Sample records for intact soil-core microcosms

  1. Long Term Thawing Experiments on Intact Cores of Arctic Mineral Cryosol: Implications for Greenhouse Gas Feedbacks from Global Warming

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Stackhouse, B. T.; Lau, C. Y. M.; Whyte, L. G.; Pfiffner, S. M.; Vishnivetskaya, T. A.

    2015-12-01

    Mineral cryosols comprise >87% of Arctic tundra. Much attention has focused on high-organic carbon cryosols and how they will respond to global warming. The biogeochemical processes related to the greenhouse gas release from mineral cryosols, however, have not been fully explored. To this end, seventeen intact cores of active layer and underlying permafrost of mineral cryosol from Axel Heiberg Island, Nunavut, Canada, were subjected to 85 weeks of thawing at 4.5°C under various treatment regimes. The fluxes of CO2 and CH4 across the atmosphere-soil boundary and vertical profiles of the gas and water chemistry and the metagenomes were determined. The flux measurements were compared to those of microcosms and field measurements. The main conclusions were as follows: 1) CO2 emission rates from the intact cores do not behave in the typical fast to slow carbon pool fashion that typify microcosm experiments. The CO2 emission rates from the intact cores were much slower than those from the microcosm initially, but steadily increased with time, overtaking and then exceeding microcosm release rates after one year. 2) The increased CO2 flux from thawing permafrost could not be distinguished from that of control cores until after a full year of thawing. 3) Atmospheric CH4 oxidation was present in all intact cores regardless of whether they are water saturated or not, but after one year it had diminished to the point of being negligible. Over that same time the period the metagenomic data recorded a significant decline in the proportion of high-affinity methanotrophs. 4) Thaw slumps in the cores temporarily increased the CH4 oxidation and the CO2 emission rates. 5) The microbial community structures varied significantly by depth with methanotrophs being more abundant in above 35 cm depth than below 35 cm depth. 6) Other than the diminishment of Type II methanotrophs, the microbial community structure varied little after one week of thawing, nor even after 18 months of thaw.

  2. Terrestrial Microcosm Evaluation of Two Army Smoke-Producing Compounds.

    DTIC Science & Technology

    1988-01-29

    a greenhouse under natural or controlled photoperiods (depending on the time of year) with rainfall input simulated. Parameters monitored S ’a. ’ ’a...Sixty intact soil-core microcosms that had been extracted from an undisturbed (for m. iy years) field site were set up in a greenhouse under strict...tests. The 60 cures were divided equally between two greenhouse bays, 30 cores for exposure to RP/BR and 30 cores for exposure to WP. Within each group

  3. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    PubMed

    Janos, David P; Scott, John; Aristizábal, Catalina; Bowman, David M J S

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  4. An improved method for field extraction and laboratory analysis of large, intact soil cores

    USGS Publications Warehouse

    Tindall, J.A.; Hemmen, K.; Dowd, J.F.

    1992-01-01

    Various methods have been proposed for the extraction of large, undisturbed soil cores and for subsequent analysis of fluid movement within the cores. The major problems associated with these methods are expense, cumbersome field extraction, and inadequate simulation of unsaturated flow conditions. A field and laboratory procedure is presented that is economical, convenient, and simulates unsaturated and saturated flow without interface flow problems and can be used on a variety of soil types. In the field, a stainless steel core barrel is hydraulically pressed into the soil (30-cm diam. and 38 cm high), the barrel and core are extracted from the soil, and after the barrel is removed from the core, the core is then wrapped securely with flexible sheet metal and a stainless mesh screen is attached to the bottom of the core for support. In the laboratory the soil core is set atop a porous ceramic plate over which a soil-diatomaceous earth slurry has been poured to assure good contact between plate and core. A cardboard cylinder (mold) is fastened around the core and the empty space filled with paraffin wax. Soil cores were tested under saturated and unsaturated conditions using a hanging water column for potentials ???0. Breakthrough curves indicated that no interface flow occurred along the edge of the core. This procedure proved to be reliable for field extraction of large, intact soil cores and for laboratory analysis of solute transport.

  5. Arbuscular-Mycorrhizal Networks Inhibit Eucalyptus tetrodonta Seedlings in Rain Forest Soil Microcosms

    PubMed Central

    Janos, David P.; Scott, John; Aristizábal, Catalina; Bowman, David M. J. S.

    2013-01-01

    Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks–previously unrecognized as contributors to the ashbed effect–probably help to maintain the rain forest–savanna boundary. PMID:23460899

  6. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Bricklemyer, Ross S; Brown, David J; Turk, Philip J; Clegg, Sam M

    2013-10-01

    Laser-induced breakdown spectroscopy (LIBS) provides a potential method for rapid, in situ soil C measurement. In previous research on the application of LIBS to intact soil cores, we hypothesized that ultraviolet (UV) spectrum LIBS (200-300 nm) might not provide sufficient elemental information to reliably discriminate between soil organic C (SOC) and inorganic C (IC). In this study, using a custom complete spectrum (245-925 nm) core-scanning LIBS instrument, we analyzed 60 intact soil cores from six wheat fields. Predictive multi-response partial least squares (PLS2) models using full and reduced spectrum LIBS were compared for directly determining soil total C (TC), IC, and SOC. Two regression shrinkage and variable selection approaches, the least absolute shrinkage and selection operator (LASSO) and sparse multivariate regression with covariance estimation (MRCE), were tested for soil C predictions and the identification of wavelengths important for soil C prediction. Using complete spectrum LIBS for PLS2 modeling reduced the calibration standard error of prediction (SEP) 15 and 19% for TC and IC, respectively, compared to UV spectrum LIBS. The LASSO and MRCE approaches provided significantly improved calibration accuracy and reduced SEP 32-55% over UV spectrum PLS2 models. We conclude that (1) complete spectrum LIBS is superior to UV spectrum LIBS for predicting soil C for intact soil cores without pretreatment; (2) LASSO and MRCE approaches provide improved calibration prediction accuracy over PLS2 but require additional testing with increased soil and target analyte diversity; and (3) measurement errors associated with analyzing intact cores (e.g., sample density and surface roughness) require further study and quantification.

  7. Microbial degradation of decabromodiphenyl ether (DBDE) in soil slurry microcosms.

    PubMed

    Chou, Hsi-Ling; Hwa, Mei-Yin; Lee, Yao-Chuan; Chang, Yu-Jie; Chang, Yi-Tang

    2016-03-01

    Decabromodiphenyl ether (DBDE), which has been identified as an endocrine disrupting compound, is used as brominated flame retardant, and this can result in serious bioaccumulation within ecological systems. The objective of this study was to explore DBDE bioremediation (25 mg/kg) using laboratory scale soil slurry microcosms. It was found that effective biodegradation of DBDE occurred in all microcosms. Various biometabolites were identified, namely polybrominated diphenyl ethers congeners and hydroxylated brominated diphenyl ether. Reductive debrominated products such as tri-BDE to hepta-BDE congeners were also detected, and their total concentrations ranged from 77.83 to 91.07 ng/g. The mechanism of DBDE biodegradation in soil slurry microcosms is proposed to consist of a series of biological reactions involving hydroxylation and debromination. Catechol 2,3-oxygenase genes, which are able to bring about meta-cleavage at specific unbrominated locations in carbon backbones, were identified as present during the DBDE biodegradation. No obvious effect on the ecological functional potential based on community-level physiological profiling was observed during DBDE biodegradation, and one major facultative Pseudomonas sp. (99 % similarity) was identified in the various soil slurry microcosms. These findings provide an important basis that should help environmental engineers to design future DBDE bioremediation systems that use a practical microcosm system. A bacterial-mixed culture can be selected as part of the bioaugmentation process for in situ DBDE bioremediation. A soil/water microcosm system can be successfully applied to carry out ex situ DBDE bioremediation.

  8. ANAEROBIC SOIL DISINFESTATION IN MICROCOSMS OF TWO SANDY SOILS.

    PubMed

    Stremińska, M A; Runia, W T; Termorshuizen, A J; Feil, H; Van Der Wurff, A W G

    2014-01-01

    In recent years, anaerobic soil disinfestation (ASD) has been proposed as an alternative control method of soil-borne plant pathogens. It involves adding a labile carbon source, irrigating the soil to stimulate decomposition of organic material and then covering the soil with air-tight plastic to limit gas exchange. During the ASD process, soil microorganisms switch from aerobic to anaerobic metabolism. As a result, by-products of anaerobic metabolism are released into the soil environment such as various organic acids and gases. These by-products are reported to have a negative effect on survival of soil-borne plant pathogens. However, the efficacy of ASD to reduce soil-borne pathogens in practice may vary significantly. Therefore, we studied the efficacy of the ASD process in two different soils. In addition, it was investigated whether a pre-treatment with an anaerobic bacterial inoculum prior to ASD affected the efficacy of the process. Two sandy soils (dune sand and glacial sand) were inoculated in 2 L soil microcosms. We tested the efficacy of ASD treatment against the potato cyst nematode Globodera pallida. For each soil, three treatments were used: control treatment (no Herbie addition, aerobic incubation), ASD 1 (organic substrate addition, anaerobic incubation) and ASD 2 (organic substrate and anaerobic bacterial inoculum addition, anaerobic incubation). Soil microcosms were incubated in the dark at 20°C for two weeks. We observed that anaerobic soil disinfestation treatments were highly effective against Potato Cyst Nematode (PCN), with pathogen being eradicated totally in all but one ASD treatment (glacial sand ASD2) within two weeks. The relative abundance of Firmicutes (spore-forming bacteria, often fermentative) in total bacteria increased significantly in ASD treated soils. Numbers of these bacteria correlated positively with increased concentrations of acetic and butyric acids in soil water phase in ASD treatments.

  9. Morphological Alteration and Survival of Burkholderia pseudomallei in Soil Microcosms

    PubMed Central

    Kamjumphol, Watcharaporn; Chareonsudjai, Pisit; Taweechaisupapong, Suwimol; Chareonsudjai, Sorujsiri

    2015-01-01

    The resilience of Burkholderia pseudomallei, the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO4 at 30°C. Iron (Fe(II)) promoted the growth of B. pseudomallei during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of B. pseudomallei in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest B. pseudomallei cells were found in soil with 100 μM FeSO4 compared with in the control soil or soil with 0.6% NaCl (P < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD® BacLight™ stain combined with flow cytometry showed that B. pseudomallei remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of B. pseudomallei and its ability to change from a rod-like to coccoid form. The morphological changes of B. pseudomallei cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans. PMID:26324731

  10. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms wasmore » decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.« less

  11. SOME EFFECTS OF CADMIUM ON CONIFEROUS FOREST SOIL AND LITTER MICROCOSMS

    EPA Science Inventory

    Description and criticism is given of a preliminary design and use of a soil/litter microcosm in which oxygen, temperature, and humidity are kept constant, and oxygen generation and carbon dioxide and heat evolution rates are monitored. Using four microcosms, one acting as a dead...

  12. Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination

    PubMed Central

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.

    2015-01-01

    Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent and bioaccumulative. In this study we investigated bacterial communities in soil microcosms spiked with PCB 52, 77 and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal and redox cycling (i.e. sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after two weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms, and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests they play a role in PCB dechlorination therein. PMID:25820643

  13. Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination.

    PubMed

    Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L; Mattes, Timothy E

    2015-08-01

    Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.

  14. AEROBIC SOIL MICROCOSMS FOR LONG-TERM BIODEGRADATION OF HYDROCARBON VAPORS

    EPA Science Inventory

    The aims of this research project included the development of laboratory protocols for the preparation of aerobic soil microcosms using aseptic field soil samples, and for the gas chromatographic analysis of hydrocarbon vapor biodegradation based on vapor samples obtained from th...

  15. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.

    PubMed

    Offre, Pierre; Prosser, James I; Nicol, Graeme W

    2009-10-01

    Autotrophic ammonia-oxidizing bacteria were considered to be responsible for the majority of ammonia oxidation in soil until the recent discovery of the autotrophic ammonia-oxidizing archaea. To assess the relative contributions of bacterial and archaeal ammonia oxidizers to soil ammonia oxidation, their growth was analysed during active nitrification in soil microcosms incubated for 30 days at 30 degrees C, and the effect of an inhibitor of ammonia oxidation (acetylene) on their growth and soil nitrification kinetics was determined. Denaturing gradient gel electrophoresis (DGGE) analysis of bacterial ammonia oxidizer 16S rRNA genes did not detect any change in their community composition during incubation, and quantitative PCR (qPCR) analysis of bacterial amoA genes indicated a small decrease in abundance in control and acetylene-containing microcosms. DGGE fingerprints of archaeal amoA and 16S rRNA genes demonstrated changes in the relative abundance of specific crenarchaeal phylotypes during active nitrification. Growth was also indicated by increases in crenarchaeal amoA gene copy number, determined by qPCR. In microcosms containing acetylene, nitrification and growth of the crenarchaeal phylotypes were suppressed, suggesting that these crenarchaea are ammonia oxidizers. Growth of only archaeal but not bacterial ammonia oxidizers occurred in microcosms with active nitrification, indicating that ammonia oxidation was mostly due to archaea in the conditions of the present study.

  16. Microcosm experiments approach to quantify nitrogen leaching from mineral and organic fertilized soil

    NASA Astrophysics Data System (ADS)

    Severus Sandor, Mignon; Sandor, Valentina; Mihai Onica, Bogdan; Brad, Traian

    2017-04-01

    The use of nitrogen inputs to improve agricultural soils fertility is a common practice in arable lands. Depending of nitrogen forms only a part of introduced nitrogen will be effectively used by the crops while another part can be leached from soil with negative impact on the environment. In temperate climate these losses are greater during spring time when rains are frequent and crop plants are in the early growth stage. In a microcosm experiments we simulated this kind of conditions in order to assess nitrogen losses from two different soils (Chernozem, Luvisol) fertilized with mineral (ammonium nitrate) and organic (mustard as green manure, slurry manure and cattle manure) fertilizers. From each microcosms we obtained 100 ml of leachate which was filtered and analyzed from N-NO3 and N-NH4. The leachate was obtained by adding distillate water at the microcosm surface two times during the experiment at a ten days interval. Preliminary results showed that only small quantity of ammonium was leached from fertilized soils, mainly after 20 days of incubation. These amounts were higher in Chernozem soil than in Luvisol and registered the highest amount in cattle manure fertilized soils. In general, the nitrate was leached from soils in high quantities. The highest value was measured in Chernozem soil when cattle manure was used as fertilizer (1200 mg/l) and represents a cumulative amount. For most of the treatments the cumulative loss of nitrate nitrogen was double in Chernozem soil than in Luvisol. The highest quantity of leaching nitrate was measured for both soils in manure fertilized soil.

  17. Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding

    USGS Publications Warehouse

    Poulin, Brett; Aiken, George R.; Nagy, Kathryn L.; Manceau, Alain; Krabbenhoft, David P.; Ryan, Joseph N.

    2016-01-01

    Riparian soils are an important environment in the transport of mercury in rivers and wetlands, but the biogeochemical factors controlling mercury dynamics under transient redox conditions in these soils are not well understood. Mercury release and transformations in the Oa and underlying A horizons of a contaminated riparian soil were characterized in microcosms and an intact soil core under saturation conditions. Pore water dynamics of total mercury (HgT), methylmercury (MeHg), and dissolved gaseous mercury (Hg0(aq)) along with selected anions, major elements, and trace metals were characterized across redox transitions during 36 d of flooding in microcosms. Next, HgT dynamics were characterized over successive flooding (17 d), drying (28 d), and flooding (36 d) periods in the intact core. The observed mercury dynamics exhibit depth and temporal variability. At the onset of flooding in microcosms (1–3 d), mercury in the Oa horizon soil, present as a combination of ionic mercury (Hg(II)) bound to thiol groups in the soil organic matter (SOM) and nanoparticulate metacinnabar (b-HgS), was mobilized with organic matter of high molecular weight. Subsequently, under anoxic conditions, pore water HgT declined coincident with sulfate (3–11 d) and the proportion of nanoparticulate b-HgS in the Oa horizon soil increased slightly. Redox oscillations in the intact Oa horizon soil exhausted the mobile mercury pool associated with organic matter. In contrast, mercury in the A horizon soil, present predominantly as nanoparticulate b-HgS, was mobilized primarily as Hg0(aq) under strongly reducing conditions (5–18 d). The concentration of Hg0(aq) under dark reducing conditions correlated positively with byproducts of dissimilatory metal reduction (P(Fe,Mn)). Mercury dynamics in intact A horizon soil were consistent over two periods of flooding, indicating that nanoparticulate b-HgS was an accessible pool of mobile mercury over recurrent reducing conditions. The

  18. Nondestructive laboratory measurement of geotechnical and geoacoustic properties through intact core-liner

    USGS Publications Warehouse

    Kayen, R.E.; Edwards, B.D.; Lee, H.J.

    1999-01-01

    High-resolution automated measurement of the geotechnical and geoacoustic properties of soil at the U.S. Geological Survey (USGS) is performed with a state-of-the-art multi-sensor whole-core logging device. The device takes measurements, directly through intact sample-tube wall, of p-wave acoustic velocity, of soil wet bulk density, and magnetic susceptibility. This paper summarizes our methodology for determining soil-sound speed and wet-bulk density for material encased in an unsplit liner. Our methodology for nondestructive measurement allows for rapid, accurate, and high-resolution (1 cm-spaced) mapping of the mass physical properties of soil prior to sample extrusion.

  19. Influence of Controlled Drainage and Liquid Dairy Manure Application on Phosphorus Leaching from Intact Soil Cores.

    PubMed

    Young, Eric O; Geibel, Justin R; Ross, Donald S

    2017-01-01

    Controlled drainage can reduce nitrate export from tile drainage flow, but its impact on phosphorus (P) loss is largely unknown. We compared P leaching from soil cores treated as free drainage (FD) or controlled drainage (CD) before and after manure application. In August 2012, 16 intact cores (45 cm long, 15 cm diameter) were collected from a grass forage field () located in Chazy, NY, and modified for drainage control and sampling. In Experiment 1 (no manure), initial leachate was defined as FD, and leachate collected 21 d later (valves closed) was considered CD. In Experiment 2, seven cores were randomly assigned to CD or FD. Liquid dairy manure was applied at 1.2 × 10 L ha, followed by simulated rainfall 2 h later. Leachate was sampled on Day 7, 14, and 21. Deionized water was applied at 3.4 cm h over 1 h to mimic a 10-yr rainfall event. Total P (TP), soluble reactive P (SRP), dissolved oxygen, iron (Fe), and pH were measured. Results showed that TP ( = 0.03) and SRP ( = 0.35) were lower for CD prior to manure application. Manure application caused 36- and 42-fold increases in TP and SRP; however, TP was lower for CD at 7 ( = 0.06), 14 ( = 0.003), and 21 d ( = 0.002) of water retention. Mean SRP for CD was nearly 40-fold lower than FD by Day 7 ( = 0.02) and remained low, suggesting CD in the field may reduce P export risk to tile drain flow after manure applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Quantitative survival of Leptospira interrogans in soil and water microcosms.

    PubMed

    Casanovas-Massana, Arnau; Pedra, Gabriel Ghizzi; Wunder, Elsio A; Diggle, Peter J; Begon, Mike; Ko, Albert I

    2018-04-27

    Leptospira interrogans is the etiological agent of leptospirosis, a globally distributed zoonotic disease. Human infection usually occurs through skin exposure with water and soil contaminated with the urine of chronically infected animals. In this study, we aimed to quantitatively characterize the survival of Leptospira interrogans serovar Copenhageni in environmental matrices. We constructed laboratory microcosms to simulate natural conditions and determined the persistence of DNA markers in soil, mud, spring water and sewage using a qPCR and a PMA-qPCR assay. We found that L. interrogans does not survive at high concentrations in the tested matrices. No net growth was detected in any of the experimental conditions and in all cases the concentration of the DNA markers targeted decreased from the beginning of the experiment following an exponential decay with a decreasing decay rate over time. After 12 and 21 days of incubation the spiked concentration of 10 6 L. interrogans cells/mL or g decreased to approximately 100 cells/mL or g in soil and spring water microcosms, respectively. Furthermore, culturable L. interrogans persisted at concentrations under the limit of detection by PMA-qPCR or qPCR for at least 16 days in soil and 28 days in spring water. Altogether our findings suggest that the environment is not a multiplication reservoir, but a temporary carrier of the L. interrogans Copenhageni, although the observed prolonged persistence at low concentrations may still enable the transmission of the disease. IMPORTANCE Leptospirosis is a zoonotic disease caused by spirochetes of the genus Leptospira that primarily affects impoverished populations worldwide. Although leptospirosis is transmitted by contact with water and soil, little is known about the ability of the pathogen to survive in the environment. In this study, we quantitatively characterized the survival of L. interrogans in environmental microcosms and found that although it cannot multiply in water

  1. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale

    NASA Astrophysics Data System (ADS)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks

  2. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.

    PubMed

    Winder, Richard S; Lamarche, Josyanne; Constabel, C Peter; Hamelin, Richard C

    2013-01-01

    The impacts of leaf litter from genetically modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins) were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE (denaturing gradient gel electrophoresis) detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β-Proteobacteria were proportionally more numerous at high-tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low-tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051). Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA (principal coordinate analyses) partitioned the fungal communities into three groups: (i) those with higher amounts of added tannin from both transformed and untransformed treatments, (ii) those corresponding to soils without litter, and (iii) those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in

  3. Radiation-induced impacts on the degradation of 2,4-D and the microbial population in soil microcosms.

    PubMed

    Niedrée, Bastian; Vereecken, Harry; Burauel, Peter

    2013-01-01

    In a soil microcosm experiment, the influence of low-level (137)Cs and (90)Sr contamination on the degradation of (14)C-ring-labeled 2,4-dichlorophenoxyacetic acid (2,4-D) was studied. Two differently treated soils (one native soil and one soil sterilized and reinoculated with a biotic soil aliquot) were artificially contaminated with various concentrations of (137)Cs and (90)Sr as nitrate salts. The cumulative doses increased up to 4 Gy for 30 days of incubation in soil microcosms. Changes in microbial community structure were observed with help of the denaturing gradient gel electrophoresis (DGGE). A radiation-induced impact appeared only in the microcosms treated with 30 times the maximum contamination appearing in the exclusion zone around reactor 4 in Chernobyl. In contrast to the less contaminated soils, the mineralization of 2,4-D was delayed for 4 days before it recovered. Slight shifts in the microbial communities could be traced to radiation effects. However, other parameters had a major impact on mineralization and community structure. Thus the sterilization and reinoculation and, of course, application of the 2,4-D were predominantly reflected in the (14)CO(2) emissions and the DGGE gel patterns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Leaching of Cryptosporidium parvum Oocysts, Escherichia coli, and a Salmonella enterica Serovar Typhimurium Bacteriophage through Intact Soil Cores following Surface Application and Injection of Slurry▿

    PubMed Central

    Forslund, Anita; Markussen, Bo; Toenner-Klank, Lise; Bech, Tina B.; Jacobsen, Ole Stig; Dalsgaard, Anders

    2011-01-01

    Increasing amounts of livestock manure are being applied to agricultural soil, but it is unknown to what extent this may be associated with contamination of aquatic recipients and groundwater if microorganisms are transported through the soil under natural weather conditions. The objective of this study was therefore to evaluate how injection and surface application of pig slurry on intact sandy clay loam soil cores influenced the leaching of Salmonella enterica serovar Typhimurium bacteriophage 28B, Escherichia coli, and Cryptosporidium parvum oocysts. All three microbial tracers were detected in the leachate on day 1, and the highest relative concentration was detected on the fourth day (0.1 pore volume). Although the concentration of the phage 28B declined over time, the phage was still found in leachate at day 148. C. parvum oocysts and chloride had an additional rise in the relative concentration at a 0.5 pore volume, corresponding to the exchange of the total pore volume. The leaching of E. coli was delayed compared with that of the added microbial tracers, indicating a stronger attachment to slurry particles, but E. coli could be detected up to 3 months. Significantly enhanced leaching of phage 28B and oocysts by the injection method was seen, whereas leaching of the indigenous E. coli was not affected by the application method. Preferential flow was the primary transport vehicle, and the diameter of the fractures in the intact soil cores facilitated transport of all sizes of microbial tracers under natural weather conditions. PMID:21948848

  5. Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat.

    PubMed

    Perazzolli, Michele; Herrero, Noemí; Sterck, Lieven; Lenzi, Luisa; Pellegrini, Alberto; Puopolo, Gerardo; Van de Peer, Yves; Pertot, Ilaria

    2016-10-27

    Soil microorganisms are key determinants of soil fertility and plant health. Soil phytopathogenic fungi are one of the most important causes of crop losses worldwide. Microbial biocontrol agents have been extensively studied as alternatives for controlling phytopathogenic soil microorganisms, but molecular interactions between them have mainly been characterised in dual cultures, without taking into account the soil microbial community. We used an RNA sequencing approach to elucidate the molecular interplay of a soil microbial community in response to a plant pathogen and its biocontrol agent, in order to examine the molecular patterns activated by the microorganisms. A simplified soil microcosm containing 11 soil microorganisms was incubated with a plant root pathogen (Armillaria mellea) and its biocontrol agent (Trichoderma atroviride) for 24 h under controlled conditions. More than 46 million paired-end reads were obtained for each replicate and 28,309 differentially expressed genes were identified in total. Pathway analysis revealed complex adaptations of soil microorganisms to the harsh conditions of the soil matrix and to reciprocal microbial competition/cooperation relationships. Both the phytopathogen and its biocontrol agent were specifically recognised by the simplified soil microcosm: defence reaction mechanisms and neutral adaptation processes were activated in response to competitive (T. atroviride) or non-competitive (A. mellea) microorganisms, respectively. Moreover, activation of resistance mechanisms dominated in the simplified soil microcosm in the presence of both A. mellea and T. atroviride. Biocontrol processes of T. atroviride were already activated during incubation in the simplified soil microcosm, possibly to occupy niches in a competitive ecosystem, and they were not further enhanced by the introduction of A. mellea. This work represents an additional step towards understanding molecular interactions between plant pathogens and biocontrol

  6. Control of pore geometry in soil microcosms and its effect on the growth and spread of Pseudomonas and Bacillus sp.

    NASA Astrophysics Data System (ADS)

    Otten, Wilfred; Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Spiers, Andrew; Baveye, Philippe

    2017-04-01

    The way micro-organisms access C and interact with each other in heterogeneous environments is key to our understanding of soil processes. Growth and mobility of bacteria is crucial aspect of these processes in particular how this is affected by complicated pathways of water and air-filled pores. Simplified experimental systems, often referred to with the term microcosms, have played a central role in the development of modern ecological thinking ranging from competitive exclusion to examination of spatial resources and competitive mechanisms, with important model driven insights to the field. However, in the majority of cases these do not include detailed description of the soil physical conditions and hence there is still little insight in how soil structure affects these processes. Recent advances in the use of Xray CT now allow for a different approach to this as we can obtain quantitative insight in to the pathways of interaction and how these are controlled in microcosms. In the current presentation we therefor ask the following questions: - To what extent can we control the pore geometry in microcosm studies through manipulation of common variables such as density and aggregate size? Are replicated microcosms really replicated at the microscale? - What is the effect of pore geometry on the growth dynamics of bacteria following introduction into soil? - What is the effect of pore geometry on the rate and extent of spread of bacteria in soil? We focus on Pseudomonas sp. and Bacillus sp. Both species are abundantly present in the rhizosphere and bulk-soil, frequently studied for their growth promoting ability, yet there is still very little knowledge available on how the growth and spread is affected by soil physical conditions such as pore geometry and wetness. We show how pore geometry, connectivity and interface areas are affected by the way soil is packed into microcosms and how this affects growth and spread of both species. We emphasize that microscopic

  7. A soil microcosm to test the effects of pollutants on soil nematode and microarthropod communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmelee, R.W.; Wentsel, R.S.; Checkai, R.T.

