Science.gov

Sample records for intact protein profiling

  1. Proteomic profiling of intact proteins using WAX-RPLC 2-D separations and FTICR mass spectrometry

    SciTech Connect

    Sharma, Seema; Simpson, David C.; Tolic, Nikola; Jaitly, Navdeep; Mayampurath, Anoop M.; Smith, Richard D.; Pasa-Tolic, Liljiana

    2007-02-01

    We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. 715 intact proteins were detected and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post translational modifications were assigned for ~10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C, 15N depleted media under aerobic and sub-oxic conditions. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification complement. The strategy can be readily applied for measuring differential protein abundances, and provides a platform for high-throughput selection of biologically relevant targets for further characterization.

  2. (E)-Propyl α-Cyano-4-Hydroxyl Cinnamylate: A High Sensitive and Salt Tolerant Matrix for Intact Protein Profiling by MALDI Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Xiao, Zhaohui; Xiao, Chunsheng; Wang, Huixin; Wang, Bing; Li, Ying; Chen, Xuesi; Guo, Xinhua

    2016-04-01

    Low-abundance samples and salt interference are always of great challenges for the practical protein profiling by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Herein, a series of carboxyl-esterified derivatives of α-cyano-4-hydroxycinnamic acid (CHCA) were synthesized and evaluated as matrices for MALDI-MS analysis of protein. Among them, (E)-propyl α-cyano-4-hydroxyl cinnamylate (CHCA-C3) was found to exhibit excellent assay performance for intact proteins by improving the detection sensitivity 10 folds compared with the traditional matrices [i.e., super2,5-dihydroxybenzoic acid (superDHB), sinapic acid (SA), and CHCA]. In addition, CHCA-C3 was shown to have high tolerance to salts, the ion signal of myoglobin was readily detected even in the presence of urea (8 M), NH4HCO3 (2 M), and KH2PO4 (500 mM), meanwhile sample washability was robust. These achievements were mainly attributed to improved ablation ability and increased hydrophobicity or affinity of CHCA-C3 to proteins in comparison with hydrophilic matrixes, leading to more efficient ionization of analyte. Furthermore, direct analysis of proteins from crude egg white demonstrated that CHCA-C3 was a highly efficient matrix for the analysis of low-abundance proteins in complex biological samples. These outstanding performances indicate the tremendous potential use of CHCA-C3 in protein profiling by MALDI-MS.

  3. Intact Protein Quantitation Using Pseudoisobaric Dimethyl Labeling.

    PubMed

    Fang, Houqin; Xiao, Kaijie; Li, Yunhui; Yu, Fan; Liu, Yan; Xue, Bingbing; Tian, Zhixin

    2016-07-19

    Protein structural and functional studies rely on complete qualitative and quantitative information on protein species (proteoforms); thus, it is important to quantify differentially expressed proteins at their molecular level. Here we report our development of universal pseudoisobaric dimethyl labeling (pIDL) of amino groups at both the N-terminal and lysine residues for relative quantitation of intact proteins. Initial proof-of-principle study was conducted on standard protein myoglobin and hepatocellular proteomes (HepG2 vs LO2). The amino groups from both the N-terminal and lysine were dimethylated with HXHO (X = (13)C or C) and NaBY3CN (Y = H or D). At the standard protein level, labeling efficiency, effect of product ion size, and mass resolution on quantitation accuracy were explored; and a good linear quantitation dynamic range up to 50-fold was obtained. For the hepatocellular proteome samples, 33 proteins were quantified with RSD ≤ 10% from one-dimensional reversed phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) analysis of the 1:1 mixed samples. The method in this study can be extended to quantitation of other intact proteome systems. The universal "one-pot" dimethyl labeling of all the amino groups in a protein without the need of preblocking of those on the lysine residues is made possible by protein identification and quantitation analysis using ProteinGoggle 2.0 with customized databases of both precursor and product ions containing heavy isotopes. PMID:27359340

  4. Mass Spectrometry of Intact Membrane Protein Complexes

    PubMed Central

    Laganowsky, Arthur; Reading, Eamonn; Hopper, Jonathan T.S.; Robinson, Carol V.

    2014-01-01

    Mass spectrometry of intact soluble protein complexes has emerged as a powerful technique to study the stoichiometry, structure-function and dynamics of protein assemblies. Recent developments have extended this technique to the study of membrane protein complexes where it has already revealed subunit stoichiometries and specific phospholipid interactions. Here, we describe a protocol for mass spectrometry of membrane protein complexes. The protocol begins with preparation of the membrane protein complex enabling not only the direct assessment of stoichiometry, delipidation, and quality of the target complex, but also evaluation of the purification strategy. A detailed list of compatible non-ionic detergents is included, along with a protocol for screening detergents to find an optimal one for mass spectrometry, biochemical and structural studies. This protocol also covers the preparation of lipids for protein-lipid binding studies and includes detailed settings for a Q-ToF mass spectrometer after introduction of complexes from gold-coated nanoflow capillaries. PMID:23471109

  5. Protein methylation reactions in intact pea chloroplasts

    SciTech Connect

    Niemi, K.J. )

    1989-04-01

    Post-translational protein methylation was investigated in Pisum sativum chloroplasts. Intact pea chloroplasts were incubated with ({sup 3}H-methyl)-S-adenosylmethionine under various conditions. The chloroplasts were then separated into stromal and thylakoid fractions and analyzed for radioactivity transferred to protein. Light enhanced the magnitude of labeling in both fractions. One thylakoid polypeptide with an apparent molecular mass of 43 kDa was labeled only in the light. Several other thylakoid and stromal proteins were labeled in both light and dark-labeling conditions. Both base-labile methylation, carboxy-methylesters and base-stable groups, N-methylations were found. Further characterization of the methyl-transfer reactions will be presented.

  6. Shining a spotlight on intact proteins

    SciTech Connect

    Pasa-Tolic, Ljiljana; Masselon, Christophe

    2014-05-01

    Cells react to cues from their environment using various mechanisms that include changes in metabolites, gene expression, protein binding partners, protein localization, and protein posttranslational modifications (PTMs), all of which contribute to altered cellular signatures that enable appropriate cellular responses. Given the seemingly infinite number of mechanisms available to affect protein function and modulate biological processes, the question arises as to how cells manage to interpret protein readouts to accomplish the appropriate cell-type specific response to a particular stimulus.

  7. Structural determination of intact proteins using mass spectrometry

    DOEpatents

    Kruppa, Gary; Schoeniger, Joseph S.; Young, Malin M.

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  8. Calcium Activation Profile In Electrically Stimulated Intact Rat Heart Cells

    NASA Astrophysics Data System (ADS)

    Geerts, Hugo; Nuydens, Rony; Ver Donck, Luc; Nuyens, Roger; De Brabander, Marc; Borgers, Marcel

    1988-06-01

    Recent advances in fluorescent probe technology and image processing equipment have made available the measurement of calcium in living systems on a real-time basis. We present the use of the calcium indicator Fura-2 in intact normally stimulated rat heart cells for the spatial and dynamic measurement of the calcium excitation profile. After electric stimulation (1 Hz), the activation proceeds from the center of the myocyte toward the periphery. Within two frame times (80 ms), the whole cell is activated. The activation is slightly faster in the center of the cell than in the periphery. The mean recovery time is 200-400 ms. There is no difference along the cell's long axis. The effect of a beta-agonist and of a calcium antagonist is described.

  9. Intracellular Delivery of Proteins via Fusion Peptides in Intact Plants

    PubMed Central

    Ng, Kiaw Kiaw; Motoda, Yoko; Watanabe, Satoru; Sofiman Othman, Ahmad; Kigawa, Takanori; Kodama, Yutaka; Numata, Keiji

    2016-01-01

    In current plant biotechnology, the introduction of exogenous DNA encoding desired traits is the most common approach used to modify plants. However, general plant transformation methods can cause random integration of exogenous DNA into the plant genome. To avoid these events, alternative methods, such as a direct protein delivery system, are needed to modify the plant. Although there have been reports of the delivery of proteins into cultured plant cells, there are currently no methods for the direct delivery of proteins into intact plants, owing to their hierarchical structures. Here, we demonstrate the efficient fusion-peptide-based delivery of proteins into intact Arabidopsis thaliana. Bovine serum albumin (BSA, 66 kDa) was selected as a model protein to optimize conditions for delivery into the cytosol. The general applicability of our method to large protein cargo was also demonstrated by the delivery of alcohol dehydrogenase (ADH, 150 kDa) into the cytosol. The compatibility of the fusion peptide system with the delivery of proteins to specific cellular organelles was also demonstrated using the fluorescent protein Citrine (27 kDa) conjugated to either a nuclear localization signal (NLS) or a peroxisomal targeting signal (PTS). In conclusion, our designed fusion peptide system can deliver proteins with a wide range of molecular weights (27 to 150 kDa) into the cells of intact A. thaliana without interfering with the organelle-targeting peptide conjugated to the protein. We expect that this efficient protein delivery system will be a powerful tool in plant biotechnology. PMID:27100681

  10. Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics

    PubMed Central

    Hyung, Suk-Joon; Ruotolo, Brandon T.

    2013-01-01

    Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037

  11. Intact-Protein Analysis System for Discovery of Serum-Based Disease Biomarkers

    PubMed Central

    Wang, Hong; Hanash, Samir

    2015-01-01

    Profiling of serum and plasma proteins has substantial relevance to the discovery of circulating disease biomarkers. However, the extreme complexity and vast dynamic range of protein abundance in serum and plasma present a formidable challenge for protein analysis. Thus, integration of multiple technologies is required to achieve high-resolution and high-sensitivity proteomic analysis of serum or plasma. In this chapter, we describe an orthogonal multidimensional intact-protein analysis system (IPAS) (Wang et al., Mol Cell Proteomics 4:618–625, 2005) coupled with protein tagging (Faca et al., J Proteome Res 5:2009–2018, 2006) to profile the serum and plasma proteomes quantitatively, which we have applied in our biomarker discovery studies (Katayama et al., Genome Med 1:47, 2009; Faca et al., PLoS Med 5:e123, 2008; Zhang et al. Genome Biol 9:R93, 2008). PMID:21468941

  12. Intact-protein analysis system for discovery of serum-based disease biomarkers.

    PubMed

    Wang, Hong; Hanash, Samir

    2011-01-01

    Profiling of serum and plasma proteins has substantial relevance to the discovery of circulating disease biomarkers. However, the extreme complexity and vast dynamic range of protein abundance in serum and plasma present a formidable challenge for protein analysis. Thus, integration of multiple technologies is required to achieve high-resolution and high-sensitivity proteomic analysis of serum or plasma. In this chapter, we describe an orthogonal multidimensional intact-protein analysis system (IPAS) (Wang et al., Mol Cell Proteomics 4:618-625, 2005) coupled with protein tagging (Faca et al., J Proteome Res 5:2009-2018, 2006) to profile the serum and plasma proteomes quantitatively, which we have applied in our biomarker discovery studies (Katayama et al., Genome Med 1:47, 2009; Faca et al., PLoS Med 5:e123, 2008; Zhang et al. Genome Biol 9:R93, 2008). PMID:21468941

  13. Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT)

    PubMed Central

    Amin, Nirav M.; Greco, Todd M.; Kuchenbrod, Lauren M.; Rigney, Maggie M.; Chung, Mei-I; Wallingford, John B.; Cristea, Ileana M.; Conlon, Frank L.

    2014-01-01

    The proper dissection of the molecular mechanisms governing the specification and differentiation of specific cell types requires isolation of pure cell populations from heterogeneous tissues and whole organisms. Here, we describe a method for purification of nuclei from defined cell or tissue types in vertebrate embryos using INTACT (isolation of nuclei tagged in specific cell types). This method, previously developed in plants, flies and worms, utilizes in vivo tagging of the nuclear envelope with biotin and the subsequent affinity purification of the labeled nuclei. In this study we successfully purified nuclei of cardiac and skeletal muscle from Xenopus using this strategy. We went on to demonstrate the utility of this approach by coupling the INTACT approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic methodologies to profile proteins expressed in the nuclei of developing hearts. From these studies we have identified the Xenopus orthologs of 12 human proteins encoded by genes, which when mutated in human lead to congenital heart disease. Thus, by combining these technologies we are able to identify tissue-specific proteins that are expressed and required for normal vertebrate organ development. PMID:24496632

  14. Lipidation of intact proteins produces highly immunogenic vaccine candidates.

    PubMed

    Zeng, Weiguang; Eriksson, Emily M; Lew, Andrew; Jackson, David C

    2011-01-01

    In this study we investigate the feasibility of generating self-adjuvanting vaccines capable of inducing high titre antibody responses following the covalent attachment of the TLR2 agonist Pam(2)Cys to intact proteins. Three Pam(2)Cys-based lipid moieties were prepared which contain a solubilising spacer composed of either lysine residues or polyethyleneglycol. A model protein, hen egg white lysozyme (HEL), was lipidated individually with each of these lipid modules and the immunogenicity of the lipidated species studied in mice by measuring antibody responses. We found that lipidated HEL elicited antibodies which is much stronger than the responses obtained when the HEL was administered in Freund's adjuvant or in Alum. Little or no antibody was elicited by the lipidated HEL in CD4 T cell-deficient mice indicating that the antibody response is T cell dependent. Furthermore, the lipidated protein elicited similar antibody responses in two different strains of mice indicating that sufficient helper T cell epitopes are available to enable antibody production across the histocompatability barrier. In a similar way, lipidated bovine insulin was found to be highly immunogenic in mice despite the largely conserved sequences of bovine and murine insulin. The results provide evidence that lipidation of proteins provides a simple and safe method for the manufacture of soluble self-adjuvanting protein-based vaccines. PMID:21056473

  15. Bryostatins activate protein kinase C in intact human platelets

    SciTech Connect

    Smith, J.B.; Tallant, E.A.; Pettit, G.R.; Wallace, R.W.

    1986-05-01

    Bryostatins, macrocyclic lactones isolated from a marine bryozoan, have antineoplastic activity in the P388 lymphocytic leukemia system. These compounds also stimulate growth in Swiss 3T3 cells, induce secretion in leukocytes, inhibit phorbol dibutyrate binding to a high affinity receptor, and activate the C-kinase in vitro. In human platelets, phorbol esters induce aggregation and activate protein kinase C, resulting in phosphorylation of a 47K protein and the 20K myosin light chain. The authors now show that bryostatin 7 (B-7) triggers platelet aggregation to the same rate and extent as phorbol 12-myristate 13-acetate (PMA). B-7 also causes the in vivo activation of the C-kinase, resulting in phosphorylation of both the 47K and the 20K proteins; the time courses and dose-responses of these B-7-induced phosphorylations were similar to those found with PMA. In addition, B-7 increases the level of /sup 32/P-incorporation into the platelet polyphosphoinositides, which also occurs in response to PMA. Bryostatin 3 (B-3), which has been shown to be much less potent than B-7 in mimicking other PMA effects, was much less effective than PMA or B-7 in inducing platelet aggregation and in stimulating /sup 32/P-incorporation into both proteins and the phosphoinositides. These results demonstrate that, intact human platelets, bryostatins mimic the phorbol esters tumor promoters and directly activate protein kinase C.

  16. Flux profiling of photosynthetic carbon metabolism in intact plants.

    PubMed

    Heise, Robert; Arrivault, Stéphanie; Szecowka, Marek; Tohge, Takayuki; Nunes-Nesi, Adriano; Stitt, Mark; Nikoloski, Zoran; Fernie, Alisdair R

    2014-08-01

    Flux analysis has been carried out in plants for decades, but technical innovations are now enabling it to be carried out in photosynthetic tissues in a more precise fashion with respect to the number of metabolites measured. Here we describe a protocol, using gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS), to resolve intracellular fluxes of the central carbon metabolism in illuminated intact Arabidopsis thaliana rosettes using the time course of the unlabeled fractions in 40 major constituents of the metabolome after switching to (13)CO2. We additionally simplify modeling assumptions, specifically to cope with the presence of multiple cellular compartments. We summarize all steps in this 8-10-week-long process, including setting up the chamber; harvesting; liquid extraction and subsequent handling of sample plant material to chemical derivatization procedures such as silylation and methoxymation (necessary for gas chromatography only); choosing instrumentation settings and evaluating the resultant chromatogram in terms of both unlabeled and labeled peaks. Furthermore, we describe how quantitative insights can be gained by estimating both benchmark and previously unknown fluxes from collected data sets. PMID:24992096

  17. Multipurpose Dissociation Cell for Enhanced ETD of Intact Protein Species

    NASA Astrophysics Data System (ADS)

    Rose, Christopher M.; Russell, Jason D.; Ledvina, Aaron R.; McAlister, Graeme C.; Westphall, Michael S.; Griep-Raming, Jens; Schwartz, Jae C.; Coon, Joshua J.; Syka, John E. P.

    2013-06-01

    We describe and characterize an improved implementation of ETD on a modified hybrid linear ion trap-Orbitrap instrument. Instead of performing ETD in the mass-analyzing quadrupole linear ion trap (A-QLT), the instrument collision cell was modified to enable ETD. We partitioned the collision cell into a multi-section rf ion storage and transfer device to enable injection and simultaneous separate storage of precursor and reagent ions. Application of a secondary (axial) confinement voltage to the cell end lens electrodes enables charge-sign independent trapping for ion-ion reactions. The approximately 2-fold higher quadrupole field frequency of this cell relative to that of the A-QLT enables higher reagent ion densities and correspondingly faster ETD reactions, and, with the collision cell's longer axial dimensions, larger populations of precursor ions may be reacted. The higher ion capacity of the collision cell permits the accumulation and reaction of multiple full loads of precursor ions from the A-QLT followed by FT Orbitrap m/z analysis of the ETD product ions. This extends the intra-scan dynamic range by increasing the maximum number of product ions in a single MS/MS event. For analyses of large peptide/small protein precursor cations, this reduces or eliminates the need for spectral averaging to achieve acceptable ETD product ion signal-to-noise levels. Using larger ion populations, we demonstrate improvements in protein sequence coverage and aggregate protein identifications in LC-MS/MS analysis of intact protein species as compared to the standard ETD implementation.

  18. Multipurpose Dissociation Cell for Enhanced ETD of Intact Protein Species

    PubMed Central

    Rose, Christopher M.; Russell, Jason D.; Ledvina, Aaron R.; McAlister, Graeme C.; Westphall, Michael S.; Griep-Raming, Jens; Schwartz, Jae C.; Coon, Joshua J.; Syka, John E.P.

    2013-01-01

    We describe and characterize an improved implementation of ETD on a modified hybrid linear ion trap-Orbitrap instrument. Instead of performing ETD in the mass-analyzing quadrupole linear ion trap (A-QLT), the instrument collision cell was modified to enable ETD. We partitioned the collision cell into a multi-section RF ion storage and transfer device to enable injection and simultaneous separate storage of precursor and reagent ions. Application of a secondary (axial) confinement voltage to the cell end lens electrodes enables charge-sign independent trapping for ion-ion reactions. The approximately two-fold higher quadrupole field frequency of this cell relative to that of the A-QLT, enables higher reagent ion densities and correspondingly faster ETD reactions, and, with the collision cell’s longer axial dimensions, larger populations of precursor ions may be reacted. The higher ion capacity of the collision cell permits the accumulation and reaction of multiple full loads of precursor ions from the A-QLT followed by FT Orbitrap m/z analysis of the ETD product ions. This extends the intra-scan dynamic range by increasing the maximum number of product ions in a single MS/MS event. For analyses of large peptide/small protein precursor cations, this reduces or eliminates the need for spectral averaging to achieve acceptable ETD product ion signal-to-noise levels. Using larger ion populations, we demonstrate improvements in protein sequence coverage and aggregate protein identifications in LC-MS/MS analysis of intact protein species as compared to the standard ETD implementation. PMID:23609185

  19. Multipurpose dissociation cell for enhanced ETD of intact protein species.

    PubMed

    Rose, Christopher M; Russell, Jason D; Ledvina, Aaron R; McAlister, Graeme C; Westphall, Michael S; Griep-Raming, Jens; Schwartz, Jae C; Coon, Joshua J; Syka, John E P

    2013-06-01

    We describe and characterize an improved implementation of ETD on a modified hybrid linear ion trap-Orbitrap instrument. Instead of performing ETD in the mass-analyzing quadrupole linear ion trap (A-QLT), the instrument collision cell was modified to enable ETD. We partitioned the collision cell into a multi-section rf ion storage and transfer device to enable injection and simultaneous separate storage of precursor and reagent ions. Application of a secondary (axial) confinement voltage to the cell end lens electrodes enables charge-sign independent trapping for ion-ion reactions. The approximately 2-fold higher quadrupole field frequency of this cell relative to that of the A-QLT enables higher reagent ion densities and correspondingly faster ETD reactions, and, with the collision cell's longer axial dimensions, larger populations of precursor ions may be reacted. The higher ion capacity of the collision cell permits the accumulation and reaction of multiple full loads of precursor ions from the A-QLT followed by FT Orbitrap m/z analysis of the ETD product ions. This extends the intra-scan dynamic range by increasing the maximum number of product ions in a single MS/MS event. For analyses of large peptide/small protein precursor cations, this reduces or eliminates the need for spectral averaging to achieve acceptable ETD product ion signal-to-noise levels. Using larger ion populations, we demonstrate improvements in protein sequence coverage and aggregate protein identifications in LC-MS/MS analysis of intact protein species as compared to the standard ETD implementation. PMID:23609185

  20. THE ENDOCRINE PROFILE OF INTACT FEMALE RATS ON THE DAY OF PROESTRUS FOLLOWING EXPOSURE TO ATRAZINE

    EPA Science Inventory

    The Endocrine Profile of Intact Female Rats on the Day of Proestrus Following Exposure to Atrazine.
    RL Cooper, A Buckalew, SC Laws and TE Stoker
    Endocrinology Branch, RTD, NHEERL, ORD, U.S. EPA, RTP, NC, 27711.

    The chlorotriazine herbicide, atrazine, has been sho...

  1. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry.

    PubMed

    Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D

    2014-01-01

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03). PMID:25052239

  2. Quantitative Measurement of Intact Alpha-Synuclein Proteoforms from Post-Mortem Control and Parkinson's Disease Brain Tissue by Intact Protein Mass Spectrometry

    PubMed Central

    Kellie, John F.; Higgs, Richard E.; Ryder, John W.; Major, Anthony; Beach, Thomas G.; Adler, Charles H.; Merchant, Kalpana; Knierman, Michael D.

    2014-01-01

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03). PMID:25052239

  3. Quantitative Measurement of Intact Alpha-Synuclein Proteoforms from Post-Mortem Control and Parkinson's Disease Brain Tissue by Intact Protein Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kellie, John F.; Higgs, Richard E.; Ryder, John W.; Major, Anthony; Beach, Thomas G.; Adler, Charles H.; Merchant, Kalpana; Knierman, Michael D.

    2014-07-01

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).

  4. Population Studies of Intact Vitamin D Binding Protein by Affinity Capture ESI-TOF-MS

    PubMed Central

    Borges, Chad R.; Jarvis, Jason W.; Oran, Paul E.; Rogers, Stephen P.; Nelson, Randall W.

    2008-01-01

    Blood plasma proteins with molecular weights greater than approximately 30 kDa are refractory to comprehensive, high-throughput qualitative characterization of microheterogeneity across human populations. Analytical techniques for obtaining high mass resolution for targeted, intact protein characterization and, separately, high sample throughput exist, but efficient means of coupling these assay characteristics remain rather limited. This article discusses the impetus for analyzing intact proteins in a targeted manner across populations and describes the methodology required to couple mass spectrometric immunoassay with electrospray ionization mass spectrometry for the purpose of qualitatively characterizing a prototypical large plasma protein, vitamin D binding protein, across populations. PMID:19137103

  5. Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins.

    PubMed

    Claessens, Mandy; Saris, Wim H M; van Baak, Marleen A

    2008-07-01

    Ingestion of dietary protein is known to induce both insulin and glucagon secretion. These responses may be affected by the dose and the form (intact or hydrolysed) in which protein is ingested. The aim of the study was to investigate the effect of different amounts of intact protein and protein hydrolysate of a vegetable (soya) and animal (whey) protein on insulin and glucagon responses and to study the effect of increasing protein loads for both intact protein and protein hydrolysate in man. The study employed a repeated-measures design with Latin-square randomisation and single-blind trials. Twelve healthy non-obese males ingested three doses (0.3, 0.4 and 0.6 g/kg body weight) of intact soya protein (SPI) and soya protein hydrolysate (SPH). Another group of twelve healthy male subjects ingested three doses (0.3, 0.4 and 0.6 g/kg body weight) of intact whey protein (WPI) and whey protein hydrolysate (WPH). Blood was sampled before (t = 0) and 15, 30, 60, 90 and 120 min after protein ingestion for insulin, glucagon and glucose determination. SPI induced a higher total area under the curve for insulin and glucagon than SPH while no difference between WPI and WPH was found. Insulin and glucagon responses increased with increasing protein load for SPI, SPH, WPI and WPH, but the effect was more pronounced for glucagon. A higher dose of protein or its hydrolysate will result in a lower insulin:glucagon ratio, an important parameter for the control of postprandial substrate metabolism. In conclusion, insulin and glucagon responses were protein and hydrolysate specific. PMID:18167171

  6. Fluorescent labeling of tetracysteine-tagged proteins in intact cells

    PubMed Central

    Hoffmann, Carsten; Gaietta, Guido; Zürn, Alexander; Adams, Stephen R; Terrillon, Sonia; Ellisman, Mark H; Tsien, Roger Y; Lohse, Martin J

    2011-01-01

    In this paper, we provide a general protocol for labeling proteins with the membrane-permeant fluorogenic biarsenical dye fluorescein arsenical hairpin binder–ethanedithiol (FlAsH-EDT2). Generation of the tetracysteine-tagged protein construct by itself is not described, as this is a protein-specific process. This method allows site-selective labeling of proteins in living cells and has been applied to a wide variety of proteins and biological problems. We provide here a generally applicable labeling procedure and discuss the problems that can occur as well as general considerations that must be taken into account when designing and implementing the procedure. The method can even be applied to proteins with expression below 1 pmol mg−1 of protein, such as G protein–coupled receptors, and it can be used to study the intracellular localization of proteins as well as functional interactions in fluorescence resonance energy transfer experiments. The labeling procedure using FlAsH-EDT2 as described takes 2–3 h, depending on the number of samples to be processed. PMID:20885379

  7. Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq.

    PubMed

    Wang, Dongxue; Deal, Roger B

    2015-01-01

    Plants consist of many functionally specialized cell types, each with its own unique epigenome, transcriptome, and proteome. Characterization of these cell type-specific properties is essential to understanding cell fate specification and the responses of individual cell types to the environment. In this chapter we describe an approach to map chromatin features in specific cell types of Arabidopsis thaliana using nuclei purification from individual cell types with the INTACT method (isolation of nuclei tagged in specific cell types) followed by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). The INTACT system employs two transgenes to generate affinity-labeled nuclei in the cell type of interest, and these tagged nuclei can then be selectively purified from tissue homogenates. The primary transgene encodes the nuclear tagging fusion protein (NTF), which consists of a nuclear envelope-targeting domain, the green fluorescent protein, and a biotin ligase recognition peptide, while the second transgene encodes the E. coli biotin ligase (BirA), which selectively biotinylates NTF. Expression of NTF and BirA in a specific cell type thus yields nuclei that are coated with biotin and can be purified by virtue of their affinity for streptavidin-coated magnetic beads. Compared with the original INTACT nuclei purification protocol, the procedure presented here is greatly simplified and shortened. After nuclei purification, we provide detailed instructions for chromatin isolation, shearing, and immunoprecipitation. Finally, we present a low input ChIP-seq library preparation protocol based on the nano-ChIP-seq method of Adli and Bernstein, and we describe multiplex Illumina sequencing of these libraries to produce high quality, cell type-specific epigenome profiles at a relatively low cost. The procedures given here are optimized for Arabidopsis but should be easily adaptable to other plant species. PMID:25757765

  8. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer.

    PubMed

    Wang, Evelyn H; Combe, Peter C; Schug, Kevin A

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.Graphical Abstract. PMID:26956437

  9. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-03-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  10. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, Evelyn H.; Combe, Peter C.; Schug, Kevin A.

    2016-05-01

    Methods that can efficiently and effectively quantify proteins are needed to support increasing demand in many bioanalytical fields. Triple quadrupole mass spectrometry (QQQ-MS) is sensitive and specific, and it is routinely used to quantify small molecules. However, low resolution fragmentation-dependent MS detection can pose inherent difficulties for intact proteins. In this research, we investigated variables that affect protein and fragment ion signals to enable protein quantitation using QQQ-MS. Collision induced dissociation gas pressure and collision energy were found to be the most crucial variables for optimization. Multiple reaction monitoring (MRM) transitions for seven standard proteins, including lysozyme, ubiquitin, cytochrome c from both equine and bovine, lactalbumin, myoglobin, and prostate-specific antigen (PSA) were determined. Assuming the eventual goal of applying such methodology is to analyze protein in biological fluids, a liquid chromatography method was developed. Calibration curves of six standard proteins (excluding PSA) were obtained to show the feasibility of intact protein quantification using QQQ-MS. Linearity (2-3 orders), limits of detection (0.5-50 μg/mL), accuracy (<5% error), and precision (1%-12% CV) were determined for each model protein. Sensitivities for different proteins varied considerably. Biological fluids, including human urine, equine plasma, and bovine plasma were used to demonstrate the specificity of the approach. The purpose of this model study was to identify, study, and demonstrate the advantages and challenges for QQQ-MS-based intact protein quantitation, a largely underutilized approach to date.

  11. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation

    PubMed Central

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  12. MALDI FTICR IMS of intact proteins: Using mass accuracy to link protein images with proteomics data

    PubMed Central

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-01-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identifications strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (∼75,000 at m/z 5,000) and accuracy (<5 ppm) for proteins up to ∼12 kDa enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated Thymosin β4 (m/z 4,963.502, 0.6 ppm) and ATP Synthase subunit ε (m/z 5,636.074, −2.3 ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 (m/z 10,164.03, −2.1 ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 – M37O/C42O3 (m/z 10228.00, −2.6 ppm) was found to co-localize with bactierial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin’s roll in nutritional immunity. PMID:25904064

  13. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

    NASA Astrophysics Data System (ADS)

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-06-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β4 ( m/z 4,963.502, 0.6ppm) and ATP synthase subunit ɛ ( m/z 5,636.074, -2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 ( m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.

  14. Comparison of digestibility and quality of intact proteins with their respective hydrolysates.

    PubMed

    Potier, Mylène; Tomé, Daniel

    2008-01-01

    Quality of proteins depends on their composition in essential amino acids and on the availability of amino acids. Great interest has been shown in the role played by hydrolysates of proteins in clinical diets for pathologies with reduced absorptive capacity and food allergies caused by intact protein epitopes. Milk proteins are the most important protein source used in the development of protein hydrolysates designed for nutritional support of patients. Several studies have shown that casein and whey hydrolysates have a composition in amino acids equivalent to that in native milk proteins and that digestibility is similar or better. Among plant proteins, soy is the major source of hydrolysates. Soy hydrolysates are also used in infant formulas. Plant hydrolysates have good functional properties and a nutritional quality similar to that of starting material. Some technical improvements in production of hydrolysates, particularly for plants, are nevertheless necessary to improve product palatability. PMID:18727562

  15. In vitro bioactive properties of intact and enzymatically hydrolysed whey protein: targeting the enteroinsular axis.

    PubMed

    Power-Grant, O; Bruen, C; Brennan, L; Giblin, L; Jakeman, P; FitzGerald, R J

    2015-03-01

    Enzymatically hydrolysed milk proteins have a variety of biofunctional effects some of which may be beneficial in the management of type 2 diabetes mellitus. The purpose of this study was to evaluate the effect of commercially available intact and hydrolysed whey protein ingredients (DH 32, DH 45) on markers of the enteroinsular axis (glucagon like peptide-1 secretion, dipeptidyl peptidase IV inhibition, insulin secretion and antioxidant activity) before and after simulated gastrointestinal digestion (SGID). A whey protein hydrolysate, DH32, significantly enhanced (P < 0.05) insulin secretion from BRIN BD11 β-cells compared to the positive control (16.7 mM glucose and 10 mM Ala). The whey protein hydrolysates inhibited dipeptidyl peptidase IV activity, yielding half maximal inhibitory concentration values (IC50) of 1.5 ± 0.1 and 1.1 ± 0.1 mg mL(-1) for the DH 32 and DH 45, samples respectively, and were significantly more potent than the intact whey (P < 0.05). Enzymatic hydrolysis of whey protein significantly enhanced (P < 0.05) its antioxidant activity compared to intact whey, as measured by the oxygen radical absorbance capacity assay (ORAC). This antioxidant activity was maintained (DH 32, P > 0.05) or enhanced (DH 45, P < 0.05) following SGID. Intact whey stimulated GLP-1 secretion from enteroendocrine cells compared to vehicle control (P < 0.05). This data confirm that whey proteins and peptides can act through multiple targets within the enteroinsular axis and as such may have glucoregulatory potential. PMID:25666373

  16. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Riley, Nicholas M.; Mullen, Christopher; Weisbrod, Chad R.; Sharma, Seema; Senko, Michael W.; Zabrouskov, Vlad; Westphall, Michael S.; Syka, John E. P.; Coon, Joshua J.

    2016-03-01

    Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately 3-fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase.

  17. Automated SDS Depletion for Mass Spectrometry of Intact Membrane Proteins though Transmembrane Electrophoresis.

    PubMed

    Kachuk, Carolyn; Faulkner, Melissa; Liu, Fang; Doucette, Alan A

    2016-08-01

    Membrane proteins are underrepresented in proteome analysis platforms because of their hydrophobic character, contributing to decreased solubility. Sodium dodecyl sulfate is a favored denaturant in proteomic workflows, facilitating cell lysis and protein dissolution; however, SDS impedes MS detection and therefore must be removed prior to analysis. Although strategies exist for SDS removal, they provide low recovery, purity, or reproducibility. Here we present a simple automated device, termed transmembrane electrophoresis (TME), incorporating the principles of membrane filtration, but with an applied electric current to ensure near-complete (99.9%) removal of the surfactant, including protein-bound SDS. Intact proteins are recovered in solution phase in high yield (90-100%) within 1 h of operation. The strategy is applied to protein standards and proteome mixtures, including an enriched membrane fraction from E. coli, resulting in quality MS spectra free of SDS adducts. The TME platform is applicable to both bottom-up MS/MS as well as LC-ESI-MS analysis of intact proteins. SDS-depleted fractions reveal a similar number of protein identifications (285) compared wit a non-SDS control (280), being highly correlated in terms of protein spectral counts. This fully automated approach to SDS removal presents a viable tool for proteome sample processing ahead of MS analysis. Data are available via ProteomeXchange, identifier PXD003941. PMID:27376408

  18. Intraduodenal Administration of Intact Pea Protein Effectively Reduces Food Intake in Both Lean and Obese Male Subjects

    PubMed Central

    Geraedts, Maartje C. P.; Troost, Freddy J.; Munsters, Marjet J. M.; Stegen, Jos H. C. H.; de Ridder, Rogier J.; Conchillo, Jose M.; Kruimel, Joanna W.; Masclee, Ad A. M.; Saris, Wim H. M.

    2011-01-01

    Background Human duodenal mucosa secretes increased levels of satiety signals upon exposure to intact protein. However, after oral protein ingestion, gastric digestion leaves little intact proteins to enter the duodenum. This study investigated whether bypassing the stomach, through intraduodenal administration, affects hormone release and food-intake to a larger extent than orally administered protein in both lean and obese subjects. Methods Ten lean (BMI:23.0±0.7 kg/m2) and ten obese (BMI:33.4±1.4 kg/m2) healthy male subjects were included. All subjects randomly received either pea protein solutions (250 mg/kg bodyweight in 0.4 ml/kg bodyweight of water) or placebo (0.4 ml/kg bodyweight of water), either orally or intraduodenally via a naso-duodenal tube. Appetite-profile, plasma GLP-1, CCK, and PYY concentrations were determined over a 2 h period. After 2 h, subjects received an ad-libitum meal and food-intake was recorded. Results CCK levels were increased at 10(p<0.02) and 20(p<0.01) minutes after intraduodenal protein administration (IPA), in obese subjects, compared to lean subjects, but also compared to oral protein administration (OPA)(p<0.04). GLP-1 levels increased after IPA in obese subjects after 90(p<0.02) to 120(p<0.01) minutes, compared to OPA. Food-intake was reduced after IPA both in lean and obese subjects (-168.9±40 kcal (p<0.01) and −298.2±44 kcal (p<0.01), respectively), compared to placebo. Also, in obese subjects, food-intake was decreased after IPA (−132.6±42 kcal; p<0.01), compared to OPA. Conclusions Prevention of gastric proteolysis through bypassing the stomach effectively reduces food intake, and seems to affect obese subjects to a greater extent than lean subjects. Enteric coating of intact protein supplements may provide an effective dietary strategy in the prevention/treatment of obesity. PMID:21931864

  19. Web and database software for identification of intact proteins using "top down" mass spectrometry.

    PubMed

    Taylor, Gregory K; Kim, Yong-Bin; Forbes, Andrew J; Meng, Fanyu; McCarthy, Ryan; Kelleher, Neil L

    2003-08-15

    For the identification and characterization of proteins harboring posttranslational modifications (PTMs), a "top down" strategy using mass spectrometry has been forwarded recently but languishes without tailored software widely available. We describe a Web-based software and database suite called ProSight PTM constructed for large-scale proteome projects involving direct fragmentation of intact protein ions. Four main components of ProSight PTM are a database retrieval algorithm (Retriever), MySQL protein databases, a file/data manager, and a project tracker. Retriever performs probability-based identifications from absolute fragment ion masses, automatically compiled sequence tags, or a combination of the two, with graphical rendering and browsing of the results. The database structure allows known and putative protein forms to be searched, with prior or predicted PTM knowledge used during each search. Initial functionality is illustrated with a 36-kDa yeast protein identified from a processed cell extract after automated data acquisition using a quadrupole-FT hybrid mass spectrometer. A +142-Da delta(m) on glyceraldehyde-3-phosphate dehydrogenase was automatically localized between Asp90 and Asp192, consistent with its two cystine residues (149 and 153) alkylated by acrylamide (+71 Da each) during the gel-based sample preparation. ProSight PTM is the first search engine and Web environment for identification of intact proteins (https://prosightptm.scs.uiuc.edu/). PMID:14632120

  20. Identification of a ZP3-binding protein on acrosome-intact mouse sperm by photoaffinity crosslinking

    SciTech Connect

    Bleil, J.D.; Wassarman, P.M. )

    1990-07-01

    During the process of fertilization in mammals, sperm bind in a relatively species-specific manner to the zona pellucida (ZP) of ovulated eggs. ZP3, a glycoprotein found in the mouse egg zona pellucida, serves as receptor for sperm during gamete adhesion. We report here that a Mr 56,000 protein found on mouse sperm has properties expected for a sperm component that recognizes and binds to ZP3. This sperm protein is radiolabeled preferentially by a photoactivatable heterobifunctional crosslinker (Denny-Jaffee reagent) covalently linked to purified ZP3, binds very tightly to ZP3-affinity columns, and is localized to heads of acrosome-intact but not acrosome-reacted sperm. These and other findings suggest that this protein may be a ZP3-binding protein that, together with the sperm receptor, supports species-specific binding of mouse sperm to unfertilized eggs.

  1. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications

    PubMed Central

    Sun, Wenchao; Araci, Zeynep; Inayathullah, Mohammed; Manickam, Sathish; Zhang, Xuexiang; Bruce, Marc A.; Marinkovich, M. Peter; Lane, Alfred T.; Milla, Carlos; Rajadas, Jayakumar; Butte, Manish J.

    2013-01-01

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy. PMID:23648574

  2. Determination of Protein Thiol Reduction Potential by Isotope Labeling and Intact Mass Measurement.

    PubMed

    Thurlow, Sophie E; Kilgour, David P; Campopiano, Dominic J; Mackay, C Logan; Langridge-Smith, Pat R R; Clarke, David J; Campbell, Colin J

    2016-03-01

    Oxidation/reduction of thiol residues in proteins is an important type of post-translational modification that is implicated in regulating a range of biological processes. The nature of the modification makes it possible to define a quantifiable electrochemical potential (E(⊕)) for oxidation/reduction that allows cysteine-containing proteins to be ranked based on their propensity to be oxidized. Measuring oxidation of cysteine residues in proteins is difficult using standard electrochemical methods, but top-down mass spectrometry recently has been shown to enable the quantification of E(⊕) for thiol oxidations. In this paper, we demonstrate that mass spectrometry of intact proteins can be used in combination with an isotopic labeling strategy and an automated data analysis algorithm to measure E(⊕) for the thiols in both E. coli Thioredoxin 1 and human Thioredoxin 1. Our methodology relies on accurate mass measurement of proteins using liquid chromatography-mass spectroscopy (LC-MS) analyses and does not necessarily require top-down fragmentation. In addition to analyzing homogeneous protein samples, we also demonstrate that our methodology can be used to determine thiol E(⊕) measurements in samples that contain mixtures of proteins. Thus, the combination of experimential methodology and data analysis regime has the potential to make such measurements in a high-throughput manner and in a manner that is more accessible to a broad community of protein scientists. PMID:26881737

  3. Simple, Scalable Proteomic Imaging for High-Dimensional Profiling of Intact Systems.

    PubMed

    Murray, Evan; Cho, Jae Hun; Goodwin, Daniel; Ku, Taeyun; Swaney, Justin; Kim, Sung-Yon; Choi, Heejin; Park, Young-Gyun; Park, Jeong-Yoon; Hubbert, Austin; McCue, Margaret; Vassallo, Sara; Bakh, Naveed; Frosch, Matthew P; Wedeen, Van J; Seung, H Sebastian; Chung, Kwanghun

    2015-12-01

    Combined measurement of diverse molecular and anatomical traits that span multiple levels remains a major challenge in biology. Here, we introduce a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. This method, termed SWITCH, uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The heat- and chemical-resistant nature of the resulting framework permits multiple rounds (>20) of relabeling. We have performed 22 rounds of labeling of a single tissue with precise co-registration of multiple datasets. Furthermore, SWITCH synchronizes labeling reactions to improve probe penetration depth and uniformity of staining. With SWITCH, we performed combinatorial protein expression profiling of the human cortex and also interrogated the geometric structure of the fiber pathways in mouse brains. Such integrated high-dimensional information may accelerate our understanding of biological systems at multiple levels. PMID:26638076

  4. Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain.

    PubMed

    Reinhold, A K; Batti, L; Bilbao, D; Buness, A; Rittner, H L; Heppenstall, P A

    2015-01-01

    Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropin-releasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG. PMID:25880204

  5. Differential Transcriptional Profiling of Damaged and Intact Adjacent Dorsal Root Ganglia Neurons in Neuropathic Pain

    PubMed Central

    Reinhold, A. K.; Batti, L.; Bilbao, D.; Buness, A.; Rittner, H. L.; Heppenstall, P. A.

    2015-01-01

    Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG) using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS). Two fluorescent tracers, Fluoroemerald (FE) and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI), were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropin-releasing hormone (CRH), providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and “bystanders,” thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG. PMID:25880204

  6. Structural characterization of intact proteins is enhanced by prevalent fragmentation pathways rarely observed for peptides.

    PubMed

    Cobb, Jennifer S; Easterling, Michael L; Agar, Jeffrey N

    2010-06-01

    While collisionally activated dissociation (CAD) pathways for peptides are well characterized, those of intact proteins are not. We systematically assigned CAD product ions of ubiquitin, myoglobin, and bovine serum albumin generated using high-yield, in-source fragmentation. Assignment of >98% of hundreds of product ions implies that the fragmentation pathways described are representative of the major pathways. Protein dissociation mechanisms were found to be modulated by both source declustering potential and precursor ion charge state. Like peptides, higher charge states of proteins fragmented at lower energies next to Pro, via mobile protons, while lower charge states fragmented at higher energies after Asp and Glu, via localized protons. Unlike peptides, however, predominant fragmentation channels of proteins occurred at intermediate charge states via non-canonical mechanisms and produced extensive internal fragmentation. The non-canonical mechanisms include prominent cleavages C-terminal to Pro and Asn, and N-terminal to Ile, Leu, and Ser; these cleavages, along with internal fragments, led to a 45% increase in sequence coverage, improving the specificity of top-down protein identification. Three applications take advantage of the different mechanisms of protein fragmentation. First, modulation of declustering potential selectively fragments different charge states, allowing the source region to be used as the first stage of a low-resolution tandem mass spectrometer, facilitating pseudo-MS(3) of product ions with known parent charge states. Second, development and integration of automated modulation of ion funnel declustering potential allows users access to a particular fragmentation mechanism, yielding facile cleavage on a liquid chromatography timescale. Third, augmentation of a top-down search engine improved protein characterization. PMID:20303285

  7. Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna.

    PubMed

    van Zanten, Thomas S; Lopez-Bosque, Maria J; Garcia-Parajo, Maria F

    2010-01-01

    Optical antennas that confine and enhance electromagnetic fields in a nanometric region hold great potential for nanobioimaging and biosensing. Probe-based monopole optical antennas are fabricated to enhance fields localized to <30 nm near the antenna apex in aqueous conditions. These probes are used under appropriate excitation antenna conditions to image individual antibodies with an unprecedented resolution of 26 +/- 4 nm and virtually no surrounding background. On intact cell membranes in physiological conditions, the obtained resolution is 30 +/- 6 nm. Importantly, the method allows individual proteins to be distinguished from nanodomains and the degree of clustering to be quantified by directly measuring physical size and intensity of individual fluorescent spots. Improved antenna geometries should lead to true live cell imaging below 10-nm resolution with position accuracy in the subnanometric range. PMID:19943247

  8. The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2.

    PubMed

    Beckmann, Anna-Madeleine; Glebov, Konstantin; Walter, Jochen; Merkel, Olaf; Mangold, Martin; Schmidt, Frederike; Becker-Pauly, Christoph; Gütschow, Michael; Stirnberg, Marit

    2016-08-01

    Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ. PMID:27078672

  9. Super-Resolution Microscopy Using Standard Fluorescent Proteins in Intact Cells under Cryo-Conditions

    PubMed Central

    2014-01-01

    We introduce a super-resolution technique for fluorescence cryo-microscopy based on photoswitching of standard genetically encoded fluorescent marker proteins in intact mammalian cells at low temperature (81 K). Given the limit imposed by the lack of cryo-immersion objectives, current applications of fluorescence cryo-microscopy to biological specimens achieve resolutions between 400–500 nm only. We demonstrate that the single molecule characteristics of reversible photobleaching of mEGFP and mVenus at liquid nitrogen temperature are suitable for the basic concept of single molecule localization microscopy. This enabled us to perform super-resolution imaging of vitrified biological samples and to visualize structures in unperturbed fast frozen cells for the first time with a structural resolution of ∼125 nm (average single molecule localization accuracy ∼40 nm), corresponding to a 3–5 fold resolution improvement. PMID:24884378

  10. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions.

    PubMed

    Kaufmann, Rainer; Schellenberger, Pascale; Seiradake, Elena; Dobbie, Ian M; Jones, E Yvonne; Davis, Ilan; Hagen, Christoph; Grünewald, Kay

    2014-07-01

    We introduce a super-resolution technique for fluorescence cryo-microscopy based on photoswitching of standard genetically encoded fluorescent marker proteins in intact mammalian cells at low temperature (81 K). Given the limit imposed by the lack of cryo-immersion objectives, current applications of fluorescence cryo-microscopy to biological specimens achieve resolutions between 400-500 nm only. We demonstrate that the single molecule characteristics of reversible photobleaching of mEGFP and mVenus at liquid nitrogen temperature are suitable for the basic concept of single molecule localization microscopy. This enabled us to perform super-resolution imaging of vitrified biological samples and to visualize structures in unperturbed fast frozen cells for the first time with a structural resolution of ∼125 nm (average single molecule localization accuracy ∼40 nm), corresponding to a 3-5 fold resolution improvement. PMID:24884378

  11. Rapid fingerprinting of milk thermal processing history by intact protein mass spectrometry with nondenaturing chromatography.

    PubMed

    Johnson, Phil; Philo, Mark; Watson, Andrew; Mills, E N Clare

    2011-12-14

    Thermal processing of foods results in proteins undergoing conformational changes, aggregation, and chemical modification notably with sugars via the Maillard reaction. This can impact their functional, nutritional, and allergenic properties. Native size-exclusion chromatography with online electrospray mass spectrometry (SEC-ESI-MS) was used to characterize processing-induced changes in milk proteins in a range of milk products. Milk products could be readily grouped into either pasteurized liquid milks, heavily processed milks, or milk powders by SEC behavior, particularly by aggregation of whey proteins by thermal processing. Maillard modification of all major milk proteins by lactose was observed by MS and was primarily present in milk powders. The method developed is a rapid tool for fingerprinting the processing history of milk and has potential as a quality control method for food ingredient manufacture. The method described here can profile milk protein oligomeric state, aggregation, and Maillard modification in a single shot, rapid analysis. PMID:22007861

  12. Fragmentation of Multiply-Charged Intact Protein Ions Using MALDI TOF-TOF Mass Spectrometry

    PubMed Central

    Liu, Zhaoyang; Schey, Kevin L.

    2008-01-01

    Top down proteomics in a TOF-TOF instrument was further explored by examining the fragmentation of multiply charged precursors ions generated by matrix-assisted laser desorption ionization. Evaluation of sample preparation conditions allowed selection of solvent/matrix conditions and sample deposition methods to produce sufficiently abundant doubly and triply charged precursor ions for subsequent CID experiments. As previously reported, preferential cleavage was observed at sites C-terminal to acidic residues and N-terminal to proline residues for all ions examined. An increase in non-preferential fragmentation as well as additional low mass product ions was observed in the spectra from multiply charged precursor ions providing increased sequence coverage. This enhanced fragmentation from multiply charged precursor ions became increasingly important with increasing protein molecular weight and facilitates protein identification using database searching algorithms. The useable mass range for MALDI TOF-TOF analysis of intact proteins has been expanded to 18.2 kDa using this approach. PMID:17693096

  13. Cell-free methods to produce structurally intact mammalian membrane proteins.

    PubMed

    Shinoda, Takehiro; Shinya, Naoko; Ito, Kaori; Ishizuka-Katsura, Yoshiko; Ohsawa, Noboru; Terada, Takaho; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Tomita, Taisuke; Ishibashi, Yohei; Hirabayashi, Yoshio; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2016-01-01

    The crystal structures of four membrane proteins, from bacteria or a unicellular alga, have been solved with samples produced by cell-free protein synthesis. In this study, for mammalian membrane protein production, we established the precipitating and soluble membrane fragment methods: membrane proteins are synthesized with the Escherichia coli cell-free system in the presence of large and small membrane fragments, respectively, and are simultaneously integrated into the lipid environments. We applied the precipitating membrane fragment method to produce various mammalian membrane proteins, including human claudins, glucosylceramide synthase, and the γ-secretase subunits. These proteins were produced at levels of about 0.1-1.0 mg per ml cell-free reaction under the initial conditions, and were obtained as precipitates by ultracentrifugation. Larger amounts of membrane proteins were produced by the soluble membrane fragment method, collected in the ultracentrifugation supernatants, and purified directly by column chromatography. For several proteins, the conditions of the membrane fragment methods were further optimized, such as by the addition of specific lipids/detergents. The functional and structural integrities of the purified proteins were confirmed by analyses of their ligand binding activities, size-exclusion chromatography profiles, and/or thermal stabilities. We successfully obtained high-quality crystals of the complex of human claudin-4 with an enterotoxin. PMID:27465719

  14. Cell-free methods to produce structurally intact mammalian membrane proteins

    PubMed Central

    Shinoda, Takehiro; Shinya, Naoko; Ito, Kaori; Ishizuka-Katsura, Yoshiko; Ohsawa, Noboru; Terada, Takaho; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Tomita, Taisuke; Ishibashi, Yohei; Hirabayashi, Yoshio; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2016-01-01

    The crystal structures of four membrane proteins, from bacteria or a unicellular alga, have been solved with samples produced by cell-free protein synthesis. In this study, for mammalian membrane protein production, we established the precipitating and soluble membrane fragment methods: membrane proteins are synthesized with the Escherichia coli cell-free system in the presence of large and small membrane fragments, respectively, and are simultaneously integrated into the lipid environments. We applied the precipitating membrane fragment method to produce various mammalian membrane proteins, including human claudins, glucosylceramide synthase, and the γ-secretase subunits. These proteins were produced at levels of about 0.1–1.0 mg per ml cell-free reaction under the initial conditions, and were obtained as precipitates by ultracentrifugation. Larger amounts of membrane proteins were produced by the soluble membrane fragment method, collected in the ultracentrifugation supernatants, and purified directly by column chromatography. For several proteins, the conditions of the membrane fragment methods were further optimized, such as by the addition of specific lipids/detergents. The functional and structural integrities of the purified proteins were confirmed by analyses of their ligand binding activities, size-exclusion chromatography profiles, and/or thermal stabilities. We successfully obtained high-quality crystals of the complex of human claudin-4 with an enterotoxin. PMID:27465719

  15. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR

    PubMed Central

    Lee, Sang-Won; Berger, Scott J.; Martinović, Suzana; Paša-Tolić, Ljiljana; Anderson, Gordon A.; Shen, Yufeng; Zhao, Rui; Smith, Richard D.

    2002-01-01

    Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry coupled with capillary reverse-phase liquid chromatography was used to characterize intact proteins from the large subunit of the yeast ribosome. High mass measurement accuracy, achieved by “mass locking” with an internal standard from a dual electrospray ionization source, allowed identification of ribosomal proteins. Analyses of the intact proteins revealed information on cotranslational and posttranslational modifications of the ribosomal proteins that included loss of the initiating methionine, acetylation, methylation, and proteolytic maturation. High-resolution separations permitted differentiation of protein isoforms having high structural similarity as well as proteins from their modified forms, facilitating unequivocal assignments. The study identified 42 of the 43 core large ribosomal subunit proteins and 58 (of 64 possible) core large subunit protein isoforms having unique masses in a single analysis. These results demonstrate the basis for the high-throughput analyses of complex mixtures of intact proteins, which we believe will be an important complement to other approaches for defining protein modifications and their changes resulting from physiological processes or environmental perturbations. PMID:11983894

  16. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants.

    PubMed

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1(CtoS) purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER.DOI: http://dx.doi.org/10.7554/eLife.03421.001. PMID:25073928

  17. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

    PubMed Central

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001 PMID:25073928

  18. FT-ICR MS optimization for the analysis of intact proteins

    SciTech Connect

    Tolmachev, Aleksey V.; Robinson, Errol W.; Wu, Si; Pasa-Tolic, Ljiljana; Smith, Richard D.

    2009-10-15

    Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) remains the technique of choice for the analysis of intact proteins from complex biological systems, i.e. top-down proteomics. Recently, we have implemented a compensated open cylindrical ion trapping cell into a 12 T FT-ICR mass spectrometer. This new cell has previously demonstrated improved sensitivity, dynamic range, and mass measurement accuracy for the analysis of relatively small tryptic peptides. These improvements are due to the improved trapping potential of the cell which is significantly closer to the ideal harmonic trapping potential. Here we report the instrument optimization for the analysis of large macro-molecular ions, such as proteins. Also, presented are first principle theoretical considerations to account for different optimum conditions for the analysis of large macro-molecules. The proposed high energy ion loss mechanism is further supported by experimental results of bovine ubiquitin and serum albumin. We find that the analysis of large macro-molecules can be significantly improved by the further reduction of pressure in the ion trapping cell. This will reduce the impact of the high energy ion loss mechanism and enable increased sensitivity and mass measurement accuracy to be realized without compromising resolution. Further, these results appear to be applicable to FTMS in general, and the high energy ion loss mechanism applies to Orbitrap mass analyzers as well.

  19. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation: a randomised, controlled, cross-over study.

    PubMed

    Bendtsen, Line Q; Lorenzen, Janne K; Gomes, Sisse; Liaset, Bjørn; Holst, Jens J; Ritz, Christian; Reitelseder, Søren; Sjödin, Anders; Astrup, Arne

    2014-10-28

    Casein and whey differ in amino acid composition and in the rate of absorption; however, the absorption rate of casein can be increased to mimic that of whey by exogenous hydrolysis. The objective of the present study was to compare the effects of hydrolysed casein (HC), intact casein (IC) and intact whey (IW) on energy expenditure (EE) and appetite regulation, and thereby to investigate the influence of amino acid composition and the rate of absorption. In the present randomised cross-over study, twenty-four overweight and moderately obese young men and women consumed three isoenergetic dietary treatments that varied in protein source. The study was conducted in a respiration chamber, where EE, substrate oxidation and subjective appetite were measured over 24 h at three independent visits. Moreover, blood and urine samples were collected from the participants. The results showed no differences in 24 h and postprandial EE or appetite regulation. However, lipid oxidation, estimated from the respiratory quotient (RQ), was found to be higher after consumption of IW than after consumption of HC during daytime (P= 0·014) as well as during the time after the breakfast meal (P= 0·008) when the food was provided. Likewise, NEFA concentrations were found to be higher after consumption of IW than after consumption of HC and IC (P< 0·01). However, there was no overall difference in the concentration of insulin or glucagon-like peptide 1. In conclusion, dietary treatments when served as high-protein mixed meals induced similar effects on EE and appetite regulation, except for lipid oxidation, where RQ values suggest that it is higher after consumption of IW than after consumption of HC. PMID:25191896

  20. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation

    NASA Technical Reports Server (NTRS)

    Goldmann, Wolfgang H.; Ingber, Donald E.

    2002-01-01

    Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.

