic profile of obese children. Crystallography bile in obese children reveals the instability of the colloidal structure of bile, predisposing children to biliary sludge, which is a risk factor for gallstones.

  1. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    PubMed

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  2. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway

    PubMed Central

    Matsunaga, Mayu; Takeda, Taka-aki

    2017-01-01

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339

  3. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.

    PubMed

    Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki

    2017-10-19

    More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.

  4. The quantitative insulin sensitivity check index is not able to detect early metabolic alterations in young patients with polycystic ovarian syndrome.

    PubMed

    Angioni, Stefano; Sanna, Stefania; Magnini, Roberta; Melis, Gian Benedetto; Fulghesu, Anna Maria

    2011-07-01

    To verify whether QUICKY is a suitable method for the identification of metabolic deterioration in normal weight patients affected by polycystic ovarian syndrome (PCOS). Prospective clinical study. Seventy-nine PCOS normal weight adolescent subjects, 50 eumenorrheic, normal weight, non-hirsute controls matched for age and BMI. Quantitative insulin sensitivity check index (QUICKY) and integrated secretory area under the curve of insulin values (I-AUC) during oral glucose tolerance test were calculated. Seventy-nine PCOS and 50 controls were studied. Normal insulin sensitivity was defined as upper control 95th percentile by QUICKY values <0.31, I-AUC at 180 min < 16,645. When applying the calculated I-AUC cut-off, 41 PCOS were classified as normoinsulinemic and 38 as hyperinsulinemic, whereas using the calculated QUICKY cut-off, only 19 PCOS could be classified as insulin resistant (IR). Fifteen out of the 60 non-IR PCOS presented hyperinsulinemia; fasting glucose and insulin levels and QUICKY were not sufficient to identify these subjects. Thus, QUICKY displayed a low sensitivity (44%) and specificity (91%) in the diagnosis of the metabolic disorder disclosed by I-AUC. CONCLUSIONS.: In young normal weight patients with PCOS the prevalence of early alterations of insulin metabolism are not detectable by QUICKY studies.

  5. Immunocytochemical detection of glucagon and insulin cells in endocrine pancreas and cyclic disparity of plasma glucose in the turtle Melanochelys trijuga.

    PubMed

    Chandavar, Vidya R; Naik, Prakash R

    2008-06-01

    The present investigation was carried out to know the seasonal variation in plasma glucose,insulin and glucagon cells during the reproductive cycle of untreated Melanochelys trijuga. Pancreatic endocrine cells were immunochemically localized.Insulin-immunoreactive (IR) cells occurred in groups of 3-20 and were in close apposition, while glucagon-IR cells were distributed individually between the exocrine pancreas or formed anastomosing cords where cells were not intimately attached. Whenever both IR cell types were present together forming an islet,insulin-IR cells formed clusters in the centre with glucagon-IR cells being scattered at the periphery. Glucagon-IR cells seemed to be secretory throughout the pancreas during the reproductive cycle,while insulin-IR cells were found to be pulsating in their secretion. Mean size of the islet was 1.306, 0.184 and 2.558 mm in the regenerative, reproductive and regressive periods,respectively. In general,insulin-IR cells measured 5.18 (mu)m and glucagon-IR cells 5.22 (mu)m in their longest axis. Invariably, glucagon-IR cells were more in number than insulin-IR cells. The fasting plasma glucose level was 69.97 mg% during the regenerative period, which increased to 97.96 mg% during the reproductive period,and reached a peak value of 113.52 mg% in the regressive period.

  6. Rapid development of cardiac dysfunction in a canine model of insulin resistance and moderate obesity.

    PubMed

    Broussard, Josiane L; Nelson, Michael D; Kolka, Cathryn M; Bediako, Isaac Asare; Paszkiewicz, Rebecca L; Smith, Laura; Szczepaniak, Edward W; Stefanovski, Darko; Szczepaniak, Lidia S; Bergman, Richard N

    2016-01-01

    The worldwide incidence of obesity and diabetes continues to rise at an alarming rate. A major cause of the morbidity and mortality associated with obesity and diabetes is heart disease, yet the mechanisms that lead to cardiovascular complications remain unclear. We performed cardiac MRI to assess left ventricular morphology and function during the development of moderate obesity and insulin resistance in a well-established canine model (n = 26). To assess the influence of dietary fat composition, we randomised animals to a traditional lard diet (rich in saturated and monounsaturated fat; n = 12), a salmon oil diet (rich in polyunsaturated fat; n = 8) or a control diet (n = 6). High-fat feeding with lard increased body weight and fasting insulin and markedly reduced insulin sensitivity. Lard feeding also significantly reduced left ventricular function, evidenced by a worsening of circumferential strain and impairment in left ventricular torsion. High-fat feeding with salmon oil increased body weight; however, salmon oil feeding did not impair insulin sensitivity or cardiac function. These data emphasise the importance of dietary fat composition on both metabolic and cardiac function, and have important implications for the relationship between diet and health.

  7. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer's disease-like tau pathology.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R; Morin, Françoise; Planel, Emmanuel

    2017-04-12

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer's disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients.

  8. Novel Mechanistic Link between Focal Adhesion Remodeling and Glucose-stimulated Insulin Secretion*

    PubMed Central

    Rondas, Dieter; Tomas, Alejandra; Soto-Ribeiro, Martinho; Wehrle-Haller, Bernhard; Halban, Philippe A.

    2012-01-01

    Actin cytoskeleton remodeling is well known to be positively involved in glucose-stimulated pancreatic β cell insulin secretion. We have observed glucose-stimulated focal adhesion remodeling at the β cell surface and have shown this to be crucial for glucose-stimulated insulin secretion. However, the mechanistic link between such remodeling and the insulin secretory machinery remained unknown and was the major aim of this study. MIN6B1 cells, a previously validated model of primary β cell function, were used for all experiments. Total internal reflection fluorescence microscopy revealed the glucose-responsive co-localization of focal adhesion kinase (FAK) and paxillin with integrin β1 at the basal cell surface after short term stimulation. In addition, blockade of the interaction between β1 integrins and the extracellular matrix with an anti-β1 integrin antibody (Ha2/5) inhibited short term glucose-induced phosphorylation of FAK (Tyr-397), paxillin (Tyr-118), and ERK1/2 (Thr-202/Tyr-204). Pharmacological inhibition of FAK activity blocked glucose-induced actin cytoskeleton remodeling and glucose-induced disruption of the F-actin/SNAP-25 association at the plasma membrane as well as the distribution of insulin granules to regions in close proximity to the plasma membrane. Furthermore, FAK inhibition also completely blocked short term glucose-induced activation of the Akt/AS160 signaling pathway. In conclusion, these results indicate 1) that glucose-induced activation of FAK, paxillin, and ERK1/2 is mediated by β1 integrin intracellular signaling, 2) a mechanism whereby FAK mediates glucose-induced actin cytoskeleton remodeling, hence allowing docking and fusion of insulin granules to the plasma membrane, and 3) a possible functional role for the Akt/AS160 signaling pathway in the FAK-mediated regulation of glucose-stimulated insulin secretion. PMID:22139838

  9. Heart Rate Variability, Insulin Resistance, and Insulin Sensitivity in Japanese Adults: The Toon Health Study

    PubMed Central

    Saito, Isao; Hitsumoto, Shinichi; Maruyama, Koutatsu; Nishida, Wataru; Eguchi, Eri; Kato, Tadahiro; Kawamura, Ryoichi; Takata, Yasunori; Onuma, Hiroshi; Osawa, Haruhiko; Tanigawa, Takeshi

    2015-01-01

    Background Although impaired cardiac autonomic function is associated with an increased risk of type 2 diabetes in Caucasians, evidence in Asian populations with a lower body mass index is limited. Methods Between 2009–2012, the Toon Health Study recruited 1899 individuals aged 30–79 years who were not taking medication for diabetes. A 75-g oral glucose tolerance test was used to diagnose type 2 diabetes, and fasting and 2-h-postload glucose and insulin concentrations were measured. We assessed the homeostasis model assessment index for insulin resistance (HOMA-IR) and Gutt’s insulin sensitivity index (ISI). Pulse was recorded for 5 min, and time-domain heart rate variability (HRV) indices were calculated: the standard deviation of normal-to-normal intervals (SDNN) and the root mean square of successive difference (RMSSD). Power spectral analysis provided frequency domain measures of HRV: high frequency (HF) power, low frequency (LF) power, and the LF:HF ratio. Results Multivariate-adjusted logistic regression models showed decreased SDNN, RMSSD, and HF, and increased LF:HF ratio were associated significantly with increased HOMA-IR and decreased ISI. When stratified by overweight status, the association of RMSSD, HF, and LF:HF ratio with decreased ISI was also apparent in non-overweight individuals. The interaction between LF:HF ratio and decreased ISI in overweight individuals was significant, with the odds ratio for decreased ISI in the highest quartile of LF:HF ratio in non-overweight individuals being 2.09 (95% confidence interval, 1.41–3.10). Conclusions Reduced HRV was associated with insulin resistance and lower insulin sensitivity. Decreased ISI was linked with parasympathetic dysfunction, primarily in non-overweight individuals. PMID:26277879

  10. Isolation of intact sub-dermal secretory cavities from Eucalyptus

    PubMed Central

    2010-01-01

    Background The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. Results Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h), with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. Conclusions The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain. PMID:20807444

  11. Identification of subjects with insulin resistance and beta-cell dysfunction using alternative definitions of the metabolic syndrome.

    PubMed

    Hanley, Anthony J G; Wagenknecht, Lynne E; D'Agostino, Ralph B; Zinman, Bernard; Haffner, Steven M

    2003-11-01

    Recently, the metabolic syndrome (MetS) has attracted much attention as a risk cluster for cardiovascular disease. Although it is believed that individuals with the MetS have insulin resistance (IR), there are few data using direct measures of IR such as glucose clamps or frequently sampled intravenous glucose tolerance tests (FSIGTTs). We examined associations of MetS with FSIGTT-derived measures of insulin sensitivity and secretion among nondiabetic subjects in the Insulin Resistance Atherosclerosis Study. Two sets of MetS criteria were evaluated: those from the 1999 World Health Organization (WHO) and the 2001 National Cholesterol Education Program (NCEP). Both WHO and NCEP MetS definitions were significantly associated with risk of being in the lowest quartile of directly measured insulin sensitivity (P < 0.0001 for all subjects as well as within ethnic subgroups). However, the associations with WHO-MetS were stronger for all subjects combined (WHO: odds ratio [OR] = 10.2; 95% CI 7.5-13.9; NCEP: OR = 4.6; 3.4-6.2) and in separate analyses of non-Hispanic whites, blacks, and Hispanics. WHO and NCEP MetS definitions were also significantly associated with risk of being in the lowest quartile of insulin sensitivity-adjusted acute insulin response (AIR) and disposition index (DI; all P < 0.01), although the associations were generally weaker than those for insulin sensitivity and there was no difference between the two definitions in all subjects combined (low AIR, WHO: OR = 1.7, 1.2-2.4; NCEP: OR = 1.7, 1.2-2.5). There were, however, a number of ethnic differences, including a stronger association of NCEP-MetS with low AIR among blacks. WHO-MetS was significantly more sensitive than NCEP-MetS in detecting low insulin sensitivity (65.4 vs. 45.6%, respectively; P < 0.0001), with no significant differences in specificity between the definitions (84.4 vs. 84.6%; P = 0.91), although WHO-MetS had a larger area under the receiver operating characteristic curve (75% vs

  12. Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge

    PubMed Central

    Pillai, Anil Kumar; Silvers, William; Christensen, Preston; Riegel, Matthew; Adams-Huet, Beverley; Lingvay, Ildiko; Sun, Xiankai; Öz, Orhan K.

    2015-01-01

    Advances in noninvasive imaging modalities have provided opportunities to study β cell function through imaging zinc release from insulin secreting β cells. Understanding the temporal secretory pattern of insulin and zinc corelease after a glucose challenge is essential for proper timing of administration of zinc sensing probes. Portal venous sampling is an essential part of pharmacological and nutritional studies in animal models. The purpose of this study was to compare two different percutaneous image-guided techniques: transhepatic ultrasound guided portal vein access and transsplenic fluoroscopy guided splenic vein access for ease of access, safety, and evaluation of temporal kinetics of insulin and zinc release into the venous effluent from the pancreas. Both techniques were safe, reproducible, and easy to perform. The mean time required to obtain desired catheter position for venous sampling was 15 minutes shorter using the transsplenic technique. A clear biphasic insulin release profile was observed in both techniques. Statistically higher insulin concentration but similar zinc release after a glucose challenge was observed from splenic vein samples, as compared to the ones from the portal vein. To our knowledge, this is the first report of percutaneous methods to assess zinc release kinetics from the porcine pancreas. PMID:26273676

  13. Endothelial function varies according to insulin resistance disease type.

    PubMed

    Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A

    2007-05-01

    We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.

  14. Maternal supplementation with conjugated linoleic acid in the setting of diet-induced obesity normalises the inflammatory phenotype in mothers and reverses metabolic dysfunction and impaired insulin sensitivity in offspring.

    PubMed

    Segovia, Stephanie A; Vickers, Mark H; Zhang, Xiaoyuan D; Gray, Clint; Reynolds, Clare M

    2015-12-01

    Maternal consumption of a high-fat diet significantly impacts the fetal environment and predisposes offspring to obesity and metabolic dysfunction during adulthood. We examined the effects of a high-fat diet during pregnancy and lactation on metabolic and inflammatory profiles and whether maternal supplementation with the anti-inflammatory lipid conjugated linoleic acid (CLA) could have beneficial effects on mothers and offspring. Sprague-Dawley rats were fed a control (CD; 10% kcal from fat), CLA (CLA; 10% kcal from fat, 1% total fat as CLA), high-fat (HF; 45% kcal from fat) or high fat with CLA (HFCLA; 45% kcal from fat, 1% total fat as CLA) diet ad libitum 10days prior to and throughout gestation and lactation. Dams and offspring were culled at either late gestation (fetal day 20, F20) or early postweaning (postnatal day 24, P24). CLA, HF and HFCLA dams were heavier than CD throughout gestation. Plasma concentrations of proinflammatory cytokines interleukin-1β and tumour necrosis factor-α were elevated in HF dams, with restoration in HFCLA dams. Male and female fetuses from HF dams were smaller at F20 but displayed catch-up growth and impaired insulin sensitivity at P24, which was reversed in HFCLA offspring. HFCLA dams at P24 were protected from impaired insulin sensitivity as compared to HF dams. Maternal CLA supplementation normalised inflammation associated with consumption of a high-fat diet and reversed associated programming of metabolic dysfunction in offspring. This demonstrates that there are critical windows of developmental plasticity in which the effects of an adverse early-life environment can be reversed by maternal dietary interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed Central

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-01-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  16. Microvascular function in pre-eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators.

    PubMed

    Ghosh, Anshuman; Freestone, Nicholas S; Anim-Nyame, Nicholas; Arrigoni, Francesca I F

    2017-04-01

    In preeclampsia, maternal microvascular function is disrupted and angiogenesis is dysfunctional. Insulin resistance that occurs in some pregnancies also pathologically affects microvascular function. We wished to examine the relationship of angiogenic mediators and insulin resistance on microvascular health in pregnancy. We performed a nested, case-control study of 16 women who developed preeclampsia with 17 normal pregnant controls. We hypothesized that the impaired microvascular blood flow in preeclamptic women associated with an increased ratio of the antiangiogenic factors; (s-endoglin [sEng] and soluble fms-like tyrosine kinase-1 [sFlt-1]) and proangiogenic molecule (placental growth factor [PlGF]) could be influenced by insulin resistance. Serum samples taken after 28 weeks of gestation were measured for the angiogenic factors, insulin, and glucose alongside the inflammatory marker; tumor necrosis factor-α and endothelial activation, namely; soluble vascular cell adhesion molecule 1, intercellular adhesion molecule-1, and e-selectin. Maternal microvascular blood flow, measured by strain gauge plethysmography, correlated with ratios of pro- and antiangiogenic mediators independently of preeclampsia. Decreased microvascular function measured in preeclampsia strongly correlated with both the antiangiogenic factor (sFlt-1 + sEng): PlGF ratio and high levels of insulin resistance, and combining insulin resistance with antiangiogenic factor ratios further strengthened this relationship. In pregnancy, microvascular blood flow is strongly associated with perturbations in pro- and antiangiogenic mediators. In preeclampsia, the relationship of maternal microvascular dysfunction with antiangiogenic mediators is strengthened when combined with insulin resistance. © 2017 Kingston University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance

    PubMed Central

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A.; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-01-01

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout (Ghrelin−/−) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions. PMID:28629187

  18. Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance.

    PubMed

    Ma, Xiaojun; Lin, Ligen; Yue, Jing; Wu, Chia-Shan; Guo, Cathy A; Wang, Ruitao; Yu, Kai-Jiang; Devaraj, Sridevi; Murano, Peter; Chen, Zheng; Sun, Yuxiang

    2017-06-19

    High fructose corn syrup (HFCS) is widely used as sweetener in processed foods and soft drinks in the United States, largely substituting sucrose (SUC). The orexigenic hormone ghrelin promotes obesity and insulin resistance; ghrelin responds differently to HFCS and SUC ingestion. Here we investigated the roles of ghrelin in HFCS- and SUC-induced adiposity and insulin resistance. To mimic soft drinks, 10-week-old male wild-type (WT) and ghrelin knockout ( Ghrelin -/- ) mice were subjected to ad lib. regular chow diet supplemented with either water (RD), 8% HFCS (HFCS), or 10% sucrose (SUC). We found that SUC-feeding induced more robust increases in body weight and body fat than HFCS-feeding. Comparing to SUC-fed mice, HFCS-fed mice showed lower body weight but higher circulating glucose and insulin levels. Interestingly, we also found that ghrelin deletion exacerbates HFCS-induced adiposity and inflammation in adipose tissues, as well as whole-body insulin resistance. Our findings suggest that HFCS and SUC have differential effects on lipid metabolism: while sucrose promotes obesogenesis, HFCS primarily enhances inflammation and insulin resistance, and ghrelin confers protective effects for these metabolic dysfunctions.

  19. Clinical correlates of sudomotor dysfunction in patients with type 2 diabetes and peripheral neuropathy.

    PubMed

    Shivaprasad, Channabasappa; Amit, Goel; Anish, Kolly; Rakesh, Boppana; Anupam, Biswas; Aiswarya, Yalamanchi

    2018-05-01

    To investigate the factors associated with abnormal electrochemical skin conductance (ESC) in patients with type 2 diabetes mellitus (T2D) and early diabetic peripheral neuropathy (DPN). We recruited 523 consecutive patients with T2D (median age: 50 [interquartile range: 16] years; median T2D duration: 4 [5] years). Sudomotor dysfunction was defined as an ESC <60 µS, and DPN as a neuropathy disability score (NDS) ≥6. Logistic regression was performed to determine the predictors of sudomotor dysfunction in patients with DPN. The prevalence of sudomotor dysfunction was 29% for all patients and 84.5% for patients with DPN. A significant negative correlation was observed between the NDS and ESC measurements (r = -0.52, p < 0.0001). In the univariate analysis, abnormal ESC measures were associated with age, diabetes duration, glycated hemoglobin, diabetic retinopathy, insulin therapy, and foot abnormalities. In the multivariate analysis, ESC abnormalities were associated with age, diabetes duration, glycated hemoglobin levels, insulin therapy, and foot deformities. There was a robust association between foot deformities and abnormal ESC (p = 0.049; odds ratio = 16.02) in patients with DPN. Sudomotor dysfunction is highly prevalent in patients with T2D, especially in those with DPN. Various diabetes-related factors were linked to lower ESC values, indicating an association between chronic hyperglycemia and sudomotor function. We also observed a strong relationship between foot deformities and ESC abnormalities. We conclude that the factors associated with DPN are also relevant to sudomotor dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Cats with diabetes mellitus have diastolic dysfunction in the absence of structural heart disease.

    PubMed

    Pereira, N J; Novo Matos, J; Baron Toaldo, M; Bartoszuk, U; Summerfield, N; Riederer, A; Reusch, C; Glaus, T M

    2017-07-01

    Diabetes mellitus (DM) can result in cardiovascular dysfunction and heart failure characterized by diastolic dysfunction with or without the presence of systolic dysfunction in people and laboratory animals. The objective of this prospective study was to determine if cats with newly diagnosed DM had myocardial dysfunction and, if present, whether it would progress if appropriate antidiabetic therapy was commenced. Thirty-two diabetic cats were enrolled and received baseline echocardiographic examination; of these, 15 cats were re-examined after 6 months. Ten healthy age- and weight-matched cats served as controls. Diabetic cats at diagnosis showed decreased diastolic, but not systolic function, when compared to healthy controls, with lower mitral inflow E wave (E) and E/E' than controls. After 6 months, E and E/IVRT' decreased further in diabetic cats compared to the baseline evaluation. After excluding cats whose DM was in remission at 6 months, insulin-dependent diabetic cats had lower E, E/A and E' than controls. When classifying diastolic function according to E/A and E'/A', there was shift towards impaired relaxation patterns at 6 months. All insulin-dependent diabetic cats at 6 months had abnormal diastolic function. These results indicate that DM has similar effects on diastolic function in feline and human diabetics. The dysfunction seemed to progress rather than to normalize after 6 months, despite antidiabetic therapy. In cats with pre-existing heart disease, the development of DM could represent an important additional health risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Insulin deprivation induces PP2A inhibition and tau hyperphosphorylation in hTau mice, a model of Alzheimer’s disease-like tau pathology

    PubMed Central

    Gratuze, Maud; Julien, Jacinthe; Petry, Franck R.; Morin, Françoise; Planel, Emmanuel

    2017-01-01

    Abnormally hyperphosphorylated tau aggregated as intraneuronal neurofibrillary tangles is one of the two neuropathological hallmarks of Alzheimer’s disease (AD). The majority of AD cases are sporadic with numerous environmental, biological and genetic risks factors. Interestingly, insulin dysfunction and hyperglycaemia are both risk factors for sporadic AD. However, how hyperglycaemia and insulin dysfunction affect tau pathology, is not well understood. In this study, we examined the effects of insulin deficiency on tau pathology in transgenic hTau mice by injecting different doses of streptozotocin (STZ), a toxin that destroys insulin-producing cells in the pancreas. One high dose of STZ resulted in marked diabetes, and five low doses led to a milder diabetes. Both groups exhibited brain tau hyperphosphorylation but no increased aggregation. Tau hyperphosphorylation correlated with inhibition of Protein Phosphatase 2A (PP2A), the main tau phosphatase. Interestingly, insulin injection 30 minutes before sacrifice partially restored tau phosphorylation to control levels in both STZ-injected groups. Our results confirm a link between insulin homeostasis and tau phosphorylation, which could explain, at least in part, a higher incidence of AD in diabetic patients. PMID:28402338

  2. The effect of glucose on insulin release and ion movements in isolated pancreatic islets of rats in old age.

    PubMed Central

    Ammon, H P; Fahmy, A; Mark, M; Wahl, M A; Youssif, N

    1987-01-01

    1. The effect of glucose on 86Rb+ efflux, 45Ca2+ net uptake and insulin secretion of pancreatic islets from 3- and 24-month-old rats was studied. 2. Raising the glucose concentration from 3 to 5.6 and 16.7 mM had no effect on 86Rb+ efflux from islets of 24-month-old male rats whereas that from 24-month-old female rats was decreased. 3. At 16.7 mM-glucose, net uptake of 45Ca2+ was significantly diminished in islets of 24-month-old rats compared to islets of 3-month-old rats. 4. In the presence of 16.7 mM-glucose, islets of 24-month-old rats exhibited only 60-70% of the insulin release obtained with islets from 3-month-old rats. 5. Neither net uptake of 45Ca2+ nor insulin secretion appear to differ between the sexes. 6. These data suggest that the decreased insulin secretory response to glucose during old age is due, at least in part, to inadequate inhibition of K+ efflux and diminished net uptake of Ca2+. PMID:3309262

  3. Relationship between insulin resistance and tissue blood flow in preeclampsia.

    PubMed

    Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J

    2015-05-01

    Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P < 0.001). Fasting insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P < 0.001 for both variables). There were significant inverse correlations between resting calf blood flow and fasting insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.