    1995-12-31

    Previous studies have demonstrated that microcosms with field collected soil nematode and microarthropod communities are suitable model systems to detect effects of toxins on soil food web structure and function. The authors investigated the toxicity of copper, cadmium, malathion, and Aroclor 1254 to nematodes (total, bacterivores, fungivores, herbivores, omnivore-predators, hatchlings) and microarthropods (Prostigmata, Mesostigmata, Oribatida, Collembola, other arthropods). Nematodes were sensitive indicators of copper application, and total numbers were reduced at 100 {micro}g g{sup {minus}1}. Fungivore, bacterivore and omnivore-predators were the most susceptible trophic groups. Cadmium had no effects on either nematode or microarthropod communities. Microarthropods were more sensitive tomore » malathion than nematodes, and total microarthropod abundance was lower than controls at 320 {micro}g g{sup {minus}1}. Prostigmatid mites and other arthropods were the most affected groups. Only the herbivore nematode trophic group was affected by malathion, and numbers did not decline until 1,280 {micro}g g{sup {minus}1}. Aroclor 1254 also had a greater negative impact on microarthropods than on nematodes. Total microarthropod abundance declined at 2,500 {micro}g g{sup {minus}1}, while there was no effect on nematodes. Prostigmatid and oribatid mites were the most susceptible groups to PCB application. Strong differential sensitivity between nematode and microarthropod communities indicates that both groups need to be examined to fully evaluate the impact of chemicals on soil systems. The authors conclude that microcosms with field-collected communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.« less

  8. Separation of soil respiration: a site-specific comparison of partition methods

    NASA Astrophysics Data System (ADS)

    Comeau, Louis-Pierre; Lai, Derrick Y. F.; Jinglan Cui, Jane; Farmer, Jenny

    2018-06-01

    Without accurate data on soil heterotrophic respiration (Rh), assessments of soil carbon (C) sequestration rate and C balance are challenging to produce. Accordingly, it is essential to determine the contribution of the different sources of the total soil CO2 efflux (Rs) in different ecosystems, but to date, there are still many uncertainties and unknowns regarding the soil respiration partitioning procedures currently available. This study compared the suitability and relative accuracy of five different Rs partitioning methods in a subtropical forest: (1) regression between root biomass and CO2 efflux, (2) lab incubations with minimally disturbed soil microcosm cores, (3) root exclusion bags with hand-sorted roots, (4) root exclusion bags with intact soil blocks and (5) soil δ13C-CO2 natural abundance. The relationship between Rh and soil moisture and temperature was also investigated. A qualitative evaluation table of the partition methods with five performance parameters was produced. The Rs was measured weekly from 3 February to 19 April 2017 and found to average 6.1 ± 0.3 Mg C ha-1 yr-1. During this period, the Rh measured with the in situ mesh bags with intact soil blocks and hand-sorted roots was estimated to contribute 49 ± 7 and 79 ± 3 % of Rs, respectively. The Rh percentages estimated with the root biomass regression, microcosm incubation and δ13C-CO2 natural abundance were 54 ± 41, 8-17 and 61 ± 39 %, respectively. Overall, no systematically superior or inferior Rs partition method was found. The paper discusses the strengths and weaknesses of each technique with the conclusion that combining two or more methods optimizes Rh assessment reliability.

  9. Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmelee, R.W.; Wentsel, R.S.; Phillips, C.T.

    1993-08-01

    A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode andmore » microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.« less

  10. Determining the effects of pollutants on soil faunal communities and trophic structure using a refined microcosm system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmelee, R.W.; Phillips, C.T.; Checkai, R.T.

    1997-06-01

    The authors used a refined microcosm technique to investigate the toxicity of copper, cadmium, malathion, and the polychlorinated biphenyl, to trophic groups of soil nematodes and to the microarthropod community. Comparisons of changes in nematode abundance in control soils through time indicated that day 7 was the most appropriate time to sample the microcosms after chemical application. Nematode abundance was reduced after exposure to copper at 100 {micro}g/g, with fungivore, bacterivore, and omnivore-predator nematodes being the most sensitive groups. Cadmium did not affect the nematode or microarthropod communities. Microarthropods were far more sensitive to malathion than were nematodes, and totalmore » microarthropod abundance was lower than controls at 400 {micro}g/g. Prostigmatid mites and other arthropods were the most affected groups. PCB also had a greater negative impact on microarthropods than on nematodes. Total microarthropod abundance declined at 2,500 {micro}g/g, with prostigmatid and oribatid mites exhibiting the highest susceptibility. Strong differential sensitivity between nematode and microarthropod communities indicates that both groups should be examined to fully evaluate the biological impact of chemicals on soils. The authors conclude that microcosms with field-collected soil microfaunal communities offer high resolution of the ecotoxicologic effects of chemicals in complex soil systems.« less

  11. HYDROCARBON VAPOR DIFFUSION IN INTACT CORE SLEEVES

    EPA Science Inventory

    The diffusion of 2,2,4-trimethylpentane (TMP) and 2,2,5-trimethylhexane (TMH) vapors put of residually contaminated sandy soil from the U.S. Environmental Protection Agency (EPA) field research site at Traverse City, Michigan, was measured and modeled. The headspace of an intact ...

  12. Dissipation of 2,4-D in soils of the Humid Pampa region, Argentina: a microcosm study.

    PubMed

    Merini, Luciano J; Cuadrado, Virginia; Flocco, Cecilia G; Giulietti, Ana M

    2007-06-01

    Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.

  13. Biodegradation of organic chemicals in soil/water microcosms system: Model development

    USGS Publications Warehouse

    Liu, L.; Tindall, J.A.; Friedel, M.J.; Zhang, W.

    2007-01-01

    The chemical interactions of hydrophobic organic contaminants with soils and sediments may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. In order to illustrate the recalcitrance of chemical to degradation on sites, a sorption mechanism of intraparticle sequestration was postulated to operate on chemical remediation sites. Pseudo-first order sequestration kinetics is used in the study with the hypothesis that sequestration is an irreversibly surface-mediated process. A mathematical model based on mass balance equations was developed to describe the fate of chemical degradation in soil/water microcosm systems. In the model, diffusion was represented by Fick's second law, local sorption-desorption by a linear isotherm, irreversible sequestration by a pseudo-first order kinetics and biodegradation by Monod kinetics. Solutions were obtained to provide estimates of chemical concentrations. The mathematical model was applied to a benzene biodegradation batch test and simulated model responses correlated well compared to measurements of biodegradation of benzene in the batch soil/water microcosm system. A sensitivity analysis was performed to assess the effects of several parameters on model behavior. Overall chemical removal rate decreased and sequestration increased quickly with an increase in the sorption partition coefficient. When soil particle radius, a, was greater than 1 mm, an increase in radius produced a significant decrease in overall chemical removal rate as well as an increase in sequestration. However, when soil particle radius was less than 0.1 mm, an increase in radius resulted in small changes in the removal rate and sequestration. As pseudo-first order sequestration rate increased, both chemical removal rate and sequestration increased slightly. Model simulation results showed that desorption resistance played an important role in the bioavailability of organic chemicals in porous

  14. Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm.

    PubMed

    Sánchez-Peinado, M del Mar; González-López, Jesús; Martínez-Toledo, M Victoria; Pozo, Clementina; Rodelas, Belén

    2010-03-01

    lower in the microcosms receiving 50 mg l(-1) LAS and in the lower portion of soil cores. The clear differentiation of the samples of the upper portion of the soil columns amended with LAS was specifically related to the presence and intensity of a distinctive major band (named band class 7). There was a statistically significant positive correlation between the concentrations of LAS detected in soil portions taken from LAS 10 mg l(-1) and LAS 50 mg l(-1) microcosms and the relative intensity of band class 7 in the corresponding TGGE profiles. Prevalent Alphaproteobacteria populations in the soil microcosms had close similarity (>99%) to cultivated species affiliated to genera of the Rhizobiaceae, Methylocystaceae, Hyphomicrobiaceae, Rhodospirillaceae, Brucellaceae, Bradyrhizobiaceae, and Caulobacteraceae families. The population represented by band class 7 was found closely related to the genus Phenylobacterium (Caulobacteraceae). According to cluster analysis of TGGE profiles, the structure of both Actinobacteria and Acidobacteria communities in the soil microcosms was remarkably stable in the presence of LAS at the two concentrations tested, as most bands were universally present in all samples and displayed fairly similar relative intensities. Previous studies by others authors, based on biological and chemical tests, concluded that LAS toxicity was not an important microbial selection factor in sludge amended soil, while work based on the use of molecular fingerprinting to evaluate the impact of LAS in aqueous media and marine sediments showed that concentrations as low as 1 mg l(-1) significantly influence the development of the bacterial community structure. Although TGGE is not a strictly quantitative method due to the bias introduced by the PCR reaction, changes of band intensity through experiments are a consequence of a change in the relative abundance of the corresponding populations in the community and can be used as a semiquantitative measure of bacterial

  15. Inhibition of nitrate reduction by chromium (VI) in anaerobic soil microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kourtev, P. S.; Nakatsu, C. H.; Konopka, Allan

    2009-10-01

    Chromium (VI) is often found as a co-contaminant at sites polluted with organic compounds. We used microcosms amended with glucose or protein, nitrate and increasing concentrations of chromium to study nitrate reduction in Cr(VI) polluted soils. Organic carbon stimulated bacterial activity, but the addition of Cr(VI) caused a lag and then slower rates 5 of CO2 accumulation. Nitrate reduction only occurred after Cr(VI) had been reduced. Bacterial activity was again inhibited when Cr(VI) was added a second time; thus not all Cr-sensitive bacteria were removed in the first phase. Glucose and protein selected for relatively similar bacterial communities, as assayedmore » by PCR-DGGE of the 16S rRNA gene; this selection was modified by the addition of 10 Cr(VI). Cr-resistant bacteria isolated from microcosms were closely related to members of Bacillus, Enterococcus and Propionibacterium sp. Our results indicate that carbon utilization and nitrate reduction in these soils in the presence of Cr(VI) are contingent upon the reduction of the added heavy metal by a limited subset of the bacterial community. The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same 15 substrate. We hypothesize that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.« less

  16. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm

    USGS Publications Warehouse

    Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.

    1993-01-01

    The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.

  17. Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils.

    PubMed

    Ranjard, Lionel; Echairi, Abdelwahad; Nowak, Virginie; Lejon, David P H; Nouaïm, Rachida; Chaussod, Rémi

    2006-11-01

    The effects of Cu amendment on indigenous soil microorganisms were investigated in two soils, a calcareous silty clay (Ep) and a sandy soil (Au), by means of a 1-year field experiment and a two-month microcosm incubation. Cu was added as 'Bordeaux mixture' [CuSO(4), Ca(OH)(2)] at the standard rate used in viticulture (B1=16 kg Cu kg(-1) soil) and at a higher level of contamination (B3=48 kg Cu ha(-1) soil). More extractable Cu was observed in sandy soil (Au) than in silty soil (Ep). Furthermore, total Cu and Cu-EDTA declined with time in Au soil, whereas they remained stable in Ep soil. Quantitative modifications of the microflora were assessed by C-biomass measurements and qualitative modifications were assessed by the characterization of the genetic structure of bacterial and fungal communities from DNA directly extracted from the soil, using B- and F-ARISA (bacterial and fungal automated ribosomal intergenic spacer analysis). In the field study, no significant modifications were observed in C-biomass whereas microcosm incubation showed a decrease in B3 contamination only. ARISA fingerprinting showed slight but significant modifications of bacterial and fungal communities in field and microcosm incubation. These modifications were transient in all cases, suggesting a short-term effect of Cu stress. Microcosm experiments detected the microbial community modifications with greater precision in the short-term, while field experiments showed that the biological effects of Cu contamination may be overcome or hidden by pedo-climatic variations.

  18. Atrazine remediation in wetland microcosms.

    PubMed

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  19. Stimulation of anaerobic biodegradation of DDT and its metabolites in a muck soil: laboratory microcosm and mesocosm studies.

    PubMed

    Gohil, Hiral; Ogram, Andrew; Thomas, John

    2014-09-01

    The aim of this study was to evaluate the impact of selected electron donors and electron acceptors on the anaerobic biodegradation of DDT and its major metabolites in a muck soil with a long history of exposure to the pesticide. Loss of DDT was measured in anaerobic microcosms supplemented with H2, lactate, and acetate. The greatest loss of DDT (approximately 87 %) was observed in microcosms amended with lactate and no additional electron acceptor compared to the no additional electron donor or acceptor sets. An increase in measureable concentrations of DDx was observed in un-amended microcosms. In larger scale mesocosms, significant increases in dissolved organic carbon (DOC) corresponded with low redox potentials. Increases in DOC corresponded with sharp increases in measured concentrations of DDx, followed by a decrease in measured DDT concentrations in lactate-amended mesocosms. Our studies indicate that sorbed DDx is released upon anaerobic incubation, and that indigenous microorganisms capable of DDx degradation respond to lactate additions. Both the potential for release of sorbed DDx and the potential for biodegradation of DDx should be considered during remediation of DDx-contaminated organic soils at low redox potentials.

  20. Resuscitation by Ferrioxamine E of Stressed Salmonella enterica Serovar Typhimurium from Soil and Water Microcosms

    PubMed Central

    Reissbrodt, R.; Heier, H.; Tschäpe, H.; Kingsley, R. A.; Williams, P. H.

    2000-01-01

    Storage of Salmonella enterica serovar Typhimurium strains in soil and water microcosms resulted in loss of culturability on standard plating media. Prior incubation in buffered peptone water supplemented with ferrioxamine E markedly extended the time that bacteria were recoverable by plating, except in the case of mutants deficient in ferrioxamine E uptake. PMID:10966440

  1. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.

    PubMed

    Chekli, L; Brunetti, G; Marzouk, E R; Maoz-Shen, A; Smith, E; Naidu, R; Shon, H K; Lombi, E; Donner, E

    2016-09-01

    The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to n

  2. Environmental Fate of 14C Radiolabeled 2,4-Dinitroanisole in Soil Microcosms.

    PubMed

    Olivares, Christopher I; Madeira, Camila L; Sierra-Alvarez, Reyes; Kadoya, Warren; Abrell, Leif; Chorover, Jon; Field, Jim A

    2017-11-21

    2,4-Dinitrosanisole (DNAN) is an insensitive munitions component replacing conventional explosives. While DNAN is known to biotransform in soils to aromatic amines and azo-dimers, it is seldom mineralized by indigenous soil bacteria. Incorporation of DNAN biotransformation products into soil as humus-bound material could serve as a plausible remediation strategy. The present work studied biotransformation of DNAN in soil and sludge microcosms supplemented with uniformly ring-labeled 14 C-DNAN to quantify the distribution of label in soil, aqueous, and gaseous phases. Electron donor amendments, different redox conditions (anaerobic, aerobic, sequential anaerobic-aerobic), and the extracellular oxidoreductase enzyme horseradish peroxidase (HRP) were evaluated to maximize incorporation of DNAN biotransformation products into the nonextractable soil humus fraction, humin. Irreversible humin incorporation of 14 C-DNAN occurred at higher rates in anaerobic conditions, with a moderate increase when pyruvate was added. Additionally, a single dose of HRP resulted in an instantaneous increased incorporation of 14 C-DNAN into the humin fraction. 14 C-DNAN incorporation to the humin fraction was strongly correlated (R 2 = 0.93) by the soil organic carbon (OC) amount present (either intrinsic or amended). Globally, our results suggest that DNAN biotransformation products can be irreversibly bound to humin in soils as a remediation strategy, which can be enhanced by adding soil OC.

  3. Unusual isotopic composition of C-CO2 from sterilized soil microcosms: a new way to separate intracellular from extracellular respiratory metabolisms.

    NASA Astrophysics Data System (ADS)

    Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien

    2015-04-01

    The mineralization of organic C requires two main steps. First, microorganisms secrete exoenzymes in soil in order to depolymerize plant and microbial cell walls and release soluble substrates for microbial assimilation. The second step of mineralization, during which C is released as CO2, implies the absorption and utilization of solubilized substrates by microbial cells with the aim to produce energy (ATP). In cells, soluble substrates are carried out by a cascade of respiratory enzymes, along which protons and electrons are transferred from a substrate to oxygen. Given the complexity of this oxidative metabolism and the typical fragility of respiratory enzymes, it is traditionally considered that respiration (second step of C mineralization process) is strictly an intracellular metabolism process. The recurrent observations of substantial CO2 emissions in soil microcosms where microbial cells have been reduced to extremely low levels challenges this paradigm. In a recent study where some respiratory enzymes have shown to function in an extracellular context in soils, Maire et al. (2013) suggested that an extracellular oxidative metabolism (EXOMET) substantially contributes to CO2 emission from soils. This idea is supported by the recent publication of Blankinship et al., 2014 who showed the presence of active enzymes involved in the Krebs cycle on soil particles. Many controversies subsist in the scientific community due to the presence of non-proliferating but morphologically intact cells after irradiation that could substantially contribute to those soil CO2 emissions. To test whether a purely extracellular oxidative metabolism contribute to soil CO2 emissions, we combined high doses of gamma irradiations to different time of soil autoclaving. The presence of active and non-active cells in soil was checked by DNA and RNA extraction and by electronic microscopy. None active cells (RNA-containing cells) were detectable after irradiation, but some morphological

  4. Spatial distributions of core and intact glycerol dialkyl glycerol tetraethers (GDGTs) in the Columbia River basin, Washington: Insights into origin and implications for the BIT index

    NASA Astrophysics Data System (ADS)

    French, David W.; Huguet, Carme; Wakeham, Stuart; Turich, Courtney; Carlson, Laura T.; Ingalls, Anitra E.

    2015-04-01

    Branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) are used to reconstruct carbon flow from terrestrial landscapes to the ocean in a proxy called the branched vs isoprenoid tetraether index, or BIT Index. The index is based on analysis of core GDGTs from non-living material that originate from the cell membranes of bacteria living in soils and archaea living primarily in the marine environment. However, uncertainty in the identity and location of branched GDGTs (BrGDGTs) producing organisms and the likely production of isoprenoid GDGTs (IsoGDGTs) in terrestrial environments hinders interpretation of the BIT Index. Since BrGDGTs remain our only tool to study BrGDGT producing organisms, it is particularly important to use the intact form of BrGDGTs, present in living cells, to infer organism distributions. In situ production within riverine, lacustrine, and marine environments is currently thought to be possible, yet few measures of intact BrGDGTs (I-BrGDGTs) are available to confirm this. Here we assess the spatial distribution of both core and intact GDGTs throughout the Columbia River basin and nearby areas in Washington and Oregon in order to elucidate source environments for these lipids. The presence of I-BrGDGTs throughout the studied soils, rivers and estuaries suggests in situ production across the continuum from soil to marine environments. Likewise, intact crenarchaeol, the marine endmember isoprenoidal GDGT used in the BIT index, was present in all samples. Widespread production of each GDGT class along terrestrial carbon transport paths likely alters the BIT Index along this continuum. The core to intact GDGT ratios and the weak correlation between I-GDGT derived BIT values and carbon isotope signatures suggest a mixture of allocthonous and autochthonous sources of GDGTs in riverine and marine environments. Our findings highlight the need for further work into the provenance of GDGTs to improve the BIT index and other environmental

  5. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms.

    PubMed

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-06-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH(4)(+)-N per gram of soil) and high (200 μg NH(4)(+)-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil.

  6. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms

    PubMed Central

    Verhamme, Daniel T; Prosser, James I; Nicol, Graeme W

    2011-01-01

    The first step of nitrification, oxidation of ammonia to nitrite, is performed by both ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) in soil, but their relative contributions to ammonia oxidation and existence in distinct ecological niches remain to be determined. To determine whether available ammonia concentration has a differential effect on AOA and AOB growth, soil microcosms were incubated for 28 days with ammonium at three concentrations: native (control), intermediate (20 μg NH4+-N per gram of soil) and high (200 μg NH4+-N per gram of soil). Quantitative PCR demonstrated growth of AOA at all concentrations, whereas AOB growth was prominent only at the highest concentration. Similarly, denaturing gradient gel electrophoresis (DGGE) analysis revealed changes in AOA communities at all ammonium concentrations, whereas AOB communities changed significantly only at the highest ammonium concentration. These results provide evidence that ammonia concentration contributes to the definition of distinct ecological niches of AOA and AOB in soil. PMID:21228892

  7. Effects of Eichhornia crassipes and Ceratophyllum demersum on Soil and Water Environments and Nutrient Removal in Wetland Microcosms.

    PubMed

    Sung, Kijune; Lee, Geun-Joo; Munster, Clyde

    2015-01-01

    Wetland plants are important components that influence the biogeochemistry of wetland ecosystems. Therefore, remediation performance in wetlands can differ depending on the growth forms of plants. In this study, the effects of Eichhornia crassipes (floating plant) and Ceratophyllum demersum (submerged plant) on the wetland soil and water environments were investigated using a microcosm study with simulated hydrology of retention-type wetlands between rainfall events. The C. demersum microcosm (SP) showed the fastest recovery with a diel fluctuation pattern of dissolved oxygen, pH, and oxidation-reduction potential (ORP) from the impacts of nutrient inflow. Moreover, SP exhibited the lowest decrease in sediment ORP, the highest dehydrogenase activity, and more organic forms of nitrogen and phosphorus. E. crassipes microcosms exhibited the lowest water temperature, and efficiently controlled algae. In the presence of plants, the total nitrogen and phosphorus concentrations in water rapidly decreased, and the composition of organic and inorganic nutrient forms was altered along with a decrease in concentration. The results indicate that wetland plants help retain nutrients in the system, but the effects varied based on the wetland plant growth forms.

  8. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  9. Elemental and isotopic imaging to study biogeochemical functioning of intact soil micro-environments

    NASA Astrophysics Data System (ADS)

    Mueller, Carsten W.

    2017-04-01

    The complexity of soils extends from the ecosystem-scale to individual micro-aggregates, where nano-scale interactions between biota, organic matter (OM) and mineral particles are thought to control the long-term fate of soil carbon and nitrogen. It is known that such biogeochemical processes show disproportionally high reaction rates within nano- to micro-meter sized isolated zones ('hot spots') in comparison to surrounding areas. However, the majority of soil research is conducted on large bulk (> 1 g) samples, which are often significantly altered prior to analysis and analysed destructively. Thus it has previously been impossible to study elemental flows (e.g. C and N) between plants, microbes and soil in complex environments at the necessary spatial resolution within an intact soil system. By using nano-scale secondary ion mass spectrometry (NanoSIMS) in concert with other imaging techniques (e.g. scanning electron microscopy (SEM) and micro computed tomography (µCT)), classic analyses (isotopic and elemental analysis) and biochemical methods (e.g. GC-MS) it is possible to exhibit a more complete picture of soil processes at the micro-scale. I will present exemplarily results about the fate and distribution of organic C and N in complex micro-scale soil structures for a range of intact soil systems. Elemental imaging was used to study initial soil formation as an increase in the structural connectivity of micro-aggregates. Element distribution will be presented as a key to detect functional spatial patterns and biogeochemical hot spots in macro-aggregate functioning and development. In addition isotopic imaging will be demonstrated as a key to trace the fate of plant derived OM in the intact rhizosphere from the root to microbiota and mineral soil particles. Especially the use of stable isotope enrichment (e.g. 13CO2, 15NH4+) in conjunction with NanoSIMS allows to directly trace the fate of OM or nutrients in soils at the relevant scale (e.g. assimilate C

  10. Behavior of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in biosolids amended soil-plant microcosms of seven plant species: Accumulation and degradation.

    PubMed

    Wen, Bei; Pan, Ying; Shi, Xiaoli; Zhang, Hongna; Hu, Xiaoyu; Huang, Honglin; Lv, Jitao; Zhang, Shuzhen

    2018-06-13

    Perfluorooctane sulfonate (PFOS) precursors have been found extensively in sewage sludge and biosolids-amended soils. The degradation of these precursors are regarded as a significant source of PFOS in the environment. In this study, the accumulation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in the plants of seven species, namely alfalfa, lettuce, maize, mung bean, radish, ryegrass, and soybean from biosolids-amended soil, and the degradation kinetics of N-EtFOSAA in soil-plant microcosms were evaluated over 60 days. N-EtFOSAA was found in the roots of all plant species, while was not in stems and leaves. The root concentration factors of N-EtFOSAA ranged 0.52-1.37 (pmol/g root )/(pmol/g soil ). Stepwise multiple regression analysis was used to elucidate the accumulation of N-EtFOSAA in the roots of plants. The results showed that the root protein and lipid contents explain 85.0% of the variation in root N-EtFOSAA levels (P < 0.05). Four degradation products, including N-ethyl perfluorooctane sulfonamide (N-EtFOSA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS were found in soils and plant roots, stems and leaves, indicating the degradation of N-EtFOSAA in soil-plant system. Degradation kinetics fitted a first-order kinetic model well. Degradation rate constants of N-EtFOSAA in the microcosms with plants ranged 0.063-0.165 d -1 , which was 1.40-3.6 times higher than those without plants. Degradation rate constant of maize was relatively higher than those of other plant species. The results is the first to reveal N-EtFOSAA accumulation in plants and degradation in soil-plant microcosms. Copyright © 2018. Published by Elsevier B.V.

  11. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Technical Reports Server (NTRS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-01-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  12. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Astrophysics Data System (ADS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-11-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  13. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures.

    PubMed

    Arbeli, Ziv; Garcia-Bonilla, Erika; Pardo, Cindy; Hidalgo, Kelly; Velásquez, Trigal; Peña, Luis; C, Eliana Ramos; Avila-Arias, Helena; Molano-Gonzalez, Nicolás; Brandão, Pedro F B; Roldan, Fabio

    2016-05-01

    Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT.

  14. N2O, NO, N2 and CO2 emissions from tropical savanna and grassland of northern Australia: an incubation experiment with intact soil cores

    NASA Astrophysics Data System (ADS)

    Werner, C.; Reiser, K.; Dannenmann, M.; Hutley, L. B.; Jacobeit, J.; Butterbach-Bahl, K.