  1. FT-ICR MS optimization for the analysis of intact proteins.

    PubMed

    Tolmachev, Aleksey V; Robinson, Errol W; Wu, Si; Paša-Tolić, Ljiljana; Smith, Richard D

    2009-10-15

    Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) remains the technique of choice for the analysis of intact proteins from complex biological systems, i.e. top-down proteomics. Recently, we have implemented a compensated open cylindrical ion trapping cell into a 12 T FT-ICR mass spectrometer. This new cell has previously demonstrated improved sensitivity, dynamic range, and mass measurement accuracy for the analysis of relatively small tryptic peptides. These improvements are due to the modified trapping potential of the cell which closely approximates the ideal harmonic trapping potential. Here, we report the instrument optimization for the analysis of large macro-molecular ions, such as proteins. Single transient mass spectra of multiply charged bovine ubiquitin ions with sub-ppm mass measurement accuracy, improved signal intensity, and increased dynamic range were obtained using this new cell with increased post-excitation cyclotron radii. The increased cyclotron radii correspond to increased ion kinetic energy and collisions between neutrals and ions with sufficient kinetic energy can exceed a threshold of single collision ion fragmentation. A transition then occurs from relatively long signal lifetimes at low excitation radii to potentially shorter lifetimes, defined by the average ion-neutral collision time. The proposed high energy ion loss mechanism is evaluated and compared with experimental results for bovine ubiquitin and serum albumin. We find that the analysis of large macro-molecules can be significantly improved by the further reduction of pressure in the ion trapping cell. This reduces the high energy ion losses and can enable increased sensitivity and mass measurement accuracy to be realized without compromising resolution. Further, these results appear to be generally applicable to FTMS, and it is expected that the high energy ion loss mechanism also applies to Orbitrap mass analyzers. PMID:20473360

  2. Enhancing the performance of LC-MS for intact protein analysis by counteracting the signal suppression effects of trifluoroacetic acid during electrospray.

    PubMed

    Chen, Jin; Liu, Zheyi; Wang, Fangjun; Mao, Jiawei; Zhou, Ye; Liu, Jing; Zou, Hanfa; Zhang, Yukui

    2015-10-11

    We develop an acidic vapor assisted electrospray ionization strategy within an enclosed electrospray ionization source to counteract the ion suppression effects caused by trifluoroacetic acid. The mass spectrometry signal intensity of intact proteins was improved 10 times and the number of valid signals for E. coli intact protein samples was improved 96% by using this strategy. PMID:26295950

  3. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues

    PubMed Central

    Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Terry, Richard; Turczyk, Brian M.; Yang, Joyce L.; Lee, Ho Suk; Aach, John; Zhang, Kun; Church, George M.

    2014-01-01

    RNA sequencing measures the quantitative change in gene expression over the whole transcriptome, but it lacks spatial context. On the other hand, in situ hybridization provides the location of gene expression, but only for a small number of genes. Here we detail a protocol for genome-wide profiling of gene expression in situ in fixed cells and tissues, in which RNA is converted into cross-linked cDNA amplicons and sequenced manually on a confocal microscope. Unlike traditional RNA-seq our method enriches for context-specific transcripts over house-keeping and/or structural RNA, and it preserves the tissue architecture for RNA localization studies. Our protocol is written for researchers experienced in cell microscopy with minimal computing skills. Library construction and sequencing can be completed within 14 d, with image analysis requiring an additional 2 d. PMID:25675209

  4. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury

    PubMed Central

    Ko, Miau-Hwa; Yang, Ming-Ling; Youn, Su-Chung; Tseng, To-Jung

    2016-01-01

    Background Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCγ) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCγ activation and mTOR-dependent PKCγ synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. Results The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCγ- and phospho-mTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. Conclusions From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCγ activation and mTOR-dependent PKCγ synthesis participate

  5. Tryptophan fluorescence quenching as a binding assay to monitor protein conformation changes in the membrane of intact mitochondria.

    PubMed

    Akbar, S Md; Sreeramulu, K; Sharma, Hari C

    2016-06-01

    Intrinsic protein fluorescence is due to aromatic amino acids, mainly tryptophan, which can be selectively measured by exciting at 295 nm. Changes in emission spectra of tryptophan are due to the protein conformational transitions, subunit association, ligand binding or denaturation, which affect the local environment surrounding the indole ring. In this study, tryptophan fluorescence was monitored in intact mitochondria at 333 nm following excitation at 295 nm in presence of insecticides using spectrofluorometer. Methyl-parathion, carbofuran, and endosulfan induced Trp fluorescence quenching and release of cytochrome c when incubated with the mitochondria, except fenvalarate. Mechanism of insecticide-induced mitochondrial toxicity for the tested insecticides has been discussed. Reduction in the intensity of tryptophan emission spectra of mitochondrial membrane proteins in presence of an increasing concentration of a ligand can be used to study the interaction of insecticides/drugs with the intact mitochondria. Furthermore, this assay can be readily adapted for studying protein-ligand interactions in intact mitochondria and in other cell organelles extending its implications for pesticide and pharma industry and in drug discovery. PMID:26905428

  6. A specific blend of intact protein rich in aspartate has strong postprandial glucose attenuating properties in rats.

    PubMed

    Hageman, Robert; Severijnen, Chantal; van de Heijning, Bert J M; Bouritius, Hetty; van Wijk, Nick; van Laere, Katrien; van der Beek, Eline M

    2008-09-01

    Three studies were carried out to help define an optimal protein blend for use in a nutritional product for diabetic patients. To this end, we tested the effects of coinfusions of combinations of different types of carbohydrates and proteins on the postprandial glycemic plasma response in healthy rats. Expt. 1 compared the effects of administering different forms of soy protein (intact protein, its hydrolysate, or an equivalent amount of the same amino acids), all in combination with a fixed amount of glucose (Glu), on postprandial Glu and insulin plasma concentrations. Intact soy protein (SI) had stronger insulinogenic properties compared with its hydrolysate but was equally potent in reducing the postprandial Glu response. In Expt. 2, we compared the effect of replacing 50% of the SI with the whey-derived protein alpha-lactalbumin when coingested with maltodextrin as the carbohydrate source. Only the specific aspartate-rich blend of SI and alpha-lactalbumin significantly improved the postprandial Glu response. In Expt. 3, we studied the effect of using the blend of SI and alpha-lactalbumin combined with a slowly digestible carbohydrate. The protein blend was still capable of significantly decreasing the postprandial Glu response even when a slow-release carbohydrate source was included. Combining this aspartate-rich protein blend with a slow-release carbohydrate might therefore lead to a low-glycemic nutritional product beneficial for dietary management in diabetic patients. PMID:18716162

  7. Complementary LC-MS/MS-Based N-Glycan, N-Glycopeptide, and Intact N-Glycoprotein Profiling Reveals Unconventional Asn71-Glycosylation of Human Neutrophil Cathepsin G

    PubMed Central

    Loke, Ian; Packer, Nicolle H.; Thaysen-Andersen, Morten

    2015-01-01

    Neutrophil cathepsin G (nCG) is a central serine protease in the human innate immune system, but the importance of its N-glycosylation remains largely undescribed. To facilitate such investigations, we here use complementary LC-MS/MS-based N-glycan, N-glycopeptide, and intact glycoprotein profiling to accurately establish the micro- and macro-heterogeneity of nCG from healthy individuals. The fully occupied Asn71 carried unconventional N-glycosylation consisting of truncated chitobiose core (GlcNAcβ: 55.2%; Fucα1,6GlcNAcβ: 22.7%), paucimannosidic N-glycans (Manβ1,4GlcNAcβ1,4GlcNAcβ: 10.6%; Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ: 7.9%; Manα1,6Manβ1,4GlcNAcβ1,4GlcNAcβ: 3.7%, trace level of Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ), and trace levels of monoantennary α2,6- and α2,3-sialylated complex N-glycans. High-resolution/mass accuracy LC-MS profiling of intact nCG confirmed the Asn71-glycoprofile and identified two C-terminal truncation variants at Arg243 (57.8%) and Ser244 (42.2%), both displaying oxidation of solvent-accessible Met152. Asn71 appeared proximal (~19 Å) to the active site of nCG, but due to the truncated nature of Asn71-glycans (~5–17 Å) we questioned their direct modulation of the proteolytic activity of the protein. This work highlights the continued requirement of using complementary technologies to accurately profile even relatively simple glycoproteins and illustrates important challenges associated with the analysis of unconventional protein N-glycosylation. Importantly, this study now facilitates investigation of the functional role of nCG Asn71-glycosylation. PMID:26274980

  8. Imaging Mass Spectrometry of Intact Proteins from Alcohol-Preserved Tissue Specimens: Bypassing Formalin Fixation

    PubMed Central

    Chaurand, Pierre; Latham, Joey C.; Lane, Kirk B.; Mobley, James A.; Polosukhin, Vasiliy V.; Wirth, Pamela S.; Nanney, Lillian B.; Caprioli, Richard M.

    2010-01-01

    Imaging mass spectrometry is becoming a key technology for the investigation of the molecular content of biological tissue sections in direct correlation with the underlying histology. Much of our work has been done with fresh-frozen tissue sections that has undergone minimal protein degradation between the time a tissue biopsy is sampled and the time it is snap-frozen so that no preserving or fixing agents need to be added to the frozen biopsy. However, in many sampling environments, immediate flash freezing may not be possible and so we have explored the use of ethanol-preserved, paraffin-embedded tissue specimens for proteomic analyses. Solvent-only preserved tissue specimens provide long-term preservation at room temperature, generation of high quality histological sections and little if any chemical alteration of the proteins. Using mouse organs, several key steps involved in the tissue dehydration process have been investigated to assess the potential of such preserved specimens for profiling and imaging mass spectrometry investigations. PMID:18613713

  9. Protein separation and characterization by np-RP-HPLC followed by intact MALDI-TOF mass spectrometry and peptide mass mapping analyses

    PubMed Central

    Dauly, Claire; Perlman, David H.; Costello, Catherine E.; McComb, Mark E.

    2008-01-01

    Due to their complexity, the separation of intact proteins from complex mixtures is an important step to comparative proteomics and the identification and characterization of the proteins by mass spectrometry (MS). In the study reported, we evaluated the use of non-porous-reversed-phase (np-RP) HPLC for intact protein separation prior to MS analyses. The separation system was characterized and compared to 1D-SDS-PAGE electrophoresis in terms of resolution and sensitivity. We demonstrate that np-RP HPLC protein separation is highly reproducible and provides intact protein fractions which can be directly analyzed by MALDI-TOF MS for intact molecular weight determination. An in-well digestion protocol was developed, allowing for rapid protein identification by peptide mass fingerprinting (PMF) and resulted in comparable or improved peptide recovery compared with in-gel digestion. The np-RP sensitivity of detection by UV absorbance at 214 nm for intact proteins was at the low ng level and the sensitivity of peptide analysis by MALDI-TOF MS was in the 10–50 pg level. A membrane protein fraction was characterized to demonstrate application of this methodology. Among the identified proteins, multiple forms of vimentin were observed. Overall we demonstrate that np-RP HPLC followed by MALDI-TOF MS allows for rapid, sensitive and reproducible protein fractionation and very specific protein characterization by integration of PMF analysis with MS intact molecular weight information. PMID:16823977

  10. Serum Protein Profile Alterations in Hemodialysis Patients

    SciTech Connect

    Murphy, G A; Davies, R W; Choi, M W; Perkins, J; Turteltaub, K W; McCutchen-Maloney, S L; Langlois, R G; Curzi, M P; Trebes, J E; Fitch, J P; Dalmasso, E A; Colston, B W; Ying, Y; Chromy, B A

    2003-11-18

    Background: Serum protein profiling patterns can reflect the pathological state of a patient and therefore may be useful for clinical diagnostics. Here, we present results from a pilot study of proteomic expression patterns in hemodialysis patients designed to evaluate the range of serum proteomic alterations in this population. Methods: Surface-Enhanced Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (SELDI-TOFMS) was used to analyze serum obtained from patients on periodic hemodialysis treatment and healthy controls. Serum samples from patients and controls were first fractionated into six eluants on a strong anion exchange column, followed by application to four array chemistries representing cation exchange, anion exchange, metal affinity and hydrophobic surfaces. A total of 144 SELDI-TOF-MS spectra were obtained from each serum sample. Results: The overall profiles of the patient and control samples were consistent and reproducible. However, 30 well-defined protein differences were observed; 15 proteins were elevated and 15 were decreased in patients compared to controls. Serum from one patient exhibited novel protein peaks suggesting possible additional changes due to a secondary disease process. Conclusion: SELDI-TOF-MS demonstrated dramatic serum protein profile differences between patients and controls. Similarity in protein profiles among dialysis patients suggests that patient physiological responses to end-stage renal disease and/or dialysis therapy have a major effect on serum protein profiles.

  11. Comparison of the Release Profile and Pharmacokinetics of Intact and Fragmented Dexamethasone Intravitreal Implants in Rabbit Eyes

    PubMed Central

    Zhang, Jean; Farooq, Sidiq; Li, Xiao-Yan

    2014-01-01

    Abstract Purpose: Dexamethasone intravitreal implant (DEX implant, Ozurdex®; Allergan, Inc.) is used to treat noninfectious posterior uveitis and macular edema associated with retinal vein occlusion and diabetic retinopathy. Two recently published reports of DEX implant fragmentation shortly after injection have raised concerns about the potential for faster implant dissolution and elevated ocular dexamethasone concentrations. This study compared the in vivo release profile and pharmacokinetic behavior of intact and fragmented DEX implants. Methods: DEX implant was surgically implanted as a single unit or fragmented into 3 pieces in the posterior segment of opposing eyes of 36 New Zealand white rabbits. The release of dexamethasone over time from 1-piece and 3-piece fragmented implants dissolved in solution in vitro was compared with that from the 1-piece and 3-piece fragmented implants placed in the rabbit eyes. In addition, dexamethasone concentrations in the vitreous and aqueous humors of each eye were measured at 3 h and days 1, 7, 14, 21, and 28. High-performance liquid chromatography and liquid chromatography–tandem mass spectrometry were used for assays. Results: Dexamethasone release from the 1-piece and 3-piece DEX implants in vivo was not different and was consistent with the in vitro release pattern. Moreover, the concentration profile of dexamethasone in the vitreous and aqueous humors was similar for the 1-piece and 3-piece DEX implants at each time point measured. Conclusions: DEX implant fragmentation neither accelerated its dissolution nor increased the dexamethasone concentration delivered at a given time. Accordingly, DEX implant fragmentation is unlikely to have clinically significant effects in patients. PMID:25411827

  12. Chemical treatment of Escherichia coli. II. Direct extraction of recombinant protein from cytoplasmic inclusion bodies in intact cells.

    PubMed

    Falconer, R J; O'Neill, B K; Middelberg, A P

    1998-02-20

    A method is presented for the direct extraction of the recombinant protein Long-R3-IGF-I from inclusion bodies located in the cytoplasm of intact Escherichia coli cells. Chemical treatment with 6M urea, 3 mM EDTA, and 20 mM dithiothreitol (DTT) at pH 9.0 proved an effective combination for extracting recombinant protein from intact cells. Comparable levels of Long-R3-IGF-I were recovered by direct extraction as achieved by in vitro dissolution following mechanical disruption. However, the purity of directly extracted recombinant protein was lower due to contamination by bacterial cell components. The kinetics of direct extraction are described using a first-order equation with the time constant of 3 min. Urea appears important for permeabilization of the cell and dissolution of the inclusion body. Conversely, EDTA is involved in permeabilization of the cell wall and DTT enhances protein release. pH proved to be important with lower levels of protein release achieved at low pH values (<9). Cell concentration also had a minor effect on Long-R3-IGF-I release and caused an observable increase in viscosity. Advantages of the direct extraction method include its speed, simplicity, and efficiency at releasing product. PMID:10099214

  13. Chemical treatment of Escherichia coli: 3. Selective extraction of a recombinant protein from cytoplasmic inclusion bodies in intact cells.

    PubMed

    Falconer, R J; O'Neill, B K; Middelberg, A P

    1999-02-20

    In previous parts of this study we developed procedures for the high-efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two-stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion-body stability is promoted by the addition of 15 mM 2-hydroxyethyldisulfide (2-HEDS), also known as oxidized beta-mercaptoethanol, to the permeabilization buffer (6 M urea + 3 mM ethylenediaminetetraacetate [EDTA]). 2-HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion-body fraction by centrifugation. In the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two-stage process yielded an 81% (w/w) recovery of the recombinant protein Long-R3-IGF-I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot-scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. PMID:9921154

  14. Illuminating Parasite Protein Production by Ribosome Profiling.

    PubMed

    Parsons, Marilyn; Myler, Peter J

    2016-06-01

    While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low-abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites including trypanosomes and Plasmodium. It has been used to identify new protein-coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation. PMID:27061497

  15. Reconstruction of SAXS Profiles from Protein Structures

    PubMed Central

    Putnam, Daniel K.; Lowe, Edward W.

    2013-01-01

    Small angle X-ray scattering (SAXS) is used for low resolution structural characterization of proteins often in combination with other experimental techniques. After briefly reviewing the theory of SAXS we discuss computational methods based on 1) the Debye equation and 2) Spherical Harmonics to compute intensity profiles from a particular macromolecular structure. Further, we review how these formulas are parameterized for solvent density and hydration shell adjustment. Finally we introduce our solution to compute SAXS profiles utilizing GPU acceleration. PMID:24688746

  16. Activity-Based Protein Profiling of Microbes

    SciTech Connect

    Sadler, Natalie C.; Wright, Aaron T.

    2015-02-01

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include: enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.

  17. RNA-Seq Profiling of Intact and Enucleated Oocyte SCNT Embryos Reveals the Role of Pig Oocyte Nucleus in Somatic Reprogramming.

    PubMed

    Bai, Lin; Li, Mengqi; Sun, Junli; Yang, Xiaogan; Lu, Yangqing; Lu, Shengsheng; Lu, Kehuan

    2016-01-01

    The specific molecular mechanisms involved in somatic reprogramming remain unidentified. Removal of the oocyte genome is one of the primary causes of developmental failure in cloned embryos, whereas intact oocyte shows stronger reprogramming capability than enucleated oocyte. To identify the reason for the low efficiency of cloning and elucidate the mechanisms involved in somatic reprogramming by the oocyte nucleus, we injected pig cumulus cells into 539 intact MII oocytes and 461 enucleated MII oocytes. Following activation, 260 polyploidy embryos developed to the blastocyst stage whereas only 93 traditionally cloned embryos (48.2% vs. 20.2%, P < 0.01) reached blastocyst stage. Blastocysts generated from intact oocytes also had more cells than those generated from enucleated oocytes (60.70 vs. 46.65, P < 0.01). To identify the genes that contribute to this phenomenon, two early embryos in 2-cell and 4-cell stages were collected for single-cell RNA sequencing. The two kinds of embryos were found to have dramatically different transcriptome profiles. Intact oocyte nuclear transfer embryos showed 1,738 transcripts that were up-regulated relative to enucleated cloned embryos at the 2-cell stage and 728 transcripts that were down-regulated (|log2Ratio| ≥ 5). They showed 2,941 transcripts that were up-regulated during the 4-cell stage and 1,682 that were down-regulated (|log2Ratio| ≥ 5). The most significantly enriched gene ontology categories were those involved in the regulation of binding, catalytic activity, and molecular transducer activity. Other genes that were notably up-regulated and expressed in intact oocyte nuclear transfer embryos were metabolic process. This study provides a comprehensive profile of the differences in gene expression between intact oocyte nuclear transfer embryos and traditional nuclear transfer embryos. This work thus paves the way for further research on the mechanisms underlying somatic reprogramming by oocytes. PMID:27070804

  18. RNA-Seq Profiling of Intact and Enucleated Oocyte SCNT Embryos Reveals the Role of Pig Oocyte Nucleus in Somatic Reprogramming

    PubMed Central

    Bai, Lin; Li, Mengqi; Sun, Junli; Yang, Xiaogan; Lu, Yangqing; Lu, Shengsheng; Lu, Kehuan

    2016-01-01

    The specific molecular mechanisms involved in somatic reprogramming remain unidentified. Removal of the oocyte genome is one of the primary causes of developmental failure in cloned embryos, whereas intact oocyte shows stronger reprogramming capability than enucleated oocyte. To identify the reason for the low efficiency of cloning and elucidate the mechanisms involved in somatic reprogramming by the oocyte nucleus, we injected pig cumulus cells into 539 intact MII oocytes and 461 enucleated MII oocytes. Following activation, 260 polyploidy embryos developed to the blastocyst stage whereas only 93 traditionally cloned embryos (48.2% vs. 20.2%, P < 0.01) reached blastocyst stage. Blastocysts generated from intact oocytes also had more cells than those generated from enucleated oocytes (60.70 vs. 46.65, P < 0.01). To identify the genes that contribute to this phenomenon, two early embryos in 2-cell and 4-cell stages were collected for single-cell RNA sequencing. The two kinds of embryos were found to have dramatically different transcriptome profiles. Intact oocyte nuclear transfer embryos showed 1,738 transcripts that were up-regulated relative to enucleated cloned embryos at the 2-cell stage and 728 transcripts that were down-regulated (|log2Ratio| ≥ 5). They showed 2,941 transcripts that were up-regulated during the 4-cell stage and 1,682 that were down-regulated (|log2Ratio| ≥ 5). The most significantly enriched gene ontology categories were those involved in the regulation of binding, catalytic activity, and molecular transducer activity. Other genes that were notably up-regulated and expressed in intact oocyte nuclear transfer embryos were metabolic process. This study provides a comprehensive profile of the differences in gene expression between intact oocyte nuclear transfer embryos and traditional nuclear transfer embryos. This work thus paves the way for further research on the mechanisms underlying somatic reprogramming by oocytes. PMID:27070804

  19. Comparison of Tobacco Host Cell Protein Removal Methods by Blanching Intact Plants or by Heat Treatment of Extracts.

    PubMed

    Buyel, Johannes F; Hubbuch, Jürgen; Fischer, Rainer

    2016-01-01

    Plants not only provide food, feed and raw materials for humans, but have also been developed as an economical production system for biopharmaceutical proteins, such as antibodies, vaccine candidates and enzymes. These must be purified from the plant biomass but chromatography steps are hindered by the high concentrations of host cell proteins (HCPs) in plant extracts. However, most HCPs irreversibly aggregate at temperatures above 60 °C facilitating subsequent purification of the target protein. Here, three methods are presented to achieve the heat precipitation of tobacco HCPs in either intact leaves or extracts. The blanching of intact leaves can easily be incorporated into existing processes but may have a negative impact on subsequent filtration steps. The opposite is true for heat precipitation of leaf extracts in a stirred vessel, which can improve the performance of downstream operations albeit with major changes in process equipment design, such as homogenizer geometry. Finally, a heat exchanger setup is well characterized in terms of heat transfer conditions and easy to scale, but cleaning can be difficult and there may be a negative impact on filter capacity. The design-of-experiments approach can be used to identify the most relevant process parameters affecting HCP removal and product recovery. This facilitates the application of each method in other expression platforms and the identification of the most suitable method for a given purification strategy. PMID:27584939

  20. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    PubMed

    Schwarz, Martin K; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  1. Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains

    PubMed Central

    Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter

    2015-01-01

    In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380

  2. High Resolution CZE-MS Quantitative Characterization of Intact Biopharmaceutical Proteins: Proteoforms of Interferon-β1.

    PubMed

    Bush, David R; Zang, Li; Belov, Arseniy M; Ivanov, Alexander R; Karger, Barry L

    2016-01-19

    New and improved methods are required for the enhanced characterization of complex biopharmaceuticals, especially those with charge and glycan heterogeneity. High resolution separation and mass spectrometry (MS) analysis of intact proteoforms can contribute significantly to the characterization of such proteins, many of which are glycoproteins. Here, we report on capillary zone electrophoresis (CZE) coupled via a commercial CESI sheathless interface to an Orbitrap ELITE MS for the intact analysis of recombinant human interferon-β1 (Avonex, rhIFN-β1), a biopharmaceutical with complex glycosylation at a single N-linked site. Using a cross-linked polyethylenimine coating, column efficiencies between 350,000 and 450,000 plates were produced, allowing separation based on charge and subtle hydrodynamic volume differences. A total of 138 proteoforms were found, and 55 were quantitated. Charge species due to deamidation and sialylation were separated by CZE. Given the high column efficiency, isobaric positional isomers of a single sialic acid on biantennary glycan antennae were resolved. Further, triantennary isomers (antenna on α(1-3) or α(1-6) arms) were separated and confirmed by exoglycosidase digestion. Proteoforms of the N-terminal cleavage of methionine were detected by precursor molecular weight and top-down ETD and HCD analysis of the reduced protein. Quantitative analysis suggested potential correlations between the methionine loss with the relative amount of the deamidation, as well as the level of deamidation with glycan structure. We demonstrate that high resolution CZE separation of intact glycoprotein species coupled to MS has significant potential for the in-depth characterization and quantitative analysis of biopharmaceutical proteoforms. PMID:26641950

  3. Torsion Profiling of Proteins Using Magnetic Particles

    PubMed Central

    van Reenen, A.; Gutiérrez-Mejía, F.; van IJzendoorn, L.J.; Prins, M.W.J.

    2013-01-01

    We report a method to profile the torsional spring properties of proteins as a function of the angle of rotation. The torque is applied by superparamagnetic particles and has been calibrated while taking account of the magnetization dynamics of the particles. We record and compare the torsional profiles of single Protein G-Immunoglobulin G (IgG) and IgG-IgG complexes, sandwiched between a substrate and a superparamagnetic particle, for torques in the range between 0.5 × 103 and 5 × 103 pN·nm. Both molecular systems show torsional stiffening for increasing rotation angle, but the elastic and inelastic torsion stiffnesses are remarkably different. We interpret the results in terms of the structural properties of the molecules. The torsion profiling technique opens new dimensions for research on biomolecular characterization and for research on bio-nanomechanical structure-function relationships. PMID:23473490

  4. A new method for the experimental heating of intact soil profiles for application to climate change experiments

    SciTech Connect

    Hanson, Paul J; Childs, Kenneth W; Wullschleger, Stan D; Riggs, Jeffery S; Thomas, Warren Kyle; Todd Jr, Donald E; Warren, Jeffrey

    2011-01-01

    systems to address uncertainties in process-level responses of microbial, plant, and animal communities in whole, intact ecosystems using this new heating method that capture expected future warming and temperature dynamics throughout the soil profile.

  5. Interactions of Intact Unfractionated Heparin with Its Client Proteins Can Be Probed Directly Using Native Electrospray Ionization Mass Spectrometry.

    PubMed

    Zhao, Yunlong; Abzalimov, Rinat R; Kaltashov, Igor A

    2016-02-01

    Heparin and related members of the glycosaminoglycan (GAG) family are highly polyanionic linear saccharides that play important roles in a variety of physiological processes ranging from blood coagulation to embryo- and oncogenesis, tissue regeneration, and immune response regulation. These diverse functions are executed via a variety of mechanisms, including protein sequestration, activation, and facilitation of their interactions with cell-surface receptors, but deciphering the specific molecular mechanisms is frequently impossible due to the extremely high degree of GAG heterogeneity. As a result, the vast majority of studies of heparin (or related GAGs) interactions with its client proteins use synthetically produced heparin mimetics with defined structure or short heparin fragments. In this work we use native electrospray ionization mass spectrometry (ESI MS) in combination with limited charge reduction in the gas phase to obtain meaningful information on noncovalent complexes formed by intact unfractionated heparin and antithrombin-III, interaction which is central to preventing blood clotting. Complexes of different stoichiometries are observed ranging from 1:1 to 1:3 (heparin/protein ratio). In addition to binding stoichiometry, the measurements allow the range of heparin chain lengths to be obtained for each complex and the contribution of each complex to the total ionic signal to be calculated. Incorporation of ion mobility measurements in the experimental workflow allows the total analysis time to be shortened very significantly and the charge state assignment for the charge-reduced species to be verified. The possibility to study interactions of intact unfractionated heparin with a client protein carried out directly by native ESI MS without the need to use relatively homogeneous surrogates demonstrated in this work opens up a host of new exciting opportunities and goes a long way toward ameliorating the persistent but outdated view of the

  6. Whole intact rapeseeds or sunflower oil in high-forage or high-concentrate diets affects milk yield, milk composition, and mammary gene expression profile in goats.

    PubMed

    Ollier, S; Leroux, C; de la Foye, A; Bernard, L; Rouel, J; Chilliard, Y

    2009-11-01

    This study aimed to ascertain the response of goat mammary metabolic pathways to concentrate and lipid feeding in relation to milk fatty acid (FA) composition and secretion. Sixteen midlactation multiparous goats received diets differing in forage-to-concentrate ratio [high forage (HF) 64:36, and low forage (LF) 43:57] supplemented or not with lipids [HF with 130 g/d of oil from whole intact rapeseeds (RS) and LF with 130 g/d of sunflower oil (SO)] in a 4 x 4 Latin square design. Milk yield, milk composition, FA profile, and FA secretion were measured, as well as the expression profiles of key genes in mammary metabolism and of 8,382 genes, using a bovine oligonucleotide microarray. After 3 wk of treatment, milk, lactose, and protein yields were lower with HF-RS than with the other diets, whereas treatment had no effect on milk protein content. Milk fat content was higher with the HF-RS and LF-SO diets than with the HF and LF diets, and SO supplementation increased milk fat yield compared with the LF diet. Decreasing the forage-to-concentrate ratio from 64:36 to 43:57 had a limited effect on goat milk FA concentrations and secretions. Supplementing the LF diet with SO changed almost all the FA concentrations, including decreases in medium-chain saturated FA and large increases in trans C18:1 and C18:2 isomers (particularly trans-11 C18:1 and cis-9, trans-11 conjugated linoleic acid), without significant changes in C18:0 and cis-9 C18:1, whereas supplementing the HF diet with RS led to a strong decrease in short- and medium-chain saturated FA and a very strong increase in C18:0 and cis-9 C18:1, without significant changes in trans C18:1 and conjugated linoleic acid. Despite the decreases in milk lactose and protein yields observed with HF-RS, and despite the decrease in milk medium-chain FA and the increase in C18 FA secretion with RS or SO supplementation, none of the dietary treatments had any effect on mammary mRNA expression of the key genes involved in lactose

  7. DETECTION OF INTACT PROTEINS WITH DESI-MS: APPLICATION TO MICROORGANISM BIOMARKER DETECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DESI-MS was evaluated with proteins that range in molecular weight from 12 KDa to 66 KDa. Lyophilized protein samples were rehydrated with water, deposited on Plexiglas, and dried. In some experiments buckminsterfullerene (bucky ball, C60) was used as an additive to the nebulizing gas. Optimized ...

  8. Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures.

    PubMed

    Moskovets, Eugene V; Ivanov, Alexander R

    2016-06-01

    This work demonstrates that the chromatographic separation performed at highly stabilized elevated temperature results in significant improvements in sensitivity, quantitative accuracy, chromatographic resolution, and run-to-run reproducibility of nanoLC-MS analysis of complex peptides mixtures. A newly developed platform was shown to provide conditions for accurate temperature stabilization and temperature homogeneity when performing nanoLC-ESI MS analysis. We quantitatively assessed and compared the recovery of peptides and small proteins from nanoLC columns at room and elevated temperatures. We found that analyses performed at highly stabilized elevated temperatures led to improved detection sensitivity, reproducibility, and chromatographic resolution in reversed-phase LC separation of unmodified peptides (both hydrophilic and hydrophobic), post-translationally modified peptides (O-phosphorylated), and small intact proteins. The analytical benefits of elevated temperatures for qualitative and quantitative proteomic LC-MS profiling were demonstrated using mixtures of synthetic peptides, tryptic digests of mixtures of model proteins, and digested total lysates of isolated rat kidney mitochondria. The effect of elevated temperature on the ion suppression was also demonstrated. Graphical Abstract A fragment of overlaid LC retention time-m/z planar views demonstrates the improved separation performance in the analysis of a complex peptide mixture at elevated temperature. Retention time-m/z 2D peptide features detected at 60 °C (magenta) were matched and aligned with features detected at room temperature (green). PMID:26898204

  9. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  10. New reagents for enhanced liquid chromatographic separation and charging of intact protein ions for electrospray ionization mass spectrometry.

    PubMed

    Valeja, Santosh G; Tipton, Jeremiah D; Emmett, Mark R; Marshall, Alan G

    2010-09-01

    Electrospray ionization produces multiply charged ions, thereby lowering the mass-to-charge ratio for peptides and small proteins to a range readily accessed by quadrupole ion trap, orbitrap, and ion cyclotron resonance (ICR) mass analyzers (m/z = 400-2000). For Fourier transform mass analyzers (orbitrap and ICR), higher charge also improves signal-to-noise ratio, mass resolution, and mass accuracy. Addition of m-nitrobenzyl alcohol (m-NBA) or sulfolane has previously been shown to increase the charge states of proteins. Moreover, polar aprotic dimethylformamide (DMF) improves chromatographic separation of proteolytic peptides for mass analysis of solution-phase protein hydrogen/deuterium exchange for improved (78-96%) sequence coverage. Here, we show that addition of each of the various modifiers (DMF, thiodiglycol, dimethylacetamide, dimethylsulfoxide, and N-methylpyrrolidone) can significantly increase the charge states of proteins up to 78 kDa. Moreover, incorporation of the same modifiers into reversed-phase liquid chromatography solvents improves sensitivity, charging, and chromatographic resolution for intact proteins. PMID:20704305

  11. Reproductive hacking. A male seminal protein acts through intact reproductive pathways in female Drosophila.

    PubMed

    Rubinstein, C Dustin; Wolfner, Mariana F

    2014-01-01

    Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through "hacking" a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones. PMID:25483253

  12. The liquid protein phase in crystallization: a case study—intact immunoglobulins

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yurii G.; Malkin, Alexander J.; McPherson, Alexander

    2001-11-01

    A common observation by protein chemists has been the appearance, for many proteins in aqueous solutions, of oil like droplets, or in more extreme cases the formation of a second oil like phase. These may accompany the formation of precipitate in "salting out" or "salting in' procedures, but more commonly appear in place of any precipitate. Such phase separations also occur, with even greater frequency, in the presence of polymeric precipitants such as polyethyleneglycol (PEG). In general the appearance of a second liquid phase has been taken as indicative of protein aggregation, though an aggregate state distinctly different from that characteristic of amorphous precipitate. While the latter is thought to be composed of linear and branched assemblies, polymers of a sort, the oil phase suggests a more compact, three-dimensional, but fluid state. An important property of an alternate, fluid phase is that it can mediate transitions between other states, for example, between protein molecules free in solution and protein molecules immobilized in amorphous precipitate or crystals. The "liquid protein" phase can be readily observed in many crystallization experiments either prior to the appearance of visible crystals, or directly participating in the crystal growth process. In some cases the relationship between the liquid phase and developing crystals is intimate. Crystals grow directly from the liquid phase, or appear only after the visible formation of the liquid phase. We describe here our experience with a class of macromolecules, immunoglobulins, and particularly IDEC-151, an IgG specific for CD4 on human lymphocytes. This protein has been crystallized from a Jeffamine-LiSO 4 mother liquor and, its crystallization illustrates many of the features associated with the liquid protein, or protein rich phase.

  13. CCProf: exploring conformational change profile of proteins

    PubMed Central

    Chang, Che-Wei; Chou, Chai-Wei; Chang, Darby Tien-Hao

    2016-01-01

    In many biological processes, proteins have important interactions with various molecules such as proteins, ions or ligands. Many proteins undergo conformational changes upon these interactions, where regions with large conformational changes are critical to the interactions. This work presents the CCProf platform, which provides conformational changes of entire proteins, named conformational change profile (CCP) in the context. CCProf aims to be a platform where users can study potential causes of novel conformational changes. It provides 10 biological features, including conformational change, potential binding target site, secondary structure, conservation, disorder propensity, hydropathy propensity, sequence domain, structural domain, phosphorylation site and catalytic site. All these information are integrated into a well-aligned view, so that researchers can capture important relevance between different biological features visually. The CCProf contains 986 187 protein structure pairs for 3123 proteins. In addition, CCProf provides a 3D view in which users can see the protein structures before and after conformational changes as well as binding targets that induce conformational changes. All information (e.g. CCP, binding targets and protein structures) shown in CCProf, including intermediate data are available for download to expedite further analyses. Database URL: http://zoro.ee.ncku.edu.tw/ccprof/ PMID:27016699

  14. Effective protein inhibition in intact mouse oocytes through peptide nanoparticle-mediated antibody transfection

    PubMed Central

    Li, Ruichao; Jin, Zhen; Gao, Leilei; Liu, Peng

    2016-01-01

    Female meiosis is a fundamental area of study in reproductive medicine, and the mouse oocyte model of in vitro maturation (IVM) is most widely used to study female meiosis. To investigate the probable role(s) of an unknown protein in female meiosis, the method traditionally used involves microinjecting a specific antibody into mouse oocytes. Recently, in studies on somatic cells, peptide nanoparticle-mediated antibody transfection has become a popular tool because of its high efficiency, low toxicity, good stability, and strong serum compatibility. However, untill now no researchers have tried using this technique on mouse oocytes because the zona pellucida surrounding the oocyte membrane (vitelline membrane) is usually thought or proved to be a tough barrier to macromolecules such as antibodies and proteins. Therefore, we attempted to introduce an antibody into mouse oocytes using a peptide nanoparticle. Here we show for the first time that with our optimized method, an antibody can be effectively delivered into mouse oocytes and inhibit its target protein with high specificity. We obtained significant results using small GTPase Arl2 as a test subject protein. We propose peptide nanoparticle-mediated antibody transfection to be a superior alternative to antibody microinjection for preliminary functional studies of unknown proteins in mouse oocytes. PMID:27114861

  15. Coupling detergent lysis/clean-up methodology with intact protein fractionation for enhanced proteome characterization

    SciTech Connect

    Sharma, Ritin; Dill, Brian; Chourey, Karuna; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L

    2012-01-01

    The expanding use of surfactants for proteome sample preparations has prompted the need to systematically optimize the application and removal of these MS-deleterious agents prior to proteome measurements. Here we compare four different detergent clean-up methods (Trichloroacetic acid (TCA) precipitation, Chloroform/Methanol/Water (CMW) extraction, commercial detergent removal spin column method (DRS) and filter-aided sample preparation(FASP)) with respect to varying amounts of protein biomass in the samples, and provide efficiency benchmarks with respect to protein, peptide, and spectral identifications for each method. Our results show that for protein limited samples, FASP outperforms the other three clean-up methods, while at high protein amount all the methods are comparable. This information was used in a dual strategy of comparing molecular weight based fractionated and unfractionated lysates from three increasingly complex samples (Escherichia coli, a five microbial isolate mixture, and a natural microbial community groundwater sample), which were all lysed with SDS and cleaned up using FASP. The two approaches complemented each other by enhancing the number of protein identifications by 8%-25% across the three samples and provided broad pathway coverage.

  16. Characterisation of intact proteins in aquatic samples from the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Jones, V.; Ruddell, C. J.; Wainwright, G.; Rees, H. H.; Jaffe, R.; Penkman, K. E. H.; Collins, C. J.; Wolff, G. A.

    2003-04-01

    Dissolved organic nitrogen (DON) is the largest reservoir of reduced nitrogen in the oceans. Limited knowledge of the molecular composition of DON hinders our understanding of its cycling. The need to comprehend the DON cycle is nowadays more imperative than ever, as there is evidence that concentrations of nitrate are decreasing, while concentrations of DON are increasing in the surface ocean, as an indirect effect of global warming and hence stratification of the water column (Karl et al., 2001). Proteins typically account for 5-10% of DON. Recently, it has been suggested that certain, bacterially-derived, proteins found in the ocean are not as labile as was originally thought (e.g. Tanoue et al., 1995) and may therefore form a crucial part of the long term DON cycle. Here, we have applied gel electrophoresis in combination with mass spectrometry and amino acid enantiomer (D/L) analysis, to characterise proteins from aquatic samples and consider their origin. Samples were collected in the Florida Everglades at locations selected to represent an array of ecosystems, ranging from marsh water to marine coastal environments. Application of gel electrophoresis in combination with mass spectrometry revealed that each sample had a complex and characteristic protein distribution. Some proteins were common to more than one site. The bacterial protein of 48 kDa, previously reported as ubiquitous in the open ocean (e.g. Tanoue et al., 1995), was only present at one sampling location strongly affected by offshore currents. Amino acid enantiomer (D/L) analysis revealed that the bacterial input to amino acid nitrogen was an order of magnitude smaller than that reported for open ocean samples (McCarthy et al., 1998), although a trend towards higher bacterial input was observed from freshwater to marine sampling locations. We suggest that this is due to the presence of additional sources of protein to the DON pool, such as the higher plant vegetation, in freshwater and coastal

  17. Proteomic profile of edible bird's nest proteins.

    PubMed

    Liu, Xiaoqing; Lai, Xintian; Zhang, Shiwei; Huang, Xiuli; Lan, Quanxue; Li, Yun; Li, Bifang; Chen, Wei; Zhang, Qinlei; Hong, Dezhi; Yang, Guowu

    2012-12-26

    Edible bird's nest (EBN) is made of the swiftlets' saliva, which has attracted rather more attention owing to its nutritious and medical properties. Although protein constitutes the main composition and plays an important role in EBN, few studies have focused on the proteomic profile of EBN. The purpose of this study was to produce a proteomic map and clarify common EBN proteins. Liquid-phase isoelectric focusing (LIEF) was combined with two-dimensional electrophoresis (2-DE) for comprehensive analysis of EBN proteins. From 20 to 100 protein spots were detected on 2-DE maps of EBN samples from 15 different sources. The proteins were mainly distributed in four taxa (A, B, C, and D) according to their molecular mass. Taxa A and D both contained common proteins and proteins that may be considered another characteristic of EBN. Taxon A was identified using MALDI-TOF-TOF/MS and found to be homologous to acidic mammalian chitinase-like ( Meleagris gallopavo ), which is in glycosyl hydrolase family 18. PMID:23214475

  18. Quantification of allergenic bovine milk α(S1)-casein in baked goods using an intact ¹⁵N-labeled protein internal standard.

    PubMed

    Newsome, G Asher; Scholl, Peter F

    2013-06-19

    Intact bovine ¹⁵N-α(S1)-casein was used as an internal standard in a selected reaction monitoring (SRM) assay for milk protein in baked food samples containing fats, sugar, and gums. Effects on SRM results of sample matrix composition in two biscuit recipes containing nonfat dry milk (NFDM) were studied, including samples from a milk allergen ELISA proficiency trial. Following extraction of defatted samples with carbohydrate-degrading enzymes and acid precipitation of casein, the SRM assay exhibited an LOQ of <3 ppm NFDM with 60-80% recovery. NFDM levels measured by the SRM assay were 1.7-2.5 times greater than median levels determined by ELISA. Differences were observed in the α(S1)-casein interpeptide SRM ion abundance profile between recipes and after baking. ¹⁵N-α(S1)-Casein increases SRM analysis accuracy by correcting for extraction recovery but does not eliminate underestimation of allergen concentrations due to baking-related milk protein transformation (modifications). PMID:22670623

  19. In-depth qualitative and quantitative analysis of composite glycosylation profiles and other micro-heterogeneity on intact monoclonal antibodies by high-resolution native mass spectrometry using a modified Orbitrap

    PubMed Central

    Rosati, Sara; van den Bremer, Ewald TJ; Schuurman, Janine; Parren, Paul WHI; Kamerling, Johannis P; Heck, Albert JR

    2013-01-01

    Here, we describe a fast, easy-to-use, and sensitive method to profile in-depth structural micro-heterogeneity, including intricate N-glycosylation profiles, of monoclonal antibodies at the native intact protein level by means of mass spectrometry using a recently introduced modified Orbitrap Exactive Plus mass spectrometer. We demonstrate the versatility of our method to probe structural micro-heterogeneity by describing the analysis of three types of molecules: (1) a non-covalently bound IgG4 hinge deleted full-antibody in equilibrium with its half-antibody, (2) IgG4 mutants exhibiting highly complex glycosylation profiles, and (3) antibody-drug conjugates. Using the modified instrument, we obtain baseline separation and accurate mass determination of all different proteoforms that may be induced, for example, by glycosylation, drug loading and partial peptide backbone-truncation. We show that our method can handle highly complex glycosylation profiles, identifying more than 20 different glycoforms per monoclonal antibody preparation and more than 30 proteoforms on a single highly purified antibody. In analyzing antibody-drug conjugates, our method also easily identifies and quantifies more than 15 structurally different proteoforms that may result from the collective differences in drug loading and glycosylation. The method presented here will aid in the comprehensive analytical and functional characterization of protein micro-heterogeneity, which is crucial for successful development and manufacturing of therapeutic antibodies PMID:23995615

  20. Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer's disease pathology.

    PubMed

    Scheff, Stephen W; Ansari, Mubeen A; Mufson, Elliott J

    2016-06-01

    Neuritic amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD) and are major components used for the clinical diagnosis of this disorder. However, many individuals with no cognitive impairment (NCI) also present at autopsy with high levels of these AD pathologic hallmarks. In this study, we evaluated 15 autopsy cases from NCI individuals with high levels of AD-like pathology (high pathology no cognitive impairment) and compared them to age- and postmortem-matched cohorts of individuals with amnestic mild cognitive impairment and NCI cases with low AD-like pathology (low pathology no cognitive impairment [LPNCI]). Individuals classified as high pathology no cognitive impairment or amnestic mild cognitive impairment had a significant loss of both presynaptic and postsynaptic proteins in the hippocampus compared with those in the LPNCI cohort. In addition, these 2 groups had a significant increase in 3 different markers of oxidative stress compared with that in the LPNCI group. The changes in levels of synaptic proteins are strongly associated with levels of oxidative stress. These data suggest that cognitively older subjects without dementia but with increased levels of AD-like pathology may represent a very early preclinical stage of AD. PMID:27143416

  1. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes.

    PubMed

    Rommi, Katariina; Hakala, Terhi K; Holopainen, Ulla; Nordlund, Emilia; Poutanen, Kaisa; Lantto, Raija

    2014-08-13

    Cell-wall- and pectin-degrading enzyme preparations were used to enhance extractability of proteins from rapeseed press cake. Rapeseed press cakes from cold pressing of intact Brassica rapa and partially dehulled Brassica napus seeds, containing 36-40% protein and 35% carbohydrates, were treated with pectinolytic (Pectinex Ultra SP-L), xylanolytic (Depol 740L), and cellulolytic (Celluclast 1.5L) enzyme preparations. Pectinex caused effective disintegration of embryonic cell walls through hydrolysis of pectic polysaccharides and glucans and increased protein extraction by up to 1.7-fold in comparison to treatment without enzyme addition. Accordingly, 56% and 74% of the total protein in the intact and dehulled press cakes was extracted. Light microscopy of the press cakes suggested the presence of pectins colocalized with proteins inside the embryo cells. Hydrolysis of these intracellular pectins and deconstruction of embryonic cell walls during Pectinex treatment were concluded to relate with enhanced protein release. PMID:25039585

  2. Multiplexed protein profiling by sequential affinity capture.

    PubMed

    Ayoglu, Burcu; Birgersson, Elin; Mezger, Anja; Nilsson, Mats; Uhlén, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-04-01

    Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off-target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi-automated sequential capture assay. This novel bead-based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read-out by a secondary capture bead array. We demonstrate in a proof-of-concept setting that target detection via two sequential affinity interactions reduced off-target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA-based signal amplification, and demonstrate the applicability of the dual capture bead-based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond. PMID:26935855

  3. A setup for simultaneous measurement of infrared spectra and light scattering signals: Watching amyloid fibrils grow from intact proteins

    SciTech Connect

    Li, Yang; Maurer, Jürgen; Roth, Andreas; Vogel, Vitali; Winter, Ernst; Mäntele, Werner

    2014-08-15

    A setup for the simultaneous measurement of mid-infrared spectra and static light scattering is described that can be used for the analysis of the formation of nanoscale and microscopic aggregates from smaller molecules to biopolymers. It can be easily integrated into sample chambers of infrared spectrometers or combined with laser beams from tunable infrared lasers. Here, its use for the analysis of the formation of amyloid fibrils from intact proteins is demonstrated. The formation of amyloid fibrils or plaques from proteins is a widespread and pathogenetic relevant process, and a number of diseases are caused and correlated with the deposition of amyloid fibrils in cells and tissues. The molecular mechanisms of these transformations, however, are still unclear. We report here the simultaneous measurement of infrared spectra and static light scattering for the analysis of fibril formation from egg-white lysozyme. The transformation of the native form into non-native forms rich in β-sheet structure is measured by analysis of the amide I spectral region in the infrared spectra, which is sensitive for local structures. At the same time, light scattering signals at forward direction as well as the forward/backward ratio, which are sensitive for the number of scattering centers and their approximate sizes, respectively, are collected for the analysis of fibril growth. Thermodynamic and kinetic parameters as well as mechanistic information are deduced from the combination of the two complementary techniques.

  4. Characterization of Protein N-Glycosylation by Analysis of ZIC-HILIC-Enriched Intact Proteolytic Glycopeptides.

    PubMed

    Pohlentz, Gottfried; Marx, Kristina; Mormann, Michael

    2016-01-01

    Zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) solid-phase extraction (SPE) combined with direct-infusion nanoESI mass spectrometry (MS) and tandem MS/MS is a well-suited method for the analysis of protein N-glycosylation. A site-specific characterization of N-glycopeptides is achieved by the combination of proteolytic digestions employing unspecific proteases, glycopeptide enrichment by use of ZIC-HILIC SPE, and subsequent mass spectrometric analysis. The use of thermolysin or a mixture of trypsin and chymotrypsin leads per se to a mass-based separation, that is, small nonglycosylated peptides and almost exclusively glycopeptides at higher m/z values. As a result of their higher hydrophilicity N-glycopeptides comprising short peptide backbones are preferably accumulated by the ZIC-HILIC-based separation procedure. By employing this approach complications associated with low ionization efficiencies of N-glycopeptides resulting from signal suppression in the presence of highly abundant nonglycosylated peptides can be largely reduced. Here, we describe a simple protocol aimed at the enrichment of N-glycopeptides derived from in-solution and in-gel digestions of SDS-PAGE-separated glycoproteins preceding mass spectrometric analysis. PMID:26700048

  5. RPLC of intact proteins using sub-0.5 μm particles and commercial instrumentation

    PubMed Central

    Rogers, Benjamin J.; Birdsall, Robert E.; Wu, Zhen; Wirth, Mary J.

    2013-01-01

    This paper addresses whether one can gain an improvement in speed or resolution with a silica colloidal crystal (SCC) of nonporous 470 nm particles when using a commercial nano-UHPLC. Compared to a capillary packed with nonporous 1.3 μm particles and the same C4 bonded phase, the peak width for BSA is decreased by a factor of 6.8 for the SCC. Some of this improvement is attributable to slip flow since the ratio of particle diameters is only 2.8. Resolution in protein separations was compared for a 2-cm capillary of SCC vs. a 5-cm column of porous 1.7 μm particles. Both used a C4 bonded phase, and on-column fluorescence detection was used for the SCC. Split flow (5:1) before the SCC decreased the gradient delay time to 0.4 min and the injected volume to 0.4 nL. For variants from the labeling of BSA, the SCC had a five-fold higher speed and two-fold higher resolution than did the commercial column. For a monoclonal antibody and its aggregates, the SCC had a three-fold higher speed and a three-fold higher resolution compared to the commercial column. The SCC gave baseline resolution of the monomer, dimer and trimer in 5 min. The results show that a significant advantage can be gained using a commercial instrument with the SCC, despite the instrument not being designed for use with such small particles. PMID:23819838

  6. RPLC of intact proteins using sub-0.5 μm particles and commercial instrumentation.

    PubMed

    Rogers, Benjamin J; Birdsall, Robert E; Wu, Zhen; Wirth, Mary J

    2013-07-16

    This paper addresses whether one can gain an improvement in speed or resolution with a silica colloidal crystal (SCC) of nonporous 470 nm particles when using a commercial nano-UHPLC. Compared to a capillary packed with nonporous 1.3 μm particles and the same C4 bonded phase, the peak width for BSA is decreased by a factor of 6.8 for the SCC. Some of this improvement is attributable to slip flow since the ratio of particle diameters is only 2.8. Resolution in protein separations was compared for a 2-cm capillary of SCC vs a 5-cm column of porous 1.7 μm particles. Both used a C4 bonded phase, and on-column fluorescence detection was used for the SCC. Split flow (5:1) before the SCC decreased the gradient delay time to 0.4 min and the injected volume to 0.4 nL. For variants from the labeling of BSA, the SCC had a 5-fold higher speed and 2-fold higher resolution than did the commercial column. For a monoclonal antibody and its aggregates, the SCC had a 3-fold higher speed and a 3-fold higher resolution compared to the commercial column. The SCC gave baseline resolution of the monomer, dimer and trimer in 5 min. The results show that a significant advantage can be gained using a commercial instrument with the SCC, despite the instrument not being designed for use with such small particles. PMID:23819838

  7. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    SciTech Connect

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with (/sup 32/P)orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa ..beta..-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor ..beta..-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the /sup 32/P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission.

  8. pTop 1.0: A High-Accuracy and High-Efficiency Search Engine for Intact Protein Identification.

    PubMed

    Sun, Rui-Xiang; Luo, Lan; Wu, Long; Wang, Rui-Min; Zeng, Wen-Feng; Chi, Hao; Liu, Chao; He, Si-Min

    2016-03-15

    There has been tremendous progress in top-down proteomics (TDP) in the past 5 years, particularly in intact protein separation and high-resolution mass spectrometry. However, bioinformatics to deal with large-scale mass spectra has lagged behind, in both algorithmic research and software development. In this study, we developed pTop 1.0, a novel software tool to significantly improve the accuracy and efficiency of mass spectral data analysis in TDP. The precursor mass offers crucial clues to infer the potential post-translational modifications co-occurring on the protein, the reliability of which relies heavily on its mass accuracy. Concentrating on detecting the precursors more accurately, a machine-learning model incorporating a variety of spectral features was trained online in pTop via a support vector machine (SVM). pTop employs the sequence tags extracted from the MS/MS spectra and a dynamic programming algorithm to accelerate the search speed, especially for those spectra with multiple post-translational modifications. We tested pTop on three publicly available data sets and compared it with ProSight and MS-Align+ in terms of its recall, precision, running time, and so on. The results showed that pTop can, in general, outperform ProSight and MS-Align+. pTop recalled 22% more correct precursors, although it exported 30% fewer precursors than Xtract (in ProSight) from a human histone data set. The running speed of pTop was about 1 to 2 orders of magnitude faster than that of MS-Align+. This algorithmic advancement in pTop, including both accuracy and speed, will inspire the development of other similar software to analyze the mass spectra from the entire proteins. PMID:26844380

  9. Characterization and quantification of intact 26S proteasome proteins by real-time measurement of intrinsic fluorescence prior to top-down mass spectrometry.

    PubMed

    Russell, Jason D; Scalf, Mark; Book, Adam J; Ladror, Daniel T; Vierstra, Richard D; Smith, Lloyd M; Coon, Joshua J

    2013-01-01

    Quantification of gas-phase intact protein ions by mass spectrometry (MS) is impeded by highly-variable ionization, ion transmission, and ion detection efficiencies. Therefore, quantification of proteins using MS-associated techniques is almost exclusively done after proteolysis where peptides serve as proxies for estimating protein abundance. Advances in instrumentation, protein separations, and informatics have made large-scale sequencing of intact proteins using top-down proteomics accessible to the proteomics community; yet quantification of proteins using a top-down workflow has largely been unaddressed. Here we describe a label-free approach to determine the abundance of intact proteins separated by nanoflow liquid chromatography prior to MS analysis by using solution-phase measurements of ultraviolet light-induced intrinsic fluorescence (UV-IF). UV-IF is measured directly at the electrospray interface just prior to the capillary exit where proteins containing at least one tryptophan residue are readily detected. UV-IF quantification was demonstrated using commercially available protein standards and provided more accurate and precise protein quantification than MS ion current. We evaluated the parallel use of UV-IF and top-down tandem MS for quantification and identification of protein subunits and associated proteins from an affinity-purified 26S proteasome sample from Arabidopsis thaliana. We identified 26 unique proteins and quantified 13 tryptophan-containing species. Our analyses discovered previously unidentified N-terminal processing of the β6 (PBF1) and β7 (PBG1) subunit - such processing of PBG1 may generate a heretofore unknown additional protease active site upon cleavage. In addition, our approach permitted the unambiguous identification and quantification both isoforms of the proteasome-associated protein DSS1. PMID:23536786

  10. PROCAIN: protein profile comparison with assisting information

    PubMed Central

    Wang, Yong; Sadreyev, Ruslan I.; Grishin, Nick V.