  4. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus

    PubMed Central

    Zhang, Yuehui; Sun, Xue; Sun, Xiaoyan; Meng, Fanci; Hu, Min; Li, Xin; Li, Wei; Wu, Xiao-Ke; Brännström, Mats; Shao, Ruijin; Billig, Håkan

    2016-01-01

    Peripheral insulin resistance and hyperandrogenism are the primary features of polycystic ovary syndrome (PCOS). However, how insulin resistance and hyperandrogenism affect uterine function and contribute to the pathogenesis of PCOS are open questions. We treated rats with insulin alone or in combination with human chorionic gonadotropin (hCG) and showed that peripheral insulin resistance and hyperandrogenism alter uterine morphology, cell phenotype, and cell function, especially in glandular epithelial cells. These defects are associated with an aberration in the PI3K/Akt signaling pathway that is used as an indicator for the onset of insulin resistance in classical metabolic tissues. Concomitantly, increased GSK3β (Ser-9) phosphorylation and decreased ERK1/2 phosphorylation in rats treated with insulin and hCG were also observed. We also profiled the expression of glucose transporter (Glut) isoform genes in the uterus under conditions of insulin resistance and/or hyperandrogenism. Finally, we determined the expression pattern of glycolytic enzymes and intermediates during insulin resistance and hyperandrogenism in the uterus. These findings suggest that the PI3K/Akt and MAPK/ERK signaling pathways play a role in the onset of uterine insulin resistance, and they also suggest that changes in specific Glut isoform expression and alterations to glycolytic metabolism contribute to the endometrial dysfunction observed in PCOS patients. PMID:27461373

  5. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    PubMed

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  6. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    PubMed

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  7. Non-alcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in essential hypertension.

    PubMed

    Fallo, F; Dalla Pozza, A; Sonino, N; Lupia, M; Tona, F; Federspil, G; Ermani, M; Catena, C; Soardo, G; Di Piazza, L; Bernardi, S; Bertolotto, M; Pinamonti, B; Fabris, B; Sechi, L A

    2009-11-01

    Insulin resistance is recognized as the pathophysiological hallmark of non-alcoholic fatty liver disease (NAFLD). A relation between insulin sensitivity and left ventricular morphology and function has been reported in essential hypertension, where a high prevalence of NAFLD has been recently found. We investigated the inter-relationship between left ventricular morphology/function, metabolic parameters and NAFLD in 86 never-treated essential hypertensive patients subdivided in two subgroups according to the presence (n = 48) or absence (n = 38) of NAFLD at ultrasonography. The two groups were similar as to sex, age and blood pressure levels. No patient had diabetes mellitus, obesity, hyperlipidemia, or other risk factors for liver disease. Body mass index, waist circumference, triglycerides, glucose, insulin, homeostasis model of assessment index for insulin resistance (HOMA-IR), aspartate aminotransferase and alanine aminotransferase were higher and adiponectin levels were lower in patients with NAFLD than in patients without NAFLD, and were associated with NAFLD at univariate analysis. Patients with NAFLD had similar prevalence of left ventricular hypertrophy compared to patients without NAFLD, but a higher prevalence of diastolic dysfunction (62.5 vs 21.1%, P < 0.001), as defined by E/A ratio <1 and E-wave deceleration time >220 ms. Diastolic dysfunction (P = 0.040) and HOMA-IR (P = 0.012) remained independently associated with NAFLD at backward multivariate analysis. Non-alcoholic fatty liver disease was associated with insulin resistance and abnormalities of left ventricular diastolic function in a cohort of patients with essential hypertension, suggesting a concomitant increase of metabolic and cardiac risk in this condition.

  8. Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells.

    PubMed

    Wu, Xin-Sheng; Elias, Sharon; Liu, Huisheng; Heureaux, Johanna; Wen, Peter J; Liu, Allen P; Kozlov, Michael M; Wu, Ling-Gang

    2017-12-05

    Endocytosis generates spherical or ellipsoid-like vesicles from the plasma membrane, which recycles vesicles that fuse with the plasma member during exocytosis in neurons and endocrine secretory cells. Although tension in the plasma membrane is generally considered to be an important factor in regulating endocytosis, whether membrane tension inhibits or facilitates endocytosis remains debated in the endocytosis field, and has been rarely studied for vesicular endocytosis in secretory cells. Here we report that increasing membrane tension by adjusting osmolarity inhibited both the rapid (a few seconds) and slow (tens of seconds) endocytosis in calyx-type nerve terminals containing conventional active zones and in neuroendocrine chromaffin cells. We address the mechanism of this phenomenon by computational modeling of the energy barrier that the system must overcome at the stage of membrane budding by an assembling protein coat. We show that this barrier grows with increasing tension, which may slow down or prevent membrane budding. These results suggest that in live secretory cells, membrane tension exerts inhibitory action on endocytosis. Published by Elsevier Inc.

  9. Novel remodeling of the mouse heart mitochondrial proteome in response to acute insulin stimulation

    PubMed Central

    Pedersen, Brian A; Yazdi, Puya G; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Wang, Ping H

    2015-01-01

    Mitochondrial dysfunction contributes to the pathophysiology of diabetic cardiomyopathy. The aim of this study was to investigate the acute changes in the mitochondrial proteome in response to insulin stimulation. Cardiac mitochondria from C57BL/6 mice after insulin stimulation were analyzed using two-dimensional fluorescence difference gel electrophoresis. MALDI-TOF MS/MS was utilized to identify differences. Two enzymes involved in metabolism and four structural proteins were identified. Succinyl-CoA ligase [ADP forming] subunit beta was identified as one of the differentially regulated proteins. Upon insulin stimulation, a relatively more acidic isoform of this protein was increased by 53% and its functional activity was decreased by ∼32%. This proteomic remodeling in response to insulin stimulation may play an important role in the normal and diabetic heart. PMID:26610654

  10. Insulin use, adipokine profiles and breast cancer prognosis.

    PubMed

    Wintrob, Zachary A P; Hammel, Jeffrey P; Khoury, Thaer; Nimako, George K; Fu, Hsin-Wei; Fayazi, Zahra S; Gaile, Dan P; Forrest, Alan; Ceacareanu, Alice C

    2017-01-01

    Type-2 diabetes mellitus (T2DM) and breast cancer (BC) share common cytokine signaling changes resultant from adipose tissue dysfunction. This modified adipokine signaling was shown to be directly associated with changes in the body mass index (BMI) and diet and it is expected to also be influenced by T2DM pharmacotherapy. We evaluated the relationship between pre-existing diabetes treatment, circulating adipokine levels at cancer diagnosis, and long-term outcomes. All incident BC cases were reviewed (01/01/2003-12/31/2009, N=2194). Each of the subjects with baseline T2DM (cases) was matched with two other subjects without T2DM (controls) based on the following criteria: age, BMI, ethnicity, menopausal status and tumor stage. All cases and controls with available baseline plasma and tumor biopsies, and being surgery and BC treatment naïve, were included (N 1 =97, N 2 =194). Clinical history and vital status were documented. Adipokine levels (adiponectin, leptin, TNF-α, CRP, IL-1β, IL-1Ra, IL-6, and C-peptide) were assessed by either ELISA or Luminex® assays. Cancer outcomes were assessed by Kaplan-Meier analysis; associations between categorical variables were assessed by Fisher's exact test, categorical and continuous variables by Kruskal-Wallis or Wilcoxon Rank-Sum test, where appropriate. Multivariate adjustments (MVP, multivariate p-value) were performed accounting for age, tumor stage, BMI, estrogen receptor (ER) status and cumulative comorbidity. All biomarker correlations were assessed by the Pearson method. Utilization of insulin and insulin secretagogues was associated with ER (-) phenotype (p=0.008, p=0.043) and poorer BC outcomes (p=0.012, p=0.033). Insulin users were found to have lower C-peptide and higher IL-6, TNF-α and CRP levels, of which elevated CRP and TNF-α were associated with poorer BC outcomes (p=0.003, MVP=0.210). Insulin remarked by higher leptin levels as compared to controls (p=0.052), but did not differ significantly from non

  11. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose

    PubMed Central

    Gitelman, Steven; DiMeglio, Linda A.; Boulware, David; Greenbaum, Carla J.

    2016-01-01

    OBJECTIVE We aimed to describe the natural history of residual insulin secretion in Type 1 Diabetes TrialNet participants over 4 years from diagnosis and relate this to previously reported alternative clinical measures reflecting β-cell secretory function. RESEARCH DESIGN AND METHODS Data from 407 subjects from 5 TrialNet intervention studies were analyzed. All subjects had baseline stimulated C-peptide values of ≥0.2 nmol/L from mixed-meal tolerance tests (MMTTs). During semiannual visits, C-peptide values from MMTTs, HbA1c, and insulin doses were obtained. RESULTS The percentage of individuals with stimulated C-peptide of ≥0.2 nmol/L or detectable C-peptide of ≥0.017 nmol/L continued to diminish over 4 years; this was markedly influenced by age. At 4 years, only 5% maintained their baseline C-peptide secretion. The expected inverse relationships between C-peptide and HbA1c or insulin doses varied over time and with age. Combined clinical variables, such as insulin-dose adjusted HbA1c (IDAA1C) and the relationship of IDAA1C to C-peptide, also were influenced by age and time from diagnosis. Models using these clinical measures did not fully predict C-peptide responses. IDAA1C ≤9 underestimated the number of individuals with stimulated C-peptide ≥0.2 nmol/L, especially in children. CONCLUSIONS Current trials of disease-modifying therapy for type 1 diabetes should continue to use C-peptide as a primary end point of β-cell secretory function. Longer duration of follow-up is likely to provide stronger evidence of the effect of disease-modifying therapy on preservation of β-cell function. PMID:27422577

  12. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  13. Effect of metabolic abnormalities on endothelial dysfunction in normotensive offspring of subject with hypertension.

    PubMed

    Žižek, B; Žižek, D; Bedenčič, K; Jerin, A; Poredoš, P

    2013-08-01

    Essential hypertension (EH) is often accompanied by hyperinsulinemia/insulin resistance (IR) and deranged adiponectin secretion. IR may in turn be associated with endothelial dysfunction and increased levels of asymmetric dimethylarginine (ADMA). Therefore, we aimed to determine metabolic abnormalities in normotensive offspring of subjects with essential hypertension (familial trait-FT) and to examine their relations to endothelium-dependent vasodilation of the brachial artery (BA). We included 77 subjects, 38 were normotensive individuals with FT aged 28-39 (mean 33) years and 39 age-matched Controls without FT. Insulin, adiponectin and ADMA plasma levels were determined by radioimmunoassay. Using high-resolution ultrasound, BA diameters at rest and during reactive hyperemia (flow-mediated dilation-FMD) were measured. Subjects with FT had higher insulin and lower adiponectin levels than controls (13.65±6.70 vs. 7.09±2.20 mE/L; P<0.001 and 13.60±5.98 vs. 17.27±7.17 mg/L respectively; P<0.05). Insulin and adiponectin levels were negatively interrelated (r=-0.33, P=0.003). ADMA levels were comparable in both groups. The study group had worse FMD than Controls (6.11±3.28 vs. 10.20±2.07%; P<0.001). IR was independently associated with FMD (partial R2=0.23, P<0.001). Increased insulin and decreased adiponectin levels along with endothelial dysfunction are present in normotensive subjects with FT. IR and hypoadiponectinemia are interrelated, but only hyperinsulinemia has an independent adverse influence on endothelial function. Results of our study did not confirm the role of ADMA in pathogenesis of evolving hypertension.

  14. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus.

    PubMed

    Yarimizu, Tohru; Nakamura, Mikiko; Hoshida, Hisashi; Akada, Rinji

    2015-02-14

    Targeting of cellular proteins to the extracellular environment is directed by a secretory signal sequence located at the N-terminus of a secretory protein. These signal sequences usually contain an N-terminal basic amino acid followed by a stretch containing hydrophobic residues, although no consensus signal sequence has been identified. In this study, simple modeling of signal sequences was attempted using Gaussia princeps secretory luciferase (GLuc) in the yeast Kluyveromyces marxianus, which allowed comprehensive recombinant gene construction to substitute synthetic signal sequences. Mutational analysis of the GLuc signal sequence revealed that the GLuc hydrophobic peptide length was lower limit for effective secretion and that the N-terminal basic residue was indispensable. Deletion of the 16th Glu caused enhanced levels of secreted protein, suggesting that this hydrophilic residue defined the boundary of a hydrophobic peptide stretch. Consequently, we redesigned this domain as a repeat of a single hydrophobic amino acid between the N-terminal Lys and C-terminal Glu. Stretches consisting of Phe, Leu, Ile, or Met were effective for secretion but the number of residues affected secretory activity. A stretch containing sixteen consecutive methionine residues (M16) showed the highest activity; the M16 sequence was therefore utilized for the secretory production of human leukemia inhibitory factor protein in yeast, resulting in enhanced secreted protein yield. We present a new concept for the provision of secretory signal sequence ability in the yeast K. marxianus, determined by the number of residues of a single hydrophobic residue located between N-terminal basic and C-terminal acidic amino acid boundaries.

  15. Conserved Insulin Signaling in the Regulation of Oocyte Growth, Development, and Maturation

    PubMed Central

    DAS, DEBABRATA; ARUR, SWATHI

    2017-01-01

    Insulin signaling regulates various aspects of physiology, such as glucose homeostasis and aging, and is a key determinant of female reproduction in metazoans. That insulin signaling is crucial for female reproductive health is clear from clinical data linking hyperinsulinemic and hypoinsulinemic condition with certain types of ovarian dysfunction, such as altered steroidogenesis, polycystic ovary syndrome, and infertility. Thus, understanding the signaling mechanisms that underlie the control of insulin-mediated ovarian development is important for the accurate diagnosis of and intervention for female infertility. Studies of invertebrate and vertebrate model systems have revealed the molecular determinants that transduce insulin signaling as well as which biological processes are regulated by the insulin-signaling pathway. The molecular determinants of the insulin-signaling pathway, from the insulin receptor to its downstream signaling components, are structurally and functionally conserved across evolution, from worms to mammals – yet, physiological differences in signaling still exist. Insulin signaling acts cooperatively with gonadotropins in mammals and lower vertebrates to mediate various aspects of ovarian development, mainly owing to evolution of the endocrine system in vertebrates. In contrast, insulin signaling in Drosophila and Caenorhabditis elegans directly regulates oocyte growth and maturation. In this review, we compare and contrast insulin-mediated regulation of ovarian functions in mammals, lower vertebrates, C. elegans, and Drosophila, and highlight conserved signaling pathways and regulatory mechanisms in general while illustrating insulin’s unique role in specific reproductive processes. PMID:28379636

  16. Susceptibility to fatty acid-induced β-cell dysfunction is enhanced in prediabetic diabetes-prone biobreeding rats: a potential link between β-cell lipotoxicity and islet inflammation.

    PubMed

    Tang, Christine; Naassan, Anthony E; Chamson-Reig, Astrid; Koulajian, Khajag; Goh, Tracy T; Yoon, Frederick; Oprescu, Andrei I; Ghanim, Husam; Lewis, Gary F; Dandona, Paresh; Donath, Marc Y; Ehses, Jan A; Arany, Edith; Giacca, Adria

    2013-01-01

    β-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes. However, no study has examined its role in type 1 diabetes, which could be clinically relevant for slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent with the hypothesis that lipid and cytokine toxicity may be synergistic. Thus, β-cell lipotoxicity could be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of prolonged free fatty acids elevation on β-cell secretory function in the prediabetic diabetes-prone BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate free fatty acid levels ~2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo. IH significantly decreased β-cell function, assessed both by the disposition index (insulin secretion corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF, rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH significantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infiltration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was permissive for IH-induced β-cell dysfunction in the BB rat, which suggests a link between β-cell lipotoxicity and islet inflammation.

  17. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats

    PubMed Central

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S.; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training

  18. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats.

    PubMed

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO 2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO 2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training

  19. Copper trafficking to the secretory pathway

    PubMed Central

    Lutsenko, Svetlana

    2017-01-01

    Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing – all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a “skeleton” that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed. PMID:27603756

  20. The effects of coenzyme Q10 treatment on maternally inherited diabetes mellitus and deafness, and mitochondrial DNA 3243 (A to G) mutation.

    PubMed

    Suzuki, S; Hinokio, Y; Ohtomo, M; Hirai, M; Hirai, A; Chiba, M; Kasuga, S; Satoh, Y; Akai, H; Toyota, T

    1998-05-01

    The characteristic clinical features of diabetes mellitus with mitochondrial DNA (mtDNA) 3243(A-G) mutation are progressive insulin secretory defect, neurosensory deafness and maternal inheritance, referred to as maternally inherited diabetes mellitus and deafness (MIDD). A treatment for MIDD to improve insulin secretory defects and reduce deafness has not been established. The effects of coenzyme Q10 (CoQ10) treatment on insulin secretory response, hearing capacity and clinical symptoms of MIDD were investigated. 28 MIDD patients (CoQ10-DM), 7 mutant subjects with impaired glucose tolerance (IGT), and 15 mutant subjects with normal glucose tolerance (NGT) were treated daily with oral administration of 150 mg of CoQ10 for 3 years. Insulin secretory response, blood lactate after exercise, hearing capacity and other laboratory examinations were investigated every year. In the same way we evaluated 16 MIDD patients (control-DM), 5 mutant IGT and 5 mutant NGT subjects in yearly examinations. The insulin secretory response assessed by glucagon-induced C-peptide secretion and 24 h urinary C-peptide excretion after 3 years in the CoQ10-DM group was significantly higher than that in the control-DM group. CoQ10 therapy prevented progressive hearing loss and improved blood lactate after exercise in the MIDD patients. CoQ10 treatment did not affect the diabetic complications or other clinical symptoms of MIDD patients. CoQ10 treatment did not affect the insulin secretory capacity of the mutant IGT and NGT subjects. There were no side effects during therapy. This is the first report demonstrating the therapeutic usefulness of CoQ10 on MIDD.

  1. Decoration of intramyocellular lipid droplets with PLIN5 modulates fasting-induced insulin resistance and lipotoxicity in humans.

    PubMed

    Gemmink, Anne; Bosma, Madeleen; Kuijpers, Helma J H; Hoeks, Joris; Schaart, Gert; van Zandvoort, Marc A M J; Schrauwen, Patrick; Hesselink, Matthijs K C

    2016-05-01

    In contrast to insulin-resistant individuals, insulin-sensitive athletes possess high intramyocellular lipid content (IMCL), good mitochondrial function and high perilipin 5 (PLIN5) levels, suggesting a role for PLIN5 in benign IMCL storage. We hypothesised a role for PLIN5 in modulating fasting-mediated insulin resistance. Twelve men were fasted for 60 h, before and after which muscle biopsies were taken and stained for lipid droplets (LDs), PLIN5 and laminin. Confocal microscopy images were analysed for LD size, number, PLIN5 association and subcellular distribution. Fasting elevated IMCL content 2.8-fold and reduced insulin sensitivity (by 55%). Individuals with the most prominent increase in IMCL showed the least reduction in insulin sensitivity (r = 0.657; p = 0.028) and mitochondrial function (r = 0.896; p = 0.006). During fasting, PLIN5 gene expression or PLIN5 protein content in muscle homogenates was unaffected, microscopy analyses revealed that the fraction of PLIN5 associated with LDs (PLIN5+) increased significantly (+26%) upon fasting, suggesting PLIN5 redistribution. The significant increase in LD number (+23%) and size (+23%) upon fasting was entirely accounted for by PLIN5+ LDs, not by LDs devoid of PLIN5. Also the association between IMCL storage capacity and insulin resistance and mitochondrial dysfunction was only apparent for PLIN5+ LDs. Fasting results in subcellular redistribution of PLIN5 and promotes the capacity to store excess fat in larger and more numerous PLIN5-decorated LDs. This associates with blunting of fasting-induced insulin resistance and mitochondrial dysfunction, suggesting a role for PLIN5 in the modulation of fasting-mediated lipotoxicity. trialregister.nl NTR 2042.

  2. Intracranial pancreatic islet transplantation increases islet hormone expression in the rat brain and attenuates behavioral dysfunctions induced by MK-801 (dizocilpine).

    PubMed

    Bloch, Konstantin; Gil-Ad, Irit; Tarasenko, Igor; Vanichkin, Alexey; Taler, Michal; Hornfeld, Shay Henry; Vardi, Pnina; Weizman, Abraham

    2015-06-01

    The treatment of rodents with non-competitive antagonist of the N-Methyl-D-aspartate (NMDA) receptor, MK-801 (dizocilpine), induces symptoms of psychosis, deficits in spatial memory and impairment of synaptic plasticity. Recent studies have suggested that insulin administration might attenuate the cognitive dysfunctions through the modulatory effect on the expression of NMDA receptors and on the brain insulin signaling. Intrahepatic pancreatic islet transplantation is known as an efficient tool for correcting impaired insulin signaling. We examined the capacity of syngeneic islets grafted into the cranial subarachnoid cavity to attenuate behavioral dysfunctions in rats exposed to MK-801. Animals were examined in the open field (OF) and the Morris Water Maze (MWM) tests following acute or subchronic administration of MK-801. We found well-vascularized grafted islets expressing insulin, glucagon and somatostatin onto the olfactory bulb and prefrontal cortex. Significantly higher levels of insulin were detected in the hippocampus and prefrontal cortex of transplanted animals compared to the non-transplanted rats. All animals expressed normal peripheral glucose homeostasis for two months after transplantation. OF tests revealed that rats exposed to MK-801 treatment, showed hyper-responsiveness in motility parameters and augmented center field exploration compared to intact controls and these effects were attenuated by the grafted islets. Moreover, in the MWM, the rats treated with MK-801 showed impairment of spatial memory that were partially corrected by the grafted islets. In conclusion, intracranial islet transplantation leads to the expression of islet hormones in the brain and attenuates behavioral and cognitive dysfunctions in rats exposed to MK-801 administration without altering the peripheral glucose homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Evaluation of sexual dysfunction in women with type 2 diabetes

    PubMed Central

    Vafaeimanesh, Jamshid; Raei, Mehdi; Hosseinzadeh, Fatemeh; Parham, Mahmoud

    2014-01-01

    Background: Sexual dysfunction is a common complication of diabetes that adversely affects their quality of life. Its prevalence is known to be higher in diabetic men with and it is estimated to affect 20-85% of patients but the problem is probably less common in diabetic women. This study investigated the prevalence of sexual dysfunction and its risk factors among women with diabetes. Materials and Methods: This descriptive-analytic study was performed during May 2012 to Feb 2013 at Diabetes clinic of Shahid Beheshti Hospital of Qom and The Female Sexual Function Index (FSFI) was used for evaluation of sexual dysfunction. Conclusion: In this study, 59 (53.6%) women had sexual dysfunction. The mean age of patients with sexual dysfunction and healthy people was 48.22 ± 6.61 and 48.14 ± 5.37 years respectively and it was not statistically different in both groups (P = 0.94). Also, there was no significant difference between two groups in average duration of diabetes, fasting blood sugar (FBS), glycosylated hemoglobin (HbA1c) level, insulin resistance, abdominal circumference and body mass index BMI. Although the history of hypertension, coronary artery disease and exercise levels were not significantly associated with sexual dysfunction, but there was a significant association between albuminuria and sexual dysfunction (P = 0.001). Retinopathy and sexual dysfunction had statistically significant relationship (P = 0.007) while no association was found between diabetic neuropathy and sexual dysfunction (P = 0.79). Results: Sexual dysfunction is a common complication in diabetic patients which accompanies with some complications of diabetes and should be considered especially in patients with nephropathy or retinopathy. PMID:24741512

  4. Hypothalamic-pituitary dysfunction following traumatic brain injury affects functional improvement during acute inpatient rehabilitation.

    PubMed

    Rosario, Emily R; Aqeel, Rubina; Brown, Meghan A; Sanchez, Gabriel; Moore, Colleen; Patterson, David

    2013-01-01

    To evaluate the occurrence of hypothalamic-pituitary dysfunction following a traumatic brain injury (TBI) and to determine its effect on functional improvement in acute inpatient rehabilitation. A retrospective chart review identified male patients with a primary diagnosis of TBI with or without a skull fracture, an onset date within 6 months prior to admission, and were 16 years of age or older. The percentage of individuals in this population with abnormal hormone levels was determined on the basis of the established normal reference range for each hormone assay. The functional independence measure, which assesses functional outcomes in acute inpatient rehabilitation, was used to examine the relationship between hormone levels and functional improvement. Hypothalamic-pituitary dysfunction was identified in nearly 70% of men following TBI. Hypogonadism, or low testosterone levels, was observed in 66% of the patients, followed by low levels of free T4 in 46% and low levels of insulin growth factor-1 in 26% of patients. Hypopituitarism associated with impaired functional recovery. Specifically, the functional independence measure change per day was significantly lower in patients with low levels of testosterone and insulin growth factor-1. These findings suggest the importance of testosterone and insulin growth factor-1 activity in the early stages of physical and cognitive rehabilitation.