    2014-11-01

    Strong seasonal variability of hygric and thermal soil conditions are a defining environmental feature in northern Australia. However, how such changes affect the soil-atmosphere exchange of nitrous oxide (N2O), nitric oxide (NO) and dinitrogen (N2) is still not well explored. By incubating intact soil cores from four sites (three savanna, one pasture) under controlled soil temperatures (ST) and soil moisture (SM) we investigated the release of the trace gas fluxes of N2O, NO and carbon dioxide (CO2). Furthermore, the release of N2 due to denitrification was measured using the helium gas flow soil core technique. Under dry pre-incubation conditions NO and N2O emissions were very low (<7.0 ± 5.0 μg NO-N m-2 h-1; <0.0 ± 1.4 μg N2O-N m-2 h-1) or in the case of N2O, even a net soil uptake was observed. Substantial NO (max: 306.5 μg N m-2 h-1) and relatively small N2O pulse emissions (max: 5.8 ± 5.0 μg N m-2 h-1) were recorded following soil wetting, but these pulses were short lived, lasting only up to 3 days. The total atmospheric loss of nitrogen was generally dominated by N2 emissions (82.4-99.3% of total N lost), although NO emissions contributed almost 43.2% to the total atmospheric nitrogen loss at 50% SM and 30 °C ST incubation settings (the contribution of N2 at these soil conditions was only 53.2%). N2O emissions were systematically higher for 3 of 12 sample locations, which indicates substantial spatial variability at site level, but on average soils acted as weak N2O sources or even sinks. By using a conservative upscale approach we estimate total annual emissions from savanna soils to average 0.12 kg N ha-1 yr-1 (N2O), 0.68 kg N ha-1 yr-1 (NO) and 6.65 kg N ha-1 yr-1 (N2). The analysis of long-term SM and ST records makes it clear that extreme soil saturation that can lead to high N2O and N2 emissions only occurs a few days per year and thus has little impact on the annual total. The potential contribution of nitrogen released due to pulse events

  15. Ecotoxicological assessment of biosolids by microcosms.

    PubMed

    Groth, Vitor Avelar; Carvalho-Pereira, Ticiana; da Silva, Eduardo Mendes; Niemeyer, Júlia Carina

    2016-10-01

    Biosolids have been applied as soil amendments to improve and maintain the soil fertility and faster plant growth. In spite of its beneficial use, the potential risks of land disposal should be analyzed, considering potential ecological receptors in soil and water. This work describes the use of an early warning laboratory microcosm system to evaluate the integrated ecotoxicological potential of two biosolids: BIO-1 and BIO-2 (18 and 28 months after landfarming, respectively), from an effluent treatment station in a petrochemical and industrial district. The endpoints related to habitat function were: a) germination, growth and biomass of Phaseolus vulgaris; b) survival, biomass and number of cocoons of Eisenia andrei (Oligochaeta) and; c) reproduction of Folsomia candida (Collembola). The retention function was evaluated by testing the leachates using the tropical cladoceran Latonopsis australis (Cladocera) in a 48-h acute toxicity test, and growth of the aquatic plant Lemna minor in a 7-d chronic test. Tropical artificial soil (TAS) and a natural soil (NS) from the region were used as control soils. Results showed no chronic toxicity of BIO-1 and BIO-2 to the soil organisms tested, but acute toxicity of BIO-1 in the leachate for 50% of L. australis, and chronic toxicity of both biosolid leachates to L. minor (inhibition of growth rate), indicating potential risks to aquatic ecosystems. The results confirmed the ability of this microcosm system as a rapid tool to assess biosolid toxicity over time and its potential for hazardous waste characterization in environmental risk assessment, in a screening phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Recent advances in the use of estuarine meiobenthos to assess contaminated sediment effects in multi-species whole sediment microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, G.T.; Coull, B.C.; Schizas, N.V.

    1995-12-31

    Many marine meiobenthic taxa (i.e. invertebrates passing a 1-mm sieve but retaining on a 0.063 mm sieve) are ideal for ``whole-sediment`` and porewater bioassay of sedimented pollutants. Annual production of meiobenthos is 5--10 times that of the more commonly studied macrobenthos, and > 95% of all meiobenthos live in the oxic zone of muddy sediments at densities of 4--12 million per M{sup 2}. Most spend their entire lifecycles, burrowing freely and feeding on/within the sediment:porewater matrix, many taxa undergo 10--14 generations per year, most larval/juvenile stages are benthic, and many have easily quantifiable reproductive output. Furthermore, many meiobenthic taxa canmore » be cultured indefinitely over multiple life-cycles within simple sediment microcosms consisting of sealed whole-sediment cores collected intact from intertidal mudflats. The authors describe several recent technical developments exploiting meiofaunal sediment culture for rapid contaminated sediment bioassays of toxicant effects on survival, reproduction and population growth of meiobenthic taxa in whole-sediment microcosms. Currently meiobenthic copepods, nematodes, foraminifers and polychaetes are being continuously cultured to study these parameters under exposure to model sediment-associated toxicants (e.g. cadmium). Bioassays are run for 21-d under flowing seawater. With this approach, fertile benthic copepods (e.g. Amphiascus tenuiremis) can be added to core microcosms to assess survival and growth of a fixed population cohort. All other meiobenthic taxa are enumerated relative to controls and evaluated for toxicant effects on higher order community-level endpoints. This approach exploits meiobenthos` high abundance and rapid reproductive rates to yield on a micro scale better endpoints than much larger sediment mesocosms targeted at macrofaunal endpoints.« less

  17. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.

    PubMed

    Zhang, Rong; Xu, Xingjian; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    A multifunctional Pseudomonas putida X3 strain was successfully engineered by introducing methyl parathion (MP)-degrading gene and enhanced green fluorescent protein (EGFP) gene in P. putida X4 (CCTCC: 209319). In liquid cultures, the engineered X3 strain utilized MP as sole carbon source for growth and degraded 100 mg L(-1) of MP within 24 h; however, this strain did not further metabolize p-nitrophenol (PNP), an intermediate metabolite of MP. No discrepancy in minimum inhibitory concentrations (MICs) to cadmium (Cd), copper (Cu), zinc (Zn), and cobalt (Co) was observed between the engineered X3 strain and its host strain. The inoculated X3 strain accelerated MP degradation in different polluted soil microcosms with 100 mg MP kg(-1) dry soil and/or 5 mg Cd kg(-1) dry soil; MP was completely eliminated within 40 h. However, the presence of Cd in the early stage of remediation slightly delayed MP degradation. The application of X3 strain in Cd-contaminated soil strongly affected the distribution of Cd fractions and immobilized Cd by reducing bioavailable Cd concentrations with lower soluble/exchangeable Cd and organic-bound Cd. The inoculated X3 strain also colonized and proliferated in various contaminated microcosms. Our results suggested that the engineered X3 strain is a potential bioremediation agent showing competitive advantage in complex contaminated environments.

  18. Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus.

    PubMed

    Koivula, Teija T; Salkinoja-Salonen, Mirja; Peltola, Rainer; Romantschuk, Martin

    2004-01-01

    The mineralization potential of forest humus and the self-cleaning potential of a boreal coniferous forest environment for polycyclic aromatic hydrocarbon (PAH) compounds was studied using a model ecosystem of acid forest humus (pH = 3.6) and pyrene as the model compound. The matrix was natural humus or humus mixed with oil-polluted soil in the presence and absence of Scots pine (Pinus sylvestris L.) and its mycorrhizal fungus (Paxillus involutus). The rates of pyrene mineralization in the microcosms with humus implants (without pine) were initially insignificant but increased from Day 64 onward to 47 microg kg(-1) d(-1) and further to 144 microg kg(-1) d(-1) after Day 105. In the pine-planted humus microcosms the rate of mineralization also increased, reaching 28 microg kg(-1) d(-1) after Day 105. The 14CO2 emission was already considerable in nonplanted microcosms containing oily soil at Day 21 and the pyrene mineralization continued throughout the study. The pyrene was converted to CO2 at rates of 0.07 and 0.6 microg kg(-1) d(-1) in the oily-soil implanted microcosms with and without pine, respectively. When the probable assimilation of 14CO2 by the pine and ground vegetation was taken into account the most efficient microcosm mineralized 20% of the 91.2 mg kg(-1) pyrene in 180 d. The presence of pine and its mycorrhizal fungus had no statistically significant effect on mineralization yields. The rates of pyrene mineralization observed in this study for forest humus exceeded the total annual deposition rate of PAHs in southern Finland. This indicates that accumulation in forest soil is not to be expected.

  19. Detection of Oxytetracycline Production by Streptomyces rimosus in Soil Microcosms by Combining Whole-Cell Biosensors and Flow Cytometry

    PubMed Central

    Hansen, Lars Hestbjerg; Ferrari, Belinda; Sørensen, Anders Hay; Veal, Duncan; Sørensen, Søren Johannes

    2001-01-01

    Combining the high specificity of bacterial biosensors and the resolution power of fluorescence-activated cell sorting (FACS) provided qualitative detection of oxytetracycline production by Streptomyces rimosus in soil microcosms. A plasmid containing a transcriptional fusion between the tetR-regulated Ptet promoter from Tn10 and a FACS-optimized gfp gene was constructed. When harbored by Escherichia coli, this plasmid produces large amounts of green fluorescent protein (GFP) in the presence of tetracycline. This tetracycline biosensor was used to detect the production of oxytetracycline by S. rimosus introduced into sterile soil. The tetracycline-induced GFP-producing biosensors were detected by FACS analysis, enabling the detection of oxytetracycline encounters by single biosensor cells. This approach can be used to study interactions between antibiotic producers and their target organisms in soil. PMID:11133451

  20. Production and processing of a 59-kilodalton exochitinase during growth of Streptomyces lividans carrying pCHIO12 in soil microcosms amended with crab or fungal chitin.

    PubMed Central

    Vionis, A P; Niemeyer, F; Karagouni, A D; Schrempf, H

    1996-01-01

    Streptomyces lividans (pCHIO12), which carries the previously cloned Streptomyces olivaceoviridis exo-chiO1 gene on a multicopy vector, secretes a 59-kDa exochitinase, consisting of a catalytic domain (40 kDa), a central fibronectin type III-like module, and a chitin-binding domain (12 kDa). The propagation rate of S. lividans (pCHIO12) was higher in soil microcosms amended with fungal mycelia than in those containing crab chitin. Comparative biochemical and immunological studies allowed the following conclusions to be drawn. Within soil microcosm systems amended with crab shell chitin or chitin-containing Aspergillus proliferans mycelia, the strain expressed the clones exo-chiO1 gene and produced high quantities of a 59-kDa exochitinase. The enzyme was preferentially attached via its binding domain to the pellet from soil or liquid cultures. In contrast, truncated forms of 47, 40, and 25 kDa could be easily extracted from soil. The relative proportions of the 59-kDa enzyme and its truncated forms varied depending on the source of chitin and differed in soil and in liquid cultures. PMID:8633877

  1. The influence of nickel on the bioremediation of multi-component contaminated tropical soil: microcosm and batch bioreactor studies.

    PubMed

    Taketani, Natália Franco; Taketani, Rodrigo Gouvêa; Leite, Selma Gomes Ferreira; Rizzo, Andrea Camardella de Lima; Tsai, Siu Mui; da Cunha, Cláudia Duarte

    2015-07-01

    Large petrochemical discharges are responsible for organic and inorganic pollutants in the environment. The purpose of this study was to evaluate the influence of nickel, one of the most abundant inorganic element in crude oil and the main component of hydrogen catalysts for oil refining, on the microbial community structure in artificially petroleum-contaminated microcosms and in solid phase bioreactor studies. In the presence of metals, the oil biodegradation in microcosms was significantly delayed during the first 7 days of operation. Also, increasing amounts of moisture generated a positive influence on the biodegradation processes. The oil concentration, exhibiting the most negative influence at the end of the treatment period. Molecular fingerprinting analyses (denaturing gradient gel electrophoresis--DGGE) indicated that the inclusion of nickel into the contaminated soil promoted direct changes to the microbial community structure. By the end of the experiments, the results of the total petroleum hydrocarbons removal in the bioreactor and the microcosm were similar, but reductions in the treatment times were observed with the bioreactor experiments. An analysis of the microbial community structure by DGGE using various markers showed distinct behaviors between two treatments containing high nickel concentrations. The main conclusion of this study was that Nickel promotes a significant delay in oil biodegradation, despite having only a minor effect over the microbial community.

  2. Fate of metal resistance genes in arable soil after manure application in a microcosm study.

    PubMed

    Xiong, Wenguang; Zeng, Zhenling; Zhang, Yiming; Ding, Xueyao; Sun, Yongxue

    2015-03-01

    Manure application contributes to the spread and persistence of metal resistance genes (MRGs) in the environment. We investigated the fate of copper (Cu) and zinc (Zn) resistance genes (pcoA, pcoD and zntA) in arable soil after Cu/Zn-containing manure application. Manure with or without addition of metals (Cu/Zn) was added in a soil microcosm over 2 months. Soil samples were collected for analysis on day 0, 30 and 60. The abundances of all MRGs (pcoA, pcoD and zntA) in manure group were significantly higher than those in untreated soil and manure+metals groups. All MRGs dissipated 1.2-1.3 times faster in manure group (from -90 ± 8% to -93 ± 7%) than those in manure+metals group (from -68 ± 8% to -78 ± 5%). The results indicated that manure from healthy pigs contributed to the occurrence of metals (Cu/Zn) and MRGs (pcoA, pcoD and zntA) in arable soil. The significant effects of manure application on the accumulation of pcoA, pcoD and zntA lasted for 1-2 months. Cu/Zn can slow down the dissipation of pcoA, pcoD and zntA after manure application. This is the first report to investigate the fate of MRGs in soil after manure application. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Monitoring Arthrobacter protophormiae RKJ100 in a 'tag and chase' method during p-nitrophenol bio-remediation in soil microcosms.

    PubMed

    Pandey, Gunjan; Pandey, Janmejay; Jain, Rakesh K

    2006-05-01

    Monitoring of micro-organisms released deliberately into the environment is essential to assess their movement during the bio-remediation process. During the last few years, DNA-based genetic methods have emerged as the preferred method for such monitoring; however, their use is restricted in cases where organisms used for bio-remediation are not well characterized or where the public domain databases do not provide sufficient information regarding their sequence. For monitoring of such micro-organisms, alternate approaches have to be undertaken. In this study, we have specifically monitored a p-nitrophenol (PNP)-degrading organism, Arthrobacter protophormiae RKJ100, using molecular methods during PNP degradation in soil microcosm. Cells were tagged with a transposon-based foreign DNA sequence prior to their introduction into PNP-contaminated microcosms. Later, this artificially introduced DNA sequence was PCR-amplified to distinguish the bio-augmented organism from the indigenous microflora during PNP bio-remediation.

  4. Ammonia oxidation-dependent growth of group I.1b Thaumarchaeota in acidic red soil microcosms.

    PubMed

    Wu, Yucheng; Conrad, Ralf

    2014-07-01

    Accumulating evidence suggests that Thaumarchaeota may control nitrification in acidic soils. However, the composition of the thaumarchaeotal communities and their functioning is not well known. Therefore, we studied nitrification activity in relation to abundance and composition of Thaumarchaeota in an acidic red soil from China, using microcosms incubated with and without cellulose amendment. Cellulose was selected to simulate the input of crop residues used to increase soil fertility by local farming. Accumulation of NO3-(-N) was correlated with the growth of Thaumarchaeota as determined by qPCR of 16S rRNA and ammonia monooxygenase (amoA) genes. Both nitrification activity and thaumarchaeotal growth were inhibited by acetylene. They were also inhibited by cellulose amendment, possibly due to the depletion of ammonium by enhanced heterotrophic assimilation. These results indicated that growth of Thaumarchaeota was dependent on ammonia oxidation. The thaumarchaeotal 16S rRNA gene sequences in the red soil were dominated by a clade related to soil fosmid clone 29i4 within the group I.1b, which is widely distributed but so far uncultured. The archaeal amoA sequences were mainly related to the Nitrososphaera sister cluster. These observations suggest that fosmid clone 29i4 and Nitrososphaera sister cluster represent the same group of Thaumarchaeota and dominate ammonia oxidation in acidic red soil. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  6. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    NASA Astrophysics Data System (ADS)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  7. The University as Microcosm

    ERIC Educational Resources Information Center

    Kaldis, Byron

    2009-01-01

    This paper puts forward the model of "microcosm-macrocosm" isomorphism encapsulated in certain philosophical views on the form of university education. The human being as a "microcosm" should reflect internally the external "macrocosm". Higher Education is a socially instituted attempt to guide human beings into forming themselves as microcosms of…

  8. Microbial composition in microcosms amended with natural and mineral fertilizers under different water regimes

    NASA Astrophysics Data System (ADS)

    Brad, Traian; Chiriac, Cecilia; Szekeres, Edina; Coman, Cristian; Rudi, Knut; Sandor, Mignon

    2017-04-01

    Twenty microcosm enclosures containing two types of soil (i.e. a rich Chernozemic and a poorer soil) were fertilized with mineral (NPK-complex) and organic (Gülle, manure and a green fertilizer) materials and placed under dry and wet water regimes. After 10, 20 and 30 days of the experiment, soil samples were analyzed for the structure and composition of microbial communities using next generation sequencing techniques (Illumina) and statistical analysis. The differences between bacteria communities in different soil types, and in different fertilization and hydric treatments were analyzed using quantitative phylogenetic distances and the ANOSIM test. The two types of soil especially selected for the structure of microbial communities, while moisture and the type of fertilizer appeared to have a smaller influence on microbial diversity in microcosms. The alpha-diversity indices (species richness, evenness and phylogenetic diversity) had higher values for the poorer soil compared to the rich Chernozemic soil. For both soil types, the highest bacteria diversity values were obtained after fertilization with manure. The microbial communities in the analyzed soils were complex and dominated by sequences belonging to Actinobacteria, Proteobacteria, Acidobacteria and Firmicutes.

  9. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    DOE PAGES

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; ...

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm –3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equalmore » to0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.« less

  10. Stress dependence of permeability of intact and fractured shale cores.

    NASA Astrophysics Data System (ADS)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  11. Addition of Rubber to soil damages the functional diversity of soil.

    PubMed

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-07-01

    Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.

  12. Identification of degradation routes of metamitron in soil microcosms using 13C-isotope labeling.

    PubMed

    Wang, Shizong; Miltner, Anja; Nowak, Karolina M

    2017-01-01

    Metamitron is one of the most commonly used herbicide in sugar beet and flower bulb cultures. Numerous laboratory and field studies on sorption and degradation of metamitron were performed. Detailed biodegradation studies in soil using 13 C-isotope labeling are still missing. Therefore, we aimed at providing a detailed turnover mass balance of 13 C 6 -metamitron in soil microcosms over 80 days. In the biotic system, metamitron mineralized rapidly, and 13 CO 2 finally constituted 60% of the initial 13 C 6 -metamitron equivalents. In abiotic control experiments CO 2 rose to only 7.4% of the initial 13 C 6 -metamitron equivalents. The 13 C label from 13 C 6 -metamitron was incorporated into microbial amino acids that were ultimately stabilized in the soil organic matter forming presumably harmless biogenic residues. Finally, 13 C label from 13 C 6 -metamitron was distributed between the 13 CO 2 and the 13 C-biogenic residues indicating nearly complete biodegradation. The parallel increase of 13 C-alanine, 13 C-glutamate and 13 CO 2 indicates that metamitron was initially biodegraded via the desamino-metamitron route suggesting its relevance in the growth metabolism. In later phases of biodegradation, the "Rhodococcus route" was indicated by the low 13 CO 2 evolution and the high relevance of the pyruvate pathway, which aims at biomolecule synthesis and seems to be related to starvation. This is a first report on the detailed degradation route of metamitron in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.

    2016-09-01

    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  14. Short-term emissions of ammonia and carbon dioxide from cattle urine contaminated tropical grassland microcosm.

    PubMed

    Majumdar, Deepanjan; Patel, Manoj; Drabar, Reena; Vyas, Manish

    2006-11-01

    The study was designed to understand the emissions of ammonia (NH(3)) and carbon dioxide (CO(2)) from a single cattle urination event on a tropical grassland and underline the significance of the emissions in the context of huge animal population grazing on large pasture areas in some countries. Emissions of ammonia (NH(3)) and carbon dioxide (CO(2)) were monitored for three weeks from a tropical grassland (dominated by Cynodon dactylon Pers.) microcosm contaminated with cow and buffalo urine. The grassland microcosms were treated with urine (50 and 100 ml of each) only once and irrigated with water once every week. Ammonia was sampled by an automatic sampling system comprising of a vacuum pump, three-way stopcocks and rubber tubing and an impinger containing suitable absorbing solution (H(2)SO(4)), connected to the tubing suitably. The sampled gas, after sucked by the vacuum pump and absorbed in H(2)SO(4), was allowed to enter the closed microcosm again maintaining internal pressure of the microcosm. Carbon dioxide was sampled by absorption in an alkali (NaOH) trap inside the microcosm. Both NH(3) and CO(2) emissions were highly variable temporally and there was no continuous increasing or decreasing emission trend with time. Respectively, 45 and 46% of total NH(3)-N were emitted within first 48 h from 50 and 100 ml cow urine application while the corresponding values for buffalo urine were 34 and 32%. Total NH(3)-N emissions, integrated for sampling days (i.e. 1, 2, 3, 4, 6, 15, 18 and 21st) were 11 and 6% in cow and 8 and 5% in buffalo urine, of the total-N added through 50 and 100 ml urine samples. Carbon dioxide emissions were standardized at 25 degrees C by using a suitable formula which were lower than actual emissions at actual soil temperature (> 25 degrees C). Carbon dioxide emission rates were classified on the basis of soil repiratory classification and classes ranged from moderately low soil activity up to unusually high soil activity, the latter

  15. The roles of nematodes in nitrogen and phosphorous availability, plant uptake and growth in organically amended soils

    NASA Astrophysics Data System (ADS)

    Gebremikael, Mesfin; Buchan, David; De Neve, Stefaan

    2017-04-01

    Several studies have shown that soil biota contributes significantly to the crucial ecosystem functions and services such as organic matter decomposition and nutrient cycling. The contribution of each group of soil organisms may vary depending primarily on their feeding behavior. The magnitude of the ecosystem services by the biota may also depend on the interactions amongst the soil biota groups and their surrounding environment, for instance, biochemical characteristics of the externally added organic material. However, only a few studies considered these interactions concurrently. Here, we investigated the effects of fauna-microbe-plant interactions on organic matter decomposition and nutrient cycling by applying different organic materials spanning a range of C:N ratios and presumed N availability. Nematodes were selected as model fauna because they are the most abundant soil metazoans that have a diversified feeding strategy and interact very intimately with microbes, other fauna, and plants. A series of incubation experiments were conducted in bare and planted microcosms under controlled conditions using fresh soil collected from an agricultural field and defaunated by gamma irradiation. In the first experiment without plants, the defaunated soil cores were either left unamended (UNA) or received lignin-rich low N compost (COI), N-rich compost (COV), fresh manure (MAN) or chopped clover (CLO). The entire free-living soil nematode community was extracted from unirradiated fresh soil and reinoculated into half of the soil cores that had been defaunated by gamma irradiation. Two treatments: with (+Nem) and without (-Nem) nematodes were compared for soil nitrogen and phosphorus availability, plant uptake, and PLFA signatures over time during a 105-days incubation. The same experimental setup was used to investigate further the CLO amendment in the presence of plants (rye grass was used as a model plant). Nematodes were extracted and assigned to feeding groups

  16. Linking Stoichiometric Homeostasis of Microorganisms with Soil Phosphorus Dynamics in Wetlands Subjected to Microcosm Warming

    PubMed Central

    Wang, Hang; Li, HongYi; Zhang, ZhiJian; Muehlbauer, Jeffrey D.; He, Qiang; Xu, XinHua; Yue, ChunLei; Jiang, DaQian

    2014-01-01

    Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources

  17. Variations in soil detachment rates after wildfire as a function of soil depth, flow properties, and root properties

    USGS Publications Warehouse

    Moody, John A.; Nyman, Peter

    2013-01-01

    Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became

  18. Biogeochemical modeling of CO 2 and CH 4 production in anoxic Arctic soil microcosms

    DOE PAGES

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; ...

    2016-09-12

    Soil organic carbon turnover to CO 2 and CH 4 is sensitive to soil redox potential and pH conditions. But, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximatelymore » describe the observed pH evolution without additional parameterization. Though Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. Furthermore, the equilibrium speciation predicts a substantial increase in CO 2 solubility as pH increases, and taking into account CO 2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO 2 production from closed microcosms can be substantially underestimated based on headspace CO 2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.« less

  19. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm.

    PubMed

    Wang, Zhao; Yang, Yuyin; Sun, Weimin; Dai, Yu; Xie, Shuguang

    2015-02-01

    Nonylphenol (NP) can accumulate in river sediment. Bioaugmentation is an attractive option to dissipate heavy NP pollution in river sediment. In this study, two NP degraders were isolated from crude oil-polluted soil and river sediment. Microcosms were constructed to test their ability to degrade NP in river sediment. The shift in the proportion of NP-degrading genes and bacterial community structure in sediment microcosms were characterized using quantitative PCR assay and terminal restriction fragment length polymorphism analysis, respectively. Phylogenetic analysis indicated that the soil isolate belonged to genus Stenotrophomonas, while the sediment isolate was a Sphingobium species. Both of them could almost completely clean up a high level of NP in river sediment (150 mg/kg NP) in 10 or 14 days after inoculation. An increase in the proportion of alkB and sMO genes was observed in sediment microcosms inoculated with Stenotrophomonas strain Y1 and Sphingobium strain Y2, respectively. Moreover, bioaugmentation using Sphingobium strain Y2 could have a strong impact on sediment bacterial community structure, while inoculation of Stenotrophomonas strain Y1 illustrated a weak impact. This study can provide some new insights towards NP biodegradation and bioremediation.

  20. CO2 and CH4 Production and CH4 Oxidation in Low Temperature Soil Incubations from Flat- and High-Centered Polygons, Barrow, Alaska, 2012

    DOE Data Explorer

    David E. Graham; Jianqiu Zheng; Taniya RoyChowdhury

    2016-08-31

    The dataset consists of respiration and methane production rates and methane oxidation potential obtained from soil microcosm studies carried out under controlled temperature and incubation conditions. Soils cores collected in 2012 represent the flat- and high-centered polygon active layers and permafrost (when present) from the NGEE Arctic Intensive Study Site 1, Barrow, Alaska.

  1. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    PubMed Central

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  2. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    PubMed

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  3. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    NASA Astrophysics Data System (ADS)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola; Morari, Francesco

    2017-04-01

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial cores were scanned in a micro x-ray CT scanner at a resolution of 35 µm. The reconstructed image of each soil core was printed with 3D multijet printing technology at a resolution of 29 µm. In some reconstructed digital volumes of the natural soil cores, pores of different sizes (equivalent diameter of 35, 70, 100, and 200 µm) were removed before additional 3D printing. Effective air-filled porosity, Darcian air permeability, and oxygen diffusion were measured on all natural, artificial and printed cores. The comparison of the natural and the artificial cores emphasized the difference in pore architecture between topsoil (sponge like) and subsoil (dominated by large vertical macropores). This study showed the high potential of using printed soil cores for understanding soil pore functions. The results confirm the suitability of the Ball model partitioning the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport.

  4. Towards a methodology for removing and reconstructing soil protists with intact soil microbial communities

    NASA Astrophysics Data System (ADS)

    Hu, Junwei; Tsegaye Gebremikael, Mesfin; Salehi Hosseini, Pezhman; De Neve, Stefaan

    2017-04-01

    Soil ecological theories on the role of soil fauna groups in soil functions are often tested in highly artificial conditions, i.e. on completely sterilized soils or pure quartz sand re-inoculated with a small selection of these fauna groups. Due to the variable sensitivity of different soil biota groups to gamma irradiation, the precise doses that can be administered, and the relatively small disturbance of soil physical and chemical properties (relative to e.g. autoclaving, freezing-thawing and chemical agents), gamma irradiation has been employed to selectively eliminate soil organisms. In recent research we managed to realistically estimate on the contribution of the entire nematode communities to C and N mineralization in soil, by selective removal of nematodes at 5 kGy gamma irradiation doses followed by reinoculation. However, we did not assess the population dynamics of protozoa in response to this irradiation, i.e. we could not assess the potential contribution of protists to the mineralization process. Selective removal of protists from soils with minimal disturbance of the soil microflora has never been attempted and constitutes a highly challenging but potentially groundbreaking technique in soil ecology. Accordingly, the objective of this research is to modify the successful methodology of selective elimination of nematodes, to selectively eliminate soil fauna including nematodes and protists with minimal effects on the soil microbial community and reconstruct soil protists and microbial communities in completely sterilized soil. To this end, we here compared two different approaches: 1) remove nematodes and protists while keeping the microbial community intact (through optimizing gamma irradiation doses); 2) reconstruct protists and microbial communities in sterilized soil (through adding multicellular fauna free pulverized soil). The experiment consists of 7 treatments with soil collected from 0 to 15 cm layer of an organically managed agricultural

  5. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    PubMed

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both

  6. Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.