    2009-01-01

    Detection of remote sequence homology is essential for the accurate inference of protein structure, function and evolution. The most sensitive detection methods involve the comparison of evolutionary patterns reflected in multiple sequence alignments (MSAs) of protein families. We present PROCAIN, a new method for MSA comparison based on the combination of ‘vertical’ MSA context (substitution constraints at individual sequence positions) and ‘horizontal’ context (patterns of residue content at multiple positions). Based on a simple and tractable profile methodology and primitive measures for the similarity of horizontal MSA patterns, the method achieves the quality of homology detection comparable to a more complex advanced method employing hidden Markov models (HMMs) and secondary structure (SS) prediction. Adding SS information further improves PROCAIN performance beyond the capabilities of current state-of-the-art tools. The potential value of the method for structure/function predictions is illustrated by the detection of subtle homology between evolutionary distant yet structurally similar protein domains. ProCAIn, relevant databases and tools can be downloaded from: http://prodata.swmed.edu/procain/download. The web server can be accessed at http://prodata.swmed.edu/procain/procain.php. PMID:19357092

  11. PROCAIN: protein profile comparison with assisting information.

    PubMed

    Wang, Yong; Sadreyev, Ruslan I; Grishin, Nick V

    2009-06-01

    Detection of remote sequence homology is essential for the accurate inference of protein structure, function and evolution. The most sensitive detection methods involve the comparison of evolutionary patterns reflected in multiple sequence alignments (MSAs) of protein families. We present PROCAIN, a new method for MSA comparison based on the combination of 'vertical' MSA context (substitution constraints at individual sequence positions) and 'horizontal' context (patterns of residue content at multiple positions). Based on a simple and tractable profile methodology and primitive measures for the similarity of horizontal MSA patterns, the method achieves the quality of homology detection comparable to a more complex advanced method employing hidden Markov models (HMMs) and secondary structure (SS) prediction. Adding SS information further improves PROCAIN performance beyond the capabilities of current state-of-the-art tools. The potential value of the method for structure/function predictions is illustrated by the detection of subtle homology between evolutionary distant yet structurally similar protein domains. ProCAIn, relevant databases and tools can be downloaded from: http://prodata.swmed.edu/procain/download. The web server can be accessed at http://prodata.swmed.edu/procain/procain.php. PMID:19357092

  12. Gel-aided sample preparation (GASP)--a simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells.

    PubMed

    Fischer, Roman; Kessler, Benedikt M

    2015-04-01

    We describe a "gel-assisted" proteomic sample preparation method for MS analysis. Solubilized protein extracts or intact cells are copolymerized with acrylamide, facilitating denaturation, reduction, quantitative cysteine alkylation, and matrix formation. Gel-aided sample preparation has been optimized to be highly flexible, scalable, and to allow reproducible sample generation from 50 cells to milligrams of protein extracts. This methodology is fast, sensitive, easy-to-use on a wide range of sample types, and accessible to nonspecialists. PMID:25515006

  13. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance

    PubMed Central

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar ‘CDC Golden’ compared to ‘CDC Sage.’ Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6–43.6%; band at 1654 cm-1) and smaller amounts of β-sheets (41.3–46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3–51.7%) compared to α-helical structures (35.3–36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm-1. These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress. PMID:25566312

  14. Electrically-assisted delivery of an anionic protein across intact skin: cathodal iontophoresis of biologically active ribonuclease T1.

    PubMed

    Dubey, S; Kalia, Y N

    2011-06-30

    Cathodal iontophoresis of anionic macromolecules has been considered a major challenge owing to (i) the presence of a negative charge on the skin under physiological conditions and (ii) the electroosmotic solvent flow in the (opposite) anode-to-cathode direction. Moreover, electroosmosis, and not electromigration, was considered as the likely electrotransport mechanism for high molecular weight cations. However, it was recently shown that electromigration governed anodal iontophoretic transport of Cytochrome c (12.4 kDa) and Ribonuclease A (RNAse A; 13.6 kDa). Thus, the objective of this study was to investigate the feasibility of iontophoresing a negatively charged protein, the enzyme Ribonuclease T1 (RNAse T1, 11.1 kDa), from the cathode across intact skin. Cumulative permeation and skin deposition of RNAse T1 were investigated as a function of current density (0.15, 0.3 and 0.5 mA/cm(2) applied for 8h) using porcine ear skin and quantified by an enzymatic activity assay. Although RNAse T1 permeation was dependent upon current density (22.41 ± 8.10, 76.41 ± 56.98 and 142.19 ± 62.23μg/cm(2), respectively), no such relationship was observed with respect to skin deposition (9.78 ± 2.39, 7.76 ± 4.34 and 8.70 ± 2.94 μg/cm(2), respectively). MALDI-TOF spectra and the activity assay confirmed that RNAse T1 retained structural integrity and enzymatic function post-iontophoresis. Acetaminophen iontophoresis demonstrated the anode-to-cathode directionality of electroosmotic solvent flow confirming that RNAse T1 electrotransport was due entirely to electromigration. Interestingly, despite its lower net charge and higher molecular weight, electromigration of cationic Ribonuclease A was superior to that of RNAse T1 after iontophoresis at 0.5 mA/cm(2) for 8h. These results provide further evidence that charge to mass ratio and hence electric mobility might not alone be sufficient to predict protein electrotransport across the skin; three dimensional structures and the

  15. RELATIONSHIP BETWEEN INSULIN-RESISTANCE PROCESSING SPEED AND SPECIFIC EXECUTIVE FUNCTION PROFILES IN NEUROLOGICALLY-INTACT OLDER ADULTS

    PubMed Central

    Frazier, Darvis T.; Bettcher, Brianne M.; Dutt, Shubir; Patel, Nihar; Mungas, Dan; Miller, Joshua; Green, Ralph; Kramer, Joel H.

    2016-01-01

    Objective This study investigated the relationship between insulin-resistance and constituent components of executive function in a sample of neurologically-intact older adult subjects using the homeostasis model assessment (HOMA-IR) and latent factors of working memory, cognitive control and processing speed derived from confirmatory factor analysis. Low-density lipoprotein (LDL), mean arterial pressure (MAP), along with body mass index (BMI) and white matter hypointensity (WMH) were used to control for vascular risk factors, adiposity and cerebrovascular injury. Methods The study included 119 elderly subjects recruited from the University of California, San Francisco Memory and Aging Center. Subjects underwent neuropsychological assessment, fasting blood draw and brain magnetic resonance imaging (MRI). Partial correlations and linear regression models were used to examine the HOMA-IR-executive function relationship. Results Pearson correlation adjusting for age showed a significant relationship between HOMA-IR and working memory (rp=−.18, p=.047), a trend with cognitive control (rp=−.17, p=.068), and no relationship with processing speed (rp=.013, p=.892). Linear regression models adjusting for demographic factors (age, education and gender), LDL, MAP, BMI and WMH indicated that HOMA-IR was negatively associated with cognitive control (r=−.256; p=.026) and working memory (r=−.234; p=.054). Conclusions These results suggest a greater level of peripheral insulin-resistance is associated with decreased cognitive control and working memory. After controlling for demographic factors, vascular risk, adiposity and cerebrovascular injury, HOMA-IR remained significantly associated with cognitive control, with working memory showing a trend. These findings substantiate the insulin-resistance-executive function hypothesis and suggest a complex interaction, demonstrated by the differential impact of insulin-resistance on processing speed and specific aspects of

  16. Relationship between Insulin-Resistance Processing Speed and Specific Executive Function Profiles in Neurologically Intact Older Adults.

    PubMed

    Frazier, Darvis T; Bettcher, Brianne M; Dutt, Shubir; Patel, Nihar; Mungas, Dan; Miller, Joshua; Green, Ralph; Kramer, Joel H

    2015-09-01

    This study investigated the relationship between insulin-resistance and constituent components of executive function in a sample of neurologically intact older adult subjects using the homeostasis model assessment (HOMA-IR) and latent factors of working memory, cognitive control and processing speed derived from confirmatory factor analysis. Low-density lipoprotein (LDL), mean arterial pressure (MAP), along with body mass index (BMI) and white matter hypointensity (WMH) were used to control for vascular risk factors, adiposity and cerebrovascular injury. The study included 119 elderly subjects recruited from the University of California, San Francisco Memory and Aging Center. Subjects underwent neuropsychological assessment, fasting blood draw and brain magnetic resonance imaging (MRI). Partial correlations and linear regression models were used to examine the HOMA-IR-executive function relationship. Pearson correlation adjusting for age showed a significant relationship between HOMA-IR and working memory (rp = -.18; p = .047), a trend with cognitive control (rp = -.17; p = .068), and no relationship with processing speed (rp = .013; p = .892). Linear regression models adjusting for demographic factors (age, education, and gender), LDL, MAP, BMI, and WMH indicated that HOMA-IR was negatively associated with cognitive control (r = -.256; p = .026) and working memory (r = -.234; p = .054). These results suggest a greater level of peripheral insulin-resistance is associated with decreased cognitive control and working memory. After controlling for demographic factors, vascular risk, adiposity and cerebrovascular injury, HOMA-IR remained significantly associated with cognitive control, with working memory showing a trend. These findings substantiate the insulin-resistance-executive function hypothesis and suggest a complex interaction, demonstrated by the differential impact of insulin-resistance on processing speed and specific aspects of executive function. PMID

  17. Intact and total insulin-like growth factor-binding protein-3 (IGFBP-3) levels in relation to breast cancer risk factors: a cross-sectional study

    PubMed Central

    Diorio, Caroline; Brisson, Jacques; Bérubé, Sylvie; Pollak, Michael

    2008-01-01

    Introduction Levels of insulin-like growth factor (IGF)-I and its main binding protein (IGFBP-3) have been associated with breast cancer risk among premenopausal women. However, associations of IGFBP-3 levels with breast cancer risk have been inconsistent, possibly due to the different predominant forms of circulating IGFBP-3 (intact versus fragmented) that were measured in these studies. Here, we examine the association of breast cancer risk factors with intact and total IGFBP-3 levels. Methods This cross-sectional study includes 737 premenopausal women recruited at screening mammography. Plasma intact and total IGFBP-3 and IGF-I levels were measured by enzyme-linked immunosorbent assay methods. Percent and absolute breast density were estimated using a computer-assisted method. The associations were evaluated using generalized linear models and Pearson (r) or Spearman (rs) partial correlation coefficients. Results Means ± standard deviations of intact and total IGFBP-3 levels (ng/mL) were 1,044 ± 234 and 4,806 ± 910, respectively. Intact and total IGFBP-3 levels were correlated with age and smoking. Levels of intact IGFBP-3 were negatively correlated with waist-to-hip ratio (WHR) (r = -0.128; P = 0.0005), parity (rs = -0.078; P = 0.04), and alcohol intake (r = -0.137; P = 0.0002) and positively correlated with energy intake (r = 0.075; P = 0.04). In contrast, total IGFBP-3 levels were positively correlated with WHR (r = 0.115; P = 0.002), parity (rs = 0.089; P = 0.02), body mass index (BMI) (r = 0.115; P = 0.002), physical activity (r = 0.118; P = 0.002), and IGF-I levels (r = 0.588; P < 0.0001) and negatively correlated with percent or absolute breast density (r = -0.095; P = 0.01 and r = -0.075; P = 0.04, respectively). Conclusion Our data show that associations of some breast cancer risk factors with intact levels of IGFBP-3 are different from those with total (intact and fragmented) IGFBP-3 levels. These findings suggest that different molecular forms of

  18. MALDI Tissue Profiling of Integral Membrane Proteins from Ocular Tissues

    PubMed Central

    Thibault, Danielle B.; Gillam, Christopher J.; Grey, Angus C.; Han, Jun; Schey, Kevin L.

    2008-01-01

    MALDI tissue profiling and imaging have become valuable tools for rapid, direct analysis of tissues to investigate spatial distributions of proteins, potentially leading to an enhanced understanding of the molecular basis of disease. Sample preparation methods developed to date for these techniques produce protein expression profiles from predominantly hydrophilic, soluble proteins. The ability to obtain information about the spatial distribution of integral membrane proteins is critical to more fully understand their role in physiological processes, including transport, adhesion, and signaling. In this communication, a sample preparation method for direct tissue profiling of integral membrane proteins is presented. Spatially resolved profiles for the abundant lens membrane proteins aquaporin 0 (AQP0) and MP20, and the retinal membrane protein opsin, were obtained using this method. MALDI tissue profiling results were validated by analysis of dissected tissue prepared by traditional membrane protein processing methods. Furthermore, direct tissue profiling of lens membrane proteins revealed aged related post-translational modifications, as well as a novel modification that had not been detected using conventional tissue homogenization methods. PMID:18396059

  19. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis.

    PubMed

    Tang, Xiaohu; Keenan, Melissa M; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J Will; Freedland, Stephen J; Murphy, Susan K; Chi, Jen-Tsan

    2015-04-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  20. Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis

    PubMed Central

    Tang, Xiaohu; Keenan, Melissa M.; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J. Will; Freedland, Stephen J.; Murphy, Susan K.; Chi, Jen-Tsan

    2015-01-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  1. Comparison of protein structures using 3D profile alignment.

    PubMed

    Suyama, M; Matsuo, Y; Nishikawa, K

    1997-01-01

    A novel method for protein structure comparison using 3D profile alignment is presented. The 3D profile is a position-dependent scoring matrix derived from three-dimensional structures and is basically used to estimate sequence-structure compatibility for prediction of protein structure. Our idea is to compare two 3D profiles using a dynamic programming algorithm to obtain optimal alignment and a similarity score between them. When the 3D profile of hemoglobin was compared with each of the profiles in the library, which contained 325 profiles of representative structures, all the profiles of other globins were detected with relatively high scores, and proteins in the same structural class followed the globins. Exhaustive comparison of 3D profiles in the library was also performed to depict protein relatedness in the structure space. Using multidimensional scaling, a planar projection of points in the protein structure space revealed an overall grouping in terms of structural classes, i.e., all-alpha, all-beta, alpha/beta, and alpha+beta. These results differ in implication from those obtained by the conventional structure-structure comparison method. Differences are discussed with respect to the structural divergence of proteins in the course of molecular evolution. PMID:9071025

  2. Multiplexed In-cell Immunoassay for Same-sample Protein Expression Profiling

    PubMed Central

    Shang, Jing; Zrazhevskiy, Pavel; Postupna, Nadia; Keene, C. Dirk; Montine, Thomas J.; Gao, Xiaohu

    2015-01-01

    In-cell immunoassays have become a valuable tool for protein expression analysis complementary to established assay formats. However, comprehensive molecular characterization of individual specimens has proven challenging and impractical due to, in part, a singleplex nature of reporter enzymes and technical complexity of alternative assay formats. Herein, we describe a simple and robust methodology for multiplexed protein expression profiling on the same intact specimen, employing a well-characterized enzyme alkaline phosphatase for accurate quantification of all targets of interest, while overcoming fundamental limitations of enzyme-based techniques by implementing the DNA-programmed release mechanism for segregation of sub-sets of target-bound reporters. In essence, this methodology converts same-sample multi-target labeling into a set of isolated singleplex measurements performed in a parallel self-consistent fashion. For a proof-of-principle, multiplexed detection of three model proteins was demonstrated on cultured HeLa cells, and two clinically-relevant markers of dementia, β-amyloid and PHF-tau, were profiled in formalin-fixed paraffin embedded brain tissue sections, uncovering correlated increase in abundance of both markers in the “Alzheimer’s disease” cohort. Featuring an analytically powerful yet technically simple and robust methodology, multiplexed in-cell immunoassay is expected to enable insightful same-sample protein profiling studies and become broadly adopted in biomedical research and clinical diagnostics. PMID:26328896

  3. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients

    PubMed Central

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B.; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E.; Conover, Cheryl A.; De Bruyne, Elke; Vanderkerken, Karin

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5–3.8 fold) and decrease in intact IGFBP-3 (0.6–0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  4. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients.

    PubMed

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E; Conover, Cheryl A; De Bruyne, Elke; Vanderkerken, Karin; Overgaard, Michael T; Nyegaard, Mette

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold) and decrease in intact IGFBP-3 (0.6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  5. Proteomics for Protein Expression Profiling in Neuroscience*

    PubMed Central

    Freeman, Willard M.; Hemby, Scott E.

    2013-01-01

    As the technology of proteomics moves from a theoretical approach to a practical reality, neuroscientists will have to determine the most appropriate applications for this technology. Neuroscientists will have to surmount difficulties particular to their research, such as limited sample amounts, heterogeneous cellular compositions in samples, and the fact that many proteins of interest are rare, hydrophobic proteins. This review examines protein isolation and protein fractionation and separation using two-dimensional electrophoresis (2-DE) and mass spectrometry proteomic methods. Methods for quantifying relative protein expression between samples (e.g., 2-DIGE, and ICAT) are also described. The coverage of the proteome, ability to detect membrane proteins, resource requirements, and quantitative reliability of different approaches is also discussed. Although there are many challenges in proteomic neuroscience, this field promises many rewards in the future. PMID:15176464

  6. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-01

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  7. Phosphorylation by protein kinase C of the 20,000-dalton light chain of myosin in intact and chemically skinned vascular smooth muscle.

    PubMed

    Sutton, T A; Haeberle, J R

    1990-02-15

    In the present study we tested the hypothesis that phosphorylation of the 20,000-dalton light chain subunit of smooth muscle myosin (LC20) by the calcium-activated and phospholipid-dependent protein kinase C regulates contraction of chemically-permeabilized (glycerinated) porcine carotid artery smooth muscle. Purified protein kinase C and oleic acid were used to phosphorylate LC20 in glycerinated muscles in the presence of a CaEGTA/EGTA buffer system (pCa 8) to prevent activation of myosin light chain kinase. Phosphorylation of the light chain to 1.3 mol of PO4/mol of LC20 did not stimulate contraction. Tryptic digests of glycerinated carotid artery LC20 contained two major phosphopeptides which contained phosphoserine but not phosphothreonine. Incubation of glycerinated muscles with calcium (20 microM) and calmodulin (10 microM) resulted in contraction and LC20 phosphorylation to 1.1 mol of PO4/mol of LC20; tryptic digests of LC20 from these muscles contained a single phosphopeptide which could be distinguished by phosphopeptide mapping from the two phosphopeptides derived from muscles phosphorylated with protein kinase C. Further phosphorylation of Ca2+/calmodulin-activated muscles to 2.0 mol of PO4/mol of LC20, by incubation with protein kinase C, had no effect on either the level of isometric force or the lightly-loaded shortening velocity (after-load = 0.1 peak active force); removal of Ca2+ and calmodulin, but not protein kinase C and oleic acid, resulted in normal relaxation in spite of maintained phosphorylation to 1.2 mol of PO4/mol of LC20. Comparison of LC20 phosphopeptide maps from glycerinated muscles incubated with protein kinase C plus Ca2+/calmodulin (2.0 mol of PO4/mol of LC20) to maps from intact muscles stimulated with 10(-6) M phorbol 12,13-dibutyrate (0.05 mol of PO4/mol of LC20) showed that the same three phosphopeptides were present in both the intact and glycerinated muscles. These findings show that phosphorylation of LC20 by protein kinase

  8. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques.

    PubMed

    Ayoub, Daniel; Jabs, Wolfgang; Resemann, Anja; Evers, Waltraud; Evans, Catherine; Main, Laura; Baessmann, Carsten; Wagner-Rousset, Elsa; Suckau, Detlev; Beck, Alain

    2013-01-01

    The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab's glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products. PMID:23924801

  9. Correct primary structure assessment and extensive glyco-profiling of cetuximab by a combination of intact, middle-up, middle-down and bottom-up ESI and MALDI mass spectrometry techniques

    PubMed Central

    Ayoub, Daniel; Jabs, Wolfgang; Resemann, Anja; Evers, Waltraud; Evans, Catherine; Main, Laura; Baessmann, Carsten; Wagner-Rousset, Elsa; Suckau, Detlev; Beck, Alain

    2013-01-01

    The European Medicines Agency received recently the first marketing authorization application for a biosimilar monoclonal antibody (mAb) and adopted the final guidelines on biosimilar mAbs and Fc-fusion proteins. The agency requires high similarity between biosimilar and reference products for approval. Specifically, the amino acid sequences must be identical. The glycosylation pattern of the antibody is also often considered to be a very important quality attribute due to its strong effect on quality, safety, immunogenicity, pharmacokinetics and potency. Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab’s glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that could be further applied to routine structural assessments of these and other antibody-based products. PMID:23924801

  10. Differential protein occupancy profiling of the mRNA transcriptome

    PubMed Central

    2014-01-01

    Background RNA-binding proteins (RBPs) mediate mRNA biogenesis, translation and decay. We recently developed an approach to profile transcriptome-wide RBP contacts on polyadenylated transcripts by next-generation sequencing. A comparison of such profiles from different biological conditions has the power to unravel dynamic changes in protein-contacted cis-regulatory mRNA regions without a priori knowledge of the regulatory protein component. Results We compared protein occupancy profiles of polyadenylated transcripts in MCF7 and HEK293 cells. Briefly, we developed a bioinformatics workflow to identify differential crosslinking sites in cDNA reads of 4-thiouridine crosslinked polyadenylated RNA samples. We identified 30,000 differential crosslinking sites between MCF7 and HEK293 cells at an estimated false discovery rate of 10%. 73% of all reported differential protein-RNA contact sites cannot be explained by local changes in exon usage as indicated by complementary RNA-seq data. The majority of differentially crosslinked positions are located in 3′ UTRs, show distinct secondary-structure characteristics and overlap with binding sites of known RBPs, such as ELAVL1. Importantly, mRNA transcripts with the most significant occupancy changes show elongated mRNA half-lives in MCF7 cells. Conclusions We present a global comparison of protein occupancy profiles from different cell types, and provide evidence for altered mRNA metabolism as a result of differential protein-RNA contacts. Additionally, we introduce POPPI, a bioinformatics workflow for the analysis of protein occupancy profiling experiments. Our work demonstrates the value of protein occupancy profiling for assessing cis-regulatory RNA sequence space and its dynamics in growth, development and disease. PMID:24417896

  11. General method to identify and enrich vicinal thiol proteins present in intact cells in the oxidized, disulfide state.

    PubMed

    Gitler, C; Zarmi, B; Kalef, E

    1997-10-01

    Some 5% of the soluble proteins of L1210 murine leukemia lymphoblasts contain surface vicinal thiols (Kalef, E., Walfish, P. G., and Gitler, C. (1993) Anal. Biochem. 212, 325-334). Redox dithiol to intraprotein disulfide conversion could regulate the cellular function of these proteins. A general method is presented to identify and enrich vicinal thiol proteins existing in cells in their oxidized, disulfide state. The method is based on the in situ blockage by cell permeable N-ethylmaleimide (NEM) of readily accessible cellular protein sulfhydryls. Following removal of the excess NEM, disulfide-containing proteins were identified by reduction with DTT and specific labeling with N-iodoacetyl-[125I]-3-iodotyrosine. The vicinal thiol proteins formed could also be enriched, prior to labeling with [125I]IAIT, by their selective binding to Sepha-rose-aminohexanoyl-4-aminophenylarsine oxide. Exponentially growing L1210 lymphoblasts contain more than 20 proteins with thiols in the oxidized, disulfide state. The majority derive from vicinal thiol proteins. The fraction oxidized, in some proteins, represents almost the totality of the protein present in the cell. Exposure of lymphoblasts to diamide increases the number and concentration of proteins with intraprotein disulfides. This method allows sensitive direct identification of vicinal thiol proteins that participate in redox regulation and those that are targets to oxidative stress conditions. PMID:9324940

  12. Protein profile of Bacillus subtilis spore.

    PubMed

    Mao, Langyong; Jiang, Shantong; Wang, Bin; Chen, Liang; Yao, Qin; Chen, Keping

    2011-08-01

    Natural wild-type strains of Bacillus subtilis spore is regarded as a non-pathogenic for both human and animal, and has been classified as a novel food which is currently being used as probiotics added in the consumption. To identify B. subtilis spore proteins, we have accomplished a preliminary proteomic analysis of B. subtilis spore, with a combination of two-dimensional electrophoretic separations and matrix-assisted laser desorption ionization tandem time of flight mass spectrometry (MALDI-TOF-MS). In this article, we presented a reference map of 158 B. subtilis spore proteins with an isoelectric point (pI) between 4 and 7. Followed by mass spectrometry (MS) analysis, we identified 71 B. subtilis spore proteins with high level of confidence. Database searches, combined with hydropathy analysis and GO analysis revealed that most of the B. subtilis spore proteins were hydrophilic proteins related to catalytic function. These results should accelerate efforts to understand the resistance of spore to harsh conditions. PMID:21667307

  13. Reverse Phase Protein Arrays for Compound Profiling.

    PubMed

    Moerke, Nathan; Fallahi-Sichani, Mohammad

    2016-01-01

    Reverse phase protein arrays (RPPAs), also called reverse phase lysate arrays (RPLAs), involve immobilizing cell or tissue lysates, in small spots, onto solid supports which are then probed with primary antibodies specific for proteins or post-translational modifications of interest. RPPA assays are well suited for large-scale, high-throughput measurement of protein and PTM levels in cells and tissues. RPPAs are affordable and highly multiplexable, as a large number of arrays can readily be produced in parallel and then probed separately with distinct primary antibodies. This article describes a procedure for treating cells and preparing cell lysates, as well as a procedure for generating RPPAs using these lysates. A method for probing, imaging, and analyzing RPPAs is also described. These procedures are readily adaptable to a wide range of studies of cell signaling in response to drugs and other perturbations. © 2016 by John Wiley & Sons, Inc. PMID:27622568

  14. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles.

    PubMed

    Zhong, Cuncong; Edlund, Anna; Yang, Youngik; McLean, Jeffrey S; Yooseph, Shibu

    2016-07-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  15. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles

    PubMed Central

    Zhong, Cuncong; Yooseph, Shibu

    2016-01-01

    Analyses of metagenome data (MG) and metatranscriptome data (MT) are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM) framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR) gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE) genes. Finally, HMM-GRASPx was used to

  16. Identification of diagnostic serum protein profiles of glioblastoma patients.

    PubMed

    Elstner, Anja; Stockhammer, Florian; Nguyen-Dobinsky, Trong-Nghia; Nguyen, Quang Long; Pilgermann, Ingo; Gill, Amanjit; Guhr, Anke; Zhang, Tingguo; von Eckardstein, Kajetan; Picht, Thomas; Veelken, Julian; Martuza, Robert L; von Deimling, Andreas; Kurtz, Andreas

    2011-03-01

    Diagnosis of a glioblastoma (GBM) is triggered by the onset of symptoms and is based on cerebral imaging and histological examination. Serum-based biomarkers may support detection of GBM. Here, we explored serum protein concentrations of GBM patients and used data mining to explore profiles of biomarkers and determine whether these are associated with the clinical status of the patients. Gene and protein expression data for astrocytoma and GBM were used to identify secreted proteins differently expressed in tumors and in normal brain tissues. Tumor expression and serum concentrations of 14 candidate proteins were analyzed for 23 GBM patients and nine healthy subjects. Data-mining methods involving all 14 proteins were used as an initial evaluation step to find clinically informative profiles. Data mining identified a serum protein profile formed by BMP2, HSP70, and CXCL10 that enabled correct assignment to the GBM group with specificity and sensitivity of 89 and 96%, respectively (p < 0.0001, Fischer's exact test). Survival for more than 15 months after tumor resection was associated with a profile formed by TSP1, HSP70, and IGFBP3, enabling correct assignment in all cases (p < 0.0001, Fischer's exact test). No correlation was found with tumor size or age of the patient. This study shows that robust serum profiles for GBM may be identified by data mining on the basis of a relatively small study cohort. Profiles of more than one biomarker enable more specific assignment to the GBM and survival group than those based on single proteins, confirming earlier attempts to correlate single markers with cancer. These conceptual findings will be a basis for validation in a larger sample size. PMID:20617365

  17. Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts

    SciTech Connect

    Edes, I.; Kranias, E.G. )

    1990-08-01

    The incorporation of (32P)inorganic phosphate into membranous, myofibrillar, and cytosolic proteins was studied in Langendorff-perfused guinea pig hearts treated with phorbol 12-myristate 13-acetate (PMA) or 1,2-dioctanoylglycerol (D8G), which are potent activators of protein kinase C. Control hearts were perfused with an inactive phorbol ester (4 alpha-phorbol 12,13-didecanoate), which does not cause activation of protein kinase C. To ensure the blockade of different receptor systems, the perfusions were carried out in the presence of prazosin, propranolol, and atropine. Perfusion of hearts with either PMA (4 microM) or D8G (200 microM) was associated with a negative effect on left ventricular inotropy and relaxation. Examination of the 32P incorporation into various fractions revealed that there were no increases in the degree of phosphorylation of phospholamban in sarcoplasmic reticulum, and troponin I and C protein in the myofibrils, although these proteins were found to be substrates for protein kinase C in vitro. However, in the same hearts, there were significant changes in the 32P incorporation into a 28-kDa cytosolic-protein. Examination of the activity levels of protein kinase C in hearts perfused with PMA indicated a redistribution of this activity from the cytosolic to the membrane fraction, suggesting the activation of the enzyme in vivo. These findings indicate that cardiac regulatory phosphoproteins, which may be phosphorylated by protein kinase C in vitro, are not substrates for protein kinase C in beating hearts perfused with phorbol esters or diacylglycerol analogues.

  18. Stimulus-induced association of Ca(2+)-binding proteins with the plasma membrane detected in situ by photolabeling of intact chromaffin and PC12 cells.

    PubMed Central

    Schwaller, B; Calef, E; Gitler, C; Rosenheck, K

    1993-01-01

    To investigate the involvement of cytosolic proteins in exocytosis, a system with high temporal and spatial resolution has been developed that allows us to detect the interaction of Ca(2+)- and membrane-binding proteins with the plasma membrane during stimulation of intact chromaffin and PC12 (rat pheochromocytoma) cells. We used 5-iodonaphthalene-1-azide (INA), a hydrophobic label that rapidly partitions into the lipid bilayer of biological membranes. Upon photolysis the label covalently attaches to membrane-embedded domains of proteins. Cells, preincubated with INA in the dark, were stimulated by either 300 microM carbamoylcholine or 60 mM K+ and irradiated (20 s) at various time intervals after stimulation. Subsequently, the cytosolic Ca(2+)- and membrane-binding proteins were isolated in the presence of EGTA (EGTA extract). Of the approximately 40 proteins in the EGTA extract, 15 (15-100 kDa) are labeled in both cell types. Upon stimulation, labeling is increased up to 3-fold in some of the proteins compared to cells labeled under basal conditions. In the absence of external Ca2+, no increase is observed. The rate of label incorporation is similar to the rate of exocytosis in several of these proteins. These results indicate that in the event of triggered exocytosis some of the Ca(2+)-binding proteins interact with the plasma membrane and temporarily embed in the lipid bilayer. Our findings support the hypothesis according to which stimulus-induced alterations in the structure of the Ca(2+)-binding proteins lead to their transient insertion into the membrane and thereby to membrane fusion. Images PMID:8433989

  19. Distinct Lysosomal Network Protein Profiles in Parkinsonian Syndrome Cerebrospinal Fluid

    PubMed Central

    Boman, Andrea; Svensson, Samuel; Boxer, Adam; Rojas, Julio C.; Seeley, William W.; Karydas, Anna; Miller, Bruce; Kågedal, Katarina; Svenningsson, Per

    2016-01-01

    Background: Clinical diagnosis of parkinsonian syndromes like Parkinson’s disease (PD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) is hampered by overlapping symptomatology and lack of diagnostic biomarkers, and definitive diagnosis is only possible post-mortem. Objective: Since impaired protein degradation plays an important role in many neurodegenerative disorders, we hypothesized that profiles of select lysosomal network proteins in cerebrospinal fluid could be differentially expressed in these parkinsonian syndromes. Methods: Cerebrospinal fluid samples were collected from PD patients (n = 18), clinically diagnosed 4-repeat tauopathy patients; corticobasal syndrome (CBS) (n = 3) and PSP (n = 8); and pathologically diagnosed PSP (n = 8) and CBD patients (n = 7). Each patient set was compared to its appropriate control group consisting of age and gender matched individuals. Select lysosomal network protein levels were detected via Western blotting. Factor analysis was used to test the diagnostic sensitivity, specificity and accuracy of the select lysosomal network protein expression profiles. Results: PD, CBD and PSP were markedly different in their cerebrospinal fluid lysosomal network protein profiles. Lysosomal-associated membrane proteins 1 and 2 were significantly decreased in PD; early endosomal antigen 1 was decreased and lysozyme increased in PSP; and lysosomal-associated membrane proteins 1 and 2, microtubule-associated protein 1 light chain 3 and lysozyme were increased in CBD. A panel of lysosomal-associated membrane protein 2, lysozyme and microtubule-associated protein 1 light chain discriminated between controls, PD and 4-repeat tauopathies. Conclusions: This study offers proof of concept that select lysosomal network proteins are differentially expressed in cerebrospinal fluid of Parkinson’s disease, corticobasal syndrome and progressive supranuclear palsy. Lysosomal network protein analysis

  20. Generation and Surface Localization of Intact M Protein in Streptococcus pyogenes Are Dependent on sagA

    PubMed Central

    Biswas, Indranil; Germon, Pierre; McDade, Kathleen; Scott, June R.

    2001-01-01

    The M protein is an important surface-located virulence factor of Streptococcus pyogenes, the group A streptococcus (GAS). Expression of M protein is primarily controlled by Mga, a transcriptional activator protein. A recent report suggested that the sag locus, which includes nine genes necessary and sufficient for production of streptolysin S, another GAS virulence factor, is also needed for transcription of emm, encoding the M protein (Z. Li, D. D. Sledjeski, B. Kreikemeyer, A. Podbielski, and M. D. Boyle, J. Bacteriol. 181:6019–6027, 1999). To investigate this in more detail, we constructed an insertion-deletion mutation in sagA, the first gene in the sag locus, in the M6 strain JRS4. The resulting strain, JRS470, produced no detectable streptolysin S and showed a drastic reduction in cell surface-associated M protein, as measured by cell aggregation and Western blot analysis. However, transcription of the emm gene was unaffected by the sagA mutation. Detailed analysis with monoclonal antibodies and an antipeptide antibody showed that the M protein in the sagA mutant strain was truncated so that it lacks the C-repeat region and the C-terminal domain required for anchoring it to the cell surface. This truncated M protein was largely found, as expected, in the culture supernatant. Lack of surface-located M protein made the sagA mutant strain susceptible to phagocytosis. Thus, although sagA does not affect transcription of the M6 protein gene, it is needed for the surface localization of this important virulence factor. PMID:11598078

  1. Generation and surface localization of intact M protein in Streptococcus pyogenes are dependent on sagA.

    PubMed

    Biswas, I; Germon, P; McDade, K; Scott, J R

    2001-11-01

    The M protein is an important surface-located virulence factor of Streptococcus pyogenes, the group A streptococcus (GAS). Expression of M protein is primarily controlled by Mga, a transcriptional activator protein. A recent report suggested that the sag locus, which includes nine genes necessary and sufficient for production of streptolysin S, another GAS virulence factor, is also needed for transcription of emm, encoding the M protein (Z. Li, D. D. Sledjeski, B. Kreikemeyer, A. Podbielski, and M. D. Boyle, J. Bacteriol. 181:6019-6027, 1999). To investigate this in more detail, we constructed an insertion-deletion mutation in sagA, the first gene in the sag locus, in the M6 strain JRS4. The resulting strain, JRS470, produced no detectable streptolysin S and showed a drastic reduction in cell surface-associated M protein, as measured by cell aggregation and Western blot analysis. However, transcription of the emm gene was unaffected by the sagA mutation. Detailed analysis with monoclonal antibodies and an antipeptide antibody showed that the M protein in the sagA mutant strain was truncated so that it lacks the C-repeat region and the C-terminal domain required for anchoring it to the cell surface. This truncated M protein was largely found, as expected, in the culture supernatant. Lack of surface-located M protein made the sagA mutant strain susceptible to phagocytosis. Thus, although sagA does not affect transcription of the M6 protein gene, it is needed for the surface localization of this important virulence factor. PMID:11598078

  2. Protein profile of Acetobacter pasteurianus HSZ3-21.

    PubMed

    Zhang, Zhiyan; Ma, Haile; Yang, Yanhua; Dai, Li; Chen, Keping

    2015-05-01

    Acetobacter pasteurianus plays an important role in the process of traditional vinegar production and is also essential for the fermentation of Zhenjiang aromatic vinegar. In this study, we utilized the proteomic approach to analyze the proteomic profile of A. pasteurianus HSZ3-21, and 258 proteins were successfully identified by MALDI-TOF-MS and database search. The hydropathy and GO analyse combined with COG results of the identified proteins revealed the molecular biological characteristics of A. pasteurianus proteins, that is, most proteins of A. pasteurianus were related to metabolic process, binding, catalytic or cellular response. Meanwhile, our results also showed that some proteins of A. pasteurianus may be responsible for acetic acid tolerance, thermotolerance, and stress response. Therefore, the identification of 258 proteins not only deciphers protein composition and functional classification of A. pasteurianus, but also provides useful information for improving quality of Zhenjiang aromatic vinegar. PMID:25648427

  3. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins.

    PubMed

    Reinhard, Friedrich B M; Eberhard, Dirk; Werner, Thilo; Franken, Holger; Childs, Dorothee; Doce, Carola; Savitski, Maria Fälth; Huber, Wolfgang; Bantscheff, Marcus; Savitski, Mikhail M; Drewes, Gerard

    2015-12-01

    We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1. PMID:26524241

  4. Objective Diagnosis of Cervical Cancer by Tissue Protein Profile Analysis

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Bhat, Sujatha; Rai, Lavanya; Kartha, V. B.; Chidangil, Santhosh

    2011-07-01

    Protein profiles of homogenized normal cervical tissue samples from hysterectomy subjects and cancerous cervical tissues from biopsy samples collected from patients with different stages of cervical cancer were recorded using High Performance Liquid Chromatography coupled with Laser Induced Fluorescence (HPLC-LIF). The Protein profiles were subjected to Principle Component Analysis to derive statistically significant parameters. Diagnosis of sample types were carried out by matching three parameters—scores of factors, squared residuals, and Mahalanobis Distance. ROC and Youden's Index curves for calibration standards were used for objective estimation of the optimum threshold for decision making and performance.

  5. Matrix-assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometric Analysis of Intact Proteins Larger than 100 kDa

    PubMed Central

    Signor, Luca; Boeri Erba, Elisabetta

    2013-01-01

    Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. 13C labelling). Electrospray ionisation (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra. Here we present an accessible approach for analysing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analysing intact proteins larger than 100 kDa by MALDI-MS. PMID:24056304

  6. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    PubMed Central

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  7. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  8. DSP: a protein shape string and its profile prediction server

    PubMed Central

    Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Cong, Peisheng; Li, Tonghua

    2012-01-01

    Many studies have demonstrated that shape string is an extremely important structure representation, since it is more complete than the classical secondary structure. The shape string provides detailed information also in the regions denoted random coil. But few services are provided for systematic analysis of protein shape string. To fill this gap, we have developed an accurate shape string predictor based on two innovative technologies: a knowledge-driven sequence alignment and a sequence shape string profile method. The performance on blind test data demonstrates that the proposed method can be used for accurate prediction of protein shape string. The DSP server provides both predicted shape string and sequence shape string profile for each query sequence. Using this information, the users can compare protein structure or display protein evolution in shape string space. The DSP server is available at both http://cheminfo.tongji.edu.cn/dsp/ and its main mirror http://chemcenter.tongji.edu.cn/dsp/. PMID:22553364

  9. Deciphering Asthma Biomarkers with Protein Profiling Technology

    PubMed Central

    Kuang, Zhizhou; Wilson, Jarad J.; Luo, Shuhong; Zhu, Si-Wei; Huang, Ruo-Pan

    2015-01-01

    Asthma is a chronic inflammatory disease of the airways, resulting in bronchial hyperresponsiveness with every allergen exposure. It is now clear that asthma is not a single disease, but rather a multifaceted syndrome that results from a variety of biologic mechanisms. Asthma is further problematic given that the disease consists of many variants, each with its own etiologic and pathophysiologic factors, including different cellular responses and inflammatory phenotypes. These facets make the rapid and accurate diagnosis (not to mention treatments) of asthma extremely difficult. Protein biomarkers can serve as powerful detection tools in both clinical and basic research applications. Recent endeavors from biomedical researchers have developed technical platforms, such as cytokine antibody arrays, that have been employed and used to further the global analysis of asthma biomarker studies. In this review, we discuss potential asthma biomarkers involved in the pathophysiologic process and eventual pathogenesis of asthma, how these biomarkers are being utilized, and how further testing methods might help improve the diagnosis and treatment strain that current asthma patients suffer. PMID:26346739

  10. Plasma protein profiles of neonatal pigs before and after suckling.

    PubMed

    Huang, Yanyun; Olson, Douglas J; Gordon, John R; Middleton, Dorothy M; Simko, Elemir

    2012-01-01

    Absorption of colostral proteins ingested by neonatal piglets within 24 to 36 h after birth is generally considered to be non-selective. Nevertheless, the transfer of colostral proteins, except immunoglubulins, from gut to bloodstream after natural suckling is still poorly characterized. The purpose of this study was to investigate the changes in 2-dimensional electrophoretic plasma protein profiles of neonatal piglets before and after suckling, in order to characterize the gastrointestinal absorption of colostral proteins into the neonatal bloodstream. As expected, the most significant change in plasma after suckling is the presence of a large amount of immunoglobulin. However, while the concentration of a few proteins was mildly increased in post-suckling plasma, the evidence of absorption of colostral non-immunoglobulin proteins by neonatal piglets was not detected in this study. PMID:22754088

  11. Plasma protein profiles of neonatal pigs before and after suckling

    PubMed Central

    Huang, Yanyun; Olson, Douglas J.; Gordon, John R.; Middleton, Dorothy M.; Simko, Elemir

    2012-01-01

    Absorption of colostral proteins ingested by neonatal piglets within 24 to 36 h after birth is generally considered to be non-selective. Nevertheless, the transfer of colostral proteins, except immunoglubulins, from gut to bloodstream after natural suckling is still poorly characterized. The purpose of this study was to investigate the changes in 2-dimensional electrophoretic plasma protein profiles of neonatal piglets before and after suckling, in order to characterize the gastrointestinal absorption of colostral proteins into the neonatal bloodstream. As expected, the most significant change in plasma after suckling is the presence of a large amount of immunoglobulin. However, while the concentration of a few proteins was mildly increased in post-suckling plasma, the evidence of absorption of colostral non-immunoglobulin proteins by neonatal piglets was not detected in this study. PMID:22754088

  12. Extensive Charge Reduction and Dissociation of Intact Protein Complexes Following Electron Transfer on a Quadrupole-Ion Mobility-Time-of-Flight MS

    NASA Astrophysics Data System (ADS)

    Lermyte, Frederik; Williams, Jonathan P.; Brown, Jeffery M.; Martin, Esther M.; Sobott, Frank

    2015-07-01

    Non-dissociative charge reduction, typically considered to be an unwanted side reaction in electron transfer dissociation (ETD) experiments, can be enhanced significantly in order to reduce the charge state of intact protein complexes to as low as 1+ on a commercially available Q-IM-TOF instrument. This allows for the detection of large complexes beyond 100,000 m/z, while at the same time generating top-down ETD fragments, which provide sequence information from surface-exposed parts of the folded structure. Optimization of the supplemental activation has proven to be crucial in these experiments and the charge-reduced species are most likely the product of both proton transfer (PTR) and non-dissociative electron transfer (ETnoD) reactions that occur prior to the ion mobility cell. Applications of this approach range from deconvolution of complex spectra to the manipulation of charge states of gas-phase ions.

  13. The identification of protein biomarkers distinguishing virus transmission competent and refractive insect populations by coupling genetics with quantitative intact proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are vectored by aphids. The identification of vector proteins mediating virus transmission is critical to develop agriculturally-sustainable virus management practices and to understand viral str...

  14. The identification of protein biomarkers distinguishing virus transmission competent and refractive insect populations by coupling genetics with quantitative intact proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control of insects that vector pathogens is a massive challenge to human health and agriculture. Yellow dwarf viruses (YDV) cause economically significant disease in cereal crops (barley, wheat, rye, maize) worldwide and are vectored by aphids. The identification of vector proteins mediating virus ...

  15. Removal of Available Decorin Core-Protein from Powdered Bovine Hide by Treatments used to Process Intact Hides into Leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a modification of a previously developed sandwich Elisa procedure to measure decorin core-protein (DCP), we determined the available decorin content of a sample of raw powdered bovine hide before and after treatment with the reagents used in the early steps of the process for converting a hide...

  16. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein isoform expression to polerovirus transmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...

  17. Quantitative proteomic profiling identifies protein correlates to EGFR kinase inhibition.

    PubMed

    Kani, Kian; Faca, Vitor M; Hughes, Lindsey D; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J; Zhang, Qing; Katz, Jonathan E; Gross, Mitchell E; Plevritis, Sylvia K; McIntosh, Martin W; Jain, Anjali; Hanash, Samir; Agus, David B; Mallick, Parag

    2012-05-01

    Clinical oncology is hampered by lack of tools to accurately assess a patient's response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not responding to a therapy could be usefully incorporated into tools for monitoring response. Here, we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study, we use stable isotope labeling of amino acids in culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGF receptor (EGFR)-targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information, and a subset consisting of 400 proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and showed that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  18. Quantitative Proteomic profiling identifies protein correlates to EGFR kinase inhibition

    PubMed Central

    Kani, Kian; Faca, Vitor M.; Hughes, Lindsey D.; Zhang, Wenxuan; Fang, Qiaojun; Shahbaba, Babak; Luethy, Roland; Erde, Jonathan; Schmidt, Joanna; Pitteri, Sharon J.; Zhang, Qing; Katz, Jonathan E.; Gross, Mitchell E.; Plevritis, Sylvia K.; McIntosh, Martin W.; Jain, Anjali; Hanash, Sam; Agus, David B.; Mallick, Parag

    2014-01-01

    Clinical oncology is hampered by a lack of tools to accurately assess a patient’s response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not-responding to a therapy could be usefully incorporated into tools for monitoring response. Here we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study we use Stable Isotope Labeling of Amino acids in Culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGFR targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information and a subset consisting of [400] proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and demonstrated that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response. PMID:22411897

  19. Changes in serum protein profiles of chickens with tibial dyschondroplasia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in serum protein profiles were analyzed to identify biomarkers associated with a poultry leg problem named tibial dyschondroplasia (TD) that can cause lameness. We used a bead-based affinity matrix containing a combinatorial library of hexapeptides (ProteoMinerTM) to deplete high abundan...

  20. A Correlation between Protein Function and Ligand Binding Profiles

    PubMed Central

    Shortridge, Matthew D.; Bokemper, Michael; Copeland, Jennifer C.; Stark, Jaime L.; Powers, Robert

    2011-01-01

    We report that proteins with the same function bind the same set of small molecules from a standardized chemical library. This observation led to a quantifiable and rapidly adaptable method for protein functional analysis using experimentally-derived ligand binding profiles. Ligand binding is measured using a high-throughput NMR ligand affinity screen with a structurally diverse chemical library. The method was demonstrated using a set of 19 proteins with a range of functions. A statistically significant similarity in ligand binding profiles was only observed between the two functionally identical albumins and between the five functionally similar amylases. This new approach is independent of sequence, structure or evolutionary information, and therefore, extends our ability to analyze and functionally annotate novel genes. PMID:21366353

  1. Protein profiles distinguish stable and progressive chronic lymphocytic leukemia.

    PubMed

    Huang, Pauline Y; Mactier, Swetlana; Armacki, Natalie; Giles Best, O; Belov, Larissa; Kaufman, Kimberley L; Pascovici, Dana; Mulligan, Stephen P; Christopherson, Richard I

    2016-05-01

    Patients with a stable chronic lymphocytic leukemia (CLL) double their blood lymphocyte count in >5 years, but may develop progressive disease with lymphocytes doubling in <12 months. To identify a protein signature for progressive CLL, whole cell extracts of peripheral blood mononuclear cells from patients with CLL (n=27) were screened using iTRAQ (isobaric tags for relative and absolute quantification) analysis. A total of 84 differentially abundant proteins were identified from patients with stable and progressive CLL. Subsequently, 32 of these proteins were quantified by SRM (selected reaction monitoring) using extracts of purified CD19+ CLL cells from patients (n=50). Hierarchical clustering of these protein profiles showed two clusters of patients that correlated with progressive and stable CLL, providing signatures that should be useful for triaging patients. Some of the proteins in the progressive cluster have not been linked with CLL, for example, glutamate dehydrogenase 1 and transcription intermediary factor 1-beta. PMID:26422656

  2. Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles

    PubMed Central

    CHAN, JENNY; KHAN, SHAKILA N.; HARVEY, ISABELLE; MERRICK, WILLIAM; PELLETIER, JERRY

    2004-01-01

    The National Cancer Institute (NCI) Human Tumor Cell Line Anti-Cancer Drug Screen has evaluated the cytotoxicity profiles of a large number of synthetic compounds, natural products, and plant extracts on 60 different cell lines. The data for each compound/extract can be assessed for similarity of cytotoxicity pattern, relative to a given test compound, using an algorithm called COMPARE. In applying a chemical biology approach to better understand the mechanism of eukaryotic protein synthesis, we used these resources to search for novel inhibitors of translation. The cytotoxicity profiles of 31 known protein synthesis inhibitors were used to identify compounds from the NCI database with similar activity profiles. Using this approach, two natural products, phyllanthoside and nagilactone C, were identified and characterized as novel protein synthesis inhibitors. Both compounds are specific for the eukaryotic translation apparatus, function in vivo and in vitro, and interfere with translation elongation. Our results demonstrate the feasibility of utilizing cytotoxicity profiles to identify new inhibitors of translation. PMID:14970397

  3. Bacterial characterization using protein profiling in a microchip separations platform.

    PubMed

    Pizarro, Shelly A; Lane, Pamela; Lane, Todd W; Cruz, Evelyn; Haroldsen, Brent; VanderNoot, Victoria A

    2007-12-01

    A rapid microanalytical protein-based approach to bacterial characterization is presented. Chip gel electrophoresis (CGE) coupled with LIF detection was used to analyze lysates from different bacterial cell lines to obtain signature profiles of the soluble protein composition. The study includes Escherichia coli, Bacillus subtilis, and Bacillus anthracis (Delta Sterne strain) vegetative cells as well as endospores formed from the latter two species as model organisms to demonstrate the method. A unified protein preparation protocol was developed for both cell types to streamline the benchtop process and aid future automation. Cells and spores were lysed and proteins solubilized using a combination of thermal and chemical lysis methods. Reducing agents, necessary to solubilize spore proteins, were eliminated using a small-scale rapid size-exclusion chromatography step to eliminate interference with down-stream protein labeling. This approach was found to be compatible with nonspore cells (i.e., vegetative cells) as well, not adversely impacting the protein signatures. Data are presented demonstrating distinct CGE protein signatures for our model organisms, suggesting the potential for discrimination of organisms on the basis of empirical protein patterns. The goal of this work is to develop a fast and field-portable method for characterizing bacteria via their proteomes. PMID:18008300

  4. O-GlcNAc profiling: from proteins to proteomes

    PubMed Central

    2014-01-01

    O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases. PMID:24593906

  5. PLIP: fully automated protein-ligand interaction profiler.

    PubMed

    Salentin, Sebastian; Schreiber, Sven; Haupt, V Joachim; Adasme, Melissa F; Schroeder, Michael

    2015-07-01

    The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling. PMID:25873628

  6. Antibody-based Protein Profiling of the Human Chromosome 21*

    PubMed Central

    Uhlén, Mathias; Oksvold, Per; Älgenäs, Cajsa; Hamsten, Carl; Fagerberg, Linn; Klevebring, Daniel; Lundberg, Emma; Odeberg, Jacob; Pontén, Fredrik; Kondo, Tadashi; Sivertsson, Åsa

    2012-01-01

    The Human Proteome Project has been proposed to create a knowledge-based resource based on a systematical mapping of all human proteins, chromosome by chromosome, in a gene-centric manner. With this background, we here describe the systematic analysis of chromosome 21 using an antibody-based approach for protein profiling using both confocal microscopy and immunohistochemistry, complemented with transcript profiling using next generation sequencing data. We also describe a new approach for protein isoform analysis using a combination of antibody-based probing and isoelectric focusing. The analysis has identified several genes on chromosome 21 with no previous evidence on the protein level, and the isoform analysis indicates that a large fraction of human proteins have multiple isoforms. A chromosome-wide matrix is presented with status for all chromosome 21 genes regarding subcellular localization, tissue distribution, and molecular characterization of the corresponding proteins. The path to generate a chromosome-specific resource, including integrated data from complementary assay platforms, such as mass spectrometry and gene tagging analysis, is discussed. PMID:22042635

  7. Self-organized criticality in proteins: Hydropathic roughening profiles of G-protein-coupled receptors

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2013-03-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein conformational functionality is often dominated by long-range hydrophobic or hydrophilic interactions which both drive protein compaction and mediate protein-protein interactions. Superfamily transmembrane G-protein-coupled receptors (GPCRs) are the largest family of proteins in the human genome; their amino acid sequences form the largest database for protein-membrane interactions. While there are now structural data on the heptad transmembrane structures of representatives of several heptad families, here we show how fresh insights into global and some local chemical trends in GPCR properties can be obtained accurately from sequences alone, especially by algebraically separating the extracellular and cytoplasmic loops from transmembrane segments. The global mediation of long-range water-protein interactions occurs in conjunction with modulation of these interactions by roughened interfaces. Hydropathic roughening profiles are defined here solely in terms of amino acid sequences, and knowledge of protein coordinates is not required. Roughening profiles both for GPCR and some simpler protein families display accurate and transparent connections to protein functionality, and identify natural length scales for protein functionality.

  8. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry.

    PubMed

    Muneeruddin, Khaja; Nazzaro, Mark; Kaltashov, Igor A

    2015-10-01

    Characterization of biopharmaceutical products is a challenging task, which needs to be carried out at several different levels (including both primary structure and conformation). An additional difficulty frequently arises due to the structural heterogeneity inherent to many protein-based therapeutics (e.g., extensive glycosylation or "designer" modifications such as chemical conjugation) or introduced postproduction as a result of stress (e.g., oxidation and deamidation). A combination of ion-exchange chromatography (IXC) with online detection by native electrospray ionization mass spectrometry (ESI MS) allows characterization of complex and heterogeneous therapeutic proteins and protein conjugates to be accomplished at a variety of levels without compromising their conformational integrity. The IXC/ESI MS measurements allow protein conjugates to be profiled by analyzing conjugation stoichiometry and the presence of multiple positional isomers, as well as to establish the effect of chemical modifications on the conformational integrity of each species. While mass profiling alone is not sufficient for identification of nonenzymatic post-translational modifications (PTMs) that result in a very small mass change of the eluting species (e.g., deamidation), this task can be completed using online top-down structural analysis, as demonstrated using stressed interferon-β as an example. The wealth of information that can be provided by IXC/native ESI MS and tandem mass spectrometry (MS/MS) on protein-based therapeutics will undoubtedly make it a very valuable addition to the experimental toolbox of biopharmaceutical analysis. PMID:26360183

  9. Nitrite Uptake into Intact Pea Chloroplasts : II. Influence of Electron Transport Regulators, Uncouplers, ATPase and Anion Uptake Inhibitors and Protein Binding Reagents.

    PubMed

    Brunswick, P; Cresswell, C F

    1988-02-01

    The relationship between net nitrite uptake and its reduction in intact pea chloroplasts was investigated employing electron transport regulators, uncouplers, and photophosphorylation inhibitors. Observations confirmed the dependence of nitrite uptake on stromal pH and nitrite reduction but also suggested a partial dependance upon PSI phosphorylation. It was also suggested that ammonia stimulates nitrogen assimilation in the dark by association with stromal protons. Inhibition of nitrite uptake by N-ethylmaleimide and dinitrofluorobenzene could not be completely attributed to their inhibition of carbon dioxide fixation. Other protein binding reagents which inhibited photosynthesis showed no effect on nitrite uptake, except for p-chlormercuribenzoate which stimulated nitrite uptake. The results with N-ethylmaleimide and dinitrofluorobenzene tended to support the proposed presence of a protein permeation channel for nitrite uptake in addition to HNO(2) penetration. On the basis of a lack of effect by known anion uptake inhibitors, it was concluded that the nitrite uptake mechanism was distinct from that of phosphate and chloride/sulfate transport. PMID:16665917

  10. Selective and Nonselective Cleavages in Positive and Negative CID of the Fragments Generated from In-Source Decay of Intact Proteins in MALDI-MS

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo; Sekiya, Sadanori; Iimuro, Ryunosuke; Iwamoto, Shinichi; Tanaka, Koichi

    2014-01-01

    Selective and nonselective cleavages in ion trap low-energy collision-induced dissociation (CID) experiments of the fragments generated from in-source decay (ISD) with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of intact proteins are described in both positive and negative ion modes. The MALDI-ISD spectra of the proteins demonstrate common, discontinuous, abundant c- and z'-ions originating from cleavage at the N-Cα bond of Xxx-Asp/Asn and Gly-Xxx residues in both positive- and negative-ion modes. The positive ion CID of the c- and z'-ions resulted in product ions originating from selective cleavage at Asp-Xxx, Glu-Xxx and Cys-Xxx residues. Nonselective cleavage product ions rationalized by the mechanism of a "mobile proton" are also observed in positive ion CID spectra. Negative ion CID of the ISD fragments results in complex product ions accompanied by the loss of neutrals from b-, c-, and y-ions. The most characteristic feature of negative ion CID is selective cleavage of the peptide bonds of acidic residues, Xxx-Asp/Glu/Cys. A definite influence of α-helix on the CID product ions was not obtained. However, the results from positive ion and negative ion CID of the MALDI-ISD fragments that may have long α-helical domains suggest that acidic residues in helix-free regions tend to degrade more than those in helical regions.

  11. [SHIFTS IN URINE PROTEIN PROFILE DURING DRY IMMERSION].