  5. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes.

    PubMed

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G; Spek, C Arnold; Rowshani, Ajda T; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P; Rezaee, Farhad

    2015-03-06

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  6. Lipid droplets hypertrophy: a crucial determining factor in insulin regulation by adipocytes

    NASA Astrophysics Data System (ADS)

    Sanjabi, Bahram; Dashty, Monireh; Özcan, Behiye; Akbarkhanzadeh, Vishtaseb; Rahimi, Mehran; Vinciguerra, Manlio; van Rooij, Felix; Al-Lahham, Saad; Sheedfar, Fareeba; van Kooten, Theo G.; Spek, C. Arnold; Rowshani, Ajda T.; van der Want, Johannes; Klaassen, Rene; Sijbrands, Eric; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2015-03-01

    Lipid droplets (LDs) hypertrophy in adipocytes is the main cause of energy metabolic system dysfunction, obesity and its afflictions such as T2D. However, the role of adipocytes in linking energy metabolic disorders with insulin regulation is unknown in humans. Human adipocytes constitutively synthesize and secrete insulin, which is biologically functional. Insulin concentrations and release are fat mass- and LDs-dependent respectively. Fat reduction mediated by bariatric surgery repairs obesity-associated T2D. The expression of genes, like PCSK1 (proinsulin conversion enzyme), GCG (Glucagon), GPLD1, CD38 and NNAT, involved in insulin regulation/release were differentially expressed in pancreas and adipose tissue (AT). INS (insulin) and GCG expression reduced in human AT-T2D as compared to AT-control, but remained unchanged in pancreas in either state. Insulin levels (mRNA/protein) were higher in AT derived from prediabetes BB rats with destructed pancreatic β-cells and controls than pancreas derived from the same rats respectively. Insulin expression in 10 human primary cell types including adipocytes and macrophages is an evidence for extrapancreatic insulin-producing cells. The data suggest a crosstalk between AT and pancreas to fine-tune energy metabolic system or may minimize the metabolic damage during diabetes. This study opens new avenues towards T2D therapy with a great impact on public health.

  7. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    PubMed Central

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-01-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens. Images Fig. 1 a and b. Fig. 2 a and b. Fig. 3 a and b. Fig. 4 a and b. Fig. 5 a and b. Fig. 6 a and b. Fig. 7 a and b. Fig. 8 a and b. PMID:6804070

  8. The Contribution of Singlet Oxygen to Insulin Resistance

    PubMed Central

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses. PMID:29081894

  9. The Contribution of Singlet Oxygen to Insulin Resistance.

    PubMed

    Onyango, Arnold N

    2017-01-01

    Insulin resistance contributes to the development of diabetes and cardiovascular dysfunctions. Recent studies showed that elevated singlet oxygen-mediated lipid peroxidation precedes and predicts diet-induced insulin resistance (IR), and neutrophils were suggested to be responsible for such singlet oxygen production. This review highlights literature suggesting that insulin-responsive cells such as endothelial cells, hepatocytes, adipocytes, and myocytes also produce singlet oxygen, which contributes to insulin resistance, for example, by generating bioactive aldehydes, inducing endoplasmic reticulum (ER) stress, and modifying mitochondrial DNA. In these cells, nutrient overload leads to the activation of Toll-like receptor 4 and other receptors, leading to the production of both peroxynitrite and hydrogen peroxide, which react to produce singlet oxygen. Cytochrome P450 2E1 and cytochrome c also contribute to singlet oxygen formation in the ER and mitochondria, respectively. Endothelial cell-derived singlet oxygen is suggested to mediate the formation of oxidized low-density lipoprotein which perpetuates IR, partly through neutrophil recruitment to adipose tissue. New singlet oxygen-involving pathways for the formation of IR-inducing bioactive aldehydes such as 4-hydroperoxy-(or hydroxy or oxo)-2-nonenal, malondialdehyde, and cholesterol secosterol A are proposed. Strategies against IR should target the singlet oxygen-producing pathways, singlet oxygen quenching, and singlet oxygen-induced cellular responses.

  10. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2017-05-09

    Brain insulin sensitivity is an important link between metabolism and cognitive dysfunction. Intranasal insulin is a promising tool to investigate central insulin action in humans. We evaluated the acute effects of 160 U intranasal insulin on resting-state brain functional connectivity in healthy young adults. Twenty-five lean and twenty-two overweight and obese participants underwent functional magnetic resonance imaging, on two separate days, before and after intranasal insulin or placebo application. Insulin compared to placebo administration resulted in increased functional connectivity between the prefrontal regions of the default-mode network and the hippocampus as well as the hypothalamus. The change in hippocampal functional connectivity significantly correlated with visceral adipose tissue and the change in subjective feeling of hunger after intranasal insulin. Mediation analysis revealed that the intranasal insulin induced hippocampal functional connectivity increase served as a mediator, suppressing the relationship between visceral adipose tissue and hunger. The insulin-induced hypothalamic functional connectivity change showed a significant interaction with peripheral insulin sensitivity. Only participants with high peripheral insulin sensitivity showed a boost in hypothalamic functional connectivity. Hence, brain insulin action may regulate eating behavior and facilitate weight loss by modifying brain functional connectivity within and between cognitive and homeostatic brain regions.

  11. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.

  12. Missing secretory granules, dilated endoplasmic reticulum, and nuclear dislocation in the thyroid gland of rdw rats with hereditary dwarfism.

    PubMed

    Sakai, Y; Yamashina, S; Furudate, S I

    2000-05-01

    Previous studies on the rdw rat have suggested that its dwarfism is caused primarily by dysfunction of the thyroid gland. In this study, rat thyroid glands were analyzed endocrinologically and morphologically to clarify the primary cause of dwarfism in the rdw rat. The rdw rat showed lowered thyroid hormone (T4 and T3) levels but elevated TSH in serum. The rdw thyroid gland was almost proportional in size and it was not goiter in gross inspection. Our histological investigation produced three results that may lend important evidence in understanding the problem in the thyroid gland of rdw rats. First of all, secretory granules could not be detected in the follicular epithelial cells of the rdw. Secondly, thyroglobulin was found at very low levels in the follicular lumen by immunohistochemical analysis. In contrast, it could be detected in a substantial quantity inside the dilated rER and in the huge vacuoles that are formed by swelling of the rough endoplasmic reticulum (rER) at the basal side of the follicular epithelial cells. Additionally, the nucleus of the follicular epithelial cells was pressed to the luminal side by the enlarged rER. These morphological changes would indicate that the transport of thyroglobulin is stopped at or before the formation of the secretory granules and thyroglobulin is not secreted into the follicular lumen. The rdw characterization strongly supports that rdw dwarfism is induced by hypothyroidism due to some defect(s) in the thyroid gland. Copyright 2000 Wiley-Liss, Inc.

  13. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity*

    PubMed Central

    Ramakrishnan, Sadeesh K.; Russo, Lucia; Ghanem, Simona S.; Patel, Payal R.; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M.

    2016-01-01

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα−/− null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα−/− mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. PMID:27662905

  14. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    PubMed Central

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  15. Imaging Ca2+-triggered exocytosis of single secretory granules on plasma membrane lawns from neuroendocrine cells.

    PubMed

    Lang, Thorsten

    2008-01-01

    This cell-free assay for exocytosis is particularly useful when spatial information about exocytotic sites and biochemical access to the plasma membrane within less than a minute is required. It is based on the study of plasma membrane lawns from secretory cells exhibiting secretory granules filled with neuropeptide Y-green fluorescent protein (NPY-GFP). The sample is prepared by subjecting NPY-GFP-expressing cells to a brief ultrasound pulse, leaving behind a basal, flat plasma membrane with fluorescent attached secretory organelles. These sheets can then be incubated in defined solutions with the benefit that complete solution changes can be achieved in less than 1 min. Individual secretory granules are monitored in the docked state and during exocytosis by video microscopy.

  16. Insulin and the polycystic ovary syndrome.

    PubMed

    Macut, Djuro; Bjekić-Macut, Jelica; Rahelić, Dario; Doknić, Mirjana

    2017-08-01

    Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy among women during reproductive age. PCOS is characterised by hyperandrogenaemia, hyperinsulinaemia, and deranged adipokines secretion from the adipose tissue. In addition to the reduced insulin sensitivity, PCOS women exhibit β-cell dysfunction as well. Low birth weight and foetal exposure to androgens may contribute to the development of the PCOS phenotype during life. Further metabolic complications lead to dyslipidaemia, worsening obesity and glucose tolerance, high prevalence of metabolic syndrome, and greater susceptibility to diabetes. PCOS women show age-related existence of hypertension, and subtle endothelial and vascular changes. Adverse reproductive outcomes include anovulatory infertility, and unrecognised potentiation of the hormone-dependent endometrial cancer. The main therapeutic approach is lifestyle modification. Metformin is the primary insulin-sensitising drug to be used as an adjuvant therapy to lifestyle modification in patients with insulin resistance and impaired glucose tolerance, as well as in those referred to infertility treatment. Thiazolidinediones should be reserved for women intolerant of or refractory to metformin, while glucagon-like peptide 1 analogues has a potential therapeutic use in obese PCOS women. Randomised clinical trials and repetitive studies on different PCOS phenotypes for the preventive actions and therapeutic options are still lacking, though. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Insulin Sensitivity Measured With Euglycemic Clamp Is Independently Associated With Glomerular Filtration Rate in a Community-Based Cohort

    PubMed Central

    Nerpin, Elisabet; Risérus, Ulf; Ingelsson, Erik; Sundström, Johan; Jobs, Magnus; Larsson, Anders; Basu, Samar; Ärnlöv, Johan

    2008-01-01

    OBJECTIVE—To investigate the association between insulin sensitivity and glomerular filtration rate (GFR) in the community, with prespecified subgroup analyses in normoglycemic individuals with normal GFR. RESEARCH DESIGN AND METHODS—We investigated the cross-sectional association between insulin sensitivity (M/I, assessed using euglycemic clamp) and cystatin C–based GFR in a community-based cohort of elderly men (Uppsala Longitudinal Study of Adult Men [ULSAM], n = 1,070). We also investigated whether insulin sensitivity predicted the incidence of renal dysfunction at a follow-up examination after 7 years. RESULTS—Insulin sensitivity was directly related to GFR (multivariable-adjusted regression coefficient for 1-unit higher M/I 1.19 [95% CI 0.69–1.68]; P < 0.001) after adjusting for age, glucometabolic variables (fasting plasma glucose, fasting plasma insulin, and 2-h glucose after an oral glucose tolerance test), cardiovascular risk factors (hypertension, dyslipidemia, and smoking), and lifestyle factors (BMI, physical activity, and consumption of tea, coffee, and alcohol). The positive multivariable-adjusted association between insulin sensitivity and GFR also remained statistically significant in participants with normal fasting plasma glucose, normal glucose tolerance, and normal GFR (n = 443; P < 0.02). In longitudinal analyses, higher insulin sensitivity at baseline was associated with lower risk of impaired renal function (GFR <50 ml/min per 1.73 m2) during follow-up independently of glucometabolic variables (multivariable-adjusted odds ratio for 1-unit higher of M/I 0.58 [95% CI 0.40–0.84]; P < 0.004). CONCLUSIONS—Our data suggest that impaired insulin sensitivity may be involved in the development of renal dysfunction at an early stage, before the onset of diabetes or prediabetic glucose elevations. Further studies are needed in order to establish causality. PMID:18509205

  18. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  19. Proteomics of Dense Core Secretory Vesicles Reveal Distinct Protein Categories for Secretion of Neuroeffectors for Cell-Cell Communication

    PubMed Central

    Wegrzyn, Jill L.; Bark, Steven J.; Funkelstein, Lydiane; Mosier, Charles; Yap, Angel; Kazemi-Esfarjani, Parasa; La Spada, Albert; Sigurdson, Christina; O’Connor, Daniel T.; Hook, Vivian

    2010-01-01

    Regulated secretion of neurotransmitters and neurohumoural factors from dense core secretory vesicles provides essential neuroeffectors for cell-cell communication in the nervous and endocrine systems. This study provides comprehensive proteomic characterization of the categories of proteins in chromaffin dense core secretory vesicles that participate in cell-cell communication from the adrenal medulla. Proteomic studies were conducted by nano-HPLC Chip MS/MS tandem mass spectrometry. Results demonstrate that these secretory vesicles contain proteins of distinct functional categories consisting of neuropeptides and neurohumoural factors, protease systems, neurotransmitter enzymes and transporters, receptors, enzymes for biochemical processes, reduction/oxidation regulation, ATPases, protein folding, lipid biochemistry, signal transduction, exocytosis, calcium regulation, as well as structural and cell adhesion proteins. The secretory vesicle proteomic data identified 371 distinct proteins in the soluble fraction and 384 distinct membrane proteins, for a total of 686 distinct secretory vesicle proteins. Notably, these proteomic analyses illustrate the presence of several neurological disease-related proteins in these secretory vesicles, including huntingtin interacting protein, cystatin C, ataxin 7, and prion protein. Overall, these findings demonstrate that multiple protein categories participate in dense core secretory vesicles for production, storage, and secretion of bioactive neuroeffectors for cell-cell communication in health and disease. PMID:20695487

  20. Secretory pathway Ca2+/Mn2+-ATPase isoform 2 and lactation: specific localization of plasmalemmal and secretory pathway Ca2+ pump isoforms in the mammary gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faddy, Helen M.; Smart, Chanel E.; Xu, Ren

    2008-04-09

    The supply of calcium to the developing neonate via milk is an important physiological process. Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely mediated via the secretory pathway. However, recent studies suggest that a specific isoform of the plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during different stages of development. SPCA2 levels increased over 35 fold duringmore » lactation, while SPCA1 increased only a modest two fold. The potential importance of SPCA2 in lactation was also highlighted by its localization to luminal secretory cells of the mammary gland during lactation, while SPCA1 was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1 during lactation. Using the SCp2 mouse mammary epithelial cell 3D culture model, differences in the sub-cellular distribution of PMCA2 and PMCA1 were clear. These studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation, and link the recently characterized SPCA2 calcium pump to the supply of calcium into milk and the regulation of Golgi resident enzymes important in lactation. They also indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.« less

  1. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome.

    PubMed

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-07-01

    Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and

  2. "Non alcoholic fatty liver disease and eNOS dysfunction in humans".

    PubMed

    Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine

    2017-03-07

    NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.

  3. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    PubMed

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; <13.13 mIU ml -1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the

  5. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion.

    PubMed

    Rattanavichit, Yupaporn; Chukijrungroat, Natsasi; Saengsirisuwan, Vitoon

    2016-12-01

    The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT 1 R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr 989 (44%), Akt Ser 473 (30%), and AS160 Ser 588 (43%), and increases in insulin-stimulated IRS-1 Ser 307 (78%), JNK Thr 183 /Tyr 185 (69%), and p38 MAPK Thr 180 /Tyr 182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities. Copyright © 2016 the American Physiological Society.

  6. Amelogenins as Potential Buffers during Secretory-stage Amelogenesis

    PubMed Central

    Guo, J.; Lyaruu, D.M.; Takano, Y.; Gibson, C.W.; DenBesten, P.K.

    2015-01-01

    Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX-/-) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX-/- mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX-/- mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX-/- mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX-/- mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation. PMID:25535204

  7. Amelogenins as potential buffers during secretory-stage amelogenesis.

    PubMed

    Guo, J; Lyaruu, D M; Takano, Y; Gibson, C W; DenBesten, P K; Bronckers, A L J J

    2015-03-01

    Amelogenins are the most abundant protein species in forming dental enamel, taken to regulate crystal shape and crystal growth. Unprotonated amelogenins can bind protons, suggesting that amelogenins could regulate the pH in enamel in situ. We hypothesized that without amelogenins the enamel would acidify unless ameloblasts were buffered by alternative ways. To investigate this, we measured the mineral and chloride content in incisor enamel of amelogenin-knockout (AmelX(-/-)) mice and determined the pH of enamel by staining with methyl-red. Ameloblasts were immunostained for anion exchanger-2 (Ae2), a transmembrane pH regulator sensitive for acid that secretes bicarbonate in exchange for chloride. The enamel of AmelX(-/-) mice was 10-fold thinner, mineralized in the secretory stage 1.8-fold more than wild-type enamel and containing less chloride (suggesting more bicarbonate secretion). Enamel of AmelX(-/-) mice stained with methyl-red contained no acidic bands in the maturation stage as seen in wild-type enamel. Secretory ameloblasts of AmelX(-/-) mice, but not wild-type mice, were immunopositive for Ae2, and stained more intensely in the maturation stage compared with wild-type mice. Exposure of AmelX(-/-) mice to fluoride enhanced the mineral content in the secretory stage, lowered chloride, and intensified Ae2 immunostaining in the enamel organ in comparison with non-fluorotic mutant teeth. The results suggest that unprotonated amelogenins may regulate the pH of forming enamel in situ. Without amelogenins, Ae2 could compensate for the pH drop associated with crystal formation. © International & American Associations for Dental Research 2014.

  8. Hydrogel Microencapsulated Insulin-Secreting Cells Increase Keratinocyte Migration, Epidermal Thickness, Collagen Fiber Density, and Wound Closure in a Diabetic Mouse Model of Wound Healing.

    PubMed

    Aijaz, Ayesha; Faulknor, Renea; Berthiaume, François; Olabisi, Ronke M

    2015-11-01

    Wound healing is a hierarchical process of intracellular and intercellular signaling. Insulin is a potent chemoattractant and mitogen for cells involved in wound healing. Insulin's potential to promote keratinocyte growth and stimulate collagen synthesis in fibroblasts is well described. However, there currently lacks an appropriate delivery mechanism capable of consistently supplying a wound environment with insulin; current approaches require repeated applications of insulin, which increase the chances of infecting the wound. In this study, we present a novel cell-based therapy that delivers insulin to the wound area in a constant or glucose-dependent manner by encapsulating insulin-secreting cells in nonimmunogenic poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We evaluated cell viability and insulin secretory characteristics of microencapsulated cells. Glucose stimulation studies verified free diffusion of glucose and insulin through the microspheres, while no statistical difference in insulin secretion was observed between cells in microspheres and cells in monolayers. Scratch assays demonstrated accelerated keratinocyte migration in vitro when treated with microencapsulated cells. In excisional wounds on the dorsa of diabetic mice, microencapsulated RIN-m cells accelerated wound closure by postoperative day 7; a statistically significant increase over AtT-20ins-treated and control groups. Histological results indicated significantly greater epidermal thickness in both microencapsulated RIN-m and AtT-20ins-treated wounds. The results suggest that microencapsulation enables insulin-secreting cells to persist long enough at the wound site for a therapeutic effect and thereby functions as an effective delivery vehicle to accelerate wound healing.

  9. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/--IRS-1+/- Double Heterozygous (IR-IRS1dh) Mice.

    PubMed

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J

    2017-05-30

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR) +/- -insulin receptor substrate-1 (IRS-1) +/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  10. Regulated and constitutive protein targeting can be distinguished by secretory polarity in thyroid epithelial cells

    PubMed Central

    1991-01-01

    We have studied concurrent apical/basolateral and regulated/constitutive secretory targeting in filter-grown thyroid epithelial monolayers in vitro, by following the exocytotic routes of two newly synthesized endogenous secretory proteins, thyroglobulin (Tg) and p500. Tg is a regulated secretory protein as indicated by its acute secretory response to secretagogues. Without stimulation, pulse-labeled Tg exhibits primarily two kinetically distinct routes: less than or equal to 80% is released in an apical secretory phase which is largely complete by 6-10 h, with most of the remaining Tg retained in intracellular storage from which delayed apical discharge is seen. The rapid export observed for most Tg is unlikely to be because of default secretion, since its apical polarity is preserved even during the period (less than or equal to 10 h) when p500 is released basolaterally by a constitutive pathway unresponsive to secretagogues. p500 also exhibits a second, kinetically distinct secretory route: at chase times greater than 10 h, a residual fraction (less than or equal to 8%) of p500 is secreted with an apical preponderance similar to that of Tg. It appears that this fraction of p500 has failed to be excluded from the regulated pathway, which has a predetermined apical polarity. From these data we hypothesize that a targeting hierarchy may exist in thyroid epithelial cells such that initial sorting to the regulated pathway may be a way of insuring apical surface delivery from one of two possible exocytotic routes originating in the immature storage compartment. PMID:1991788

  11. Sorting of the neuroendocrine secretory protein Secretogranin II into the regulated secretory pathway: role of N- and C-terminal alpha-helical domains.

    PubMed

    Courel, Maïté; Vasquez, Michael S; Hook, Vivian Y; Mahata, Sushil K; Taupenot, Laurent

    2008-04-25

    Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.

  12. A nonchromatographic process for purification of secretory immunoglobulins from caprine whey.

    PubMed

    Matlschweiger, Alexander; Himmler, Gottfried; Linhart, Clemens; Harasek, Michael; Hahn, Rainer

    2017-05-01

    Secretory immunoglobulins are an important antibody class being primarily responsible for immunoprotection of mucosal surfaces. A simple, non-chromatographic purification process for secretory immunoglobulins from caprine whey was developed. In the first process step whey was concentrated 30-40-fold on a 500 kDa membrane, thereby increasing the purity from 3% to 15%. The second step consisted of a fractionated PEG precipitation, in which high molecular weight impurities were removed first and in the second stage the secretory immunoglobulins were precipitated, leaving a majority of the low molecular weight proteins in solution. The re-dissolved secretory immunoglobulin fraction had a purity of 43% which could then be increased to 72% by diafiltration at a volume exchange factor of 10. Further increase of purity was only possible at the expense of very high buffer consumption. If diafiltration was performed directly after ultrafiltration, followed by precipitation, the yield was higher but purity was only 54%. Overall, filtration performance was characterized by high concentration polarization, therefore process conditions were set to low trans-membrane pressure and moderate protein concentration. As such purity and to a lesser extent throughput were the major objectives rather than yield, since whey, as a by-product of the dairy industry, is a cheap raw material of almost unlimited supply. Ultra-/diafiltration performance was described well by correlations using dimensionless numbers. Compared with a theoretical model (Graetz/Leveque solution) the flux was slightly overestimated. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:642-653, 2017. © 2017 American Institute of Chemical Engineers.

  13. Selective Targeting of Proteins within Secretory Pathway for Endoplasmic Reticulum-associated Degradation

    PubMed Central

    Vecchi, Lara; Petris, Gianluca; Bestagno, Marco; Burrone, Oscar R.

    2012-01-01

    The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity. PMID:22523070

  14. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    PubMed

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Unremitting Cell Proliferation in the Secretory Phase of Eutopic Endometriosis

    PubMed Central

    Franco-Murillo, Yanira; Miranda-Rodríguez, José Antonio; Rendón-Huerta, Erika; Montaño, Luis F.; Cornejo, Gerardo Velázquez; Gómez, Lucila Poblano; Valdez-Morales, Francisco Javier; Gonzalez-Sanchez, Ignacio

    2014-01-01

    Objective: Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. Design: Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. Results: Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. Conclusion: Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways. PMID:25194152

  16. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    PubMed

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  17. The effect of insulin resistance and exercise on the percentage of CD16(+) monocyte subset in obese individuals.

    PubMed

    de Matos, Mariana A; Duarte, Tamiris C; Ottone, Vinícius de O; Sampaio, Pâmela F da M; Costa, Karine B; de Oliveira, Marcos F Andrade; Moseley, Pope L; Schneider, Suzanne M; Coimbra, Cândido C; Brito-Melo, Gustavo E A; Magalhães, Flávio de C; Amorim, Fabiano T; Rocha-Vieira, Etel

    2016-06-01

    inflammatory dysfunction in obesity. The effect of obesity on the percentage of monocytes was previously observed in class II and III obese individuals who presented other alterations in addition to insulin resistance. In this study we observed that insulin-resistant obese individuals, but not insulin-sensitive ones, had an increased percentage of CD14(+) CD16(+) monocytes. This fact shows that a dysfunction of the monocyte percentage in class I obese individuals is only seen when this condition is associated with insulin resistance. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    PubMed

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  19. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.

    PubMed

    Ardestani, Amin; Paroni, Federico; Azizi, Zahra; Kaur, Supreet; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin

    2014-04-01

    Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.