    PubMed

    Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn

    2012-07-01

    Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.

  7. Uncovering biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine biological soil crusts

    NASA Astrophysics Data System (ADS)

    Jung, Patrick; Briegel-Williams, Laura; Simon, Anika; Thyssen, Anne; Büdel, Burkhard

    2018-02-01

    Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and influence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, non-destructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose, based on confocal laser scanning microscopy (CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM-IA) to 3-D biomaps, C coming from photosynthetic active organisms could be visualized as depth profiles with C peaks at 0.5 to 2 mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the first cubic centimetre of soil consists of between 7 and 17 % total organic carbon, identified by loss on ignition.

  8. Freud, Problem Solving, Ethnicity, and Race: Integrating Psychology into the Interdisciplinary Core Curriculum.

    ERIC Educational Resources Information Center

    Dunn, Dana S.

    The new core curriculum at Moravian College, in Pennsylvania, utilizes an interdisciplinary approach, integrating topics of psychology into three of the seven core courses: "Microcosm/Macrocosm"; "Quantitative Problem Solving"; and the seminar "Gender, Ethnicity, and Race." The course "Microcosm/Macrocosm"…

  9. The biological control of Ancylostoma spp. dog infective larvae by Duddingtonia flagrans in a soil microcosm.

    PubMed

    Maciel, A S; Freitas, L G; Campos, A K; Lopes, E A; Araújo, J V

    2010-10-29

    Experiments to evaluate the potential ability of the nematode-trapping fungus Duddingtonia flagrans (Isolate CG768) to prey on the Ancylostoma spp. dog infective larvae (L(3)) in pasteurized soil were performed through several laboratory assays. A microcosm approach was used with increasing fungal concentrations in an inoculum of a chlamydospore water suspension. The highest fungal concentrations provide a more consistent larval reduction than the lowest concentrations, but no difference was observed from 10,000 to 25,000 chlamydospores per grain of soil. When using D. flagrans in a water suspension, in white rice and in milled maize, there were reductions in the larval population of 72.0%, 78.4% and 79.4%, respectively, but there was no difference between white rice and milled maize (p<0.05). To evaluate the nematode control by D. flagrans inoculated in milled maize at 10,000 chlamydospores per grain of soil under greenhouse conditions, observations were performed at 10, 15, 20, 25 and 30 days after inoculation and the percent reduction in the larval population was 61.4%, 73.2%, 70.8%, 64.5% and 57%, respectively (p<0.05). There was an inverse relationship between the number of L(3) recovered from the soil and the total days of exposure to the fungus (p<0.05). These results showed that D. flagrans could present some potential to be used as a non-chemotherapeutic alternative for regulation of Ancylostoma spp. populations in the environment. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Assessing the fate of radioactive nickel in cultivated soil cores.

    PubMed

    Denys, Sébastien; Echevarria, Guillaume; Florentin, Louis; Leclerc, Elisabeth; Morel, Jean-Louis

    2009-10-01

    Parameters regarding fate of (63)Ni in the soil-plant system (soil: solution distribution coefficient, K(d) and soil plant concentration ratio, CR) are mostly determined in controlled pot experiments or from simple models involving a limited set of soil parameters. However, as migration of pollutants in soil is strongly linked to the water migration, variation of soil structure in the field and seasonal variation of evapotranspiration will affect these two parameters. The aim of this work was to explore to what extent the downward transfer of (63)Ni and its uptake by plants from surface-contaminated undisturbed soil cores under cultivation can be explained by isotopic dilution of this radionuclide in the pool of stable Ni of soils. Undisturbed soil cores (50 cm x 50 cm) were sampled from a brown rendzina (Rendzic Leptosol), a colluvial brown soil (Fluvic Cambisol) and an acidic brown soil (Dystric Cambisol) using PVC lysimeter tubes (three lysimeters sampled per soil type). Each core was equipped with a leachate collector. Cores were placed in a greenhouse and maize (DEA, Pioneer) was sown. After 44 days, an irrigation was simulated at the core surfaces to supply 10 000 Bq (63)NiCl(2). Maize was harvested 135 days after (63)Ni input and radioactivity determined in both vegetal and water samples. Effective uptake of (63)Ni by maize was calculated for leaves and kernels. Water drainage and leaching of (63)Ni were monitored over the course of the experiment. Values of K(d) in surface soil samples were calculated from measured parameters of isotopic exchange kinetics. Results confirmed that (63)Ni was strongly retained at the soil surface. Prediction of the (63)Ni downward transfer could not be reliably assessed using the K(d) values, since the soil structure, which controls local water fluxes, also affected both water and Ni transport. In terms of (63)Ni plant uptake, the effective uptake in undisturbed soil cores is controlled by isotope dilution as previously shown

  11. A field method using microcosms to evaluate transfer of Cd, Cu, Ni, Pb and Zn from sewage sludge amended forest soils to Helix aspersa snails.

    PubMed

    Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M

    2003-01-01

    Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.

  12. Extending the Marine Microcosm Laboratory

    ERIC Educational Resources Information Center

    Ryswyk, Hal Van; Hall, Eric W.; Petesch, Steven J.; Wiedeman, Alice E.

    2007-01-01

    The traditional range of marine microcosm laboratory experiments is presented as an ideal environment to teach the entire analysis process. The microcosm lab provides student-centered approach with opportunities for collaborative learning and to develop critical communication skills.

  13. Apollo rocks, fines and soil cores

    NASA Astrophysics Data System (ADS)

    Allton, J.; Bevill, T.

    Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were

  14. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.

    PubMed

    Wang, Yunqiang; Shao, Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.

  15. A simple HPLC-DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment.

    PubMed

    Mahajan, Rishi; Chatterjee, Subhankar

    2018-05-05

    Indiscriminate use of two broad spectrum pesticides, profenofos and fenthion, in agricultural system, often results in their accumulation in a non-target niche and leaching into water bodies. The present study, therefore, aims at developing a simple and rapid HPLC method that allows simultaneous extraction and detection of these two pesticides, especially in run-off water. Extraction of the two pesticides from spiked water samples using dichloromethane resulted in recovery ranging between 80 and 90%. An HPLC run of 20 min under optimized chromatographic parameters (mobile phase: methanol (75%) and water (25%); flow rate of 0.8 ml min -1 ; diode array detector at wavelength 210 nm) resulted in a significant difference in retention times of two pesticides (4.593 min) which allows a window of opportunity to study any possible intermediates/transformants of the parent compounds while evaluating run-off waters from agricultural fields. The HPLC method developed allowed simultaneous detection of profenofos and fenthion with a single injection into the HPLC system with 0.0328 mg l -1 (32.83 ng ml -1 ) being the limit of detection (LOD) and 0.0995 mg l -1 (99.5 ng ml -1 ) as the limit of quantification (LOQ) for fenthion; for profenofos, LOD and LOQ were 0.104 mg l -1 (104.50 ng ml -1 ) and 0.316 mg l -1 (316.65 ng ml -1 ), respectively. The findings were further validated using the soil microcosm experiment that allowed simultaneous detection and quantification of profenofos and fenthion. The findings indicate towards the practical significance of the methodology developed as the soil microcosm experiment closely mimics the agricultural run-off water under natural environmental conditions.

  16. Anaerobic degradation of vinyl chloride in aquifer microcosms.

    PubMed

    Smits, Theo H M; Assal, Antoine; Hunkeler, Daniel; Holliger, Christof

    2011-01-01

    The anaerobic degradation potential at a chloroethene-contaminated site was investigated by operating two anoxic column aquifer microcosms enriched in iron(III). One column was fed with vinyl chloride (VC) only (column A) and one with VC and acetate (column B). In column A, after about 600 pore volume exchanges (PVEs), VC started to disappear and reached almost zero VC recovery in the effluent after 1000 PVEs. No formation of ethene was observed. In column B, effluent VC was almost always only a fraction of influent VC. Formation of ethene was observed after 800 PVEs and started to become an important degradation product after 1550 PVEs. However, ethene was never observed in stoichiometric amounts compared with disappeared VC. The average stable isotope enrichment factor for VC disappearance in column A was determined to be -4.3‰. In column B, the isotope enrichment factor shifted from -10.7 to -18.5‰ concurrent with an increase in ethene production. Batch microcosms inoculated with column material showed similar isotope enrichment factors as the column microcosms. These results indicated that two degradation processes occurred, one in column A and two in parallel in column B with increasing importance of reductive dechlorination with time. This study suggests that in addition to reductive dechlorination, other degradation processes such as anaerobic oxidation should be taken into account when evaluating natural attenuation of VC and that isotope analysis can help to differentiate between different pathways of VC removal. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis.

    PubMed

    Tourna, Maria; Maclean, Paul; Condron, Leo; O'Callaghan, Maureen; Wakelin, Steven A

    2014-06-01

    Sulphur-oxidising bacteria (SOB) play a key role in the biogeochemical cycling of sulphur in soil ecosystems. However, the ecology of SOB is poorly understood, and there is little knowledge about the taxa capable of sulphur oxidation, their distribution, habitat preferences and ecophysiology. Furthermore, as yet there are no conclusive links between SOB community size or structure and rates of sulphur oxidation. We have developed a molecular approach based on primer design targeting the soxB functional gene of nonfilamentous chemolithotrophic SOB that allows assessment of both abundance and diversity. Cloning and sequencing revealed considerable diversity of known soxB genotypes from agricultural soils and also evidence for previously undescribed taxa. In a microcosm experiment, abundance of soxB genes increased with sulphur oxidation rate in soils amended with elemental sulphur. Addition of elemental sulphur to soil had a significant effect in the soxB gene diversity, with the chemolithotrophic Thiobacillus-like Betaproteobacteria sequences dominating clone libraries 6 days after sulphur application. Using culture-independent methodology, the study provides evidence for links between abundance and diversity of SOB and sulphur oxidation. The methodology provides a new tool for investigation of the ecology and role of SOB in soil sulphur biogeochemistry. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil

    PubMed Central

    Locatelli, Aude; Spor, Aymé; Jolivet, Claudy; Piveteau, Pascal; Hartmann, Alain

    2013-01-01

    Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils. PMID:24116083

  19. Microbial biomass as a significant source of soil organic matter

    NASA Astrophysics Data System (ADS)

    Miltner, Anja; Kindler, Reimo; Schweigert, Michael; Achtenhagen, Jan; Bombach, Petra; Fester, Thomas; Kästner, Matthias

    2014-05-01

    Soil organic matter (SOM) plays an important role for soil fertility and in the global carbon cycle. SOM management should be based on knowledge about the chemical composition as well as the spatial distribution of SOM and its individual components in soils. Both parameters strongly depend on the direct precursors of SOM. In the past, microbial biomass has been neglected as a potential source of SOM, mainly because of its small pool size. Recent studies, however, show that a substantial portion of SOM is derived from microbial biomass residues. We therefore investigated the fate of microbial biomass residues in soils by means of incubation experiments with 13C-labelled microbial biomass. For our studies, we selected model organisms representing the three types of soil microorganisms and their characteristic cell wall structures: Escherichia coli (a Gram-negative bacterium), Bacillus subtilis (a Gram-positive bacterium) and Laccaria bicolor (an ectomycorrhizal fungus). We labelled the organisms by growing them on 13C glucose and incubated them in soil. During incubation, we followed the mineralisation of the labelled C, its incorporation into microbial biomass, and its transformation to non-living SOM. We found that 50-65% of the microbial biomass C remained in the soil during incubation. However, only a small part remained in the microbial biomass, the majority was transformed to SOM. In particular, proteins seemed to be rather stable in our experiments. In addition, we used scanning electron microscopy to identify microbial residues in soils and, for comparison, in artificial groundwater microcosms. Scanning electron micrographs showed a low number of intact cells, but mainly fragments of about 200-500 nm size. Similar fragments were found in artificial groundwater microcosms where the only possible origin was microbial biomass residues. Based on the results obtained, we provide a mechanistic model which explains how microbial biomass residues are formed and

  20. Transformation of Acinetobacter sp. Strain BD413(pFG4ΔnptII) with Transgenic Plant DNA in Soil Microcosms and Effects of Kanamycin on Selection of Transformants

    PubMed Central

    Nielsen, Kaare M.; van Elsas, Jan D.; Smalla, Kornelia

    2000-01-01

    Here we show that horizontal transfer of DNA, extracted from transgenic sugar beets, to bacteria, based on homologous recombination, can occur in soil. Restoration of a 317-bp-deleted nptII gene in Acinetobacter sp. strain BD413(pFG4) cells incubated in sterile soil microcosms was detected after addition of nutrients and transgenic plant DNA encoding a functional nptII gene conferring bacterial kanamycin resistance. Selective effects of the addition of kanamycin on the population dynamics of Acinetobacter sp. cells in soil were found, and high concentrations of kanamycin reduced the CFU of Acinetobacter sp. cells from 109 CFU/g of soil to below detection. In contrast to a chromosomal nptII-encoded kanamycin resistance, the pFG4-generated resistance was found to be unstable over a 31-day incubation period in vitro. PMID:10698801

  1. Soil Communities Promote Temporal Stability and Species Asynchrony in Experimental Grassland Communities

    PubMed Central

    Pellkofer, Sarah; van der Heijden, Marcel G. A.; Schmid, Bernhard; Wagg, Cameron

    2016-01-01

    Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities, yet little is known about whether soil communities also play a role in stabilizing the productivity of an ecosystem. Methodology/Principal Findings Here we use microcosms to assess the effects of the presence of soil communities on plant community dynamics and stability over a one-year time span. Microcosms were filled with sterilized soil and inoculated with either unaltered field soil or field soil sterilized to eliminate the naturally occurring soil biota. Eliminating the naturally occurring soil biota not only resulted in lower plant productivity, and reduced plant species diversity, and evenness, but also destabilized the net aboveground productivity of the plant communities over time, which was largely driven by changes in abundance of the dominant grass Lolium perenne. In contrast, the grass and legumes contributed more to net aboveground productivity of the plant communities in microcosms where soil biota had been inoculated. Additionally, the forbs exhibited compensatory dynamics with grasses and legumes, thus lowering temporal variation in productivity in microcosms that received the unaltered soil inocula. Overall, asynchrony among plant species was higher in microcosms where an unaltered soil community had been inoculated, which lead to higher temporal stability in community productivity. Conclusions/Significance Our results suggest that soil communities increase plant species asynchrony and stabilize plant community productivity by equalizing the performance among competing plant species through potential antagonistic and facilitative effects on individual plant species. PMID:26829481

  2. Investigating the soil removal characteristics of flexible tube coring method for lunar exploration

    NASA Astrophysics Data System (ADS)

    Tang, Junyue; Quan, Qiquan; Jiang, Shengyuan; Liang, Jieneng; Lu, Xiangyong; Yuan, Fengpei

    2018-02-01

    Compared with other technical solutions, sampling the planetary soil and returning it back to Earth may be the most direct method to seek the evidence of extraterrestrial life. To keep sample's stratification for further analyzing, a novel sampling method called flexible tube coring has been adopted for China future lunar explorations. Given the uncertain physical properties of lunar regolith, proper drilling parameters should be adjusted immediately in piercing process. Otherwise, only a small amount of core could be sampled and overload drilling faults could occur correspondingly. Due to the fact that the removed soil is inevitably connected with the cored soil, soil removal characteristics may have a great influence on both drilling loads and coring results. To comprehend the soil removal characteristics, a non-contact measurement was proposed and verified to acquire the coring and removal results accurately. Herein, further more experiments in one homogenous lunar regolith simulant were conducted, revealing that there exists a sudden core failure during the sampling process and the final coring results are determined by the penetration per revolution index. Due to the core failure, both drilling loads and soil's removal states are also affected thereby.

  3. Evolution of organic matter fractions after application of co-compost of sewage sludge with pruning waste to four Mediterranean agricultural soils. A soil microcosm experiment.

    PubMed

    Pérez-Lomas, A L; Delgado, G; Párraga, J; Delgado, R; Almendros, G; Aranda, V

    2010-10-01

    The effect of co-compost application from sewage sludge and pruning waste, on quality and quantity of soil organic carbon (SOC) in four Mediterranean agricultural soils (South Spain), was studied in soil microcosm conditions. Control soil samples (no co-compost addition) and soils treated with co-composts to a rate equivalent of 140 Mg ha(-1) were incubated for 90 days at two temperatures: 5 and 35 degrees C. The significances of incubation temperature and the addition of co-compost, on the evolution of the different fractions of SOC, were studied using a 2(3) factorial design. The co-compost amendment increased the amounts of humic fractions: humic acids (HA) (1.9 times), fulvic acids (FA) (3.3 times), humin (1.5 times), as well as the free organic matter (1.4 times) and free lipids (21.8 times). Incubation of the soils enhanced its biological activity mainly in the amended soils and at 35 degrees C, leading to progressive SOC mineralization and humification, concomitant to the preferential accumulation of HA. The incubation results show large differences depending on temperature and soil types. This fact allows us to select suitable organic amendment for the soil when a rapid increase in nutrients through mineralization is preferred, or in cases intending the stabilization and preservation of the SOC through a process of humification. In soils with HA of more than 5 E(4)/E(6) ratio, the incubation temperature increased rates of mineralization and humification, whereas lower temperatures limited the extent of both processes. In these soils the addition of co-compost in spring or summer is the most recommendable. In soils with HA of lower E(4)/E(6) ratio (<5), the higher temperature favoured mineralization but not humification, whereas the low temperature maintained the SOC levels and even increased the HA/FA ratio. In these soils the moment of addition of organic amendment should be decided depending on the effect intended. On the other hand, the lower the SOC

  4. Geotechnical soil characterization of intact Quaternary deposits forming the March 22, 2014 SR-530 (Oso) landslide, Snohomish County, Washington

    USGS Publications Warehouse

    Riemer, Michael F.; Collins, Brian D.; Badger, Thomas C.; Toth, Csilla; Yu, Yat Chun

    2015-01-01

    This report provides a description of the methods used to obtain and test the intact soil stratigraphy behind the headscarp of the March 22 landslide. Detailed geotechnical index testing results are presented for 24 soil samples representing the stratigraphy at 19 different depths along a 650 ft (198 m) soil profile. The results include (1) the soil's in situ water content and unit weight (where applicable); (2) specific gravity of soil solids; and (3) each sample's grain-size distribution, critical limits for fine-grain water content states (that is, the Atterberg limits), and official Unified Soil Classification System (USCS) designation. In addition, preliminary stratigraphy and geotechnical relations within and between soil units are presented.

  5. TRANSPORT AND TRANSFORMATION OF HEXAVALENT CHROMIUM THROUGH SOILS AND INTO GROUND WATER

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils of a chrome-plating shop was performed to provide information on the extent of soil and aquifer contamination at the site and on the potential for off-site migration and environmental impact. Intact, moist cores wer...

  6. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    NASA Astrophysics Data System (ADS)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  7. Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil.

    PubMed

    Chapman, E Emily V; Hedrei Helmer, Stephanie; Dave, Göran; Murimboh, John D

    2012-06-01

    The objective of this study was to assess selected bioassays and ecological screening tools for their suitability in a weight of evidence risk screening process of acidic metal contaminated soil. Intact soil cores were used for the tests, which minimizes changes in pH and metal bioavailability that may result from homogenization and drying of the soil. Soil cores were spiked with ZnCl(2) or CaCl(2). Leachate collected from the soil cores was used to account for the exposure pathways through pore water and groundwater. Tests assessed included MetSTICK in soil cores and Microtox in soil leachate, lettuce (Lactuca sativa), red fescue (Festuca rubra) and red clover (Trifolium pratense) in the soil cores and lettuce and red clover in soil leachate, Hyallella azteca in soil leachate, and an ecological soil function test using Bait Lamina in soil cores. Microtox, H. azteca, lettuce and red fescue showed higher sensitivity to low pH than to Zn concentrations and are therefore not recommended as tests on intact acidic soil cores and soil leachate. The Bait Lamina test appeared sensitive to pH levels below 3.7 but should be investigated further as a screening tool in less acidic soils. Among the bioassays, the MetSTICK and the T. pratense bioassays in soil cores were the most sensitive to Zn, with the lowest nominal NOEC of 200 and 400mg Zn/kg d.w., respectively. These bioassays were also tolerant of low pH, which make them suitable for assessing hazards of metal contaminated acid soils. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Lunar soil evolution processes and Apollo 16 core 60013/60014

    NASA Astrophysics Data System (ADS)

    Basu, A.; McKay, D. S.

    1995-03-01

    Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 um and the 500-1000 m fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating related to reworking at the surface-shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009/10, some 60 m away

  9. Lunar soil evolution processes and Apollo 16 core 60013/60014

    NASA Technical Reports Server (NTRS)

    Basu, A.; McKay, D. S.

    1995-01-01

    Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 micrometers and the 500-1000 micrometers fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating--related to reworking at the surface--shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009

  10. Lunar soil evolution processes and Apollo 16 core 60013/60014.

    PubMed

    Basu, A; McKay, D S

    1995-03-01

    Soils of the 62-cm deep Apollo 16 double drive tube 60013/14 are mature at the top and submature at the bottom. Modal analyses of 5529 grains from the 90-150 micrometers and the 500-1000 micrometers fractions from 12 levels of the core show that, in general, agglutinate abundance increases somewhat monotonically to the top and mimics the Is/FeO profile. There is a general decrease in the modal abundance of monomineralic fragments towards the top, suggesting that agglutinates were formed in part at the expense of monomineralic grains, especially feldspars, which are by far the most abundant mineral in these soils. In detail, the top 27 cm of the core differs from the bottom 21 cm, and the middle 14 cm is intermediate in its properties. In the upper segment, variations in the abundances of feldspars correspond with those of feldspathic fragmental breccias and cataclastic anorthosites; in the bottom segment, a similar but weak correspondence between feldspars and crystalline matrix breccias is observed. Mixing of the comminuted products of these three rock types likely produced the bulk of the core material. Many single feldspars in all size fractions are remarkably fresh, show no damage from shock, and are similar in appearance to the large feldspars in anorthosites and feldspathic fragmental breccias, which we consider to be the primary sources of single feldspars in this core. Major (Na, Al, Si, K, Ca) and minor (Fe, Ba) element analyses of 198 single feldspar grains indicate the presence of only one population of feldspars, which is consistent with our interpretation of feldspar provenance. Classification of 890 monomineralic feldspar, olivine, pyroxene, and glass spherules on the basis of the presence or absence of thin brownish coating--related to reworking at the surface--shows that coated grains are much more abundant in the top segment than in the bottom segment. A comparison with the mixing and maturation model (McKay et al., 1977) of soils in the core 60009

  11. Noble gas evidence for the depositional and irradiational history of 60010-60009 core soils

    NASA Technical Reports Server (NTRS)

    Bogard, D. D.; Hirsch, W. C.

    1977-01-01

    Isotopic abundances of the noble gases have been determined in grain size separates of eleven soils from different depths in the 60010-60009 double drive tube and in magnetic and plagioclase separates from a few of these soils. Data for the 60010 core are presented here. The entire core was deposited a maximum of approximately 125 m.y. ago as deduced from the Ar-38 cosmic ray exposure age of soil 60009,457. Soils in the topmost 12 cm of the core show loss of cosmogenic He-3 and Ne-21 and gain of trapped solar gases in proportion to the degree of surface reworking by micrometeorites as deduced from FMR data. A variety of compositional and irradiational evidence suggests that soils in the core were formed by mixing of three or more components during or immediately prior to core deposition less than about 125 m.y. ago. Based on cosmogenic noble gases and a variety of other data soils 60009,457 and 60010,3107 are similar (and possibly identical) to two of the end member soils which formed the mixture. More mature soils in the core, however, could not have matured in situ from these two soils because of significant differences in noble gas abundances and chemical composition.

  12. Modal petrology of six soils from Apollo 16 double drive tube core 64002

    NASA Technical Reports Server (NTRS)

    Houck, K. J.

    1982-01-01

    Petrographic data form six size fractions for six samples of Apollo 16 drive tube section 64002 show source rocks similar to those of core 60009. Analysis of modal data from the 64002 core show that the upper three and lowest core soils are mature and have similar maturation histories, while the two middle soils are submature and have histories that are similar to each other but unlike those from the aforementioned soils. In all of these soils, mixing has dominated over reworking, and appears to involve two mature soils distinguished by differing source rocks and an immature, plagioclase-rich soil which is correlated with larger clasts of chalky, friable breccia. These breccias and the plagioclase-rich soil are tentatively associated with the Descartes Formation.

  13. Contaminant gradients in trees: Directional tree coring reveals boundaries of soil and soil-gas contamination with potential applications in vapor intrusion assessment

    USGS Publications Warehouse

    Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  14. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    PubMed

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  15. Core vs. Bulk Samples in Soil-Moisture Tension Analyses

    Treesearch

    Walter M. Broadfoot

    1954-01-01

    The usual laboratory procedure in determining soil-moisture tension values is to use "undisturbed" soil cores for tensions up to 60 cm. of water and bulk soil samples for higher tensions. Low tensions are usually obtained with a tension table and the higher tensions by use of pressure plate apparatus. In tension analysis at the Vicksburg Infiltration Project...

  16. Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities.

    PubMed

    Adetutu, E M; Ball, A S; Osborn, A M

    2008-12-01

    To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin's persistence in soil. Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While (14)C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi.

  17. Interpretation of data obtained from non-destructive and destructive post-test analyses of an intact-core column of culebra dolomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, Daniel L.; Perkins, W. George

    The U.S. Department of Energy (DOE) has been developing a nuclear waste disposal facility, the Waste Isolation Pilot Plant (WIPP), located approximately 42 km east of Carlsbad, New Mexico. The WIPP is designed to demonstrate the safe disposal of transuranic wastes produced by the defense nuclear-weapons program. Pefiormance assessment analyses (U.S. DOE, 1996) indicate that human intrusion by inadvertent and intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides horn the disposal system. These releases may occur by five mechanisms: (1) cuttings, (2) cavings, (3) spallings, (4) direct brine releases, and (5) long- term brinemore » releases. The first four mechanisms could result in immediate release of contaminant to the accessible environment. For the last mechanisq migration pathways through the permeable layers of rock above the Salado are important, and major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer in the disposal system. For reasons of initial quantity, half-life, and specific radioactivity, certain isotopes of T~ U, Am, and Pu would dominate calculated releases from the WIPP. In order to help quantifi parameters for the calculated releases, radionuclide transport experiments have been carried out using five intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the Waste Isolation Pilot Pknt (WIPP) site in southeastern New Mexico. This report deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. All intact-core column transport experiments were done using Culebra-simukmt brine relevant to the core recovery location (the WIPP air-intake shaft - AK). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using

  18. A Reproducible Oral Microcosm Biofilm Model for Testing Dental Materials

    PubMed Central

    Rudney, J.D.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.S.; Reilly, C.; Fok, A.S.; Aparicio, C.