    PubMed

    Pastushkova L Kh; Kononikhin, A S; Tiys, E S; Nosovsky, A M; Dobrokhotov, I V; Ivanisenko, V A; Nikolaev, E N; Novoselova, N M; Custaud, M A; Larina, I M

    2015-01-01

    The study was aimed at tracking the proteomic profile of urine in 8 normal volunteers to 5-day dry immersion (DI). The proteome composition was determined by chromatography-mass spectrometry on high-efficient on-line liquid nano chromatograph Agilent 1100; complementary information about the protein spectra was obtained by dint of mass-spectrometer MaXis Impact 4G and hybrid mass-spectrometer LTQ-FT. Functional associations between proteins and biological functions were analyzed using computer system ANDCell (Associative Networks Discovery in Cells). A total of 256 proteins were identified; for 43 proteins difference in the detection rate during the baseline data collection and on DI day 4 exceeded 20%. PMID:26554129

  12. Gene expression profiling to identify eggshell proteins involved in physical defense of the chicken egg

    PubMed Central

    2010-01-01

    Background As uricoletic animals, chickens produce cleidoic eggs, which are self-contained bacteria-resistant biological packages for extra-uterine development of the chick embryo. The eggshell constitutes a natural physical barrier against bacterial penetration if it forms correctly and remains intact. The eggshell's remarkable mechanical properties are due to interactions among mineral components and the organic matrix proteins. The purpose of our study was to identify novel eggshell proteins by examining the transcriptome of the uterus during calcification of the eggshell. An extensive bioinformatic analysis on genes over-expressed in the uterus allowed us to identify novel eggshell proteins that contribute to the egg's natural defenses. Results Our 14 K Del-Mar Chicken Integrated Systems microarray was used for transcriptional profiling in the hen's uterus during eggshell deposition. A total of 605 transcripts were over-expressed in the uterus compared with the magnum or white isthmus across a wide range of abundance (1.1- to 79.4-fold difference). The 605 highly-expressed uterine transcripts correspond to 469 unique genes, which encode 437 different proteins. Gene Ontology (GO) analysis was used for interpretation of protein function. The most over-represented GO terms are related to genes encoding ion transport proteins, which provide eggshell mineral precursors. Signal peptide sequence was found for 54 putative proteins secreted by the uterus during eggshell formation. Many functional proteins are involved in calcium binding or biomineralization--prerequisites for interacting with the mineral phase during eggshell fabrication. While another large group of proteins could be involved in proper folding of the eggshell matrix. Many secreted uterine proteins possess antibacterial properties, which would protect the egg against microbial invasion. A final group includes proteases and protease inhibitors that regulate protein activity in the acellular uterine fluid

  13. Alteration of sperm protein profile induced by cigarette smoking.

    PubMed

    Chen, Xiaohui; Xu, Wangjie; Miao, Maohua; Zhu, Zijue; Dai, Jingbo; Chen, Zhong; Fang, Peng; Wu, Junqing; Nie, Dongsheng; Wang, Lianyun; Wang, Zhaoxia; Qiao, Zhongdong; Shi, Huijuan

    2015-07-01

    Cigarette smoking is associated with lower semen quality, but how cigarette smoking changes the semen quality remains unclear. The aim of this study was to screen the differentially expressed proteins in the sperm of mice with daily exposure to cigarette smoke. The 2D gel electrophoresis (2DE) and mass spectrometry (MS) analyses results showed that the mouse sperm protein profile was altered by cigarette smoking. And 22 of the most abundant proteins that correspond to differentially expressed spots in 2DE gels of the sperm samples were identified. These proteins were classified into different groups based on their functions, such as energy metabolism, reproduction, and structural molecules. Furthermore, the 2DE and MS results of five proteins (Aldoa, ATP5a1, Gpx4, Cs, and Spatc1) were validated by western blot analysis and reverse transcriptase-polymerase chain reaction. Results showed that except Spatc1 the other four proteins showed statistically significant different protein levels between the smoking group and the control group (P < 0.05). The expressions of three genes (Aldoa, Gpx4, and Spatc1) were significantly different (P < 0.05) at transcription level between the smoking group and the control group. In addition, five proteins (Aldoa, ATP5a1, Spatc1, Cs, and Gpx4) in human sperm samples from 30 male smokers and 30 non-smokers were detected by western blot analysis. Two proteins (Aldoa and Cs) that are associated with energy production were found to be significantly altered, suggesting that these proteins may be potential diagnostic markers for evaluation of smoking risk in sperm. Further study of these proteins may provide insight into the pathogenic mechanisms underlying infertility in smoking persons. PMID:26063603

  14. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  15. Fold homology detection using sequence fragment composition profiles of proteins.

    PubMed

    Solis, Armando D; Rackovsky, Shalom R

    2010-10-01

    The effectiveness of sequence alignment in detecting structural homology among protein sequences decreases markedly when pairwise sequence identity is low (the so-called "twilight zone" problem of sequence alignment). Alternative sequence comparison strategies able to detect structural kinship among highly divergent sequences are necessary to address this need. Among them are alignment-free methods, which use global sequence properties (such as amino acid composition) to identify structural homology in a rapid and straightforward way. We explore the viability of using tetramer sequence fragment composition profiles in finding structural relationships that lie undetected by traditional alignment. We establish a strategy to recast any given protein sequence into a tetramer sequence fragment composition profile, using a series of amino acid clustering steps that have been optimized for mutual information. Our method has the effect of compressing the set of 160,000 unique tetramers (if using the 20-letter amino acid alphabet) into a more tractable number of reduced tetramers (approximately 15-30), so that a meaningful tetramer composition profile can be constructed. We test remote homology detection at the topology and fold superfamily levels using a comprehensive set of fold homologs, culled from the CATH database that share low pairwise sequence similarity. Using the receiver-operating characteristic measure, we demonstrate potentially significant improvement in using information-optimized reduced tetramer composition, over methods relying only on the raw amino acid composition or on traditional sequence alignment, in homology detection at or below the "twilight zone". PMID:20635424

  16. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.

    PubMed

    Vrensen, Gijs F J M; Otto, Cees; Lenferink, Aufried; Liszka, Barbara; Montenegro, Gustavo A; Barraquer, Rafael I; Michael, Ralph

    2016-04-01

    A combination of Raman spectroscopy, imaging, hierarchical cluster analysis (HCA) and peak ratio analysis was used to analyze protein profiles in the superficial cortex (SC), deep cortex (DC) and nucleus of old human lenses with cortical, nuclear and mixed cataracts. No consistent differences were observed in protein spectra and after cluster analysis between the three locations irrespective of the presence or absence of cortical opacities and/or coloration. A sharp increase (∼15%-∼33%) in protein content from SC to DC, normal for human lenses, was found in 7 lenses. In 4 lenses, characterized by the absence of cortical opacities, the SC has a protein content of ∼35%. A significant increase in the disulfide-to-protein ratio is found only in the SC of the 7 cortical cataracts. No changes were found in sulfhydryl-to-protein ratio. The relative contents of α-helices and β-sheets increase from SC to nucleus. β-Sheets are more common in the SC of lenses with cortical cataract. The absence of significant and consistent changes in protein profiles between nucleus and cortex even in cases of severe coloration is not favoring the prevailing concept that ubiquitous protein oxidation is a key factor for age related nuclear (ARN) cataracts. The observations favor the idea that multilamellar bodies or protein aggregates at very low volume densities are responsible for the rise in Mie light scatter as a main cause of ARN cataracts leaving the short-range-order of the fiber cytoplasm largely intact. The absence of significant changes in the protein spectra of the deep cortical opacities, milky white as a result of the presence of vesicle-like features, indicate they are packed with relatively undisturbed crystallins. PMID:26611157

  17. Serum protein-expression profiling using the ProteinChip biomarker system.

    PubMed

    Gilbert, Kate; Figueredo, Sharel; Meng, Xiao-Ying; Yip, Christine; Fung, Eric T

    2004-01-01

    Protein-expression profiling of serum is a common approach to the discovery of potential diagnostic and therapeutic markers of disease. Like any other proteome, the serum proteome is characterized by protein expression across a large dynamic range. This single facet requires the employment of fractionation procedures prior to detection of protein. The authors use a combination of conventional column chromatography with array-based chromatography to simplify the serum proteome into subproteomes, thus providing a greater representation of the serum proteome. Robotics is employed to increase the throughput of sample processing. These procedures result in large amounts of data that are analyzed through a series of preprocessing and postprocessing steps. A well-designed serum profiling project can therefore result in the discovery of statistically sound, clinically meaningful protein biomarkers. PMID:15020796

  18. A versatile protein microarray platform enabling antibody profiling against denatured proteins

    PubMed Central

    Wang, Jie; Barker, Kristi; Steel, Jason; Park, Jin; Saul, Justin; Festa, Fernanda; Wallstrom, Garrick; Yu, Xiaobo; Bian, Xiaofang; Anderson, Karen S; Figueroa, Jonine D; LaBaer, Joshua; Qiu, Ji

    2014-01-01

    Purpose We aim to develop a protein microarray platform capable of presenting both natural and denatured forms of proteins for antibody biomarker discovery. We will further optimize plasma screening protocols to improve detection. Experimental design We developed a new covalent capture protein microarray chemistry using HaloTag fusion proteins and ligand. To enhance protein yield, we used HeLa cell lysate as an in vitro transcription translation system (IVTT). E. coli lysates were added to the plasma blocking buffer to reduce non-specific background. These protein microarrays were probed with plasma samples and autoantibody responses were quantified and compared with or without denaturing buffer treatment. Results We demonstrated that protein microarrays using the covalent attachment chemistry endured denaturing conditions. Blocking with E. coli lysates greatly reduced the background signals and expression with IVTT based on HeLa cell lysates significantly improved the antibody signals on protein microarrays probed with plasma samples. Plasma samples probed on denatured protein arrays produced autoantibody profiles distinct from those probed on natively displayed proteins. Conclusions and clinical relevance This versatile protein microarray platform allows the display of both natural and denatured proteins, offers a new dimension to search for disease-specific antibodies, broadens the repertoire of potential biomarkers, and will potentially yield clinical diagnostics with greater performance. PMID:23027520

  19. SIMS depth profiling of polymer blends with protein based drugs

    NASA Astrophysics Data System (ADS)

    Mahoney, Christine M.; Yu, Jinxiang; Fahey, Albert; Gardella, Joseph A.

    2006-07-01

    We report the results of the surface and in-depth characterization of two component blend films of poly( L-lactic acid) (PLLA) and Pluronic surfactant [poly(ethylene oxide) (A) poly(propylene oxide) (B) ABA block copolymer]. These blend systems are of particular importance for protein drug delivery, where it is expected that the Pluronic surfactant will retain the activity of the protein drug and enhance the biocompatibility of the device. Angle dependant X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) employing an SF 5+ polyatomic primary ion source were both used for monitoring the surfactant's concentration as a function of depth. The results show an increased concentration of surfactant at the surface, where the surface segregation initially increases with increasing bulk concentration and then remains constant above 5% (w/w) Pluronic. This surface segregated region is immediately followed by a depletion region with a homogeneous mixture in the bulk of the film. These results suggest the selection of the surfactant bulk concentration of the thin film matrices for drugs/proteins delivery should achieve a relatively homogeneous distribution of stabilizer/protein in the PLLA matrix. Analysis of three component blends of PLLA, Pluronic and insulin are also investigated. In the three component blends, ToF-SIMS imaging shows the spatial distribution of surfactant/protein mixtures. These data are reported also as depth profiles.

  20. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1.

    PubMed Central

    Summers, M. F.; Henderson, L. E.; Chance, M. R.; Bess, J. W.; South, T. L.; Blake, P. R.; Sagi, I.; Perez-Alvarado, G.; Sowder, R. C.; Hare, D. R.

    1992-01-01

    All retroviral nucleocapsid (NC) proteins contain one or two copies of an invariant 3Cys-1His array (CCHC = C-X2-C-X4-H-X4-C; C = Cys, H = His, X = variable amino acid) that are essential for RNA genome packaging and infectivity and have been proposed to function as zinc-binding domains. Although the arrays are capable of binding zinc in vitro, the physiological relevance of zinc coordination has not been firmly established. We have obtained zinc-edge extended X-ray absorption fine structure (EXAFS) spectra for intact retroviruses in order to determine if virus-bound zinc, which is present in quantities nearly stoichiometric with the CCHC arrays (Bess, J.W., Jr., Powell, P.J., Issaq, H.J., Schumack, L.J., Grimes, M.K., Henderson, L.E., & Arthur, L.O., 1992, J. Virol. 66, 840-847), exists in a unique coordination environment. The viral EXAFS spectra obtained are remarkably similar to the spectrum of a model CCHC zinc finger peptide with known 3Cys-1His zinc coordination structure. This finding, combined with other biochemical results, indicates that the majority of the viral zinc is coordinated to the NC CCHC arrays in mature retroviruses. Based on these findings, we have extended our NMR studies of the HIV-1 NC protein and have determined its three-dimensional solution-state structure. The CCHC arrays of HIV-1 NC exist as independently folded, noninteracting domains on a flexible polypeptide chain, with conservatively substituted aromatic residues forming hydrophobic patches on the zinc finger surfaces. These residues are essential for RNA genome recognition, and fluorescence measurements indicate that at least one residue (Trp37) participates directly in binding to nucleic acids in vitro. The NC is only the third HIV-1 protein to be structurally characterized, and the combined EXAFS, structural, and nucleic acid-binding results provide a basis for the rational design of new NC-targeted antiviral agents and vaccines for the control of AIDS. PMID:1304355

  1. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  2. Novel sheathless CE-MS interface as an original and powerful infusion platform for nanoESI study: from intact proteins to high molecular mass noncovalent complexes.

    PubMed

    Gahoual, Rabah; Busnel, Jean-Marc; Wolff, Philippe; François, Yannis Nicolas; Leize-Wagner, Emmanuelle

    2014-02-01

    Development of nano-electrospray (nanoESI) sources allowed to increase significantly the sensitivity which is often lacking when studying biological noncovalent assemblies. However, the flow rate used to infuse the sample into the mass spectrometer cannot be precisely controlled with nanoESI and the robustness of the system could represent an issue. In this study, we have used a sheathless capillary electrophoresis-mass spectrometry (CESI) prototype as a nanoESI infusion device. The hydrodynamic mobilization of the capillary content was characterized and the ability of the system to generate a stable electrospray under controlled flow rate conditions ranging from 4 up to 900 nL/min was demonstrated. The effect of the infusing flow rate on the detection of an intact model protein analyzed under native conditions was investigated. Results demonstrated a significant increase in sensitivity of 46-fold and a signal-to-noise ratio improvement of nearly 5-fold when using an infusing flow rate from 456.9 down to 13.7 nL/min. The CESI prototype was further used to detect successfully the β ring homodimer in its native conformation. Obtained results were compared with those achieved with conventional ESI. Intensity signals were increased by a factor of 5, while sample consumption decreased 80 times. β ring complexed with the P14 peptide was also studied. Finally, the CESI interface was used to observe the quaternary structure of native hemocyanins from Carcinus maenas crabs; this high molecular complex coexisting under various degrees of complexation and resulting in masses ranging from 445 kDa to 1.34 MDa. PMID:23881366

  3. Protein content and amino acids profile of pseudocereals.

    PubMed

    Mota, Carla; Santos, Mariana; Mauro, Raul; Samman, Norma; Matos, Ana Sofia; Torres, Duarte; Castanheira, Isabel

    2016-02-15

    Quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and buckwheat (Fagopyrum esculentum) represent the main protein source in several diets, although these pseudocereals are not currently present in the FCDB nutrient profile information. The aim of this work is to characterise the AA profile of these pseudocereals and compare them with rice. Total protein content revealed to vary from 16.3g/100g (quinoa Salta) to 13.1g/100g (buckwheat) and lower values were found in rice samples (6.7g/100g). For pseudocereals the most abundant essential AA was leucine. Quinoa-Salta evidences the highest leucine content (1013mg/100g) and the minor methionine content (199mg/100g). Buckwheat was the cereal with the highest phenylalanine content (862mg/100g). Rice (Oryza sativa) presents the lowest content for all AA. Results showed pseudocereals as the best source of AA. EuroFIR guidelines where strictly followed and proved to be a crucial tool to guarantee data interchangeability and comparability. PMID:26433287

  4. Effect of phosphorus levels on the protein profiles of secreted protein and root surface protein of rice.

    PubMed

    Shinano, Takuro; Yoshimura, Tomoko; Watanabe, Toshihiro; Unno, Yusuke; Osaki, Mitsuru; Nanjo, Yohei; Komatsu, Setsuko

    2013-11-01

    Plant roots are complicated organs that absorb water and nutrients from the soil. Roots also play an essential role in protecting plants from attack by soil pathogens and develop a beneficial role with some soil microorganisms. Plant-derived rhizosphere proteins (e.g., root secretory proteins and root surface binding proteins) are considered to play important roles in developing mutual relationships in the rhizosphere. In the rhizosphere, where plant roots meet the surrounding environment, it has been suggested that root secretory protein and root surface binding protein are important factors. Furthermore, it is not known how the physiological status of the plant affects the profile of these proteins. In this study, rice plants were grown aseptically, with or without phosphorus nutrition, and proteins were obtained from root bathing solution (designated as root secretory proteins) and obtained using 0.2 M CaCl2 solution (designated as root surface binding proteins). The total number of identified proteins in the root bathing solution was 458, and the number of root surface binding proteins was 256. More than half of the proteins were observed in both fractions. Most of the proteins were categorized as either having signal peptides or no membrane transport helix sites. The functional categorization suggested that most of the proteins seemed to have secretory pathways and were involved in defense/disease-related functions. These characteristics seem to be unique to rhizosphere proteins, and the latter might be part of the plants strategy to defeat pathogens in the soil. The low phosphorus treatment significantly increased the number of pathogenesis-related proteins in the root secretory proteins, whereas the change was small in the case of the root surface binding proteins. The results suggested that the roots are actively and selectively secreting protein into the rhizosphere. PMID:24083427

  5. Post-polymerization photografting on methacrylate-based monoliths for separation of intact proteins and protein digests with comprehensive two-dimensional liquid chromatography hyphenated with high-resolution mass spectrometry.

    PubMed

    Vonk, Rudy J; Wouters, Sam; Barcaru, Andrei; Vivó-Truyols, Gabriel; Eeltink, Sebastiaan; de Koning, Leo J; Schoenmakers, Peter J

    2015-05-01

    Post-polymerization photografting is a versatile tool to alter the surface chemistry of organic-based monoliths so as to obtain desired stationary phase properties. In this study, 2-acrylamido-2-methyl-1-propanesulfonic acid was grafted to a hydrophobic poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith to create a strong cation exchange stationary phase. Both single-step and two-step photografting were addressed, and the effects of grafting conditions were assessed. An experimental design has been applied in an attempt to optimize three of the key parameters of the two-step photografting chemistry, i.e. the grafting time of the initiator, the monomer concentration and the monomer irradiation time. The photografted columns were implemented in a comprehensive two-dimensional column liquid chromatography ( (t) LC ×  (t) LC) workflow and applied for the separation of intact proteins and peptides. A baseline separation of 11 intact proteins was obtained within 20 min by implementing a gradient across a limited RP composition window in the second dimension. (t) LC ×  (t) LC with UV detection was used for the separation of cytochrome c digest, bovine serum insulin digest and a digest of a complex protein mixture. A semi-quantitative estimation of the occupation of separation space, the orthogonality, of the (t) LC ×  (t) LC system yielded 75%. The (t) LC ×  (t) LC setup was hyphenated to a high-resolution Fourier transform ion cyclotron resonance mass spectrometer instrument to identify the bovine serum insulin tryptic peptides and to demonstrate the compatibility with MS analysis. PMID:25801383

  6. Construction of hormonally responsive intact cell hybrids by cell fusion: transfer of. beta. -adrenergic receptor and nucleotide regulatory protein(s) in normal and desensitized cells

    SciTech Connect

    Schulster, D.; Salmon, D.M.

    1985-01-01

    Fusion of normal, untreated human erythrocytes with desensitized turkey erythrocytes increases isoproterenol stimulation of cyclic (/sup 3/H)AMP accumulation over basal rates. Moreover, pretreatment of the human erythrocytes with cholera toxin before they are fused with desensitized turkey erthythrocytes leads to a large stimulation with isoproterenol. This is even greater and far more rapid than the response obtained if turkey erythrocytes are treated directly with cholera toxin. It is concluded that the stimulation in the fused system is due to the transfer of an ADP-ribosylated subunit of nucleotide regulatory protein.

  7. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling

    SciTech Connect

    Simpson, David C.; Ahn, Seonghee; Pasa-Tolic, Ljiljana; Bogdanov, Bogdan; Mottaz, Heather M.; Vilkov, Andrey N.; Anderson, Gordon A.; Lipton, Mary S.; Smith, Richard D.

    2006-07-27

    Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated the capability for broad proteome coverage and good throughput, but is not ideally suited to the discovery and identification of modified proteins. Top-down proteomics (including subjecting intact protein ions to gas-phase dissociation) allows the study of modified proteins, but coverage, sensitivity and throughput are presently problematic. In this work, we describe the combination of bottom-up with intact protein analyses for the characterization of modified proteins. Fractionation at the intact protein level was employed to reduce complexity and increase measurement dynamic range. Bottom-up measurements were used to identify the subset of proteins that were present in each fraction. These identifications were then used in combination with high-accuracy Fourier-transform ion cyclotron resonance (FTICR)-mass spectrometry (MS) intact protein mass measurements to achieve protein and modified-protein identifications. The relative performance of size exclusion chromatography (SEC) fractionation combined with on-line reversed-phase liquid chromatography (RPLC)-FTICR-MS was compared with RPLC fractionation combined with capillary isoelectric focusing (CIEF)-FTICR-MS. Finally, the relative coverage provided by proteomic analyses based on tryptic peptides and intact proteins is considered.

  8. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona.

    PubMed

    Hayashi, Yuya; Miclaus, Teodora; Engelmann, Péter; Autrup, Herman; Sutherland, Duncan S; Scott-Fordsmand, Janeck J

    2016-04-01

    Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect the corona composition, the extent to which nanoparticles influence the cells' protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time-dependent manner (2, 4, 8 and 24 h at a low-cytotoxic concentration), and examined the implication of the temporal changes in transcriptional profiles of secretory proteins with a particular reference to that of lysenin. NM-300K was accumulated in/at the cells and lysenin was, after transient induction, gradually suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role. PMID:26119277

  9. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    PubMed Central

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-01-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/. PMID:26482832

  10. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  11. Strain-dependent profile of misfolded prion protein aggregates.

    PubMed

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-01-01

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration. PMID:26877167

  12. Strain-dependent profile of misfolded prion protein aggregates

    PubMed Central

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V.; Soto, Claudio

    2016-01-01

    Prions are composed of the misfolded prion protein (PrPSc) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrPSc aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrPSc aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrPSc aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrPSc aggregates and the incubation periods for the strains studied. The relative presence of PrPSc in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrPSc aggregates in prion-induced neurodegeneration. PMID:26877167

  13. Non-covalent association of protein and capsular polysaccharide on bacteria-sized latex beads as a model for polysaccharide-specific humoral immunity to intact Gram-positive extracellular bacteria1

    PubMed Central

    Colino, Jesus; Duke, Leah; Snapper, Clifford M.

    2013-01-01

    Intact Streptococcus pneumoniae, expressing type 14 capsular polysaccharide (PPS14) and type III Streptococcus agalactiae containing a PPS14 core capsule identical to PPS14, exhibit non-covalent associations of PPS14 and bacterial protein, in contrast to soluble covalent conjugates of these respective antigens. Both bacteria and conjugates induce murine PPS14-specific IgG responses dependent on CD4+ T cells. Further, secondary immunization with conjugate and S. agalactiae, although not S. pneumoniae, results in a boosted response. However, in contrast to conjugate, PPS14-specific IgG responses to bacteria lack affinity maturation, utilize the 44.1-idiotype and are dependent on marginal zone B cells. To better understand the mechanism underlying this dichotomy we developed a minimal model of intact bacteria in which PPS14 and pneumococcal surface protein A (PspA) were stably attached to 1 μm (bacteria-sized) latex beads, but not directly linked to each other, in contrast to PPS14-PspA conjugate. PPS14+[PspA] beads, similar to conjugate, induced in mice boosted PPS14-specific IgG secondary responses, dependent on T cells and ICOS-dependent costimulation, and in which priming could be achieved with PspA alone. In contrast to conjugate, but similar to intact bacteria, the primary PPS14-specific IgG response to PPS14+[PspA] beads peaked rapidly, with the secondary response highly enriched for the 44.1-idiotype and lacking affinity maturation. These results demonstrate that non-covalent association in a particle, of polysaccharide and protein, recapitulates essential immunologic characteristics of intact bacteria that are distinct from soluble covalent conjugates of these respective antigens. PMID:23926322

  14. Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry.

    PubMed

    Nakashima, Taiken; Wada, Hiroshi; Morita, Satoshi; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2016-03-15

    In this report, we developed the pressure probe electrospray ionization-mass spectrometry with internal electrode capillary (IEC-PPESI-MS) which enables high spatial-resolution cell sampling, precise postsampling manipulation, and high detection sensitivity. Using this technique, a comparative in situ single-cell metabolite profiling of stalk and glandular cells, the two adjacent cell types comprising a trichome unit in tomato plants (Solanum lycopersicum L.), were performed to clarify the extent of metabolic differentiation between two cell types as well as among different types of trichomes. Owing to high sensitivity of the system, less than a picoliter cell sap from a single stalk cell sufficiently yielded a number of peaks of amino acids, organic acids, carbohydrates, and flavonoids. The minimal cell sap removal from a stalk cell without severe disturbance of trichome structure enabled sequential analysis of adjacent glandular cell on the same trichome, which showed the presence of striking differences in metabolite compositions between two adjacent cell types. Comparison among different types of trichome also revealed significant variations in metabolite profiles, particularly in flavonoids and acyl sugars compositions. Some metabolites were found only in specific cell types or particular trichome types. Although extensive metabolomics analysis of glandular cells of tomato trichomes has been previously documented, this is the first report describing cell-to-cell variations in metabolite compositions of stalk and glandular cells as well as in different trichome types. Further application of this technique may provide new insights into distinct metabolism in plant cells displaying variations in shape, size, function and physicochemical properties. PMID:26845634

  15. Ribo-Proteomics Approach to Profile RNA-Protein and Protein-Protein Interaction Networks.

    PubMed

    Yeh, Hsin-Sung; Chang, Jae-Woong; Yong, Jeongsik

    2016-01-01

    Characterizing protein-protein and protein-RNA interaction networks is a fundamental step to understanding the function of an RNA-binding protein. In many cases, these interactions are transient and highly dynamic. Therefore, capturing stable as well as transient interactions in living cells for the identification of protein-binding partners and the mapping of RNA-binding sequences is key to a successful establishment of the molecular interaction network. In this chapter, we will describe a method for capturing the molecular interactions in living cells using formaldehyde as a crosslinker and enriching a specific RNA-protein complex from cell extracts followed by mass spectrometry and Next-Gen sequencing analyses. PMID:26965265

  16. ProPhylo: partial phylogenetic profiling to guide protein family construction and assignment of biological process

    PubMed Central

    2011-01-01

    Background Phylogenetic profiling is a technique of scoring co-occurrence between a protein family and some other trait, usually another protein family, across a set of taxonomic groups. In spite of several refinements in recent years, the technique still invites significant improvement. To be its most effective, a phylogenetic profiling algorithm must be able to examine co-occurrences among protein families whose boundaries are uncertain within large homologous protein superfamilies. Results Partial Phylogenetic Profiling (PPP) is an iterative algorithm that scores a given taxonomic profile against the taxonomic distribution of families for all proteins in a genome. The method works through optimizing the boundary of each protein family, rather than by relying on prebuilt protein families or fixed sequence similarity thresholds. Double Partial Phylogenetic Profiling (DPPP) is a related procedure that begins with a single sequence and searches for optimal granularities for its surrounding protein family in order to generate the best query profiles for PPP. We present ProPhylo, a high-performance software package for phylogenetic profiling studies through creating individually optimized protein family boundaries. ProPhylo provides precomputed databases for immediate use and tools for manipulating the taxonomic profiles used as queries. Conclusion ProPhylo results show universal markers of methanogenesis, a new DNA phosphorothioation-dependent restriction enzyme, and efficacy in guiding protein family construction. The software and the associated databases are freely available under the open source Perl Artistic License from ftp://ftp.jcvi.org/pub/data/ppp/. PMID:22070167

  17. Discovering RNA-Protein Interactome by Using Chemical Context Profiling of the RNA-Protein Interface

    PubMed Central

    Parisien, Marc; Wang, Xiaoyun; Perdrizet, George; Lamphear, Corissa; Fierke, Carol A.; Maheshwari, Ketan C.; Wilde, Michael J.; Sosnick, Tobin R.; Pan, Tao

    2013-01-01

    SUMMARY RNA-protein (RNP) interactions generally are required for RNA function. At least 5% of human genes code for RNA-binding proteins. Whereas many approaches can identify the RNA partners for a specific protein, finding the protein partners for a specific RNA is difficult. We present a machine-learning method that scores a protein’s binding potential for an RNA structure by utilizing the chemical context profiles of the interface from known RNP structures. Our approach is applicable even when only a single RNP structure is available. We examined 801 mammalian proteins and find that 37 (4.6%) potentially bind transfer RNA (tRNA). Most are enzymes involved in cellular processes unrelated to translation and were not known to interact with RNA. We experimentally tested six positive and three negative predictions for tRNA binding in vivo, and all nine predictions were correct. Our computational approach provides a powerful complement to experiments in discovering new RNPs. PMID:23665222

  18. Accumulation and diffusion of crystallin inside single fiber cells in intact chicken embryo lenses.

    PubMed Central

    Peetermans, J A; Foy, B D; Tanaka, T

    1987-01-01

    The use of microscope laser light-scattering spectroscopy allows for the measurement of dynamic properties of intracellular particles inside single fiber cells at different locations in the intact chicken embryo lens. Profiles of the diffusive properties of the delta-crystallin proteins across the lens are reported for developing chickens from day 5 to day 37. A clear decrease of the diffusion is observed in the lens nucleus relative to the cortex beginning with day 10. Images PMID:3470754

  19. Haemolymph protein and lipid profile of Rhipicephalus (Boophilus) microplus infected by fungi.

    PubMed

    Angelo, I C; Gôlo, P S; Camargo, M G; Kluck, G E G; Folly, E; Bittencourt, V R E P

    2010-04-01

    The current study evaluates the protein and lipid profile of haemolymph of Rhipicephalus (Boophilus) microplus engorged females infected by Metarhizium anisopliae, Beauveria bassiana or Fusarium oxysporum. Ticks were immersed or inoculated with conidial suspension. Haemolymph was collected from the dorsal surface of engorged females. The results showed altered total protein amounts; however, no significant difference was observed on electrophoretic profile among haemolymph samples. In addition, altered lipid profile was detected in haemocyte samples from ticks treated with Beauveria and Metarhizium. PMID:20537114

  20. Protein profile study of the cervical cancer using HPLC-LIF

    NASA Astrophysics Data System (ADS)

    Sujatha; Rai, Lavanya; Krishnanand, B. R.; Mahato, K. K.; Kartha, V. B.; C, Santhosh

    2006-02-01

    Optical methods and proteomics investigations are becoming promising approaches for early detection of many diseases, which remain clinically silent for long periods. We have used efficient High Performance Liquid Chromatography (HPLC) separation combined with highly sensitive laser induced fluorescence detection of proteins present in clinical samples for diagnostic applications in cervical cancer. The protein profile and the fluorescence of individual proteins were simultaneously recorded using our HPLC-LIF system. Protein profiles (Chromatogram) of serum from normal male and female volunteers with and without tobacco habits, and malignant serum samples were studied. Protein profiles were also recorded for lysates of exfoliated cells collected from Pap smear of normal and cancer patients. The protein profile patterns were subjected to Principal component Analysis. Discrimination of normal and malignant samples were achieved with very high sensitivity and specificity.

  1. Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles

    PubMed Central

    Brender, Jeffrey R.; Zhang, Yang

    2015-01-01

    The formation of protein-protein complexes is essential for proteins to perform their physiological functions in the cell. Mutations that prevent the proper formation of the correct complexes can have serious consequences for the associated cellular processes. Since experimental determination of protein-protein binding affinity remains difficult when performed on a large scale, computational methods for predicting the consequences of mutations on binding affinity are highly desirable. We show that a scoring function based on interface structure profiles collected from analogous protein-protein interactions in the PDB is a powerful predictor of protein binding affinity changes upon mutation. As a standalone feature, the differences between the interface profile score of the mutant and wild-type proteins has an accuracy equivalent to the best all-atom potentials, despite being two orders of magnitude faster once the profile has been constructed. Due to its unique sensitivity in collecting the evolutionary profiles of analogous binding interactions and the high speed of calculation, the interface profile score has additional advantages as a complementary feature to combine with physics-based potentials for improving the accuracy of composite scoring approaches. By incorporating the sequence-derived and residue-level coarse-grained potentials with the interface structure profile score, a composite model was constructed through the random forest training, which generates a Pearson correlation coefficient >0.8 between the predicted and observed binding free-energy changes upon mutation. This accuracy is comparable to, or outperforms in most cases, the current best methods, but does not require high-resolution full-atomic models of the mutant structures. The binding interface profiling approach should find useful application in human-disease mutation recognition and protein interface design studies. PMID:26506533

  2. Identification of Cryptic Anopheles Mosquito Species by Molecular Protein Profiling

    PubMed Central

    Müller, Pie; Pflüger, Valentin; Wittwer, Matthias; Ziegler, Dominik; Chandre, Fabrice; Simard, Frédéric; Lengeler, Christian

    2013-01-01

    Vector control is the mainstay of malaria control programmes. Successful vector control profoundly relies on accurate information on the target mosquito populations in order to choose the most appropriate intervention for a given mosquito species and to monitor its impact. An impediment to identify mosquito species is the existence of morphologically identical sibling species that play different roles in the transmission of pathogens and parasites. Currently PCR diagnostics are used to distinguish between sibling species. PCR based methods are, however, expensive, time-consuming and their development requires a priori DNA sequence information. Here, we evaluated an inexpensive molecular proteomics approach for Anopheles species: matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS is a well developed protein profiling tool for the identification of microorganisms but so far has received little attention as a diagnostic tool in entomology. We measured MS spectra from specimens of 32 laboratory colonies and 2 field populations representing 12 Anopheles species including the A. gambiae species complex. An important step in the study was the advancement and implementation of a bioinformatics approach improving the resolution over previously applied cluster analysis. Borrowing tools for linear discriminant analysis from genomics, MALDI-TOF MS accurately identified taxonomically closely related mosquito species, including the separation between the M and S molecular forms of A. gambiae sensu stricto. The approach also classifies specimens from different laboratory colonies; hence proving also very promising for its use in colony authentication as part of quality assurance in laboratory studies. While being exceptionally accurate and robust, MALDI-TOF MS has several advantages over other typing methods, including simple sample preparation and short processing time. As the method does not require DNA sequence information

  3. Exploring Proteins in Anopheles gambiae Male and Female Antennae through MALDI Mass Spectrometry Profiling

    PubMed Central

    Dani, Francesca R.; Francese, Simona; Mastrobuoni, Guido; Felicioli, Antonio; Caputo, Beniamino; Simard, Frederic; Pieraccini, Giuseppe; Moneti, Gloriano; Coluzzi, Mario; della Torre, Alessandra; Turillazzi, Stefano

    2008-01-01

    MALDI profiling and imaging mass spectrometry (IMS) are novel techniques for direct analysis of peptides and small proteins in biological tissues. In this work we applied them to the study of Anopheles gambiae antennae, with the aim of analysing expression of soluble proteins involved in olfaction perireceptor events. MALDI spectra obtained by direct profiling on single antennae and by the analysis of extracts, showed similar profiles, although spectra obtained through profiling had a richer ion population and higher signal to noise ratio. Male and female antennae showed distinct protein profiles. MALDI imaging experiments were also performed and differences were observed in the localization of some proteins. Two proteins were identified through high resolution measurement and top-down MS/MS experiments. A 8 kDa protein only present in the male antennae matched with an unannotated sequence of the An. gambiae genome, while the presence of odorant binding protein 9 (OBP-9) was confirmed through experiments of 2-DE, followed by MS and MS/MS analysis of digested spots. This work shows that MALDI MS profiling is a technique suitable for the analysis of proteins of small and medium MW in insect appendices, and allows obtaining data for several specimens which can be investigated for differences between groups. Proteins of interest can be identified through other complementary MS approaches. PMID:18665262

  4. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling*

    PubMed Central

    Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.

    2016-01-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452

  5. Label-free detection of proteins in ternary mixtures using surface-enhanced Raman scattering and protein melting profiles

    NASA Astrophysics Data System (ADS)

    Keskin, Sercan; Efeoğlu, Esen; Keçeci, Kaan; Çulha, Mustafa

    2013-03-01

    The multiplex detection of biologically important molecules such as proteins in complex mixtures has critical importance not only in disease diagnosis but also in other fields such as proteomics and biotechnology. Surface-enhanced Raman scattering (SERS) is a powerful technique for multiplex identification of molecular components in a mixture. We combined the multiplexing power of SERS and heat denaturation of proteins to identify proteins in ternary protein mixtures. The heat denaturation profiles of four model blood proteins, transferrin, human serum albumin, fibrinogen, and hemoglobin, were studied with SERS. Then, two ternary mixtures of these four proteins were used to test the feasibility of the approach. It was demonstrated that unique denaturation profiles of each protein could be used for their identification in the mixture.

  6. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling.

    PubMed

    Larance, Mark; Kirkwood, Kathryn J; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A J; Lamond, Angus I

    2016-07-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452

  7. Development of a Method for Profiling Protein Interactions with LNA-Modified Antisense Oligonucleotides Using Protein Microarrays.

    PubMed

    Kakiuchi-Kiyota, Satoko; Whiteley, Lawrence O; Ryan, Anne M; Mathialagan, Nagappan

    2016-04-01

    Development of locked nucleic acid (LNA) gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by nontarget-mediated hepatotoxicity. Increased binding of hepatocellular proteins to toxic LNA gapmers may be one of the mechanisms contributing to LNA gapmer-induced hepatotoxicity in vivo. In the present study, we investigated the protein binding propensity of nontoxic sequence-1 (NTS-1), toxic sequence-2 (TS-2), and severely highly toxic sequence-3 (HTS-3) LNA gapmers using human protein microarrays. We previously demonstrated by the transcription profiling analysis of liver RNA isolated from mice that TS-2 and HTS-3 gapmers modulate different transcriptional pathways in mice leading to hepatotoxicity. Our protein array profiling demonstrated that a greater number of proteins, including ones associated with hepatotoxicity, hepatic system disorder, and cell functions, were bound by TS-2 and HTS-3 compared with NTS-1. However, the profiles of proteins bound by TS-2 and HTS-3 were similar and did not distinguish proteins contributing to severe in vivo toxicity. These results, together with the previous transcription profiling analysis, indicate that the combination of sequence-dependent transcription modulation and increased protein binding of toxic LNA gapmers contributes to hepatotoxicity. PMID:26643897

  8. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    DOEpatents

    Thompson, Vicki S; Lacey, Jeffrey A; Gentillon, Cynthia A; Apel, William A

    2015-03-03

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  9. Identification of discriminant proteins through antibody profiling, methods and apparatus for identifying an individual

    DOEpatents

    Apel, William A.; Thompson, Vicki S; Lacey, Jeffrey A.; Gentillon, Cynthia A.

    2016-08-09

    A method for determining a plurality of proteins for discriminating and positively identifying an individual based from a biological sample. The method may include profiling a biological sample from a plurality of individuals against a protein array including a plurality of proteins. The protein array may include proteins attached to a support in a preselected pattern such that locations of the proteins are known. The biological sample may be contacted with the protein array such that a portion of antibodies in the biological sample reacts with and binds to the proteins forming immune complexes. A statistical analysis method, such as discriminant analysis, may be performed to determine discriminating proteins for distinguishing individuals. Proteins of interest may be used to form a protein array. Such a protein array may be used, for example, to compare a forensic sample from an unknown source with a sample from a known source.

  10. (Photosynthesis in intact plants)

    SciTech Connect

    Not Available

    1990-01-01

    Progress in the two years since the last renewal application has been excellent. We have made substantial contributions on both main fronts of the projects, and are particularly happy with the progress of our research on intact plants. The approach of basing our field work on a sound foundation of laboratory studies has enabled is to use methods which provide unambiguous assays of well characterized reactions. We have also made excellent progress in several laboratory studies which will have direct applications in future field work, and have introduced to the laboratory a range of molecular genetics techniques which will allow us to explore new options in the attempt to understand function at the level of molecular structure.

  11. Comparative Plasma Protein Profiling of Hemoglobin H Disease

    PubMed Central

    Khungwanmaythawee, Kornpat; Paemanee, Atchara; Chaichana, Chartchai; Roytrakul, Sittiruk; Fucharoen, Suthat; Svasti, Saovaros; Smith, Duncan R.

    2014-01-01

    HbH and HbH-constant spring (HbH-CS) are the most common forms of α-thalassemia detected in the Thai population. The accumulation of excess β globin chains in these diseases results in increased red cell hemolysis, and patients with HbH-CS normally have a more severe clinical presentation than patients with HbH disease. This study aimed to detect alterations in the expression of plasma proteins of HbH and HbH-CS patients as compared to normal plasma. Platelet poor plasma was separated from HbH and HbH-CS and normal subjects and differential plasma proteins were detected using two-dimensional gel electrophoresis and identified using LC/MS/MS. A total of 14 differentially expressed proteins were detected of which 5 proteins were upregulated and 9 were downregulated. Most of the differentially expressed proteins are liver secreted proteins involved in hemolysis, oxidative stress response, and hemoglobin degradation. Seven proteins were found to be differentially expressed between HbH and HbH-CS. Levels of haptoglobin, a hemoglobin scavenging protein, were significantly increased in HbH patients as compared to HbH-CS patients. The identification of differentially expressed proteins may lead to a better understanding of the biological events underlying the clinical presentation of HbH and HbH-CS patients and can have application as hemolytic markers or severity predictors. PMID:25024506

  12. Intact Cell MALDI-TOF MS on Sperm: A Molecular Test For Male Fertility Diagnosis.

    PubMed

    Soler, Laura; Labas, Valérie; Thélie, Aurore; Grasseau, Isabelle; Teixeira-Gomes, Ana-Paula; Blesbois, Elisabeth

    2016-06-01

    Currently, evaluation of sperm quality is primarily based on in vitro measures of sperm function such as motility, viability and/or acrosome reaction. However, results are often poorly correlated with fertility, and alternative diagnostic tools are therefore needed both in veterinary and human medicine. In a recent pilot study, we demonstrated that MS profiles from intact chicken sperm using MALDI-TOF profiles could detect significant differences between fertile/subfertile spermatozoa showing that such profiles could be useful for in vitro male fertility testing. In the present study, we performed larger standardized experimental procedures designed for the development of fertility- predictive mathematical models based on sperm cell MALDI-TOF MS profiles acquired through a fast, automated method. This intact cell MALDI-TOF MS-based method showed high diagnostic accuracy in identifying fertile/subfertile males in a large male population of known fertility from two distinct genetic lineages (meat and egg laying lines). We additionally identified 40% of the m/z peaks observed in sperm MS profiles through a top-down high-resolution protein identification analysis. This revealed that the MALDI-TOF MS spectra obtained from intact sperm cells contained a large proportion of protein degradation products, many implicated in important functional pathways in sperm such as energy metabolism, structure and movement. Proteins identified by our predictive model included diverse and important functional classes providing new insights into sperm function as it relates to fertility differences in this experimental system. Thus, in addition to the chicken model system developed here, with the use of appropriate models these methods should effectively translate to other animal taxa where similar tests for fertility are warranted. PMID:27044871

  13. Comparative protein profiles of Butea superba tubers under seasonal changes.

    PubMed

    Leelahawong, Chonchanok; Srisomsap, Chantragan; Cherdshewasart, Wichai; Chokchaichamnankit, Daranee; Vinayavekhin, Nawaporn; Sangvanich, Polkit

    2016-07-01

    Seasonal changes are major factors affecting environmental conditions which induce multiple stresses in plants, leading to changes in protein relative abundance in the complex cellular plant metabolic pathways. Proteomics was applied to study variations in proteome composition of Butea. superba tubers during winter, summer and rainy season throughout the year using two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight tandem mass spectrometry. A total of 191 protein spots were identified and also classified into 12 functional groups. The majority of these were mainly involved in carbohydrate and energy metabolism (30.37 %) and defense and stress (18.32 %). The results exhibited the highest numbers of identified proteins in winter-harvested samples. Forty-five differential proteins were found in different seasons, involving important metabolic pathways. Further analysis indicated that changes in the protein levels were due mainly to temperature stress during summer and to water stress during winter, which affected cellular structure, photosynthesis, signal transduction and homeostasis, amino-acid biosynthesis, protein destination and storage, protein biosynthesis and stimulated defense and stress mechanisms involving glycolytic enzymes and relative oxygen species catabolizing enzymes. The proteins with differential relative abundances might induce an altered physiological status within plant tubers for survival. The work provided new insights into the better understanding of the molecular basis of plant proteomes and stress tolerance mechanisms, especially during seasonal changes. The finding suggested proteins that might potentially be used as protein markers in differing seasons in other plants and aid in selecting B. superba tubers with the most suitable medicinal properties in the future. PMID:27198528

  14. Identification of prognostic biomarkers for glioblastomas using protein expression profiling

    PubMed Central

    JUNG, YONG; JOO, KYEUNG MIN; SEONG, DONG HO; CHOI, YOON-LA; KONG, DOO-SIK; KIM, YONGHYUN; KIM, MI HYUN; JIN, JUYOUN; SUH, YEON-LIM; SEOL, HO JUN; SHIN, CHUL SOO; LEE, JUNG-IL; KIM, JONG-HYUN; SONG, SANG YONG; NAM, DO-HYUN

    2012-01-01

    A set of proteins reflecting the prognosis of patients have clinical significance since they could be utilized as predictive biomarkers and/or potential therapeutic targets. With the aim of finding novel diagnostic and prognostic markers for glioblastoma (GBM), a tissue microarray (TMA) library consisting of 62 GBMs and 28 GBM-associated normal spots was constructed. Immunohistochemistry against 78 GBM-associated proteins was performed. Expression levels of each protein for each patient were analyzed using an image analysis program and converted to H-score [summation of the intensity grade of staining (0–3) multiplied by the percentage of positive cells corresponding to each grade]. Based on H-score and hierarchical clustering methods, we divided the GBMs into two groups (n=19 and 37) that had significantly different survival lengths (p<0.05). In the two groups, expression of nine proteins (survivin, cyclin E, DCC, TGF-β, CDC25B, histone H1, p-EGFR, p-VEGFR2/3, p16) was significantly changed (q<0.05). Prognosis-predicting potential of these proteins were validated with another independent library of 82 GBM TMAs and a public GBM DNA microarray dataset. In addition, we determined 32 aberrant or mislocalized subcellular protein expression patterns in GBMs compared with relatively normal brain tissues, which could be useful for diagnostic biomarkers of GBM. We therefore suggest that these proteins can be used as predictive biomarkers and/or potential therapeutic targets for GBM. PMID:22179774

  15. RNA Whole-Mount In situ Hybridisation Proximity Ligation Assay (rISH-PLA), an Assay for Detecting RNA-Protein Complexes in Intact Cells

    PubMed Central

    Roussis, Ioannis M.; Guille, Matthew; Myers, Fiona A.; Scarlett, Garry P.

    2016-01-01

    Techniques for studying RNA-protein interactions have lagged behind those for DNA-protein complexes as a consequence of the complexities associated with working with RNA. Here we present a method for the modification of the existing In Situ Hybridisation–Proximity Ligation Assay (ISH-PLA) protocol to adapt it to the study of RNA regulation (rISH-PLA). As proof of principle we used the well-characterised interaction of the Xenopus laevis Staufen RNA binding protein with Vg1 mRNA, the complex of which co-localises to the vegetal pole of Xenopus oocytes. The applicability of both the Stau1 antibody and the Locked Nucleic Acid probe (LNA) recognising Vg1 mRNA were independently validated by whole-mount Immunohistochemistry and whole-mount in situ hybridisation assays respectively prior to combining them in the rISH-PLA assay. The rISH-PLA assay allows the identification of a given RNA-protein complex at subcellular and single cell resolution, thus avoiding the lack of spatial resolution and sensitivity associated with assaying heterogenous cell populations from which conventional RNA-protein interaction detection techniques suffer. This technique will be particularly usefully for studying the activity of RNA binding proteins (RBPs) in complex mixtures of cells, for example tissue sections or whole embryos. PMID:26824753

  16. Tuber borchii fruit body: 2-dimensional profile and protein identification.

    PubMed

    Pierleoni, Raffaella; Buffalini, Michele; Vallorani, Luciana; Guidi, Chiara; Zeppa, Sabrina; Sacconi, Cinzia; Pucci, Piero; Amoresano, Angela; Casbarra, Annarita; Stocchi, Vilberto

    2004-04-01

    The formation of the fruit body represents the final phase of the ectomycorrhizal fungus T. borchii life cycle. Very little is known concerning the molecular and biochemical processes involved in the fructification phase. 2-DE maps of unripe and ripe ascocarps revealed different protein expression levels and the comparison of the electropherograms led to the identification of specific proteins for each developmental phase. Associating micropreparative 2-DE to microchemical approaches, such as N-terminal sequencing and 2-D gel-electrophoresis mass-spectrometry, proteins playing pivotal roles in truffle physiology were identified. PMID:15081280

  17. DEVELOPMENT OF PROTEIN PROFILE TECHNOLOGY TO EVALUATE ECOLOGICAL EFFECTS OF ENVIRONMENTAL CHEMICALS USING A SMALL FISH MODEL

    EPA Science Inventory

    The rationale for this research is: i) Protein expression changes with life stage, disease, tissue type and environmental stressors; ii) Technology allows rapid analysis of large numbers of proteins to provide protein expression profiles; iii) Protein profiles are used as specifi...

  18. Hierarchical partitioning of metazoan protein conservation profiles provides new functional insights.

    PubMed

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life. PMID:24594619

  19. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    PubMed Central

    2012-01-01

    Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase

  20. The fibroblast growth factor receptor, FGFR3, forms gradients of intact and degraded protein across the growth plate of developing bovine ribs.

    PubMed Central

    Pandit, Sujata G; Govindraj, Prasanthi; Sasse, Joachim; Neame, Peter J; Hassell, John R

    2002-01-01

    Point mutations in the human fibroblast growth factor (FGF) receptor 3 gene (Fgfr3) produce a constitutively active receptor, which disrupts chondrocyte differentiation in the growth plate and results in skeletal dysplasias with severe shortening of the limbs. Alternative splicing of the Fgfr3 transcript gives rise to two isoforms, IIIc and IIIb, which vary in their specificity for FGF ligands. We examined the expression of these FGFR3 isoforms in the bovine fetal rib growth plate to determine whether levels of FGFR3 expression are zone-related. Transcripts for both Fgfr3 isoforms are expressed in rib growth plate, with maximum expression in the hypertrophic region and the least expression in the reserve zone. Fgfr3 IIIc is the predominant isoform in the growth plate. Western-blot analysis revealed the presence of full-length FGFR3 (135 kDa) for both isoforms in the reserve zone, a major 98 kDa fragment in all zones and smaller fragments primarily in the hypertrophic zone. Immunostaining localized FGFR3 to the pericellular region of reserve chondrocytes and to the extracellular matrix in the hypertrophic zone. These results suggest that the transmembrane form of FGFR3 increasingly undergoes proteolytic cleavage towards the hypertrophic zone to produce an extracellular-domain fragment of FGFR3, which is present in large amounts in the matrix of hypertrophic cells. These findings suggest a proteolytic regulatory mechanism for FGFR3, whereby Fgfr3 fragments could control availability of FGF for the intact receptor, and by which proteolysis could inactivate the receptor. PMID:11772395

  1. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  2. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4.

    PubMed Central

    Ren, Z. J.; Lewis, G. K.; Wingfield, P. T.; Locke, E. G.; Steven, A. C.; Black, L. W.

    1996-01-01

    Peptides fused to the coat proteins of filamentous phages have found widespread applications in antigen display, the construction of antibody libraries, and biopanning. However, such systems are limited in terms of the size and number of the peptides that may be incorporated without compromising the fusion proteins' capacity to self-assemble. We describe here a system in which the molecules to be displayed are bound to pre-assembled polymers. The polymers are T4 capsids and polyheads (tubular capsid variants) and the display molecules are derivatives of the dispensable capsid protein SOC. In one implementation, SOC and its fusion derivatives are expressed at high levels in Escherichia coli, purified in high yield, and then bound in vitro to separately isolated polyheads. In the other, a positive selection vector forces integration of the modified soc gene into a soc-deleted T4 genome, leading to in vivo binding of the display protein to progeny virions. The system is demonstrated as applied to C-terminal fusions to SOC of (1) a tetrapeptide; (2) the 43-residue V3 loop domain of gp120, the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein; and (3) poliovirus VP1 capsid protein (312 residues). SOC-V3 displaying phage were highly antigenic in mice and produced antibodies reactive with native gp120. That the fusion protein binds correctly to the surface lattice was attested in averaged electron micrographs of polyheads. The SOC display system is capable of presenting up to approximately 10(3) copies per capsid and > 10(4) copies per polyhead of V3-sized domains. Phage displaying SOC-VP1 were isolated from a 1:10(6) mixture by two cycles of a simple biopanning procedure, indicating that proteins of at least 35 kDa may be accommodated. PMID:8880907

  3. Changes in green coffee protein profiles during roasting.

    PubMed

    Montavon, Philippe; Mauron, Anne-France; Duruz, Eliane

    2003-04-01

    To reveal its flavor, coffee has to be roasted. In fact, the green coffee bean contains all ingredients necessary for the later development of coffee flavor. It is now widely accepted that free amino acids and peptides are required for the generation of coffee aroma. However, the mechanisms leading to defined mixtures of free amino acids and peptides remain unknown. Information pertaining to the identification of precursor proteins is also lacking. To answer some of these questions, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) was used to follow the fate of green coffee proteins. Two conditions were considered: roasting and incubation of green coffee suspensions at 37 degrees C. Coffee beans were observed to acquire the potential to spontaneously release H(2)O(2) upon polymerization of their proteins during roasting. Fragmentation of proteins was also observed. Conversely, H(2)O(2) was found to control polymerization and fragmentation of green coffee proteins in solution at 37 degrees C. Polymerization and fragmentation patterns under the two conditions were comparable. These observations suggest that the two conditions under study triggered, at least to some extent, similar biochemical mechanisms involving autoxidation. Throughout this study, a unique fragmentation cascade involving the 11S coffee storage protein was identified. Generated fragments shared an atypical staining behavior linked to their sensitivity to redox conditions. PMID:12670178

  4. The physics of intact capture

    NASA Technical Reports Server (NTRS)

    Tsou, Peter; Griffiths, D. J.; Albee, A. L.

    1994-01-01

    The ability to capture projectiles intact at hypervelocities in underdense media open a new area of study in physics. Underdense material behaves markedly different than solid, liquid, or gas upon hypervelocity impact. This new phenomenon enables applications in science that would either not be possible or would be very costly by other means. This phenomenon has been fully demonstrated in the laboratory and validated in space. Even more interesting is the fact that this hypervelocity intact capture was accomplished passively. A better understanding of the physics of intact capture will lead to improvements in intact capture. A collection of physical observations of this phenomenon is presented here.

  5. Analysis of 953 Human Proteins from a Mitochondrial HEK293 Fraction by Complexome Profiling

    PubMed Central

    Wessels, Hans J. C. T.; Vogel, Rutger O.; Lightowlers, Robert N.; Spelbrink, Johannes N.; Rodenburg, Richard J.; van den Heuvel, Lambert P.; van Gool, Alain J.; Gloerich, Jolein; Smeitink, Jan A. M.; Nijtmans, Leo G.

    2013-01-01

    Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP. PMID:23935861

  6. The effect of added protein on the interchain x-ray peak profile in egg lecithin.

    PubMed Central

    Brady, G W; Fein, D B

    1979-01-01

    The effect of added protein on the phospholipid interchain peak profile has been measured. The results indicate that the basic organization of the bilayer is preserved, and that the added protein affects only the arrangement of the lipid hydrocarbon chains in the first few adjacent layers. PMID:263628

  7. Impact of Profiling Technologies in the Understanding of Recombinant Protein Production

    NASA Astrophysics Data System (ADS)

    Vijayendran, Chandran; Flaschel, Erwin

    Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.

  8. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage.