  20. Primary cutaneous secretory carcinoma: A previously overlooked low-grade sweat gland carcinoma.

    PubMed

    Llamas-Velasco, Mar; Mentzel, Thomas; Rütten, Arno

    2018-03-01

    Twelve cases of primary cutaneous secretory carcinoma (PCSC) have been published, 9 showing ETV6-NTRK3 translocation, a characteristic finding shared with secretory breast carcinoma and mammary analogue secretory carcinoma. A 34-year-old female presented a solitary nodule on the right groin. Biopsy revealed a secretory carcinoma staining positive with CK7, CAM5.2, mammaglobulin and S100 and negative with GATA3, CK20, podoplanin, calponin and CDX2. ETV6-NTRK3 was demonstrated by Fluorescence in situ hybridization (FISH). PCSC is a rare neoplasm, described in the skin in 2009, that affects more frequently females with a mean age of 42.3 years and it is most commonly located in axilla. Histopathologically, these tumor cells are characterized by bubbly eosinophilic secretions diastase-resistant and bland nuclei and they are arranged in various growth patterns, including microcystic, tubular, solid and papillary. S100, mammoglobin and CK7 are usually positive. We review the main histopathological features to rule out histopathologic mimics such as breast metastasis, salivary tumors, cribriform carcinoma and primary cutaneous adenoid cystic carcinoma. GATA3 negative staining, as in our case, can help to rule out breast metastasis. Moreover, long-term benign follow up (144 months) in this case as well as follow-up data on outcomes from literature review support that PCSC is a low-grade sweat gland carcinoma. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. A missense mutation in hepatocyte nuclear factor-4 alpha, resulting in a reduced transactivation activity, in human late-onset non-insulin-dependent diabetes mellitus.

    PubMed Central

    Hani, E H; Suaud, L; Boutin, P; Chèvre, J C; Durand, E; Philippi, A; Demenais, F; Vionnet, N; Furuta, H; Velho, G; Bell, G I; Laine, B; Froguel, P

    1998-01-01

    Non-insulin-dependent diabetes mellitus (NIDDM) is a heterogeneous disorder characterized by hyperglycemia resulting from defects in insulin secretion and action. Recent studies have found mutations in the hepatocyte nuclear factor-4 alpha gene (HNF-4alpha) in families with maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes characterized by early age at onset and a defect in glucose-stimulated insulin secretion. During the course of our search for susceptibility genes contributing to the more common late-onset NIDDM forms, we observed nominal evidence for linkage between NIDDM and markers in the region of the HNF-4alpha/MODY1 locus in a subset of French families with NIDDM diagnosed before 45 yr of age. Thus, we screened these families for mutations in the HNF-4alpha gene. We found a missense mutation, resulting in a valine-to-isoleucine substitution at codon 393 in a single family. This mutation cosegregated with diabetes and impaired insulin secretion, and was not present in 119 control subjects. Expression studies showed that this conservative substitution is associated with a marked reduction of transactivation activity, a result consistent with this mutation contributing to the insulin secretory defect observed in this family. PMID:9449683

  2. Pathogen-induced secretory diarrhea and its prevention.

    PubMed

    Anand, S; Mandal, S; Patil, P; Tomar, S K

    2016-11-01

    Secretory diarrhea is a historically known serious health implication around the world which primarily originates through pathogenic microorganisms rather than immunological or genetical disorders. This review highlights infective mechanisms of non-inflammatory secretory diarrhea causing pathogens, known therapeutics and their efficacy against them. These non-inflammatory diarrheal pathogens breach cell barriers, induce inflammation, disrupt fluid secretion across the epithelium by alteration in ion transport by faulting cystic fibrosis transmembrane conductance regulator (CFTR), calcium activated chloride channels and ion exchanger functions. Currently, a variety of prevention strategies have been used to treat these symptoms like use of antibacterial drugs, vaccines, fluid and nutritional therapy, probiotics and prebiotics as adjuncts. In progression of the need for a therapy having quick physiological effects, withdrawing the symptoms with a wide and safe therapeutic index, newer antisecretory agents like potent inhibitors, agonists and herbal remedies are some of the interventions which have come into light through greater understanding of the mechanisms and molecular targets involved in intestinal fluid secretion. Although these therapies have their own pros and cons inside the host, the quest for new antisecretory agents has been a successful elucidation to reduce burden of diarrheal disease.

  3. [Semiquantitative measurement of progesterone receptors in luteal-phase-defect endometrial cells during secretory phase].

    PubMed

    Ma, Q; Han, Z; Huang, W

    1998-03-01

    To investigate the changes of endometrial progesterone receptor (PR) of luteal-phase-defect (LPD) patients during the secretory phase, thirteen patients with complaints of infertility or habitual abortion were studied. During the early-mid secretory phase, endometrial tissue was obtained by dilatation and curettage (D & C) for histological and receptor study: meanwhile serum E2, P, FSH, LH and PRL were measured. Based on histologic diagnosis, the patients were divided into two groups: the LPD group (n = 7) and the normal control group(n = 6). PR content was determined by immunohisto-chemical (IHC) assay. The results showed that during the early-mid luteal phase a significantly low PR content on endometrial glandular nucleus was observed in LPD group, compared with normal control(6.75 +/- 2.57 vs 9.50 +/- 1.64 P < 0.05), but no difference in serum progesterone was noted between the two groups. These findings suggest that during early-mid secretory phase, PR content on endometrial glandular nucleus decreases in LPD cases, which results in deficient response of endometrium to proper stimulus of progesterone. This change may cause endometrial secretory deficiency and blockade of embreyo implantation. That is why infertility or habitual abortion happened.

  4. Mapping organelle motion reveals a vesicular conveyor belt spatially replenishing secretory vesicles in stimulated chromaffin cells.

    PubMed

    Maucort, Guillaume; Kasula, Ravikiran; Papadopulos, Andreas; Nieminen, Timo A; Rubinsztein-Dunlop, Halina; Meunier, Frederic A

    2014-01-01

    How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.

  5. Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate and porcine origin

    PubMed Central

    Mueller, Kate R; Balamurugan, A.N.; Cline, Gary W; Pongratz, Rebecca L; Hooper, Rebecca L; Weegman, Bradley P; Kitzmann, Jennifer P; Taylor, Michael J; Graham, Melanie L; Schuurman, Henk-Jan; Papas, Klearchos K

    2014-01-01

    Background Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remains a critical issue. Methods Islets isolated from human (n=3), NHP (n=2), adult pig (AP, n=3) and juvenile pig (JP, n=3) pancreata were perifused with medium at basal glucose (2.5mM) followed by high glucose (16.7mM) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Results NHP islets exhibited GSIS 3-fold higher than human islets, while AP and JP islets exhibited GSIS 1/3 and 1/16 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/3 of human islets. Conclusion Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for human, AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation which may be substantially higher than that required for humans. Finally, porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets. PMID:23384163

  6. Differences in glucose-stimulated insulin secretion in vitro of islets from human, nonhuman primate, and porcine origin.

    PubMed

    Mueller, Kate R; Balamurugan, A N; Cline, Gary W; Pongratz, Rebecca L; Hooper, Rebecca L; Weegman, Bradley P; Kitzmann, Jennifer P; Taylor, Michael J; Graham, Melanie L; Schuurman, Henk-Jan; Papas, Klearchos K

    2013-01-01

    Porcine islet xenotransplantation is considered a potential cell-based therapy for type 1 diabetes. It is currently being evaluated in diabetic nonhuman primates (NHP) to assess safety and efficacy of the islet product. However, due to a variety of distinct differences between the respective species, including the insulin secretory characteristics of islets, the suitability and predictive value of the preclinical model in the extrapolation to the clinical setting remain a critical issue. Islets isolated from human (n = 3), NHP (n = 2), adult pig (AP, n = 3), and juvenile pig (JP, n = 4) pancreata were perifused with medium at basal glucose (2.5 mm) followed by high glucose (16.7 mm) concentrations. The total glucose-stimulated insulin secretion (GSIS) was calculated from generated insulin secretion profiles. Nonhuman primate islets exhibited GSIS 3-fold higher than AP islets, while AP and JP islets exhibited GSIS 1/3 and 1/30 of human islets, respectively. The insulin content of NHP and AP islets was similar to that of human islets, whereas that of JP islets was 1/5 of human islets. Despite the fact that human, NHP, and AP islets contain similar amounts of insulin, the much higher GSIS for NHP islets than for AP and JP islets suggests the need for increased dosing of islets from JP and AP in pig-to-NHP transplantation. Porcine islet xenotransplantation to humans may require significantly higher dosing given the lower GSIS of AP islets compared to human islets. © 2013 John Wiley & Sons A/S.

  7. Effects of insulin on the skin: possible healing benefits for diabetic foot ulcers.

    PubMed

    Emanuelli, T; Burgeiro, A; Carvalho, E

    2016-12-01

    Diabetic foot ulcers affect 15-20 % of all diabetic patients and remain an important challenge since the available therapies have limited efficacy and some of the novel therapeutic approaches, which include growth factors and stem cells, are highly expensive and their safety remains to be evaluated. Despite its low cost and safety, the interest for topical insulin as a healing agent has increased only in the last 20 years. The molecular mechanisms of insulin signaling and its metabolic effects have been well studied in its classical target tissues. However, little is known about the specific effects of insulin in healthy or even diabetic skin. In addition, the mechanisms involved in the effects of insulin on wound healing have been virtually unknown until about 10 years ago. This paper will review the most recent advances in the cellular and molecular mechanisms that underlie the beneficial effects of insulin on skin wound healing in diabetes. Emerging evidence that links dysfunction of key cellular organelles, namely the endoplasmic reticulum and the mitochondria, to changes in the autophagy response, as well as the impaired wound healing in diabetic patients will also be discussed along with the putative mechanisms whereby insulin could regulate/modulate these alterations.

  8. Elevated hepatic 11β-hydroxysteroid dehydrogenase type 1 induces insulin resistance in uremia

    PubMed Central

    Chapagain, Ananda; Caton, Paul W.; Kieswich, Julius; Andrikopoulos, Petros; Nayuni, Nanda; Long, Jamie H.; Harwood, Steven M.; Webster, Scott P.; Raftery, Martin J.; Thiemermann, Christoph; Walker, Brian R.; Seckl, Jonathan R.; Corder, Roger; Yaqoob, Muhammad Magdi

    2014-01-01

    Insulin resistance and associated metabolic sequelae are common in chronic kidney disease (CKD) and are positively and independently associated with increased cardiovascular mortality. However, the pathogenesis has yet to be fully elucidated. 11β-Hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes intracellular regeneration of active glucocorticoids, promoting insulin resistance in liver and other metabolic tissues. Using two experimental rat models of CKD (subtotal nephrectomy and adenine diet) which show early insulin resistance, we found that 11βHSD1 mRNA and protein increase in hepatic and adipose tissue, together with increased hepatic 11βHSD1 activity. This was associated with intrahepatic but not circulating glucocorticoid excess, and increased hepatic gluconeogenesis and lipogenesis. Oral administration of the 11βHSD inhibitor carbenoxolone to uremic rats for 2 wk improved glucose tolerance and insulin sensitivity, improved insulin signaling, and reduced hepatic expression of gluconeogenic and lipogenic genes. Furthermore, 11βHSD1−/− mice and rats treated with a specific 11βHSD1 inhibitor (UE2316) were protected from metabolic disturbances despite similar renal dysfunction following adenine experimental uremia. Therefore, we demonstrate that elevated hepatic 11βHSD1 is an important contributor to early insulin resistance and dyslipidemia in uremia. Specific 11βHSD1 inhibitors potentially represent a novel therapeutic approach for management of insulin resistance in patients with CKD. PMID:24569863

  9. Proteins altered by elevated levels of palmitate or glucose implicated in impaired glucose-stimulated insulin secretion

    PubMed Central

    Sol, E-ri M; Hovsepyan, Meri; Bergsten, Peter

    2009-01-01

    Background Development of type 2 diabetes mellitus (T2DM) is characterized by aberrant insulin secretory patterns, where elevated insulin levels at non-stimulatory basal conditions and reduced hormonal levels at stimulatory conditions are major components. To delineate mechanisms responsible for these alterations we cultured INS-1E cells for 48 hours at 20 mM glucose in absence or presence of 0.5 mM palmitate, when stimulatory secretion of insulin was reduced or basal secretion was elevated, respectively. Results After culture, cells were protein profiled by SELDI-TOF-MS and 2D-PAGE. Differentially expressed proteins were discovered and identified by peptide mass fingerprinting. Complimentary protein profiles were obtained by the two approaches with SELDI-TOF-MS being more efficient in separating proteins in the low molecular range and 2D-PAGE in the high molecular range. Identified proteins included alpha glucosidase, calmodulin, gars, glucose-6-phosphate dehydrogenase, heterogenous nuclear ribonucleoprotein A3, lon peptidase, nicotineamide adenine dinucleotide hydrogen (NADH) dehydrogenase, phosphoglycerate kinase, proteasome p45, rab2, pyruvate kinase and t-complex protein. The observed glucose-induced differential protein expression pattern indicates enhanced glucose metabolism, defense against reactive oxygen species, enhanced protein translation, folding and degradation and decreased insulin granular formation and trafficking. Palmitate-induced changes could be related to altered exocytosis. Conclusion The identified altered proteins indicate mechanism important for altered β-cell function in T2DM. PMID:19607692

  10. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age

    PubMed Central

    Xu, Ming; Tchkonia, Tamara; Ding, Husheng; Ogrodnik, Mikolaj; Lubbers, Ellen R.; Pirtskhalava, Tamar; White, Thomas A.; Johnson, Kurt O.; Stout, Michael B.; Mezera, Vojtech; Giorgadze, Nino; Jensen, Michael D.; LeBrasseur, Nathan K.; Kirkland, James L.

    2015-01-01

    Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction. PMID:26578790

  11. Secretory cargo sorting by Ca2+-dependent Cab45 oligomerization at the trans-Golgi network

    PubMed Central

    Blank, Birgit; Maiser, Andreas; Emin, Derya; Prescher, Jens; Beck, Gisela; Kienzle, Christine; Bartnik, Kira; Habermann, Bianca; Pakdel, Mehrshad; Leonhardt, Heinrich; Lamb, Don C.

    2016-01-01

    Sorting and export of transmembrane cargoes and lysosomal hydrolases at the trans-Golgi network (TGN) are well understood. However, elucidation of the mechanism by which secretory cargoes are segregated for their release into the extracellular space remains a challenge. We have previously demonstrated that, in a reaction that requires Ca2+, the soluble TGN-resident protein Cab45 is necessary for the sorting of secretory cargoes at the TGN. Here, we report that Cab45 reversibly assembles into oligomers in the presence of Ca2+. These Cab45 oligomers specifically bind secretory proteins, such as COMP and LyzC, in a Ca2+-dependent manner in vitro. In intact cells, mutation of the Ca2+-binding sites in Cab45 impairs oligomerization, as well as COMP and LyzC sorting. Superresolution microscopy revealed that Cab45 colocalizes with secretory proteins and the TGN Ca2+ pump (SPCA1) in specific TGN microdomains. These findings reveal that Ca2+-dependent changes in Cab45 mediate sorting of specific cargo molecules at the TGN. PMID:27138253

  12. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synchronous Parotid (Mammary Analog) Secretory Carcinoma and Acinic Cell Carcinoma: Report of a Case.

    PubMed

    Mossinelli, C; Pigni, C; Sovardi, F; Occhini, A; Preda, L; Benazzo, M; Morbini, P; Pagella, F

    2018-06-06

    Mammary analogue secretory carcinoma (MASC) is a recently described low-grade salivary gland malignancy with histologic, immunohistochemical and molecular similarities to secretory carcinoma of the breast, including a specific t(12;15)(p13;q25) resulting in an ETV6-NTRK3 gene fusion. Ultrasound and magnetic resonance imaging frequently document a macrocystic structure. The main differential diagnosis of secretory carcinoma is with low grade acinic cell carcinoma (AciCC). The two can be differentiated with immunohistochemical stains for S100, mammaglobin, carbonic anhydrase VI and DOG-1; the identification of the specific translocation can help to characterize non-typical cases. We report a unique case of synchronous MASC and AciCC presenting in a parotid gland and discuss the implications of the correct identification of the two tumors.

  14. Arteriolar insulin resistance in a rat model of polycystic ovary syndrome.

    PubMed

    Sara, Levente; Antal, Peter; Masszi, Gabriella; Buday, Anna; Horvath, Eszter M; Hamar, Peter; Monos, Emil; Nadasy, Gyorgy L; Varbiro, Szabolcs

    2012-02-01

    To investigate the vascular dysfunction caused by insulin resistance in polycystic ovary syndrome (PCOS) and the effectiveness of vitamin D in an animal model. Controlled experimental animal study. Animal laboratory at a university research institute. Thirty female Wistar rats. Rats were divided into groups at age 21-28 weeks. Twenty of them were subjected to dihydrotestosterone (DHT) treatment (83 μg/d); ten of them also received parallel vitamin D treatment (120 ng/100 g/wk). Oral glucose tolerance tests with insulin level measurements were performed. Gracilis arterioles were tested for their contractility as well as their nitric oxide (NO)-dependent and insulin-induced dilation using pressure arteriography. Several physiologic parameters, glucose metabolism, and pressure arteriography. DHT treatment increased the passive diameter of resistance arterioles, lowered norepinephrine-induced contraction (30.1 ± 4.7% vs. 8.7 ± 3.6%) and reduced acetylcholine-induced (122.0 ± 2.9% vs. 48.0 ± 1.4%) and insulin-induced (at 30 mU/mL: 21.7 ± 5.3 vs. 9.8 ± 5.6%) dilation. Vitamin D treatment restored insulin relaxation and norepinephrine-induced contractility; in contrast, it failed to alter NO-dependent relaxation. In DHT-treated rats, in addition to metabolically proven insulin resistance, decreased insulin-induced vasorelaxation was observed and was improved by vitamin D treatment without affecting NO-dependent relaxation. The reduction in insulin-induced dilation of arterioles is an important as yet undescribed pathway of vascular damage in PCOS and might explain the clinical effectiveness of vitamin D treatment. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  16. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  17. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution.

    PubMed

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro

    2016-10-31

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.

  18. Secretory IgA: Designed for Anti-Microbial Defense

    PubMed Central

    Brandtzaeg, Per

    2013-01-01

    Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion – a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein – the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor – bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer’s patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination). PMID:23964273

  19. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    PubMed

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  20. Female rats selectively bred for high intrinsic aerobic fitness are protected from ovariectomy-associated metabolic dysfunction

    PubMed Central

    Padilla, Jaume; Park, Young-Min; Welly, Rebecca J.; Scroggins, Rebecca J.; Britton, Steven L.; Koch, Lauren G.; Jenkins, Nathan T.; Crissey, Jacqueline M.; Zidon, Terese; Morris, E. Matthew; Meers, Grace M. E.; Thyfault, John P.

    2015-01-01

    Ovariectomized rodents model human menopause in that they rapidly gain weight, reduce spontaneous physical activity (SPA), and develop metabolic dysfunction, including insulin resistance. How contrasting aerobic fitness levels impacts ovariectomy (OVX)-associated metabolic dysfunction is not known. Female rats selectively bred for high and low intrinsic aerobic fitness [high-capacity runners (HCR) and low-capacity runners (LCR), respectively] were maintained under sedentary conditions for 39 wk. Midway through the observation period, OVX or sham (SHM) operations were performed providing HCR-SHM, HCR-OVX, LCR-SHM, and LCR-OVX groups. Glucose tolerance, energy expenditure, and SPA were measured before and 4 wk after surgery, while body composition via dual-energy X-ray absorptiometry and adipose tissue distribution, brown adipose tissue (BAT), and skeletal muscle phenotype, hepatic lipid content, insulin resistance via homeostatic assessment model of insulin resistance and AdipoIR, and blood lipids were assessed at death. Remarkably, HCR were protected from OVX-associated increases in adiposity and insulin resistance, observed only in LCR. HCR rats were ∼30% smaller, had ∼70% greater spontaneous physical activity (SPA), consumed ∼10% more relative energy, had greater skeletal muscle proliferator-activated receptor coactivator 1-alpha, and ∼40% more BAT. OVX did not increase energy intake and reduced SPA to the same extent in both HCR and LCR. LCR were particularly affected by an OVX-associated reduction in resting energy expenditure and experienced a reduction in relative BAT; resting energy expenditure correlated positively with BAT across all animals (r = 0.6; P < 0.001). In conclusion, despite reduced SPA following OVX, high intrinsic aerobic fitness protects against OVX-associated increases in adiposity and insulin resistance. The mechanism may involve preservation of resting energy expenditure. PMID:25608751

  1. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  2. Subcellular location of secretory proteins retained in the liver during the ethanol-induced inhibition of hepatic protein secretion in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volentine, G.D.; Tuma, D.J.; Sorrell, M.F.

    1986-01-01

    Ethanol administration inhibits the secretion of proteins by the liver, resulting in their hepatocellular retention. Experiments were designed in this study to determine the subcellular location of the retained secretory proteins. Ethanol was administered acutely to nonfasted rats by gastric intubation, whereas control animals received an isocaloric dose of glucose. Two hours after intubation, when maximum blood ethanol levels (45 mM) were observed, (/sup 3/H)leucine and (/sup 14/C)fucose were injected simultaneously into the dorsal vein of the penis. The labelling of secretory proteins was determined in the liver and plasma at various time periods after label injection. Ethanol treatment decreasedmore » the secretion of both leucine- and fucose-labeled proteins into the plasma. This inhibition of secretion was accompanied by a corresponding increase in the hepatic retention of both leucine- and fucose-labeled immunoprecipitable secretory proteins. At the time of maximum inhibition of secretion, leucine labeled secretory proteins located in the Golgi apparatus represented about 50% of the accumulated secretory proteins in the livers of the ethanol-treated rats, whereas the remainder was essentially equally divided among the rough and smooth endoplasmic reticulum and cytosol. Because fucose is incorporated into secretory proteins almost exclusively in the Golgi complex, fucose-labeled proteins accumulated in the livers of the ethanol-treated rats mainly in the Golgi apparatus, with the remainder located in the cytosol. These results show that ethanol administration causes an impaired movement of secretory proteins along the secretory pathway, and that secretory proteins accumulate mainly, but not exclusively, in the Golgi apparatus.« less

  3. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  4. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  5. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  6. 21 CFR 866.5380 - Free secretory component immuno-logical test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... body fluids. Measurement of free secretory component (protein molecules) aids in the diagnosis or... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test...

  7. Treatment with a Catalytic Superoxide Dismutase (SOD) Mimetic Improves Liver Steatosis, Insulin Sensitivity, and Inflammation in Obesity-Induced Type 2 Diabetes

    PubMed Central

    Delmastro-Greenwood, Meghan M.; Marré, Meghan L.; O’Connor, Erin C.; Novak, Elizabeth A.; Vincent, Garret; Mollen, Kevin P.; Lee, Sojin; Dong, H. Henry; Piganelli, Jon D.

    2017-01-01

    Oxidative stress and persistent inflammation are exaggerated through chronic over-nutrition and a sedentary lifestyle, resulting in insulin resistance. In type 2 diabetes (T2D), impaired insulin signaling leads to hyperglycemia and long-term complications, including metabolic liver dysfunction, resulting in non-alcoholic fatty liver disease (NAFLD). The manganese metalloporphyrin superoxide dismustase (SOD) mimetic, manganese (III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnP), is an oxidoreductase known to scavenge reactive oxygen species (ROS) and decrease pro-inflammatory cytokine production, by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. We hypothesized that targeting oxidative stress-induced inflammation with MnP would assuage liver complications and enhance insulin sensitivity and glucose tolerance in a high-fat diet (HFD)-induced mouse model of T2D. During 12 weeks of feeding, we saw significant improvements in weight, hepatic steatosis, and biomarkers of liver dysfunction with redox modulation by MnP treatment in HFD-fed mice. Additionally, MnP treatment improved insulin sensitivity and glucose tolerance, while reducing serum insulin and leptin levels. We attribute these effects to redox modulation and inhibition of hepatic NF-κB activation, resulting in diminished ROS and pro-inflammatory cytokine production. This study highlights the importance of controlling oxidative stress and secondary inflammation in obesity-mediated insulin resistance and T2D. Our data confirm the role of NF-κB-mediated inflammation in the development of T2D, and demonstrate the efficacy of MnP in preventing the progression to disease by specifically improving liver pathology and hepatic insulin resistance in obesity. PMID:29104232

  8. IG20/MADD Plays a Critical Role in Glucose-Induced Insulin Secretion

    PubMed Central

    Li, Liang-cheng; Wang, Yong; Carr, Ryan; Haddad, Christine Samir; Li, Ze; Qian, Lixia; Oberholzer, Jose; Maker, Ajay V.; Wang, Qian; Prabhakar, Bellur S.