    2012-01-01

    Aims Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite disks were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms were analyzed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose-pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veilonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. PMID:22925110

  19. Nuclear Magnetic Resonance Relaxation and Imaging Studies on Water Flow in Soil Cores

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Stapf, Siegfried

    2010-05-01

    Magnetic resonance imaging (MRI) is applied to the study of flow processes in a model and a natural soils core. Since flow velocities in soils are mostly too slow to be monitored directly by MRI flow velocity imaging, Gd-DTPA was used as contrast agent for the first time for flow processes in soils. Apart from its chemical stability the main advantage is the anionic net charge in neutral aqueous solution. Here we can show that this property hinders the adsorption at soil mineral surfaces and therefore retardation. Gd-DTPA turns out to be a very convenient conservative tracer for the investigation of flow processes in model and natural soil cores. With respect to the flow processes in the coaxial model soil column and the natural soil column we found total different flow patterns: In the first case tracer plume moves quite homogeneously only in the inner highly conductive core. No penetration into the outer fine material takes place. In contrast, the natural soil core shows a flow pattern which is characterized by preferential paths avoiding dense regions and preferring loose structures. In the case of the simpler model column also the local flow velocities are calculated by the application of a peak tracking algorithm.

  20. Partitioning of CH4 and CO2 Production Originating from Rice Straw, Soil and Root Organic Carbon in Rice Microcosms

    PubMed Central

    Yuan, Quan; Pump, Judith; Conrad, Ralf

    2012-01-01

    Flooded rice fields are an important source of the greenhouse gas CH4. Possible carbon sources for CH4 and CO2 production in rice fields are soil organic matter (SOM), root organic carbon (ROC) and rice straw (RS), but partitioning of the flux between the different carbon sources is difficult. We conducted greenhouse experiments using soil microcosms planted with rice. The soil was amended with and without 13C-labeled RS, using two 13C-labeled RS treatments with equal RS (5 g kg−1 soil) but different δ13C of RS. This procedure allowed to determine the carbon flux from each of the three sources (SOM, ROC, RS) by determining the δ13C of CH4 and CO2 in the different incubations and from the δ13C of RS. Partitioning of carbon flux indicated that the contribution of ROC to CH4 production was 41% at tillering stage, increased with rice growth and was about 60% from the booting stage onwards. The contribution of ROC to CO2 was 43% at tillering stage, increased to around 70% at booting stage and stayed relatively constant afterwards. The contribution of RS was determined to be in a range of 12–24% for CH4 production and 11–31% for CO2 production; while the contribution of SOM was calculated to be 23–35% for CH4 production and 13–26% for CO2 production. The results indicate that ROC was the major source of CH4 though RS application greatly enhanced production and emission of CH4 in rice field soil. Our results also suggest that data of CH4 dissolved in rice field could be used as a proxy for the produced CH4 after tillering stage. PMID:23162678

  1. Probing metabolic processes of intact soil microbial communities using position-specific 13C-labeled glucose

    NASA Astrophysics Data System (ADS)

    Fairbanks, D. E.; Hungate, B. A.; KOCH, G. W.; Schwartz, E.; Dijkstra, P.

    2012-12-01

    Soils represent one of the largest carbon pools in the terrestrial biosphere and fluxes into or out of this pool may feedback to current climate change. Understanding the mechanisms behind microbial processes regulating C cycling, microbial turnover, and soil organic matter stabilization is hindered by our lack of understanding of the details of microbial physiology in soils. Position-specific 13C labeled metabolic tracers are proposed as a new way to probe microbial community energy production, biosynthesis, C use efficiency (the proportion of substrate incorporated into microbial biomass), and enables the determination of C fluxes through the various C metabolic pathways. We determined the 13CO2 production from microbial communities within a one hour time frame by adding six isotopomers (1-13C, 2-13C, 3-13C, 4-13C, 5-13C, 6-13C) of glucose in parallel incubations using a young volcanic soil (Pinyon-juniper wood, near Sunset Crater, Flagstaff, Arizona). We compared the measured rates of position-specific 13CO2 production with modeled results based on glucose (1-13C and U-13C) and pyruvate (1-13C and 2,3-13C) incubations. These labeling and modeling techniques may improve our ability to analyze the biochemistry and ecophysiology of intact soil microbial communities.

  2. Reduction of nitrate in aquifer microcosms by carbon additions

    USGS Publications Warehouse

    Obenhuber, Donald C.; Lowrance , Richard

    1991-01-01

    Aquifer microcosms were used to examine the effects of NO−3 and C amendments on groundwater from the Claiborne aquifer. Nitrate concentrations of 12.17 mg L−1 in aquifer microcosms were reduced 0.92%/d to 5.84 mg L−1 by the addition of 10 mg C L−1 for 35 d. Nitrate disappearance correlated with increases in number of denitrifiers and dissolved N2O concentration and decreases in dissolved oxygen, suggesting biological denitrification. Nitrate/chloride ratios decreased in microcosms with 10 mg C L−1 added and then increased when the C addition was removed. Carbon additions of 0.4 mg C L−1 had no effect on the microbial or chemical properties of the microcosms. Nitrous oxide levels in wells sampling the Claiborne aquifer showed an increase with depth, indicating N2O production within the aquifer. Microcosms are useful tools to examine biological transformations of chemical contaminants in unconsolidated aquifer material. The remediation of NO−3 contaminated aquifers by organic infusion is possible and appears to be a function of microbial denitrification.

  3. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

  4. Validation of SMAP surface soil moisture products with core validation sites

    USDA-ARS?s Scientific Manuscript database

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well-calibrated in situ soil moisture measurements within SMAP product grid pixels for diver...

  5. Soil metabarcoding identifies season indicators and differentiators of pig and Agrostis/Festuca spp. decomposition.

    PubMed

    Olakanye, Ayodeji O; Ralebitso-Senior, T Komang

    2018-04-15

    To gain a better understanding of how environmental microbiota respond to cadaver decomposition, a forensic ecogenomic study was made with soil only control and 4g each of Sus scrofa domesticus and plant litter (Agrostis/Festuca spp.) buried individually in a sandy clay loam (80g) in sealed but perforated triplicate microcosms. The next-generation sequencing (Illumina Miseq) of the soil bacteria (16S rRNA gene) clade revealed seasonal taxomonic shifts at genus-level for the pig and plant litter microcosms compared to the non-burial controls. In particular, numerical abundances of Sphingobacterium (5.9%) and Pedobacter (24.1%) for the pig microcosms, and Rhodanobacter (18.1%) and Shinella (4.6%) for the plant litter microcosms, identified bacterial genera that could be tracked to establish a (seasonal) subsurface postmortem microbial clock. Also, family-level resolution revealed members that were unique to the control, grass and pig soils after 365 days. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Buckles, Laura K.; Weijers, Johan W. H.; Verschuren, Dirk; Sinninghe Damsté, Jaap S.

    2014-09-01

    The MBT/CBT palaeotemperature proxy uses the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), membrane lipids that are supposed to derive from soil bacteria, to reconstruct mean annual air temperature (MAAT). Applied successfully in coastal marine sediments, its extension to lake-sediment records with potentially high time resolution would greatly expand its utility. Over the last years, however, studies have indicated the presence of additional sources of brGDGTs within lake systems. To constrain the factors influencing the MBT/CBT palaeotemperature proxy in lakes, detailed investigation of brGDGT fluxes in a modern lake system is necessary to identify their potential sources. This study concentrates on Lake Challa, a permanently stratified crater lake in equatorial East Africa with limited catchment area. An almost 3-year time series of approximately monthly samples of settling particles, supplemented with a depth profile of suspended particulate matter (SPM) and sets of profundal surface-sediment and catchment soil samples, were analysed for both the 'living' intact polar lipids (IPLs) and 'fossil' core lipids (CLs) of GDGTs. We found that brGDGTs are produced in oxic, suboxic and anoxic zones of the water column, and in substantial amounts compared to influxes from catchment soils. Additional in situ production within the lake sediments is most probable, but cannot be definitely confirmed at this time. These lacustrine brGDGTs display a different response to temperature variation than soil-derived brGDGTs, signifying either a different physiological adaptation to changing conditions within the water column and/or a different composition of the respective bacterial communities. Using this specific relationship with temperature, a local calibration based on brGDGT distributions in SPM generates relatively accurate water temperature estimates from settling particles but fails for surface sediments.

  7. The fate of antibiotic resistance genes and class 1 integrons following the application of swine and dairy manure to soils.

    PubMed

    Sandberg, Kyle D; LaPara, Timothy M

    2016-02-01

    The goal of this study was to determine the fate of antibiotic resistance genes (ARGs) and class 1 integrons following the application of swine and dairy manure to soil. Soil microcosms were amended with either manure from swine fed subtherapeutic levels of antibiotics or manure from dairy cows that were given antibiotics only rarely and strictly for veterinary purposes. Microcosms were monitored for 6 months using quantitative PCR targeting 16S rRNA genes (a measure of bacterial biomass), intI1, erm(B), tet(A), tet(W) and tet(X). Swine manure had 10- to 100-fold higher levels of ARGs than the dairy manure, all of which decayed over time after being applied to soil. A modified Collins-Selleck model described the decay of ARGs in the soil microcosms well, particularly the characteristic in which the decay rate declined over time. By the completion of the soil microcosm experiments, ARGs in the dairy manure-amended soils returned to background levels, whereas the ARGs in swine manure remained elevated compared to control microcosms. Our research suggests that the use of subtherapeutic use of antibiotics in animal feed could lead to the accumulation of ARGs in soils to which manure is applied. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Biotic and abiotic degradation of CL-20 and RDX in soils.

    PubMed

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  9. Identification of the Core Set of Carbon-Associated Genes in a Bioenergy Grassland Soil

    DOE PAGES

    Howe, Adina; Yang, Fan; Williams, Ryan J.; ...

    2016-11-17

    Despite the central role of soil microbial communities in global carbon (C) cycling, little is known about soil microbial community structure and even less about their metabolic pathways. Efforts to characterize soil communities often focus on identifying differences in gene content across environmental gradients, but an alternative question is what genes are similar in soils. These genes may indicate critical species or potential functions that are required in all soils. Here we identified the “core” set of C cycling sequences widely present in multiple soil metagenomes from a fertilized prairie (FP). Of 226,887 sequences associated with known enzymes involved inmore » the synthesis, metabolism, and transport of carbohydrates, 843 were identified to be consistently prevalent across four replicate soil metagenomes. This core metagenome was functionally and taxonomically diverse, representing five enzyme classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4% of all CAZy-associated genes identified in FP metagenomes, the core was found to be comprised of functions similar to those within cumulative soils. The FP CAZy-associated core sequences were present in multiple publicly available soil metagenomes and most similar to soils sharing geographic proximity. As a result, in soil ecosystems, where high diversity remains a key challenge for metagenomic investigations, these core genes represent a subset of critical functions necessary for carbohydrate metabolism, which can be targeted to evaluate important C fluxes in these and other similar soils.« less

  10. [Effects of naphthalene on soil respiration, nutrients and enzyme activities in the subalpine forest of western Sichuan, China].

    PubMed

    Yang, Fan; Yang, Wan Qin; Wu, Fu Zhong; Wang, Hui; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-06-18

    As a biocide to reduce soil and litter faunal populations in field experiments, naphthalene has been widely used in the study of ecological functions of soil fauna, but the non-target effects of naphthalene bring about enormous uncertainty to its application. In order to understand whether there were non-target effects of naphthalene in subalpine forest soil, soil in the subalpine forests of west Qinghai-Tibet Plateau was taken as study object. The short-term responses of soil respiration rate, nutrient content and enzyme activity to naphthalene were studied in microcosms. The results showed that soil respiration rate was significantly suppressed by application of naphthalene within 0-10 days, and then showed a significant promotion effect. Naphthalene significantly affected the dynamics of soil NH 4 + -N and NO 3 - -N contents. With application of naphthalene, the highest contents of NH 4 + -N and NO 3 - -N occurred at the 3rd and 7th day, respectively. But they were observed at the 45th and 52nd day with no-naphthalene, respectively. Moreover, soil dissolved carbon content in the naphthalene microcosms showed a sharp increase and then decrease dynamic at the 3rd day, while small change was detected in the no-naphthalene microcosms. Dissolved nitrogen content in both the naphthalene and no-naphthalene microcosms showed an increase at first and then decreased subsequently during the study period. Similar dynamics were found for the soil enzyme activities in both the naphthalene and no-naphthalene microcosms. The highest activities of urease, nitrate reductase and nitrite reductase in both the naphthalene and no-naphthalene microcosms were at the 45th, 38th and 10th day, respectively. In addition, the interaction of naphthalene treatment and sampling time had significant effects on soil respiration rate, the contents of NH 4 + -N, NO 3 - -N and dissolved nitrogen, but had no significant effects on soil dissolved carbon content, and the activities of invertase

  11. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.

    PubMed

    Perkins, W G; Lucero, D A

    2001-02-01

    The US Department of Energy (DOE), with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, NM. Performance assessment (PA) analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. For long-term brine releases, migration pathways through the permeable layers of rock above the Salado formation are important. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been carried out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft (AIS)). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22Na. Elution experiments carried out over periods of a few days with tracers 232U and 239Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241Pu and 241Am were attempted but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241Pu and 241Am after a period of brine flow, non-destructive and destructive analyses of

  12. Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil.

    PubMed

    Covino, Stefano; Stella, Tatiana; D'Annibale, Alessandro; Lladó, Salvador; Baldrian, Petr; Čvančarová, Monika; Cajthaml, Tomas; Petruccioli, Maurizio

    2016-10-01

    The removal of aged hydrophobic contaminants from fine-textured soils is a challenging issue in remediation. The objective of this study was to compare the efficacy of augmentation treatments to that of biostimulation in terms of total aliphatic hydrocarbon (TAH) and toxicity removal from a historically contaminated clay soil and to assess their impact on the resident microbial community. To this aim, Pleurotus ostreatus, Botryosphaeria rhodina and a combination of both were used as the inoculants while the addition of a sterilized lignocellulose mixture to soil (1:5, w/w) was used as a biostimulation approach. As opposed to the non-amended control soil, where no changes in TAH concentration and residual toxicity were observed after 60days, the activation of specialized bacteria was found in the biostimulated microcosms resulting in significant TAH removal (79.8%). The bacterial community structure in B. rhodina-augmented microcosms did not differ from the biostimulated microcosms due to the inability of the fungus to be retained within the resident microbiota. Best TAH removals were observed in microcosms inoculated with P. ostreatus alone (Po) and in binary consortium with B. rhodina (BC) (86.8 and 88.2%, respectively). In these microcosms, contaminant degradation exceeded their bioavailability thresholds determined by sequential supercritical CO2 extraction. Illumina metabarcoding of 16S rRNA gene showed that the augmentation with Po and BC led to lower relative abundances of Gram(+) taxa, Actinobacteria in particular, than those in biostimulated microcosms. Best detoxification, with respect to the non-amended incubation control, was found in Po microcosms where a drop in collembola mortality (from 90 to 22%) occurred. At the end of incubation, in both Po and BC, the relative abundances of P. ostreatus sequences were higher than 60% thus showing the suitability of this fungus in bioaugmentation-based remediation applications. Copyright © 2016 Elsevier B.V. All

  13. Distinct succession patterns of abundant and rare bacteria in temporal microcosms with pollutants.

    PubMed

    Jiao, Shuo; Luo, Yantao; Lu, Mingmei; Xiao, Xiao; Lin, Yanbing; Chen, Weimin; Wei, Gehong

    2017-06-01

    Elucidating the driving forces behind the temporal dynamics of abundant and rare microbes is essential for understanding the assembly and succession of microbial communities. Here, we explored the successional trajectories and mechanisms of abundant and rare bacteria via soil-enrichment subcultures in response to various pollutants (phenanthrene, n-octadecane, and CdCl 2 ) using time-series Illumina sequencing datasets. The results reveal different successional patterns of abundant and rare sub-communities in eighty pollutant-degrading consortia and two original soil samples. A temporal decrease in α-diversity and high turnover rate for β-diversity indicate that deterministic processes are the main drivers of the succession of the abundant sub-community; however, the high cumulative species richness indicates that stochastic processes drive the succession of the rare sub-community. A functional prediction showed that abundant bacteria contribute primary functions to the pollutant-degrading consortia, such as amino acid metabolism, cellular responses to stress, and hydrocarbon degradation. Meanwhile, rare bacteria contribute a substantial fraction of auxiliary functions, such as carbohydrate-active enzymes, fermentation, and homoacetogenesis, which indicates their roles as a source of functional diversity. Our study suggests that the temporal succession of microbes in polluted microcosms is mainly associated with abundant bacteria rather than the high proportion of rare taxa. The major forces (i.e., stochastic or deterministic processes) driving microbial succession could be dependent on the low- or high-abundance community members in temporal microcosms with pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system.

    PubMed

    Wang, Sih-Yu; Kuo, Yu-Chia; Hong, Andy; Chang, Yu-Min; Kao, Chih-Ming

    2016-12-01

    Lubricant and diesel oil-polluted sites are difficult to remediate because they have less volatile and biodegradable characteristics. The goal of this research was to evaluate the potential of applying an enhanced landfarming to bioremediate soils polluted by lubricant and diesel. Microcosm study was performed to evaluate the optimal treatment conditions with the addition of different additives (nutrients, addition of activated sludge from oil-refining wastewater facility, compost, TPH-degrading bacteria, and fern chips) to enhance total petroleum hydrocarbon (TPH) removal. To simulate the aerobic landfarming biosystem, air in the microcosm headspace was replaced once a week. Results demonstrate that the additives of activated sludge and compost could result in the increase in soil microbial populations and raise TPH degradation efficiency (up to 83% of TPH removal with 175 days of incubation) with initial (TPH = 4100 mg/kg). The first-order TPH degradation rate reached 0.01 1/d in microcosms with additive of activated sludge (mass ratio of soil to inocula = 50:1). The soil microbial communities were determined by nucleotide sequence analyses and 16S rRNA-based denatured gradient gel electrophoresis. Thirty-four specific TPH-degrading bacteria were detected in microcosm soils. Chromatograph analyses demonstrate that resolved peaks were more biodegradable than unresolved complex mixture. Results indicate that more aggressive remedial measures are required to enhance the TPH biodegradation, which included the increase of (1) microbial population or TPH-degrading bacteria, (2) biodegradable carbon sources, (3) nutrient content, and (4) soil permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microbial community characterization and functional gene quantification in RDX-degrading microcosms derived from sediment and groundwater at two naval sites.

    PubMed

    Wilson, Fernanda Paes; Cupples, Alison M

    2016-08-01

    The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) has long been recognized as a problematic environmental pollutant, and efforts to remediate contaminated soils, sediments, and groundwater have been going on for decades. In recent years, much interest has focused on using bioremediation to clean up these sites. The current study investigated the microorganisms (16S rRNA genes, Illumina) and functional genes (xenA, xenB, and xplA) linked to RDX biodegradation in microcosms composed of sediment or groundwater from two Navy sites. For this, experiments included sediment samples from three depths (5 to 30 ft) from two wells located in one Navy site. In addition, the groundwater upstream and downstream of an emulsified oil biobarrier was examined from another Navy site. Further, for the groundwater experiments, the effect of glucose addition was explored. For the sediment experiments, the most enriched phylotypes during RDX degradation varied over time, by depth and well locations. However, several trends were noted, including the enrichment of Pseudomonas, Rhodococcus, Arthrobacter, and Sporolactobacillus in the sediment microcosms. For the groundwater-based experiments, Pseudomonas, unclassified Rhodocyclaceae, Sphingomonas, and Rhodococcus were also highly abundant during RDX degradation. The abundance of both xplA and xenA significantly increased during RDX degradation compared to the control microcosms for many treatments (both groundwater and sediment microcosms). In a limited number of microcosms, the copy number of the xenB gene increased. Phylotype data were correlated with functional gene data to highlight potentially important biomarkers for RDX biodegradation at these two Navy sites.

  16. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.

    Treesearch

    Mark A. Bradford; Brian W. Watts; Christian A. Davies

    2010-01-01

    Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...

  17. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat.

    PubMed

    Lozano, Yudi M; Armas, Cristina; Hortal, Sara; Casanoves, Fernando; Pugnaire, Francisco I

    2017-12-01

    Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.

    PubMed

    Singh, Jagrati; Kunhikrishnan, A; Bolan, N S; Saggar, S

    2013-11-01

    New Zealand's intensively grazed pastures receive the majority of nitrogen (N) input in the form of urea, which is the major constituent of animal urine and the most common form of mineral N in inorganic N fertilizers. In soil, urea is rapidly hydrolyzed to ammonium (NH4(+)) ions, a part of which may be lost as ammonia (NH3) and subsequently as nitrous oxide (N2O), which is a greenhouse gas. Two glasshouse experiments were conducted to study the effect of a urease inhibitor (UI), N-(n-butyl) thiophosphoric triamide (NBPT), commercially named Agrotain, applied with urine and urea on urea hydrolysis and NH3 and N2O emissions. Treatments included the commercially available products Sustain Yellow (urea+Agrotain+4% sulfur coating), Sustain Green (urea+Agrotain) and urea, and cattle urine (476 kg N ha(-1)) with and without Agrotain applied to intact soil cores of a fine sandy loam soil. The addition of Agrotain to urine and urea (i.e. Sustain Green) reduced NH3 emission by 22% to 47%, respectively. Agrotain was also effective in reducing N2O emissions from urine and Sustain Green by 62% and 48%, respectively. The reduction in N2O emissions varied with the type and amount of N applied and plant N uptake. Plant N uptake was significantly higher in the soil cores receiving Agrotain with urea than urea alone, but the slight increase in dry matter yield was non-significant. Hence, urease inhibitor reduced N losses through NH3 and N2O emissions, thereby increasing plant uptake of N. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  19. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  20. Influence of phosphate and copper on reductive dechlorination of thiobencarb in California rice field soils.

    PubMed

    Gunasekara, Amrith S; Tenbrook, Patti L; Palumbo, Amanda J; Johnson, Catherine S; Tjeerdema, Ronald S

    2005-12-28

    The potential for reductive dechlorination of the herbicide thiobencarb (TB) by microbes and its prevention in saturated anaerobic rice field soils was examined in laboratory microcosms. TB is effective in controlling both annual grasses and broadleaf weeds. In anoxic microcosms, TB was effectively degraded within 30 days to its dechlorinated product, deschlorothiobencarb (DTB), in two Sacramento Valley rice field soils. TB dechlorination, and subsequent degradation, followed pseudo-zero- (lag phase) and first-order (degradation phase) kinetics. Logistic regression analysis (r2 > 0.841) produced a half-life (t(1/2)) in nonsterile soils ranging from 10 to 15 days, which was also observed when microcosms were amended with low concentrations (<3 mg L(-1)) of copper (Cu2+; as the fungicides Cu(OH)2 and CuSO4.5H2O). High Cu2+ concentrations (>40 mg L(-1)) were added to the microcosms to determine if copper toxicity to dechlorinating microbes is concentration dependent within the range used. After 30 days, the low-copper-amended soils closely resembled the nonsterile experiments to which no Cu2+ was added while the high-copper-amended microcosms were similar to the sterile experiment. Microcosms were also separately amended with 5.7 g L(-1) phosphate (PO4(2-); as KH2PO4), a nutrient regularly applied to rice fields. Phosphate-amended experiments also showed TB degradation, but no DTB formation, indicating the phosphate played a role, possibly as a microbial inhibitor or an alternative electron acceptor, in limiting the dechlorination of TB. In summary, TB dechlorination was inhibited at high Cu(OH)2, CuSO4.5H2O, and KH2PO4 concentrations.

  1. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands

    NASA Astrophysics Data System (ADS)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.

    2018-03-01

    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (<2 ha) farming systems, typical for the East African highlands. The soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P < 0.001 for all WHC). At WHC of 55% or 80%, the sandy clay loam soils had lower N2O fluxes than the clay soils (P < 0.001 and P = 0.041, respectively). Cumulative soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P < 0.001 at both 55 and 80% WHC). Methane fluxes were below detectable limits, a shortcoming for using soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  2. Factors Influencing TCE Anaerobic Dechlorination Investigated via Simulations of Microcosm Experiments

    NASA Astrophysics Data System (ADS)

    Mao, X.; Harkness, M.; Lee, M. D.; Mack, E. E.; Dworatzek, S.; Acheson, C.; McCarty, P.; Barry, D. A.; Gerhard, J. I.

    2006-12-01

    SABRE (Source Area BioREmediation) is a public-private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research project is a field site in the United Kingdom containing a TCE DNAPL source area. In preparation, a microcosm study was performed to determine the optimal combination of factors to support reductive dechlorination of TCE in site soil and groundwater. The study consisted of 168 bottles distributed between four laboratories (Dupont, GE, SiREM, and Terra Systems) and tested the impact of six carbon substrates (lactate, acetate, methanol, SRS (soybean oil), hexanol, butyl acetate), bioaugmentation with KB-1 bacterial culture, three TCE levels (100 mg/L, 400 mg/L, and 800 mg/L) and two sulphate levels (200 mg/L, >500 mg/L) on TCE dechlorination. This research presents a numerical model designed to simulate the main processes occurring in the microcosms, including substrate fermentation, sequential dechlorination, toxic inhibition, and the influence of sulphate concentration. In calibrating the model to over 60 of the microcosm experiments, lumped parameters were employed to quantify the effect of key factors on the conversion rate of each chlorinated ethene in the TCE degradation sequence. Results quantify the benefit (i.e., increased stepwise dechlorination rate) due to both bioaugmentation and the presence of higher sulphate concentrations. Competitive inhibition is found to increase in significance as TCE concentrations increase; however, inclusion of Haldane inhibition is not supported. Over a wide range of experimental conditions and dechlorination steps, SRS appears to induce relatively little hydrogen limitation, thereby facilitating relatively quick conversion of TCE to ethene. In general, hydrogen limitation is found to increase with increasing TCE concentration and with bioaugmentation, and

  3. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed

  4. Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters.

    PubMed Central

    Wagner-Döbler, I; Pipke, R; Timmis, K N; Dwyer, D F

    1992-01-01

    In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment. PMID:1599244

  5. Cometabolic biodegradation of trichloroethylene in microcosms

    USGS Publications Warehouse

    Kane, Allen C.; Wilson, Timothy P.; Fischer, Jeffrey M.