    PubMed

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-15

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1×, DE3×, ME3×, NEL3×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P=0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P=0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P=0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P=0.09), RD of PB2 (29 vs. 62 g/kg CP, P=0.02), RD of CB2 (251 vs. 198 g/kg DM, P=0.06), RD of CB3 (236 vs. 261 g/kg CHO, P=0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P=0.06), and metabolic bioenergy (P=0.095). As to protein molecular structure, there were differences in protein structure 1st and 2nd amide groups (P

  9. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  10. The Up-Regulation of Ribosomal Proteins Further Regulates Protein Expression Profile in Female Schistosoma japonicum after Pairing

    PubMed Central

    Sun, Jun; Li, Chen; Wang, Suwen

    2015-01-01

    Background Pairing of Schistosoma males and females leads to and maintains female sexual maturation. However, the mechanism by which pairing facilitates sexual maturation of females is not clear. An increasing body of evidence suggests that ribosomal proteins have regulatory rather than constitutive roles in protein translation. Methodology/Principal Findings To investigate the effect of ribosome regulation on female sex maturation, Solexa and iTRAQ techniques were used to analyze the relationship between ribosomal gene or protein expression and sexual development of Schistosoma females. In the present study, considerably higher number of ribosomal genes or proteins were found to be differentially expressed in paired 23-day-old females. Moreover, mature female-specific proteins associated with egg production, such as ferritin-1 heavy chain and superoxide dismutase, were selectively highly expressed in paired females, rather than higher level of protein synthesis of all transcripts compared with those in unpaired 23-day-old females. Furthermore, other developmental stages were utilized to investigate different expression pattern of ribosomal proteins in females by analysing 18-day-old female schistosomula from single- or double-sex infections to determine the relationship between ribosomal protein expression pattern and development. Results showed that undeveloped 18-day-old females from single- and double-sex infections, as well as 23-day-old unpaired females, possessed similar ribosomal protein expression patterns, which were distinct from those in 23-day-old paired females. Conclusions/Significance Our findings reveal that the pairing of females and males triggers a specialized ribosomal protein expression profile which further regulates the protein profile for sexual maturation in Schistosoma japonicum, based on its gene expression profile. PMID:26070205

  11. Binding profile of spiramycin to oviducal proteins of laying hens.

    PubMed

    Furusawa, N

    2000-12-01

    In vitro protein binding of spiramycin (SP) in the plasma and oviducts of laying hens was studied. The data for SP were compared with those for oxytetracycline (OTC), sulphadimidine (SDD), sulphamonomethoxine (SMM) and sulphaquinoxaline (SQ). The two oviduct segments, magnum (M) and isthmus plus shell gland (IS), were collected. The soluble (cell sap) fractions from the magnum (M-S9) and the isthmus plus shell gland (IS-S9) were used as samples. Plasma protein binding was highest for SQ (81.4%) (P < 0.01), and lowest for SDD (30.9%) (P < 0.01). No M-S9 protein binding of OTC was found. The IS-S9 protein binding of SP (60.4%) was very much higher than those of OTC (0.8%), SDD (4.1%), SMM (4.0%) and SQ (12.3%) (P < 0.01). Biological half-lives of these drugs in egg albumen were directly correlated to the extent of their binding to IS proteins. Of plasma, M-S9 and IS-S9, variation in SP concentration in the ranges from 1 to 20 micrograms/ml did not alter the binding properties of the drug. PMID:11199206

  12. Optimization of Translation Profiles Enhances Protein Expression and Solubility

    PubMed Central

    Hess, Anne-Katrin; Saffert, Paul; Liebeton, Klaus; Ignatova, Zoya

    2015-01-01

    mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs) and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5’-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein. PMID:25965266

  13. Multidimensional profiling of cell surface proteins and nuclear markers

    SciTech Connect

    Han, Ju; Chang, Hang; Andarawewa, Kumari; Yaswen, Paul; Helen Barcellos-Hoff, Mary; Parvin, Bahram

    2009-01-30

    Cell membrane proteins play an important role in tissue architecture and cell-cell communication. We hypothesize that segmentation and multidimensional characterization of the distribution of cell membrane proteins, on a cell-by-cell basis, enable improved classification of treatment groups and identify important characteristics that can otherwise be hidden. We have developed a series of computational steps to (i) delineate cell membrane protein signals and associate them with a specific nucleus; (ii) compute a coupled representation of the multiplexed DNA content with membrane proteins; (iii) rank computed features associated with such a multidimensional representation; (iv) visualize selected features for comparative evaluation through heatmaps; and (v) discriminate between treatment groups in an optimal fashion. The novelty of our method is in the segmentation of the membrane signal and the multidimensional representation of phenotypic signature on a cell-by-cell basis. To test the utility of this method, the proposed computational steps were applied to images of cells that have been irradiated with different radiation qualities in the presence and absence of other small molecules. These samples are labeled for their DNA content and E-cadherin membrane proteins. We demonstrate that multidimensional representations of cell-by-cell phenotypes improve predictive and visualization capabilities among different treatment groups, and identify hidden variables.

  14. Specificity of interaction between carcinogenic polynuclear aromatic hydrocarbons and nuclear proteins: widespread occurrence of a restricted pattern of histone-binding in intact cells

    SciTech Connect

    MacLeod, M.C.; Pelling, J.C.; Slaga, T.J.; Nikbakht-Noghrei, P.A.; Mansfield, B.K.; Selkirk, J.K.

    1982-01-01

    Metabolic activation of benzo(a)pyrene (B(a)P) produces a number of potentially reactive metabolites. The endproducts of one metabolic pathway, 7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydro-B(a)P (BPDE) are responsible for essentially all DNA adduct formation in animal cells treated with B(a)P, and a particular stereoisomer, designated (+)-anti-BPDE is thought to be the ultimate carcinogenic derivative of B(a)P. In hamster embryo cell nuclei treated with (+)-anti-BPDE, two of the histones of the nucleosomal core, H3 and H2A, are covalently modified, while the remaining core histones, H4 and H2B, are essentially unmodified. All four purified core histones, however, serve as targets. 7,12-dimethylbenz(a)anthracene and 3-methylcholanthrene show the same pattern of histone binding in hamster embryo cells. Treatment of mouse embryo cells with (/sup 3/H)-BPDE results in covalent binding of the hydrocarbon to histones H3 and H2A among the many cellular targets, while histones H2B and H4 are not bound. Similar binding patterns are seen in mouse embryo cells, a permanent murine, fibroblastic cell line, and a human mammary epithelial cell line, T47D, treated with (/sup 3/H)B(a)P. Again, the histones are unevenly labeled, displaying the H3 and H2A pattern. Histone-binding in the human cells may also be mediated by BPDE. Similar BPDE binding patterns were observed in other murine and human cell lines and in primary cultures of murine epidermal epithelial cells. The restriction of histone H2B and H4 binding appears to be general when intact cultured cells are studied. This specificity was not observed in a mixed reconstituted system in which rat liver microsomes were used to activate B(a)P. This finding reinforces reservations concerning the use of microsomal systems to probe the interactions of carcinogens with macromolecules and the relationships of adduct formation with the processes of carcinogenesis. (ERB)

  15. Sensory and protein profiles of Mexican Chihuahua cheese.

    PubMed

    Paul, Moushumi; Nuñez, Alberto; Van Hekken, Diane L; Renye, John A

    2014-11-01

    Native microflora in raw milk cheeses, including the Mexican variety Queso Chihuahua, contribute to flavor development through degradation of milk proteins. The effects of proteolysis were studied in four different brands of Mexican Queso Chihuahua made from raw milk. All of the cheeses were analyzed for chemical and sensory characteristics. Sensory testing revealed that the fresh cheeses elicited flavors of young, basic cheeses, with slight bitter notes. Analysis by gel electrophoresis and reverse phase-high performance liquid chromatography (RP-HPLC) revealed that the Queseria Blumen (X) and Queseria Super Fino (Z) cheeses show little protein degradation over time while the Queseria America (W) and Queseria Lago Grande (Y) samples are degraded extensively when aged at 4 °C for 8 weeks. Analysis of the mixture of water-soluble cheese proteins by mass spectrometry revealed the presence of short, hydrophobic peptides in quantities correlating with bitterness. All cheese samples contained enterococcal strains known to produce enterocins. The W and Y cheese samples had the highest number of bacteria and exhibited greater protein degradation than that observed for the X and Z cheeses. PMID:26396342

  16. Space research with intact organisms

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Haddy, Francis J.

    1992-01-01

    Effects of space exposure on intact organisms are briefly reviewed, and examples of future experiments that might provide new information on the role of gravity in the evolution of life are suggested. It is noted that long term experiments with intact plant and animals for studying gravitational thresholds will provide important new insights.

  17. Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows.

    PubMed

    Pongthaisong, Pongphol; Katawatin, Suporn; Thamrongyoswittayakul, Chaiyapas; Roytrakul, Sittiruk

    2016-01-01

    The objective of this study was to investigate the milk protein profiles of normal milk and those of milk during the course of subclinical mastitis, caused by natural Streptococcus agalactiae infection. Two-dimensional gel electrophoresis and liquid chromatography mass spectrometry were used to assess protein profiles and to identify the proteins. The results showed that S. agalactiae subclinical mastitis altered the protein profiles of milk. Following Mascot database matching, 11 and 12 protein types were identified in the milk collected from healthy and S. agalactiae subclinical mastitic udders, respectively. The distinct presence of the antibacterial protein cathelicidin-1 was detected in infected milk samples, which in turn was highly correlated to the severity of subclinical mastitis as represented by the milk somatic cell count (r = 0.616), but not the bacterial count. The protein profile of milk reveals changes in the host response to S. agalactiae intramammary infection; cathelicidin-1 could therefore serve as a biomarker for the detection of subclinical mastitis in dairy cows. PMID:26632331

  18. Detection and identification of heat shock protein 10 as a biomarker in colorectal cancer by protein profiling.

    PubMed

    Melle, Christian; Bogumil, Ralf; Ernst, Günther; Schimmel, Bettina; Bleul, Annett; von Eggeling, Ferdinand

    2006-04-01

    Although colorectal cancer is one of the best-characterized tumors with regard to the multistep progression, it remains one of the most frequent and deadly neoplasms. For a better understanding of the molecular mechanisms behind the process of tumorigenesis and tumor progression, changes in protein expression between microdissected normal and tumorous colonic epithelium were analyzed. Cryostat sections from colorectal tumors, adenoma tissue, and adjacent normal mucosa were laser-microdissected and analyzed using ProteinChip Arrays. The derived MS profiles exhibited numerous statistical differences. One peak showing significantly high expression in the tumor was purified by reverse-phase chromatography and SDS-PAGE. The protein band of interest was passively eluted from the gel and identified as heat shock protein 10 (HSP 10) by tryptic digestion, peptide mapping, and MS/MS analysis. This tumor marker was further characterized by immunohistochemistry. Analysis of HSP 10-positive tissue by ProteinChip technology confirmed the identity of this protein. This work demonstrates that biomarker in colorectal cancer can be detected, identified, and assessed by a proteomic approach comprising tissue microdissection, protein profiling, and immunological techniques. In our experience, histological defined microdissected tissue areas should be used to identify proteins that might be responsible for tumorigenesis. PMID:16502466

  19. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds.

    PubMed

    Peng, Quanhui; Khan, Nazir A; Wang, Zhisheng; Yu, Peiqiang

    2014-01-01

    The objectives of the present study were to investigate the nutritive value of camelina seeds (Camelina sativa L. Crantz) in ruminant nutrition and to use molecular spectroscopy as a novel technique to quantify the heat-induced changes in protein molecular structures in relation to protein digestive behavior in the rumen and intestine of dairy cattle. In this study, camelina seeds were used as a model for feed protein. The seeds were kept as raw (control) or heated in an autoclave (moist heating) or in an air-draft oven (dry heating) at 120°C for 60 min. The parameters evaluated were (1) chemical profiles, (2) Cornell Net Protein and Carbohydrate System protein subfractions, (3) nutrient digestibilities and estimated energy values, (4) in situ rumen degradation and intestinal digestibility, and (5) protein molecular structures. Compared with raw seeds, moist heating markedly decreased (52.73 to 20.41%) the content of soluble protein and increased (2.00 to 9.01%) the content of neutral detergent insoluble protein in total crude protein (CP). Subsequently, the rapidly degradable Cornell Net Protein and Carbohydrate System CP fraction markedly decreased (45.06 to 16.69% CP), with a concomitant increase in the intermediately degradable (45.28 to 74.02% CP) and slowly degradable (1.13 to 8.02% CP) fractions, demonstrating a decrease in overall protein degradability in the rumen. The in situ rumen incubation study revealed that moist heating decreased (75.45 to 57.92%) rumen-degradable protein and increased (43.90 to 82.95%) intestinal digestibility of rumen-undegradable protein. The molecular spectroscopy study revealed that moist heating increased the amide I-to-amide II ratio and decreased α-helix and α-helix-to-β-sheet ratio. In contrast, dry heating did not significantly change CP solubility, rumen degradability, intestinal digestibility, and protein molecular structures compared with the raw seeds. Our results indicated that, compared with dry heating, moist

  20. Exploration of high-density protein microarrays for antibody validation and autoimmunity profiling.

    PubMed

    Sjöberg, Ronald; Mattsson, Cecilia; Andersson, Eni; Hellström, Cecilia; Uhlen, Mathias; Schwenk, Jochen M; Ayoglu, Burcu; Nilsson, Peter

    2016-09-25

    High-density protein microarrays of recombinant human protein fragments, representing 12,412 unique Ensembl Gene IDs, have here been produced and explored. These protein microarrays were used to analyse antibody off-target interactions, as well as for profiling the human autoantibody repertoire in plasma against the antigens represented by the protein fragments. Affinity-purified polyclonal antibodies produced within the Human Protein Atlas (HPA) were analysed on microarrays of three different sizes, ranging from 384 antigens to 21,120 antigens, for evaluation of the antibody validation criteria in the HPA. Plasma samples from secondary progressive multiple sclerosis patients were also screened in order to explore the feasibility of these arrays for broad-scale profiling of autoantibody reactivity. Furthermore, analysis on these near proteome-wide microarrays was complemented with analysis on HuProt™ Human Proteome protein microarrays. The HPA recombinant protein microarray with 21,120 antigens and the HuProt™ Human Proteome protein microarray are currently the largest protein microarray platforms available to date. The results on these arrays show that the Human Protein Atlas antibodies have few off-target interactions if the antibody validation criteria are kept stringent and demonstrate that the HPA-produced high-density recombinant protein fragment microarrays allow for a high-throughput analysis of plasma for identification of possible autoantibody targets in the context of various autoimmune conditions. PMID:26417875

  1. Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry*

    PubMed Central

    Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2010-01-01

    Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues. PMID:20445003

  2. Protein profiling of hemocytes from the terrestrial crustacean Armadillidium vulgare.

    PubMed

    Herbinière, Juline; Grève, Pierre; Strub, Jean-Marc; Thiersé, Danièle; Raimond, Maryline; van Dorsselaer, Alain; Martin, Gilbert; Braquart-Varnier, Christine

    2008-01-01

    To establish and maintain a successful infection, microbial pathogens have evolved various strategies to infect the host in the face of a functional immune system. In this context, the alpha-proteobacteria Wolbachia capacities to infect new host species have been greatly evidenced. Indeed, in terrestrial isopods, experimentally transferred Wolbachia invade all host tissues, including immune cells such as hemocytes. To investigate mechanisms that have to be avoided by bacteria to maintain themselves in hemocytes, we characterized the hemocyte proteome of Armadillidium vulgare by a 2D gel electrophoresis approach. Fifty-six proteins were identified and classified into functional groups (stress and immunity, glucose metabolisms, cytoskeleton, others). We focused on immune response and cytoskeleton proteins often exploited by bacteria to invade their host. From the microsequences obtained by mass spectrometry, PCR primers were designed to amplify seven partial cDNAs encoding masquerade, alpha2-macroglobulin, transglutaminase, MnSOD, calreticulin, cyclophilin, and vinculin, confirming their expression in hemocytes. PMID:18329099

  3. β-Apo-10'-carotenoids Modulate Placental Microsomal Triglyceride Transfer Protein Expression and Function to Optimize Transport of Intact β-Carotene to the Embryo.

    PubMed

    Costabile, Brianna K; Kim, Youn-Kyung; Iqbal, Jahangir; Zuccaro, Michael V; Wassef, Lesley; Narayanasamy, Sureshbabu; Curley, Robert W; Harrison, Earl H; Hussain, M Mahmood; Quadro, Loredana

    2016-08-26

    β-Carotene is an important source of vitamin A for the mammalian embryo, which depends on its adequate supply to achieve proper organogenesis. In mammalian tissues, β-carotene 15,15'-oxygenase (BCO1) converts β-carotene to retinaldehyde, which is then oxidized to retinoic acid, the biologically active form of vitamin A that acts as a transcription factor ligand to regulate gene expression. β-Carotene can also be cleaved by β-carotene 9',10'-oxygenase (BCO2) to form β-apo-10'-carotenal, a precursor of retinoic acid and a transcriptional regulator per se The mammalian embryo obtains β-carotene from the maternal circulation. However, the molecular mechanisms that enable its transfer across the maternal-fetal barrier are not understood. Given that β-carotene is transported in the adult bloodstream by lipoproteins and that the placenta acquires, assembles, and secretes lipoproteins, we hypothesized that the aforementioned process requires placental lipoprotein biosynthesis. Here we show that β-carotene availability regulates transcription and activity of placental microsomal triglyceride transfer protein as well as expression of placental apolipoprotein B, two key players in lipoprotein biosynthesis. We also show that β-apo-10'-carotenal mediates the transcriptional regulation of microsomal triglyceride transfer protein via hepatic nuclear factor 4α and chicken ovalbumin upstream promoter transcription factor I/II. Our data provide the first in vivo evidence of the transcriptional regulatory activity of β-apocarotenoids and identify microsomal triglyceride transfer protein and its transcription factors as the targets of their action. This study demonstrates that β-carotene induces a feed-forward mechanism in the placenta to enhance the assimilation of β-carotene for proper embryogenesis. PMID:27402843

  4. Proteomic profiling of camel and cow milk proteins under heat treatment.

    PubMed

    Felfoul, Imène; Jardin, Julien; Gaucheron, Frédéric; Attia, Hamadi; Ayadi, M A

    2017-02-01

    Cow and camel milk proteins before and after heat treatment at 80°C for 60min were identified using LC/MS and LC-MS/MS following monodimensional electrophoresis. The database used for the identification of camel and cow proteins was set from http://www.uniprot.org/. The obtained results showed that, after heating, camel milk at 80°C for 60min, camel α-lactalbumin (α-la) and peptidoglycan recognition protein (PGRP) were not detected while camel serum albumin (CSA) was significantly diminished. When heating cow milk at 80°C for 60min, α-lactalbumin (α-la) and β-lactoglobulin (β-lg) were not significantly detected. Moreover, 19 protein bands from SDS-PAGE were analyzed and a total of 45 different proteins were identified by LC-MS/MS. Casein fractions were kept intact under a heat treatment of 80°C during 60min of both camel and cow milks. Camel and bovine whey proteins were affected by a heat treatment of 80°C for 60min. PMID:27596405

  5. Z-scan Fluorescence Profile Deconvolution of Cytosolic and Membrane-associated Protein Populations

    PubMed Central

    Smith, Elizabeth M.; Hennen, Jared; Chen, Yan; Mueller, Joachim D.

    2015-01-01

    This study introduces a technique that characterizes the spatial distribution of peripheral membrane proteins that associate reversibly with the plasma membrane. An axial scan through the cell generates a z-scan intensity profile of a fluorescently labeled peripheral membrane protein. This profile is analytically separated into membrane and cytoplasmic components by accounting for both the cell geometry and the point spread function. We experimentally validated the technique and characterized both the resolvability and stability of z-scan measurements. Further, using the cellular brightness of green fluorescent protein, we were able to convert the fluorescence intensities into concentrations at the membrane and in the cytoplasm. We applied the technique to study the translocation of the pleckstrin homology domain of phospholipase C-delta1 labeled with green fluorescent protein upon ionomycin treatment. Analysis of the z-scan fluorescence profiles revealed protein-specific cell height changes and allowed for comparison between the observed fluorescence changes and predictions based on the cellular surface area to volume ratio. The quantitative capability of z-scan fluorescence profile deconvolution offers opportunities for investigating peripheral membrane proteins in the living cell that were previously not accessible. PMID:25862080

  6. Proteomic profiling of neuromas reveals alterations in protein composition and local protein synthesis in hyper-excitable nerves

    PubMed Central

    Huang, Hong-Lei; Cendan, Cruz-Miguel; Roza, Carolina; Okuse, Kenji; Cramer, Rainer; Timms, John F; Wood, John N

    2008-01-01

    Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis (2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a >1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel α2δ-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S35methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability. PMID:18700027

  7. Isotope Coded Labeling for Accelerated Protein Interaction Profiling using MS

    PubMed Central

    Venable, John D.; Steckler, Caitlin; Ou, Weijia; Grünewald, Jan; Agarwalla, Sanjay; Brock, Ansgar

    2015-01-01

    Protein interaction surface mapping using MS is widely applied but comparatively resource intensive. Here a workflow adaptation for use of isotope coded tandem mass tags for the purpose is reported. The key benefit of improved throughput derived from sample acquisition multiplexing and automated analysis is shown to be maintained in the new application. Mapping of the epitopes of two monoclonal antibodies on their respective targets serves to illustrate the novel approach. We conclude that the approach enables mapping of interactions by MS at significantly larger scales than hereto possible. PMID:26151661

  8. Peritoneal culture alters Streptococcus pneumoniae protein profiles and virulence properties

    NASA Technical Reports Server (NTRS)

    Orihuela, C. J.; Janssen, R.; Robb, C. W.; Watson, D. A.; Niesel, D. W.

    2000-01-01

    We have examined the properties of Streptococcus pneumoniae cultured in the murine peritoneal cavity and compared its virulence-associated characteristics to those of cultures grown in vitro. Analysis of mRNA levels for specific virulence factors demonstrated a 2.8-fold increase in ply expression and a 2.2-fold increase in capA3 expression during murine peritoneal culture (MPC). Two-dimensional gels and immunoblots using convalescent-phase patient sera and murine sera revealed distinct differences in protein production in vivo (MPC). MPC-grown pneumococci adhered to A549 epithelial cell lines at levels 10-fold greater than those cultured in vitro.

  9. IntAct: an open source molecular interaction database

    PubMed Central

    Hermjakob, Henning; Montecchi-Palazzi, Luisa; Lewington, Chris; Mudali, Sugath; Kerrien, Samuel; Orchard, Sandra; Vingron, Martin; Roechert, Bernd; Roepstorff, Peter; Valencia, Alfonso; Margalit, Hanah; Armstrong, John; Bairoch, Amos; Cesareni, Gianni; Sherman, David; Apweiler, Rolf

    2004-01-01

    IntAct provides an open source database and toolkit for the storage, presentation and analysis of protein interactions. The web interface provides both textual and graphical representations of protein interactions, and allows exploring interaction networks in the context of the GO annotations of the interacting proteins. A web service allows direct computational access to retrieve interaction networks in XML format. IntAct currently contains ∼2200 binary and complex interactions imported from the literature and curated in collaboration with the Swiss-Prot team, making intensive use of controlled vocabularies to ensure data consistency. All IntAct software, data and controlled vocabularies are available at http://www.ebi.ac.uk/intact. PMID:14681455

  10. IntAct: an open source molecular interaction database.

    PubMed

    Hermjakob, Henning; Montecchi-Palazzi, Luisa; Lewington, Chris; Mudali, Sugath; Kerrien, Samuel; Orchard, Sandra; Vingron, Martin; Roechert, Bernd; Roepstorff, Peter; Valencia, Alfonso; Margalit, Hanah; Armstrong, John; Bairoch, Amos; Cesareni, Gianni; Sherman, David; Apweiler, Rolf

    2004-01-01

    IntAct provides an open source database and toolkit for the storage, presentation and analysis of protein interactions. The web interface provides both textual and graphical representations of protein interactions, and allows exploring interaction networks in the context of the GO annotations of the interacting proteins. A web service allows direct computational access to retrieve interaction networks in XML format. IntAct currently contains approximately 2200 binary and complex interactions imported from the literature and curated in collaboration with the Swiss-Prot team, making intensive use of controlled vocabularies to ensure data consistency. All IntAct software, data and controlled vocabularies are available at http://www.ebi.ac.uk/intact. PMID:14681455

  11. Detecting protein candidate fragments using a structural alphabet profile comparison approach.

    PubMed

    Shen, Yimin; Picord, Géraldine; Guyon, Frédéric; Tuffery, Pierre

    2013-01-01

    Predicting accurate fragments from sequence has recently become a critical step for protein structure modeling, as protein fragment assembly techniques are presently among the most efficient approaches for de novo prediction. A key step in these approaches is, given the sequence of a protein to model, the identification of relevant fragments - candidate fragments - from a collection of the available 3D structures. These fragments can then be assembled to produce a model of the complete structure of the protein of interest. The search for candidate fragments is classically achieved by considering local sequence similarity using profile comparison, or threading approaches. In the present study, we introduce a new profile comparison approach that, instead of using amino acid profiles, is based on the use of predicted structural alphabet profiles, where structural alphabet profiles contain information related to the 3D local shapes associated with the sequences. We show that structural alphabet profile-profile comparison can be used efficiently to retrieve accurate structural fragments, and we introduce a fully new protocol for the detection of candidate fragments. It identifies fragments specific of each position of the sequence and of size varying between 6 and 27 amino-acids. We find it outperforms present state of the art approaches in terms (i) of the accuracy of the fragments identified, (ii) the rate of true positives identified, while having a high coverage score. We illustrate the relevance of the approach on complete target sets of the two previous Critical Assessment of Techniques for Protein Structure Prediction (CASP) rounds 9 and 10. A web server for the approach is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/SAFrag. PMID:24303019

  12. Detecting Protein Candidate Fragments Using a Structural Alphabet Profile Comparison Approach

    PubMed Central

    Shen, Yimin; Picord, Géraldine; Guyon, Frédéric; Tuffery, Pierre

    2013-01-01

    Predicting accurate fragments from sequence has recently become a critical step for protein structure modeling, as protein fragment assembly techniques are presently among the most efficient approaches for de novo prediction. A key step in these approaches is, given the sequence of a protein to model, the identification of relevant fragments - candidate fragments - from a collection of the available 3D structures. These fragments can then be assembled to produce a model of the complete structure of the protein of interest. The search for candidate fragments is classically achieved by considering local sequence similarity using profile comparison, or threading approaches. In the present study, we introduce a new profile comparison approach that, instead of using amino acid profiles, is based on the use of predicted structural alphabet profiles, where structural alphabet profiles contain information related to the 3D local shapes associated with the sequences. We show that structural alphabet profile-profile comparison can be used efficiently to retrieve accurate structural fragments, and we introduce a fully new protocol for the detection of candidate fragments. It identifies fragments specific of each position of the sequence and of size varying between 6 and 27 amino-acids. We find it outperforms present state of the art approaches in terms (i) of the accuracy of the fragments identified, (ii) the rate of true positives identified, while having a high coverage score. We illustrate the relevance of the approach on complete target sets of the two previous Critical Assessment of Techniques for Protein Structure Prediction (CASP) rounds 9 and 10. A web server for the approach is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/SAFrag. PMID:24303019

  13. Discovering short linear protein motif based on selective training of profile hidden Markov models.

    PubMed

    Song, Tao; Gu, Hong

    2015-07-21

    Short linear motifs (SLiMs) in proteins are relatively conservative sequence patterns within disordered regions of proteins, typically 3-10 amino acids in length. They play an important role in mediating protein-protein interactions. Discovering SLiMs by computational methods has attracted more and more attention, most of which were based on regular expressions and profiles. In this paper, a de novo motif discovery method was proposed based on profile hidden Markov models (HMMs), which can not only provide the emission probabilities of amino acids in the defined positions of SLiMs, but also model the undefined positions. We adopted the ordered region masking and the relative local conservation (RLC) masking to improve the signal to noise ratio of the query sequences while applying evolutionary weighting to make the important sequences in evolutionary process get more attention by the selective training of profile HMMs. The experimental results show that our method and the profile-based method returned different subsets within a SLiMs dataset, and the performance of the two approaches are equivalent on a more realistic discovery dataset. Profile HMM-based motif discovery methods complement the existing methods and provide another way for SLiMs analysis. PMID:25791288

  14. Tongue sole (Cynoglossus semilaevis) prothymosin alpha: Cytokine-like activities associated with the intact protein and the C-terminal region that lead to antiviral immunity via Myd88-dependent and -independent pathways respectively.

    PubMed

    Zhang, Bao-cun; Sun, Li

    2015-11-01

    Prothymosin alpha (ProTα) is a small protein that in mammals is known to participate in diverse biological processes including immunomodulation. In teleost, the immunological function of ProTα is unknown. In the current study, we investigated the expression and function of the ProTα (named CsProTα) from the teleost fish tongue sole (Cynoglossus semilaevis). We found that CsProTα expression was abundant in immune relevant tissues and upregulated by megalocytivirus infection. Immunoblot detected secretion of CsProTα by peripheral blood leukocytes. Recombinant CsProTα (rCsProTα) as well as the C-terminal 11-residue (Ct11) were able to bind head kidney monocytes (HKM) and induce immune gene expression; however, the induction patterns caused by rCsProTα and Ct11 differed considerably. When introduced in vivo, rCsProTα and Ct11 significantly reduced megalocytivirus infection in fish tissues, whereas rCsProTα antibody significantly promoted viral replication. Blocking of Myd88 activity abolished the virus-inhibitory effect of rCsProTα but not Ct11. Taken together, these results demonstrate for the first time that both the intact protein and the C-terminal segment of a teleost ProTα can act like cytokines and induce antiviral immunity via, however, distinct signaling pathways that differ in the requirement of Myd88. PMID:26162512

  15. The Three Fungal Transmembrane Nuclear Pore Complex Proteins of Aspergillus nidulans Are Dispensable in the Presence of an Intact An-Nup84-120 Complex

    PubMed Central

    Liu, Hui-Lin; De Souza, Colin P.C.; Osmani, Aysha H.

    2009-01-01

    In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup. PMID:19019988

  16. Characterization and stability of transthyretin isoforms in cerebrospinal fluid examined by immunoprecipitation and high-resolution mass spectrometry of intact protein.

    PubMed

    Poulsen, Keld; Bahl, Justyna M C; Tanassi, Julia T; Simonsen, Anja H; Heegaard, Niels H H

    2012-02-01

    Post-translational modifications (PTMs) contribute significantly to the complexity of proteins. PTMs may vary in certain patterns according to diseases and microenviroments making them potential markers for pathological processes. Human transthyretin (TTR) is a transporter of thyroxine and retinol in blood and cerebrospinal fluid (CSF). A single free cysteine thiol group in TTR possesses the ability to form mixed disulfides potentially related to diseases such as TTR amyloidosis and Alzheimer's disease (AD). Additionally, TTR-Cys10 S-thiolations might mirror the oxidative stress and redox balance of CSF. Here we describe a quick and gentle method for immunoprecipitating (IP) TTR from CSF with minimal introduction of sample-handling artifacts. A high-resolution mass spectrometer (LTQ-Orbitrap XL) was used in a simple setup with direct infusion that generates data suitable for confident assignment of TTR isoforms and validation of the protocol. Moreover, we demonstrate how simple storage of CSF at 4°C induces major oxidative modifications of TTR. Using the optimized method, we show data from a limited number of mild cognitive impairment (MCI) and AD patients. The protocol controls and minimizes the introduction of sample-handling artifacts during purification of TTR isoforms for high-resolution MS analysis. PMID:22286025

  17. Vectorially oriented membrane protein monolayers: profile structures via x-ray interferometry/holography.

    PubMed Central

    Chupa, J A; McCauley, J P; Strongin, R M; Smith, A B; Blasie, J K; Peticolas, L J; Bean, J C

    1994-01-01

    X-ray interferometry/holography was applied to meridional x-ray diffraction data to determine uniquely the profile structures of a single monolayer of an integral membrane protein and a peripheral membrane protein, each tethered to the surface of a solid inorganic substrate. Bifunctional, organic self-assembled monolayers (SAMs) were utilized to tether the proteins to the surface of Ge/Si multilayer substrates, fabricated by molecular beam epitaxy, to facilitate the interferometric/holographic x-ray structure determination. The peripheral membrane protein yeast cytochrome c was covalently tethered to the surface of a sulfhydryl-terminated 11-siloxyundecanethiol SAM via a disulfide linkage with residue 102. The detergent-solubilized, photosynthetic reaction center integral membrane protein was electrostatically tethered to the surface of an analogous amine-terminated SAM. Optical absorption measurements performed on these two tethered protein monolayer systems were consistent with the x-ray diffraction results indicating the reversible formation of densely packed single monolayers of each fully functional membrane protein on the surface of the respective SAM. The importance of utilizing the organic self-assembled monolayers (as opposed to Langmuir-Blodgett) lies in their ability to tether specifically both soluble peripheral membrane proteins and detergent-solubilized integral membrane proteins. The vectorial orientations of the cytochrome c and the reaction center molecules were readily distinguishable in the profile structure of each monolayer at a spatial resolution of 7 A. Images FIGURE 9 FIGURE 10 PMID:7919004

  18. dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation.

    PubMed

    Chen, Junjie; Long, Ren; Wang, Xiao-Long; Liu, Bin; Chou, Kuo-Chen

    2016-01-01

    Protein remote homology detection is an important task in computational proteomics. Some computational methods have been proposed, which detect remote homology proteins based on different features and algorithms. As noted in previous studies, their predictive results are complementary to each other. Therefore, it is intriguing to explore whether these methods can be combined into one package so as to further enhance the performance power and application convenience. In view of this, we introduced a protein representation called profile-based pseudo protein sequence to extract the evolutionary information from the relevant profiles. Based on the concept of pseudo proteins, a new predictor, called "dRHP-PseRA", was developed by combining four state-of-the-art predictors (PSI-BLAST, HHblits, Hmmer, and Coma) via the rank aggregation approach. Cross-validation tests on a SCOP benchmark dataset have demonstrated that the new predictor has remarkably outperformed any of the existing methods for the same purpose on ROC50 scores. Accordingly, it is anticipated that dRHP-PseRA holds very high potential to become a useful high throughput tool for detecting remote homology proteins. For the convenience of most experimental scientists, a web-server for dRHP-PseRA has been established at http://bioinformatics.hitsz.edu.cn/dRHP-PseRA/. PMID:27581095

  19. dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation

    PubMed Central

    Chen, Junjie; Long, Ren; Wang, Xiao-long; Liu, Bin; Chou, Kuo-Chen

    2016-01-01

    Protein remote homology detection is an important task in computational proteomics. Some computational methods have been proposed, which detect remote homology proteins based on different features and algorithms. As noted in previous studies, their predictive results are complementary to each other. Therefore, it is intriguing to explore whether these methods can be combined into one package so as to further enhance the performance power and application convenience. In view of this, we introduced a protein representation called profile-based pseudo protein sequence to extract the evolutionary information from the relevant profiles. Based on the concept of pseudo proteins, a new predictor, called “dRHP-PseRA”, was developed by combining four state-of-the-art predictors (PSI-BLAST, HHblits, Hmmer, and Coma) via the rank aggregation approach. Cross-validation tests on a SCOP benchmark dataset have demonstrated that the new predictor has remarkably outperformed any of the existing methods for the same purpose on ROC50 scores. Accordingly, it is anticipated that dRHP-PseRA holds very high potential to become a useful high throughput tool for detecting remote homology proteins. For the convenience of most experimental scientists, a web-server for dRHP-PseRA has been established at http://bioinformatics.hitsz.edu.cn/dRHP-PseRA/. PMID:27581095

  20. Selectivity analysis of single binder assays used in plasma protein profiling

    PubMed Central

    Neiman, Maja; Fredolini, Claudia; Johansson, Henrik; Lehtiö, Janne; Nygren, Per-Åke; Uhlén, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2013-01-01

    The increasing availability of antibodies toward human proteins enables broad explorations of the proteomic landscape in cells, tissues, and body fluids. This includes assays with antibody suspension bead arrays that generate protein profiles of plasma samples by flow cytometer analysis. However, antibody selectivity is context dependent so it is necessary to corroborate on-target detection over off-target binding. To address this, we describe a concept to directly verify interactions from antibody-coupled beads by analysis of their eluates by Western blots and MS. We demonstrate selective antibody binding in complex samples with antibodies toward a set of chosen proteins with different abundance in plasma and serum, and illustrate the need to adjust sample and bead concentrations accordingly. The presented approach will serve as an important tool for resolving differential protein profiles from antibody arrays within plasma biomarker discoveries. PMID:24151238

  1. Plasma Biomarker Discovery Using 3D Protein Profiling Coupled with Label-Free Quantitation

    PubMed Central

    Beer, Lynn A.; Tang, Hsin-Yao; Barnhart, Kurt T.; Speicher, David W.

    2011-01-01

    In-depth quantitative profiling of human plasma samples for biomarker discovery remains quite challenging. One promising alternative to chemical derivatization with stable isotope labels for quantitative comparisons is direct, label-free, quantitative comparison of raw LC–MS data. But, in order to achieve high-sensitivity detection of low-abundance proteins, plasma proteins must be extensively pre-fractionated, and results from LC–MS runs of all fractions must be integrated efficiently in order to avoid misidentification of variations in fractionation from sample to sample as “apparent” biomarkers. This protocol describes a powerful 3D protein profiling method for comprehensive analysis of human serum or plasma proteomes, which combines abundant protein depletion and high-sensitivity GeLC–MS/MS with label-free quantitation of candidate biomarkers. PMID:21468938

  2. Human recombinant interferon-inducible protein-10: intact disulfide bridges are not required for inhibition of hematopoietic progenitors and chemotaxis of T lymphocytes and monocytes.

    PubMed

    Crow, M; Taub, D D; Cooper, S; Broxmeyer, H E; Sarris, A H

    2001-02-01

    Human recombinant interferon-inducible protein-10 (rIP-10), a C-X-C chemokine, inhibits proliferation of human hematopoietic progenitors responsive to co-stimulation by recombinant steel factor (rSLF), is chemotactic for human monocytes and T-lymphocytes, and promotes T-lymphocyte adhesion to endothelial cells. Because chemokines have four conserved cysteines forming two intramolecular disulfide bridges, we decided to investigate their contribution in the biological activity of rIP-10. Since amino acid residues 22-98 of the sequence predicted by the cDNA constitute the naturally occurring IP-10, they were cloned after an initiating methionine into expression vector pET-3d. Subsequently rIP-10 was purified by enzymatic cell lysis, solubilization of refractile bodies with guanidine hydrochloride, renaturation by dialysis against dilute acetic acid, and sequential ion-exchange and reverse-phase high-performance liquid chromatography. Purified rIP-10 was reduced with 20 mM dithiothreitol, and chemically modified with 100 mM iodoacetamide (IAA), or S-methyl-methanethiosulfonate (MMTS), or N-methylmaleimide (NMM). Radiolabeling experiments demonstrated that 95% of the rIP-10 thiols were modified, and this was confirmed with SDS-PAGE. The biological activity of modified rIP-10 was determined in vitro by inhibition of rSLF-responsive human bone marrow hematopoietic progenitor proliferation and by chemotaxis assays using human T-lymphocytes and monocytes. In both assay systems, the biological activity was evident at rIP-10 concentrations of 20-100 ng/ml. The activity was preserved after modification of rIP-10 by IAA or MMTS, but was abolished after modification by NMM. We conclude that disulfide bridges are not essential for the biological activity of rIP-10. PMID:11276368

  3. DNA Binding Mode Transitions of Escherichia coli HUαβ: Evidence for Formation of a Bent DNA – Protein Complex on Intact, Linear Duplex DNA

    PubMed Central

    Koh, Junseock; Saecker, Ruth M.; Record, M. Thomas

    2008-01-01

    Escherichia coli HUαβ, a major nucleoid associated protein (NAP), organizes the DNA chromosome and facilitates numerous DNA transactions. Using isothermal titration calorimetry (ITC), fluorescence resonance energy transfer (FRET) and a series of DNA lengths (8, 15, 34, 38 and 160 base pairs) we establish that HUαβ interacts with duplex DNA using three different nonspecific binding modes. Both the HU to DNA mole ratio ([HU]/[DNA]) and DNA length dictate the dominant HU binding mode. On sufficiently long DNA (≥ 34 base pairs), at low [HU]/[DNA], HU populates a noncooperative 34 bp binding mode with a binding constant of 2.1 (± 0.4) × 106 M−1, and a binding enthalpy of +7.7 (± 0.6) kcal/mol at 15 °C and 0.15 M Na+. With increasing [HU]/[DNA], HU bound in the noncooperative 34 bp mode progressively converts to two cooperative (ω ~ 20) modes with site sizes of 10 bp and 6 bp. These latter modes exhibit smaller binding constants (1.1 (± 0.2) × 105 M−1 for the 10 bp mode, 3.5 (± 1.4) × 104 M−1 for the 6 bp mode) and binding enthalpies (4.2 (± 0.3) kcal/mol for the 10 bp mode, −1.6 (±0.3) kcal/mol for the 6 bp mode). As DNA length increases to 34 bp or more at low [HU]/[DNA], the small modes are replaced by the 34 bp binding mode. FRET data demonstrate that the 34 bp mode bends DNA by 143 ± 6° whereas the 6 and 10 bp modes do not. The model proposed in this study provides a novel quantitative and comprehensive framework for reconciling previous structural and solution studies of HU, including single molecule (force extension measurement, AFM), fluorescence, and electrophoretic gel mobility shift assays. In particular, it explains how HU condenses or extends DNA depending on the relative concentrations of HU and DNA. PMID:18657548

  4. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  5. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  6. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles

    PubMed Central

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G.; Gelly, Jean-Christophe

    2016-01-01

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation —with Protein Blocks—, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the ‘Hard’ category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/. PMID:27319297

  7. Inflammatory Serum Protein Profiling of Patients with Lumbar Radicular Pain One Year after Disc Herniation.

    PubMed

    Moen, Aurora; Lind, Anne-Li; Thulin, Måns; Kamali-Moghaddam, Masood; Røe, Cecilie; Gjerstad, Johannes; Gordh, Torsten

    2016-01-01

    Earlier studies suggest that lumbar radicular pain following disc herniation may be associated with a local or systemic inflammatory process. In the present study, we investigated the serum inflammatory protein profile of such patients. All 45 patients were recruited from Oslo University Hospital, Ullevål, Norway, during the period 2007-2009. The new multiplex proximity extension assay (PEA) technology was used to analyze the levels of 92 proteins. Interestingly, the present data showed that patients with radicular pain 12 months after disc herniation may be different from other patients with regard to many measurable serum cytokines. Given a false discovery rate (FDR) of 0.10 and 0.05, we identified 41 and 13 proteins, respectively, which were significantly upregulated in the patients with severe pain one year after disc herniation. On the top of the list ranked by estimated increase we found C-X-C motif chemokine 5 (CXCM5; 217% increase), epidermal growth factor (EGF; 142% increase), and monocyte chemotactic protein 4 (MCP-4; 70% increase). Moreover, a clear overall difference in the serum cytokine profile between the chronic and the recovered patients was demonstrated. Thus, the present results may be important for future protein serum profiling of lumbar radicular pain patients with regard to prognosis and choice of treatment. We conclude that serum proteins may be measurable molecular markers of persistent pain after disc herniation. PMID:27293953

  8. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles.

    PubMed

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe

    2016-01-01

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/. PMID:27319297

  9. Inflammatory Serum Protein Profiling of Patients with Lumbar Radicular Pain One Year after Disc Herniation

    PubMed Central

    Moen, Aurora; Lind, Anne-Li; Thulin, Måns; Kamali-Moghaddam, Masood; Røe, Cecilie; Gordh, Torsten

    2016-01-01

    Earlier studies suggest that lumbar radicular pain following disc herniation may be associated with a local or systemic inflammatory process. In the present study, we investigated the serum inflammatory protein profile of such patients. All 45 patients were recruited from Oslo University Hospital, Ullevål, Norway, during the period 2007–2009. The new multiplex proximity extension assay (PEA) technology was used to analyze the levels of 92 proteins. Interestingly, the present data showed that patients with radicular pain 12 months after disc herniation may be different from other patients with regard to many measurable serum cytokines. Given a false discovery rate (FDR) of 0.10 and 0.05, we identified 41 and 13 proteins, respectively, which were significantly upregulated in the patients with severe pain one year after disc herniation. On the top of the list ranked by estimated increase we found C-X-C motif chemokine 5 (CXCM5; 217% increase), epidermal growth factor (EGF; 142% increase), and monocyte chemotactic protein 4 (MCP-4; 70% increase). Moreover, a clear overall difference in the serum cytokine profile between the chronic and the recovered patients was demonstrated. Thus, the present results may be important for future protein serum profiling of lumbar radicular pain patients with regard to prognosis and choice of treatment. We conclude that serum proteins may be measurable molecular markers of persistent pain after disc herniation. PMID:27293953

  10. Protein profile in vascular wall of atherosclerotic mice analyzed ex vivo using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Wrobel, Tomasz P.; Majzner, Katarzyna; Baranska, Malgorzata

    2012-10-01

    The structure of proteins in a tissue can undergo changes on account of disease state such as diabetes or atherosclerosis. In this work the protein profile in atherosclerotic tissue is monitored by FT-IR imaging coupled with Hierarchical Cluster Analysis (HCA). Additionally, a model for prediction of secondary structure of proteins content based on amide I and II range is used to show the distribution of analyzed proteins. A new protein class emerged in atherosclerotic tissue in the region of the plaque and additionally the plaque was found to be strongly mixed with smooth muscle cell. The calculated secondary structure contents of proteins in atherosclerotic tissue in comparison to healthy tissue showed an increase of structures related to beta-sheet (E and T) and a decrease of helical (H) and unassigned arrangements.

  11. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  12. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    PubMed

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-01-01

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro. PMID:26516115

  13. SHOTGUN PROTEOMICS: IDENTIFICATION OF UNIQUE PROTEIN PROFILES OF APOPTOTIC BODIES FROM BILIARY EPITHELIAL CELLS

    PubMed Central

    Lleo, Ana; Zhang, Weici; McDonald, W. Hayes; Seeley, Erin H.; Leung, Patrick S.C.; Coppel, Ross L.; Ansari, Aftab A.; Adams, David H.; Afford, Simon; Invernizzi, Pietro; Gershwin, M. Eric

    2014-01-01

    Shotgun proteomics is a powerful analytic method to characterize complex protein mixtures in combination with multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). We have used this platform for proteomic characterization of apoptotic bodies in efforts to define the complex protein mixtures found in primary cultures of human intrahepatic biliary epithelial cells (HiBEC), human renal proximal tubular epithelial cells, human bronchial epithelial cells, isolated intrahepatic biliary epithelial cells from explanted primary biliary cirrhosis (PBC) and control liver, using a total of 24 individual samples. Further, as additional controls and for purposes of comparison, proteomic signatures were also obtained from intact cells and apoptotic bodies. The data obtained from LC-MS/MS, combined with database searches and protein assembly algorithms, allowed us to address significant differences in protein spectral counts and identify unique pathways that may be a component to the induction of the signature inflammatory cytokine response against BECs, including the Notch signaling pathway, IL8, IL6, CXCR2 and integrin signaling. Indeed there are 11 proteins that localize specifically to apoptotic bodies of HiBEC and 8 proteins that were specifically absent in HiBEC apoptotic bodies. In conclusion, proteomic analysis of BECs from PBC liver compared to normal liver are significantly different, suggesting that an immunological attack affects the repertoire of proteins expressed and that such cells should be thought of as living in an environment undergoing continuous selection secondary to an innate and adaptive immune response, reflecting an almost “Darwinian” bias. PMID:24841946

  14. Erratum: Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing.

    PubMed

    2015-01-01

    The author's email has been corrected in the publication of Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing. There was an error with the author, Jerry Zhou's, email. The author's email has been updated to: j.zhou@uws.edu.au from: jzho7551@mail.usyd.edu.au. PMID:26167960

  15. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    EPA Science Inventory

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  16. Effects of Fe deficiency on the protein profile of Brassica napus phloem sap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this work was to study the effect of Fe deficiency on the protein profile of phloem sap exudates from Brassica napus using 2-DE (IEF-SDS PAGE). The experiment was repeated thrice and two technical replicates per treatment were done. Two hundred sixty-three spots were consistently detected...

  17. Comprehensive protein profiling of synovial fluid in osteoarthritis following protein equalization

    PubMed Central

    Peffers, M.J.; McDermott, B.; Clegg, P.D.; Riggs, C.M.

    2015-01-01

    Summary Objective The aim of the study was to characterise the protein complement of synovial fluid (SF) in health and osteoarthritis (OA) using liquid chromatography mass spectrometry (LC-MS/MS) following peptide-based depletion of high abundance proteins. Design SF was used from nine normal and nine OA Thoroughbred horses. Samples were analysed with LC-MS/MS using a NanoAcquity™ LC coupled to an LTQ Orbitrap Velos. In order to enrich the lower-abundance protein fractions protein equalisation was first undertaken using ProteoMiner™. Progenesis-QI™ LC-MS software was used for label-free quantification. In addition immunohistochemistry, western blotting and mRNA expression analysis was undertaken on selected joint tissues. Results The number of protein identifications was increased by 33% in the ProteoMiner™ treated SF compared to undepleted SF. A total of 764 proteins (462 with≥2 significant peptides) were identified in SF. A subset of 10 proteins were identified which were differentially expressed in OA SF. S100-A10, a calcium binding protein was upregulated in OA and validated with western blotting and immunohistochemistry. Several new OA specific peptide fragments (neopeptides) were identified. Conclusion The protein equalisation method compressed the dynamic range of the synovial proteins identifying the most comprehensive SF proteome to date. A number of proteins were identified for the first time in SF which may be involved in the pathogenesis of OA. We identified a distinct set of proteins and neopeptides that may act as potential biomarkers to distinguish between normal and OA joints. PMID:25819577

  18. Protein profiles associated with context fear conditioning and their modulation by memantine.

    PubMed

    Ahmed, Md Mahiuddin; Dhanasekaran, A Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C S; Gardiner, Katheleen J

    2014-04-01

    Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein

  19. Protein Profiles Associated With Context Fear Conditioning and Their Modulation by Memantine*

    PubMed Central

    Ahmed, Md. Mahiuddin; Dhanasekaran, A. Ranjitha; Block, Aaron; Tong, Suhong; Costa, Alberto C. S.; Gardiner, Katheleen J.

    2014-01-01

    Analysis of the molecular basis of learning and memory has revealed details of the roles played by many genes and the proteins they encode. Because most individual studies focus on a small number of proteins, many complexities of the relationships among proteins and their dynamic responses to stimulation are not known. We have used the technique of reverse phase protein arrays (RPPA) to assess the levels of more than 80 proteins/protein modifications in subcellular fractions from hippocampus and cortex of mice trained in Context Fear Conditioning (CFC). Proteins include components of signaling pathways, several encoded by immediate early genes or involved in apoptosis and inflammation, and subunits of glutamate receptors. At one hour after training, levels of more than half the proteins had changed in one or more fractions, among them multiple components of the Mitogen-activated protein kinase, MAPK, and Mechanistic Target of Rapamycin, MTOR, pathways, subunits of glutamate receptors, and the NOTCH pathway modulator, NUMB homolog (Drosophila). Levels of 37 proteins changed in the nuclear fraction of hippocampus alone. Abnormalities in levels of thirteen proteins analyzed have been reported in brains of patients with Alzheimer's Disease. We therefore further investigated the protein profiles of mice treated with memantine, a drug approved for treatment of AD. In hippocampus, memantine alone induced many changes similar to those seen after CFC and altered the levels of seven proteins associated with Alzheimer's Disease abnormalities. Lastly, to further explore the relevance of these datasets, we superimposed responses to CFC and memantine onto components of the long term potentiation pathway, a process subserving learning and memory formation. Fourteen components of the long term potentiation pathway and 26 proteins interacting with components responded to CFC and/or memantine. Together, these datasets provide a novel view of the diversity and complexity in protein

  20. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.

    PubMed

    Li, Zhixiu; Yang, Yuedong; Faraggi, Eshel; Zhan, Jian; Zhou, Yaoqi

    2014-10-01

    Locating sequences compatible with a protein structural fold is the well-known inverse protein-folding problem. While significant progress has been made, the success rate of protein design remains low. As a result, a library of designed sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy-optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment-derived sequence profiles and structure-derived energy profiles. SPIN improves over the fragment-derived profile by 6.7% (from 23.6 to 30.3%) in sequence identity between predicted and wild-type sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significantly better balance of hydrophilic and hydrophobic residues at protein surface. The accuracy of sequence profiles obtained is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from structures will be useful as a single-body scoring term for improving scoring functions used in protein design and fold recognition. It also complements protein design programs in guiding experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN server is available at http://sparks-lab.org. PMID:24898915

  1. Direct prediction of profiles of sequences compatible to a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles

    PubMed Central

    Li, Zhixiu; Yang, Yuedong; Faraggi, Eshel; Zhan, Jian; Zhou, Yaoqi

    2014-01-01

    Locating sequences compatible to a protein structural fold is the well-known inverse protein-folding problem. While significant progress has been made, the success rate of protein design remains low. As a result, a library of designed sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy-optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment-derived sequence profiles and structure-derived energy profiles. SPIN improves over the fragment-derived profile by 6.7% (from 23.6% to 30.3%) in sequence identity between predicted and wild-type sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significant better balance of hydrophilic and hydrophobic residues at protein surfaces. The accuracy of sequence profiles obtained is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from structures will be useful as a single-body scoring term for improving scoring functions used in protein design and fold recognition. It also complements protein design programs in guiding experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN server is available at http://sparks-lab.org. PMID:24898915

  2. Prediction of Protein-Protein Interaction Sites Using Electrostatic Desolvation Profiles

    PubMed Central

    Fiorucci, Sébastien; Zacharias, Martin

    2010-01-01

    Abstract Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces. PMID:20441756

  3. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures

    PubMed Central

    Thoß, M.; Luzynski, K.C.; Ante, M.; Miller, I.; Penn, D.J.

    2016-01-01

    House mice (Mus musculus) produce a variable number of major urinary proteins (MUPs), and studies suggest that each individual produces a unique MUP profile that provides a distinctive odor signature controlling individual and kin recognition. This ‘barcode hypothesis’ requires that MUP urinary profiles show high individual variability within populations and also high individual consistency over time, but tests of these assumptions are lacking. We analyzed urinary MUP profiles of 66 wild-caught house mice from eight populations using isoelectric focusing. We found that MUP profiles of wild male house mice are not individually unique, and though they were highly variable, closer inspection revealed that the variation strongly depended on MUP band type. The prominent (‘major) bands were surprisingly homogenous (and hence most MUPs are not polymorphic), but we also found inconspicuous (‘minor’) bands that were highly variable and therefore potential candidates for individual fingerprints. We also examined changes in urinary MUP profiles of 58 males over time (from 6 to 24 weeks of age), and found that individual MUP profiles and MUP concentration were surprisingly dynamic, and showed significant changes after puberty and during adulthood. Contrary to what we expected, however, the minor bands were the most variable over time, thus no good candidates for individual fingerprints. Although MUP profiles do not provide individual fingerprints, we found that MUP profiles were more similar among siblings than non-kin despite considerable fluctuation. Our findings show that MUP profiles are not highly stable over time, they do not show strong individual clustering, and thus challenge the barcode hypothesis. Within-individual dynamics of MUP profiles indicate a different function of MUPs in individual recognition than previously assumed and advocate an alternative hypothesis (‘dynamic changes’ hypothesis). PMID:26973837

  4. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  5. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  6. Measuring mitochondrial function in intact cardiac myocytes

    PubMed Central

    Dedkova, Elena N.; Blatter, Lothar A.

    2011-01-01

    Mitochondria are involved in cellular functions that go beyond the traditional role of these organelles as the power plants of the cell. Mitochondria have been implicated in several human diseases, including cardiac dysfunction, and play a role in the aging process. Many aspects of our knowledge of mitochondria stem from studies performed on the isolated organelle. Their relative inaccessibility imposes experimental difficulties to study mitochondria in their natural environment – the cytosol of intact cells – and has hampered a comprehensive understanding of the plethora of mitochondrial functions. Here we review currently available methods to study mitochondrial function in intact cardiomyocytes. These methods primarily use different flavors of fluorescent dyes and genetically encoded fluorescent proteins in conjunction with high-resolution imaging techniques. We review methods to study mitochondrial morphology, mitochondrial membrane potential, Ca2+ and Na+ signaling, mitochondrial pH regulation, redox state and ROS production, NO signaling, oxygen consumption, ATP generation and the activity of the mitochondrial permeability transition pore. Where appropriate we complement this review on intact myocytes with seminal studies that were performed on isolated mitochondria, permeabilized cells, and in whole hearts. PMID:21964191

  7. Proteomic Profiling Of Two-Dimensional Gel Electrophoresis Protein Expression Data

    NASA Astrophysics Data System (ADS)

    Ahmad, Norhaiza; Zhang, J.; Brown, P. J.; James, D. C.; Birch, J. R.; Racher, A. J.; Smales, C. M.

    2008-01-01

    We have undertaken two-dimensional gel electrophoresis (2-DE) proteomic profiling on a series of cell lines with different recombinant antibody production rates. Due to the nature of 2-DE proteomic investigations there will always be `process variability' factors in any data set collected in this way. Some of this variation will arise during sample preparation, gel running and staining, while further variation will arise from the gel analysis procedure. Therefore, in order to identify all significant changes in protein expression between biological samples when analysed by 2-DE, the system precision or `error', and how this correlates to protein abundance, must be known. Only then can the system be considered robust and investigators accurately and confidently report all observable statistically significant changes in protein expression. We introduce an expression variability test to identify protein spots whose expression correlates with increased antibody production. The results have highlighted a small number of candidate proteins for further investigation.

  8. Serum and tissue profiling in bladder cancer combining protein and tissue arrays.

    PubMed

    Orenes-Piñero, Esteban; Barderas, Rodrigo; Rico, Daniel; Casal, J Ignacio; Gonzalez-Pisano, David; Navajo, Jose; Algaba, Ferran; Piulats, Josep Maria; Sanchez-Carbayo, Marta

    2010-01-01

    Aiming at identifying biomarkers for bladder cancer, the serum proteome was explored in a pilot study through a profiling approach using protein arrays. Supervised analyses identified a panel 171 immunogenic proteins differentially expressed between patients with bladder cancer (n = 12) and controls without the disease (n = 10). The microanatomical expression patterns of novel immunogenic proteins, especially dynamin and clusterin, were found significantly associated with histopathologic variables and overall survival, as confirmed by immunohistochemistry using an independent series of bladder tumors contained in tissue microarrays (n = 289). Thus, the protein arrays approach has identified a panel of immunogenic candidates that may potentially play a role as diagnostic biomarkers, especially for muscle invasive disease. Moreover, the protein expression patterns of dynamin and clusterin in bladder tumors were shown to adjunct for histopathologic staging and clinical outcome prognosis. PMID:19883059

  9. MBPpred: Proteome-wide detection of membrane lipid-binding proteins using profile Hidden Markov Models.

    PubMed

    Nastou, Katerina C; Tsaousis, Georgios N; Papandreou, Nikos C; Hamodrakas, Stavros J

    2016-07-01

    A large number of modular domains that exhibit specific lipid binding properties are present in many membrane proteins involved in trafficking and signal transduction. These domains are present in either eukaryotic peripheral membrane or transmembrane proteins and are responsible for the non-covalent interactions of these proteins with membrane lipids. Here we report a profile Hidden Markov Model based method capable of detecting Membrane Binding Proteins (MBPs) from information encoded in their amino acid sequence, called MBPpred. The method identifies MBPs that contain one or more of the Membrane Binding Domains (MBDs) that have been described to date, and further classifies these proteins based on their position in respect to the membrane, either as peripheral or transmembrane. MBPpred is available online at http://bioinformatics.biol.uoa.gr/MBPpred. This method was applied in selected eukaryotic proteomes, in order to examine the characteristics they exhibit in various eukaryotic kingdoms and phyla. PMID:27048983

  10. Proteomic Profiling and Protein Identification by MALDI-TOF Mass Spectrometry in Unsequenced Parasitic Nematodes

    PubMed Central

    Millares, Paul; LaCourse, E. James; Perally, Samirah; Ward, Deborah A.; Prescott, Mark C.; Hodgkinson, Jane E.; Brophy, Peter M.; Rees, Huw H.