    2014-01-01

    Pancreatic β-cell dysfunction is a common feature of type 2 diabetes. Earlier, we had cloned IG20 cDNA from a human insulinoma and had shown that IG20/MADD can encode six different splice isoforms that are differentially expressed and have unique functions, but its role in β-cell function was unexplored. To investigate the role of IG20/MADD in β-cell function, we generated conditional knockout (KMA1ko) mice. Deletion of IG20/MADD in β-cells resulted in hyperglycemia and glucose intolerance associated with reduced and delayed glucose-induced insulin production. KMA1ko β-cells were able to process insulin normally but had increased insulin accumulation and showed a severe defect in glucose-induced insulin release. These findings indicated that IG20/MADD plays a critical role in glucose-induced insulin release from β-cells and that its functional disruption can cause type 2 diabetes. The clinical relevance of these findings is highlighted by recent reports of very strong association of the rs7944584 single nucleotide polymorphism (SNP) of IG20/MADD with fasting hyperglycemia/diabetes. Thus, IG20/MADD could be a therapeutic target for type 2 diabetes, particularly in those with the rs7944584 SNP. PMID:24379354

  9. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    PubMed Central

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  10. Contribution of Secretory Antibodies to Intestinal Mucosal Immunity against Helicobacter pylori

    PubMed Central

    Wijburg, Odilia L. C.; Pedersen, John S.; Walduck, Anna K.; Kwok, Terry; Strugnell, Richard A.; Robins-Browne, Roy M.

    2013-01-01

    The natural immune response to Helicobacter pylori neither clears infection nor prevents reinfection. However, the ability of secretory antibodies to influence the course of H. pylori infection has not been determined. We compared the natural progression of H. pylori infection in wild-type C57BL/6 mice with that in mice lacking the polymeric immunoglobulin receptor (pIgR) that is essential for the secretion of polymeric antibody across mucosal surfaces. H. pylori SS1-infected wild-type and pIgR knockout (KO) mice were sampled longitudinally for gastrointestinal bacterial load, antibody response, and histological changes. The gastric bacterial loads of wild-type and pIgR KO mice remained constant and comparable at up to 3 months postinfection (mpi) despite SS1-reactive secretory IgA in the intestinal contents of wild-type mice at that time. Conversely, abundant duodenal colonization of pIgR KO animals contrasted with the near-total eradication of H. pylori from the intestine of wild-type animals by 3 mpi. H. pylori was cultured only from the duodenum of those animals in which colonization in the distal gastric antrum was of sufficient density for immunohistological detection. By 6 mpi, the gastric load of H. pylori in wild-type mice was significantly lower than in pIgR KO animals. While there was no corresponding difference between the two mouse strains in gastric pathology results at 6 mpi, reductions in gastric bacterial load correlated with increased gastric inflammation together with an intestinal secretory antibody response in wild-type mice. Together, these results suggest that naturally produced secretory antibodies can modulate the progress of H. pylori infection, particularly in the duodenum. PMID:23918779

  11. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.

    PubMed

    Manning, Alisa K; Hivert, Marie-France; Scott, Robert A; Grimsby, Jonna L; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E; Navarro, Pau; Perry, John R B; Rasmussen-Torvik, Laura J; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J; Tanaka, Toshiko; van Duijn, Cornelia M; An, Ping; de Andrade, Mariza; Andrews, Jeanette S; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S; Beilby, John P; Bellis, Claire; Bergman, Richard N; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L; Boomsma, Dorret I; Borecki, Ingrid B; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S; Clarke, Robert; Collins, Francis S; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R; Eriksson, Johan G; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo-Riitta; Jhun, Min A; Johnson, Paul C D; Jukema, J Wouter; Jula, Antti; Kao, W H; Kaprio, Jaakko; Kardia, Sharon L R; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J F; Luan, Jian'an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K E; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L; Mooser, Vincent; Morken, Mario A; Miljkovic, Iva; Narisu, Narisu; O'Connell, Jeff; Ong, Ken K; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Pankow, James S; Peden, John F; Pedersen, Nancy L; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P; Province, Michael A; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R; Sijbrands, Eric J G; Siscovick, David S; Smit, Johannes H; Small, Kerrin S; Smith, Nicholas L; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V; Swift, Amy J; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H; Willems, Sara M; Willemsen, Gonneke; Wilson, James F; Witteman, Jacqueline C M; Wright, Alan F; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J; McCarthy, Mark I; Barroso, Ines; Watanabe, Richard M; Florez, Jose C; Dupuis, Josée; Meigs, James B; Langenberg, Claudia

    2012-05-13

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

  12. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Pancreatic Endoderm-Derived From Diabetic Patient-Specific Induced Pluripotent Stem Cell Generates Glucose-Responsive Insulin-Secreting Cells.

    PubMed

    Rajaei, Bahareh; Shamsara, Mehdi; Amirabad, Leila Mohammadi; Massumi, Mohammad; Sanati, Mohammad Hossein

    2017-10-01

    Human-induced pluripotent stem cells (hiPSCs) can potentially serve as an invaluable source for cell replacement therapy and allow the creation of patient- and disease-specific stem cells without the controversial use of embryos and avoids any immunological incompatibility. The generation of insulin-producing pancreatic β-cells from pluripotent stem cells in vitro provides an unprecedented cell source for personal drug discovery and cell transplantation therapy in diabetes. A new five-step protocol was introduced in this study, effectively induced hiPSCs to differentiate into glucose-responsive insulin-producing cells. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, primitive gut-tube endoderm, posterior foregut, pancreatic endoderm, and endocrine precursor. Each stage of differentiation were characterized by stage-specific markers. The produced cells exhibited many properties of functional β-cells, including expression of critical β-cells transcription factors, the potency to secrete C-peptide in response to high levels of glucose and the presence of mature endocrine secretory granules. This high efficient differentiation protocol, established in this study, yielded 79.18% insulin-secreting cells which were responsive to glucose five times higher than the basal level. These hiPSCs-derived glucose-responsive insulin-secreting cells might provide a promising approach for the treatment of type I diabetes mellitus. J. Cell. Physiol. 232: 2616-2625, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Renal function is impaired in normotensive chronic HCV patients: role of insulin resistance.

    PubMed

    Sciacqua, Angela; Perticone, Maria; Tassone, Eliezer J; Cimellaro, Antonio; Caroleo, Benedetto; Miceli, Sofia; Andreucci, Michele; Licata, Anna; Sesti, Giorgio; Perticone, Francesco

    2016-06-01

    Renal dysfunction is an independent predictor for cardiovascular morbidity and mortality. We investigated whether chronic hepatitis C virus (HCV) infection and the related insulin resistance/hyperinsulinemia influence renal function in comparison with a group of healthy subjects and with another group with metabolic syndrome. We enrolled 130 newly diagnosed HCV outpatients matched for age and gender with 130 patients with metabolic syndrome and 130 healthy subjects. Renal function was evaluated by calculation of glomerular filtration rate (e-GFR, mL/min/1.73 m(2)) using the CKD-EPI equation. The following laboratory parameters were measured: fasting plasma glucose and insulin, total, LDL- and HDL-cholesterol, triglyceride, creatinine, and HOMA to evaluate insulin sensitivity. HCV patients with respect to both healthy subjects and metabolic syndrome patients have a decreased e-GFR: 86.6 ± 16.1 vs 120.2 ± 23.1 mL/min/1.73 m(2) (P < 0.0001) and 94.9 ± 22.6 mL/min/1.73 m(2) (P = 0.003), respectively. Regarding biochemical variables, HCV patients, in comparison with healthy subjects, have a higher triglyceride level, creatinine, fasting insulin and HOMA (3.4 ± 1.4 vs 2.6 ± 1.3; P < 0.0001). At linear regression analysis, the correlation between e-GFR and HOMA is similar in the metabolic syndrome (r = -0.555, P < 0.0001) and HCV (r = -0.527, P < 0.0001) groups. At multiple regression analysis, HOMA is the major determinant of e-GFR in both groups, accounting for, respectively, 30.8 and 27.8 % of its variation in the metabolic syndrome and HCV. In conclusion, we demonstrate that HCV patients have a significant reduction of e-GFR and that insulin resistance is the major predictor of renal dysfunction.

  15. Adipose tissue oxygenation is associated with insulin sensitivity independently of adiposity in obese men and women.

    PubMed

    Goossens, Gijs H; Vogel, Max A A; Vink, Roel G; Mariman, Edwin C; van Baak, Marleen A; Blaak, Ellen E

    2018-04-23

    Adipose tissue (AT) dysfunction contributes to the pathophysiology of insulin resistance and type 2 diabetes. Previous studies have shown that altered AT oxygenation affects adipocyte functionality, but it remains to be elucidated whether altered AT oxygenation is more strongly related to obesity or insulin sensitivity. In the present study, we tested the hypothesis that AT oxygenation is associated with insulin sensitivity rather than adiposity in humans. Thirty-five lean and obese individuals (21 men and 14 women, aged 40-65 years) with either normal or impaired glucose metabolism participated in a cross-sectional single-centre study. We measured abdominal subcutaneous AT oxygenation, body composition and insulin sensitivity. AT oxygenation was higher in obese insulin resistant as compared to obese insulin sensitive (IS) individuals with similar age, body mass index and body fat percentage, both in men and women. No significant differences in AT oxygenation were found between obese IS and lean IS men. Moreover, AT oxygenation was positively associated with insulin resistance (r = 0.465; P = .005), even after adjustment for age, sex and body fat percentage (standardized β = 0.479; P = .005). In conclusion, abdominal subcutaneous AT oxygenation is associated with insulin sensitivity both in men and women, independently of adiposity. AT oxygenation may therefore be a promising target to improve insulin sensitivity. © 2018 John Wiley & Sons Ltd.

  16. Insulin catalyzes the curcumin-induced wound healing: An in vitro model for gingival repair

    PubMed Central

    Singh, Neetu; Ranjan, Vishal; Zaidi, Deeba; Shyam, Hari; Singh, Aparna; Lodha, Divya; Sharma, Ramesh; Verma, Umesh; Dixit, Jaya; Balapure, Anil K.

    2012-01-01

    Objectives: Human gingival fibroblasts (hGFs) play a major role in the maintenance and repair of gingival connective tissue. The mitogen insulin with IGFs etc. synergizes in facilitating wound repair. Although curcumin (CUR) and insulin regulate apoptosis, their impact as a combination on hGF in wound repair remains unknown. Our study consists of: 1) analysis of insulin-mediated mitogenesis on CUR-treated hGF cells, and 2) development of an in vitro model of wound healing. Materials and Methods: Apoptotic rate in CUR-treated hGF cells with and without insulin was observed by AnnexinV/PI staining, nuclear morphological analysis, FACS and DNA fragmentation studies. Using hGF confluent cultures, wounds were mechanically created in vitro and incubated with the ligands for 48 h in 0.2% fetal bovine serum DMEM. Results: CUR alone showed dose-dependent (1–50 μM) effects on hGF. Insulin (1 μg/ml) supplementation substantially enhanced cell survival through up-regulation of mitogenesis/anti-apoptotic elements. Conclusions: The in vitro model for gingival wound healing establishes that insulin significantly enhanced wound filling faster than CUR-treated hGF cells over 48 h. This reinforces the pivotal role of insulin in supporting CUR-mediated wound repair. The findings have significant bearing in metabolic dysfunctions, e.g. diabetes, atherosclerosis, etc., especially under Indian situations. PMID:23087505

  17. Secretory meningioma: clinicopathologic features of eight cases.

    PubMed

    Nishio, S; Morioka, T; Suzuki, S; Hirano, K; Fukui, M

    2001-07-01

    The clinical and morphological features of eight patients with meningothelial meningiomas with numerous pseudopsammoma bodies (secretory meningiomas) are presented. The six female and two male patients ranged in age from 43 to 68 years. Tumours were located at the petroclival region in two, the lateral parasellar region in two, the petrous apex in one and the sphenoid ridge in three patients. On magnetic resonance imaging, they were iso or hypointense on T1-weighted images, and hyper or isointense on T 2-weighted images. Peritumoral brain edema was absent in five cases, and was mild to moderate in three cases. Serum carcinoembryonic antigen (CEA) levels were measured preoperatively in three patients, with one having an elevated serum CEA level which re turned to normal following tumour resection. Immunohistochemical analysis on the resected tumour tissues, pseudopsammoma bodies and surrounding tumour cells were shown to be CEA-positive. Ultrastructurally, pseudopsammoma bodies were composed of granular and filamentous materials located predominantly in the intracellular lumina, which were lined by microvilli. While these morphological features of focal epithelial and secretory differentiation of tumour cells call attention to the broad spectrum of differentiation properties of meningiomas, the biological behavior of the eight tumours reported herein corresponded to those of meningiomas in general. Copyright 2001 Harcourt Publishers Ltd.

  18. Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo.

    PubMed

    Christ, George J; Hsieh, Yi; Zhao, Weixin; Schenk, Gregory; Venkateswarlu, Karicheti; Wang, Hong-Zhan; Tar, Moses T; Melman, Arnold

    2006-05-01

    To establish the methods, feasibility and utility of evaluating the impact of diabetes on bladder and erectile function in the same rat, as more than half of diabetic patients have bladder dysfunction, and half of diabetic men have erectile dysfunction, but the severity of coincident disease has not been rigorously assessed. In all, 16 F-344 rats had diabetes induced by streptozotocin (STZ), and were divided into insulin-treated (five) and untreated (11), and compared with age-matched controls (10), all assessed in parallel. All STZ rats were diabetic for 8-11 weeks. Cystometric studies were conducted on all rats, with cavernosometric studies conducted on a subset of rats. There were insulin-reversible increases in the following cystometric variables; bladder weight, bladder capacity, micturition volume, residual volume, micturition pressure and spontaneous activity (P < 0.05, in all, one-way analysis of variance, anova). Cavernosometry showed a diabetes-related, insulin-reversible decline in the cavernosal nerve-stimulated intracavernosal pressure (ICP) response at all levels of current stimulation (P < 0.05, in all one-way anova). Plotting erectile capacity (i.e. ICP) against bladder capacity showed no correlation between the extent of the decline in erectile capacity and the magnitude of the increase in bladder capacity. These studies extend previous work to indicate that the extent of diabetes-related bladder and erectile dysfunction can vary in the same rat. As such, these findings highlight the importance of evaluating the impact of diabetes on multiple organ systems in the lower urinary tract. Future studies using this model system should lead to a better understanding of the initiation, development, progression and coincidence of these common diabetic complications.

  19. Novelties in secretory structures and anatomy of Rhynchosia (Fabaceae).

    PubMed

    De Vargas, Wanderleia; Sartori, Ângela L B; Dias, Edna S

    2015-03-01

    A comparative anatomical study was carried out on the secretory structures of leaflets from taxa belonging to the genus Rhynchosia - taxa difficult to delimit because of uncertain interspecific relations - in order to evaluate the potential diagnostic value of these anatomical traits for taxonomic assignment. A further objective was to establish consensual denomination for these secretory structures. The new anatomical features found in these taxa were sufficiently consistent to separate the species evaluated. The presence and localization of glandular-punctate structures bulbous-based trichomes, the number of layers in the palisade parenchyma and the arrangement of vascular units distinguish the taxa investigated and these characteristics can be extended to other species of Papilionoideae. The trichomes analyzed were described and classified into five types. Depicted in diagrams, photomicrographs, and by scanning electron microscopy, and listed for the first time at the genus and species levels. The information obtained served to effectively distinguish the taxa investigated among species of Papilonoideae.

  20. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men.

    PubMed

    Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi; Hiscock, Natalie J; White, Andrew; Appel, Julie S; Jacobsen, Stine; Nilsson, Emma; Larsen, Claus M; Astrup, Arne; Quistorff, Bjørn; Vaag, Allan

    2009-05-15

    A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2 diabetes may be linked with defective mitochondrial oxidative phosphorylation. The aim of the current study was to investigate acute effects of short-term fat overfeeding on glucose and insulin metabolism in young men. We studied the effects of 5 days' high-fat (60% energy) overfeeding (+50%) versus a control diet on hepatic and peripheral insulin action by a hyperinsulinaemic euglycaemic clamp, muscle mitochondrial function by (31)P magnetic resonance spectroscopy, and gene expression by qrt-PCR and microarray in 26 young men. Hepatic glucose production and fasting glucose levels increased significantly in response to overfeeding. However, peripheral insulin action, muscle mitochondrial function, and general and specific oxidative phosphorylation gene expression were unaffected by high-fat feeding. Insulin secretion increased appropriately to compensate for hepatic, and not for peripheral, insulin resistance. High-fat feeding increased fasting levels of plasma adiponectin, leptin and gastric inhibitory peptide (GIP). High-fat overfeeding increases fasting glucose levels due to increased hepatic glucose production. The increased insulin secretion may compensate for hepatic insulin resistance possibly mediated by elevated GIP secretion. Increased insulin secretion precedes the development of peripheral insulin resistance, mitochondrial dysfunction and obesity in response to overfeeding, suggesting a role for insulin per se as well GIP, in the development of peripheral insulin resistance and obesity.

  1. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome

    PubMed Central

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-01-01

    STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22–44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and

  2. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial.

    PubMed

    Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D

    2018-02-09

    The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001). HOMA-IR index fell significantly ( p < 0.001) in the intervention group (treatment effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  3. Influence of insulin sensitivity and secretion on glycated albumin and hemoglobin A1c in pregnant women with gestational diabetes mellitus.

    PubMed

    Pan, Jiemin; Zhang, Feng; Zhang, Lei; Bao, Yuqian; Tao, Minfang; Jia, Weiping

    2013-06-01

    To examine the differential effects of insulin sensitivity and secretion on hemoglobin A1c (HbA1c) and glycated albumin (GA) at 24-32weeks of pregnancy in women with gestational diabetes mellitus (GDM). A cross-sectional, sequential case series study was performed in pregnant women with an abnormal 50-g oral glucose-screening test. Hemoglobin A1c and GA measurements were taken during oral glucose tolerance test (OGTT). The homeostasis model assessment of insulin resistance (HOMA-IR) and beta-cell function (HOMA-%β), insulin sensitivity index (ISOGTT), and modified insulinogenic index were calculated to assess insulin sensitivity and secretory function. A total of 713 pregnant women were enrolled. The GDM group had lower ISOGTT and insulinogenic index scores, and a higher HOMA-IR score. Hemoglobin A1c was positively correlated with HOMA-IR. Glycated albumin was negatively correlated with insulinogenic index and HOMA-%β. Multiple regression analysis revealed that HbA1c was independently associated with diastolic pressure, 0- and 120-minute glucose, and HOMA-IR; GA was independently associated with 0- and 120-minute glucose. Compared with HbA1c, GA is more closely correlated with fasting and postprandial glucose, regardless of insulin resistance and blood pressure, and might be a better monitoring index in women with GDM. Copyright © 2013 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Insulin and insulin signaling play a critical role in fat induction of insulin resistance in mouse

    PubMed Central

    Ning, Jie; Hong, Tao; Yang, Xuefeng; Mei, Shuang; Liu, Zhenqi; Liu, Hui-Yu

    2011-01-01

    The primary player that induces insulin resistance has not been established. Here, we studied whether or not fat can cause insulin resistance in the presence of insulin deficiency. Our results showed that high-fat diet (HFD) induced insulin resistance in C57BL/6 (B6) mice. The HFD-induced insulin resistance was prevented largely by the streptozotocin (STZ)-induced moderate insulin deficiency. The STZ-induced insulin deficiency prevented the HFD-induced ectopic fat accumulation and oxidative stress in liver and gastrocnemius. The STZ-induced insulin deficiency prevented the HFD- or insulin-induced increase in hepatic expression of long-chain acyl-CoA synthetases (ACSL), which are necessary for fatty acid activation. HFD increased mitochondrial contents of long-chain acyl-CoAs, whereas it decreased mitochondrial ADP/ATP ratio, and these HFD-induced changes were prevented by the STZ-induced insulin deficiency. In cultured hepatocytes, we observed that expressions of ACSL1 and -5 were stimulated by insulin signaling. Results in cultured cells also showed that blunting insulin signaling by the PI3K inhibitor LY-294002 prevented fat accumulation, oxidative stress, and insulin resistance induced by the prolonged exposure to either insulin or oleate plus sera that normally contain insulin. Finally, knockdown of the insulin receptor prevented the oxidative stress and insulin resistance induced by the prolonged exposure to insulin or oleate plus sera. Together, our results show that insulin and insulin signaling are required for fat induction of insulin resistance in mice and cultured mouse hepatocytes. PMID:21586696

  5. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    PubMed Central

    2012-01-01

    Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk. PMID:22709426

  6. Effect of berberine on insulin resistance in women with polycystic ovary syndrome: study protocol for a randomized multicenter controlled trial.

    PubMed

    Li, Yan; Ma, Hongli; Zhang, Yuehui; Kuang, Hongying; Ng, Ernest Hung Yu; Hou, Lihui; Wu, Xiaoke

    2013-07-18

    Insulin resistance and hyperinsulinemia play a key role in the pathogenesis of polycystic ovary syndrome (PCOS), which is characterized by hyperandrogenism, ovulatory dysfunction, and presence of polycystic ovaries on pelvic scanning. Insulin resistance is significantly associated with the long-term risks of metabolic syndrome and cardiovascular disease. Berberine has effects on insulin resistance but its use in women with PCOS has not been fully investigated. In this paper, we present a research design evaluating the effects of berberine on insulin resistance in women with PCOS. This is a multicenter, randomized, placebo-controlled and double-blind trial. A total of 120 patients will be enrolled in this study and will be randomized into two groups. Berberine or placebo will be taken orally for 12 weeks. The primary outcome is the whole body insulin action assessed with the hyperinsulinemic-euglycemic clamp. We postulate that women with PCOS will have improved insulin resistance following berberine administration. This study is registered at ClinicalTrials.gov, NCT01138930.

  7. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  8. Activity of xanthine oxidase in plasma correlates with indices of insulin resistance and liver dysfunction in Japanese patients with type 2 diabetes mellitus and metabolic syndrome: A pilot exploratory study.

    PubMed

    Sunagawa, Sumito; Shirakura, Takashi; Hokama, Noboru; Kozuka, Chisayo; Yonamine, Masato; Namba, Toyotaka; Morishima, Satoko; Nakachi, Sawako; Nishi, Yukiko; Ikema, Tomomi; Okamoto, Shiki; Matsui, Chieko; Hase, Naoki; Tamura, Mizuho; Shimabukuro, Michio; Masuzaki, Hiroaki

    2018-06-03

    There is a controversy whether hyperuricemia is an independent risk for cardiometabolic diseases. Serum level of uric acid is affected by a wide variety of factors involved in its production and excretion. On the other hand, evidence has accumulated that locally and systemically activated xanthine oxidase (XO), a rate limiting enzyme for production of uric acid, is linked to metabolic derangement in humans and rodents. We therefore explored the clinical implication of plasma XO activity in patients with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). We enrolled 60 patients with T2DM and MetS. MetS was defined according to the 2005 International Diabetes Federation guidelines. Plasma XO activity was measured by highly sensitive fluorometric assay measuring the conversion of pterin to isoxanthopterin, and explored associations between the value of plasma XO activity and metabolic parameters. Value of plasma XO activity was correlated with indices of insulin resistance and level of circulating liver transaminases. On the other hand, level of serum uric acid was not correlated with indices of insulin resistance. The value of plasma XO activity was not correlated with serum uric acid level. Plasma XO activity correlates with indices of insulin resistance and liver dysfunction in Japanese patients with T2DM and MetS. Through assessing the plasma XO activity, patients demonstrating normal level of serum uric acid with higher activity of XO can be screened, thereby possibly providing a clue to uncover metabolic risks in T2DM and MetS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Insulin resistance is associated with cognition among HIV-1-infected patients: the Hawaii Aging With HIV cohort.