    1997-01-01

    Laboratory microcosms were used to determine the concentrations of oxygen (O2) and methane (CH4) that optimize trichloroethylene (TCE) biodegradation in sediment and ground-water samples from a TCE-contaminated aquifer at Picatinny Arsenal, Morris County, New Jersey. The mechanism for degradation is the cometabolic activity of methanotrophic bacteria. The laboratory data will be used to support a field study designed to demonstrate the effectiveness of combining air sparging with cometabolic degradation of TCE for the purpose of aquifer remediation. Microcosms were constructed in autoclaved 250-mL (milliliter) amber glass bottles with valves for repeated headspace sampling. Equal volumes (25 mL) of sediment and ground water, collected from a depth of 40 feet, were added. TCE was added to attain initial aqueous concentrations equal to the field level of 1,400 mu g/L (micrograms per liter). Nine microcosms were constructed with initial headspace O2 concentrations of 5%, 10%, or 14% and CH4 concentrations of 0.5%, 3%, or 5%, with nitrogen making up the balance. Sterile controls, controls without CH4, and controls without sediment were also constructed. A 4-mL gas sample was removed periodically and TCE, O2 , CH4 , and carbon dioxide (CO2) concentrations were measured by using gas chromatography. As biodegradation proceeded, the decrease in O2, CH4 , and TCE concentrations and the production of CO2 were monitored. An initial acclimation period of at least 100 days was observed in those microcosms in which significant microbial activity occurred, as determined from decreases in O2 and CH4 concentrations and an increase in CO2 content. Degradation of TCE occurred with O2 concentrations of 2.7 to 8.7% and CH4 concentrations of 0.5 to 3.5%. Microcosms that initially contained 10% O2 and 3% CH4 showed the greatest microbial activity and the greatest amount of TCE degradation. The greatest rates of TCE degradation occurred when O2 and CH4 headspace concentrations reached

  6. Campylobacter jejuni inactivation in New Zealand soils.

    PubMed

    Ross, C M; Donnison, A M

    2006-11-01

    The study was undertaken to determine the inactivation rate of Campylobacter jejuni in New Zealand soils. Farm dairy effluent (FDE) inoculated at c. 10(5) ml(-1) with C. jejuni was applied to intact soil cores at a rate of 2 l m(-2). Four soils were used: Hamilton (granular); Taupo (pumice); Horotiu and Waihou (allophanic). After FDE application cores were incubated at 10 degrees C for up to 32 days. For all four soils all the FDE remained within the cores and at least 99% of C. jejuni were retained in the top 5 cm. Campylobacter jejuni had declined to the limit of detection (two C. jejuni 100 g(-1)) by 25 days in Hamilton and Taupo soils and by 32 days in Waihou soil. In contrast, in Horotiu soil the decline was only three orders of magnitude after 32 days. Simulated heavy rainfall was applied 4 and 11 days after FDE application and only about 1% of the applied C. jejuni were recovered in leachates. This study demonstrated that at least 99% of applied C. jejuni were retained in the top 5 cm of four soils where they survived for at least 25 days at 10 degrees C. Soil retention of C. jejuni is efficient at FDE application rates that prevent drainage losses. The low infectious dose of C. jejuni and its ability to survive up to 25 days have implications for stock management on dairy farms.

  7. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling

    DOE PAGES

    Pelletier, Jon D.; Broxton, Patrick D.; Hazenberg, Pieter; ...

    2016-01-22

    Earth’s terrestrial near-subsurface environment can be divided into relatively porous layers of soil, intact regolith, and sedimentary deposits above unweathered bedrock. Variations in the thicknesses of these layers control the hydrologic and biogeochemical responses of landscapes. Currently, Earth System Models approximate the thickness of these relatively permeable layers above bedrock as uniform globally, despite the fact that their thicknesses vary systematically with topography, climate, and geology. To meet the need for more realistic input data for models, we developed a high-resolution gridded global data set of the average thicknesses of soil, intact regolith, and sedimentary deposits within each 30 arcsecmore » (~ 1 km) pixel using the best available data for topography, climate, and geology as input. Our data set partitions the global land surface into upland hillslope, upland valley bottom, and lowland landscape components and uses models optimized for each landform type to estimate the thicknesses of each subsurface layer. On hillslopes, the data set is calibrated and validated using independent data sets of measured soil thicknesses from the U.S. and Europe and on lowlands using depth to bedrock observations from groundwater wells in the U.S. As a result, we anticipate that the data set will prove useful as an input to regional and global hydrological and ecosystems models.« less

  8. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.; Broxton, Patrick D.; Hazenberg, Pieter; Zeng, Xubin; Troch, Peter A.; Niu, Guo-Yue; Williams, Zachary; Brunke, Michael A.; Gochis, David

    2016-03-01

    Earth's terrestrial near-subsurface environment can be divided into relatively porous layers of soil, intact regolith, and sedimentary deposits above unweathered bedrock. Variations in the thicknesses of these layers control the hydrologic and biogeochemical responses of landscapes. Currently, Earth System Models approximate the thickness of these relatively permeable layers above bedrock as uniform globally, despite the fact that their thicknesses vary systematically with topography, climate, and geology. To meet the need for more realistic input data for models, we developed a high-resolution gridded global data set of the average thicknesses of soil, intact regolith, and sedimentary deposits within each 30 arcsec (˜1 km) pixel using the best available data for topography, climate, and geology as input. Our data set partitions the global land surface into upland hillslope, upland valley bottom, and lowland landscape components and uses models optimized for each landform type to estimate the thicknesses of each subsurface layer. On hillslopes, the data set is calibrated and validated using independent data sets of measured soil thicknesses from the U.S. and Europe and on lowlands using depth to bedrock observations from groundwater wells in the U.S. We anticipate that the data set will prove useful as an input to regional and global hydrological and ecosystems models. This article was corrected on 2 FEB 2016. See the end of the full text for details.

  9. Inhibitory Effects of Sulfate and Nitrate Reduction on Reductive Dechlorination of PCP in a Flooded Paddy Soil

    PubMed Central

    Xu, Yan; Xue, Lili; Ye, Qi; Franks, Ashley E.; Zhu, Min; Feng, Xi; Xu, Jianming; He, Yan

    2018-01-01

    Pentachlorophenol (PCP) is highly toxic and persistent in soils. Bioreduction of PCP often co-occurs with varying concentrations of sulfate and nitrate in flooded paddy soils where each can act as an electron acceptor. Anaerobic soil microcosms were constructed to evaluate the influence of sulfate and nitrate amendments and their redox processes. Microcosms with varying sulfate and nitrate concentrations demonstrated an inhibitory effect on reductive dechlorination of PCP compared to an untreated control. Compared to nitrate, sulfate exhibited a more significant impact on PCP dechlorination, as evidenced by a lower maximum reaction rate and a longer time to reach the maximum reaction rate. Dechlorination of PCP was initiated at the ortho-position, and then at the para- and meta-positions to form 3-CP as the final product in all microcosms. Deep sequencing of microbial communities in the microcosms revealed a strong variation in bacterial taxon among treatments. Specialized microbial groups, such as the genus of Desulfovibrio responding to the addition of sulfate, had a potential to mediate the competitive microbial dechlorination of PCP. Our results provide an insight into the competitive microbial-mediated reductive dechlorination of PCP in natural flooded soil or sediment environments. PMID:29643842

  10. Cluster Roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) Take Up Glycine Intact: An Adaptive Strategy to Low Mineral Nitrogen in Soils?

    PubMed Central

    HAWKINS, HEIDI-JAYNE; WOLF, GABRIELLE; STOCK, WILLIAM DAVID

    2005-01-01

    • Background and Aims South African soils are not only low in phosphorus (P) but most nitrogen (N) is in organic form, and soil amino acid concentrations can reach 2·6 g kg−1 soil. The Proteaceae (a main component of the South African Fynbos vegetation) and some Fabaceae produce cluster roots in response to low soil phosphorus. The ability of these roots to acquire the amino acid glycine (Gly) was assessed. • Methods Uptake of organic N as 13C–15N-Gly was determined in cluster roots and non-cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) in hydroponic culture, taking account of respiratory loss of 13CO2. • Key Results Both plant species acquired doubly labelled (intact) Gly, and respiratory losses of 13CO2 were small. Lupin (but not leucadendron) acquired more intact Gly when cluster roots were supplied with 13C–15N-Gly than when non-cluster roots were supplied. After treatment with labelled Gly (13C : 15N ratio = 1), lupin cluster roots had a 13C : 15N ratio of about 0·85 compared with 0·59 in labelled non-cluster roots. Rates of uptake of label from Gly did not differ between cluster and non-cluster roots of either species. The ratio of C : N and 13C : 15N in the plant increased in the order: labelled roots < rest of the root < shoot in both species, owing to an increasing proportion of 13C translocation. • Conclusions Cluster roots of lupin specifically acquired more intact Gly than non-cluster roots, whereas Gly uptake by the cluster and non-cluster roots of leucadendron was comparable. The uptake capacities of cluster roots are discussed in relation to spatial and morphological characteristics in the natural environment. PMID:16223736

  11. The Destabilization of Protected Soil Organic Carbon Following Experimental Drought at the Pore and Core scale

    NASA Astrophysics Data System (ADS)

    Smith, A. P.; Bond-Lamberty, B. P.; Tfaily, M. M.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The movement of water and solutes through the pore matrix controls the distribution and transformation of carbon (C) in soils. Thus, a change in the hydrologic connectivity, such as increased saturation, disturbance or drought, may alter C mineralization and greenhouse gas (GHG) fluxes to the atmosphere. While these processes occur at the pore scale, they are often investigated at coarser scale. This project investigates pore- and core-scale soil C dynamics with varying hydrologic factors (simulated precipitation, groundwater-led saturation, and drought) to assess how climate-change induced shifts in hydrologic connectivity influences the destabilization of protected C in soils. Surface soil cores (0-15 cm depth) were collected from the Disney Wilderness Preserve, Florida, USA where water dynamics, particularly water table rise and fall, appear to exert a strong control on the emissions of GHGs and the persistence of soil organic matter in these soils. We measured CO2 and CH4 from soils allowed to freely imbibe water from below to a steady state starting from either field moist conditions or following experimental drought. Parallel treatments included the addition of similar quantities of water from above to simulate precipitation. Overall respiration increased in soil cores subjected to drought compared to field moist cores independent of wetting type. Cumulative CH4 production was higher in drought-induced soils, especially in the soils subjected to experimental groundwater-led saturation. Overall, the more C (from CO2 and CH4) was lost in drought-induced soils compared to field moist cores. Our results indicate that future drought events could have profound effects on the destabilization of protected C, especially in groundwater-fed soils. Our next steps focus on how to accurately capture drought-induced C destabilization mechanisms in earth system models.

  12. Measurement of net nitrogen and phosphorus mineralization in wetland soils using a modification of the resin-core technique

    USGS Publications Warehouse

    Noe, Gregory B.

    2011-01-01

    A modification of the resin-core method was developed and tested for measuring in situ soil N and P net mineralization rates in wetland soils where temporal variation in bidirectional vertical water movement and saturation can complicate measurement. The modified design includes three mixed-bed ion-exchange resin bags located above and three resin bags located below soil incubating inside a core tube. The two inner resin bags adjacent to the soil capture NH4+, NO3-, and soluble reactive phosphorus (SRP) transported out of the soil during incubation; the two outer resin bags remove inorganic nutrients transported into the modified resin core; and the two middle resin bags serve as quality-control checks on the function of the inner and outer resin bags. Modified resin cores were incubated monthly for a year along the hydrogeomorphic gradient through a floodplain wetland. Only small amounts of NH4+, NO3-, and SRP were found in the two middle resin bags, indicating that the modified resin-core design was effective. Soil moisture and pH inside the modified resin cores typically tracked changes in the surrounding soil abiotic environment. In contrast, use of the closed polyethylene bag method provided substantially different net P and N mineralization rates than modified resin cores and did not track changes in soil moisture or pH. Net ammonification, nitrifi cation, N mineralization, and P mineralization rates measured using modified resin cores varied through space and time associated with hydrologic, geomorphic, and climatic gradients in the floodplain wetland. The modified resin-core technique successfully characterized spatiotemporal variation of net mineralization fluxes in situ and is a viable technique for assessing soil nutrient availability and developing ecosystem budgets.

  13. Soil hydrophobicity - relating effects at atomic, molecular, core and national scales

    NASA Astrophysics Data System (ADS)

    Matthews, Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2016-04-01

    The detrimental impacts of soil hydrophobicity include increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate flood risk associated with more extreme drought and precipitation events predicted with UK climate change scenarios. The UK's Natural Environment Research Council (NERC) has therefore funded a major research programme to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. This presentation gives an overview of the findings to date. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were measured from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using a novel separation method which reduces interference by humic acids, and allows identification by ESI and MALDI TOF mass spectrometry and database searches, (ii) the examination of such proteins, which form ordered hydrophobic ridges, and measurement of their elasticity, stickiness and hydrophobicity at nano- to microscale using atomic force microscopy adapted for the rough surfaces of soil particles, (iii) the novel use of a picoliter goniometer to show hydrophobic effects at a 1 micron diameter droplet level, which

  14. Natural Transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in Soil

    PubMed Central

    Demanèche, Sandrine; Kay, Elisabeth; Gourbière, François; Simonet, Pascal

    2001-01-01

    Little information is available concerning the occurrence of natural transformation of bacteria in soil, the frequency of such events, and the actual role of this process on bacterial evolution. This is because few bacteria are known to possess the genes required to develop competence and because the tested bacteria are unable to reach this physiological state in situ. In this study we found that two soil bacteria, Agrobacterium tumefaciens and Pseudomonas fluorescens, can undergo transformation in soil microcosms without any specific physical or chemical treatment. Moreover, P. fluorescens produced transformants in both sterile and nonsterile soil microcosms but failed to do so in the various in vitro conditions we tested. A. tumefaciens could be transformed in vitro and in sterile soil samples. These results indicate that the number of transformable bacteria could be higher than previously thought and that these bacteria could find the conditions necessary for uptake of extracellular DNA in soil. PMID:11375171

  15. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater.

    PubMed

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny

    2014-02-01

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t1/2) between 0.2-9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of Flooding and the nosZ Gene in Bradyrhizobia on Bradyrhizobial Community Structure in the Soil.

    PubMed

    Saeki, Yuichi; Nakamura, Misato; Mason, Maria Luisa T; Yano, Tsubasa; Shiro, Sokichi; Sameshima-Saito, Reiko; Itakura, Manabu; Minamisawa, Kiwamu; Yamamoto, Akihiro

    2017-06-24

    We investigated the effects of the water status (flooded or non-flooded) and presence of the nosZ gene in bradyrhizobia on the bradyrhizobial community structure in a factorial experiment that examined three temperature levels (20°C, 25°C, and 30°C) and two soil types (andosol and gray lowland soil) using microcosm incubations. All microcosms were inoculated with Bradyrhizobium japonicum USDA6 T , B. japonicum USDA123, and B. elkanii USDA76 T , which do not possess the nosZ gene, and then half received B. diazoefficiens USDA110 T wt (wt for the wild-type) and the other half received B. diazoefficiens USDA110ΔnosZ. USDA110 T wt possesses the nosZ gene, which encodes N 2 O reductase; 110ΔnosZ, a mutant variant, does not. Changes in the community structure after 30- and 60-d incubations were investigated by denaturing-gradient gel electrophoresis and an image analysis. USDA6 T and 76 T strains slightly increased in non-flooded soil regardless of which USDA110 T strain was present. In flooded microcosms with the USDA110 T wt strain, USDA110 T wt became dominant, whereas in microcosms with the USDA110ΔnosZ, a similar change in the community structure occurred to that in non-flooded microcosms. These results suggest that possession of the nosZ gene confers a competitive advantage to B. diazoefficiens USDA110 T in flooded soil. We herein demonstrated that the dominance of B. diazoefficiens USDA110 T wt within the soil bradyrhizobial population may be enhanced by periods of flooding or waterlogging systems such as paddy-soybean rotations because it appears to have the ability to thrive in moderately anaerobic soil.

  17. Impact of municipal wastewater effluent on seed bank response and soils excavated from a wetland impoundment

    USGS Publications Warehouse

    Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.

    2009-01-01

    Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.

  18. Tracer and hydrometric study of preferential flow in large undisturbed soil cores from the Georgia Piedmont, USA

    USGS Publications Warehouse

    McIntosh, Janice; McDonnell, Jeffrey J.; Peters, Norman E.

    1999-01-01

    We studied the temporal patterns of tracer throughput in the outflow of large (30 cm diameter by 38 cm long) undisturbed cores from the Panola Mountain Research Watershed, Georgia. Tracer breakthrough was affected by soil structure and rainfall intensity. Two rainfall intensities (20 and 40 mm hr-1) for separate Cl- and Br- amended solutions were applied to two cores (one extracted from a hillslope soil and one extracted from a residual clay soil on the ridge). For both low and high rainfall intensity experiments, preferential flow occurred in the clay core, but not in the hillslope core. The preferential flow is attributed to well-developed interpedal macrochannels that are commonly found in structured clay soils, characteristic of the ridge site. However, each rainfall intensity exceeded the matrix infiltration capacity at the top of the hillslope core, but did not exceed the matrix infiltration capacity at the middle and bottom of the hillslope core and at all levels in the clay core. Localized zones of saturation created when rainfall intensity exceeds the matrix infiltration capacity may cause water and tracer to overflow from the matrix into macrochannels, where preferential flow occurs to depth in otherwise unsaturated soil. Copyright © 1999 John Wiley & Sons, Ltd.

  19. Ammonia oxidisers in a non-nitrifying Brazilian savanna soil.

    PubMed

    Catão, Elisa C P; Thion, Cécile; Krüger, R H; Prosser, James I

    2017-11-01

    Low nitrification rates in Brazilian savanna (Cerrado) soils have puzzled researchers for decades. Potential mechanisms include biological inhibitors, low pH, low microbial abundance and low soil moisture content, which hinders microbial activity, including ammonia oxidation. Two approaches were used to evaluate these potential mechanisms: (i) manipulation of soil moisture and pH in microcosms containing Cerrado soil and (ii) assessment of nitrification inhibition in slurries containing mixtures of Cerrado soil and an actively nitrifying agricultural soil. Despite high ammonium concentration in Cerrado soil microcosms, little NO3- accumulation was observed with increasing moisture or pH, but in some Cerrado soil slurries, ammonia-oxidising archaea (AOA) amoA transcripts were detected after 14 days. In mixed soil slurries, the final NO3- concentration reflected the initial proportions of agricultural and Cerrado soils in the mixture, providing no evidence of nitrification inhibitors in Cerrado soil. AOA community denaturing gradient gel electrophoresis profiles were similar in the mixed and nitrifying soils. These results suggest that nitrification in Cerrado soils is not constrained by water availability, ammonium availability, low pH or biological inhibitors, and alternative potential explanations for low nitrification levels are discussed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Microbial activity in Alaskan taiga soils contaminated by crude oil in 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, E.M.; Lindstrom, J.E.; Brown, E.J.

    1995-12-31

    Biodegradation, often measured via microbial activity, includes destruction of environmental pollutants by living microorganisms and is dependent upon many physical and chemical factors. Effects of mineral nutrients and organic matter on biodegradation of Prudhoe Bay crude oil were investigated at a nineteen-year-old oil spill site in Alaskan taiga. Microcosms of two different soil types from the spill site; one undeveloped soil with forest litter and detritus (O horizon) and one more developed with lower organic content (A horizon), were treated with various nitrogen and phosphorus amendments, and incubated for up to six weeks. Each microcosm was sampled periodically and assayedmore » for hydrocarbon mineralization potential using radiorespirometry, for total carbon dioxide respired using gas chromatography, and for numbers of hydrocarbon-degrading bacteria and heterotrophic bacteria using most probable number counting techniques. Organic matter in the O horizon soil along with combinations of mineral nutrients were found to stimulate microbial activity. No combination of mineral nutrient additions to the A horizon soil stimulated any of the parameters above those measured in control microcosms. The results of this study indicate that adding mineral nutrients and tilling the O horizon into the A horizon of subarctic soils contaminated with crude oil, would stimulate microbial activity, and therefore the biodegradation potential, ultimately increasing the rate of destruction of crude oil in these soils.« less

  1. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.; hide

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.

  2. Biogeochemical Controls on Microbial CO2 and CH4 Production in Polygonal Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Herndon, E.; Gu, B.; Liang, L.; Wullschleger, S. D.

    2014-12-01

    Organic matter buried in Arctic soils and permafrost will become accessible to increased microbial degradation as the ground warms due to climate change. The rates of organic matter degradation and the proportion of CH4 and CO2 greenhouse gasses released in a potential warming feedback cycle depend on the microbial response to warming, organic carbon structure and availability, the pore-water quantity and geochemistry, and available electron acceptors. Significant amounts of iron(II) ions in organic and mineral soils of the active layer in low-centered ice wedge polygons indicate anoxic conditions in most soil horizons. To adapt and improve the representation of these Arctic subsurface processes in terrestrial ecosystem models for the NGEE Arctic project, we examined soil organic matter transformations from elevated and subsided areas of low- and high-centered polygons from interstitial tundra on the Barrow Environmental Observatory (Barrow, AK). Using microcosm incubations at fixed temperatures and controlled thawing systems for frozen soil cores, we investigated the microbiological processes and rates of soil organic matter degradation and greenhouse gas production under anoxic conditions, at ecologically relevant temperatures of -2, +4 or +8 °C. In contrast to the low-centered polygon incubations representing in situ water-saturated conditions, microcosms with unsaturated high-centered polygon samples displayed lower carbon mineralization as either CH4 or CO2. Substantial differences in CH4 and CO2 response curves from different microtopographic samples separate the thermodynamic controls on biological activity from the kinetic controls of microbial growth and migration that together determine the temperature response for greenhouse gas emissions in a warming Arctic.

  3. Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation.

    PubMed

    Jiang, Ying; Brassington, Kirsty J; Prpich, George; Paton, Graeme I; Semple, Kirk T; Pollard, Simon J T; Coulon, Frédéric

    2016-10-01

    The potential for biotransformation of weathered hydrocarbon residues in soils collected from two commercial oil refinery sites (Soil A and B) was studied in microcosm experiments. Soil A has previously been subjected to on-site bioremediation and it was believed that no further degradation was possible while soil B has not been subjected to any treatment. A number of amendment strategies including bioaugmentation with hydrocarbon degrader, biostimulation with nutrients and soil grinding, were applied to the microcosms as putative biodegradation improvement strategies. The hydrocarbon concentrations in each amendment group were monitored throughout 112 days incubation. Microcosms treated with biostimulation (BS) and biostimulation/bioaugmentation (BS + BA) showed the most significant reductions in the aliphatic and aromatic hydrocarbon fractions. However, soil grinding was shown to reduce the effectiveness of a nutrient treatment on the extent of biotransformation by up to 25% and 20% for the aliphatic and aromatic hydrocarbon fractions, respectively. This is likely due to the disruption to the indigenous microbial community in the soil caused by grinding. Further, ecotoxicological responses (mustard seed germination and Microtox assays) showed that a reduction of total petroleum hydrocarbon (TPH) concentration in soil was not directly correlable to reduction in toxicity; thus monitoring TPH alone is not sufficient for assessing the environmental risk of a contaminated site after remediation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Immunoextraction-Tandem Mass Spectrometry Method for Measuring Intact Human Chorionic Gonadotropin, Free β-Subunit, and β-Subunit Core Fragment in Urine

    PubMed Central

    Woldemariam, Getachew A.; Butch, Anthony W.

    2015-01-01

    BACKGROUND Human chorionic gonadotropin (hCG) stimulates testosterone production by the testicles. Because of the potential for abuse, hCG is banned (males only) in most sports and has been placed on the World Anti-Doping Agency list of prohibited substances. Intact hCG, free β-subunit (hCGβ), and β-subunit core fragment (hCGβcf) are the major variants or isoforms in urine. Immunoassays are used by antidoping laboratories to measure urinary hCG. Cross-reactivity with isoforms differs among immunoassays, resulting in widely varying results. We developed a sequential im-munoextraction method with LC-MS/MS detection for quantification of intact hCG, hCGβ, and hCGβcf in urine. METHODS hCG isoforms were immunoextracted with antibody-conjugated magnetic beads and digested with trypsin, and hCGβ and hCGβcf unique peptides were quantified by LC-MS/MS with the corresponding heavy peptides as internal standard. hCG isoform concentrations were determined in urine after administration of hCG, and the intact hCG results were compared to immunoassay results. RESULTS The method was linear to 20 IU/L. Total imprecision was 6.6%-13.7% (CV), recovery ranged from 91% to 109%, and the limit of quantification was 0.2 IU/L. Intact hCG predominated in the urine after administration of 2 hCG formulations. The window of detection ranged from 6 to 9 days. Mean immunoassay results were 12.4-15.5 IU/L higher than LC-MS/MS results. CONCLUSIONS The performance characteristics of the method are acceptable for measuring hCG isoforms, and the method can quantify intact hCG and hCGβ separately. The limit of quantification will allow LC-MS/MS hCG reference intervals to be established in nondoping male athletes for improved doping control. PMID:24899693

  5. Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge

    NASA Astrophysics Data System (ADS)

    McKee, M.; White, J. R.; Putnam-Duhon, L. A.

    2016-11-01

    Coastal wetland systems experience both short-term changes in salinity, such as those caused by wind-driven tides and storm surge, and long-term shifts caused by sea level rise. Salinity increases associated with storm surge are known to have significant effects on soil porewater chemistry, but there is little research on the effect of flooding length on salt penetration depth into coastal marsh soils. A simulated storm surge was imposed on intact soil columns collected from a non-vegetated mudflat and a vegetated marsh site in the Wax Lake Delta, LA. Triplicate intact cores were continuously exposed to a 35 salinity water column (practical salinity scale) for 1, 2, and 4 weeks and destructively sampled in order to measure porewater salinity and extractable NH4sbnd N at two cm depth intervals. Salinity was significantly higher in the top 8 cm for both the marsh and mudflat cores after one week of flooding. After four weeks of flooding, salinity was significantly higher in marsh and mudflat cores compared to the control (no salinity) cores throughout the profile for both sites. Extractable ammonium levels increased significantly in the marsh cores throughout the experiment, but there was only a marginally (p < 0.1) significant increase seen in the mudflat cores. Results indicate that porewater salinity levels can become significantly elevated within a coastal marsh soil in just one week. This vertical intrusion of salt can potentially negatively impact macrophytes and associated microbial communities for significantly longer term post-storm surge.

  6. A laboratory study of the biodegradation of an alcohol ethoxylate surfactant by native soil microbes

    NASA Astrophysics Data System (ADS)

    Ang, Carolina C.; Abdul, Abdul S.

    1992-09-01

    Laboratory experiments were conducted to study the biodegradation of a nonionic alcohol ethoxylate surfactant by native microbes from a contaminated site. Three sets of experiments consisting of 13 microcosms were carried out to evaluate the rate of biodegradation and the effect of nutrients and supplementary oxygen on the degradation process. The results from these active microcosms were compared with those for controlled microcosms in which a biocide was added to inhibit biological activities. In the presence of ground water and sterilized soil, surfactant solutions with initial concentrations of 1000, 650, 250, and 180 mgl -1 were reduced to less than 5 mgl -1 in 36 days, 20 days, 17 days, and 17 days, respectively. The biodegradation rate in microcosms with added nutrients was more than twice the rate in the reactor without nutrients. The results from experiments in which various nitrogen and phosphorus nutrients were added showed that a ratio of 10 carbon:2 nitrogen:1 phosphorus was the optimum for the biodegradation of surfactant under the microcosm conditions. The addition of 5 mgl -1 of oxygen in the form of hydrogen peroxide increased the degradation rate of surfactant by 30%. The study showed that microbes indigenous to the soil and ground water at a contaminated site rapidly degrade the low levels of the surfactant that may remain at the site after soil washing, and that the degradation rate can be increased by the addition of nutrients and oxygen.

  7. EFFECTS OF SEDIMENT TYPE ON BENTHIC MACROINFAUNAL COLONIZATION OF LABORATORY MICROCOSMS

    EPA Science Inventory

    We tested the effects of four different sediment types on macroinfaunal colonization and community development in our laboratory flow-thru microcosm system (all microcosms were 20 cm side-1 and sediment depth was 5 cm) over a period of 41 days. Sediments included Santa Rosa Islan...

  8. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  9. [Effect on the respiration of bacteria in microcosm by the disinfectant of chlorine].