    2012-01-01

    Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This

  11. Changes in protein profiles of guinea pig sclera during development of form deprivation myopia and recovery

    PubMed Central

    Zhou, Xiangtian; Ye, Juxiu; Willcox, Mark D.P.; Xie, Ruozhong; Jiang, Liqin; Lu, Runxia; Shi, Jianzhen; Bai, Yan

    2010-01-01

    Purpose To investigate changes in protein profiles of posterior sclera in guinea pigs during development of form deprivation myopia and recovery. Methods Three groups of guinea pigs (developing form deprivation myopia, recovering from the myopia and normal control) were evaluated for protein profiles of the posterior sclera using two-dimensional gel electrophoresis. Protein spots with a different intensity of at least threefold among the 3 groups were further identified with mass spectrometry. Key proteins associated with ocular growth (crystallins) were examined at mRNA levels using RT–PCR. Results Moderate myopia was induced at 7 weeks of monocular deprivation and then more gradually recovered toward the previous refractive status 4 days after re-exposure of the eye to normal visual conditions. The profile of all protein spots at the posterior sclera was similar for both the deprived and the recovery eyes but distinct between either of the 2 experimental eyes and the normal control eyes. Twenty-six and 33 protein spots were differentially expressed in the deprived and the recovery eyes, respectively, compared to the normal control eyes. In contrast, the number of proteins differentially expressed between the deprived and the recovery eyes was only 5. Among the different subtypes of crystallins, βB2-crystallin was down-regulated and βA4-crystallin was upregulated in the deprived eyes at both protein and mRNA levels compared to the normal control eyes. The trend of expression for βA3/A1-crystallin was also similar at both mRNA and protein levels for the deprived eyes. However, αA-crystallin mRNA in the recovery eyes was upregulated while αA-crystallin itself was down-regulated. A similar inconsistency in expression of βA3/A1-, βA4-, and βB2-crystallins between the protein and mRNA levels also occurred in the recovery eyes. Conclusions Proteomic analysis provides a useful survey of the number of proteins whose levels change during form deprivation myopia

  12. Intact capture of cosmic dust

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1991-01-01

    The focus of this development effort is to capture dust particles at hypervelocities intact and unmelted in order to preserve volatile organics. At the same time, the capture process must minimize any organic elemental or compound contamination to prevent any compromise of exobiological analyses. Inorganic silicate aerogel has been developed as a successful capture medium to satisfy both requirements of intact capture and minimal organic contamination. Up to 6 km/s, silicate projectiles from a few microns up to 100 microns have been captured intact without any melting and with minimal loss of mass. Carbon in silicate aerogel can be reduced to less than 1 part in 1000 and hydrogen 3 parts in 1000 when baked in air. Under controlled inert gas environments, additional hydrocarbon reduction can be achieved.

  13. The Increasing Impact of Activity-Based Protein Profiling in Plant Science.

    PubMed

    Morimoto, Kyoko; van der Hoorn, Renier A L

    2016-03-01

    The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science. PMID:26872839

  14. Evolution of liquid holdup profile in a standing protein stabilized foam.

    PubMed

    Wang, Zebin; Narsimhan, Ganesan

    2004-12-01

    Evolution of liquid holdup profile in a standing foam formed by whipping and stabilized by sodium caseinate in the presence of xanthan gum when subjected to 16 and 29g centrifugal force fields was measured using magnetic resonance imaging for different pH, ionic strength, protein and xanthan gum concentrations. Drainage resulted in the formation of a separate liquid layer at the bottom at longer times. Foam drainage was slowest at pH 7, lower ionic strength, higher protein and gum concentrations. Foam was found to be most stable at pH 5.1 near the isoelectric point of protein, lower ionic strength and higher protein and xanthan gum concentrations. A predicted equilibrium liquid holdup profile based on a previous model (G. Narsimhan, J. Food Eng. 14 (1991) 139) agreed well with experimental values at sufficiently long times. A proposed model for velocity of drainage of a power law fluid in a Plateau border for two different simplified geometries was incorporated in a previously developed model for foam drainage (G. Narsimhan, J. Food Eng. 14 (1991) 139) to predict the evolution of liquid holdup profiles. The model predictions for simplified circular geometry of Plateau border compared well with the experimental data of liquid holdup profiles at small times. At longer times, however, the predicted liquid holdup profile was larger than the observed, this discrepancy being due to coarsening of bubble size and decrease in foam height not accounted for in the model. A Newtonian model for foam drainage under predicted drainage rates did not agree with the experimental data. PMID:15476794

  15. Biochemical composition and protein profile of alpaca (Vicugna pacos) oviductal fluid.

    PubMed

    Apichela, S A; Argañaraz, M E; Zampini, R; Vencato, J; Miceli, D C; Stelletta, C

    2015-03-01

    Knowledge and assessment of the constituents of the oviductal fluid (OF) in camelids is necessary for a correct formulation of specific culture media for the development of reproductive biotechnology. This study is the first describing the biochemical composition and SDS-PAGE protein profile of alpaca oviductal fluid in non-pregnant animals and animals that have completed the first month and second month of gestation. Samples were also classified into oviducts that were ipsilateral or contralateral to the ovary with corpus luteum. No differences were found between both oviducts, whereas pregnant and non-pregnant females displayed significant differences in the biochemical composition and protein profile of the oviductal fluid. Relative albumin content was higher in non-pregnant females. Relative creatinine content in OF from females that have completed the second month of gestation was lower than non-pregnant females and females that have completed the first month of gestation. Ion Na(+) concentration was higher in OF from non-pregnant females when compared with pregnant ones. The protein profile of non-pregnant females showed five protein bands of 70, 42, 25, 24 and 19kDa that were significantly more intense compared with pregnant animals. Bands were identified as moesin, actin cytoplasmic 2, hydroxypyruvate isomerase, ferritin light chain and peroxiredoxin-6 with MALDI/MS. Our results encourage more thorough future studies, in order to unravel the complex reproductive processes of the South American camelid oviduct. PMID:25592861

  16. Identification of chemical-specific protein profiles in Daphnia magna using neural networks

    SciTech Connect

    Iamonte, T.; Broadt, T.; Bradley, B.

    1995-12-31

    One dimensional gel electrophoresis was performed on whole-animal homogenates of 10 Daphnia magna exposed for 48 hours to one toxic and one non-toxic concentration of 2,4-dinitrophenol and sodium pentachlorophenate, two uncouplers of oxidative phosphorylation; malathion, an organophosphate; and permethrine, a pyrethroid, along with culture water and solvent controls, as appropriate. Ten randomized complete block exposures were conducted to minimize among-cohort variability. The 10-animal samples were gel electrophoresed, visualized using neutral silver staining and digitized with a Molecular Dynamics personal laser densitometer equipped with ImageQuant software. Densitometric data were used in a commercial neural network software package to construct a learning set, or database, of the protein profiles induced by the known chemical treatments. Novel data sets were then presented to the neural network program for assignment to treatment categories. Although no differences in protein profile between controls and chemical treatments and among chemical treatments could be detected visually in one dimensional gels, the neural network was able to correctly assign each sample to the appropriate learned treatment category about 70 percent of the time. Key proteins used by the neural network software to learn the protein profile of each chemical were identified by molecular weight and assigned a relative importance for identification of that chemical.

  17. A profile of protein-protein interaction: Crystal structure of a lectin-lectin complex.

    PubMed

    Surya, Sukumaran; Abhilash, Joseph; Geethanandan, Krishnan; Sadasivan, Chittalakkottu; Haridas, Madhathilkovilakathu

    2016-06-01

    Proteins may utilize complex networks of interactions to create/proceed signaling pathways of highly adaptive responses such as programmed cell death. Direct binary interactions study of proteins may help propose models for protein-protein interaction. Towards this goal we applied a combination of thermodynamic kinetics and crystal structure analyses to elucidate the complexity and diversity in such interactions. By determining the heat change on the association of two galactose-specific legume lectins from Butea monosperma (BML) and Spatholobus parviflorus (SPL) belonging to Fabaceae family helped to compute the binding equilibrium. It was extended further by X-ray structural analysis of BML-SPL binary complex. In order to chart the proteins interacting mainly through their interfaces, identification of the nature of forces which stabilized the association of the lectin-lectin complex was examined. Comprehensive analysis of the BMLSPL complex by isothermal titration calorimetry and X-ray crystal structure threw new light on the lectin-lectin interactions suggesting of their use in diverse areas of glycobiology. PMID:26945504

  18. Monte Carlo simulation studies of lipid order parameter profiles near integral membrane proteins.

    PubMed Central

    Sperotto, M M; Mouritsen, O G

    1991-01-01

    Monte Carlo simulation techniques have been applied to a statistical mechanical lattice model in order to study the coherence length for the spatial fluctuations of the lipid order parameter profiles around integral membrane proteins in dipalmitoyl phosphatidylcholine bilayers. The model, which provides a detailed description of the pure lipid bilayer main transition, incorporates hydrophobic matching between the lipid and protein hydrophobic thicknesses as a major contribution to the lipid-protein interactions in lipid membranes. The model is studied at low protein-to-lipid ratios. The temperature dependence of the coherence length is found to have a dramatic peak at the phase transition temperature. The dependence on protein circumference as well as hydrophobic length is determined and it is concluded that in some cases the coherence length is much longer than previously anticipated. The long coherence length provides a mechanism for indirect lipid-mediated protein-protein long-range attraction and hence plays an important role in regulating protein segregation. Images FIGURE 5 FIGURE 6 PMID:2009352

  19. Quantitative profiling of spreading-coupled protein tyrosine phosphorylation in migratory cells

    PubMed Central

    Xie, Yajun; Wang, Jinlong; Zhang, Yuanya; Liu, Xiaofei; Wang, Xiaorong; Liu, Kehui; Huang, Xiahe; Wang, Yingchun

    2016-01-01

    Protein tyrosine phosphorylation is an important mechanism that regulates cytoskeleton reorganization and cell spreading of migratory cells. A number of cytoskeletal proteins are known to be tyrosine phosphorylated (pY) in different cellular processes. However, the profile of pY proteins during different stages of cell spreading has not been available. Using immunoafffinity enrichment of pY proteins coupled with label free quantitative proteomics, we quantitatively identified 447 pY proteins in the migratory ECV-304 cells at the early spreading (adhesion) and the active spreading stages. We found that pY levels of the majority of the quantified proteins were significantly increased in the active spreading stage compared with the early spreading stage, suggesting that active cell spreading is concomitant with extra tyrosine phosphorylation. The major categories of proteins impacted by tyrosine phosphorylation are involved in cytoskeleton and focal adhesion regulation, protein translation and degradation. Our findings, for the first time, dissect the cell spreading-specific pY signals from the adhesion induced pY signals, and provide a valuable resource for the future mechanistic research regarding the regulation of cell spreading. PMID:27554326

  20. Anti-heat shock protein autoantibody profiling in breast cancer using customized protein microarray.

    PubMed

    Shi, Liu; Gehin, Thomas; Chevolot, Yann; Souteyrand, Eliane; Mangé, Alain; Solassol, Jérôme; Laurenceau, Emmanuelle

    2016-02-01

    Heat shock proteins (HSPs) are over-expressed in a wide range of human cancers. It results in the stimulation of the immune system and consequently in elevated concentration of anti-HSP autoantibodies. Elevated anti-HSP autoantibodies were found in breast cancer patients, and they are associated with tumor metastasis. Therefore, screening these autoantibodies could be of diagnostic and prognostic values. Protein microarrays have already demonstrated their great potential as a diagnostic tool. However, protein diversity requires optimization of the microarray fabrication to achieve high sensitivity and specificity. In this study, seven HSPs were immobilized on six different surface chemistries. After evaluation and optimization with purified antibodies of the six surface chemistries, two surfaces were selected to detect anti-HSP autoantibodies in breast cancer sera. Multiplex detection of anti-HSP autoantibodies allowed discrimination of breast cancer patients (50) from healthy controls (26) with a sensitivity of 86% and a specificity of 100%. PMID:26715250

  1. Proteomics profiling of cholangiocarcinoma exosomes: A potential role of oncogenic protein transferring in cancer progression.

    PubMed

    Dutta, Suman; Reamtong, Onrapak; Panvongsa, Wittaya; Kitdumrongthum, Sarunya; Janpipatkul, Keatdamrong; Sangvanich, Polkit; Piyachaturawat, Pawinee; Chairoungdua, Arthit

    2015-09-01

    Cholangiocarcinoma (CCA), a common primary malignant tumor of bile duct epithelia, is highly prevalent in Asian countries and unresponsive to chemotherapeutic drugs. Thus, a newly recognized biological entity for early diagnosis and treatment is highly needed. Exosomes are small membrane bound vesicles found in body fluids and released by most cell types including cancer cells. The vesicles contain specific subset of proteins and nucleic acids corresponding to cell types and play essential roles in pathophysiological processes. The present study aimed to assess the protein profiles of CCA-derived exosomes and their potential roles. We have isolated exosomes from CCA cells namely KKU-M213 and KKU-100 derived from Thai patients and their roles were investigated by incubation with normal human cholangiocyte (H69) cells. Exosomes were internalized into H69 cells and had no effects on viability or proliferation of the host cells. Interestingly, the exosomes from KKU-M213 cells only induced migration and invasion of H69 cells. Proteomic analysis of the exosomes from KKU-M213 cells disclosed multiple cancer related proteins that are not present in H69 exosomes. Consistent with the protein profile, treatment with KKU-M213 exosomes induced β-catenin and reduced E-cadherin expressions in H69 cells. Collectively, our results suggest that a direct cell-to-cell transfer of oncogenic proteins via exosomal pathway may be a novel mechanism for CCA progression and metastasis. PMID:26148937

  2. Proteomic profile of carbonylated proteins in rat liver: discovering possible mechanisms for tetracycline-induced steatosis.

    PubMed

    Deng, Zhenglu; Yan, Siyu; Hu, Hui; Duan, Zhigui; Yin, Lanxuan; Liao, Shenke; Sun, Yubai; Yin, Dazhong; Li, Guolin

    2015-01-01

    To investigate biochemical mechanisms for the tetracycline-induced steatosis in rats, targeted proteins of oxidative modification were profiled. The results showed that tetracycline induced lipid accumulation, oxidative stress, and cell viability decline in HepG2 cells only under the circumstances of palmitic acid overload. Tetracycline administration in rats led to significant decrement in blood lipids, while resulted in more than four times increment in intrahepatic triacylglycerol and typical microvesicular steatosis in the livers. The triacylglycerol levels were positively correlated with oxidative stress. Proteomic profiles of carbonylated proteins revealed 26 targeted proteins susceptible to oxidative modification and most of them located in mitochondria. Among them, the long-chain specific acyl-CoA dehydrogenase was one of the key enzymes regulating fatty acid β-oxidation. Oxidative modification of the enzyme in the tetracycline group depressed its enzymatic activity. In conclusion, the increased influx of lipid into the livers is the first hit of tetracycline-induced microvesicular steatosis. Oxidative stress is an essential part of the second hit, which may arise from the lipid overload and attack a series of functional proteins, aggravating the development of steatosis. The 26 targeted proteins revealed here provide a potential direct link between oxidative stress and tetracycline-induced steatosis. PMID:25332112

  3. Application of Activity-Based Protein Profiling to Study Enzyme Function in Adipocytes

    PubMed Central

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F.; Saez, Enrique

    2014-01-01

    Activity-Based Protein Profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes, and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. PMID:24529438

  4. Development of a clickable activity-based protein profiling (ABPP) probe for agmatine deiminases.

    PubMed

    Marchenko, Mikhail; Thomson, Andrew; Ellis, Terri N; Knuckley, Bryan; Causey, Corey P

    2015-05-01

    Agmatine deiminases (AgDs) catalyze the hydrolytic conversion of agmatine (decarboxylated arginine) to N-carbamoylputrescine with concomitant release of ammonia. These enzymes, which are encoded by some pathogenic bacterial species, confer a competitive survival advantage by virtue of energy production and acid tolerance through agmatine catabolism. Herein we report the development of a clickable activity-based protein profiling (ABPP) probe that targets the AgD encoded by Streptococcus mutans with high selectivity and sensitivity. PMID:25819331

  5. Profiles.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Profiles seven Black, Native American, and Chicano artists and art teachers: Hale A. Woodruff, Allan Houser, Luis Jimenez, Betrand D. Phillips, James E. Pate, I, and Fernando Navarro. This article is part of a theme issue on multicultural art. (SJL)

  6. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples

    PubMed Central

    Thawani, Vijay; Mehra, Arti

    2016-01-01

    This study was done to assess the antifungal susceptibility of clinical isolates of Candida albicans and to evaluate its total protein profile based on morphological difference on drug resistance. Hundred and twenty clinical isolates of C. albicans from various clinical specimens were tested for susceptibility against four antifungal agents, namely, fluconazole, itraconazole, amphotericin B, and ketoconazole. A significant increase of drug resistance in clinical isolates of C. albicans was observed. The study showed 50% fluconazole and itraconazole resistance at 32 μg mL−1 with a MIC50 and MIC90 values at 34 and 47 and 36 and 49 μg mL−1, respectively. All isolates were sensitive to amphotericin B and ketoconazole. The SDS-PAGE protein profile showed a prevalent band of ~52.5 kDa, indicating overexpression of gene in 72% strains with fluconazole resistance. Since the opportunistic infections of Candida spp. are increasing along with drug resistance, the total protein profile will help in understanding the evolutionary changes in drug resistance and also to characterize them. PMID:27478638

  7. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components. PMID:25631025

  8. An integrated workflow for characterizing intact phosphoproteins from complex mixtures

    SciTech Connect

    Wu, Si; Yang, Feng; Zhao, Rui; Tolic, Nikola; Robinson, Errol W.; Camp, David G.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2009-05-08

    The phosphorylation of any site on a given protein can affect its activity, degradation rate, ability to dock with other proteins or bind divalent cations, and/or its localization. These effects can operate within the same protein; in fact, multisite phosphorylation is a key mechanism for achieving signal integration in cells. Hence, knowing the overall phosphorylation signature of a protein is essential for understanding the "state" of a cell. However, current technologies to monitor the phosphorylation status of proteins are inefficient at determining the relative stoichiometries of phosphorylation at multiple sites. Here we report a new capability for comprehensive liquid chromatography-mass spectrometry (LC-MS) analysis of intact phosphoproteins. The technology platform built upon integrated bottom-up and top-down approach that is facilitated by intact protein reversed-phase (RP)LC concurrently coupled with Fourier transform ion cyclotron resonance (FTICR) MS and fraction collection.

  9. The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins

    PubMed Central

    2014-01-01

    Background Colostrum intake by newborn lambs plays a fundamental role in the perinatal period, ensuring lamb survival. In this study, blood plasma samples from two groups of newborn lambs (Colostrum group and Delayed Colostrum group) at 2 and 14 h after birth were treated to reduce the content of high abundance proteins and analyzed using Two-Dimensional Differential in Gel Electrophoresis and MALDI MS/MS for protein identification in order to investigate low abundance proteins with immune function in newborn lambs. Results The results showed that four proteins were increased in the blood plasma of lambs due to colostrum intake. These proteins have not been previously described as increased in blood plasma of newborn ruminants by colostrum intake. Moreover, these proteins have been described as having an immune function in other species, some of which were previously identified in colostrum and milk. Conclusions In conclusion, colostrum intake modified the low abundance proteome profile of blood plasma from newborn lambs, increasing the concentration of apolipoprotein A-IV, plasminogen, serum amyloid A and fibrinogen, demonstrating that colostrum is essential, not only for the provision of immunoglobulins, but also because of increases in several low abundance proteins with immune function. PMID:24708841

  10. PhyloGene server for identification and visualization of co-evolving proteins using normalized phylogenetic profiles

    PubMed Central

    Sadreyev, Ilyas R.; Ji, Fei; Cohen, Emiliano; Ruvkun, Gary; Tabach, Yuval

    2015-01-01

    Proteins that function in the same pathways, protein complexes or the same environmental conditions can show similar patterns of sequence conservation across phylogenetic clades. In species that no longer require a specific protein complex or pathway, these proteins, as a group, tend to be lost or diverge. Analysis of the similarity in patterns of sequence conservation across a large set of eukaryotes can predict functional associations between different proteins, identify new pathway members and reveal the function of previously uncharacterized proteins. We used normalized phylogenetic profiling to predict protein function and identify new pathway members and disease genes. The phylogenetic profiles of tens of thousands conserved proteins in the human, mouse, Caenorhabditis elegans and Drosophila genomes can be queried on our new web server, PhyloGene. PhyloGene provides intuitive and user-friendly platform to query the patterns of conservation across 86 animal, fungal, plant and protist genomes. A protein query can be submitted either by selecting the name from whole-genome protein sets of the intensively studied species or by entering a protein sequence. The graphic output shows the profile of sequence conservation for the query and the most similar phylogenetic profiles for the proteins in the genome of choice. The user can also download this output in numerical form. PMID:25958392

  11. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab

    PubMed Central

    Mukaihara, Kenta; Suehara, Yoshiyuki; Kohsaka, Shinji; Akaike, Keisuke; Tanabe, Yu; Kubota, Daisuke; Ishii, Midori; Fujimura, Tsutomu; Kazuno, Saiko; Okubo, Taketo; Takagi, Tatsuya; Yao, Takashi; Kaneko, Kazuo; Saito, Tsuyoshi

    2016-01-01

    Giant cell tumors of bone (GCTB) are locally aggressive osteolytic bone tumors. Recently, some clinical trials have shown that denosumab is a novel and effective therapeutic option for aggressive and recurrent GCTB. This study was performed to investigate the molecular mechanism underlying the therapeutic effect of denosumab. Comparative proteomic analyses were performed using GCTB samples which were taken before and after denosumab treatment. Each expression profile was analyzed using the software program to further understand the affected biological network. One of identified proteins was further evaluated by gelatin zymography and an immunohistochemical analysis. We identified 13 consistently upregulated proteins and 19 consistently downregulated proteins in the pre- and post-denosumab samples. Using these profiles, the software program identified molecular interactions between the differentially expressed proteins that were indirectly involved in the RANK/RANKL pathway and in several non-canonical subpathways including the Matrix metalloproteinase pathway. The data analysis also suggested that the identified proteins play a critical functional role in the osteolytic process of GCTB. Among the most downregulated proteins, the activity of MMP-9 was significantly decreased in the denosumab-treated samples, although the residual stromal cells were found to express MMP-9 by an immunohistochemical analysis. The expression level of MMP-9 in the primary GCTB samples was not correlated with any clinicopathological factors, including patient outcomes. Although the replacement of tumors by fibro-osseous tissue or the diminishment of osteoclast-like giant cells have been shown as therapeutic effects of denosumab, the residual tumor after denosumab treatment, which is composed of only stromal cells, might be capable of causing bone destruction; thus the therapeutic application of denosumab would be still necessary for these lesions. We believe that the protein expression

  12. Contribution of solvent water to the solution X-ray scattering profile of proteins.

    PubMed

    Seki, Yasutaka; Tomizawa, Tadashi; Khechinashvili, Nikolay N; Soda, Kunitsugu

    2002-03-28

    A theoretical framework is presented to analyze how solvent water contributes to the X-ray scattering profile of protein solution. Molecular dynamics simulations were carried out on pure water and an aqueous solution of myoglobin to determine the spatial distribution of water molecules in each of them. Their solution X-ray scattering (SXS) profiles were numerically evaluated with obtained atomic-coordinate data. It is shown that two kinds of contributions from solvent water must be considered to predict the SXS profile of a solution accurately. One is the excluded solvent scattering originating in exclusion of water molecules from the space occupied by solutes. The other is the hydration effect resulting from formation of a specific distribution of water around solutes. Explicit consideration of only two molecular layers of water is practically enough to incorporate the hydration effect. Care should be given to using an approximation in which an averaged electron density distribution is assumed for the structure factor because it may predict profiles considerably deviating from the correct profile at large K. PMID:12062383

  13. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening

    PubMed Central

    CARDONA-CORREA, ALBIN; RIOS-VELAZQUEZ, CARLOS

    2016-01-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID:27035230

  14. Protein profiles of bovine placenta derived from somatic cell nuclear transfer.

    PubMed

    Kim, Hong Rye; Kang, Jae Ku; Yoon, Jong Taek; Seong, Hwan Hoo; Jung, Jin Kwan; Lee, Hong Mie; Sik Park, Chang; Jin, Dong Il

    2005-11-01

    Practical application of animal cloning by somatic cell nuclear transfer (SCNT) has been hampered by an extremely low success rate. To address whether placental dysfunction in SCNT causes fetal loss during pregnancy, we have used a global proteomics approach using 2-DE and MS to analyze the differential protein patterns of three placentae from the afterbirth of cases of postnatal death, derived from SCNT of Korean Native cattle, and three normal placentae obtained from the afterbirth of fetuses derived from artificial insemination. Proteins within a pI range of 4.0-7.0 and 6.0-9.0 were analyzed separately by 2-DE in triplicate. A total of approximately 2000 spots were detected in placental 2-DE gels stained with CBB. In the comparison of normal and SCNT samples, 60 spots were identified as differentially expressed proteins, of which 33 spots were up-regulated proteins in SCNT placentae, while 27 spots were down-regulated proteins. Most of the proteins identified in this analysis appeared to be related with protein repair or protection, cytoskeleton, signal transduction, immune system, metabolism, extracellular matrix and remodeling, transcription regulation, cell structure or differentiation and ion transport. One of up-regulated proteins in SCNT was TIMP-2 protein known to be related to extracellular matrix and remodeling during pregnancy. Western blot analysis showed an increased level of TIMP-2 in SCNT placenta compared to normal. Our results revealed composite profiles of key proteins involved in abnormal placenta derived from SCNT, and suggested expression abnormality of these genes in SCNT placenta, resulting in fetal losses following SCNT. PMID:16196098

  15. Protein profile study of Pap smear and tissue of cervix by high performance liquid chromatography: laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sujatha, N.; Rai, Lavanya; Kumar, Pratap; Krishnanand, B. R.; Mahato, K. K.; George, Sajan D.; Kartha, V. B.; C, Santhosh

    2007-02-01

    HPLC combined with laser induced fluorescence provides a very sensitive method for the separation and identification of the many proteins present in clinical samples. Protein profiles of clinical samples like Pap smear and tissue samples, from subjects with cervical cancer and normal volunteers, were recorded using HPLC-LIF. The protein profiles were analyzed by Principal Component Analysis (PCA). The profiles were characterized by parameters like scores of the factors, sum of squared residuals, and Mahalanobis Distance, derived from PCA. Parameters of each sample were compared with those of a standard set and Match/ No Match results were generated. Good discrimination between normal and malignant samples was achieved with high sensitivity and specificity.

  16. Comparative protein profiles: potential molecular markers from spermatozoa of Acipenseriformes (Chondrostei, Pisces).

    PubMed

    Li, Ping; Hulak, Martin; Rodina, Marek; Sulc, Miroslav; Li, Zhi-Hua; Linhart, Otomar

    2010-12-01

    Sturgeon and paddlefish (Acipenseriformes), the source of roe consumed as caviar, are a unique and commercially valuable group of ancient fishes. In this study, comparative proteomics was used to analyze protein profiles of spermatozoa from five sturgeon species and one paddlefish: Siberian sturgeon (Acipenser baerii), sterlet (A. ruthenus), Russian sturgeon (A. gueldenstaedtii), starry sturgeon (A. stellatus), beluga (Huso huso), and Mississippi paddlefish (Polyodon spathula). Protein profiles of spermatozoa were determined by isoelectric focusing and two-dimensional electrophoresis (2-DE) high-resolution gels. The peptides, previously selected by 2-DE analysis as potentially species-specific, were obtained by "in-gel" tryptic digestion, followed by matrix-associated laser desorption/ionization time-of-flight/mass spectrometry (MALDI-TOF/MS). Among the 23 protein spots selected, 14 were identified as isoforms of enolase B present in all species, but with different isoelectric points or molecular mass. Exceptions were A. ruthenus and H. huso, species with a close phylogenetic relationship. Glycerol-3-phosphate dehydrogenase was detected exclusively in P. spathula. Phosphoglycerate kinase was detected only in A. ruthenus and H. huso, and 3 additional proteins (fructose bisphosphate aldolase A-2, glycogen phosphorylase type IV and glyceraldehyde-3-phosphate dehydrogenase) were found exclusively in A. gueldenstaedtii and H. huso. This study points to the application of proteomics for differential characterization and comparative studies of acipenseriform species at the molecular level. PMID:20869341

  17. Label-free protein profiling of adipose-derived human stem cells under hyperosmotic treatment.

    PubMed

    Oswald, Elizabeth S; Brown, Lewis M; Bulinski, J Chloë; Hung, Clark T

    2011-07-01

    Our previous work suggested that treatment of cells with hyperosmotic media during 2D passaging primes cells for cartilage tissue engineering applications. Here, we used label-free proteomic profiling to evaluate the effects of control and hyperosmotic treatment environments on the phenotype of multipotent adipose-derived stem cells (ASCs) cultivated with a chondrogenic growth factor cocktail. Spectra were recorded in a data-independent fashion at alternate low (precursor) and high (product) fragmentation voltages (MS(E)). This method was supplemented with data mining of accurate mass and retention time matches in precursor ion spectra across the experiment. The results indicated a complex cellular response to osmotic treatment, with a number of proteins differentially expressed between control and treated cell groups. The roles of some of these proteins have been documented in the literature as characteristic of the physiological states studied, especially aldose reductase (osmotic stress). This protein acted as a positive control in this work, providing independent corroborative validation. Other proteins, including 5'-nucleotidase and transgelin, have been previously linked to cell differentiation state. This study demonstrates that label-free profiling can serve as a useful tool in characterizing cellular responses to chondrogenic treatment regimes, recommending its use in optimization of cell priming protocols for cartilage tissue engineering. PMID:21604804

  18. A Protein Profile of Visceral Adipose Tissues Linked to Early Pathogenesis of Type 2 Diabetes Mellitus*

    PubMed Central

    Kim, Su-Jin; Chae, Sehyun; Kim, Hokeun; Mun, Dong-Gi; Back, Seunghoon; Choi, Hye Yeon; Park, Kyong Soo; Hwang, Daehee; Choi, Sung Hee; Lee, Sang-Won

    2014-01-01

    Adipose tissue is increasingly recognized as an endocrine organ playing important pathophysiological roles in metabolic abnormalities, such as obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). In particular, visceral adipose tissue (VAT), as opposed to subcutaneous adipose tissue, is closely linked to the pathogenesis of insulin resistance and T2DM. Despite the importance of VAT, its molecular signatures related to the pathogenesis of T2DM have not been systematically explored. Here, we present comprehensive proteomic analysis of VATs in drug-naïve early T2DM patients and subjects with normal glucose tolerance. A total of 4,707 proteins were identified in LC-MS/MS experiments. Among them, 444 increased in abundance in T2DM and 328 decreased. They are involved in T2DM-related processes including inflammatory responses, peroxisome proliferator-activated receptor signaling, oxidative phosphorylation, fatty acid oxidation, and glucose metabolism. Of these proteins, we selected 11 VAT proteins that can represent alteration in early T2DM patients. Among them, up-regulation of FABP4, C1QA, S100A8, and SORBS1 and down-regulation of ACADL and PLIN4 were confirmed in VAT samples of independent early T2DM patients using Western blot. In summary, our profiling provided a comprehensive basis for understanding the link of a protein profile of VAT to early pathogenesis of T2DM. PMID:24403596

  19. MODULATION OF FUNGAL SENSITIVITY TO STAUROSPORINE BY TARGETING PROTEINS IDENTIFIED BY TRANSCRIPTIONAL PROFILING

    PubMed Central

    Fernandes, Andreia S.; Gonçalves, A. Pedro; Castro, Ana; Lopes, Telma A.; Gardner, Rui; Glass, N. Louise; Videira, Arnaldo

    2011-01-01

    An analysis of the time-dependent genetic response to the death-inducer staurosporine was performed in Neurospora crassa by transcriptional profiling. Staurosporine induced two major genes encoding an ABC transporter and a protein with similarity to regulatory subunits of potassium channels. The transcriptional response is dependent on the activity of a novel transcription factor. Deletion mutants in differentially expressed genes displayed altered sensitivity to staurosporine, underscoring significant proteins involved in the response to the drug. A null-mutant of the ABC transporter (abc3) is extremely sensitive to staurosporine, accumulates more staurosporine than the wild type strain and is defective in energy-dependent export of the drug, indicating that the ABC3 protein is the first described staurosporine transporter. It was located in the plasma membrane by immunofluorescence microscopy. The combination of inhibitors of ABC transporters or of potassium channels with staurosporine leads to an enhanced activity against N. crassa and pathogenic fungi paving the way to the development of more potent and specific antifungals. Our results highlight the general use of transcriptional profiling for the identification of novel proteins involved in cell death and their potential use as drug targets. PMID:22001288

  20. Monitoring Intact Viruses Using Aptamers.

    PubMed

    Kumar, Penmetcha K R

    2016-01-01

    Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based) have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR) and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review. PMID:27527230

  1. Secretory protein profiling reveals TNFα inactivation by selective and promiscuous Sec61 modulators

    PubMed Central

    Maifeld, Sarah V.; MacKinnon, Andrew L.; Garrison, Jennifer L.; Sharma, Ajay; Kunkel, Eric J.; Hegde, Ramanujan S.; Taunton, Jack

    2013-01-01

    Summary Cotransins are cyclic heptadepsipeptides that bind the Sec61 translocon to inhibit cotranslational translocation of a subset of secreted and type I transmembrane proteins. The few known cotransin-sensitive substrates are all targeted to the translocon by a cleavable signal sequence, previously shown to be a critical determinant of cotransin sensitivity. By profiling two cotransin variants against a panel of secreted and transmembrane proteins, we demonstrate that cotransin side-chain differences profoundly affect substrate selectivity. Among the most sensitive substrates we identified is the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα). Like all type II transmembrane proteins, TNFα is targeted to the translocon by its membrane-spanning domain, indicating that a cleavable signal sequence is not strictly required for cotransin sensitivity. Our results thus reveal an unanticipated breadth of translocon substrates whose expression is inhibited by Sec61 modulators. PMID:21944747

  2. Transcriptional Profiling of a Selective CREB Binding Protein Bromodomain Inhibitor Highlights Therapeutic Opportunities.

    PubMed

    Chekler, Eugene L Piatnitski; Pellegrino, Jessica A; Lanz, Thomas A; Denny, R Aldrin; Flick, Andrew C; Coe, Jotham; Langille, Jonathan; Basak, Arindrajit; Liu, Shenping; Stock, Ingrid A; Sahasrabudhe, Parag; Bonin, Paul D; Lee, Kevin; Pletcher, Mathew T; Jones, Lyn H

    2015-12-17

    Bromodomains are involved in transcriptional regulation through the recognition of acetyl lysine modifications on diverse proteins. Selective pharmacological modulators of bromodomains are lacking, although the largely hydrophobic nature of the pocket makes these modules attractive targets for small-molecule inhibitors. This work describes the structure-based design of a highly selective inhibitor of the CREB binding protein (CBP) bromodomain and its use in cell-based transcriptional profiling experiments. The inhibitor downregulated a number of inflammatory genes in macrophages that were not affected by a selective BET bromodomain inhibitor. In addition, the CBP bromodomain inhibitor modulated the mRNA level of the regulator of G-protein signaling 4 (RGS4) gene in neurons, suggesting a potential therapeutic opportunity for CBP inhibitors in the treatment of neurological disorders. PMID:26670081

  3. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics

    PubMed Central

    Zheng, Yonghua; Cretoiu, Dragos; Yan, Guoquan; Cretoiu, Sanda Maria; Popescu, Laurentiu M; Fang, Hao; Wang, Xiangdong

    2014-01-01

    Telocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold) and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might

  4. Protein Profile in Corpus Luteum during Pregnancy in Korean Native Cows

    PubMed Central

    Chung, H. J.; Kim, K. W.; Han, D. W.; Lee, H. C.; Yang, B. C.; Chung, H. K.; Shim, M. R.; Choi, M. S.; Jo, E. B.; Jo, Y. M.; Oh, M. Y.; Jo, S. J.; Hong, S. K.; Park, J. K.; Chang, W. K.

    2012-01-01

    Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism, but the profile of proteins associated with progesterone synthesis in cyclic and pregnant corpus luteum (CL) is not well-known in cattle. In Experiment 1, plasma progesterone level was monitored in cyclic cows (n = 5) and pregnant cows (n = 6; until d-90). A significant decline in the plasma progesterone level occurred at d-19 of cyclic cows. Progesterone level in abbatoir-derived luteal tissues was also determined at d 1 to 5, 6 to 13 and 14 to 20 of cyclic cows, and d-60 and -90 of pregnant cows (n = 5 each). Progesterone level in d-60 CL was not different from those in d 6 to 13 CL and d-90 CL, although the difference between d 6 to 13 and d-90 was significant. In Experiment 2, protein expression pattern in CL at d-90 (n = 4) was compared with that in CL of cyclic cows at d 6 to 13 (n = 5). Significant changes in the level of protein expression were detected in 32 protein spots by two-dimensional polyacrylamide gel electrophoresis (2-DE), and 23 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Six proteins were found only in pregnant CL, while the other 17 proteins were found only in cyclic CL. Among the above 6 proteins, vimentin which is involved in the regulation of post-implantation development was included. Thus, the protein expression pattern in CL was disorientated from cyclic luteal phase to mid pregnancy, and alterations in specific CL protein expression may contribute to the maintenance of pregnancy in Korean native cows. PMID:25049514

  5. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening.

    PubMed

    Cardona-Correa, Albin; Rios-Velazquez, Carlos

    2016-05-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein‑protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting‑phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase‑A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF‑interacting peptides. With a minimum concentration of LF for interaction at 1 µg/ml, the T7PD isolated pepsin A3 pre‑protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID

  6. Pathogen induced changes in the protein profile of human tears from Fusarium keratitis patients.

    PubMed

    Ananthi, Sivagnanam; Venkatesh Prajna, Namperumalsamy; Lalitha, Prajna; Valarnila, Murugesan; Dharmalingam, Kuppamuthu

    2013-01-01

    Fusarium is the major causative agent of fungal infections leading to corneal ulcer (keratitis) in Southern India and other tropical countries. Keratitis caused by Fusarium is a difficult disease to treat unless antifungal therapy is initiated during the early stages of infection. In this study tear proteins were prepared from keratitis patients classified based on the duration of infection. Among the patients recruited, early infection (n = 35), intermediate (n = 20), late (n = 11), samples from five patients in each group were pooled for analysis. Control samples were a pool of samples from 20 patients. Proteins were separated on difference gel electrophoresis (DIGE) and the differentially expressed proteins were quantified using DeCyder software analysis. The following differentially expressed proteins namely alpha-1-antitrypsin, haptoglobin α2 chain, zinc-alpha-2-glycoprotein, apolipoprotein, albumin, haptoglobin precursor - β chain, lactoferrin, lacrimal lipocalin precursor, cystatin SA III precursor, lacritin precursor were identified using mass spectrometry. Variation in the expression level of some of the proteins was confirmed using western blot analysis. This is the first report to show stage specific tear protein profile in fungal keratitis patients. Validation of this data using a much larger sample set could lead to clinical application of these findings. PMID:23308132

  7. Protein profiling of microdomains purified from renal cell carcinoma and normal kidney tissue samples.

    PubMed

    Raimondo, F; Morosi, L; Chinello, C; Perego, R; Bianchi, C; Albo, G; Ferrero, S; Rocco, F; Magni, F; Pitto, M

    2012-04-01

    Renal cell carcinoma (RCC) is representing about 3% of all adult cancers. A promising strategy for cancer biomarker discovery is subcellular comparative proteomics, allowing enriching specific cell compartments and assessing differences in protein expression patterns. We investigated the proteomic profile of a peculiar RCC subcellular compartment, plasma membrane microdomains (MD), involved in cell signalling, transport, proliferation and in many human diseases, such as cancer. Subcellular fractions were prepared by differential centrifugation from surgical samples of RCC and adjacent normal kidney (ANK). MD were isolated from plasma-membrane-enriched fractions after Triton X-100 treatment and sucrose density gradient ultracentrifugation. MD derived from RCC and ANK tissues were analyzed after SDS-PAGE separation by LC-ESI-MS/MS. We identified 93 proteins from MD isolated from RCC tissue, and 98 proteins from ANK MD. About 70% of the identified proteins are membrane-associated and about half of these are known as microdomain-associated. GRAVY scores assignment shows that most identified proteins (about 70%) are in the hydrophobic range. We chose a panel of proteins to validate their differential expression by WB. In conclusion, our work shows that RCC microdomain proteome is reproducibly different from ANK, and suggests that mining into such differences may support new biomarker discovery. PMID:22159573

  8. Proteomic profiling reveals a catalogue of new candidate proteins for human skin aging.

    PubMed

    Laimer, Martin; Kocher, Thomas; Chiocchetti, Andreas; Trost, Andrea; Lottspeich, Friedrich; Richter, Klaus; Hintner, Helmut; Bauer, Johann W; Onder, Kamil

    2010-10-01

    Studies of skin aging are usually performed at the genomic level by investigating differentially regulated genes identified through subtractive hybridization or microarray analyses. In contrast, relatively few studies have investigated changes in protein expression of aged skin using proteomic profiling by two-dimensional (2-D) gel electrophoresis and mass spectrometry, although this approach at the protein level is suggested to reflect more accurately the aging phenotype. We undertook such a proteomic analysis of intrinsic human skin aging by quantifying proteins extracted and fluorescently labeled from sun-protected human foreskin samples pooled from 'young' and 'old' men. In addition, we analyzed these candidate gene products by 1-D and 2-D western blotting to obtain corroborative protein expression data, and by both real-time PCR (RT-PCR) and microarray analyses to confirm expression at the mRNA level. We discovered 30 putative proteins for skin aging, including previously unrecognized, post-translationally regulated candidates such as phosphatidyl-ethanolamine binding protein (PEBP) and carbonic anhydrase 1 (CA1). PMID:20849533

  9. Language and Williams syndrome: how intact is "intact"?

    PubMed

    Karmiloff-Smith, A; Grant, J; Berthoud, I; Davies, M; Howlin, P; Udwin, O

    1997-04-01

    It has been claimed that Williams syndrome (WS), a rare neurodevelopmental disorder, is characterized by serious cognitive deficits alongside intact language. The syndrome is often used as a prime example of the modularity of an innate faculty for morphosyntactic rules. We challenge this claim and hypothesize that morphosyntax, although surprisingly good given WS level of mental retardation, is by no means intact. We make an initial test of this hypothesis through an analysis of the receptive language of a group of English-speaking WS individuals on a standardized morphosyntactic test. We then present an experimental study of expressive language that examines grammatical gender assignment in French-speaking WS patients. Despite a Verbal Mental Age selected to be higher than the chronological age of the young control group, these people with WS continue even in adulthood to show clear-cut deficits in their production of an aspect of morphosyntax that normal children acquire effortlessly very early. The results of the 2 studies, one focusing on receptive language and the other on expressive language, challenge the notion that comprehension and use of morphosyntactic rules in WS individuals are intact. The Within-domain dissociations regarding the use of grammatical gender assignment across several sentence clements and their difficulties in understanding embedded sentences-two quintessentially linguistic skills-suggest that we must rethink the notion of spared, modular, language capacities in Williams syndrome. We conclude that WS language follows a different path to normal acquisition and may turn out to be more like second language learning. PMID:9180000

  10. Influence of peptides-phenolics interaction on the antioxidant profile of protein hydrolysates from Brassica napus.

    PubMed

    Hernández-Jabalera, Anaid; Cortés-Giraldo, Isabel; Dávila-Ortíz, Gloria; Vioque, Javier; Alaiz, Manuel; Girón-Calle, Julio; Megías, Cristina; Jiménez-Martínez, Cristian

    2015-07-01

    The role of the peptides-phenolic compounds (PC) interaction on the antioxidant capacity profile (ACP) of protein hydrolysates from rapeseed (Brassica napus) was studied in 36 hydrolysates obtained from a PC-rich and PC-reduced protein substrate. The latent profile analysis (LPA), with data of seven in vitro methods and one assay for cellular antioxidant activity (CAA), allowed identifying five distinctive groups of hydrolysates, each one with distinctive ACP. The interaction of peptides with naturally present PC diminished in vitro antioxidant activity in comparison with their PC-reduced counterparts. However, CAA increased when peptides-PC interaction occurred. The profile with the highest average CAA (62.41 ± 1.48%), shown by hydrolysates obtained by using alcalase, shared typical values of Cu(2+)-catalysed β-carotene oxidation (62.41 ± 0.43%), β-carotene bleaching inhibition (91.75 ± 0.22%) and Cu(2+)-chelating activity (74.53 ± 0.58%). The possibilities for a sample to exhibit ACP with higher CAA increased with each unit of positively charged amino acids, according to multinomial logistic regression analysis. PMID:25704722

  11. Protein profiling reveals consequences of lifestyle choices on predicted biological aging.

    PubMed

    Enroth, Stefan; Enroth, Sofia Bosdotter; Johansson, Åsa; Gyllensten, Ulf

    2015-01-01

    Ageing is linked to a number of changes in how the body and its organs function. On a molecular level, ageing is associated with a reduction of telomere length, changes in metabolic and gene-transcription profiles and an altered DNA-methylation pattern. Lifestyle factors such as smoking or stress can impact some of these molecular processes and thereby affect the ageing of an individual. Here we demonstrate by analysis of 77 plasma proteins in 976 individuals, that the abundance of circulating proteins accurately predicts chronological age, as well as anthropometrical measurements such as weight, height and hip circumference. The plasma protein profile can also be used to identify lifestyle factors that accelerate and decelerate ageing. We found smoking, high BMI and consumption of sugar-sweetened beverages to increase the predicted chronological age by 2-6 years, while consumption of fatty fish, drinking moderate amounts of coffee and exercising reduced the predicted age by approximately the same amount. This method can be applied to dried blood spots and may thus be useful in forensic medicine to provide basic anthropometrical measures for an individual based on a biological evidence sample. PMID:26619799

  12. Protein profiling reveals consequences of lifestyle choices on predicted biological aging

    PubMed Central

    Enroth, Stefan; Enroth, Sofia Bosdotter; Johansson, Åsa; Gyllensten, Ulf

    2015-01-01

    Ageing is linked to a number of changes in how the body and its organs function. On a molecular level, ageing is associated with a reduction of telomere length, changes in metabolic and gene-transcription profiles and an altered DNA-methylation pattern. Lifestyle factors such as smoking or stress can impact some of these molecular processes and thereby affect the ageing of an individual. Here we demonstrate by analysis of 77 plasma proteins in 976 individuals, that the abundance of circulating proteins accurately predicts chronological age, as well as anthropometrical measurements such as weight, height and hip circumference. The plasma protein profile can also be used to identify lifestyle factors that accelerate and decelerate ageing. We found smoking, high BMI and consumption of sugar-sweetened beverages to increase the predicted chronological age by 2–6 years, while consumption of fatty fish, drinking moderate amounts of coffee and exercising reduced the predicted age by approximately the same amount. This method can be applied to dried blood spots and may thus be useful in forensic medicine to provide basic anthropometrical measures for an individual based on a biological evidence sample. PMID:26619799

  13. Virus-producing cells determine the host protein profiles of HIV-1 virion cores

    PubMed Central

    2012-01-01

    Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of

  14. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.

    SciTech Connect

    Beliaev, A. S.; Thompson, D. K.; Khare, T.; Lim, H.; Brandt, C. C.; Li, G.; Murray, A. E.; Heidelberg, J. F.; Giometti, C. S.; Yates, J., III; Nealson, K. H.; Tiedje, J. M.; Zhou, J.; Biosciences Division; ORNL; Scripps Research Inst.; Michigan State Univ.; The Inst. for Genomic Research; Jet Propulsion Laboratory; California Inst. of Tech.

    2002-01-01

    Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c{sub 552}, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data.

  15. Protein expression profiling in head fragments during planarian regeneration after amputation.

    PubMed

    Chen, Xiaoguang; Xu, Cunshuan

    2015-04-01

    Following amputation, a planarian tail fragment can regrow into a complete organism including a well-organized brain within about 2-3 weeks, thus restoring the structure and function to presurgical levels. Despite the enormous potential of these animals for regenerative medicine, our understanding of the exact mechanism of planarian regeneration is incomplete. To better understand the molecular nature of planarian head regeneration, we applied two-dimensional electrophoresis (2-DE)/matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)/time-of-flight mass spectrometry (TOF MS) technique to analyze the dynamic proteomic expression profiles over the course of 6 to 168 h post-decapitation. This approach identified a total of 141 differentially expressed proteins, 47 of which exhibited exceptionally high fold changes (≥3-fold change). Of these, Rx protein, an important regulator of head and brain development, was considered to be closely related to planarian head regeneration because of its exceptional high expression almost throughout the time course of regeneration process. Functional annotation analysis classified the 141 proteins into eight categories: (1) signaling, (2) Ca(2+) binding and translocation, (3) transcription and translation, (4) cytoskeleton, (5) metabolism, (6) cell protection, (7) tissue differentiation, and (8) cell cycle. Signaling pathway analysis indicated that Wnt1/Ca(2+) signaling pathway was activated during head regeneration. Integrating the analyses of proteome expression profiling, functional annotation, and signaling pathway, amputation-induced head reformation requires some mechanisms to promote cell proliferation and differentiation, including differential regulation of proapoptotic and antiapoptotic proteins, and the regulation of proliferation and differentiation-related proteins. Importantly, Wnt1/Ca(2+) signaling pathway upregulates Rx expression, finally facilitating the differentiation of neoblasts into various

  16. Simultaneous measurement of multiple radiation-induced protein expression profiles using the Luminex(TM) system

    NASA Technical Reports Server (NTRS)

    Desai, N.; Wu, H.; George, K.; Gonda, S. R.; Cucinotta, F. A.; Cucniotta, F. A. (Principal Investigator)

    2004-01-01

    Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality

    PubMed Central

    Wu, Nicholas C.; Olson, C. Anders; Du, Yushen; Le, Shuai; Tran, Kevin; Remenyi, Roland; Gong, Danyang; Al-Mawsawi, Laith Q.; Qi, Hangfei; Wu, Ting-Ting; Sun, Ren

    2015-01-01

    Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. PMID:26132554

  18. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    PubMed

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. PMID:26593554

  19. Identification of novel biomarkers in chronic immune thrombocytopenia (ITP) by microarray-based serum protein profiling.

    PubMed

    Bal, Gürkan; Futschik, Matthias E; Hartl, Daniela; Ringel, Frauke; Kamhieh-Milz, Julian; Sterzer, Viktor; Hoheisel, Jörg D; Alhamdani, Mohamed S S; Salama, Abdulgabar

    2016-02-01

    The pathological mechanisms underlying the development of immune thrombocytopenia (ITP) are unclear and its diagnosis remains a process of exclusion. Currently, there are no known specific biomarkers for ITP to support differential diagnosis and treatment decisions. Profiling of serum proteins may be valuable for identifying such biomarkers. Sera from 46 patients with primary chronic ITP and 34 healthy blood donors were analysed using a microarray of 755 antibodies. We identified 161 differentially expressed proteins. In addition to oncoproteins and tumour-suppressor proteins, including apoptosis regulator BCL2, breast cancer type 1 susceptibility protein (BRCA1), Fanconi anaemia complementation group C (FANCC) and vascular endothelial growth factor A (VEGFA), we detected six anti-nuclear autoantibodies in a subset of ITP patients: anti-PCNA, anti-SmD, anti-Ro/SSA60, anti-Ro/SSA52, anti-La/SSB and anti-RNPC antibodies. This finding may provide a rational explanation for the association of ITP with malignancies and other autoimmune diseases. While RUNX1mRNA expression in the peripheral blood mononuclear cells (PBMC) of patients was significantly downregulated, an accumulation of RUNX1 protein was observed in the platelets of ITP patients. This may indicate dysregulation of RUNX1 expression in PBMC and megakaryocytes and may lead to an imbalanced immune response and impaired thrombopoiesis. In conclusion, we provide novel insights into the pathogenic mechanisms of ITP that warrant further exploration. PMID:26628061

  20. Expression Profiles of Vpx/Vpr Proteins Are Co-related with the Primate Lentiviral Lineage

    PubMed Central

    Sakai, Yosuke; Miyake, Ariko; Doi, Naoya; Sasada, Hikari; Miyazaki, Yasuyuki; Adachi, Akio; Nomaguchi, Masako

    2016-01-01

    Viruses of human immunodeficiency virus type 2 (HIV-2) and some simian immunodeficiency virus (SIV) lineages carry a unique accessory protein called Vpx. Vpx is essential or critical for viral replication in natural target cells such as macrophages and T lymphocytes. We have previously shown that a poly-proline motif (PPM) located at the C-terminal region of Vpx is required for its efficient expression in two strains of HIV-2 and SIVmac, and that the Vpx expression levels of the two clones are significantly different. Notably, the PPM sequence is conserved and confined to Vpx and Vpr proteins derived from certain lineages of HIV-2/SIVs. In this study, Vpx/Vpr proteins from diverse primate lentiviral lineages were experimentally and phylogenetically analyzed to obtain the general expression picture in cells. While both the level and PPM-dependency of Vpx/Vpr expression in transfected cells varied among viral strains, each viral group, based on Vpx/Vpr amino acid sequences, was found to exhibit a characteristic expression profile. Moreover, phylogenetic tree analyses on Gag and Vpx/Vpr proteins gave essentially the same results. Taken together, our study described here suggests that each primate lentiviral lineage may have developed a unique expression pattern of Vpx/Vpr proteins for adaptation to its hostile cellular and species environments in the process of viral evolution. PMID:27536295

  1. Expression Profiles of Vpx/Vpr Proteins Are Co-related with the Primate Lentiviral Lineage.

    PubMed

    Sakai, Yosuke; Miyake, Ariko; Doi, Naoya; Sasada, Hikari; Miyazaki, Yasuyuki; Adachi, Akio; Nomaguchi, Masako

    2016-01-01

    Viruses of human immunodeficiency virus type 2 (HIV-2) and some simian immunodeficiency virus (SIV) lineages carry a unique accessory protein called Vpx. Vpx is essential or critical for viral replication in natural target cells such as macrophages and T lymphocytes. We have previously shown that a poly-proline motif (PPM) located at the C-terminal region of Vpx is required for its efficient expression in two strains of HIV-2 and SIVmac, and that the Vpx expression levels of the two clones are significantly different. Notably, the PPM sequence is conserved and confined to Vpx and Vpr proteins derived from certain lineages of HIV-2/SIVs. In this study, Vpx/Vpr proteins from diverse primate lentiviral lineages were experimentally and phylogenetically analyzed to obtain the general expression picture in cells. While both the level and PPM-dependency of Vpx/Vpr expression in transfected cells varied among viral strains, each viral group, based on Vpx/Vpr amino acid sequences, was found to exhibit a characteristic expression profile. Moreover, phylogenetic tree analyses on Gag and Vpx/Vpr proteins gave essentially the same results. Taken together, our study described here suggests that each primate lentiviral lineage may have developed a unique expression pattern of Vpx/Vpr proteins for adaptation to its hostile cellular and species environments in the process of viral evolution. PMID:27536295

  2. Dam it's good! DamID profiling of protein-DNA interactions.

    PubMed

    Aughey, Gabriel N; Southall, Tony D

    2016-01-01

    The interaction of proteins with chromatin is fundamental for several essential cellular processes. During the development of an organism, genes must to be tightly regulated both temporally and spatially. This is achieved through the action of chromatin-binding proteins such as transcription factors, histone modifiers, nucleosome remodelers, and lamins. Furthermore, protein-DNA interactions are important in the adult, where their perturbation can lead to disruption of homeostasis, metabolic dysregulation, and diseases such as cancer. Understanding the nature of these interactions is of paramount importance in almost all areas of molecular biological research. In recent years, DNA adenine methyltransferase identification (DamID) has emerged as one of the most comprehensive and versatile methods available for profiling protein-DNA interactions on a genomic scale. DamID has been used to map a variety of chromatin-binding proteins in several model organisms and has the potential for continued adaptation and application in the field of genomic biology. WIREs Dev Biol 2016, 5:25-37. doi: 10.1002/wdev.205 For further resources related to this article, please visit the WIREs website. PMID:26383089

  3. Using SEC-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling

    PubMed Central

    Simpson, David C.; Ahn, Seonghee; Pasa-Tolic, Ljiljana; Bogdanov, Bogdan; Mottaz, Heather M.; Vilkov, Andrey N.; Anderson, Gordon A.; Lipton, Mary S.; Smith, Richard D.