    PubMed

    Valcour, Victor G; Sacktor, Ned C; Paul, Robert H; Watters, Michael R; Selnes, Ola A; Shiramizu, Bruce T; Williams, Andrew E; Shikuma, Cecilia M

    2006-12-01

    To determine if insulin resistance (IR) is associated with lower cognitive performance among HIV-1-infected adults and to determine if advanced age magnifies risk. Cross-sectional analysis within the Hawaii Aging With HIV Cohort. We calculated the homeostasis model assessment of insulin resistance (HOMA-IR) among 145 cohort participants. Values were compared to concurrent neuropsychological test performance and cognitive diagnoses. Hypertension, body mass index (BMI), and non-Caucasian self-identity were directly related to insulin resistance (IR); however, age, CD4 lymphocyte count, and rates of treatment with HAART were not. In logistic regression analyses and stratifying cognition status on a 3-tiered scale (normal, minor cognitive motor disorder (MCMD), and HIV-associated dementia (HAD)), we identified an increased risk of meeting a higher diagnostic category as HOMA-IR increased (OR, 1.12; 95% CI: 1.003 to 1.242 per unit of HOMA-IR, P = 0.044). In linear regression models and among nondiabetic participants, an increasing degree of IR was associated with lower performance on neuropsychological summary scores. IR is associated with cognitive dysfunction in this contemporary HIV-1 cohort enriched with older individuals. Metabolic dysfunction may contribute to the multifactorial pathogenesis of cognitive impairment in the era of HAART.

  10. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    PubMed

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  11. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    PubMed

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  12. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.

    PubMed

    Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin

    2017-01-26

    Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.

  13. Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat.

    PubMed

    Gheni, Ghupurjan; Yokoi, Norihide; Beppu, Masayuki; Yamaguchi, Takuro; Hidaka, Shihomi; Kawabata, Ayako; Hoshino, Yoshikazu; Hoshino, Masayuki; Seino, Susumu

    2015-01-01

    We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.

  14. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones

    PubMed Central

    Maianti, Juan Pablo; McFedries, Amanda; Foda, Zachariah H.; Kleiner, Ralph E.; Du, Xiu Quan; Leissring, Malcolm A.; Tang, Wei-Jen; Charron, Maureen J.; Seeliger, Markus A.; Saghatelian, Alan; Liu, David R.

    2014-01-01

    Despite decades of speculation that inhibiting endogenous insulin degradation might treat type-2 diabetes1, 2, and the identification of IDE (insulin-degrading enzyme) as a diabetes susceptibility gene3, 4, the relationship between the activity of the zinc metalloprotein IDE and glucose homeostasis remains unclear. Although Ide−/− mice have elevated insulin levels, they exhibit impaired, rather than improved, glucose tolerance that may arise from compensatory insulin signalling dysfunction5, 6. IDE inhibitors that are active in vivo are therefore needed to elucidate IDE’s physiological roles and to determine its potential to serve as a target for the treatment of diabetes. Here we report the discovery of a physiologically active IDE inhibitor identified from a DNA-templated macrocycle library. An X-ray structure of the macrocycle bound to IDE reveals that it engages a binding pocket away from the catalytic site, which explains its remarkable selectivity. Treatment of lean and obese mice with this inhibitor shows that IDE regulates the abundance and signalling of glucagon and amylin, in addition to that of insulin. Under physiological conditions that augment insulin and amylin levels, such as oral glucose administration, acute IDE inhibition leads to substantially improved glucose tolerance and slower gastric emptying. These findings demonstrate the feasibility of modulating IDE activity as a new therapeutic strategy to treat type-2 diabetes and expand our understanding of the roles of IDE in glucose and hormone regulation. PMID:24847884

  15. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity.

    PubMed

    Yamamoto, Soh; Kuramoto, Kenta; Wang, Nan; Situ, Xiaolei; Priyadarshini, Medha; Zhang, Weiran; Cordoba-Chacon, Jose; Layden, Brian T; He, Congcong

    2018-06-12

    Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1 F121A ) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term "vesicophagy." The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  17. Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis.

    PubMed

    Xu, Yingke; Toomre, Derek K; Bogan, Jonathan S; Hao, Mingming

    2017-11-01

    Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Biochemical analysis of secretory proteins synthesized by normal rat pancreas and by pancreatic acinar tumor cells

    PubMed Central

    1982-01-01

    We have examined the secretogogue responsiveness and the pattern of secretory proteins produced by a transplantable rat pancreatic acinar cell tumor. Dispersed tumor cells were found to discharge secretory proteins in vitro when incubated with hormones that act on four different classes of receptors: carbamylcholine, caerulein, secretin- vasoactive intestinal peptide, and bombesin. With all hormones tested, maximal discharge from tumor cells was only about one-half that of control pancreatic lobules, but occurred at the same dose optima except for secretin, whose dose optimum was 10-fold higher. Biochemical analysis of secretory proteins discharged by the tumor cells was carried out by crossed immunoelectrophoresis and by two-dimensional isoelectric focusing-SDS polyacrylamide gel electrophoresis. To establish a baseline for comparison, secretory proteins from normal rat pancreas were identified according to enzymatic activity and correlated with migration position on two-dimensional gels. Our results indicate that a group of basic polypeptides including proelastase, basic trypsinogen, basic chymotrypsinogen, and ribonuclease, two out of three forms of procarboxypeptidase B, and the major lipase species were greatly reduced or absent in tumor cell secretion. In contrast, the amount of acidic chymotrypsinogen was notably increased compared with normal acinar cells. Although the acinar tumor cells are highly differentiated cytologically and express functional receptors for several classes of pancreatic secretagogues, they show quantitative and qualitative differences when compared with normal pancreas with regard to their production of secretory proteins. PMID:6185502

  19. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh) Mice

    PubMed Central

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J.

    2017-01-01

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR)+/−-insulin receptor substrate-1 (IRS-1)+/− double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver. PMID:28556799

  20. Gender Specific Association of Serum Leptin and Insulinemic Indices with Nonalcoholic Fatty Liver Disease in Prediabetic Subjects

    PubMed Central

    Akter, Salima; Rahman, Mohammad Khalilur

    2015-01-01

    Adipose tissue-derived hormone leptin plays a functional role in glucose tolerance through its effects on insulin secretion and insulin sensitivity which also represent the risk factors for nonalcoholic fatty liver disease (NAFLD). The present study explored the gender specific association of serum leptin and insulinemic indices with NAFLD in Bangladeshi prediabetic subjects. Under a cross-sectional analytical design a total of 110 ultrasound examined prediabetic subjects, aged 25–68 years consisting of 57.3% male (55.6% non NAFLD and 44.4% NAFLD) and 42.7% female (57.4% non NAFLD and 42.6% NAFLD), were investigated. Insulin secretory function (HOMA%B) and insulin sensitivity (HOMA%S) were calculated from homeostasis model assessment (HOMA). Serum leptin showed significant positive correlation with fasting insulin (r = 0.530, P = 0.004), postprandial insulin (r = 0.384, P = 0.042) and HOMA-IR (r = 0.541, P = 0.003) as well as significant negative correlation with HOMA%S (r = -0.388, P = 0.046) and HOMA%B (r = -0.356, P = 0.039) in male prediabetic subjects with NAFLD. In multiple linear regression analysis, log transformed leptin showed significant positive association with HOMA-IR (β = 0.706, P <0.001) after adjusting the effects of body mass index (BMI), triglyceride (TG) and HOMA%B in male subjects with NAFLD. In binary logistic regression analysis, only log leptin [OR 1.29 95% (C.I) (1.11–1.51), P = 0.001] in male subjects as well as HOMA%B [OR 0.94 95% (C.I) (0.89–0.98), P = 0.012], HOMA-IR [OR 3.30 95% (C.I) (0.99–10.95), P = 0.049] and log leptin [OR 1.10 95% (C.I) (1.01–1.20), P = 0.026] in female subjects were found to be independent determinants of NAFLD after adjusting the BMI and TG. Serum leptin seems to have an association with NAFLD both in male and female prediabetic subjects and this association in turn, is mediated by insulin secretory dysfunction and insulin resistance among these subjects. PMID:26569494

  1. Insulin resistance, diabetes mellitus and thyroid dysfunction in patients with palmoplantar pustulosis: a case-controlled study.

    PubMed

    Ataş, Hatice; Gönül, Müzeyyen

    2017-06-01

    Palmoplantar pustulosis (PPP) is a chronic pustular inflammatory skin disease; however, its pathogenesis is not well understood. Several factors, such as genetics, tobacco use and autoimmune issues, may contribute to this disease. This research was conducted to investigate the relationships between insulin resistance, thyroid disease and PPP. Thirty-three patients with PPP and 27 age- and gender-matched controls were analysed for their smoking histories, thyroid function tests, anti-thyroid peroxidase antibody (anti-TPO) levels, fasting glucose, fasting insulin levels and the homeostatic model assessment (HOMA) index for insulin resistance. We found significant differences between the PPP and control groups according to their tobacco use and anti-TPO levels ( p = 0.009 and p = 0.009, respectively). The proportion of tobacco use was 90% in the PPP patients and 63% in the controls. Gender and tobacco use were predictive risk factors for PPP in the multivariate analysis ( OR = 141.7, p < 0.0001 and OR = 147.6, p = 0.006, respectively). An anti-TPO level > 35 U/ml and the presence of a thyroid abnormality were independent risk factors in the univariate, but not the multivariate analysis ( OR = 4.2, p = 0.025 and OR = 5.4, p = 0.004, respectively). A moderate correlation between the gender and anti-TPO level was found ( r = 0.361, p = 0.039); however, the fasting glucose, insulin and HOMA index were not significant between the PPP and control groups. Female gender and smoking were the most important risk factors for PPP; however, the increase in the anti-TPO level may be related to the predominance of females afflicted with this disease. Additional studies are necessary to clarify the relationships between PPP, thyroid disease and diabetes mellitus.

  2. Breast-feeding, Leptin:Adiponectin Ratio, and Metabolic Dysfunction in Adolescents with Obesity.

    PubMed

    Mihalopoulos, Nicole L; Urban, Brittney M; Metos, Julie M; Balch, Alfred H; Young, Paul C; Jordan, Kristine C

    2017-05-01

    Increased adiposity increases leptin and decreases adiponectin concentrations, resulting in an increased leptin:adiponectin ratio (LAR). In adults, components of the metabolic syndrome and other cardiometabolic risk factors, what we classify here as "metabolic dysfunction," are associated with both a high LAR and a history of being breast-fed. The relation among breast-feeding, LAR, and degree of metabolic dysfunction in obese youth is unknown. The purpose of our pilot study was to explore this relation and estimate the effect size of the relations to determine the sample size needed to power future prospective studies. We obtained fasting levels of leptin, adiponectin, lipids, insulin, and glucose from obese youth (aged 8-17 years). Weight, height, waist circumference, blood pressure, and breast-feeding history also were assessed. Of 96 participants, 78 were breast-fed as infants, 54% of whom were breast-fed for >6 months. Wide variation was observed in LARs among children who were and were not breast-fed (>100% coefficient of variation). Overall, prevalence of metabolic dysfunction in the cohort was 94% and was not proven to be associated with higher LAR. In this cohort of obese youth, we found a high prevalence of breast-feeding, metabolic dysfunction, and wide variation in the LARs. Based on the effect size estimated, future studies would need to enroll >1500 patients or identify, stratify, and selectively enroll obese patients without metabolic dysfunction to accurately determine whether breast-feeding in infancy influences LARs or metabolic dysfunction among obese youth.

  3. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple).

    PubMed

    Das, Sromona; Bhattacharyya, Debasish

    2017-12-01

    Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Insulin Secretagogues

    MedlinePlus

    ... the Spikes Is mealtime insulin right for you? Insulin Secretagogues September 2017 Download PDFs English Espanol Editors ... Additional Resources Affordable Insulin Project FDA What are insulin secretagogues? Insulin secretagogues are one type of medicine ...

  5. Role of mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) in the recruitment of newcomer insulin granules in both first and second phases of glucose-stimulated insulin secretion in mouse islets.

    PubMed

    Xie, L; Zhu, D; Gaisano, H Y

    2012-10-01

    We have previously reported that the haplodeficient Munc13-1(+/-) mouse exhibits impaired biphasic glucose-stimulated insulin secretion (GSIS), causing glucose intolerance mimicking type 2 diabetes. Glucagon-like peptide-1 (GLP-1) can bypass these insulin-secretory defects in type 2 diabetes, but the mechanism of exocytotic events mediated by GLP-1 in rescuing insulin secretion is unclear. The total internal reflection fluorescence microscopy (TIRFM) technique was used to examine single insulin granule fusion events in mouse islet beta cells. There was no difference in the density of docked granules in the resting state between Munc13-1(+/+) and Munc13-1(+/-) mouse islet beta cells. While exocytosis of previously docked granules in Munc13-1(+/-) beta cells is reduced during high-K(+) stimulation as expected, we now find a reduction in additional exocytosis events that account for the major portion of GSIS, namely two types of newcomer granules, one which has a short docking time (short-dock) and another undergoing no docking before exocytosis (no-dock). As mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) is a phorbol ester substrate, phorbol ester could partially rescue biphasic GSIS in Munc13-1-deficient beta cells by enhancing recruitment of short-dock newcomer granules for exocytosis. The more effective rescue of biphasic GSIS by GLP-1 than by phorbol was due to increased recruitment of both short-dock and no-dock newcomer granules. Phorbol ester and GLP-1 potentiation of biphasic GSIS are brought about by recruitment of distinct populations of newcomer granules for exocytosis, which may be mediated by Munc13-1 interaction with syntaxin-SNARE complexes other than that formed by syntaxin-1A.

  6. The secretory pathway at 50: a golden anniversary for some momentous grains of silver.

    PubMed

    Matlin, Karl S; Caplan, Michael J

    2017-01-15

    The secretory pathway along which newly synthesized secretory and membrane proteins traffic through the cell was revealed in two articles published 50 years ago. This discovery was the culmination of decades of effort to unite the power of biochemical and morphological methodologies in order to elucidate the dynamic nature of the cell's biosynthetic machinery. The secretory pathway remains a central paradigm of modern cell biology. Its elucidation 50 years ago inspired tremendous multidisciplinary and on-going efforts to understand the machinery that makes it run, the adaptations that permit it to serve the needs of specialized cell types, and the pathological consequences that arise when it is perturbed. © 2017 Matlin and Caplan. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Adiposity and family history of type 2 diabetes in an admixed population of adolescents: Associations with insulin sensitivity, beta-cell function, and hepatic insulin extraction in BRAMS study.

    PubMed

    Camilo, Daniella F; Vasques, Ana Carolina J; Hayashi, Keila; Tura, Andrea; da Silva, Cleliani de Cassia; Zambon, Mariana P; Antônio, Maria Ângela R de G Monteiro; Geloneze, Bruno

    2018-03-01

    Insulin resistance and beta-cell dysfunction manifest differently across racial/ethnic groups, and there is a lack of knowledge regarding the pathophysiology of type 2 diabetes mellitus (T2DM) for ethnically admixed adolescents. This study aimed to investigate the influence of adiposity and family history (FH) of T2DM on aspects of insulin sensitivity, beta-cell function, and hepatic insulin extraction in Brazilian adolescents. A total of 82 normoglycemic adolescents were assessed. The positive FH of T2DM was defined as the presence of at least one known family member with T2DM. The hyperglycemic clamp test consisted of a 120-min protocol. Insulin secretion and beta-cell function were obtained from C-peptide deconvolution. Analysis of covariance considered pubertal stage as a covariate. Both lean and overweight/obese adolescents had similar glycemic profiles and disposition indexes. Overweight/obese adolescents had about 1/3 the insulin sensitivity of lean adolescents (1.1 ± 0.2 vs. 3.4 ± 0.3 mg·kg·min·pmol ∗ 1000), which was compensated by an increase around 2.5 times in basal (130 ± 7 vs. 52 ± 10 pmol·l·min) and total insulin secretion (130,091 ± 12,230 vs. 59,010 ± 17,522 pmol·l·min), and in the first and second phases of insulin secretion; respectively (p < 0.001). This increase was accompanied by a mean reduction in hepatic insulin extraction of 35%, and a 2.7-time increase in beta-cell glucose sensitivity (p < 0.05). The positive FH of T2DM was not associated with derangements in insulin sensitivity, beta-cell function, and hepatic insulin extraction. In an admixed sample of adolescents, the hyperglycemic clamp test demonstrated that adiposity had a strong influence, and FH of T2DM had no direct influence, in different aspects of glucose metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Clinical application of a novel diagnostic scheme including pancreatic β‑cell dysfunction for traumatic multiple organ dysfunction syndrome.

    PubMed

    Wang, Zhan-Ke; Chen, Rong-Jian; Wang, Shi-Liang; Li, Guang-Wei; Zhu, Zhong-Zhen; Huang, Qiang; Chen, Zi-Li; Chen, Fan-Chang; Deng, Lei; Lan, Xiao-Peng; Hu, Tian

    2018-01-01

    A novel diagnostic scheme that includes pancreatic β‑cell dysfunction analysis for the diagnosis of traumatic multiple organ dysfunction syndrome (MODS) was investigated to assist in the early diagnosis and detection of MODS. Early intervention and treatment of MODS has been associated with a reduced mortality rate. A total of 2,876 trauma patients (including patients post‑major surgery) were admitted to the intensive care unit of the authors' hospital between December 2010 and December 2015 and enrolled in the present study. There were 205 cases where the patient succumbed to their injuries. In addition to the conventional diagnostic scheme for traumatic MODS, indexes of pancreatic β‑cell dysfunction [fasting blood‑glucose (FBG), homeostatic model assessment‑β and (blood insulin concentration 30 min following glucose loading‑fasting insulin concentration)/(blood glucose concentration 30 min following glucose loading‑FBG concentration)] were included to establish an improved diagnostic scheme for traumatic MODS. The novel scheme was subsequently used in clinical practice alongside the conventional scheme and its effect was evaluated. The novel scheme had a significantly higher positive number of MODS diagnoses for all trauma patients compared with the conventional scheme (12.48 vs. 8.87%; P<0.01). No significant difference was identified in the final percentage of positive of MODS diagnoses for trauma‑associated mortality patients between the novel (88.30%) and the conventional scheme (86.34%). The novel scheme had a significantly higher positive number of MODS diagnoses for trauma‑associated mortality patients 3 days prior to patients succumbing to MODS compared with the conventional scheme (80.98 vs. 64.39%; P<0.01). The consensus of the MODS diagnosis of all trauma patients between the novel scheme and the conventional scheme was 100%; however, out of the patients diagnosed as positive by novel scheme 71.03% were positive by the

  9. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  10. Dysfunction of autonomic nervous system in childhood obesity: a cross-sectional study.

    PubMed

    Baum, Petra; Petroff, David; Classen, Joseph; Kiess, Wieland; Blüher, Susann

    2013-01-01

    To assess the distribution of autonomic nervous system (ANS) dysfunction in overweight and obese children. Parasympathetic and sympathetic ANS function was assessed in children and adolescents with no evidence of impaired glucose metabolism by analysis of heart rate variability (low frequency power ln(LF), high frequency power, ln(HF); ln(LF/HF) ratio, ratio of longest RR interval during expiration to shortest interval during inspiration (E/I ratio), root mean square of successive differences (RMSSD); sympathetic skin response (SSR); and quantitative pupillography (pupil diameter in darkness, light reflex amplitude, latency, constriction velocity, re-dilation velocity). The relationship of each ANS variable to the standard deviation score of body mass index (BMI-SDS) was assessed in a linear model considering age, gender and pubertal stage as co-variates and employing an F-statistic to compare the fit of nested models. Group comparisons between normal weight and obese children as well as an analysis of dependence on insulin resistance (as indexed by the Homeostasis Model Assessment of Insulin Resistance, HOMA-IR) were performed for parameters shown to correlate with BMI-SDS. Statistical significance was set at 5%. Measurements were performed in 149 individuals (mean age 12.0 y; 90 obese 45 boys; 59 normal weight, 34 boys). E/I ratio (p = 0.003), ln(HF) (p = 0.03), pupil diameter in darkness (p = 0.01) were negatively correlated with BMI-SDS, whereas ln(LF/HF) was positively correlated (p = 0.05). Early re-dilation velocity was in trend negatively correlated to BMI-SDS (p = 0.08). None of the parameters that depended significantly on BMI-SDS was found to be significantly correlated with HOMA-IR. These findings demonstrate extended ANS dysfunction in obese children and adolescents, affecting several organ systems. Both parasympathetic activity and sympathetic activity are reduced. The conspicuous pattern of ANS dysfunction raises the possibility that obesity may give

  11. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    PubMed

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance

    PubMed Central

    Manning, Alisa K.; Hivert, Marie-France; Scott, Robert A.; Grimsby, Jonna L.; Bouatia-Naji, Nabila; Chen, Han; Rybin, Denis; Liu, Ching-Ti; Bielak, Lawrence F.; Prokopenko, Inga; Amin, Najaf; Barnes, Daniel; Cadby, Gemma; Hottenga, Jouke-Jan; Ingelsson, Erik; Jackson, Anne U.; Johnson, Toby; Kanoni, Stavroula; Ladenvall, Claes; Lagou, Vasiliki; Lahti, Jari; Lecoeur, Cecile; Liu, Yongmei; Martinez-Larrad, Maria Teresa; Montasser, May E.; Navarro, Pau; Perry, John R. B.; Rasmussen-Torvik, Laura J.; Salo, Perttu; Sattar, Naveed; Shungin, Dmitry; Strawbridge, Rona J.; Tanaka, Toshiko; van Duijn, Cornelia M.; An, Ping; de Andrade, Mariza; Andrews, Jeanette S.; Aspelund, Thor; Atalay, Mustafa; Aulchenko, Yurii; Balkau, Beverley; Bandinelli, Stefania; Beckmann, Jacques S.; Beilby, John P.; Bellis, Claire; Bergman, Richard N.; Blangero, John; Boban, Mladen; Boehnke, Michael; Boerwinkle, Eric; Bonnycastle, Lori L.; Boomsma, Dorret I.; Borecki, Ingrid B.; Böttcher, Yvonne; Bouchard, Claude; Brunner, Eric; Budimir, Danijela; Campbell, Harry; Carlson, Olga; Chines, Peter S.; Clarke, Robert; Collins, Francis S.; Corbatón-Anchuelo, Arturo; Couper, David; de Faire, Ulf; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Egan, Josephine M; Eiriksdottir, Gudny; Erdos, Michael R.; Eriksson, Johan G.; Eury, Elodie; Ferrucci, Luigi; Ford, Ian; Forouhi, Nita G.; Fox, Caroline S; Franzosi, Maria Grazia; Franks, Paul W; Frayling, Timothy M; Froguel, Philippe; Galan, Pilar; de Geus, Eco; Gigante, Bruna; Glazer, Nicole L.; Goel, Anuj; Groop, Leif; Gudnason, Vilmundur; Hallmans, Göran; Hamsten, Anders; Hansson, Ola; Harris, Tamara B.; Hayward, Caroline; Heath, Simon; Hercberg, Serge; Hicks, Andrew A.; Hingorani, Aroon; Hofman, Albert; Hui, Jennie; Hung, Joseph; Jarvelin, Marjo Riitta; Jhun, Min A.; Johnson, Paul C.D.; Jukema, J Wouter; Jula, Antti; Kao, W.H.; Kaprio, Jaakko; Kardia, Sharon L. R.; Keinanen-Kiukaanniemi, Sirkka; Kivimaki, Mika; Kolcic, Ivana; Kovacs, Peter; Kumari, Meena; Kuusisto, Johanna; Kyvik, Kirsten Ohm; Laakso, Markku; Lakka, Timo; Lannfelt, Lars; Lathrop, G Mark; Launer, Lenore J.; Leander, Karin; Li, Guo; Lind, Lars; Lindstrom, Jaana; Lobbens, Stéphane; Loos, Ruth J. F.; Luan, Jian’an; Lyssenko, Valeriya; Mägi, Reedik; Magnusson, Patrik K. E.; Marmot, Michael; Meneton, Pierre; Mohlke, Karen L.; Mooser, Vincent; Morken, Mario A.; Miljkovic, Iva; Narisu, Narisu; O’Connell, Jeff; Ong, Ken K.; Oostra, Ben A.; Palmer, Lyle J.; Palotie, Aarno; Pankow, James S.; Peden, John F.; Pedersen, Nancy L.; Pehlic, Marina; Peltonen, Leena; Penninx, Brenda; Pericic, Marijana; Perola, Markus; Perusse, Louis; Peyser, Patricia A; Polasek, Ozren; Pramstaller, Peter P.; Province, Michael A.; Räikkönen, Katri; Rauramaa, Rainer; Rehnberg, Emil; Rice, Ken; Rotter, Jerome I.; Rudan, Igor; Ruokonen, Aimo; Saaristo, Timo; Sabater-Lleal, Maria; Salomaa, Veikko; Savage, David B.; Saxena, Richa; Schwarz, Peter; Seedorf, Udo; Sennblad, Bengt; Serrano-Rios, Manuel; Shuldiner, Alan R.; Sijbrands, Eric J.G.; Siscovick, David S.; Smit, Johannes H.; Small, Kerrin S.; Smith, Nicholas L.; Smith, Albert Vernon; Stančáková, Alena; Stirrups, Kathleen; Stumvoll, Michael; Sun, Yan V.; Swift, Amy J.; Tönjes, Anke; Tuomilehto, Jaakko; Trompet, Stella; Uitterlinden, Andre G.; Uusitupa, Matti; Vikström, Max; Vitart, Veronique; Vohl, Marie-Claude; Voight, Benjamin F.; Vollenweider, Peter; Waeber, Gerard; Waterworth, Dawn M; Watkins, Hugh; Wheeler, Eleanor; Widen, Elisabeth; Wild, Sarah H.; Willems, Sara M.; Willemsen, Gonneke; Wilson, James F.; Witteman, Jacqueline C.M.; Wright, Alan F.; Yaghootkar, Hanieh; Zelenika, Diana; Zemunik, Tatijana; Zgaga, Lina; Wareham, Nicholas J.; McCarthy, Mark I.; Barroso, Ines; Watanabe, Richard M.; Florez, Jose C.; Dupuis, Josée; Meigs, James B.; Langenberg, Claudia