    PubMed

    Lu, Yi; Wang, Ying; Ren, Lijun; Wang, Lin

    2007-03-01

    To observe respiratory volume of bacteria as the physiology activity index to evaluate the effect of sodium hypochlorite (NaClO) on the microenvironment. The water and soil from Wuhan Muoshui Lake were selected as research object. Man-made microcosms were designed and constructed. The sodium hypochlorite was put into the microcosms every 24 hour for 13 days. The bacteria respiratory volume and the general bacterial population were observed. The results showed that the bacteria in the low-dose disinfectant were stimulated and its respiration volumes were increased in the beginning of the experiment. But several days later, the bacteria were inhibited or killed predominantly which led to the decrease of its respiration volumes. In high-dose group, the bacteria were killed obviously in the beginning and their respiration volumes decreased immediately. After the disinfectant was given up, the respiratory volume resumed gradually to the initial condition. This change process accorded with the general bacterial population as a whole. The respiratory volume of bacteria was related with the dose of disinfectant. The change of the respiratory volume of bacteria was related with the dose of sodium hypochlorite. The disinfectant effect on the metabolic activity of microorganism would be lighter if it under the dose 10 mg/L.

  10. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Bioremediation of oil-based drill cuttings by a halophilic consortium isolated from oil-contaminated saline soil.

    PubMed

    Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali

    2018-05-01

    Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.

  12. PERSPECTIVE ON THE ROLE OF MICROCOSMS IN ENVIRONMENTAL FATE AND EFFECTS ASSESSMENTS

    EPA Science Inventory

    This paper provides a perspective on the possible interfacing of microcosm studies with both waste assimilatory capacity determinations and other less quantitative types of assessment. Some of the problems and inconsistencies in the interpretation and application of microcosm res...

  13. Naturally-Derived Microcosms for Estimating Stress Effects in Aquatic Ecosystems

    DTIC Science & Technology

    1991-05-31

    production, respiration, nutrient dynamics, enzyme activities, and species richness. Endpoints can be added or eliminated, depending on the...substrates per microcosm, depending on the experimental design. One to two substrates per microcosm will be placed in a natural ecosystem to accumulate the...water, these substrates should be left to accumulate microbiota for 3-10 d, depending on the flow rate and sediment load. In lentic ecosystems, exposure

  14. Core Versus Nuclear Gauge Methods of Determining Soil Bulk Density and Moisture Content

    Treesearch

    Jacqueline G. Steele; Jerry L. Koger; Albert C. Trouse; Donald L. Sirois

    1983-01-01

    Soil bulk and moisture content measurements were obtained using two nuclear gauge systems and those compared to those obtained from soil cores. The soils, a Hiwassee sandy loam, a Lakeland loamy sand, and a Loyd clay, were free of organic matter and uniform in mechanical composition. The regression equations developed for the nuclear guages for the first phase of the...

  15. Know Thyself: Macrocosm and Microcosm

    ERIC Educational Resources Information Center

    Tubbs, Nigel

    2011-01-01

    There was a time when, in the Liberal Arts, philosophy and education enjoyed the most intimate and productive relationship. Drawing together philosophy and nature they sought to understand the greatest of human mysteries. This meant thinking about both the macrocosm and the microcosm and especially the relation between them. In this relation lies…

  16. Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil

    PubMed Central

    Zhao, Jun; Wang, Baozhan

    2015-01-01

    Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959

  17. Stability and resilience of oral microcosms toward acidification and Candida outgrowth by arginine supplementation.

    PubMed

    Koopman, Jessica E; Röling, Wilfred F M; Buijs, Mark J; Sissons, Christopher H; ten Cate, Jacob M; Keijser, Bart J F; Crielaard, Wim; Zaura, Egija

    2015-02-01

    Dysbiosis induced by low pH in the oral ecosystem can lead to caries, a prevalent bacterial disease in humans. The amino acid arginine is one of the pH-elevating agents in the oral cavity. To obtain insights into the effect of arginine on oral microbial ecology, a multi-plaque "artificial mouth" (MAM) biofilm model was inoculated with saliva from a healthy volunteer and microcosms were grown for 4 weeks with 1.6 % (w/v) arginine supplement (Arginine) or without (Control), samples were taken at several time-points. A cariogenic environment was mimicked by sucrose pulsing. The bacterial composition was determined by 16S rRNA gene amplicon sequencing, the presence and amount of Candida and arginine deiminase system genes arcA and sagP by qPCR. Additionally, ammonium and short-chain fatty acid concentrations were determined. The Arginine microcosms were dominated by Streptococcus, Veillonella, and Neisseria and remained stable in time, while the composition of the Control microcosms diverged significantly in time, partially due to the presence of Megasphaera. The percentage of Candida increased 100-fold in the Control microcosms compared to the Arginine microcosms. The pH-raising effect of arginine was confirmed by the pH and ammonium results. The abundances of sagP and arcA were highest in the Arginine microcosms, while the concentration of butyrate was higher in the Control microcosms. We demonstrate that supplementation with arginine serves a health-promoting function; it enhances microcosm resilience toward acidification and suppresses outgrowth of the opportunistic pathogen Candida. Arginine facilitates stability of oral microbial communities and prevents them from becoming cariogenic.

  18. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    PubMed

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  19. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  20. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase.

    PubMed

    Story, Sandra; Brigmon, Robin L

    2017-03-01

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soil resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. These results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications. Copyright © 2016. Published by Elsevier Inc.

  1. Reductive Dechlorination of 1,2,4-Trichlorobenzene and Its Metabolites at a Contaminated Site in Nanjing, China: Concordance between Field and Microcosm Data

    NASA Astrophysics Data System (ADS)

    Qiao, W.; Lomheim, L.; Luo, F.; Ye, S.; Wu, J.; Edwards, E.

    2016-12-01

    Chlorinated benzenes (CBs) are widespread contaminants at many industrial sites, posing a threat to human health and the environment. Bioremediation has the advantage of using natural biological processes to possibly completely destroy target pollutants. A three-year site investigation was conducted from 2012 to 2014 at a former chemical plant in Nanjing, China, which was contaminated by chlorobenzenes (CBs) and benzene. The aquifer was located within a silty clay and clayey silt with extremely low permeability. Soil and groundwater sample analyses revealed that the main contaminants were 1,2,4-tichlorobenzene (TCB) with highest concentration of 7300ug/L, dichlorobenzene (DCB) isomers, monochlorobenzene (MCB) and benzene. The contaminants were mainly located in the vicinity of a former wastewater basin and production facilities of chemical products. TCB was used as a solvent and leaked during the plant manufacturing processes. It is assumed that DCB isomers, MCB and benzene were derived from the anaerobic subsequent dehalogenation of 1,2,4-TCB. A corresponding lab microcosm study was conducted to prove the assumption of indigenous CBs biodegradation. The contaminated soil and groundwater from the site were used to conduct the lab microcosms study to keep the lab experimental conditions the same as the site and to be comparable with the site investigation results. The lab microcosms study results demonstrated that 1,4-DCB, 1,2-DCB and 1,3-DCB were the anaerobic dechlorination product of 1,2,4-TCB, and 1,2-DCB, 1,3-DCB can be transformed to MCB, and benzene can be degraded to CO2 under sulfate reducing condition. The lab microcosms study results were consistent with the site investigation results, which will provide a theoretical proposition on site remediation strategy making. This research method of combing the site investigation with the lab study can be applied and transferable to any other contaminated sites of concern. The site investigation and lab study can

  2. Assessment of trace element accumulation by earthworms in an orchard soil remediation study using soil amendments

    USGS Publications Warehouse

    Centofantia, Tiziana; Chaney, Rufus L.; Beyer, W. Nelson; McConnell, Laura L.; Davis, A. P.; Jackson, Dana

    2016-01-01

    This study assessed potential bioaccumulation of various trace elements in grasses and earthworms as a consequence of soil incorporation of organic amendments for in situ remediation of an orchard field soil contaminated with organochlorine and Pb pesticide residues. In this experiment, four organic amendments of differing total organic carbon content and quality (two types of composted manure, composted biosolids, and biochar) were added to a contaminated orchard field soil, planted with two types of grasses, and tested for their ability to reduce bioaccumulation of organochlorine pesticides and metals in earthworms. The experiment was carried out in 4-L soil microcosms in a controlled environment for 90 days. After 45 days of orchardgrass or perennial ryegrass growth, Lumbricus terrestris L. were introduced to the microcosms and exposed to the experimental soils for 45 days before the experiment was ended. Total trace element concentrations in the added organic amendments were below recommended safe levels and their phytoavailablity and earthworm availability remained low during a 90-day bioremediation study. At the end of the experiment, total tissue concentrations of Cu, Cd, Mn, Pb, and Zn in earthworms and grasses were below recommended safe levels. Total concentrations of Pb in test soil were similar to maximum background levels of Pb recorded in soils in the Eastern USA (100 mg kg−1 d.w.) because of previous application of orchard pesticides. Addition of aged dairy manure compost and presence of grasses was effective in reducing the accumulation of soil-derived Pb in earthworms, thus reducing the risk of soil Pb entry into wildlife food chains.

  3. Impact of glycerin and lignosulfonate on biodegradation of high explosives in soil.

    PubMed

    Won, Jongho; Borden, Robert C

    2016-11-01

    Soil microcosms were constructed and monitored to evaluate the impact of substrate addition and transient aerobic and anaerobic conditions on TNT, RDX and HMX biodegradation in grenade range soils. While TNT was rapidly biodegraded under both aerobic and anaerobic conditions with and without organic substrate, substantial biodegradation of RDX, HMX, and RDX daughter products was not observed under aerobic conditions. However, RDX and HMX were significantly biodegraded under anaerobic conditions, without accumulation of TNT or RDX daughter products (2-ADNT, 4-ADNT, MNX, DNX, and TNX). In separate microcosms containing grenade range soil, glycerin and lignosulfonate addition enhanced oxygen consumption, increasing the consumption rate >200% compared to untreated soils. Mathematical model simulations indicate that oxygen consumption rates of 5 to 20g/m 3 /d can be achieved with reasonable amendment loading rates. These results indicate that glycerin and lignosulfonate can be potentially used to stimulate RDX and HMX biodegradation by increasing oxygen consumption rates in soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil.

    PubMed

    Daebeler, Anne; Bodelier, Paul L E; Hefting, Mariet M; Laanbroek, Hendrikus J

    2015-03-01

    The first step of nitrification is carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA). It is largely unknown, by which mechanisms these microbes are capable of coexistence and how their respective contribution to ammonia oxidation may differ with varying soil characteristics. To determine how different levels of ammonium availability influence the extent of archaeal and bacterial contributions to ammonia oxidation, microcosm incubations with controlled ammonium levels were conducted. Net nitrification was monitored and ammonia-oxidizer communities were quantified. Additionally, the nitrification inhibitor allylthiourea (ATU) was applied to discriminate between archaeal and bacterial contributions to soil ammonia oxidation. Thaumarchaeota, which were the only ammonia oxidizers detectable at the start of the incubation, grew in all microcosms, but AOB later became detectable in ammonium amended microcosms. Low and high additions of ammonium increasingly stimulated AOB growth, while AOA were only stimulated by the low addition. Treatment with ATU had no effect on net nitrification and sizes of ammonia-oxidizing communities suggesting that the effective concentration of ATU to discriminate between archaeal and bacterial ammonia oxidation is not the same in different soils. Our results support the niche-differentiating potential of ammonium concentration for AOA and AOB, and we conclude that ammonium limitation can be a major reason for absence of detectable AOB in soil. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.

    PubMed

    Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang

    2017-11-01

    DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metagenome and metatranscriptome data for Rifle CMT-03 laboratory microcosm experiment completed in April 2014

    DOE Data Explorer

    Jewell, Talia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Karaoz, Ulas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bill, Markus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chakraborty, Romy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brodie, Eoin L [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Kenneth Hurst [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Beller, Harry R [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-04-01

    Sediment samples were collected during installation of monitoring borehole CMT-03. Microcosms were constructed and inoculated under anerobic conditions with these sediments and anaerobic Rifle artificial groundwater. Microcosm metagenomes and metatranscriptomes were sampled every 5 days for a period of 20 days. The dataset gives gene-level annotations, binning, metagenomic and metatranscriptomic coverages for these microcosms.

  7. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Story, Sandra; Brigmon, Robin L.

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  8. Influence of triethyl phosphate on phosphatase activity in shooting range soil: Isolation of a zinc-resistant bacterium with an acid phosphatase

    DOE PAGES

    Story, Sandra; Brigmon, Robin L.

    2016-12-19

    Phosphatase-mediated hydrolysis of organic phosphate may be a viable means of stabilizing heavy metals via precipitation as a metal phosphate in bioremediation applications. We investigated the effect of triethyl phosphate (TEP) on soil microbial-phosphatase activity in a heavy-metal contaminated soil. Gaseous TEP has been used at subsurface sites for bioremediation of organic contaminants but not applied in heavy-metal contaminated areas. Little is known about how TEP affects microbial activity in soils and it is postulated that TEP can serve as a phosphate source in nutrient-poor groundwater and soil/sediments. Over a 3-week period, TEP amendment to microcosms containing heavy-metal contaminated soilmore » resulted in increased activity of soil acid-phosphatase and repression of alkaline phosphatase, indicating a stimulatory effect on the microbial population. A soil-free enrichment of microorganisms adapted to heavy-metal and acidic conditions was derived from the TEP-amended soil microcosms using TEP as the sole phosphate source and the selected microbial consortium maintained a high acid-phosphatase activity with repression of alkaline phosphatase. Addition of 5 mM zinc to soil-free microcosms had little effect on acid phosphatase but inhibited alkaline phosphatase. One bacterial member from the consortium, identified as Burkholderia cepacia sp., expressed an acid-phosphatase activity uninhibited by high concentrations of zinc and produced a soluble, indigo pigment under phosphate limitation. The pigment was produced in a phosphate-free medium and was not produced in the presence of TEP or phosphate ion, indicative of purple acid-phosphatase types that are pressed by bioavailable phosphate. Finally, these results demonstrate that TEP amendment was bioavailable and increased overall phosphatase activity in both soil and soil-free microcosms supporting the possibility of positive outcomes in bioremediation applications.« less

  9. Highly efficient enrichment of low-abundance intact proteins by core-shell structured Fe3O4-chitosan@graphene composites.

    PubMed

    Zhang, Peng; Fang, Xiaoni; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2017-11-01

    In proteomics research, the screening and monitoring of disease biomarkers is still a major challenge, mainly due to their low concentration in biological samples. However, the universal enrichment of intact proteins has not been further studied. In this work, we developed a Fe 3 O 4 -chitosan@graphene (Fe 3 O 4 -CS@G) core-shell composite to enrich low-abundance proteins from biological samples. Fe 3 O 4 -CS@G composite holds chitosan layer decorated Fe 3 O 4 core, which improves the hydrophilicity of materials greatly. Meanwhile, the graphene nanosheets shell formed via electrostatic assembly endows the composite with huge surface area (178m 2 /g). The good water dispersibility ensures the sufficient contact opportunities between graphene composites and proteins, and the large surface area provides enough adsorption sites for the enrichment of proteins. Using Fe 3 O 4 -CS@G, four standard proteins Cyt-c, BSA, Myo and OVA were enriched with better adsorption capacity and recovery rate, compared with previously reported magnetic graphene composites. Additionally, the mechanism of compared to" is corrected into "compared with". proteins adsorption on Fe 3 O 4 -CS@G was further studied, which indicates that hydrophobic and electrostatic interaction work together to facilitate the universal and efficient enrichment of proteins. Human plasma sample was employed to further evaluate the enrichment performance of Fe 3 O 4 -CS@G. Eventually, 123 proteins were identified from one of SAX fractions of human plasma, which is much better than commercial Sep-pak C18 enrichment column (39 proteins). All these outstanding performances suggest that Fe 3 O 4 -CS@G is an ideal platform for the enrichment of low-abundance intact proteins and thus holds great potential to facilitate the identification of biomarkers from biological samples in proteomics research. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    PubMed

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  11. Methods for visualising active microbial benzene degraders in in situ microcosms.

    PubMed

    Schurig, Christian; Mueller, Carsten W; Höschen, Carmen; Prager, Andrea; Kothe, Erika; Beck, Henrike; Miltner, Anja; Kästner, Matthias

    2015-01-01

    Natural attenuation maybe a cost-efficient option for bioremediation of contaminated sites but requires knowledge about the activity of degrading microbes under in situ conditions. In order to link microbial activity to the spatial distribution of contaminant degraders, we combined the recently improved in situ microcosm approach, so-called 'direct-push bacterial trap' (DP-BACTRAP), with nano-scale secondary ion mass spectrometry (NanoSIMS) analysis on samples from contaminated constructed wetlands. This approach is based on initially sterile microcosms amended with (13)C-labelled benzene as a source of carbon and energy for microorganisms. The microcosms were introduced directly in the constructed wetland, where they were colonised by indigenous microorganisms from the sediment. After incubation in the field, the samples were analysed by NanoSIMS, scanning electron microscopy (SEM) and fluorescence microscopy in order to visualise (13)C-labelled microbial biomass on undisturbed samples from the microcosms. With the approach developed, we successfully visualised benzene-degrading microbes on solid materials with high surface area by means of NanoSIMS. Moreover, we could demonstrate the feasibility of NanoSIMS analysis of unembedded porous media with a highly complex topography, which was frequently reasoned to not lead to sufficient results.

  12. Effects of the Veterinary Pharmaceutical Ivermectin in Indoor Aquatic Microcosms

    PubMed Central

    Boonstra, Harry; Reichman, Erik P.

    2010-01-01

    The effects of the parasiticide ivermectin were assessed in plankton-dominated indoor microcosms. Ivermectin was applied once at concentrations of 30, 100, 300, 1000, 3000, and 10,000 ng/l. The half-life (dissipation time 50%; DT50) of ivermectin in the water phase ranged from 1.1 to 8.3 days. The lowest NOECcommunity that could be derived on an isolated sampling from the microcosm study by means of multivariate techniques was 100 ng/l. The most sensitive species in the microcosm study were the cladocerans Ceriodaphnia sp. (no observed effect concentration, NOEC = 30 ng/l) and Chydorus sphaericus (NOEC = 100 ng/l). The amphipod Gammarus pulex was less sensitive to ivermectin, showing consistent statistically significant reductions at the 1000-ng/l treatment level. Copepoda taxa decreased directly after application of ivermectin in the highest treatment but had already recovered at day 20 posttreatment. Indirect effects (e.g., increase of rotifers, increased primary production) were observed at the highest treatment level starting only on day 13 of the exposure phase. Cladocera showed the highest sensitivity to ivermectin in both standard laboratory toxicity tests as well as in the microcosm study. This study demonstrates that simple plankton-dominated test systems for assessing the effects of ivermectin can produce results similar to those obtained with large complex outdoor systems. PMID:20422169

  13. Characterization of interactions between soil solid phase and soil solution in the initial ecosystem development phase

    NASA Astrophysics Data System (ADS)

    Zimmermann, Claudia; Schaaf, Wolfgang

    2010-05-01

    In the initial phase of soil formation interactions between solid and liquid phases and processes like mineral weathering, formation of reactive surfaces and accumulation of organic matter play a decisive role in developing soil properties. As part of the Transregional Collaborative Research Centre (SFB/TRR 38) 'Patterns and processes of initial ecosystem development' in an artificial catchment, these interactions are studied at the catchment 'Chicken Creek' (Gerwin et al. 2009). To link the interactions between soil solid phase and soil solution at the micro-scale with observed processes at the catchment scale, microcosm experiments under controlled laboratory conditions were carried out. Main objectives were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 ° C. In total 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g*cm-3. The columns were automatically irrigated four times a day with 6.6 ml each (corresponding to 600 mm*yr-1). The gaseous phase in the headspace of the microcosms was analysed continuously for CO2 and N2O contents. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. All treatments including a control ran with four replicates over a period of 40 weeks. Two additional microcosms act as pure litter controls where substrate was replaced by glass pearls. Litter and substrate were analysed before and after the experiment. Percolate was continuously collected and

  14. Effects of complex carbon addition to soil CO2 efflux and isotopic composition to soils near dead and live piñon pine trees

    NASA Astrophysics Data System (ADS)

    Powers, H.; McDowell, N.; Breecker, D. O.

    2010-12-01

    We test the hypothesis that soils collected near dead and living pinus edulous (piñon pine) trees should show a difference in their capacities to decompose complex carbon compounds. Since soils near dead trees have a large amount of cellulose and other complex carbon, the soil microbial community should be selected to metabolize cellulose. We collected soils from both live and dead piñon trees, added cellulose to half of the replicates, and placed them in microcosms for incubation. The microcosms were periodically sampled by a trace gas analyzer (TGA100, Campbell Scientific, USA) for CO2 concentration and δ13C and δ18O analysis. We found that CO2 evolution rates from live soils were significantly higher than rates from dead soils (1.1 and 0.6 ug CO2 g-1 soil s-1 respectively); soils with added cellulose displayed higher rates (1.1 and 0.8 and ug CO2 g-1 soil s-1). We did not see any significant differences in δ13C values between treatments, but there was a difference in δ18O between soils treated with cellulose and soils with no cellulose. Soils from both dead and live trees showed an increase in CO2 efflux when cellulose was added; however there was no distinguishable difference in efflux rate between live and dead soils in the cellulose added treatments.

  15. A Natal Microcosm

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the quest to better understand the birth of stars and the formation of new worlds, astronomers have used NASA's Spitzer Space Telescope to examine the massive stars contained in a cloudy region called Sharpless 140. This cloud is a fascinating microcosm of a star-forming region since it exhibits, within a relatively small area, all of the classic manifestations of stellar birth.

    Sharpless 140 lies almost 3000 light-years from Earth in the constellation Cepheus. At its heart is a cluster of three deeply embedded young stars, which are each several thousand times brighter than the Sun. Though they are strikingly visible in this image from Spitzer's infrared array camera, they are completely obscured in visible light, buried within the core of the surrounding dust cloud.

    The extreme youth of at least one of these stars is indicated by the presence of a stream of gas moving at high velocities. Such outflows are signatures of the processes surrounding a star that is still gobbling up material as part of its formation.

    The bright red bowl, or arc, seen in this image traces the outer surface of the dense dust cloud encasing the young stars. This arc is made up primarily of organic compounds called polycyclic aromatic hydrocarbons, which glow on the surface of the cloud. Ultraviolet light from a nearby bright star outside of the image is 'eating away' at these molecules. Eventually, this light will destroy the dust envelope and the masked young stars will emerge.

    This false-color image was taken on Oct. 11, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  16. A Natal Microcosm

    NASA Image and Video Library

    2004-05-11

    In the quest to better understand the birth of stars and the formation of new worlds, astronomers have used NASA's Spitzer Space Telescope to examine the massive stars contained in a cloudy region called Sharpless 140. This cloud is a fascinating microcosm of a star-forming region since it exhibits, within a relatively small area, all of the classic manifestations of stellar birth. Sharpless 140 lies almost 3000 light-years from Earth in the constellation Cepheus. At its heart is a cluster of three deeply embedded young stars, which are each several thousand times brighter than the Sun. Though they are strikingly visible in this image from Spitzer's infrared array camera, they are completely obscured in visible light, buried within the core of the surrounding dust cloud. The extreme youth of at least one of these stars is indicated by the presence of a stream of gas moving at high velocities. Such outflows are signatures of the processes surrounding a star that is still gobbling up material as part of its formation. The bright red bowl, or arc, seen in this image traces the outer surface of the dense dust cloud encasing the young stars. This arc is made up primarily of organic compounds called polycyclic aromatic hydrocarbons, which glow on the surface of the cloud. Ultraviolet light from a nearby bright star outside of the image is "eating away" at these molecules. Eventually, this light will destroy the dust envelope and the masked young stars will emerge. This false-color image was taken on Oct. 11, 2003 and is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA05878

  17. Methanogenic degradation kinetics of phenolic compounds in aquifer-derived microcosms

    USGS Publications Warehouse

    Godsy, E.M.; Goerlitz, D.F.; Grbic-Galic, D.

    1992-01-01

    In this segment of a larger multidisciplinary study of the movement and fate of creosote derived compounds in a sand-and-gravel aquifer, we present evidence that the methanogenic degradation of the major biodegradable phenolic compounds and concomitant microbial growth in batch microcosms derived from contaminated aquifer material can be described using Monod kinetics. Substrate depletion and bacterial growth curves were fitted to the Monod equations using nonlinear regression analysis. The method of Marquardt was used for the determination of parameter values that best fit the experimental data by minimizing the residual sum of squares. The Monod kinetic constants (??max, Ks, Y, and kd) that describe phenol, 2-, 3-, and 4-methylphenol degradation and concomitant microbial growth were determined under conditions that were substantially different from those previously reported for microcosms cultured from sewage sludge. The Ks values obtained in this study are approximately two orders of magnitude lower than values obtained for the anaerobic degradation of phenol in digesting sewage sludge, indicating that the aquifer microorganisms have developed enzyme systems that are adapted to low nutrient conditions. The values for kd are much less than ??max, and can be neglected in the microcosms. The extremely low Y values, approximately 3 orders of magnitude lower than for the sewage sludge derived cultures, and the very low numbers of microorganisms in the aquifer derived microcosms suggest that these organisms use some unique strategies to survive in the subsurface environment. ?? 1992 Kluwer Academic Publishers.

  18. Responses of meiofauna and nematode communities to crude oil contamination in a laboratory microcosm experiment

    NASA Astrophysics Data System (ADS)

    Kang, Teawook; Oh, Je Hyeok; Hong, Jae-Sang; Kim, Dongsung

    2016-09-01

    We examined the effects of crude oil contamination on community assemblages of meiofauna and nematodes after exposure to total petroleum hydrocarbons in the laboratory. We administered a seawater solution that had been contaminated with total petroleum hydrocarbons to seven treatment groups at different concentrations, while the control group received uncontaminated filtered seawater. The average density of total meiofauna in the experimental microcosms diluted with 0.5%, 1%, 2%, and 4% contaminated seawater was higher than the density in the control. The average density of total meiofauna in the 8%, 15%, and 20% microcosms was lower than the density in the control. The density of nematodes was similar to that of the total meiofauna. Cluster analysis divided the microcosms into group 1 (control, 0.5%, 1%, 2%, and 4% microcosms) and group 2 (8%, 15%, and 20% microcosms). However, SIMPROF analysis showed no significant difference between the two groups ( p > 0.05). Bolbolaimus spp. (37.1%) were dominant among the nematodes. Cluster analysis showed similar results for nematode and meiofaunal communities. The total meiofaunal density, nematode density, and number of Bolbolaimus spp. individuals were significantly negatively associated with the concentration of total petroleum hydrocarbons (Spearman correlation coefficients, p < 0.05). Within the nematodes, epistrate feeders (group 2A: 46%) were the most abundant trophic group. Among the treatment groups, the abundance of group 2A increased in low-concentration microcosms and decreased in high-concentration microcosms. Thus, our findings provide information on the effects of oil pollution on meiofauna in the intertidal zones of sandy beaches.

  19. Site-specific variability in BTEX biodegradation under denitrifying conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, C.M.; Borden, R.C.

    1997-03-01

    Laboratory microcosm experiments were conducted to evaluate the feasibility of benzene, toluene, ethylbenzene, m-xylene, and o-xylene (BTEX) biodegradation under denitrifying conditions. Nine different sources of inocula, including contaminated and uncontaminated soil cores from four different sites and activated sludge, were used to establish microcosms. BTEX was not degraded under denitrifying conditions in microcosms inoculated with aquifer material from Rocky Point and Traverse City. However, rapid depletion of glucose under denitrifying conditions was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing Rocky Point aquifer material. TEX degradation was observed in microcosms containing aquifer materialmore » from Fort Bragg and Sleeping Bear Dunes and sewage sludge. Benzene was recalcitrant in all microcosms tested. The degradation of o-xylene ceased after toluene, ethylbenzene, and m-xylene were depleted in the Fort Bragg and sludge microcosms, but o-xylene continued to degrade in microcosms with contaminated Sleeping Bear Dunes soil. The most probable number (MPN) of denitrifiers in these nine different inocula were measured using a microtiter technique. There was no correlation between the MPN of denitrifiers and the TEX degradation rate under denitrifying conditions. Experimental results indicate that the degradation sequence and TEX degradation rate under denitrifying conditions may differ among sites. Results also indicate that denitrification alone may not be a suitable bioremediation technology for gasoline-contaminated aquifers because of the inability of denitrifiers to degrade benzene.« less

  20. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo.