    2007-01-01

    Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated capability for broad proteome coverage and good throughput. However, due to incomplete sequence coverage, this approach is not ideally suited to the study of modified proteins. The modification complement of a protein can best be elucidated by analyzing the intact protein. Two-dimensional gel electrophoresis, typically coupled with the analysis of peptides that result from in-gel digestion, is the most frequently applied protein separation technique in MS-based proteomics. As an alternative, numerous column-based liquid phase techniques, which are generally more amenable to automation, are being investigated. In this work, the combination of size exclusion chromatography (SEC) fractionation with reversed-phase liquid chromatography (RPLC)-Fourier-transform ion cyclotron resonance (FTICR)-mass spectrometry (MS) is compared with the combination of RPLC fractionation with capillary isoelectric focusing (CIEF)-FTICR-MS for the analysis of the Shewanella oneidensis proteome. SEC-RPLC-FTICR-MS allowed the detection of 297 proteins, as opposed to 166 using RPLC-CIEF-FTICR-MS, indicating that approaches based on LC-MS provide better coverage. However, there were significant differences in the sets of proteins detected and both approaches provide a basis for accurately quantifying changes in protein and modified protein abundances. PMID:16732621

  4. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling

    SciTech Connect

    Simson, David C.; Ahn, Seonghee; Pasa-Tolic, Liljiana; Bogdanov, Bogdan; Brewer, Heather M.; Vilkov, Andrey N.; Anderson, Gordon A.; Lipton, Mary S.; Smith, Richard D.

    2006-07-01

    Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated capability for broad proteome coverage and good throughput. However, due to incomplete sequence coverage, this approach is not ideally suited to the study of modified proteins. The modification complement of a protein can best be elucidated by analyzing the intact protein. Two-dimensional gel electrophoresis, typically coupled with the analysis of peptides that result from in-gel digestion, is the most frequently applied protein separation technique in MS-based proteomics. As an alternative, numerous column-based liquid phase techniques, which are generally more amenable to automation, are being investigated. In this work, the combination of size exclusion chromatography (SEC) fractionation with reversed-phase liquid chromatography (RPLC)-Fourier-transform ion cyclotron resonance (FTICR)-mass spectrometry (MS) is compared with the combination of RPLC fractionation with capillary isoelectric focusing (CIEF)-FTICR-MS for the analysis of the Shewanella oneidensis proteome. SEC-RPLC-FTICR-MS allowed the detection of 297 proteins, as opposed to 166 using RPLC-CIEF-FTICR-MS, indicating that approaches based on LC-MS provide better coverage. However, there were significant differences in the sets of proteins detected and both approaches provide a basis for accurately quantifying changes in protein and modified protein abundances.

  5. Phosphorylation of intact erythrocytes in human muscular dystrophy

    SciTech Connect

    Johnson, R.M.; Nigro, M.

    1986-04-01

    The uptake of exogenous /sup 32/Pi into the membrane proteins of intact erythrocytes was measured in 8 patients with Duchenne muscular dystrophy. No abnormalities were noted after autoradiographic analysis. This contrasts with earlier results obtained when isolated membranes were phosphorylated with gamma-(/sup 32/P)ATP, and suggests a possible reinterpretation of those experiments.

  6. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.

    PubMed

    Meslamani, Jamel; Li, Jiabo; Sutter, Jon; Stevens, Adrian; Bertrand, Hugues-Olivier; Rognan, Didier

    2012-04-23

    Ligand profiling is an emerging computational method for predicting the most likely targets of a bioactive compound and therefore anticipating adverse reactions, side effects and drug repurposing. A few encouraging successes have already been reported using ligand 2-D similarity searches and protein-ligand docking. The current study describes the use of receptor-ligand-derived pharmacophore searches as a tool to link ligands to putative targets. A database of 68,056 pharmacophores was first derived from 8,166 high-resolution protein-ligand complexes. In order to limit the number of queries, a maximum of 10 pharmacophores was generated for each complex according to their predicted selectivity. Pharmacophore search was compared to ligand-centric (2-D and 3-D similarity searches) and docking methods in profiling a set of 157 diverse ligands against a panel of 2,556 unique targets of known X-ray structure. As expected, ligand-based methods outperformed, in most of the cases, structure-based approaches in ranking the true targets among the top 1% scoring entries. However, we could identify ligands for which only a single method was successful. Receptor-ligand-based pharmacophore search is notably a fast and reliable alternative to docking when few ligand information is available for some targets. Overall, the present study suggests that a workflow using the best profiling method according to the protein-ligand context is the best strategy to follow. We notably present concrete guidelines for selecting the optimal computational method according to simple ligand and binding site properties. PMID:22480372

  7. Defining efficient enzyme-cofactor pairs for bioorthogonal profiling of protein methylation

    SciTech Connect

    Islam, Kabirul; Chen, Yuling; Wu, Hong; Bothwell, Ian R.; Blum, Gil J.; Zeng, Hong; Dong, Aiping; Zheng, Weihong; Min, Jinrong; Deng, Haiteng; Luo, Minkui

    2013-11-18

    Protein methyltransferase (PMT)-mediated posttranslational modification of histone and nonhistone substrates modulates stability, localization, and interacting partners of target proteins in diverse cellular contexts. These events play critical roles in normal biological processes and are frequently deregulated in human diseases. In the course of identifying substrates of individual PMTs, bioorthogonal profiling of protein methylation (BPPM) has demonstrated its merits. In this approach, specific PMTs are engineered to process S-adenosyl-L-methionine (SAM) analogs as cofactor surrogates and label their substrates with distinct chemical modifications for target elucidation. Despite the proof-of-concept advancement of BPPM, few efforts have been made to explore its generality. With two cancer-relevant PMTs, EuHMT1 (GLP1/KMT1D) and EuHMT2 (G9a/KMT1C), as models, we defined the key structural features of engineered PMTs and matched SAM analogs that can render the orthogonal enzyme–cofactor pairs for efficient catalysis. Here we have demonstrated that the presence of sulfonium-β-sp2 carbon and flexible, medium-sized sulfonium-δ-substituents are crucial for SAM analogs as BPPM reagents. The bulky cofactors can be accommodated by tailoring the conserved Y1211/Y1154 residues and nearby hydrophobic cavities of EuHMT1/2. Profiling proteome-wide substrates with BPPM allowed identification of >500 targets of EuHMT1/2 with representative targets validated using native EuHMT1/2 and SAM. This finding indicates that EuHMT1/2 may regulate many cellular events previously unrecognized to be modulated by methylation. The present work, therefore, paves the way to a broader application of the BPPM technology to profile methylomes of diverse PMTs and elucidate their downstream functions.

  8. Comparative analysis of click chemistry mediated activity-based protein profiling in cell lysates.

    PubMed

    Yang, Yinliang; Yang, Xiaomeng; Verhelst, Steven H L

    2013-01-01

    Activity-based protein profiling uses chemical probes that covalently attach to active enzyme targets. Probes with conventional tags have disadvantages, such as limited cell permeability or steric hindrance around the reactive group. A tandem labeling strategy with click chemistry is now widely used to study enzyme targets in situ and in vivo. Herein, the probes are reacted in live cells, whereas the ensuing detection by click chemistry takes place in cell lysates. We here make a comparison of the efficiency of the activity-based tandem labeling strategy by using Cu(I)-catalyzed and strain-promoted click chemistry, different ligands and different lysis conditions. PMID:24126377

  9. Multiple protein extract microarray for profiling human food-specific immunoglobulins A, M, G and E.

    PubMed

    Renault, N K; Gaddipati, S R; Wulfert, F; Falcone, F H; Mirotti, L; Tighe, P J; Wright, V; Alcocer, M J C

    2011-02-01

    Existing food immunoglobulin (Ig) tests require large volumes of serum, are limited to one immunoglobulin class, are not amenable to high throughput analysis and only give a limited picture of the immunological response to food antigens. Conversely a new generation of Component Resolved Diagnostic systems using pure proteins is highly specific and totally dependent on the availability of the protein in its recombinant or natural origin form. Here we demonstrate a proof-of-concept of a microarray test based on protein extracts of food components. Our approach relies on innovations on three different fronts: the novelty of using arrayed food samples sequentially extracted with detergent and chaotropic agents, the ability to measure four different Ig classes simultaneously and the ability to analyse the generated data via a suitable bioinformatics/statistical analysis interface. This approach combines high numerical power of microarrays with automation, high throughput analysis and enables detailed investigation of the Ig profiles to food antigens. The prototype shown contains extracts of approximately 350 food ingredients that cover most of the food products found in the UK. Here we showed that the use of a sequential extraction technique to solubilise and then denature food samples has its benefits in the assessment of variations in antigenicity when tested with human sera. A patient dependent degree of class specificity was observed with human sera (IgG specificity correlates well with IgA>IgM>IgE). Besides generating a simultaneous profile for IgA, IgM, IgG and IgE the array system has shown good discrimination between challenge responders in atopic and non-atopic individuals. Poly- and mono-specific IgE responders were easily identified. The mathematical modelling of specific IgE content showed good correlations when compared with established IgE antibody testing assay (UniCAP). Although in its proof-of-principle stages, the immune profiling technique described

  10. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach. PMID:27020565

  11. Seminal plasma protein profiles of ejaculates obtained by internal artificial vagina and electroejaculation in Brahman bulls.

    PubMed

    Rego, J P A; Moura, A A; Nouwens, A S; McGowan, M R; Boe-Hansen, G B

    2015-09-01

    The present study was conducted to investigate if differences exist in the seminal plasma protein profile from mature Brahman bulls using two methods of semen collection: internal artificial vagina (IAV) and electroejaculation (EEJ). Semen was collected four times from three bulls on the same day and parameters were assessed immediately post-collection. Seminal plasma proteins were evaluated by 2-D fluorescence difference gel electrophoresis and identified by mass spectrometry. Semen volume was greater (P < 0.05) for EEJ (4.6 ± 0.35 mL) than for IAV (1.86 ± 0.24 mL) but sperm concentration was greater in IAV (1505 ± 189 × 10(6) sperm/mL) than in EEJ samples (344 ± 87 × 10(6) sperm/mL). Sperm motility and the percentage of normal sperm were not different between treatments. Total concentration of seminal plasma proteins was greater for samples collected by IAV as compared to EEJ (19.3 ± 0.9 compared with 13.0 ± 1.8 mg/mL, P < 0.05; respectively). Based on 2-D gels, 22 spots had a greater volume (P < 0.05) in gels derived from IAV samples, corresponding to 21 proteins identified as transferrin, albumin, epididymal secretory glutathione peroxidase, among others. Thirty-three spots, corresponding to 26 proteins, had a greater volume (P < 0.05) in gels derived from EEJ samples. These proteins were identified as spermadhesin-1, Bovine Sperm Protin 1, 3 and 5 isoforms, angiogenin-1, alpha-1B-glycoprotein, clusterin, nucleobindin-1, cathepsins, spermadhesin Z13, annexins, among others. Thus, proteins in greater amounts in samples obtained by IAV and EEJ were mainly of epididymal origin and accessory sex glands, respectively. PMID:26282524

  12. Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns.

    PubMed

    Arcinas, Arthur; Yen, Ten-Yang; Kebebew, Electron; Macher, Bruce A

    2009-08-01

    Cell surface proteins have been shown to be effective therapeutic targets. In addition, shed forms of these proteins and secreted proteins can serve as biomarkers for diseases, including cancer. Thus, identification of cell surface and secreted proteins has been a prime area of interest in the proteomics field. Most cell surface and secreted proteins are known to be glycosylated, and therefore, a proteomics strategy targeting these proteins was applied to obtain proteomic profiles from various thyroid cancer cell lines that represent the range of thyroid cancers of follicular cell origin. In this study, we oxidized the carbohydrates of secreted proteins and those on the cell surface with periodate and isolated them via covalent coupling to hydrazide resin. The glycoproteins obtained were identified from tryptic peptides and N-linked glycopeptides released from the hydrazide resin using two-dimensional liquid chromatography-tandem mass spectrometry in combination with the gas phase fractionation. Thyroid cancer cell lines derived from papillary thyroid cancer (TPC-1), follicular thyroid cancer (FTC-133), Hurthle cell carcinoma (XTC-1), and anaplastic thyroid cancer (ARO and DRO-1) were evaluated. An average of 150 glycoproteins were identified per cell line, of which more than 57% are known cell surface or secreted glycoproteins. The usefulness of the approach for identifying thyroid cancer associated biomarkers was validated by the identification of glycoproteins (e.g., CD44, galectin 3 and metalloproteinase inhibitor 1) that have been found to be useful markers for thyroid cancer. In addition to glycoproteins that are commonly expressed by all of the cell lines, we identified others that are only expressed in the more well-differentiated thyroid cancer cell lines (follicular, Hurthle cell and papillary), or by cell lines derived from undifferentiated tumors that are uniformly fatal forms of thyroid cancer (i.e., anaplastic). On the basis of the results obtained, a

  13. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  14. Force profiles of protein pulling with or without cytoskeletal links studied by AFM

    SciTech Connect

    Afrin, Rehana; Ikai, Atsushi . E-mail: aikai@bio.titech.ac.jp

    2006-09-15

    To test the capability of the atomic force microscope for distinguishing membrane proteins with/without cytoskeletal associations, we studied the pull-out mechanics of lipid tethers from the red blood cell (RBC). When wheat germ agglutinin, a glycophorin A (GLA) specific lectin, was used to pull out tethers from RBC, characteristic force curves for tether elongation having a long plateau force were observed but without force peaks which are usually attributed to the forced unbinding of membrane components from the cytoskeleton. The result was in agreement with the reports that GLA is substantially free of cytoskeletal interactions. On the contrary, when the Band 3 specific lectin, concanavalin A, was used, the force peaks were indeed observed together with a plateau supporting its reported cytoskeletal association. Based on these observations, we postulate that the state of cytoskeletal association of particular membrane proteins can be identified from the force profiles of their pull-out mechanics.

  15. Design and synthesis of an activity-based protein profiling probe derived from cinnamic hydroxamic acid.

    PubMed

    Ai, Teng; Qiu, Li; Xie, Jiashu; Geraghty, Robert J; Chen, Liqiang

    2016-02-15

    In our continued effort to discover new anti-hepatitis C virus (HCV) agents, we validated the anti-replicon activity of compound 1, a potent and selective anti-HCV hydroxamic acid recently reported by us. Generally favorable physicochemical and in vitro absorption, distribution, metabolism, and excretion (ADME) properties exhibited by 1 made it an ideal parent compound from which activity-based protein profiling (ABPP) probe 3 was designed and synthesized. Evaluation of probe 3 revealed that it possessed necessary anti-HCV activity and selectivity. Therefore, we have successfully obtained compound 3 as a suitable ABPP probe to identify potential molecular targets of compound 1. Probe 3 and its improved analogs are expected to join a growing list of ABPP probes that have made important contributions to not only the studies of biochemical and cellular functions but also discovery of selective inhibitors of protein targets. PMID:26753813

  16. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile.

    PubMed

    van den Brink-van der Laan, Els; Killian, J Antoinette; de Kruijff, Ben

    2004-11-01

    Nonbilayer lipids can be defined as cone-shaped lipids with a preference for nonbilayer structures with a negative curvature, such as the hexagonal phase. All membranes contain these lipids in large amounts. Yet, the lipids in biological membranes are organized in a bilayer. This leads to the question: what is the physiological role of nonbilayer lipids? Different models are discussed in this review, with a focus on the lateral pressure profile within the membrane. Based on this lateral pressure model, predictions can be made for the effect of nonbilayer lipids on peripheral and integral membrane proteins. Recent data on the catalytic domain of Leader Peptidase and the potassium channel KcsA are discussed in relation to these predictions and in relation to the different models on the function of nonbilayer lipids. The data suggest a general mechanism for the interaction between nonbilayer lipids and membrane proteins via the membrane lateral pressure. PMID:15519321

  17. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    PubMed Central

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  18. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.

    PubMed

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2013-06-27

    DNA-binding proteins recognize DNA sequences with at least two different binding modes: specific and nonspecific. Experimental structures of such complexes provide us a static view of the bindings. However, it is difficult to reveal further mechanisms of their target-site search and recognition only from static information because the transition process between the bound and unbound states is not clarified by static information. What is the difference between specific and nonspecific bindings? Here we performed adaptive biasing force molecular dynamics simulations with the specific and nonspecific structures of DNA-Lac repressor complexes to investigate the dissociation process. The resultant free-energy profiles showed that the specific complex has a sharp, deep well consistent with tight binding, whereas the nonspecific complex has a broad, shallow well consistent with loose binding. The difference in the well depth, ~5 kcal/mol, was in fair agreement with the experimentally obtained value and was found to mainly come from the protein conformational difference, particularly in the C-terminal tail. Also, the free-energy profiles were found to be correlated with changes in the number of protein-DNA contacts and that of surface water molecules. The derived protein spatial distributions around the DNA indicate that any large dissociation occurs rarely, regardless of the specific and nonspecific sites. Comparison of the free-energy barrier for sliding [~8.7 kcal/mol; Furini J. Phys. Chem. B 2010, 114, 2238] and that for dissociation (at least ~16 kcal/mol) calculated in this study suggests that sliding is much preferred to dissociation. PMID:23713479

  19. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  20. Morphological and protein profile comparison of large vessel and microvascular endothelial cells in culture

    SciTech Connect

    Beer, D.M.; Kim, J.S.; Carson, M.P.; Haudeuschild, C.C.; Patton, W.F.; Jacobson, B.S.

    1986-05-01

    Bovine adrenal medulla (AmMEC) and brain (BrMEC) microvessel endothelial cells, and bovine aortic (BAE) endothelial cells were isolated and cultured under identical conditions using a modification of a technique previously described for BrMEC. The cells were isolated and passaged under conditions minimizing cell surface alterations. Primary cultures were confluent in 4-6 days at a plating density in the region of 10/sup 4/ cells/cm/sup 2/. BAEs maintained a cobblestone morphology and a denser monolayer than MECs in primary and passaged cells whether the cells were passaged using Pancreatin, Trypsin-EDTA, or Collagenase-EDTA. MECs were initially elongate and became more like BAEs with passaging. BAEs and AmMECs were examined for differences in whole cell, Triton extracted cytoskeleton and plasma membrane (PM) protein profiles by two-dimensional gel electrophoresis. Cells were labeled with /sup 35/S-methionine and PM by lactoperoxidase catalyzed iodination. Though for the most part protein patterns were similar, several proteins in the PM and cytoskeletal preparations differed. A significant difference in the isoelectric forms of proteins with the same molecular weight was observed in the PM.

  1. Cancer cell profiling by barcoding allows multiplexed protein analysis in fine needle aspirates

    PubMed Central

    Ullal, Adeeti V.; Peterson, Vanessa; Agasti, Sarit S.; Tuang, Suan; Juric, Dejan; Castro, Cesar M.; Weissleder, Ralph

    2014-01-01

    Immunohistochemistry-based clinical diagnoses require invasive core biopsies and use a limited number of protein stains to identify and classify cancers. Here, we introduce a technology that allows analysis of hundreds of proteins from minimally invasive fine needle aspirates (FNA), which contain much smaller numbers of cells than core biopsies. The method capitalizes on DNA-barcoded antibody sensing where barcodes can be photo-cleaved and digitally detected without any amplification steps. Following extensive benchmarking in cell lines, this method showed high reproducibility and achieved single cell sensitivity. We used this approach to profile ~90 proteins in cells from FNAs and subsequently map patient heterogeneity at the protein level. Additionally, we demonstrate how the method could be used as a clinical tool to identify pathway responses to molecularly targeted drugs and to predict drug response in patient samples. This technique combines specificity with ease of use to offer a new tool for understanding human cancers and designing future clinical trials. PMID:24431113

  2. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella.

    PubMed

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I-Ping; Camargo, Eddie; Tzen, Jason T C; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-01-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates. PMID:26481560

  3. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I.-Ping; Camargo, Eddie; Tzen, Jason T. C.; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-10-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates.

  4. Morphological Variability and Distinct Protein Profiles of Cultured and Endosymbiotic Symbiodinium cells Isolated from Exaiptasia pulchella

    PubMed Central

    Pasaribu, Buntora; Weng, Li-Chi; Lin, I-Ping; Camargo, Eddie; Tzen, Jason T. C.; Tsai, Ching-Hsiu; Ho, Shin-Lon; Lin, Mong-Rong; Wang, Li-Hsueh; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2015-01-01

    Symbiodinium is a dinoflagellate that plays an important role in the physiology of the symbiotic relationships of Cnidarians such as corals and sea anemones. However, it is very difficult to cultivate free-living dinoflagellates after being isolated from the host, as they are very sensitive to environmental changes. How these symbiont cells are supported by the host tissue is still unclear. This study investigated the characteristics of Symbiodinium cells, particularly with respect to the morphological variability and distinct protein profiles of both cultured and endosymbiotic Symbiodinium which were freshly isolated from Exaiptasia pulchella. The response of the cellular morphology of freshly isolated Symbiodinium cells kept under a 12 h L:12 h D cycle to different temperatures was measured. Cellular proliferation was investigated by measuring the growth pattern of Symbiodinium cells, the results of which indicated that the growth was significantly reduced in response to the extreme temperatures. Proteomic analysis of freshly isolated Symbiodinium cells revealed twelve novel proteins that putatively included transcription translation factors, photosystem proteins, and proteins associated with energy and lipid metabolism, as well as defense response. The results of this study will bring more understandings to the mechanisms governing the endosymbiotic relationship between the cnidarians and dinoflagellates. PMID:26481560

  5. Polypeptide profiles of chlorophyll . protein complexes and thylakoid membranes of spinach chloroplasts.

    PubMed

    Wessels, J S; Borchert, M T

    1978-07-01

    In addition to the major chlorophyll . protein complexes I and II, two minor chlorophyll proteins have been observed in sodium dodecyl sulfate (SDS))-polyacrylamide gels of spinach chloroplast membranes. These minor pigmented zones appeared to be derived from the light-harvesting chlorophyll a/b . protein and from the reaction centre complex of Photosystem II. Data are presented on the polypeptide profiles of purified digitonin-subschloroplast particles, with special regard to the effect of solubilization temperature and extraction of lipids. The results are compared with the SDS-polypeptide pattern of spinach thylakoids obtained under exactly the same conditions with respect to electrophoresis technique, solubilization method and presence of lipid. In addition, the effects of temperature and lipid extraction on the distinct chlorophyll . protein complexes appearing in SDS gel electrophoretograms of chloroplast membranes were studied by slicing the chlorophyll-containing regions and subjecting them to a second run with or without heating or extraction with acetone. By supplementing these data with an examination of the polypeptide composition of cytochrome f and coupling factor, it has been possible to identify most of the major chloroplast membrane polypeptides. PMID:667027

  6. Molecular Characterization and Expression Profiling of the Protein Disulfide Isomerase Gene Family in Brachypodium distachyon L

    PubMed Central

    Zhu, Jiantang; Yin, Guangjun; Li, Xiaohui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2014-01-01

    Protein disulfide isomerases (PDI) are involved in catalyzing protein disulfide bonding and isomerization in the endoplasmic reticulum and functions as a chaperone to inhibit the aggregation of misfolded proteins. Brachypodium distachyon is a widely used model plant for temperate grass species such as wheat and barley. In this work, we report the first molecular characterization, phylogenies, and expression profiles of PDI and PDI-like (PDIL) genes in B. distachyon in different tissues under various abiotic stresses. Eleven PDI and PDIL genes in the B. distachyon genome by in silico identification were evenly distributed across all five chromosomes. The plant PDI family has three conserved motifs that are involved in catalyzing protein disulfide bonding and isomerization, but a different exon/intron structural organization showed a high degree of structural differentiation. Two pairs of genes (BdPDIL4-1 and BdPDIL4-2; BdPDIL7-1 and BdPDIL7-2) contained segmental duplications, indicating each pair originated from one progenitor. Promoter analysis showed that Brachypodium PDI family members contained important cis-acting regulatory elements involved in seed storage protein synthesis and diverse stress response. All Brachypodium PDI genes investigated were ubiquitously expressed in different organs, but differentiation in expression levels among different genes and organs was clear. BdPDIL1-1 and BdPDIL5-1 were expressed abundantly in developing grains, suggesting that they have important roles in synthesis and accumulation of seed storage proteins. Diverse treatments (drought, salt, ABA, and H2O2) induced up- and down-regulated expression of Brachypodium PDI genes in seedling leaves. Interestingly, BdPDIL1-1 displayed significantly up-regulated expression following all abiotic stress treatments, indicating that it could be involved in multiple stress responses. Our results provide new insights into the structural and functional characteristics of the plant PDI gene

  7. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits

    PubMed Central

    Verheyen, Toon; Görnemann, Janina; Verbinnen, Iris; Boens, Shannah; Beullens, Monique; Van Eynde, Aleyde; Bollen, Mathieu

    2015-01-01

    Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits. PMID:25990731

  8. Protein profiling and histone deacetylation activities in somaclonal variants of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Yaacob, Jamilah Syafawati; Loh, Hwei-San; Mat Taha, Rosna

    2013-01-01

    Mantled fruits as a result of somaclonal variation are often observed from the oil palm plantlets regenerated via tissue culture. The mantling of fruits with finger-like and thick outer coating phenotypes significantly reduces the seed size and oil content, posing a threat to oil palm planters, and may jeopardize the economic growth of countries that depend particularly on oil palm plantation. The molecular aspects of the occurrence of somaclonal variations are yet to be known, possibly due to gene repression such as DNA methylation, histone methylation and histone deacetylation. Histone deacetylases (HDACs), involved in eukaryotic gene regulation by catalyzing the acetyl groups are removal from lysine residues on histone, hence transcriptionally repress gene expression. This paper described the total protein polymorphism profiles of somaclonal variants of oil palm and the effects of histone deacetylation on this phenomenon. Parallel to the different phenotypes, the protein polymorphism profiles of the mantled samples (leaves, fruits, and florets) and the phenotypically normal samples were proven to be different. Higher HDAC activity was found in mantled leaf samples than in the phenotypically normal leaf samples, leading to a preliminary conclusion that histone deacetylation suppressed gene expression and contributed to the development of somaclonal variants. PMID:23844406

  9. Chemical Dimerizers in Three-Hybrid Systems for Small Molecule-Target Protein Profiling.

    PubMed

    De Clercq, Dries J H; Tavernier, Jan; Lievens, Sam; Van Calenbergh, Serge

    2016-08-19

    The identification of the molecular targets and mechanisms underpinning the beneficial or detrimental effects of small-molecule leads and drugs constitutes a crucial aspect of current drug discovery. Over the last two decades, three-hybrid (3H) systems have progressively taken an important position in the armamentarium of small molecule-target protein profiling technologies. Yet, a prerequisite for successful 3H analysis is the availability of appropriate chemical inducers of dimerization. Herein, we present a comprehensive and critical overview of the chemical dimerizers specifically applied in both yeast and mammalian three-hybrid systems for small molecule-target protein profiling within the broader scope of target deconvolution and drug discovery. Furthermore, examples and alternative suggestions for typical components of chemical dimerizers for 3H systems are discussed. As illustrated, more tools have become available that increase the sensitivity and efficiency of 3H-based screening platforms. Hence, it is anticipated that the great potential of 3H systems will further materialize in important contributions to drug discovery. PMID:27267544

  10. Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures.

    PubMed

    Oh, Djin-Ye; Dowling, David J; Ahmed, Saima; Choi, Hyungwon; Brightman, Spencer; Bergelson, Ilana; Berger, Sebastian T; Sauld, John F; Pettengill, Matthew; Kho, Alvin T; Pollack, Henry J; Steen, Hanno; Levy, Ofer

    2016-06-01

    Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles

  11. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk. PMID:26927981

  12. Application of capillary electrophoretic chips in protein profiling of plant extracts for identification of genetic modifications of maize.

    PubMed

    Poboży, Ewa; Filaber, Monika; Koc, Anna; Garcia-Reyes, Juan F

    2013-09-01

    In this study, the chip gel electrophoresis with LIF detection was applied in protein profiling of fractionated and total extracts of maize standards. The sensitivity of such determinations can be enhanced by lyophilization of extracts or employing filtering and preconcentration with cutoff filters. Combinatorial peptide ligand library applied for sample processing prior to the electrophoretic analysis was, especially, an effective pretreatment step in the determination of low-abundance proteins. Several repeatable differences were observed for protein profiles between maize standards not containing the genetically modified organisms (GMOs) and those containing GMO, which can be potentially employed for identification of GMO in maize samples and foods of maize origin. PMID:23856913

  13. Protein profiling of Haemonchus contortus found in sheep of Kashmir valley.

    PubMed

    Tak, Irfan-Ur-Rauf; Chishti, M Z; Ahmad, Fayaz

    2015-12-01

    Economic losses due to helminth parasites in sheep throughout the world are considerable. Haemonchus contortus is a blood sucking intestinal helminth that lives in the abomasum of small ruminants worldwide. This parasite can be devastating to producers as it causes decreased production levels due to clinical signs such as anaemia, edema and death. For isolation of the proteins of the parasite, a well defined methodology was adopted. The abomasae of sheep in which this parasite resides were collected from abattoirs of various districts and were then carried to laboratory for screening. In case of collection sites falling in far areas, the organs were screened on spot. The parasites were collected in normal saline, washed and stored in 0.05 M PBS with pH of 7.4 at 0 °C. After refrigeration, frozen nematodes were thawed, homogenized and centrifuged at 1,000-15,000 rpm for 15 min. The supernatant was thus collected as a protein mixture and stored at -20 °C. Protein concentration of the samples was estimated by Lowry method. The samples were then analyzed through PAGE and then through SDS-PAGE. Protein estimation of the samples was estimated to be 4.2 mg/ml. The processed parasite samples were then subjected to PAGE and SDS-PAGE to determine the presence of the proteins. It showed high concentration of proteins in its whole protein profile. The proteins were seen as continuous bands intermixing with each other in PAGE analysis. The present study revealed two bands of molecular weights-55 and 33 kDa in PAGE analysis. The proteins when analyzed through SDS-PAGE were mostly found in the range of 25-70 kDa. The SDS-PAGE analysis showed four prominent bands. These bands were of the molecular weights of 66, 40, 33 and 26 kDa. The present work was a challenging one since only a single study was conducted in this region on this aspect and thus obviously was a big task to peep into the field where scanty input was available. PMID:26688626

  14. Profiling Lipid–protein Interactions Using Nonquenched Fluorescent Liposomal Nanovesicles and Proteome Microarrays*

    PubMed Central

    Lu, Kuan-Yi; Tao, Sheng-Ce; Yang, Tzu-Ching; Ho, Yu-Hsuan; Lee, Chia-Hsien; Lin, Chen-Ching; Juan, Hsueh-Fen; Huang, Hsuan-Cheng; Yang, Chin-Yu; Chen, Ming-Shuo; Lin, Yu-Yi; Lu, Jin-Ying; Zhu, Heng; Chen, Chien-Sheng

    2012-01-01

    Fluorescent liposomal nanovesicles (liposomes) are commonly used for lipid research and/or signal enhancement. However, the problem of self-quenching with conventional fluorescent liposomes limits their applications because these liposomes must be lysed to detect the fluorescent signals. Here, we developed a nonquenched fluorescent (NQF)1 liposome by optimizing the proportion of sulforhodamine B (SRB) encapsulant and lissamine rhodamine B-dipalmitoyl phosphatidylethanol (LRB-DPPE) on a liposomal surface for signal amplification. Our study showed that 0.3% of LRB-DPPE with 200 μm of SRB provided the maximal fluorescent signal without the need to lyse the liposomes. We also observed that the NQF liposomes largely eliminated self-quenching effects and produced greatly enhanced signals than SRB-only liposomes by 5.3-fold. To show their application in proteomics research, we constructed NQF liposomes that contained phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and profiled its protein interactome using a yeast proteome microarray. Our profiling led to the identification of 162 PI(3,5)P2-specific binding proteins (PI(3,5)P2-BPs). We not only recovered many proteins that possessed known PI(3,5)P2-binding domains, but we also found two unknown Pfam domains (Pfam-B_8509 and Pfam-B_10446) that were enriched in our dataset. The validation of many newly discovered PI(3,5)P2-BPs was performed using a bead-based affinity assay. Further bioinformatics analyses revealed that the functional roles of 22 PI(3,5)P2-BPs were similar to those associated with PI(3,5)P2, including vesicle-mediated transport, GTPase, cytoskeleton, and kinase. Among the 162 PI(3,5)P2-BPs, we found a novel motif, HRDIKP[ES]NJLL that showed statistical significance. A docking simulation showed that PI(3,5)P2 interacted primarily with lysine or arginine side chains of the newly identified PI(3,5)P2-binding kinases. Our study showed that this new tool would greatly benefit profiling lipid–protein

  15. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media. PMID:11538362

  16. Structural and molecular interrogation of intact biological systems.

    PubMed

    Chung, Kwanghun; Wallace, Jenelle; Kim, Sung-Yon; Kalyanasundaram, Sandhiya; Andalman, Aaron S; Davidson, Thomas J; Mirzabekov, Julie J; Zalocusky, Kelly A; Mattis, Joanna; Denisin, Aleksandra K; Pak, Sally; Bernstein, Hannah; Ramakrishnan, Charu; Grosenick, Logan; Gradinaru, Viviana; Deisseroth, Karl

    2013-05-16

    Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease. PMID:23575631

  17. Post-translational modification profiling - A novel tool for mapping the protein modification landscape in cancer.

    PubMed

    Eisenberg-Lerner, Avital; Ciechanover, Aaron; Merbl, Yifat

    2016-08-01

    The ubiquitin system plays an important role in essentially every cellular process, regulating numerous pathways ranging from development, transcription, DNA damage response, cell cycle, and signal transduction. Its best studied role involves removal of faulty proteins or those that are not necessary anymore. Aberrations in the ubiquitin system have been implicated in various pathologies including cancer, where specific mutations in E3 ligases such as Mdm2, pVHL, and BRCA1 have been linked to disease progression, prognosis, and resistance to drugs. Yet, there are hundreds of E3 ligases in the human genome and our knowledge of their target proteins and their dynamic regulation in the cellular environment is largely limited. In addition, fundamental questions related to recognition and specificity in ubiquitin conjugation remain unanswered. It is thus of major importance to characterize the ubiquitin landscape under various cellular conditions, and study how the regulatory network is altered in health and disease. To do so, analytical tools that allow identification of ubiquitin substrates, the conjugation and removal of ubiquitin, and the nature of specific ubiquitin linkages that are formed are needed. In this mini-review, we discuss common proteomic methodologies applied to studying the ubiquitome, and specifically focus on our recently developed post-translational modification (PTM) profiling approach. PTM profiling is a functional assay, amenable to biochemical manipulation, which allows the detection of protein modifications in a high-throughput manner. We discuss in detail the advantages and limitations of this system, focusing primarily on examples for analyzing the ubiquitin system in cancer. Uncovering the intricate signaling dynamics governed by and regulating ubiquitin modifications should clearly evolve into a new paradigm in understanding the molecular basis of malignant transformation and the development of novel therapeutic modalities. PMID:27229346

  18. Chemical composition, antioxidant activities and protein profiling of different parts of Allamanda cathartica.

    PubMed

    Hameed, Amjad; Nawaz, Ghazala; Gulzar, Tahsin

    2014-01-01

    The phytochemical screening and protein profiling of Allamanda cathartica was performed. Biochemical analysis revealed that peroxidase (8730 ± 307 units/g), superoxide dismutase (181 ± 3.79 units/g), catalase (529 ± 28.9 units/g), protease (3598 ± 79.8 units/g), total phenolic contents (19,344 ± 657 μM/g), β-esterases (342 ± 46.5 units/g) and the total oxidant status were highest in the roots as compared to other plant parts. However, total soluble proteins (128 ± 1.54 mg/g), lycopene (5.70 ± 0.61 mg/g), chlorophyll a (161 ± 24.9 μg/g), total chlorophyll content (267 ± 34.3 μg/g) and total carotenoid content (12.4 ± 1.71 mg/g) were found to be highest in leaves. Moreover, total antioxidant capacity (5.43 ± 0.29 μM/g) detected by using ABTS method and α-esterase (714.580 ± 23.6 units/g) were highest in shoots. The protein profiling was performed using SDS-PAGE. In leaves, 13 peptides with molecular weight (M.wt.) from 27 to 168 kDa were detected while in shoots 10 peptides with M.wt. from 30 to 95 kDa were resolved. Similarly, in roots, 10 peptides of 30-880 kDa and in flower seven peptides of 30-88 kDa were detected. PMID:24931146

  19. Quantitative Time-course Profiling of Parasite and Host Cell Proteins in the Human Malaria Parasite Plasmodium falciparum*

    PubMed Central

    Foth, Bernardo Javier; Zhang, Neng; Chaal, Balbir Kaur; Sze, Siu Kwan; Preiser, Peter Rainer; Bozdech, Zbynek

    2011-01-01

    Studies of the Plasmodium falciparum transcriptome have shown that the tightly controlled progression of the parasite through the intra-erythrocytic developmental cycle (IDC) is accompanied by a continuous gene expression cascade in which most expressed genes exhibit a single transcriptional peak. Because the biochemical and cellular functions of most genes are mediated by the encoded proteins, understanding the relationship between mRNA and protein levels is crucial for inferring biological activity from transcriptional gene expression data. Although studies on other organisms show that <50% of protein abundance variation may be attributable to corresponding mRNA levels, the situation in Plasmodium is further complicated by the dynamic nature of the cyclic gene expression cascade. In this study, we simultaneously determined mRNA and protein abundance profiles for P. falciparum parasites during the IDC at 2-hour resolution based on oligonucleotide microarrays and two-dimensional differential gel electrophoresis protein gels. We find that most proteins are represented by more than one isoform, presumably because of post-translational modifications. Like transcripts, most proteins exhibit cyclic abundance profiles with one peak during the IDC, whereas the presence of functionally related proteins is highly correlated. In contrast, the abundance of most parasite proteins peaks significantly later (median 11 h) than the corresponding transcripts and often decreases slowly in the second half of the IDC. Computational modeling indicates that the considerable and varied incongruence between transcript and protein abundance may largely be caused by the dynamics of translation and protein degradation. Furthermore, we present cyclic abundance profiles also for parasite-associated human proteins and confirm the presence of five human proteins with a potential role in antioxidant defense within the parasites. Together, our data provide fundamental insights into transcript-protein

  20. Protein profiling of mefloquine resistant Plasmodium falciparum using mass spectrometry-based proteomics

    PubMed Central

    Reamtong, Onrapak; Srimuang, Krongkan; Saralamba, Naowarat; Sangvanich, Polkit; Day, Nicholas P.J.; White, Nicholas J.; Imwong, Mallika

    2015-01-01

    Malaria is a mosquito borne infectious disease caused by protozoa of genus Plasmodium. There are five species of Plasmodium that are found to infect humans. Plasmodium falciparum can cause severe malaria leading to higher morbidity and mortality of malaria than the other four species. Antimalarial resistance is the major obstacle to control malaria. Mefloquine was used in combination with Artesunate for uncomplicated P. falciparum in South East Asia and it has developed and established mefloquine resistance in this region. Here, gel-enhanced liquid chromatography/tandem mass spectrometry (GeLC–MS/MS)-based proteomics and label-free quantification were used to explore the protein profiles of mefloquine-sensitive and -induced resistant P. falciparum. A Thai P. falciparum isolate (S066) was used as a model in this research. Our data revealed for the first time that 69 proteins exhibited at least 2-fold differences in their expression levels between the two parasite lines. Of these, 36 were up-regulated and 33 were down-regulated in the mefloquine-resistant line compared with the mefloquine-sensitive line. These findings are consistent with those of past studies, where the multidrug resistance protein Pgh1 showed an up-regulation pattern consistent with that expected from its average 3-copy pfmdr1 gene number. Pgh1 and eight other up-regulated proteins (i.e., histo-aspartyl protease protein, exportin 1, eukaryotic translation initiation factor 3 subunit 8, peptidyl-prolyl cis-trans isomerase, serine rich protein homologue, exported protein 1, ATP synthase beta chain and phospholipid scramblase 1) were further validated for their expression levels using reverse transcriptase quantitative real-time PCR. The data support the up-regulation status in the mefloquine-resistant parasite line of all the candidate genes referred to above. Therefore, GeLC–MS/MS-based proteomics combined with label-free quantification is a reliable approach for exploring mefloquine resistance

  1. A comparative protein profile of mammalian erythrocyte membranes identified by mass spectrometry.

    PubMed

    Sharma, Savita; Punjabi, Vinny; Zingde, Surekha M; Gokhale, Sadashiv M

    2014-11-01

    A comparative analysis of erythrocyte membrane proteins of economically important animals, goat (Capra aegagrus hircus), buffalo (Bubalus bubalis), pig (Sus scrofa), cow (Bos tauras), and human (Homo sapiens) was performed. Solubilized erythrocyte membrane proteins were separated by sodium dodecyl sulfate-polyacryamide gel electrophoresis (SDS-PAGE), visualized by staining the gels with Commassie Brilliant Blue (CBB), and identified by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Emerging results show that all major erythrocyte membrane proteins present in human are also seen in all the animals except for band 4.5 which could not be identified. Band 3 is seen as more intense and compact, band 4.1 appears as a doublet in all the animal erythrocyte membranes, band 4.2 exhibits a slightly higher molecular weight (Mr) in buffalo, and cow and band 4.9 has a higher Mr in all the animals relative to the human protein. In addition, there are two new bands in the goat membrane, band G1, identified as HSP 90α, and band G2 identified as HSP 70. A new band C2 identified as HSP 70 is also seen in cow membranes. Peroxiredoxin II is of lower intensity and/or higher Mr in the animals. The difference in size of the proteins possibly indicates the variations in the composition of the amino acids. The difference in intensity of the proteins among these mammalians highlights the presence of less or more number of copies of that protein per cell. This data complement the earlier observations of differences in the sialoglycoprotein profile and effect of proteases and neuraminidase on agglutination among the mammalian erythrocytes. This study provides a platform to understand the molecular architecture of the individual erythrocytes, and in turn the dependent disorders, their phylogenetic relationship and also generates a database of erythrocyte membrane proteins of mammals. The animals selected for this study are of economic importance as

  2. The impact of dietary protein intake on serum biochemical and haematological profiles in vervet monkeys.

    PubMed

    Johnson, Q; Veith, W J; Mouton, T

    2001-02-01

    This study evaluated the influence of Westernised and traditional African diets on biochemical and haematological profiles in vervet monkeys (Cercopithecus aethiops). Twelve adult male vervet monkeys bred at the Medical Research Council, all over 4 years of age and weighing more than 5 kg each, were divided into two groups of six individuals. These monkeys were raised on a standard in-house diet post-weaning, before they were fed for 8 weeks on diets containing milk solids (17.2%) or maize + legume (17.4%), as sources of high crude protein (+/- 3.5 g/kg). High protein diets had no significant effect on serum biochemical indices such as aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) concentrations (P > 0.10). However, alanine aminotransferase (ALT) concentrations were significantly higher during week 8 (P < 0.05) for the maize + legume protein group. Alkaline phosphatase (ALP; P < 0.07), total protein (P < 0.0001), albumin (P < 0.02), and bilirubin (P < 0.003) were elevated in the milk solids group, while glucose levels were also significantly higher for the milk solids group (P < 0.05) between weeks 2 and 6. Elevated protein intake had no significant effect on haematological parameters such as red blood cells (RBC), platelet and white blood cell (WBC) counts, haemoglobin levels and monocyte and neutrophil concentrations (P > 0.10). In contrast, serum lymphocyte levels were significantly raised in the maize + legume protein group (P = 0.03), whereas values for the haematocrit (P < 0.002), mean cell volume (MCV; P < 0.03) and mean corpuscular haemoglobin concentration (MCHC; P < 0.0001) were higher in the monkeys that were fed the milk solids. This investigation showed that the type of dietary protein that is consumed may well affect certain biochemical and haematological indices in vervet monkeys. Compared to the group that were given the traditional African food regime, the animals on the Western-type milk solids diet showed significant

  3. Plasma protein profiling of mild cognitive impairment and Alzheimer's disease across two independent cohorts.

    PubMed

    Muenchhoff, Julia; Poljak, Anne; Song, Fei; Raftery, Mark; Brodaty, Henry; Duncan, Mark; McEvoy, Mark; Attia, John; Schofield, Peter W; Sachdev, Perminder S

    2015-01-01

    To unlock the full potential of disease modifying treatments, it is essential to develop early biomarkers for Alzheimer's disease (AD). For practical reasons, blood-based markers that could provide a signal at the stage of mild cognitive impairment (MCI) or even earlier would be ideal. Using the proteomic approach of isobaric tagging for relative and absolute quantitation (iTRAQ), we compared the plasma protein profiles of MCI, AD, and cognitively normal control subjects from two independent cohorts: the Sydney Memory and Ageing Study (261 MCI subjects, 24 AD subjects, 411 controls) and the Hunter Community Study (180 MCI subjects, 153 controls). The objective was to identify any proteins that are differentially abundant in MCI and AD plasma in both cohorts, since they might be of interest as potential biomarkers, or could help direct future mechanistic studies. Proteins representative of biological processes relevant to AD pathology, such as the complement system, the coagulation cascade, lipid metabolism, and metal and vitamin D and E transport, were found to differ in abundance in MCI. In particular, levels of complement regulators C1 inhibitor and factor H, fibronectin, ceruloplasmin, and vitamin D-binding protein were significantly decreased in MCI participants from both cohorts. Several apolipoproteins, including apolipoprotein AIV, B-100, and H were also significantly decreased in MCI. Most of these proteins have previously been reported as potential biomarkers for AD; however, we show for the first time that a significant decrease in plasma levels of two potential biomarkers (fibronectin and C1 inhibitor) is evident at the MCI stage. PMID:25159666

  4. An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples

    PubMed Central

    Nie, Shuai; Henley, W. Hampton; Miller, Scott E.; Zhang, Huaibin; Mayer, Kathryn M.; Dennis, Patty J.; Oblath, Emily A.; Alarie, Jean Pierre; Wu, Yue; Oppenheim, Frank G.; Little, Frédéric F.; Uluer, Ahmet Z.; Wang, Peidong; Ramsey, J. Michael

    2014-01-01

    During the last decade, saliva has emerged as a potentially ideal diagnostic biofluid for noninvasive testing. In this paper, we present an automated, integrated platform useable by minimally trained personnel in the field for the diagnosis of respiratory diseases using human saliva as a sample specimen. In this platform, a saliva sample is loaded onto a disposable microfluidic chip containing all the necessary reagents and components required for saliva analysis. The chip is then inserted into the automated analyzer, the SDReader, where multiple potential protein biomarkers for respiratory diseases are measured simultaneously using a microsphere-based array via fluorescence sandwich immunoassays. The results are read optically, and the images are analyzed by a custom-designed algorithm. The fully automated assay requires as little as 10 μL of saliva sample, and the results are reported in 70 min. The performance of the platform was characterized by testing protein standard solutions, and the results were comparable to those from the 3.5-h lab bench assay that we have previously reported. The device was also deployed in two clinical environments where 273 human saliva samples collected from different subjects were successfully tested, demonstrating the device’s potential to assist clinicians with the diagnosis of respiratory diseases by providing timely protein biomarker profiling information. This platform, which combines non-invasive sample collection and fully automated analysis, can also be utilized in point-of-care diagnostics. PMID:24448498

  5. Exploring the Plant-Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains.

    PubMed

    Sultan, Abida; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2016-04-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC-MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment. PMID:26928395

  6. MEASUREMENT OF DRUG-PROTEIN DISSOCIATION RATES BY HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND PEAK PROFILING

    PubMed Central

    Schiel, John E.; Ohnmacht, Corey M.; Hage, David S.

    2012-01-01

    The rate at which a drug or other small solute interacts with a protein is important in understanding the biological and pharmacokinetic behavior of these agents. One approach that has been developed for examining these rates involves the use of high-performance affinity chromatography (HPAC) and estimates of band-broadening through peak profiling. Previous work with this method has been based on a comparison of the statistical moments for a retained analyte versus non-retained species at a single, high flow rate to obtain information on stationary phase mass transfer. In this study an alternative approach was created that allows a broad range of flow rates to be used for examining solute-protein dissociation rates. Chromatographic theory was employed to derive equations that could be used with this approach on a single column, as well as with multiple columns to evaluate and correct for the impact of stagnant mobile phase mass transfer. The interaction of L-tryptophan with human serum albumin was used as a model system to test this method. A dissociation rate constant of 2.7 (± 0.2) s−1 was obtained by this approach at pH 7.4 and 37°C, which was in good agreement with previous values determined by other methods. The techniques described in this report can be applied to other biomolecular systems and should be valuable for the determination of drug-protein dissociation rates. PMID:19422253

  7. An integrated workflow for characterizing intact phosphoproteins from complex mixtures

    PubMed Central

    Wu, Si; Yang, Feng; Zhao, Rui; Tolić, Nikola; Robinson, Errol W.; Camp, David; Smith, Richard D.; Paša-Tolić, Ljiljana

    2014-01-01

    The phosphorylation of any site on a given protein can affect its activity, degradation rate, ability to dock with other proteins or bind divalent cations, and/or its localization. These effects can operate within the same protein; in fact, multisite phosphorylation is a key mechanism for achieving signal integration in cells. Hence, knowing the overall phosphorylation signature of a protein is essential for understanding the "state" of a cell. However, current technologies to monitor the phosphorylation status of proteins are inefficient at determining the relative stoichiometries of phosphorylation at multiple sites. Here we report a new capability for comprehensive liquid chromatography mass spectrometry (LC/MS) analysis of intact phosphoproteins. The technology platform built upon integrated bottom-up and top-down approach that is facilitated by intact protein reversed-phase (RP)LC concurrently coupled with Fourier transform ion cyclotron resonance (FTICR) MS and fraction collection. As the use of conventional RPLC systems for phosphopeptide identification has proven challenging due to the formation of metal ion complexes at various metal surfaces during LC/MS and ESI-MS analysis, we have developed a “metal-free” RPLC-ESI-MS platform for phosphoprotein characterization. This platform demonstrated a significant sensitivity enhancement for phosphorylated casein proteins enriched from a standard protein mixture and revealed the presence of over 20 casein isoforms arising from genetic variants with varying numbers of phosphorylation sites. The integrated workflow was also applied to an enriched yeast phosphoproteome to evaluate the feasibility of this strategy for characterizing complex biological systems, and revealed ~16% of the detected yeast proteins to have multiple phosphorylation isoforms. Intact protein LC/MS platform for characterization of combinatorial posttranslational modifications (PTMs), with special emphasis on multisite phosphorylation, holds

  8. Allergen profiles of natural rubber latex (NRL) proteins on gloves and glove powders.

    PubMed

    Tomazic-Jezic, Vesna J; Sanchez, B A

    2005-01-01

    The contributing role of glove powder in sensitization to natural rubber latex (NRL) proteins has been well documented in laboratory studies and through clinical evaluations. However, the quantitative relationship of the respiratory and topical exposures in the sensitization process remains unknown because the relative levels of protein on the glove powders in relation to the total levels of protein on NRL gloves have not been determined. In NRL allergens--Hev b 1, Hev b 3, Hev b 5, and Hev b 6.02--on randomly selected surgical and examination NRL gloves. We also examined the binding pattern of the four allergens to several glove powders that showed a different affinity to NRL proteins. The level of powder-bound protein was determined by the ELISA Inhibition Assay (ASTM D6499 standard method). Two cross-linked corn starch powders, one sample of cooking corn starch and one oat starch sample, were exposed to ammoniated (AL) or nonammoniated (NAL) raw NRL protein extracts. The levels of individual allergens were determined using the NRL allergen kit. In the NRL glove extracts we observed a wide range in the total allergen levels and a great diversity in the proportion of the four allergens. On the other hand, the evaluated starches had similar ratios of four individual allergens, regardless of the differences in their total allergen levels. The exposure of starches to NRL proteins with different allergen profiles did not affect the allergen ratio. All samples demonstrated a selective affinity for binding Hev b 1 and Hev b 5 allergens and a lesser affinity for the Hev b 6.02 allergen. Allergen Hev b 6.02 made up about 60% of the total allergen in the NAL extract, but only 12-30% of Hev b 6.02 was bound to starches. In contrast, there was only 3-7% of Hev b 1 allergen in the NAL extract, but powders had 35-45% of Hev b 1. These findings indicate that allergenic properties of NRL gloves and respective glove powders may be different. PMID:15777165

  9. Nitrite Uptake into Intact Pea Chloroplasts 1

    PubMed Central

    Brunswick, Pamela; Cresswell, Christopher F.

    1988-01-01

    The relationship between net nitrite uptake and its reduction in intact pea chloroplasts was investigated employing electron transport regulators, uncouplers, and photophosphorylation inhibitors. Observations confirmed the dependence of nitrite uptake on stromal pH and nitrite reduction but also suggested a partial dependance upon PSI phosphorylation. It was also suggested that ammonia stimulates nitrogen assimilation in the dark by association with stromal protons. Inhibition of nitrite uptake by N-ethylmaleimide and dinitrofluorobenzene could not be completely attributed to their inhibition of carbon dioxide fixation. Other protein binding reagents which inhibited photosynthesis showed no effect on nitrite uptake, except for p-chlormercuribenzoate which stimulated nitrite uptake. The results with N-ethylmaleimide and dinitrofluorobenzene tended to support the proposed presence of a protein permeation channel for nitrite uptake in addition to HNO2 penetration. On the basis of a lack of effect by known anion uptake inhibitors, it was concluded that the nitrite uptake mechanism was distinct from that of phosphate and chloride/sulfate transport. PMID:16665917

  10. MicroRNA and Protein Profiling of Brain Metastasis Competent Cell-Derived Exosomes

    PubMed Central

    Camacho, Laura; Guerrero, Paola; Marchetti, Dario

    2013-01-01

    Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM) versus non-brain metastatic (non-BM) cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM) variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210) and two down-regulated miRNAs (miR-19a and miR-29c) in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis. PMID:24066071

  11. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  12. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction.

    PubMed

    Kuo, Taiyi; Kim-Muller, Ja Young; McGraw, Timothy E; Accili, Domenico

    2016-04-29

    Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure. PMID:26917725

  13. Characterization and differentiation of diverse transgenic and nontransgenic soybean varieties from CE protein profiles.

    PubMed

    García-Ruiz, Carmen; García, Maria Concepción; Cifuentes, Alejandro; Marina, Maria Luisa

    2007-07-01

    Nowadays, soybeans are commercialized in a wide variety of colors and tones. Moreover, some pigmented seeds are being commercialized as soybeans while, on other occasions, these seeds are labeled as mung beans, azuki beans or soybean frijoles generating confusion on their identity. In this work, CE has been applied for the first time for the characterization and differentiation of different pigmented beans commercialized as soybeans. Other seeds commercialized as azuki, mung green soybeans or soybean frijoles were also analyzed. Borate buffer (at pH 8.5) containing 20% v/v ACN was used as the separation media and solution containing ACN/water (75:25 v/v) with 0.3% v/v acetic acid was used to solubilize the proteins from the samples. A 50 cm bare fused-silica capillary was employed for obtaining adequate separations in about 12 min. The CE protein pattern observed for yellow soybeans was different from that corresponding to green and red soybeans. The seeds commercialized as black soybean presented electropherograms identical or similar to those yielded by the yellow seeds with the exception of the sample labeled as black soybeans frijoles that presented a totally different pattern. In addition, CE protein profiles obtained for azuki and mung green soybeans were very similar to those corresponding to red soybeans and green soybeans, respectively. Finally, the CE method was also applied to differentiate transgenic and nontransgenic soybean varieties. Discriminant analysis, using several protein peak areas as variable, was used to successfully classify these samples. PMID:17607812

  14. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    SciTech Connect

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

  15. Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding.

    PubMed

    Yang, Ying; Lill, Markus A

    2016-09-13

    Explicit water molecules in the binding site of proteins play a crucial role for protein-ligand association. Recent advances in computer-aided drug discovery methodology allow for an accurate prediction of the localized position and thermodynamic profile of water molecules (i.e., hydration sites) in the binding site. The underlying calculations are based on MD simulations of explicit water molecules in a restrained protein structure. However, the ligand-binding process is typically associated with protein conformational change that influences the position and thermodynamic properties of the hydration site. In this manuscript, we present the developments of two methods to incorporate the influence of protein conformational change on hydration sites either by following the conformational transition step-by-step (method I) or to match the hydration sites of the two transition end states using local coordinate systems (method II). Using these methods, we highlight the difference in the estimated protein desolvation free energy with and without inclusion of protein flexibility. To the best of our knowledge, this is the first study that explicitly studies the influence of protein conformational change on the position and thermodynamic profiles of water molecules and provides methodology to incorporate protein flexibility into the estimation of the desolvation free energy. PMID:27494046

  16. Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis

    PubMed Central

    Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie

    2015-01-01

    Introduction Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Materials and methods Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N = 66) and prostatitis patients (N = 36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Results Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (P < 0.001). Urinary bacteria count allowed for discriminating prostatitis patients from HV (P < 0.001). Total amount of biantennary structures (urinary 2A/MA marker) was significantly lower in prostatitis patients compared to HV (P < 0.001). Combining the urinary 2A/MA marker and urinary WBC count resulted in an AUC of 0.79, 95% confidence interval (CI) = (0.70–0.89) which was significantly better than urinary WBC count (AUC = 0.70, 95% CI = [0.59–0.82], P = 0.042) as isolated test. Conclusions We have demonstrated the diagnostic value of urinary N-glycosylation profiling, which shows great potential as biomarker for prostatitis. Further research is required to unravel the developmental course of prostatic inflammation. PMID:26526330

  17. Profiles and Majority Voting-Based Ensemble Method for Protein Secondary Structure Prediction

    PubMed Central

    Bouziane, Hafida; Messabih, Belhadri; Chouarfia, Abdallah

    2011-01-01

    Machine learning techniques have been widely applied to solve the problem of predicting protein secondary structure from the amino acid sequence. They have gained substantial success in this research area. Many methods have been used including k-Nearest Neighbors (k-NNs), Hidden Markov Models (HMMs), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), which have attracted attention recently. Today, the main goal remains to improve the prediction quality of the secondary structure elements. The prediction accuracy has been continuously improved over the years, especially by using hybrid or ensemble methods and incorporating evolutionary information in the form of profiles extracted from alignments of multiple homologous sequences. In this paper, we investigate how best to combine k-NNs, ANNs and Multi-class SVMs (M-SVMs) to improve secondary structure prediction of globular proteins. An ensemble method which combines the outputs of two feed-forward ANNs, k-NN and three M-SVM classifiers has been applied. Ensemble members are combined using two variants of majority voting rule. An heuristic based filter has also been applied to refine the prediction. To investigate how much improvement the general ensemble method can give rather than the individual classifiers that make up the ensemble, we have experimented with the proposed system on the two widely used benchmark datasets RS126 and CB513 using cross-validation tests by including PSI-BLAST position-specific scoring matrix (PSSM) profiles as inputs. The experimental results reveal that the proposed system yields significant performance gains when compared with the best individual classifier. PMID:22058650

  18. DNA Methylation Profile and Expression of Surfactant Protein A2 gene in Lung Cancer

    PubMed Central

    Grageda, Melissa; Silveyra, Patricia; Thomas, Neal J.; DiAngelo, Susan L.; Floros, Joanna

    2014-01-01

    Knowledge of the methylation profile of genes allow for the identification of biomarkers that may guide diagnosis and effective treatment of disease. Human surfactant protein A (SP-A) plays an important role in lung homeostasis and immunity, and is encoded by two genes (SFTPA1 and SFTPA2). The goal of this study was to identify differentially methylated CpG sites in the promoter region of the SFTPA2 gene in lung cancer tissue, and to determine the correlation between the promoter’s methylation profile and gene expression. For this, we collected 28 pairs of cancerous human lung tissue and adjacent non-cancerous (NC) lung tissue: 17 adenocarcinoma (AC), 9 squamous cell carcinoma (SCC), and 2 AC with SCC features, and we evaluated DNA methylation of the SFTPA2 promoter region by bisulfite conversion. Our results identified a higher methylation ratio in one CpG site of the SFTPA2 gene in cancerous tissue vs. NC tissue (0.36 vs. 0.11, p=0.001). When assessing AC samples, we also found cancerous tissues associated with a higher methylation ratio (0.43 vs. 0.10, p=0.02). In the SCC group, although cancerous tissue showed a higher methylation ratio (0.22 vs. 0.11), this difference was not statistically significant (p=0.35). Expression of SFTPA2 mRNA and total SP-A protein was significantly lower in cancer tissue when compared to adjacent NC tissue (p<0.001), and correlated with the hypermethylated status of a SFTPA2 CpG site in AC samples. The findings of this pilot study may hold promise for future use of SFTPA2 as a biomarker for the diagnosis of lung cancer. PMID:25514367

  19. GADIS: Algorithm for designing sequences to achieve target secondary structure profiles of intrinsically disordered proteins.