    2013-01-01

    Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. PMID:22581228

  13. Inflammation in Polycystic Ovary Syndrome: Underpinning of insulin resistance and ovarian dysfunction

    PubMed Central

    González, Frank

    2012-01-01

    Chronic low-grade inflammation has emerged as a key contributor to the pathogenesis of Polycystic Ovary Syndrome (PCOS). A dietary trigger such as glucose is capable of inciting oxidative stress and an inflammatory response from mononuclear cells (MNC) of women with PCOS, and this phenomenon is independent of obesity. This is important because MNC-derived macrophages are the primary source of cytokine production in excess adipose tissue, and also promote adipocyte cytokine production in a paracrine fashion. The proinflammatory cytokine tumor necrosis factor-α (TNFα) is a known mediator of insulin resistance. Glucose-stimulated TNFα release from MNC along with molecular markers of inflammation are associated with insulin resistance in PCOS. Hyperandrogenism is capable of activating MNC in the fasting state, thereby increasing MNC sensitivity to glucose; and this may be a potential mechanism for promoting diet-induced inflammation in PCOS. Increased abdominal adiposity is prevalent across all weight classes in PCOS, and this inflamed adipose tissue contributes to the inflammatory load in the disorder. Nevertheless, glucose ingestion incites oxidative stress in normal weight women with PCOS even in the absence of increased abdominal adiposity. In PCOS, markers of oxidative stress and inflammation are highly correlated with circulating androgens. Chronic suppression of ovarian androgen production does not ameliorate inflammation in normal weight women with the disorder. Furthermore, in vitro studies have demonstrated the ability of pro-inflammatory stimuli to upregulate the ovarian theca cell steroidogenic enzyme responsible for androgen production. These findings support the contention that inflammation directly stimulates the polycystic ovary to produce androgens. PMID:22178787

  14. E-cadherin can replace N-cadherin during secretory-stage enamel development.

    PubMed

    Guan, Xiaomu; Bidlack, Felicitas B; Stokes, Nicole; Bartlett, John D

    2014-01-01

    N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous

  15. Insulin Is a Key Modulator of Fetoplacental Endothelium Metabolic Disturbances in Gestational Diabetes Mellitus

    PubMed Central

    Sobrevia, Luis; Salsoso, Rocío; Fuenzalida, Bárbara; Barros, Eric; Toledo, Lilian; Silva, Luis; Pizarro, Carolina; Subiabre, Mario; Villalobos, Roberto; Araos, Joaquín; Toledo, Fernando; González, Marcelo; Gutiérrez, Jaime; Farías, Marcelo; Chiarello, Delia I.; Pardo, Fabián; Leiva, Andrea

    2016-01-01

    Gestational diabetes mellitus (GDM) is a disease of the mother that associates with altered fetoplacental vascular function. GDM-associated maternal hyperglycaemia result in fetal hyperglycaemia, a condition that leads to fetal hyperinsulinemia and altered L-arginine transport and synthesis of nitric oxide, i.e., endothelial dysfunction. These alterations in the fetoplacental endothelial function are present in women with GDM that were under diet or insulin therapy. Since these women and their newborn show normal glycaemia at term, other factors or conditions could be altered and/or not resolved by restoring normal level of circulating D-glucose. GDM associates with metabolic disturbances, such as abnormal handling of the locally released vasodilator adenosine, and biosynthesis and metabolism of cholesterol lipoproteins, or metabolic diseases resulting in endoplasmic reticulum stress and altered angiogenesis. Insulin acts as a potent modulator of all these phenomena under normal conditions as reported in primary cultures of cells obtained from the human placenta; however, GDM and the role of insulin regarding these alterations in this disease are poorly understood. This review focuses on the potential link between insulin and endoplasmic reticulum stress, hypercholesterolemia, and angiogenesis in GDM in the human fetoplacental vasculature. Based in reports in primary culture placental endothelium we propose that insulin is a factor restoring endothelial function in GDM by reversing ERS, hypercholesterolaemia and angiogenesis to a physiological state involving insulin activation of insulin receptor isoforms and adenosine receptors and metabolism in the human placenta from GDM pregnancies. PMID:27065887

  16. Impaired Insulin/IGF Signaling in Experimental Alcohol-Related Myopathy

    PubMed Central

    Nguyen, Van Anh; Le, Tran; Tong, Ming; Silbermann, Elizabeth; Gundogan, Fusun; de la Monte, Suzanne M.

    2012-01-01

    Alcohol-related myopathy (Alc-M) is highly prevalent among heavy drinkers, although its pathogenesis is not well understood. We hypothesize that Alc-M is mediated by combined effects of insulin/IGF resistance and oxidative stress, similar to the effects of ethanol on liver and brain. We tested this hypothesis using an established model in which adult rats were pair-fed for 8 weeks with isocaloric diets containing 0% (N = 8) or 35.5% (N = 13) ethanol by caloric content. Gastrocnemius muscles were examined by histology, morphometrics, qRT-PCR analysis, and ELISAs. Chronic ethanol feeding reduced myofiber size and mRNA expression of IGF-1 polypeptide, insulin, IGF-1, and IGF-2 receptors, IRS-1, and IRS-2. Multiplex ELISAs demonstrated ethanol-associated inhibition of insulin, IRS-1, Akt, and p70S6K signaling, and increased activation of GSK-3β. In addition, ethanol-exposed muscles had increased 4-hydroxy-2-nonenal immunoreactivity, reflecting lipid peroxidation, and reduced levels of mitochondrial Complex IV, Complex V, and acetylcholinesterase. These results demonstrate that experimental Alc-M is associated with inhibition of insulin/IGF/IRS and downstream signaling that mediates metabolism and cell survival, similar to findings in alcoholic liver and brain degeneration. Moreover, the increased oxidative stress, which could be mediated by mitochondrial dysfunction, may have led to inhibition of acetylcholinesterase, which itself is sufficient to cause myofiber atrophy and degeneration. PMID:23016132

  17. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126.

    PubMed

    Xin, Ying; Zhang, Haiyan; Jia, Zhaotong; Ding, Xiaoqian; Sun, Yong; Wang, Qiang; Xu, Tao

    2018-06-01

    Resveratrol (RSV) has been reported to exert anti-inflammatory, anti-oxidant and anti-cancer effects both in vivo and in vitro, and is widely used to treat various diseases. However, the effect of RSV on type 2 diabetes (T2D) is still unclear. The present study aimed to explore the effect of RSV on UA-induced cell injury and dysfunction in pancreatic β-cells. The mouse insulinoma cell line Min6 was treated with 5 mg/dl UA and different concentrations of RSV. Then, cell viability, apoptosis, apoptosis-associated factors, iNOS expression and insulin secretion were examined by CCK-8, flow cytometry, western blot, qRT-PCR and glucose-stimulated insulin secretion (GSIS), respectively. MiR-126 inhibitor and sh-KLF2 were transfected into Min6 cells to alter the expression levels and to reveal the regulatory relationship with RSV. PI3K/AKT signal pathway was analyzed by western blot to uncover the underling mechanism. UA treatment suppressed cell viability, promoted apoptosis, enhanced iNOS expression and decreased insulin secretion in Min6 cells. RSV significantly alleviated UA-induced injury and dysfunction in Min6 cells. The expression level of miR-126 was up-regulated by RSV, and suppression of miR-126 abolished the protective effect of RSV on UA-injured Min6 cells. Additionally, RSV up-regulated KLF2 expression, the promoting effect of RSV on miR-126 expression was reversed by KLF2 silence. Besides, RSV activated PI3K/AKT signal pathway by up-regulation of miR-126 in UA-injured Min6 cells. These data indicated that RSV could protect Min6 cells against UA-induced injury and dysfunction by regulation of miR-126 and activation of PI3K/AKT signal pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.

    PubMed

    Fukushima, Arata; Kinugawa, Shintaro; Takada, Shingo; Matsumoto, Junichi; Furihata, Takaaki; Mizushima, Wataru; Tsuda, Masaya; Yokota, Takashi; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-05-15

    Insulin resistance can occur as a consequence of heart failure (HF). Activation of the renin-angiotensin system (RAS) may play a crucial role in this phenomenon. We thus investigated the effect of a direct renin inhibitor, aliskiren, on insulin resistance in HF after myocardial infarction (MI). MI and sham operation were performed in male C57BL/6J mice. The mice were divided into 4 groups and treated with sham-operation (Sham, n=10), sham-operation and aliskiren (Sham+Aliskiren; 10mg/kg/day, n=10), MI (n=11), or MI and aliskiren (MI+Aliskiren, n=11). After 4 weeks, MI mice showed left ventricular dilation and dysfunction, which were not affected by aliskiren. The percent decrease of blood glucose after insulin load was significantly smaller in MI than in Sham (14±5% vs. 36±2%), and was ameliorated in MI+Aliskiren (34±5%) mice. Insulin-stimulated serine-phosphorylation of Akt and glucose transporter 4 translocation were decreased in the skeletal muscle of MI compared to Sham by 57% and 69%, and both changes were ameliorated in the MI+Aliskiren group (91% and 94%). Aliskiren administration in MI mice significantly inhibited plasma renin activity and angiotensin II (Ang II) levels. Moreover, (pro)renin receptor expression and local Ang II production were upregulated in skeletal muscle from MI and were attenuated in MI+Aliskiren mice, in tandem with a decrease in superoxide production and NAD(P)H oxidase activities. In conclusion, aliskiren ameliorated insulin resistance in HF by improving insulin signaling in the skeletal muscle, at least partly by inhibiting systemic and (pro)renin receptor-mediated local RAS activation, and subsequent NAD(P)H oxidase-induced oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Measurement of growth hormone-releasing hormone and somatostatin in hypothalamic-portal plasma of unanesthetized sheep. Spontaneous secretion and response to insulin-induced hypoglycemia.

    PubMed Central

    Frohman, L A; Downs, T R; Clarke, I J; Thomas, G B

    1990-01-01

    To elucidate the role of growth hormone (GH)-releasing hormone (GRH) and somatostatin (SRIH) in the regulation of the growth hormone (GH) secretory pattern, we collected portal blood from five unanesthetized ovariectomized ewes for repeated measurements of GRH and SRIH simultaneous with those of peripheral GH. Hormones were measured at 10-min intervals for 5.5 h and their interrelationships analyzed. Mean portal GRH was 20.4 +/- 6.7 (SD) pg/ml and the estimated overall secretion rate was 13 pg/min. GRH secretion was pulsatile with peaks of 25-40 pg/ml and a mean pulse interval of 71 min. Mean portal SRIH was 72 +/- 33 pg/ml and the estimated overall secretion rate was 32 pg/min. SRIH secretion was also pulsatile with peaks of 65-160 pg/ml and a mean pulse interval of 54 min. The GH pulse interval was 62 min. A significant association was present between GRH and GH secretory peaks though not between GRH and SRIH or SRIH and GH. Insulin hypoglycemia resulted in a rapid and brief stimulation of SRIH secretion followed by a decline in GH levels. No effect was observed on GRH secretion until 90 min, when a slight increase occurred. The results suggest (a) the presence of an independent neural rhythmicity of GRH and SRIH secretion with a primary role of GRH in determining pulsatile GRH secretion, and (b) that the inhibitory effects of insulin hypoglycemia on GH in this species are attributable to a combination of enhanced SRIH secretion and possibly other factors, though without significant inhibition of GRH. PMID:1973173

  20. Secretory immunity with special reference to the oral cavity

    PubMed Central

    Brandtzaeg, Per

    2013-01-01

    The two principal antibody classes present in saliva are secretory IgA (SIgA) and IgG; the former is produced as dimeric IgA by local plasma cells (PCs) in the stroma of salivary glands and is transported through secretory epithelia by the polymeric Ig receptor (pIgR), also named membrane secretory component (SC). Most IgG in saliva is derived from the blood circulation by passive leakage mainly via gingival crevicular epithelium, although some may be locally produced in the gingiva or salivary glands. Gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) do not contribute equally to the pool of memory/effector B cells differentiating to mucosal PCs throughout the body. Thus, enteric immunostimulation may not be the best way to activate the production of salivary IgA antibodies although the level of specific SIgA in saliva may still reflect an intestinal immune response after enteric immunization. It remains unknown whether the IgA response in submandibular/sublingual glands is better related to B-cell induction in GALT than the parotid response. Such disparity is suggested by the levels of IgA in submandibular secretions of AIDS patients, paralleling their highly upregulated intestinal IgA system, while the parotid IgA level is decreased. Parotid SIgA could more consistently be linked to immune induction in palatine tonsils/adenoids (human NALT) and cervical lymph nodes, as supported by the homing molecule profile observed after immune induction at these sites. Several other variables influence the levels of antibodies in salivary secretions. These include difficulties with reproducibility and standardization of immunoassays, the impact of flow rate, acute or chronic stress, protein loss during sample handling, and uncontrolled admixture of serum-derived IgG and monomeric IgA. Despite these problems, saliva is an easily accessible biological fluid with interesting scientific and clinical potentials. PMID:23487566

  1. Identification and staining of distinct populations of secretory organelles in astrocytes.

    PubMed

    Bezzi, Paola; Volterra, Andrea

    2014-05-01

    Increasing evidence indicates that astrocytes, the most abundant glial cell type in the brain, respond to an elevation in cytoplasmic calcium concentration ([Ca(2+)]i) by releasing chemical transmitters (also called gliotransmitters) via regulated exocytosis of heterogeneous classes of organelles. By this process, astrocytes exert modulatory influences on neighboring cells and are thought to participate in the control of synaptic circuits and cerebral blood flow. Studying the properties of exocytosis in astrocytes is a challenge, because the cell biological basis of this process is incompletely defined. Astrocytic exocytosis involves multiple populations of secretory vesicles, including synaptic-like microvesicles (SLMVs), dense-core granules (DCGs), and lysosomes. Here we summarize the available information for identifying individual populations of secretory organelles in astrocytes, including DCGs, SLMVs, and lysosomes, and present experimental procedures for specifically staining such populations.

  2. Clinical Evidence for the Earlier Initiation of Insulin Therapy in Type 2 Diabetes

    PubMed Central

    2013-01-01

    Abstract The natural history of type 2 diabetes mellitus (T2DM) is a relentless progression of β-cell failure and dysregulation of β-cell function with increasing metabolic derangement. Insulin remains the only glucose-lowering therapy that is efficacious throughout this continuum. However, the timing of introduction and the choice of insulin therapy remain contentious because of the heterogeneity of T2DM and the well-recognized behavioral and therapeutic challenges associated with this mode of therapy. Nevertheless, the early initiation of basal insulin has been shown to improve glycemic control and affect long-term outcomes in people with T2DM and is a treatment strategy supported by international guidelines as part of an individualized approach to chronic disease management. The rationale for early initiation of insulin is based on evidence demonstrating multifaceted benefits, including overcoming the glucotoxic effects of hyperglycemia, thereby facilitating “β-cell rest,” and preserving β-cell mass and function, while also improving insulin sensitivity. Independent of its effects on glycemic control, insulin possesses anti-inflammatory and antioxidant properties that may help protect against endothelial dysfunction and damage resulting in vascular disease. Insulin therapy and the achievement of good glycemic control earlier in T2DM provide long-term protection to end organs via “metabolic memory” regardless of subsequent treatments and degree of glycemic control. This is evidenced from long-term observations continuing from trials such as the United Kingdom Prospective Diabetes Study. As such, early initiation of insulin therapy may not only help to avoid the effects of prolonged glycemic burden, but may also positively alter the course of disease progression. PMID:23786228

  3. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro.

    PubMed

    Hafizur, Rahman M; Hameed, Abdul; Shukrana, Mishkat; Raza, Sayed Ali; Chishti, Sidra; Kabir, Nurul; Siddiqui, Rehan A

    2015-02-15

    Although the anti-diabetic activity of cinnamic acid, a pure compound from cinnamon, has been reported but its mechanism(s) is not yet clear. The present study was designed to explore the possible mechanism(s) of anti-diabetic activity of cinnamic acid in in vitro and in vivo non-obese type 2 diabetic rats. Non-obese type 2 diabetes was developed by injecting 90 mg/kg streptozotocin in 2-day-old Wistar pups. Cinnamic acid and cinnamaldehyde were administered orally to diabetic rats for assessing acute blood glucose lowering effect and improvement of glucose tolerance. Additionally, insulin secretory activity of cinnamic acid and cinnamaldehyde was evaluated in isolated mice islets. Cinnamic acid, but not cinnamaldehyde, decreased blood glucose levels in diabetic rats in a time- and dose-dependent manner. Oral administration of cinnamic acid with 5 and 10 mg/kg doses to diabetic rats improved glucose tolerance in a dose-dependent manner. The improvement by 10 mg/kg cinnamic acid was comparable to that of standard drug glibenclamide (5 mg/kg). Further in vitro studies showed that cinnamaldehyde has little or no effect on glucose-stimulated insulin secretion; however, cinnamic acid significantly enhanced glucose-stimulated insulin secretion in isolated islets. In conclusion, it can be said that cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and stimulating insulin secretion in vitro. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    PubMed

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Natural Immunoreactivity of Secretory IgA to Indigenous Strains of Streptococcus mutans From Chinese Spousal Pairs

    PubMed Central

    Nie, Min; Chen, Dong; Gao, Zhenyan; Wu, Xinyu; Li, Tong

    2016-01-01

    Background Dental caries is a well-known biofilm-mediated disease initiated by Streptococcus mutans, which should infect and colonize in a milieu perfused with components of the mucosal immune system. Little is known, however, regarding the relationship between the natural secretory IgA activity and S. mutans of a variety of diverse genotypes. Objectives The current study aimed to use spousal pairs to investigate the natural immunoreactivity of salivary secretory IgA to different genotype strains of S. mutans. Patients and Methods Indigenous strains were characterized from nine spousal pairs using polymerase reaction chain (PCR) and arbitrarily primed polymerase chain reaction (AP-PCR) by genotype monitoring. Unstimulated submandibular/sublingual secretions were collected and the concentrations of secretory IgA were determined by the enzyme-linked immunosorbent assay (ELISA). Each saliva sample was examined by Western blot to analyze the immunoreactivity of naturally occurring salivary secretory IgA antibodies for his/her own indigenous strain, spouse’s strain and reference strains including S. mutans GS-5 and Ingbritt (C). Results The results showed that naturally induced salivary IgA antibodies against S. mutans were present in all subjects. Almost all subjects had the similar individual immunoblotting profiles to different genotype strains. Conclusions The current study indicated that the immunoreactivity of secretory IgA might have no direct correlation with the colonization of indigenous flora and rejection of exogenous strains in adults. The relationship of microbes, host and dental caries should be in the light of coevolved microecosystem as a whole, but not caused by one factor alone. PMID:27303613

  6. Microtubules negatively regulate insulin secretion in pancreatic β cells

    PubMed Central

    Zhu, Xiaodong; Hu, Ruiying; Brissova, Marcela; Stein, Roland W.; Powers, Alvin C.; Gu, Guoqiang; Kaverina, Irina

    2015-01-01

    Summary For glucose-stimulated insulin secretion (GSIS) insulin granules have to be localized close to the plasma membrane. The role of microtubule-dependent transport in granule positioning and GSIS has been debated. Here, we report that microtubules, counterintuitively, restrict granule availability for secretion. In β cells, microtubules originate at the Golgi and form a dense non-radial meshwork. Non-directional transport along these microtubules limits granule dwelling at the cell periphery, restricting granule availability for secretion. High glucose destabilizes microtubules, decreasing their density; such local microtubule depolymerization is necessary for GSIS, likely because granule withdrawal from the cell periphery becomes inefficient. Consistently, microtubule depolymerization by nocodazole blocks granule withdrawal, increases their concentration at exocytic sites, and dramatically enhances GSIS in vitro and in mice. Furthermore, glucose-driven MT destabilization is balanced by new microtubule formation, which likely prevents over-secretion. Importantly, microtubule density is greater in dysfunctional β cells of diabetic mice. PMID:26418295

  7. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    PubMed

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  8. The plant secretory pathway seen through the lens of the cell wall.

    PubMed

    van de Meene, A M L; Doblin, M S; Bacic, Antony

    2017-01-01

    Secretion in plant cells is often studied by looking at well-characterised, evolutionarily conserved membrane proteins associated with particular endomembrane compartments. Studies using live cell microscopy and fluorescent proteins have illuminated the highly dynamic nature of trafficking, and electron microscopy studies have resolved the ultrastructure of many compartments. Biochemical and molecular analyses have further informed about the function of particular proteins and endomembrane compartments. In plants, there are over 40 cell types, each with highly specialised functions, and hence potential variations in cell biological processes and cell wall structure. As the primary function of secretion in plant cells is for the biosynthesis of cell wall polysaccharides and apoplastic transport complexes, it follows that utilising our knowledge of cell wall glycosyltransferases (GTs) and their polysaccharide products will inform us about secretion. Indeed, this knowledge has led to novel insights into the secretory pathway, including previously unseen post-TGN secretory compartments. Conversely, our knowledge of trafficking routes of secretion will inform us about polarised and localised deposition of cell walls and their constituent polysaccharides/glycoproteins. In this review, we look at what is known about cell wall biosynthesis and the secretory pathway and how the different approaches can be used in a complementary manner to study secretion and provide novel insights into these processes.

  9. Secretory proteins in the reproductive tract of the snapping turtle, Chelhydra serpentina.

    PubMed

    Mahmoud, I Y; Paulson, J R; Dudley, M; Patzlaff, J S; Al-Kindi, A Y A

    2004-12-01

    SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.

  10. Human milk containing specific secretory IgA inhibits binding of Giardia lamblia to nylon and glass surfaces.

    PubMed

    Samra, H K; Ganguly, N K; Mahajan, R C

    1991-06-01

    The effects of human milk, containing specific secretory IgA, on the adherence of Giardia lamblia trophozoites in the presence and in the absence of intestinal mucus in vitro were studied. It was found that the trophozoites treated with breast milk, containing specific secretory IgA to G. lamblia, showed a significant decrease (p less than 0.01) in adherence to nylon fibre columns and glass surfaces than did trophozoites treated with milk containing no SIgA antibodies. The adherence to glass surfaces was significantly more (p less than 0.01) in the presence of intestinal mucus than when the mucus was absent. Milk that did not contain specific secretory SIgA to G. lamblia did not decrease the adherence to glass surfaces either in the presence or in the absence of mucus. The fluorescence study revealed the binding of specific secretory IgA on the trophozoite surface. The results suggest that binding of SIgA antibodies in milk to G. lamblia trophozoites inhibits parasite adherence, thus protecting against this infection in breast-fed babies.