    PubMed

    Harmon, Tyler S; Crabtree, Michael D; Shammas, Sarah L; Posey, Ammon E; Clarke, Jane; Pappu, Rohit V

    2016-09-01

    Many intrinsically disordered proteins (IDPs) participate in coupled folding and binding reactions and form alpha helical structures in their bound complexes. Alanine, glycine, or proline scanning mutagenesis approaches are often used to dissect the contributions of intrinsic helicities to coupled folding and binding. These experiments can yield confounding results because the mutagenesis strategy changes the amino acid compositions of IDPs. Therefore, an important next step in mutagenesis-based approaches to mechanistic studies of coupled folding and binding is the design of sequences that satisfy three major constraints. These are (i) achieving a target intrinsic alpha helicity profile; (ii) fixing the positions of residues corresponding to the binding interface; and (iii) maintaining the native amino acid composition. Here, we report the development of a G: enetic A: lgorithm for D: esign of I: ntrinsic secondary S: tructure (GADIS) for designing sequences that satisfy the specified constraints. We describe the algorithm and present results to demonstrate the applicability of GADIS by designing sequence variants of the intrinsically disordered PUMA system that undergoes coupled folding and binding to Mcl-1. Our sequence designs span a range of intrinsic helicity profiles. The predicted variations in sequence-encoded mean helicities are tested against experimental measurements. PMID:27503953

  20. Differential expression profiling of serum proteins and metabolites for biomarker discovery

    NASA Astrophysics Data System (ADS)

    Roy, Sushmita Mimi; Anderle, Markus; Lin, Hua; Becker, Christopher H.

    2004-11-01

    A liquid chromatography-mass spectrometry (LC-MS) proteomics and metabolomics platform is presented for quantitative differential expression analysis. Proteome profiles obtained from 1.5 [mu]L of human serum show ~5000 de-isotoped and quantifiable molecular ions. Approximately 1500 metabolites are observed from 100 [mu]L of serum. Quantification is based on reproducible sample preparation and linear signal intensity as a function of concentration. The platform is validated using human serum, but is generally applicable to all biological fluids and tissues. The median coefficient of variation (CV) for ~5000 proteomic and ~1500 metabolomic molecular ions is approximately 25%. For the case of C-reactive protein, results agree with quantification by immunoassay. The independent contributions of two sources of variance, namely sample preparation and LC-MS analysis, are respectively quantified as 20.4 and 15.1% for the proteome, and 19.5 and 13.5% for the metabolome, for median CV values. Furthermore, biological diversity for ~20 healthy individuals is estimated by measuring the variance of ~6500 proteomic and metabolomic molecular ions in sera for each sample; the median CV is 22.3% for the proteome and 16.7% for the metabolome. Finally, quantitative differential expression profiling is applied to a clinical study comparing healthy individuals and rheumatoid arthritis (RA) patients.

  1. Lipid profile but not highly sensitive C-reactive protein helps distinguish prehypertensives from normal subjects

    PubMed Central

    Bharath, T.; Manjula, P.

    2015-01-01

    Background: Early identification of the prehypertensive state can greatly improve the disease risk management. Although increased levels of highly sensitive C-reactive protein (hsCRP) and dyslipidemia is reported among patients with hypertension, the correlation of these parameters among prehypertensives in not known. Hence, the present study was designed to compare the levels of serum hsCRP and lipid profile among prehypertensives and normal subjects and correlate it with blood pressure (BP) levels. Materials and Methods: Anthropometric measurements and BP were recorded in 40 prehypertensive and 40 normal subjects. Subjects were assigned to a group based on their BP as per Joint National Committee 7 criteria. Serum hsCRP and lipid profile were measured and correlated with BP levels. Results: Serum hsCRP showed no significant difference between the two groups. There was no significant correlation of BP with hsCRP in both the groups. Total cholesterol (TC) and low-density lipoprotein (LDL) were significantly increased in prehypertensives as compared to normal subjects. There was no significant association between BP and lipid parameters in prehypertensives. Conclusions: Significant increase of TC and LDL but not hsCRP was evident among prehypertensives as compared to normal subjects. PMID:26283827

  2. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. PMID:27402175

  3. Mechanics of intact bone marrow.

    PubMed

    Jansen, Lauren E; Birch, Nathan P; Schiffman, Jessica D; Crosby, Alfred J; Peyton, Shelly R

    2015-10-01

    The current knowledge of bone marrow mechanics is limited to its viscous properties, neglecting the elastic contribution of the extracellular matrix. To get a more complete view of the mechanics of marrow, we characterized intact yellow porcine bone marrow using three different, but complementary techniques: rheology, indentation, and cavitation. Our analysis shows that bone marrow is elastic, and has a large amount of intra- and inter-sample heterogeneity, with an effective Young׳s modulus ranging from 0.25 to 24.7 kPa at physiological temperature. Each testing method was consistent across matched tissue samples, and each provided unique benefits depending on user needs. We recommend bulk rheology to capture the effects of temperature on tissue elasticity and moduli, indentation for quantifying local tissue heterogeneity, and cavitation rheology for mitigating destructive sample preparation. We anticipate the knowledge of bone marrow elastic properties for building in vitro models will elucidate mechanisms involved in disease progression and regenerative medicine. PMID:26189198

  4. The prostate cancer immunome: In silico functional analysis of antigenic proteins from microarray profiling with IgG.

    PubMed

    Luna-Coronell, Johana A; Vierlinger, Klemens; Gamperl, Magdalena; Hofbauer, Johann; Berger, Ingrid; Weinhäusel, Andreas

    2016-04-01

    The study of the immunome of prostate cancer (PCa) and characterization of autoantibody signature from differentially reactive antigens can uncover disease stage proteins, reveal enriched networks and even expose aberrant cellular mechanisms during the disease process. By conducting plasma IgG profiling on protein microarrays presenting 5449 unique human proteins expressed in 15 417 E. coli human cDNA expression clones, we elucidated 471 (21 higher reactive in PCa) differentially reactive antigens in 50 PCa versus 49 patients with benign prostate hyperplasia (BPH) at initial diagnosis. Functional analyzes show that the immune-profile of PCa compared to BPH control samples is significantly enriched in features targeting Cellular assembly, Cell death and pathways involved in Cell cycle, translation, and assembly of proteins as EIF2 signaling, PCa related genes as AXIN1 and TP53, and ribosomal proteins (e.g. RPS10). An overlap of 61 (out of 471) DIRAGs with the published 1545 antigens from the SEREX database has been found, however those were higher reactive in BPH. Clinical relevance is shown when antibody-reactivities against eight proteins were significantly (p < 0.001) correlated with Gleason-score. Herewith we provide a biological and pathophysiological characterization of the immunological layer of cancerous (PCa) versus benign (BPH) disease, derived from antibody profiling on protein microarrays. PMID:27089054

  5. Histological and transcript analyses of intact somatic embryos in an elite maize (Zea mays L.) inbred line Y423.

    PubMed

    Liu, Beibei; Su, Shengzhong; Wu, Ying; Li, Ying; Shan, Xiaohui; Li, Shipeng; Liu, Hongkui; Dong, Haixiao; Ding, Meiqi; Han, Junyou; Yuan, Yaping

    2015-07-01

    Intact somatic embryos were obtained from an elite maize inbred line Y423, bred in our laboratory. Using 13-day immature embryos after self-pollination as explants, and after 4-5 times subculture, a large number of somatic embryos were detected on the surface of the embryonic calli on the medium. The intact somatic embryos were transferred into the differential medium, where the plantlets regenerated with shoots and roots forming simultaneously. Histological analysis and scanning electron micrographs confirmed the different developmental stages of somatic embryogenesis, including globular-shaped embryo, pear-shaped embryo, scutiform embryo, and mature embryo. cDNA-amplified fragment length polymorphism (cDNA-AFLP) was used for comparative transcript profiling between embryogenic and non-embryogenic calli of a new elite maize inbred line Y423 during somatic embryogenesis. Differentially expressed genes were cloned and sequenced. Gene Ontology analysis of 117 candidate genes indicated their involvement in cellular component, biological process and molecular function. Nine of the candidate genes were selected. The changes in their expression levels during embryo induction and regeneration were analyzed in detail using quantitative real-time PCR. Two full-length cDNA sequences, encoding ZmSUF4 (suppressor of fir 4-like protein) and ZmDRP3A (dynamin-related protein), were cloned successfully from intact somatic embryos of the elite inbred maize line Y423. Here, a procedure for maize plant regeneration from somatic embryos is described. Additionally, the possible roles of some of these genes during the somatic embryogenesis has been discussed. This study is a systematic analysis of the cellular and molecular mechanism during the formation of intact somatic embryos in maize. PMID:25931320

  6. Profiling serum antibodies to Mycobacterium tuberculosis proteins in rhesus monkeys with nontuberculous Mycobacteria.

    PubMed

    Min, Fangui; Pan, Jinchun; Wu, Ruike; Chen, Meiling; Kuang, Huiwen; Zhao, Weibo

    2016-02-14

    Recent evidence indicates that the prevalence of diseases caused by nontuberculous mycobacteria (NTM) has been increasing in both human and animals. In this study, antibody profiles of NTM in rhesus monkeys (Macaca mulatta) were determined and compared with those of monkeys infected with Mycobacterium tuberculosis complex (MTBC). Antibodies against 10 M. tuberculosis proteins, purified protein derivative (PPD), and mammalian old tuberculin (MOT) were detected in 14 monkeys naturally infected with NTM by indirect ELISA. Sera from 10 monkeys infected with MTBC and 10 healthy monkeys were set as controls. All antigens showed high serological reactivities to MTBC infections and low reactivities in healthy monkeys. NTM infections showed strong antibody responses to MOT and PPD; moderate antibody responses to 16kDa, U1, MPT64L, 14kDa, and TB16.3; and low antibody responses to 38kDa, Ag85b, CFP10, ESAT-6, and CFP10-ESAT-6. According to the criteria of MTBC, only CFP10, ESAT-6, and CFP10-ESAT-6 showed negative antibody responses in all NTM infections. Taken together, these results suggest that positive results of a PPD/MOT-based ELISA in combination with results of antibodies to M. tuberculosis-specific antigens, such as CFP10 and ESAT-6, could discriminate NTM and MTBC infections. Two positive results indicate an MTBC infection, and a negative result for an M. tuberculosis-specific antigen may preliminarily predict an NTM infection. PMID:26437786

  7. Apoptotic protein profile in Leishmania donovani after treatment with hexaazatrinaphthylenes derivatives.

    PubMed

    López-Arencibia, Atteneri; Martín-Navarro, Carmen M; Sifaoui, Ines; Reyes-Batlle, María; Wagner, Carolina; Lorenzo-Morales, Jacob; Piñero, José E

    2016-07-01

    Two hexaazatrinaphthylene derivatives, DGV-B and DGV-C previously known to induce an apoptotic-like process in Leishmania donovani parasites were used in this study. For this purpose, two different human protein commercial arrays were used to determine the proteomic profile of the treated parasites compared to non-treated ones. One of the commercial arrays is able to detect the relative expression of 35 human apoptosis-related proteins and the other one is able to identify 9 different human kinases. The obtained results showed that the two tested molecules were able to activate a programmed cell death process by different pathways in the promastigote stage of the parasite. The present study reports the potential application of two commercialised human apoptotic arrays to evaluate the action mechanism of active compounds at least against Leishmania donovani. The obtained data would be useful to establish the putative activated apoptosis pathways in the treated parasites and to further support the use of hexaazatrinaphthylene derivatives for the treatment of leishmaniasis in the near future. Nevertheless, further molecular studies should be developed in order to design and evaluate specific apoptotic arrays for Leishmania genus. PMID:27060614

  8. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate

    PubMed Central

    Rejón, Juan David; Delalande, François; Castro, Antonio Jesús

    2013-01-01

    Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma. PMID:24151302

  9. Multiplexed, Proteome-Wide Protein Expression Profiling: Yeast Deubiquitylating Enzyme Knockout Strains

    PubMed Central

    Isasa, Marta; Rose, Christopher M.; Elsasser, Suzanne; Navarrete-Perea, José; Paulo, Joao A.; Finley, Daniel J.; Gygi, Steven P.

    2016-01-01

    Characterizing a protein’s function often requires a description of the cellular state in its absence. Multiplexing in mass spectrometry-based proteomics has now achieved the ability to globally measure protein expression levels in yeast from 10 cell states simultaneously. We applied this approach to quantify expression differences in wild type and nine deubiquitylating enzyme (DUB) knockout strains with the goal of creating “information networks” that might provide deeper, mechanistic insights into a protein’s biological role. In total, more than 3700 proteins were quantified with high reproducibility across three biological replicates (30 samples in all). DUB mutants demonstrated different proteomics profiles, consistent with distinct roles for each family member. These included differences in total ubiquitin levels and specific chain linkages. Moreover, specific expression changes suggested novel functions for several DUB family members. For instance, the ubp3Δ mutant showed large expression changes for members of the cytochrome C oxidase complex, consistent with a role for Ubp3 in mitochondrial regulation. Several DUBs also showed broad expression changes for phosphate transporters as well as other components of the inorganic phosphate signaling pathway, suggesting a role for these DUBs in regulating phosphate metabolism. These data highlight the potential of multiplexed proteome-wide analyses for biological investigation and provide a framework for further study of the DUB family. Our methods are readily applicable to the entire collection of yeast deletion mutants and may help facilitate systematic analysis of yeast and other organisms. PMID:26503604

  10. Effect of Protein, Polysaccharide, and Oxygen Concentration Profiles on Biofilm Cohesiveness▿

    PubMed Central

    Ahimou, Francois; Semmens, Michael J.; Haugstad, Greg; Novak, Paige J.

    2007-01-01

    It is important to control biofilm cohesiveness to optimize process performance. In this study, a membrane-aerated biofilm reactor inoculated with activated sludge was used to grow mixed-culture biofilms of different ages and thicknesses. The cohesions, or cohesive energy levels per unit volume of biofilm, based on a reproducible method using atomic force microscopy (F. Ahimou, M. J. Semmens, P. J. Novak, and G. Haugstad, Appl. Environ. Microbiol. 73:2897-2904, 2007), were determined at different locations within the depths of the biofilms. In addition, the protein and polysaccharide concentrations within the biofilm depths, as well as the dissolved oxygen (DO) concentration profiles within the biofilms, were measured. It was found that biofilm cohesion increased with depth but not with age. Level of biofilm cohesive energy per unit volume was strongly correlated with biofilm polysaccharide concentration, which increased with depth in the membrane-aerated biofilm. In a 12-day-old biofilm, DO also increased with depth and may therefore be linked to polysaccharide production. In contrast, protein concentration was relatively constant within the biofilm and did not appear to influence cohesion. PMID:17337565

  11. The profile of β-amyloid precursor protein expression of rats induced by aluminum.

    PubMed

    Li, Xiao-Bo; Zhang, Zhi-Yuan; Yin, Li-Hong; Schluesener, Hermann J

    2012-03-01

    The environmental agent aluminum has been extensively investigated for a potential relationship with amyloid precursor protein (APP) expression. Despite many investigations, there is at present no definite proof from which to draw a conclusion. Since APP is an integral membrane protein expressed in different tissues and capable of fluxes across the blood-brain barrier (BBB), which may ultimately affect APP level in brain, it is necessary to assess the expression profile among vital body organs. The present study compared aluminum oxide and aluminum chloride injected rats with control rats (saline treated) to observe if aluminum affected APP expression patterns in different organs by immunohistochemistry (IHC). The expression of APP was observed in the brain of aluminum chloride treated rats and in the liver of aluminum oxide injected group. Results of double IHC staining showed that it is Kupffer cells, which are located in liver sinus and expressed APP after aluminum oxide treatment. Oxidative stress is suggested as the potential pathway that aluminum chloride exert effects in brain. These results suggest that different aluminum compounds may impact the expression of APP in brain and liver tissues. The mechanism that aluminum induced liver APP expression still needs further investigation. PMID:22209725

  12. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation

    PubMed Central

    Kaneko, Masayuki; Iwase, Ikuko; Yamasaki, Yuki; Takai, Tomoko; Wu, Yan; Kanemoto, Soshi; Matsuhisa, Koji; Asada, Rie; Okuma, Yasunobu; Watanabe, Takeshi; Imaizumi, Kazunori; Nomura, Yausyuki

    2016-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is a mechanism by which unfolded proteins that accumulate in the ER are transported to the cytosol for ubiquitin–proteasome-mediated degradation. Ubiquitin ligases (E3s) are a group of enzymes responsible for substrate selectivity and ubiquitin chain formation. The purpose of this study was to identify novel E3s involved in ERAD. Thirty-seven candidate genes were selected by searches for proteins with RING-finger motifs and transmembrane regions, which are the major features of ERAD E3s. We performed gene expression profiling for the identified E3s in human and mouse tissues. Several genes were specifically or selectively expressed in both tissues; the expression of four genes (RNFT1, RNF185, CGRRF1 and RNF19B) was significantly upregulated by ER stress. To determine the involvement of the ER stress-responsive genes in ERAD, we investigated their ER localisation, in vitro autoubiquitination activity and ER stress resistance. All were partially localised to the ER, whereas CGRRF1 did not possess E3 activity. RNFT1 and RNF185, but not CGRRF1 and RNF19B, exhibited significant resistance to ER stressor in an E3 activity-dependent manner. Thus, these genes are possible candidates for ERAD E3s. PMID:27485036

  13. Rapid protein structure classification using one-dimensional structure profiles on the bioSCAN parallel computer.

    PubMed

    Hoffman, D L; Laiter, S; Singh, R K; Vaisman, I I; Tropsha, A

    1995-12-01

    Rapid growth of protein structures database in recent years requires an effective approach for objective comparison and classification of deposited protein structures. We describe a novel method for structure comparison and classification based on the alignment of one-dimensional structure profiles. These profiles are obtained by calculating the OCCO pseudodihedral angles (formed by O-C-C-O atoms of carbonyl groups of consecutive amino acid residues) from protein three-dimensional coordinates. These angle measurements are then converted into a 24 letter alphabet, and the protein structures are represented by sequences of letter from this alphabet. The BioSCAN parallel computer, designed for primary sequence alignment, is used to rapidly align and classify these one-dimensional structure profiles. We have developed and implemented weighted scoring matrix to identify structural classes based on commonly found structural motifs. The results of our experiments are in good agreement with the traditional protein structure classification schemes. One-dimensional structure profiles significantly improve efficiency of structure comparison and classification. PMID:8808584

  14. ProtPhylo: identification of protein–phenotype and protein–protein functional associations via phylogenetic profiling

    PubMed Central

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein–protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. PMID:25956654

  15. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry

    SciTech Connect

    Miller, John H.; Jin, Shuangshuang; Morgan, William F.; Yang, Austin; Wan, Yunhu; Aypar, Umut; Peters, Jonathan S.; Springer, David L.

    2008-06-01

    Radiation-induced genome instability (RIGI) is a response to radiation exposure in which the progeny of surviving cells exhibit increased frequency of chromosomal changes many generations after the initial insult. Persistently elevated oxidative stress accompanying RIGI and the ability of free-radical scavengers, given before irradiation, to reduce the incidence of instability suggest that radiation induced alterations to mitochondrial function likely play a role in RIGI. To further elucidate this mechanism, we performed high-throughput quantitative mass spectrometry on samples enriched in mitochondrial proteins from three chromosomally-unstable GM10115 Chinese-hamster-ovary cell lines and their stable parental cell line. Out of several hundred identified proteins, sufficient data were collected on 74 mitochondrial proteins to test for statistically significant differences in their abundance between unstable and stable cell lines. Each of the unstable cell lines showed a distinct profile of statistically-significant differential abundant mitochondrial proteins. The LS-12 cell line was characterized by 8 downregulated proteins, whereas the CS-9 cell line exhibited 5 distinct up-regulated proteins. The unstable 115 cell line had two down-regulated proteins, one of which was also downregulated in LS-12, and one up-regulated protein relative to stable parental cells. The mitochondrial protein profiles for LS-12 and C-9 provide further evidence that mitochondrial dysfunction is involved in the genome instability of these cell lines.

  16. Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing

    PubMed Central

    Zhou, Jerry; Belov, Larissa; Solomon, Michael J.; Chan, Charles; Clarke, Stephen J.; Christopherson, Richard I.

    2011-01-01

    The current prognosis and classification of CRC relies on staging systems that integrate histopathologic and clinical findings. However, in the majority of CRC cases, cell dysfunction is the result of numerous mutations that modify protein expression and post-translational modification1. A number of cell surface antigens, including cluster of differentiation (CD) antigens, have been identified as potential prognostic or metastatic biomarkers in CRC. These antigens make ideal biomarkers as their expression often changes with tumour progression or interactions with other cell types, such as tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs). The use of immunohistochemistry (IHC) for cancer sub-classification and prognostication is well established for some tumour types2,3. However, no single ‘marker’ has shown prognostic significance greater than clinico-pathological staging or gained wide acceptance for use in routine pathology reporting of all CRC cases. A more recent approach to prognostic stratification of disease phenotypes relies on surface protein profiles using multiple 'markers'. While expression profiling of tumours using proteomic techniques such as iTRAQ is a powerful tool for the discovery of biomarkers4, it is not optimal for routine use in diagnostic laboratories and cannot distinguish different cell types in a mixed population. In addition, large amounts of tumour tissue are required for the profiling of purified plasma membrane glycoproteins by these methods. In this video we described a simple method for surface proteome profiling of viable cells from disaggregated CRC samples using a DotScan CRC antibody microarray. The 122-antibody microarray consists of a standard 82-antibody region recognizing a range of lineage-specific leukocyte markers, adhesion molecules, receptors and markers of inflammation and immune response5, together with a satellite region for detection of 40 potentially prognostic markers for CRC

  17. Effect of whey protein on blood lipid profiles: a meta-analysis of randomized controlled trials.

    PubMed

    Zhang, J-W; Tong, X; Wan, Z; Wang, Y; Qin, L-Q; Szeto, I M Y

    2016-08-01

    Previous studies have suggested that whey supplementation may have beneficial effects on lipid profiles, although results were inconsistent. A literature search was performed in March 2015 for randomized controlled trials observing the effects of whey protein and its derivatives on circulating levels of triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). A meta-analysis was subsequently conducted. The meta-analysis results of 13 trials showed that whey supplementation significantly reduced the circulating TG level by 0.11 mmol/l (95% CI: -0.21, 0 mmol/l), whereas the whey protein had no effects on circulating TC (-0.11 mmol/l, 95% CI: -0.27, 0.05 mmol/l), LDL-C (-0.08 mmol/l, 95% CI: -0.23, 0.07 mmol/l) and HDL-C (0.01 mmol/l, 95% CI: -0.04, 0.05 mmol/l). Subgroup analysis showed that significant TG reduction disappeared in participants with low body mass index, low supplemental whey dose or under exercise training/energy restriction during the trial. No evidence of heterogeneity across studies and publication bias was observed. In conclusion, our findings demonstrated that the effects of whey protein supplementation were modest, with an overall lowering effect on TG but no effect on TC, LDL-C and HDL-C. PMID:27026427

  18. Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis.

    PubMed

    Yu, Tao; Tao, Yonghui; Yang, Meiqiang; Chen, Peng; Gao, Xiaobo; Zhang, Yanbo; Zhang, Tao; Chen, Zi; Hou, Jian; Zhang, Yan; Ruan, Kangcheng; Wang, Hongyan; Hu, Ronggui

    2014-10-01

    Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be achieved. Here we developed and applied a dual-fluorescence-based Protein Turnover Assay (ProTA) to quantitatively profile global changes in human protein degradome upon BTZ-induced proteasomal inhibition. ProTA and subsequent network analyses delineate potential molecular basis for BTZ action and tumor drug resistance in BTZ chemotherapy. Finally, combined use of BTZ with drugs targeting the ProTA-identified key genes or pathways in BTZ action reduced BTZ resistance in multiple myeloma cells. Remarkably, BTZ stabilizes proteasome subunit PSMC1 and proteasome assembly factor PSMD10, suggesting a previously under-appreciated mechanism for regulating proteasome homeostasis. Therefore, ProTA is a novel tool for profiling human protein degradome to elucidate potential mechanisms of drug action and resistance, which might facilitate therapeutic development targeting proteostasis to treat human disorders. PMID:25223703

  19. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human

    PubMed Central

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  20. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human.

    PubMed

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  1. Protein profiles in mucosal and systemic compartments in response to Vibrio cholerae in a mouse pulmonary infection model.

    PubMed

    Kang, Seok-Seong; Baik, Jung Eun; Yang, Jae Seung; Cho, Kun; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    We have recently shown that a mouse lung infection model resulting in acute pneumonia could be used for evaluating the protective immunity induced by mucosal vaccines against Vibrio cholerae. In order to gain insight and better understanding of the pathogenicity of V. cholerae infection, we identified and compared proteins induced by V. cholerae in nasal washes, bronchoalveolar lavages (BAL), and sera. Intranasal administration of V. cholerae increased the concentration of total proteins in nasal washes and BAL fluids, but not in sera. LTQ-Orbitrap hybrid Fourier transform mass spectrometry showed that cytoskeletal proteins, protease inhibitors and anti-inflammatory mediators were present in nasal washes from uninfected mice. The distinctly expressed proteins in nasal washes in response to V. cholerae mainly consisted of protease inhibitors, anti-inflammatory proteins, and anti-microbial proteins. A number of protease inhibitors and anti-inflammatory proteins were selectively expressed in BAL fluids from V. cholerae-infected mice, while cytoskeletal proteins and heat shock proteins were mainly observed in BAL fluids from uninfected mice. A large number of serum complements, protease inhibitors, and acute phase proteins were expressed in V. cholerae-infected mice. Collectively, these results suggest that intranasal administration of V. cholerae leading to acute pneumonia elicited alterations of protein profiles associated with immune homeostasis and host protection in both the mucosal and systemic compartments. PMID:26150210

  2. Chronic hypoxia-induced alteration of presynaptic protein profiles and neurobehavioral dysfunction are averted by supplemental oxygen in Lymnaea stagnalis.

    PubMed

    Fei, G-H; Feng, Z-P

    2008-04-22

    Chronic hypoxia causes neural dysfunction. Oxygen (O(2)) supplements have been commonly used to increase the O(2) supply, yet the therapeutic benefit of this treatment remains controversial due to a lack of cellular and molecular evidence. In this study, we examined the effects of short-burst O(2) supplementation on neural behavior and presynaptic protein expression profiles in a simple chronic hypoxia model of snail Lymnaea stagnalis. We reported that hypoxia delayed the animal response to light stimuli, suppressed locomotory activity, induced expression of stress-response proteins, hypoxia inducible factor-1alpha (HIF-1alpha) and heat shock protein 70 (HSP70), repressed syntaxin-1 (a membrane-bound presynaptic protein) and elevated vesicle-associated membrane protein-1 (VAMP-1) (a vesicle-bound presynaptic protein) level. O(2) supplements relieved suppression of neural behaviors, and corrected hypoxia-induced protein alterations in a dose-dependent manner. The effectiveness of supplemental O(2) was further evaluated by determining time courses for recovery of neural behaviors and expression of stress response proteins and presynaptic proteins after relief from hypoxia conditions. Our findings suggest that O(2) supplement improves hypoxia-induced adverse alterations of presynaptic protein expression and neurobehaviors, however, the optimal level of O(2) required for improvement is protein specific and system specific. PMID:18343591

  3. Expression Profile of Six RNA-Binding Proteins in Pulmonary Sarcoidosis

    PubMed Central

    Novosadova, Eva; Hagemann-Jensen, Michael; Kullberg, Susanna; Kolek, Vitezslav; Grunewald, Johan; Petrek, Martin

    2016-01-01

    Background Sarcoidosis is characterised by up-regulation of cytokines and chemokine ligands/receptors and proteolytic enzymes. This pro-inflammatory profile is regulated post-transcriptionally by RNA-binding proteins (RBPs). We investigated in vivo expression of six RBPs (AUF1, HuR, NCL, TIA, TIAR, PCBP2) and two inhibitors of proteolytic enzymes (RECK, PTEN) in pulmonary sarcoidosis and compared it to the expression in four control groups of healthy individuals and patients with other respiratory diseases: chronic obstructive pulmonary disease (COPD), asthma and idiopathic interstitial pneumonias (IIPs). Methods RT-PCR was used to quantify the mRNAs in bronchoalveolar (BA) cells obtained from 50 sarcoidosis patients, 23 healthy controls, 30 COPD, 19 asthmatic and 19 IIPs patients. Flow cytometry was used to assess intracellular protein expression of AUF1 and HuR in peripheral blood T lymphocytes (PBTLs) obtained from 9 sarcoidosis patients and 6 healthy controls. Results Taking the stringent conditions for multiple comparisons into consideration, we consistently observed in the primary analysis including all patients regardless of smoking status as well as in the subsequent sub-analysis limited for never smokers that the BA mRNA expression of AUF1 (p<0.001), TIA (p<0.001), NCL (p<0.01) and RECK (p<0.05) was decreased in sarcoidosis compared to healthy controls. TIA mRNA was also decreased in sarcoidosis compared to both obstructive pulmonary diseases (COPD and asthma; p<0.001) but not compared to IIPs. There were several positive correlations between RECK mRNA and RBP mRNAs in BA cells. Also sarcoidosis CD3+, CD4+ and CD8+ PBTLs displayed lower mean fluorescence intensity of AUF1 (p≤0.02) and HuR (p≤0.03) proteins than control healthy PBTLs. Conclusion mRNA expressions of three RBPs (AUF1, TIA and NCL) and their potential target mRNA encoding RECK in BA cells and additionally protein expression of AUF1 and HuR in PBTLs were down-regulated in our sarcoidosis

  4. DEVELOPMENT OF PROTEIN PROFILE TECHNOLOGY TO EVALUATE ECOLOGICAL EFFECTS OF ENVIRONMENTAL CHEMICALS USING A SMALL FISH MODEL

    EPA Science Inventory

    Hemmer, Michael J., Robert T. Hudson and Calvin C. Walker. In press. Development of Protein Profile Technology to Evaluate Ecological Effects of Environmental Chemicals Using a Small Fish Model (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosyste...

  5. ASSESSMENT OF THE SWINE PROTEIN-ANNOTATED OLIGONUCLEOTIDE MICROARRAY AND UTILITY OF THE ARRAYS FOR EQTL AND TRANSCRIPTIONAL PROFILING STUDIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have evaluated the new Swine Protein-Annotated Oligonucleotide Microarray (http://www.pigoligoarray.org) by analyzing transcriptional profiles for longissimus dorsi muscle (LD), Bronchial lymph node (BLN) and Lung. Four LD samples were used to assess the stringency of hybridization conditions com...

  6. Transcript Profiles of Two Wheat Lipid Transfer Protein-encoding Genes are Altered During Attach by Hessian Fly Larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘GeneCalling’, an mRNA profiling technology, was used to identify a candidate lipid transfer protein (LTP) sequence that showed decreased mRNA abundance in wheat (Triticum aestivum L. em Thell) plants following attack by virulent Hessian fly (Mayetiola destructor Say) larvae (compatible interaction)...

  7. Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy.

    PubMed

    Nan, Yandong; Yang, Shuanying; Tian, Yingxuan; Zhang, Wei; Zhou, Bin; Bu, Lina; Huo, Shufen

    2009-01-01

    The aim of this study is to globally screen and identify the expression protein profiles of lung squamous carcinoma cell (SqCC) using shot-gun proteomics strategy and to further analyze function of individual proteins by bioinformatics, which may likely result in the identification of new biomarkers and provide helpful clues for pathogenesis, early diagnosis, and progression of lung SqCC. The specific tumor cells were isolated and collected from the tissues of six patients with lung SqCC by laser capture microdissection (LCM). Total proteins from the LCM cells were extracted, digested with trypsin. The sequence information of resulting peptides was acquired by high-performance liquid chromatography (HPLC) and tandem mass spectrometry (TMS). The global protein profiles of lung SqCC cell were identified with BioworksTM software in IPI human protein database. Cellular component, molecular function, and biological process of the all proteins were analyzed using gene ontology (GO). About 720,000 tumor cells were satisfactorily collected from tissues of six patients with lung SqCC by LCM and the homogeneities of cell population were estimated to be over 95% as determined by microscopic visualization. The high resolution profiles including HPLC, full mass spectrum, and tandem mass spectrum were successfully obtained. Database searching of the resulting bimolecular sequence information identified 1982 proteins in all samples. The bioinformatics of these proteins, including amino acids sequence, fraction of coverage, molecular weight, isoelectric point, etc., were analyzed in detail. Among them, the function of most proteins was recognized by using GO. Five candidate proteins, Prohibitin (PHB), Mitogen-activated protein kinase (MAPK), Heat shock protein27 (HSP27), Annexin A1(ANXA1), and High mobility group protein B1 (HMGB1), might play an important role in SqCC genesis, progression, recurrence, and metastasis according to relative literatures. We have successfully isolated

  8. N- and O-linked glycosylation site profiling of the human basic salivary proline-rich protein 3M.

    PubMed

    Manconi, Barbara; Cabras, Tiziana; Sanna, Monica; Piras, Valentina; Liori, Barbara; Pisano, Elisabetta; Iavarone, Federica; Vincenzoni, Federica; Cordaro, Massimo; Faa, Gavino; Castagnola, Massimo; Messana, Irene

    2016-05-01

    In the present study, we show that the heterogeneous mixture of glycoforms of the basic salivary proline-rich protein 3M, encoded by PRB3-M locus, is a major component of the acidic soluble fraction of human whole saliva in the first years of life. Reversed-phase high-performance liquid chromatography with high-resolution electrospray ionization mass spectrometry analysis of the intact proteoforms before and after N-deglycosylation with Peptide-N-Glycosidase F and tandem mass spectrometry sequencing of peptides obtained after Endoproteinase GluC digestion allowed the structural characterization of the peptide backbone and identification of N- and O-glycosylation sites. The heterogeneous mixture of the proteoforms derives from the combination of 8 different neutral and sialylated glycans O-linked to Threonine 50, and 33 different glycans N-linked to Asparagine residues at positions 66, 87, 108, 129, 150, 171, 192, and 213. PMID:26991339

  9. Profiling the substrate specificity of protein kinases by on-bead screening of peptide libraries.

    PubMed

    Trinh, Thi B; Xiao, Qing; Pei, Dehua

    2013-08-20

    A robust, high-throughput method has been developed to screen one-bead-one-compound peptide libraries to systematically profile the sequence specificity of protein kinases. Its ability to provide individual sequences of the preferred substrates permits the identification of sequence contextual effects and nonpermissive residues. Application of the library method to kinases Pim1, MKK6, and Csk revealed that Pim1 and Csk are highly active toward peptide substrates and recognize specific sequence motifs, whereas MKK6 has little activity or sequence selectivity against peptide substrates. Pim1 recognizes peptide substrates of the consensus RXR(H/R)X(S/T); it accepts essentially any amino acid at the S/T-2 and S/T+1 positions, but strongly disfavors acidic residues (Asp or Glu) at the S/T-2 position and a proline residue at the S/T+1 position. The selected Csk substrates show strong sequence covariance and fall into two classes with the consensus sequences of (D/E)EPIYϕXϕ and (D/E)(E/D)S(E/D/I)YϕXϕ (where X is any amino acid and ϕ is a hydrophobic amino acid). Database searches and in vitro kinase assays identified phosphatase PTP-PEST as a Pim1 substrate and phosphatase SHP-1 as a potential Csk substrate. Our results demonstrate that the sequence specificity of protein kinases is defined not only by favorable interactions between permissive residue(s) on the substrate and their cognate binding site(s) on the kinase but also by repulsive interactions between the kinase and nonpermissive residue(s). PMID:23848432

  10. Circulating and synovial antibody profiling of juvenile arthritis patients by nucleic acid programmable protein arrays

    PubMed Central

    2012-01-01

    Introduction Juvenile idiopathic arthritis (JIA) is a heterogeneous disease characterized by chronic joint inflammation of unknown cause in children. JIA is an autoimmune disease and small numbers of autoantibodies have been reported in JIA patients. The identification of antibody markers could improve the existing clinical management of patients. Methods A pilot study was performed on the application of a high-throughput platform, the nucleic acid programmable protein array (NAPPA), to assess the levels of antibodies present in the systemic circulation and synovial joint of a small cohort of juvenile arthritis patients. Plasma and synovial fluid from 10 JIA patients was screened for antibodies against 768 proteins on NAPPAs. Results Quantitative reproducibility of NAPPAs was demonstrated with > 0.95 intra-array and inter-array correlations. A strong correlation was also observed for the levels of antibodies between plasma and synovial fluid across the study cohort (r = 0.96). Differences in the levels of 18 antibodies were revealed between sample types across all patients. Patients were segregated into two clinical subtypes with distinct antibody signatures by unsupervised hierarchical cluster analysis. Conclusion The NAPPAs provide a high-throughput quantitatively reproducible platform to screen for disease-specific autoantibodies at the proteome level on a microscope slide. The strong correlation between the circulating antibody levels and those of the inflamed joint represents a novel finding and provides confidence to use plasma for discovery of autoantibodies in JIA, thus circumventing the challenges associated with joint aspiration. We expect that autoantibody profiling of JIA patients on NAPPAs could yield antibody markers that can act as criteria to stratify patients, predict outcomes and understand disease etiology at the molecular level. PMID:22510425

  11. Proteomic and transcriptomic profiling of Staphylococcus aureus surface LPXTG-proteins: correlation with agr genotypes and adherence phenotypes.

    PubMed

    Ythier, Mathilde; Resch, Grégory; Waridel, Patrice; Panchaud, Alexandre; Gfeller, Aurélie; Majcherczyk, Paul; Quadroni, Manfredo; Moreillon, Philippe

    2012-11-01

    Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence

  12. Protein profiling and tps23 induction in different maize lines in response to methyl jasmonate treatment and Diabrotica virgifera infestation.

    PubMed

    Capra, Emanuele; Colombi, Cinzia; De Poli, Pamela; Nocito, Fabio Francesco; Cocucci, Maurizio; Vecchietti, Alberto; Marocco, Adriano; Stile, Maria Rosaria; Rossini, Laura

    2015-03-01

    Plant responses to herbivore insects involve direct and indirect defense with the production of signal molecules including jasmonic acid (JA) and its derivatives (e.g. methyl jasmonate, MeJA). In maize (Zea mays), root feeding by Diabrotica virgifera larvae activates an indirect defense mechanism, through enthomopathogenic nematodes that are recruited after Terpene Synthase 23 (tps23) upregulation and (E)-β-caryophyllene root emission. In order to gain insight into the correlation between JA signaling and response to Diabrotica attack, we analyzed tps23 expression and protein profiles in maize roots in response to MeJA treatment and insect infestation. Similar to herbivore feeding, MeJA treatment was found to increase tps23 transcript accumulation, with consistent variations for both treatments in maize lines differing in (E)-β-caryophyllene production. Analysis of root protein profiles showed specific alterations leading to the identification of three proteins that were induced by MeJA treatment. We focused on a peroxidase-like protein (Px-like) showing that the corresponding transcripts accumulated in all tested lines. Results show that exogenous application of MeJA upregulates tps23 expression and specifically alters protein patterns in maize roots. Parallel effects on tps23 transcript accumulation were observed upon hormone exposure and insect infestation in different maize lines. In contrast, Px-like transcript profiling showed differences between treatments. These results support the possible involvement of MeJA in mediating the upregulation of tps23 in response to Diabrotica attack. PMID:25506768

  13. SDS-PAGE and IR spectroscopy to evaluate modifications in the viral protein profile induced by a cationic porphyrinic photosensitizer.

    PubMed

    Costa, Liliana; Esteves, Ana Cristina; Correia, António; Moreirinha, Catarina; Delgadillo, Ivonne; Cunha, Ângela; Neves, Maria G P S; Faustino, Maria A F; Almeida, Adelaide

    2014-12-01

    Reactive oxygen species can be responsible for microbial photodynamic inactivation due to its toxic effects, which include severe damage to proteins, lipids and nucleic acids. In this study, the photo-oxidative modifications of the proteins of a non-enveloped T4-like bacteriophage, induced by the cationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide were evaluated. Two methods were used: sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and infrared spectroscopy. SDS-PAGE analysis showed that the phage protein profile was considerably altered after photodynamic treatment. Seven protein bands putatively corresponding to capsid and tail tube proteins were attenuated and two other were enhanced. Infrared spectroscopy confirmed the time-dependent alteration on the phage protein profile detected by SDS-PAGE, indicative of a response to oxidative damage. Infrared analysis showed to be a promising and rapid screening approach for the analysis of the modifications induced on viral proteins by photosensitization. In fact, one single infrared spectrum can highlight the changes induced to all viral molecular structures, overcoming the delays and complex protocols of the conventional methods, in a much simple and cost effective way. PMID:25241141

  14. Profiling of soluble proteins in wine by nano-high-performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Kwon, Sung Won

    2004-12-01

    Wine proteins play an important role in a wine's quality as they affect taste, clarity, and stability. To enhance our understanding of the proteins in wine, nano-high-performance liquid chromatography (HPLC)/tandem mass spectrometry was used to profile soluble proteins in wine. Twenty proteins were identified from a Sauvignon Blanc wine including five proteins derived from the grape, 12 from yeast, two from bacteria, and one from fungi. The findings are somewhat peculiar at first glance, but reasonable explanations can account for the results. The grape proteins identified are less in number, which may be due to the availability of an incomplete database and possibly bentonite fining. The relatively large number of identified yeast proteins may be due to their complete protein database. The identified bacterial and fungal proteins could possibly be attributed to sources in the vineyard including natural infections and improper handling during harvest. The use of nano-HPLC/tandem mass spectrometry is an important tool for identifying wine proteins and understanding how they affect its characteristics. PMID:15563204

  15. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    DOE PAGESBeta

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosicmore » bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.« less

  16. Comprehensive protein tyrosine phosphatase mRNA profiling identifies new regulators in the progression of glioma.

    PubMed

    Bourgonje, Annika M; Verrijp, Kiek; Schepens, Jan T G; Navis, Anna C; Piepers, Jolanda A F; Palmen, Chantal B C; van den Eijnden, Monique; Hooft van Huijsduijnen, Rob; Wesseling, Pieter; Leenders, William P J; Hendriks, Wiljan J A J

    2016-01-01

    The infiltrative behavior of diffuse gliomas severely reduces therapeutic potential of surgical resection and radiotherapy, and urges for the identification of new drug-targets affecting glioma growth and migration. To address the potential role of protein tyrosine phosphatases (PTPs), we performed mRNA expression profiling for 91 of the 109 known human PTP genes on a series of clinical diffuse glioma samples of different grades and compared our findings with in silico knowledge from REMBRANDT and TCGA databases. Overall PTP family expression levels appeared independent of characteristic genetic aberrations associated with lower grade or high grade gliomas. Notably, seven PTP genes (DUSP26, MTMR4, PTEN, PTPRM, PTPRN2, PTPRT and PTPRZ1) were differentially expressed between grade II-III gliomas and (grade IV) glioblastomas. For DUSP26, PTEN, PTPRM and PTPRT, lower expression levels correlated with poor prognosis, and overexpression of DUSP26 or PTPRT in E98 glioblastoma cells reduced tumorigenicity. Our study represents the first in-depth analysis of PTP family expression in diffuse glioma subtypes and warrants further investigations into PTP-dependent signaling events as new entry points for improved therapy. PMID:27586084

  17. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    NASA Astrophysics Data System (ADS)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  18. Early Embryonic Gene Expression Profiling of Zebrafish Prion Protein (Prp2) Morphants

    PubMed Central

    Nourizadeh-Lillabadi, Rasoul; Seilø Torgersen, Jacob; Vestrheim, Olav; König, Melanie; Aleström, Peter; Syed, Mohasina

    2010-01-01

    Background The Prion protein (PRNP/Prp) plays a crucial role in transmissible spongiform encephalopathies (TSEs) like Creutzfeldt-Jakob disease (CJD), scrapie and mad cow disease. Notwithstanding the importance in human and animal disease, fundamental aspects of PRNP/Prp function and transmission remains unaccounted for. Methodology/Principal Findings The zebrafish (Danio rerio) genome contains three Prp encoding genes assigned prp1, prp2 and prp3. Currently, the second paralogue is believed to be the most similar to the mammalian PRNP gene in structure and function. Functional studies of the PRNP gene ortholog was addressed by prp2 morpholino (MO) knockdown experiments. Investigation of Prp2 depleted embryos revealed high mortality and apoptosis at 24 hours post fertilization (hpf) as well as impaired brain and neuronal development. In order to elucidate the underlying mechanisms, a genome-wide transcriptome analysis was carried out in viable 24 hpf morphants. The resulting changes in gene expression profiles revealed 249 differently expressed genes linked to biological processes like cell death, neurogenesis and embryonic development. Conclusions/Significance The current study contributes to the understanding of basic Prp functions and demonstrates that the zebrafish is an excellent model to address the role of Prp in vertebrates. The gene knockdown of prp2 indicates an essential biological function for the zebrafish ortholog with a morphant phenotype that suggests a neurodegenerative action and gene expression effects which are apoptosis related and effects gene networks controlling neurogenesis and embryo development. PMID:21042590

  19. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy

    PubMed Central

    Bialek, Peter; Morris, Carl; Parkington, Jascha; St. Andre, Michael; Owens, Jane; Yaworsky, Paul; Seeherman, Howard

    2011-01-01

    Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative PCR to identify the molecular changes that occur in two clinically relevant mouse models of muscle atrophy: hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7, and 14 days after casting or injury. The total amount of muscle loss, as measured by wet weight and muscle fiber size, was equivalent between models on day 14, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tenotomy resulted in the regulation of significantly more mRNA transcripts then did casting. Analysis of the regulated genes and pathways suggest that the mechanisms of atrophy are distinct between these models. The degradation following casting was ubiquitin-proteasome mediated, while degradation following tenotomy was lysosomal and matrix-metalloproteinase mediated, suggesting a possible role for autophagy. These data suggest that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat atrophy resulting from different conditions. PMID:21791639

  20. Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays.

    PubMed

    Bian, Xiaofang; Wallstrom, Garrick; Davis, Amy; Wang, Jie; Park, Jin; Throop, Andrea; Steel, Jason; Yu, Xiaobo; Wasserfall, Clive; Schatz, Desmond; Atkinson, Mark; Qiu, Ji; LaBaer, Joshua

    2016-01-01

    The rapid rise in the incidence of type 1 diabetes (T1D) suggests the involvement of environmental factors including viral infections. We evaluated the association between viral infections and T1D by profiling antiviral antibodies using a high-throughput immunoproteomics approach in patients with new-onset T1D. We constructed a viral protein array comprising the complete proteomes of seven viruses associated with T1D and open reading frames from other common viruses. Antibody responses to 646 viral antigens were assessed in 42 patients with T1D and 42 age- and sex-matched healthy control subjects (mean age 12.7 years, 50% males). Prevalence of antiviral antibodies agreed with known infection rates for the corresponding virus based on epidemiological studies. Antibody responses to Epstein-Barr virus (EBV) were significantly higher in case than control subjects (odds ratio 6.6; 95% CI 2.0-25.7), whereas the other viruses showed no differences. The EBV and T1D association was significant in both sex and age subgroups (≤12 and >12 years), and there was a trend toward early EBV infections among the case subjects. These results suggest a potential role for EBV in T1D development. We believe our innovative immunoproteomics platform is useful for understanding the role of viral infections in T1D and other disorders where associations between viral infection and disease are unclear. PMID:26450993

  1. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    SciTech Connect

    Wu, Si; Brown, Joseph N.; Tolic, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J.; Pevzner, Pavel A.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2014-05-31

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  2. Comparison of protein expression profile changes in human fibroblasts induced by low doses of gamma rays and energetic protons

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Clement, Jade; Gridley, Diala; Rohde, Larry; Wu, Honglu

    Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposure of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to more than 200 proteins (or modified proteins) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured till fully confluent and then exposed to 2 cGy of gamma rays at either low (1 cGy/hr) or high (0.2 Gy/min) dose-rate, or to 2 cGy of 150 MeV protons at high dose-rate. The proteins were isolated at 2 and 6 hours after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loaded onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. Comparison of the overall protein expression profiles in gamma-irradiated cells showed significantly higher inductions at the high dose-rate than at the low dose-rate. The protein profile in cells after the proton exposure showed a much earlier induction pattern in comparison to both the high and low dose-rate gamma exposures. The same expression patterns were also found in individual cell signaling cascades. At 6 hours post irradiation, high dose-rate gamma rays induced cellular protein level changes (ratio to control ˜2) mostly in apoptosis, cell cycle and cytoskeleton, while low dose-rate gamma rays induced similar changes with smaller fold-change values. In comparison, protons induced

  3. Direct visualisation of peptide hormones in cultured pancreatic islet alpha- and beta-cells by intact-cell mass spectrometry.

    PubMed

    Buchanan, Christina M; Malik, Arpita S; Cooper, Garth J S

    2007-01-01

    The application of intact-cell mass spectrometry (ICM) by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry to achieve direct protein-profiling of bacterial species is now well established. However, this methodology has not to our knowledge been applied to the analysis of mammalian cells in routine culture. Here, we describe a novel application of ICM by which we have identified proteins in intact cells from two lines representative of pancreatic islet alpha- and beta-cells. Adherent alphaTC1 clone 9 and betaTC6 F7 cells were harvested into phosphate-buffered saline (PBS) using enzyme-free dissociation buffer before 1 microL of cell suspension was spotted onto MALDI plates. Cells were overlaid with sinapinic acid then washed with pure water before application of a final coat of sinapinic acid. Data in the 2000-20,000 m/z range were acquired in linear mode on a Voyager DE-Pro mass spectrometer. The proteins which ionised were composed in large part of peptide hormones (e.g. insulin and glucagon) known to be packaged into the secretory granules of the beta- and alpha-cells respectively. However, in addition to visualising the peptides expected to be associated with these cells, a mass consistent with oxyntomodulin was identified in the cultured alpha-cells, a finding not previously reported to our knowledge. In summary, this paper describes, for the first time, a rapid and direct method useful for identifying secretory products in intact endocrine cells. PMID:17918213

  4. Enrichment and Analysis of Intact Phosphoproteins in Arabidopsis Seedlings

    PubMed Central

    Aryal, Uma K.; Ross, Andrew R. S.; Krochko, Joan E.

    2015-01-01

    Protein phosphorylation regulates diverse cellular functions and plays a key role in the early development of plants. To complement and expand upon previous investigations of protein phosphorylation in Arabidopsis seedlings we used an alternative approach that combines protein extraction under non-denaturing conditions with immobilized metal-ion affinity chromatography (IMAC) enrichment of intact phosphoproteins in Rubisco-depleted extracts, followed by identification using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In-gel trypsin digestion and analysis of selected gel spots identified 144 phosphorylated peptides and residues, of which only18 phosphopeptides and 8 phosphosites were found in the PhosPhAt 4.0 and P3DB Arabidopsis thaliana phosphorylation site databases. More than half of the 82 identified phosphoproteins were involved in carbohydrate metabolism, photosynthesis/respiration or oxidative stress response mechanisms. Enrichment of intact phosphoproteins prior to 2-DE and LC-MS/MS appears to enhance detection of phosphorylated threonine and tyrosine residues compared with methods that utilize peptide-level enrichment, suggesting that the two approaches are somewhat complementary in terms of phosphorylation site coverage. Comparing results for young seedlings with those obtained previously for mature Arabidopsis leaves identified five proteins that are differentially phosphorylated in these tissues, demonstrating the potential of this technique for investigating the dynamics of protein phosphorylation during plant development. PMID:26158488

  5. Temporal lobe in human aging: A quantitative protein profiling study of samples from Chinese Human Brain Bank.

    PubMed

    Xu, Benhong; Xiong, Feng; Tian, Rui; Zhan, Shaohua; Gao, Yanpan; Qiu, Wenying; Wang, Renzhi; Ge, Wei; Ma, Chao

    2016-01-01

    The temporal lobe is a portion of the cerebral cortex with critical functionality. The age-related protein profile changes in the human temporal lobe have not been previously studied. This 4-plex tandem mass tag labeled proteomic study was performed on samples of temporal lobe from Chinese donors. Tissue samples were assigned to four age groups: Group A (the young, age: 34±13 years); Group B (the elderly, 62±5 years); Group C (the aged, 84±4 years) and Group D (the old, 95±1 years). Pooled samples from the different groups were subjected to proteomics and bioinformatics analysis to identify age-related changes in protein expression and associated pathways. We isolated 5072 proteins, and found that 67 proteins were downregulated and 109 proteins were upregulated in one or more groups during the aging process. Western blotting assays were performed to verify the proteomic results. Bioinformatic analysis identified proteins involved in neuronal degeneration, including proteins involved in neuronal firing, myelin sheath damage, and cell structure stability. We also observed the accumulation of extracellular matrix and lysosomal proteins which imply the occurrence of fibrosis and autophagy. Our results suggest a series of changes across a wide range of proteins in the human temporal lobe that may relate to aging and age-related neurodegenerative disorders. PMID:26631761

  6. In-Depth Analysis of a Plasma or Serum Proteome Using a 4D Protein Profiling Method

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Speicher, David W.

    2011-01-01

    Comprehensive proteomic analysis of human plasma or serum has been a major strategy used to identify biomarkers that serve as indicators of disease. However, such in-depth proteomic analyses are challenging due to the complexity and extremely large dynamic range of protein concentrations in plasma. Therefore, reduction in sample complexity through multidimensional pre-fractionation strategies is critical, particularly for the detection of low-abundance proteins that have the potential to be the most specific disease biomarkers. We describe here a 4D protein profiling method that we developed for comprehensive proteomic analyses of both plasma and serum. Our method consists of abundant protein depletion coupled with separation strategies – microscale solution isoelectrofocusing and 1D SDS-PAGE – followed by reversed-phase separation of tryptic peptides prior to LC–MS/MS. Using this profiling strategy, we routinely identify a large number of proteins over nine orders of magnitude, including a substantial number of proteins at the low ng/mL or lower levels from approximately 300 μL of plasma sample. PMID:21468940

  7. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    PubMed

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time. PMID:25248720

  8. Analysis of the Sperm Head Protein Profiles in Fertile Men: Consistency across Time in the Levels of Expression of Heat Shock Proteins and Peroxiredoxins

    PubMed Central

    Kichine, Elsa; Di Falco, Marcos; Hales, Barbara F.; Robaire, Bernard; Chan, Peter

    2013-01-01

    We investigated the identity and quantitative variations of proteins extracted from human sperm heads using a label-free Gel-MS approach. Sperm samples were obtained from three men with high sperm counts at three different time points. This design allowed us to analyse intra-individual and inter-individual variations of the human sperm head proteome. Each time point was analyzed in triplicate to minimize any background artifactual effects of the methodology on the variation analyses. Intra-individual analysis using the spectral counting method revealed that the expression levels of 90% of the common proteins identified in three samples collected at various time-points, separated by several months, had a coefficient of variation of less than 0.5 for each man. Across individuals, the expression level of more than 80% of the proteins had a CV under 0.7. Interestingly, 83 common proteins were found within the core proteome as defined by the intra- and inter-variation analyses set criteria (CV<0.7). Some of these uniformly expressed proteins were chaperones, peroxiredoxins, isomerases, and cytoskeletal proteins. Although there is a significant level of inter-individual variation in the protein profiles of human sperm heads even in a well-defined group of men with high sperm counts, the consistent expression levels of a wide range of proteins points to their essential role during spermatogenesis. PMID:24204839

  9. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    EPA Science Inventory

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relat