  11. Interactions between Melanin Enzymes and Their Atypical Recruitment to the Secretory Pathway by Palmitoylation

    PubMed Central

    Upadhyay, Srijana; Xu, Xinping

    2016-01-01

    ABSTRACT Melanins are biopolymers that confer coloration and protection to the host organism against biotic or abiotic insults. The level of protection offered by melanin depends on its biosynthesis and its subcellular localization. Previously, we discovered that Aspergillus fumigatus compartmentalizes melanization in endosomes by recruiting all melanin enzymes to the secretory pathway. Surprisingly, although two laccases involved in the late steps of melanization are conventional secretory proteins, the four enzymes involved in the early steps of melanization lack a signal peptide or a transmembrane domain and are thus considered “atypical” secretory proteins. In this work, we found interactions among melanin enzymes and all melanin enzymes formed protein complexes. Surprisingly, the formation of protein complexes by melanin enzymes was not critical for their trafficking to the endosomal system. By palmitoylation profiling and biochemical analyses, we discovered that all four early melanin enzymes were strongly palmitoylated during conidiation. However, only the polyketide synthase (PKS) Alb1 was strongly palmitoylated during both vegetative hyphal growth and conidiation when constitutively expressed alone. This posttranslational lipid modification correlates the endosomal localization of all early melanin enzymes. Intriguingly, bioinformatic analyses predict that palmitoylation is a common mechanism for potential membrane association of polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in A. fumigatus. Our findings indicate that protein-protein interactions facilitate melanization by metabolic channeling, while posttranslational lipid modifications help recruit the atypical enzymes to the secretory pathway, which is critical for compartmentalization of secondary metabolism. PMID:27879337

  12. Sialotranscriptomics of Rhipicephalus zambeziensis reveals intricate expression profiles of secretory proteins and suggests tight temporal transcriptional regulation during blood-feeding.

    PubMed

    de Castro, Minique Hilda; de Klerk, Daniel; Pienaar, Ronel; Rees, D Jasper G; Mans, Ben J

    2017-08-10

    Ticks secrete a diverse mixture of secretory proteins into the host to evade its immune response and facilitate blood-feeding, making secretory proteins attractive targets for the production of recombinant anti-tick vaccines. The largely neglected tick species, Rhipicephalus zambeziensis, is an efficient vector of Theileria parva in southern Africa but its available sequence information is limited. Next generation sequencing has advanced sequence availability for ticks in recent years and has assisted the characterisation of secretory proteins. This study focused on the de novo assembly and annotation of the salivary gland transcriptome of R. zambeziensis and the temporal expression of secretory protein transcripts in female and male ticks, before the onset of feeding and during early and late feeding. The sialotranscriptome of R. zambeziensis yielded 23,631 transcripts from which 13,584 non-redundant proteins were predicted. Eighty-six percent of these contained a predicted start and stop codon and were estimated to be putatively full-length proteins. A fifth (2569) of the predicted proteins were annotated as putative secretory proteins and explained 52% of the expression in the transcriptome. Expression analyses revealed that 2832 transcripts were differentially expressed among feeding time points and 1209 between the tick sexes. The expression analyses further indicated that 57% of the annotated secretory protein transcripts were differentially expressed. Dynamic expression profiles of secretory protein transcripts were observed during feeding of female ticks. Whereby a number of transcripts were upregulated during early feeding, presumably for feeding site establishment and then during late feeding, 52% of these were downregulated, indicating that transcripts were required at specific feeding stages. This suggested that secretory proteins are under stringent transcriptional regulation that fine-tunes their expression in salivary glands during feeding. No open

  13. Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

    PubMed Central

    Nicolson, Tamara J.; Bellomo, Elisa A.; Wijesekara, Nadeeja; Loder, Merewyn K.; Baldwin, Jocelyn M.; Gyulkhandanyan, Armen V.; Koshkin, Vasilij; Tarasov, Andrei I.; Carzaniga, Raffaella; Kronenberger, Katrin; Taneja, Tarvinder K.; da Silva Xavier, Gabriela; Libert, Sarah; Froguel, Philippe; Scharfmann, Raphael; Stetsyuk, Volodymir; Ravassard, Philippe; Parker, Helen; Gribble, Fiona M.; Reimann, Frank; Sladek, Robert; Hughes, Stephen J.; Johnson, Paul R.V.; Masseboeuf, Myriam; Burcelin, Remy; Baldwin, Stephen A.; Liu, Ming; Lara-Lemus, Roberto; Arvan, Peter; Schuit, Frans C.; Wheeler, Michael B.; Chimienti, Fabrice; Rutter, Guy A.

    2009-01-01

    OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8−/− mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8−/− islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn2+ transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks. PMID:19542200

  14. Endometrial proteins: a reappraisal.

    PubMed

    Seppälä, M; Julkunen, M; Riittinen, L; Koistinen, R

    1992-06-01

    Uterine factors influence reproduction at the macro-anatomy level, and the effects of hormonal steroids on endometrial morphology are well recognized in the histopathological diagnosis of dysfunctional bleeding and infertility. During the past decade, attention has been paid to endometrial protein synthesis and secretion with respect to endocrine stimuli and implantation, and to the paracrine/autocrine effects of endometrial peptide growth factors, their binding proteins and other factors. The emphasis of this presentation is on protein secretion of the secretory endometrium, in which progesterone plays a pivotal role. Insulin-like growth factors have receptors on the endometrium, and IGF-binding proteins, stimulated by progesterone, modulate the effects of IGFs locally. Also other protein products of the secretory endometrium have been reviewed in this communication, with special emphasis on studies of a progesterone-associated endometrial protein which has many names in the literature, such as PEP, PP14, alpha 2-PEG and AUP. Extensive studies are ongoing in many laboratories to elucidate the regulation, function, interplay at tissue and cellular levels, and clinical significance of these proteins.

  15. Laron Dwarfism and Non-Insulin-Dependent Diabetes Mellitus in the Hnf-1α Knockout Mouse

    PubMed Central

    Lee, Ying-Hue; Sauer, Brian; Gonzalez, Frank J.

    1998-01-01

    Mice deficient in hepatocyte nuclear factor 1 alpha (HNF-1α) were produced by use of the Cre-loxP recombination system. HNF-1α-null mice are viable but sterile and exhibit a phenotype reminiscent of both Laron-type dwarfism and non-insulin-dependent diabetes mellitus (NIDDM). In contrast to an earlier HNF-1α-null mouse line that had been produced by use of standard gene disruption methodology (M. Pontoglio, J. Barra, M. Hadchouel, A. Doyen, C. Kress, J. P. Bach, C. Babinet, and M. Yaniv, Cell 84:575–585, 1996), these mice exhibited no increased mortality and only minimal renal dysfunction during the first 6 months of development. Both dwarfism and NIDDM are most likely due to the loss of expression of insulin-like growth factor I (IGF-I) and lower levels of insulin, resulting in stunted growth and elevated serum glucose levels, respectively. These results confirm the functional significance of the HNF-1α regulatory elements that had previously been shown to reside in the promoter regions of both the IGF-I and the insulin genes. PMID:9566924

  16. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases

    PubMed Central

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases. PMID:25674026

  17. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases.

    PubMed

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases.

  18. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi.

    PubMed

    Martín, Juan F

    2014-09-10

    Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of

  19. Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium.

    PubMed

    Xu, Xiaoshan; Chen, Yupeng; Song, Junna; Hou, Fangjie; Ma, Xuelian; Liu, Baolin; Huang, Fang

    2018-06-01

    Mangiferin is a naturally occurring glucosylxanthone with beneficial effects on glucose and lipid homeostasis. This study investigates the potential therapeutic effect of Mangiferin in perivascular adipose tissue (PVAT) and whether it contributes to regulating insulin action in the endothelium. Palmitate challenge evoked ROS-associated endoplasmic reticulum stress (ER stress) and NLRP3 inflammasome activation in PVAT. The conditioned medium from PA-stimulated PVAT was prepared to induce endothelial insulin resistance, and improved endothelium-dependent vasodilation in response to insulin was detected in vitro and in vivo. Mangiferin treatment enhanced LKB1-dependent AMPK activity and suppressed ER stress with downregulation of TXNIP induction, leading to the inhibition of NLRP3 inflammasome activation evidenced by attenuated NLRP3 and cleaved caspase-1 expression as well as reduced IL-1β secretion. Moreover, Mangiferin restored insulin-mediated Akt and eNOS phosphorylations with increased NO production, immunohistochemistry examination of adipocytes, and endothelial tissue in high-fat diet-fed mice also showed that oral administration of Mangiferin inhibited ER stress and NLRP3 induction in PVAT, and then effectively prevented insulin resistance in the vessel endothelium. Taken together, these results revealed that Mangiferin suppressed ER stress-associated NLRP3 inflammasome activation in PVAT through regulation of AMPK activity, which prevented endothelial insulin resistance. These findings suggested that the amelioration of PVAT dysfunction may be a therapeutic strategy for the prevention of endothelial insulin resistance.

  20. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.

    PubMed

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li

    2014-05-01

    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients. © 2014 International Federation for Cell Biology.

  1. Distinct Molecular Events during Secretory Granule Biogenesis Revealed by Sensitivities to Brefeldin A

    PubMed Central

    Fernandez, Carlos J.; Haugwitz, Michael; Eaton, Benjamin; Moore, Hsiao-Ping H.

    1997-01-01

    The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse–chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20°C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from ISGs is

  2. Distinct molecular events during secretory granule biogenesis revealed by sensitivities to brefeldin A.

    PubMed

    Fernandez, C J; Haugwitz, M; Eaton, B; Moore, H P

    1997-11-01

    The biogenesis of peptide hormone secretory granules involves a series of sorting, modification, and trafficking steps that initiate in the trans-Golgi and trans-Golgi network (TGN). To investigate their temporal order and interrelationships, we have developed a pulse-chase protocol that follows the synthesis and packaging of a sulfated hormone, pro-opiomelanocortin (POMC). In AtT-20 cells, sulfate is incorporated into POMC predominantly on N-linked endoglycosidase H-resistant oligosaccharides. Subcellular fractionation and pharmacological studies confirm that this sulfation occurs at the trans-Golgi/TGN. Subsequent to sulfation, POMC undergoes a number of molecular events before final storage in dense-core granules. The first step involves the transfer of POMC from the sulfation compartment to a processing compartment (immature secretory granules, ISGs): Inhibiting export of pulse-labeled POMC by brefeldin A (BFA) or a 20 degrees C block prevents its proteolytic conversion to mature adrenocorticotropic hormone. Proteolytic cleavage products were found in vesicular fractions corresponding to ISGs, suggesting that the processing machinery is not appreciably activated until POMC exits the sulfation compartment. A large portion of the labeled hormone is secreted from ISGs as incompletely processed intermediates. This unregulated secretory process occurs only during a limited time window: Granules that have matured for 2 to 3 h exhibit very little unregulated release, as evidenced by the efficient storage of the 15-kDa N-terminal fragment that is generated by a relatively late cleavage event within the maturing granule. The second step of granule biogenesis thus involves two maturation events: proteolytic activation of POMC in ISGs and a transition of the organelle from a state of high unregulated release to one that favors intracellular storage. By using BFA, we show that the two processes occurring in ISGs may be uncoupled: although the unregulated secretion from

  3. A comparison of the binding of secretory component to immunoglobulin A (IgA) in human colostral S-IgA1 and S-IgA2

    PubMed Central

    Almogren, Adel; Senior, Bernard W; Kerr, Michael A

    2007-01-01

    A detailed investigation of the binding of secretory component to immunoglobulin A (IgA) in human secretory IgA2 (S-IgA2) was made possible by the development of a new method of purifying S-IgA1, S-IgA2 and free secretory component from human colostrum using thiophilic gel chromatography and chromatography on Jacalin-agarose. Sodium dodecyl sulphate–polyacrylamide gel electrophoresis of unreduced pure S-IgA2 revealed that, unlike in S-IgA1, a significant proportion of the secretory component was bound non-covalently in S-IgA2. When S-IgA1 was incubated with a protease purified from Proteus mirabilis the secretory component, but not the α-chain, was cleaved. This is in contrast to serum IgA1, in which the α-chain was cleaved under the same conditions – direct evidence that secretory component does protect the α-chain from proteolytic cleavage in S-IgA. Comparisons between the products of cleavage with P. mirabilis protease of free secretory component and bound secretory component in S-IgA1 and S-IgA2 also indicated that, contrary to the general assumption, the binding of secretory component to IgA is different in S-IgA2 from that in S-IgA1. PMID:17156102

  4. Unconventional secretion of FABP4 by endosomes and secretory lysosomes.

    PubMed

    Villeneuve, Julien; Bassaganyas, Laia; Lepreux, Sebastien; Chiritoiu, Marioara; Costet, Pierre; Ripoche, Jean; Malhotra, Vivek; Schekman, Randy

    2018-02-05

    An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum-Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion. © 2018 Villeneuve et al.

  5. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction.

    PubMed

    Guan, Siao-Syun; Sheu, Meei-Ling; Yang, Rong-Sen; Chan, Ding-Cheng; Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-04-26

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia.

  6. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction

    PubMed Central

    Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-01-01

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia. PMID:27056903

  7. Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD

    PubMed Central

    Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248

  8. Hyperoxia reduces insulin release and induces mitochondrial dysfunction with possible implications for hyperoxic treatment of neonates.

    PubMed

    Hals, Ingrid; Ohki, Tsuyoshi; Singh, Rinku; Ma, Zuheng; Björklund, Anneli; Balasuriya, Chandima; Scholz, Hanne; Grill, Valdemar

    2017-10-01

    We previously showed that hyperoxia in vitro negatively affects beta cells of the rat. Here, we tested for possible clinical significance as well as mitochondrial interactions by hyperoxia, using human islets (function and viability), INS-1 832/13 cells (mitochondrial metabolism), and mouse neonates (effects in vivo). Lastly, we assessed relevant parameters in a cohort of individuals born preterm and then exposed to hyperoxia. Human islets and INS-1 832/13 cells were exposed to 24 h of hyperoxia (90-92% oxygen). Mouse neonates were subjected to 5 days of continuous hyperoxia. Individuals born preterm were evaluated in terms of glucose homeostasis and beta cell function by HbA1c and the HOMA2 formula. In human islets, hyperoxia significantly reduced glucose-stimulated insulin secretion by 42.2 ± 5.3% and viability assessed by MTT by 22.5 ± 5.4%. Hyperoxia down-regulated mitochondrial complex II by 21 ± 5% and upregulated complex III by 26 ± 10.1% and complex IV by 37 ± 10.6%. Partly similar effects on mitochondrial complexes were found in hyperoxia-exposed INS-1 832/13 cells. Exposure to hyperoxia swiftly reduced oxygen consumption in these cells and increased mitochondrial uncoupling. Hyperoxia transiently but significantly reduced insulin release in mouse neonates. Individuals born preterm displayed higher HbA1c versus controls, as well as insulin resistance. Thus, hyperoxia exerts negative effects in vitro on human beta cells and results indicate inhibitory effects on insulin secretion in vivo in mouse neonates. Negative effects may be lessened by the demonstrated swift and profound mitochondrial adaptability. Our findings open the possibility that hyperoxia could negatively affect beta cells of preterm human neonates. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  10. Ectopic expression of syncollin in INS-1 beta-cells sorts it into granules and impairs regulated secretion.

    PubMed

    Li, Jingsong; Luo, Ruihua; Hooi, Shing Chuan; Ruga, Pilar; Zhang, Jiping; Meda, Paolo; Li, GuoDong

    2005-03-22

    Syncollin was first demonstrated to be a protein capable of affecting granule fusion in a cell-free system, but later studies revealed its luminal localization in zymogen granules. To determine its possible role in exocytosis in the intact cell, syncollin and a truncated form of the protein (lacking the N-terminal hydrophobic domain) were stably transfected in insulin-secreting INS-1 cells since these well-studied exocytotic cells appear not to express the protein per se. Studies by subcellular fractionation analysis, double immunofluorescence staining, and electron microscopy examination revealed that transfection of syncollin produced strong signals in the insulin secretory granules, whereas the product from transfecting the truncated syncollin was predominantly associated with the Golgi apparatus and to a lesser degree with the endoplasmic reticulum. The expressed products were associated with membranes and not the soluble fractions in either cytoplasm or the lumens of organelles. Importantly, insulin release stimulated by various secretagogues was severely impaired in cells expressing syncollin, but not affected by expressing truncated syncollin. Transfection of syncollin appeared not to impede insulin biosynthesis and processing, since cellular contents of proinsulin and insulin and the number of secretory granules were not altered. In addition, the early signals (membrane depolarization and Ca(2+) responses) for regulated insulin secretion were unaffected. These findings indicate that syncollin may be targeted to insulin secretory granules specifically and impair regulated secretion at a distal stage.

  11. Insulin Reverses D-Glucose–Increased Nitric Oxide and Reactive Oxygen Species Generation in Human Umbilical Vein Endothelial Cells

    PubMed Central

    González, Marcelo; Rojas, Susana; Avila, Pía; Cabrera, Lissette; Villalobos, Roberto; Palma, Carlos; Aguayo, Claudio; Peña, Eduardo; Gallardo, Victoria; Guzmán-Gutiérrez, Enrique; Sáez, Tamara; Salsoso, Rocío; Sanhueza, Carlos; Pardo, Fabián; Leiva, Andrea; Sobrevia, Luis

    2015-01-01

    level. Insulin and tempol blocked the high D-glucose–increased p42/44mapk phosphorylation. Vascular dysfunction caused by high D-glucose is likely attenuated by insulin through the L-arginine/NO and O2 •–/NADPH oxidase pathways. These findings are of interest for better understanding vascular dysfunction in states of foetal insulin resistance and hyperglycaemia. PMID:25875935

  12. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    PubMed Central

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-01-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes. PMID:25367288

  13. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice

    NASA Astrophysics Data System (ADS)

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-01

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  14. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice.

    PubMed

    Liu, Su; Guo, Xuechao; Wu, Bing; Yu, Haiyan; Zhang, Xuxiang; Li, Mei

    2014-11-04

    Arsenic as a potential risk factor for type 2 diabetes has been received attention recently. However, the roles of arsenic on development of diabetes are unclear. In this study, we compared the influences of inorganic arsenic (iAs) on normal and diabetic mice by systems toxicology approaches. Although iAs exposure did not change glucose tolerance in normal mice, it caused the pancreatic β-cell dysfunction and increased gluconeogenesis and oxidative damages in liver. However, iAs exposure worsened the glucose tolerance in diabetic mice, which might be due to increased gluconeogenesis and impairment of pancreatic β-cell function. It is interesting that iAs exposure could improve the insulin sensitivity based on the insulin tolerance testing by the activation of glucose uptake-related genes and enzymes in normal and diabetic individuals. Our data suggested that iAs exposure could cause pre-diabetic effects by altering the lipid metabolism, gluconeogenesis and insulin secretion in normal individual, and worsen diabetic effects in diabetes individual by these processes. Insulin resistance might be not the reason of diabetic effects caused by iAs, indicating that mechanism of the diabetogenic effects of iAs exposure is different from the mechanism associated with traditional risk factors (such as obesity)-reduced type 2 diabetes.

  15. Is salivary gland function altered in noninsulin-dependent diabetes mellitus and obesity-insulin resistance?

    PubMed

    Ittichaicharoen, Jitjiroj; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-04-01

    Salivary gland dysfunction in several systemic diseases has been shown to decrease the quality of life in patients. In non-insulin dependent diabetes mellitus (NIDDM), inadequate salivary gland function has been evidenced to closely associate with this abnormal glycemic control condition. Although several studies demonstrated that NIDDM has a positive correlation with impaired salivary gland function, including decreased salivary flow rate, some studies demonstrated contradictory findings. Moreover, the changes of the salivary gland function in pre-diabetic stage known as insulin resistance are still unclear. The aim of this review is to comprehensively summarize the current evidence from in vitro, in vivo and clinical studies regarding the relationship between NIDDM and salivary gland function, as well as the correlation between obesity and salivary gland function. Consistent findings as well as controversial reports and the mechanistic insights regarding the effect of NIDDM and obesity-insulin resistance on salivary gland function are also presented and discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Breast-feeding, Leptin:Adiponectin Ratio, and Metabolic Dysfunction in Adolescents with Obesity

    PubMed Central

    Mihalopoulos, Nicole L.; Urban, Brittney M.; Metos, Julie M.; Balch, Alfred H.; Young, Paul C.; Jordan, Kristine C.

    2017-01-01

    Objectives Increased adiposity increases leptin and decreases adiponectin concentrations, resulting in an increased leptin:adiponectin ratio (LAR). In adults, components of the metabolic syndrome and other cardiometabolic risk factors, what we classify here as “metabolic dysfunction,” are associated with both a high LAR and a history of being breast-fed. The relation among breast-feeding, LAR, and degree of metabolic dysfunction in obese youth is unknown. The purpose of our pilot study was to explore this relation and estimate the effect size of the relations to determine the sample size needed to power future prospective studies. Methods We obtained fasting levels of leptin, adiponectin, lipids, insulin, and glucose from obese youth (aged 8–17 years). Weight, height, waist circumference, blood pressure, and breast-feeding history also were assessed. Results Of 96 participants, 78 were breast-fed as infants, 54% of whom were breast-fed for >6 months. Wide variation was observed in LARs among children who were and were not breast-fed (>100% coefficient of variation). Overall, prevalence of metabolic dysfunction in the cohort was 94% and was not proven to be associated with higher LAR. Conclusions In this cohort of obese youth, we found a high prevalence of breast-feeding, metabolic dysfunction, and wide variation in the LARs. Based on the effect size estimated, future studies would need to enroll >1500 patients or identify, stratify, and selectively enroll obese patients without metabolic dysfunction to accurately determine whether breast-feeding in infancy influences LARs or metabolic dysfunction among obese youth. PMID:28464176

  17. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells.

    PubMed

    Tooze, J; Tooze, S A; Fuller, S D

    1987-09-01

    Murine hepatitis virus (strain A59), (MHV-A59) is a coronavirus that buds into pre-Golgi compartments and then exploits the exocytic pathway of the host cell to reach the exterior. The fibroblastic cells in which replication of this virus is usually studied have only a constitutive exocytic pathway that the virus uses. MHV-A59 also infects, albeit inefficiently, AtT20 cells, murine pituitary tumor cells with a regulated as well as a constitutive exocytic pathway. Here we examine AtT20 cells at early times after the infection, when the Golgi apparatus retains its morphological and biochemical integrity. We observe that progeny coronavirus and secretory protein destined for the secretory granules of the regulated exocytic pathway traverse the same Golgi stacks and accumulate in the trans-Golgi network. Their pathways diverge at this site, the condensed secretory proteins including the ACTH going to the secretory granules and the coronavirus to post-Golgi transport vesicles devoid of ACTH. On very rare occasions there is missorting such that aggregates of condensed secretory proteins and viruses occur together in post-Golgi vesicles. We conclude that the constitutive and regulated exocytic pathways, identified respectively by the progeny virions and the secretory protein ACTH, diverge at the exit from the trans-Golgi network.

  18. Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation.

    PubMed

    Mayer, Christopher M; Belsham, Denise D

    2010-01-01

    Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.

  19. Crosstalk of Autophagy and the Secretory Pathway and Its Role in Diseases.

    PubMed

    Zahoor, Muhammad; Farhan, Hesso

    2018-01-01

    The secretory and autophagic pathways are two fundamental, evolutionary highly conserved endomembrane processes. Typically, secretion is associated with biosynthesis and delivery of proteins. In contrast, autophagy is usually considered as a degradative pathway. Thus, an analogy to metabolic pathways is evident. Anabolic (biosynthetic) and catabolic (degradative) pathways are usually intimately linked and intertwined, and likewise, the secretory and autophagy pathways are intertwined. Investigation of this link is an emerging area of research, and we will provide an overview of some of the major advances that have been made to contribute to understanding of how secretion regulates autophagy and vice versa. Finally, we will highlight evidence that supports a potential involvement of the autophagy-secretion crosstalk in human diseases. © 2018 Elsevier Inc. All rights reserved.

  20. Cysteine-Rich Atrial Secretory Protein from the Snail Achatina achatina: Purification and Structural Characterization

    PubMed Central

    Shabelnikov, Sergey; Kiselev, Artem

    2015-01-01

    Despite extensive studies of cardiac bioactive peptides and their functions in molluscs, soluble proteins expressed in the heart and secreted into the circulation have not yet been reported. In this study, we describe an 18.1-kDa, cysteine-rich atrial secretory protein (CRASP) isolated from the terrestrial snail Achatina achatina that has no detectable sequence similarity to any known protein or nucleotide sequence. CRASP is an acidic, 158-residue, N-glycosylated protein composed of eight alpha-helical segments stabilized with five disulphide bonds. A combination of fold recognition algorithms and ab initio folding predicted that CRASP adopts an all-alpha, right-handed superhelical fold. CRASP is most strongly expressed in the atrium in secretory atrial granular cells, and substantial amounts of CRASP are released from the heart upon nerve stimulation. CRASP is detected in the haemolymph of intact animals at nanomolar concentrations. CRASP is the first secretory protein expressed in molluscan atrium to be reported. We propose that CRASP is an example of a taxonomically restricted gene that might be responsible for adaptations specific for terrestrial pulmonates. PMID:26444993