    PubMed

    Downie, Helen F; Valentine, Tracy A; Otten, Wilfred; Spiers, Andrew J; Dupuy, Lionel X

    2014-01-01

    The recently developed transparent soil consists of particles of Nafion, a polymer with a low refractive index (RI), which is prepared by milling and chemical treatment for use as a soil analog. After the addition of a RI-matched solution, confocal imaging can be carried out in vivo and without destructive sampling. In a previous study, we showed that the new substrate provides a good approximation of plant growth conditions found in natural soils. In this paper, we present further development of the techniques for detailed quantitative analysis of images of root-microbe interactions in situ. Using this system it was possible for the first time to analyze bacterial distribution along the roots and in the bulk substrate in vivo. These findings indicate that the coupling of transparent soil with light microscopy is an important advance toward the discovery of the mechanisms of microbial colonisation of the rhizosphere.

  1. Light Structures Phototroph, Bacterial and Fungal Communities at the Soil Surface

    PubMed Central

    Davies, Lawrence O.; Schäfer, Hendrik; Marshall, Samantha; Bramke, Irene; Oliver, Robin G.; Bending, Gary D.

    2013-01-01

    The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0–3 mm) and bulk soil (3–12 mm) using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere. PMID:23894406

  2. Soil Water Characteristics of Cores from Low- and High-Centered Polygons, Barrow, Alaska, 2012

    DOE Data Explorer

    Graham, David; Moon, Ji-Won

    2016-08-22

    This dataset includes soil water characteristic curves for soil and permafrost in two representative frozen cores collected from a high-center polygon (HCP) and a low-center polygon (LCP) from the Barrow Environmental Observatory. Data include soil water content and soil water potential measured using the simple evaporation method for hydrological and biogeochemical simulations and experimental data analysis. Data can be used to generate a soil moisture characteristic curve, which can be fit to a variety of hydrological functions to infer critical parameters for soil physics. Considering the measured the soil water properties, the van Genuchten model predicted well the HCP, in contrast, the Kosugi model well fitted LCP which had more saturated condition.

  3. The Apollo 14 regolith - Chemistry of cores 14210/14211 and 14220 and soils 14141, 14148, and 14149

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Papike, J. J.; Simon, S. B.

    1982-01-01

    Neutron activation analysis was performed on bulk and size fractions from drive tube specimens from 39 cm and 16.5 cm depths, and soil samples taken at the Apollo 14 landing site. Chemical data were obtained for 31 major, minor, and trace elements in the KREEPy soils. The cores were homogeneous in chemical composition, containing 20% LKFM, 15% mare basalt, 6% ANT, and 59% high-K KREEP, according to the classifications of Laul and Papike (1980). The meteoritic fraction was 3-7% for both cores, while the chemical compositions of both cores and soils were similar. Differences were detected in the fractions finer than 10 microns, which were more feldspathic than the coarser samples. The similarities between the grains 1000-90 micron in diam and less than 10 micron in diam, in terms of chemical contents, indicates that the observed agglutinates were derived from fusion of the finest grained fraction. The dominant soil-forming processes were comminution and vertical mixing of the regolith.

  4. Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil.

    PubMed

    Martins, Jean M F; Majdalani, Samer; Vitorge, Elsa; Desaunay, Aurélien; Navel, Aline; Guiné, Véronique; Daïan, Jean François; Vince, Erwann; Denis, Hervé; Gaudet, Jean Paul

    2013-02-01

    The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 μm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 μm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic

  5. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  6. An integrated, cross-disciplinary study of soil hydrophobicity at atomic, molecular, core and landscape scales

    NASA Astrophysics Data System (ADS)

    Matthews, G. Peter; Doerr, Stefan; Van Keulen, Geertje; Dudley, Ed; Francis, Lewis; Whalley, Richard; Gazze, Andrea; Hallin, Ingrid; Quinn, Gerry; Sinclair, Kat; Ashton, Rhys

    2017-04-01

    Soil hydrophobicity can lead to reduced soil fertility and heightened flood risk caused by increased run-off. Soil hydrophobicity is a well-known phenomenon when induced by natural events such as wildfires and anthropogenic causes including adding organic wastes or hydrocarbon contaminants. This presentation concerns a much more subtle effect - the naturally occurring changes between hydrophilic and hydrophobic states caused by periods of wetness and drought. Although subtle, they nevertheless affect vast areas of soil, and so their effects can be very significant, and are predicted to increase under climate change conditions. To understand the effect, a major interdisciplinary study has been commissioned by the UK's Natural Environment Research Council (NERC) to investigate soil hydrophobicity over length scales ranging from atomic through molecular, core and landscape scale. We present the key findings from the many publications currently in preparation. The programme is predicated on the hypothesis that changes in soil protein abundance and localization, induced by variations in soil moisture and temperature, are crucial driving forces for transitions between hydrophobic and hydrophilic conditions at soil particle surfaces, and that these effects can be meaningfully upscaled from molecular to landscape scale. Three soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (natural rough pasture, Wales), intermediate to severe (pasture, Wales), and subcritical (managed research grassland, Rothamsted Research, England). The latter is already highly characterised so was also used as a control. Hydrophobic/ hydrophilic transitions were determined from water droplet penetration times. Scientific advances in the following five areas will be described: (i) the identification of these soil proteins by proteomic methods, using novel separation methods which reduces interference by humic acids, and allows identification

  7. Triclosan enriches for Dehalococcoides-like Chloroflexi in anaerobic soil at environmentally relevant concentrations.

    PubMed

    McNamara, Patrick J; Krzmarzick, Mark J

    2013-07-01

    Triclosan is an antimicrobial agent that is discharged to soils with land-applied wastewater biosolids, is persistent under anaerobic conditions, and yet its impact on anaerobic microbial communities in soils is largely unknown. We hypothesized that triclosan enriches for Dehalococcoides-like Chloroflexi because these bacteria respire organochlorides and are likely less sensitive, relative to other bacteria, to the antimicrobial effects of triclosan. Triplicate anaerobic soil microcosms were seeded with agricultural soil, which was not previously exposed to triclosan, and were amended with 1 mg kg(-1) of triclosan. Triplicate control microcosms did not receive triclosan, and the experiment was run for 618 days. The overall bacterial community (assessed by automated ribosomal intergenic spacer analysis and denaturing gradient gel electrophoresis) was not impacted by triclosan; however, the abundance of Dehalococcoides-like Chloroflexi 16S rRNA genes (determined by qPCR) increased 20-fold with triclosan amendment compared with a fivefold increase without triclosan. This work demonstrates that triclosan impacts anaerobic soil communities at environmentally relevant levels. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Effects of Soil Temperature and Moisture on Soil Respiration on the Tibetan Plateau

    PubMed Central

    Chang, Xiaofeng; Wang, Shiping; Xu, Burenbayin; Luo, Caiyun; Zhang, Zhenhua; Wang, Qi; Rui, Yichao; Cui, Xiaoying

    2016-01-01

    Understanding of effects of soil temperature and soil moisture on soil respiration (Rs) under future warming is critical to reduce uncertainty in predictions of feedbacks to atmospheric CO2 concentrations from grassland soil carbon. Intact cores with roots taken from a full factorial, 5-year alpine meadow warming and grazing experiment in the field were incubated at three different temperatures (i.e. 5, 15 and 25°C) with two soil moistures (i.e. 30 and 60% water holding capacity (WHC)) in our study. Another experiment of glucose-induced respiration (GIR) with 4 h of incubation was conducted to determine substrate limitation. Our results showed that high temperature increased Rs and low soil moisture limited the response of Rs to temperature only at high incubation temperature (i.e. 25°C). Temperature sensitivity (Q10) did not significantly decrease over the incubation period, suggesting that substrate depletion did not limit Rs. Meanwhile, the carbon availability index (CAI) was higher at 5°C compared with 15 and 25°C incubation, but GIR increased with increasing temperature. Therefore, our findings suggest that warming-induced decrease in Rs in the field over time may result from a decrease in soil moisture rather than from soil substrate depletion, because warming increased root biomass in the alpine meadow. PMID:27798671

  9. Inhibition of methane consumption in forest soils by monoterpenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, J.A.; Knowles, R.

    1998-04-01

    Selected monoterpenes were tested for their ability to inhibit atmospheric methane consumption by three forest soils from different vegetation types and by the cultured methanotrophic strain, Methylosinus trichosporium OB3b. Subsurface soil from coniferous (Pinus banksiana), deciduous (Populus tremuloides), and mixed hardwood (Tsuga canadensis and Prunus pensylvanica) stands was used under field-moist and slurry conditions. Most of the hydrocarbon monoterpenes tested significantly inhibited methane consumption by soils at environmentally relevant levels, with ({minus})-{alpha}-pinene being the most effective. With the exception of {beta}-myrcene, monoterpenes also strongly inhibited methane oxidation by Methylosinus trichosporium OB3b. Carbon dioxide production was stimulated in all of themore » soils by the monoterpenes tested. In one case, methane production was stimulated by ({minus})-{alpha}-pinene in an intact, aerobic core. Oxide and alcohol monoterpenoids stimulated methane production. Thus, monoterpenes appear to be potentially important regulators of methane consumption and carbon metabolism in forest soils.« less

  10. Exposure of Sink Drain Microcosms to Triclosan: Population Dynamics and Antimicrobial Susceptibility

    PubMed Central

    McBain, Andrew J.; Bartolo, Robert G.; Catrenich, Carl E.; Charbonneau, Duane; Ledder, Ruth G.; Price, Bradford B.; Gilbert, Peter

    2003-01-01

    Recent concern that the increased use of triclosan (TCS) in consumer products may contribute to the emergence of antibiotic resistance has led us to examine the effects of TCS dosing on domestic-drain biofilm microcosms. TCS-containing domestic detergent (TCSD) markedly lowered biofouling at 50% (wt/vol) but was poorly effective at use levels. Long-term microcosms were established and stabilized for 6 months before one was subjected to successive 3-month exposures to TCSD at sublethal concentrations (0.2 and 0.4% [wt/vol]). Culturable bacteria were identified by 16S rDNA sequence analysis, and their susceptibilities to four biocides and six antibiotics were determined. Microcosms harbored ca. 10 log10 CFU/g of biofilm, representing at least 27 species, mainly gamma proteobacteria, and maintained dynamic stability. Viable cell counts were largely unaffected by TCSD exposure, but species diversity was decreased, as corroborated by denaturing gradient gel electrophoresis analysis. TCS susceptibilities ranged widely within bacterial groups, and TCS-tolerant strains (including aeromonads, pseudomonads, stenotrophomonads, and Alcaligenes spp.) were isolated before and after TCSD exposure. Several TCS-tolerant bacteria related to Achromobacter xylosoxidans became clonally expanded during dosing. TCSD addition did not significantly affect the community profiles of susceptibility to the test biocides or antibiotics. Several microcosm isolates, as well as reference bacteria, caused clearing of particulate TCS in solid media. Incubations of consortia and isolates with particulate TCS in liquid led to putative TCS degradation by the consortia and TCS solubilization by the reference strains. Our results support the view that low-level exposure of environmental microcosms to TCS does not affect antimicrobial susceptibility and that TCS is degradable by common domestic biofilms. PMID:12957932

  11. Efficiency of surfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbon-contaminated soil: Link with bioavailability and the dynamics of the bacterial community.

    PubMed

    Cecotti, Martina; Coppotelli, Bibiana M; Mora, Verónica C; Viera, Marisa; Morelli, Irma S

    2018-09-01

    Shifts in the bacterial-community dynamics, bioavailability, and biodegradation of polycyclic aromatic hydrocarbons (PAHs) of chronically contaminated soil were analyzed in Triton X-100-treated microcosms at the critical micelle concentration (T-CMC) and at two sub-CMC doses. Only the sub-CMC-dose microcosms reached sorbed-PAH concentrations significantly lower than the control: 166±32 and 135±4mgkg -1 dry soil versus 266±51mgkg -1 ; consequently an increase in high- and low-molecular-weight PAHs biodegradation was observed. After 63days of incubation pyrosequencing data evidenced differences in diversity and composition between the surfactant-modified microcosms and the control, with those with sub-CMC doses containing a predominance of the orders Sphingomonadales, Acidobacteriales, and Gemmatimonadales (groups of known PAHs-degrading capability). The T-CMC microcosm exhibited a lower richness and diversity index with a marked predominance of the order Xanthomonadales, mainly represented by the Stenotrophomonas genus, a PAHs- and Triton X-100-degrading bacterium. In the T-CMC microcosm, whereas the initial surface tension was 35mNm -1 , after 63days of incubation an increase up to 40mNm -1 was registered. The previous observation and the gas-chromatography data indicated that the surfactant may have been degraded at the CMC by a highly selective bacterial community with a consequent negative impact on PAHs biodegradation. This work obtained strong evidence for the involvement of physicochemical and biologic influences determining the different behaviors of the studied microcosms. The results reported here contribute significantly to an optimization of, surfactant-enhanced bioremediation strategies for chronically contaminated soil since the application of doses below the CMC would reduce the overall costs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effect of pattern formation on C and N turnover heterogeneity in initial soils

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Zimmermann, Claudia

    2013-04-01

    The formation of vegetation patterns and hydrological processes, among others, result in soil heterogeneity in newly exposed land surfaces. We studied the effect of these developling structures on carbon and nitrogen trunover in soils of the artificial catchment Chicken Creek (Schaaf et al. 2011, 2012). Substrates with different physical and geochemical properties in combination with different labelled plant litter materials were studied in a microcosm experiment over a period of 80 weeks. Main objectives of the microcosm experiment were to determine the transformation processes of C and N from litter decomposition within the gaseous, liquid and solid phase, the interaction with mineral surfaces and its role for the establishment of biogeochemical cycles. The microcosm experiments were established in a climate chamber at constant 10 °C. In total, 48 soil columns (diameter: 14.4 cm; height: 30 cm) were filled with two different quaternary substrates (sand and loamy sand) representing the textural variation within the catchment at a bulk density of 1.4-1.5 g cm-3. The columns were automatically irrigated with artificial rainwater four times a day with 6.6 ml each (corresponding to 600 mm yr-1). The gaseous phase in the headspace of the microcosms was analyzed continuously for CO2 and N2O concentrations. C and N transformation processes were studied using 13C and 15N labelled litter of two different plant species occurring at the catchment (Lotus corniculatus, Calamagrostis epigejos) that was incorporated into the microcosm surface. By including litter from species with wide distribution within the catchment and soil substrates representing the main variation types of the sediments used for catchment construction we were able to characterize the general function of these sub-patches within the catchment with respect to litter decomposition, soil solution composition, DOC and nutrient leaching, and impact on the mineral soil phase. The results suggest that initial

  13. MICROCOSM AND IN-SITU FIELD STUDIES OF ENHANCED BIOTRANSFORMATION OF TRICHLOROETHYLENE BY PHENOL-UTILIZING MICROORGANISMS

    EPA Science Inventory

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms a...

  14. U(VI) bioreduction with emulsified vegetable oil as the electron donor--microcosm tests and model development.

    PubMed

    Tang, Guoping; Wu, Wei-Min; Watson, David B; Parker, Jack C; Schadt, Christopher W; Shi, Xiaoqing; Brooks, Scott C

    2013-04-02

    We conducted microcosm tests and biogeochemical modeling to study U(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe(III), U(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100-120 days in the EVO microcosms versus 10-20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface.

  15. Comparing the impacts of sediment-bound bifenthrin on aquatic macroinvertebrates in laboratory bioassays and field microcosms.

    PubMed

    Boyle, Rhianna L; Hoak, Molly N; Pettigrove, Vincent J; Hoffmann, Ary A; Long, Sara M

    2016-11-01

    We conducted two laboratory bioassays and two field microcosm exposures with bifenthrin (a synthetic pyrethroid) in order to evaluate the capacity of single-species laboratory bioassays to predict lethal and sublethal impacts on aquatic invertebrates in microcosms. For the laboratory species, Chironomus tepperi, larval survival was reduced by 24% at 53.66µg/g OC, while adult emergence was reduced at concentrations of 33.33µg/g OC and higher, with a 61% decrease at 77.78µg/g OC and no emergence at 126.67µg/g OC. The abundance of several other microcosm taxa was reduced in the microcosms at a similar concentration range (33.33µg/g OC and above), however there was no impact on the abundance of the congeneric species, Chironomus oppositus. The differences in impacts between test systems were potentially due to both differing species sensitivity and the interaction of ambient temperature with bifenthrin toxicity. Bifenthrin also was associated with early emergence of Chironomus sp. in both test systems, at concentrations of 10µg/g OC and higher (laboratory) and 43.90µg/g OC (microcosm), and with a significant decrease in the proportion of C. oppositus males in a microcosm. These findings indicate that while laboratory bioassays accurately predict many impacts in the field, there are some limitations to the predictive capacity of these tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Assessing microbial responses to iron enrichment in the Subarctic Northeast Pacific: Do microcosms reproduce the in situ condition?

    NASA Astrophysics Data System (ADS)

    Scarratt, M. G.; Marchetti, A.; Hale, M. S.; Rivkin, R. B.; Michaud, S.; Matthews, P.; Levasseur, M.; Sherry, N.; Merzouk, A.; Li, W. K. W.; Kiyosawa, H.

    2006-10-01

    A microcosm experiment was conducted in the NE Pacific in July 2002 to compare the microbial response between microcosms and the Subarctic Ecosystem Response to Iron-Enrichment Study (SERIES) in situ iron-enrichment experiment. Seawater microcosms (20 L) were incubated aboard ship under natural light using three treatments: (1) low-iron seawater amended with 4 nmol l -1 FeSO 4 (+Fe); (2) low-iron seawater amended with 4 nmol l -1 FeSO 4 and 86 nmol l -1 GeO 2 (+Fe+Ge); (3) seawater collected from the in situ Fe-enriched patch (PW). The +Fe+Ge treatment used germanium to control diatom growth to assess the role of diatoms in dimethylsulfoniopropionate (DMSP) production. The following variables were measured in the microcosms and in situ: chlorophyll a (chl a), nitrate ( NO3-), silicic acid (Si(OH) 4), phytoplankton abundance and species identification, bacterial abundance (including estimates of low- and high-DNA bacteria), bacterial production, bacterial specific growth rate, particulate and dissolved DMSP and dimethylsulfide (DMS) concentrations. There was little or no significant difference (ANCOVA) in the response of most variables between the +Fe and PW microcosms, but large differences were observed between both these treatments and the in situ data from the enriched patch. Chl a in all microcosms increased from ambient levels (approx. 0.5-1 μg l -1) to approx. 4.5-6.2 μg l -1 after 11 d incubation, when NO3- was fully depleted from all microcosms. During this same period, in situ chl a increased more slowly to a maximum of 2.9 μg l -1 on day 11. Nanophytoplankton and picophytoplankton were more abundant in the microcosms relative to the in situ community, which became dominated by large diatoms. Bacterial abundance was similar in the microcosms and in situ, but bacterial production was significantly higher in the microcosms. While neither DMSP d nor DMS accumulation showed significant differences between the microcosms and in situ , particulate DMSP

  17. Examining an underappreciated control on lignin decomposition in soils? Effects of reactive manganese species on intact plant cell walls

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.

    2011-12-01

    Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.

  18. Fate and bioaccumulation of isoproturon in outdoor aquatic microcosms.

    PubMed

    Merlin, Gerard; Vuillod, Maryline; Lissolo, Thierry; Clement, Bernard

    2002-06-01

    To gain information concerning the ecotoxicity of isoproturon (IPU) on aquatic ecosystems, six experimental ponds of 5 m3 each were studied. All the experiments were conducted during the summer over two years. Three different types of ecosystems were tested in 1994 and one type of ecosystem was selected and repeated in 1995 with three replicates. In each case, the initial concentration of IPU contamination was set at 10 microg/L. The IPU concentration was determined in the water column and in different species (mainly plants) of the microcosms. A first-order kinetic decrease in IPU concentration was observed in 1994, with half-life ranging from 15 to 35 d, depending on the microcosms. This relatively fast decrease was also confirmed in 1995, but it reached a constant value after two months. A high variability of the IPU concentration was observed in exposed plants, with bioconcentration factors ranging from 100 to 1,200 with large coefficients of variation. The observed plant bioconcentration factors are higher than those predicted by usual numerical models, probably due to the specific binding of IPU on one protein of the photosynthetic apparatus. Our data show that bioconcentration does not occur in mollusks but is important in photosynthetic organisms. Plant bioconcentration and microbial biodegradation are the main processes involved in the IPU decay in our outdoor aquatic microcosms.

  19. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems.

    PubMed

    Fuentes, María S; Raimondo, Enzo E; Amoroso, María J; Benimeli, Claudia S

    2017-04-01

    Although the use of organochlorine pesticides (OPs) is restricted or banned in most countries, they continue posing environmental and health concerns, so it is imperative to develop methods for removing them from the environment. This work is aimed to investigate the simultaneous removal of three OPs (lindane, chlordane and methoxychlor) from diverse types of systems by employing a native Streptomyces consortium. In liquid systems, a satisfactory microbial growth was observed accompanied by removal of lindane (40.4%), methoxychlor (99.5%) and chlordane (99.8%). In sterile soil microcosms, the consortium was able to grow without significant differences in the different textured soils (clay silty loam, sandy and loam), both contaminated or not contaminated with the OPs-mixture. The Streptomyces consortium was able to remove all the OPs in sterile soil microcosm (removal order: clay silty loam > loam > sandy). So, clay silty loam soil (CSLS) was selected for next assays. In non-sterile CSLS microcosms, chlordane removal was only about 5%, nonetheless, higher rates was observed for lindane (11%) and methoxychlor (20%). In CSLS slurries, the consortium exhibited similar growth levels, in the presence of or in the absence of the OPs-mixture. Not all pesticides were removed in the same way; the order of pesticide dissipation was: methoxychlor (26%)>lindane (12.5%)>chlordane (10%). The outlines of microbial growth and pesticides removal provide information about using actinobacteria consortium as strategies for bioremediation of OPs-mixture in diverse soil systems. Texture of soils and assay conditions (sterility, slurry formulation) were determining factors influencing the removal of each pesticide of the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms

    USGS Publications Warehouse

    Miller, L.G.; Warner, K.L.; Baesman, S.M.; Oremland, R.S.; McDonald, I.R.; Radajewski, S.; Murrell, J.C.

    2004-01-01

    Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ?? 7???. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ?? 9??? and the KIE for MeCl oxidation was 49 ?? 3???. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia , the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria. Copyright ?? 2004 Elsevier Ltd.

  1. Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms

    NASA Astrophysics Data System (ADS)

    Miller, Laurence G.; Warner, Karen L.; Baesman, Shaun M.; Oremland, Ronald S.; McDonald, Ian R.; Radajewski, Stefan; Murrell, J. Colin

    2004-08-01

    Bacteria in soil microcosm experiments oxidized elevated levels of methyl chloride (MeCl) and methyl bromide (MeBr), the former compound more rapidly than the latter. MeBr was also removed by chemical reactions while MeCl was not. Chemical degradation dominated the early removal of MeBr and accounted for more than half of its total loss. Fractionation of stable carbon isotopes during chemical degradation of MeBr resulted in a kinetic isotope effect (KIE) of 59 ± 7‰. Soil bacterial oxidation dominated the later removal of MeBr and MeCl and was characterized by different KIEs for each compound. The KIE for MeBr oxidation was 69 ± 9‰ and the KIE for MeCl oxidation was 49 ± 3‰. Stable isotope probing revealed that different populations of soil bacteria assimilated added 13C-labeled MeBr and MeCl. The identity of the active MeBr and MeCl degrading bacteria in soil was determined by analysis of 16S rRNA gene sequences amplified from 13C-DNA fractions, which identified a number of sequences from organisms not previously thought to be involved in methyl halide degradation. These included Burkholderia, the major clone type in the 13C-MeBr fraction, and Rhodobacter, Lysobacter and Nocardioides the major clone types in the 13C-MeCl fraction. None of the 16S rRNA gene sequences for methyl halide oxidizing bacteria currently in culture (including Aminobacter strain IMB-1 isolated from fumigated soil) were identified. Functional gene clone types closely related to Aminobacter spp. were identified in libraries containing the sequences for the cmuA gene, which codes for the enzyme known to catalyze the initial step in the oxidation of MeBr and MeCl. The cmuA gene was limited to members of the alpha-Proteobacteria whereas the greater diversity demonstrated by the 16S rRNA gene may indicate that other enzymes catalyze methyl halide oxidation in different groups of bacteria.

  2. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic.

    PubMed

    Xiao, Enzong; Krumins, Valdis; Xiao, Tangfu; Dong, Yiran; Tang, Song; Ning, Zengping; Huang, Zhengyu; Sun, Weimin

    2017-02-01

    Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    PubMed

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  4. Biomineralization of 1,4-dioxane in Pure Culture, Microcosm, and Column Studies Using 13C Labeling

    NASA Astrophysics Data System (ADS)

    Rolston, H. M.; Azizian, M.; Hyman, M. R.; Semprini, L.

    2016-12-01

    1,4-dioxane (1,4-D), a probable human carcinogen at low (< 1ppb) concentrations, is a widely occurring groundwater contaminant due to its use as a stabilizer for chlorinated solvents. Aerobic cometabolism, the use of a primary substrate to induce the production of microbial enzymes capable of transforming contaminants into innocuous products, is a promising in-situ treatment strategy for 1,4-D because it has the potential to mineralize trace 1,4-D concentrations to carbon dioxide (CO2). Previous work has confirmed the bacterium Rhodococcus rhodochrous (strain ATCC 21198) will transform 1,4-D when grown on isobutane. In this study, 13C uniformly labeled 1,4-D was used to determine the extent to which strain ATCC 21198 biomineralizes 1,4-D to CO2. Batch experiments have been conducted with pure culture 21198 and in microcosms constructed with aquifer sediments. The rate of resting cell transformation of 1,4-D by ATCC 21198 was over 100 times faster than the rate of CO2 accumulation, indicating the presence of intermediates that were slowly mineralized to CO2 . In microcosms, the use of isobutane as a primary substrate effectively stimulated the native microbial community to transform 1,4-D. Microcosms were also bioaugmented with ATCC 21198. After an initial lag and subsequent additions of isobutane, transformation rates in the native microcosms approached those of the bioaugmented microcosms. Cometabolically active microbes survived several periods of starvation in all microcosms, and nutrient amendment allowed for sustained transformation rates. 13C labeled 1,4-D is currently being used to determine the rates and extents of biomineralization in the microcosms. Column studies are also being conducted to evaluate cometabolism and biominerazation potential of isobutane as a biostimulant and 21198 for bioaugmentation under geochemical and flow conditions more representative of in-situ bioremediation.

  5. Characterization of bacterial functional groups and microbial activity in microcosms with glyphosate application

    NASA Astrophysics Data System (ADS)

    Moyano, Sofia; Bonetto, Mariana; Baigorria, Tomas; Pegoraro, Vanesa; Ortiz, Jimena; Faggioli, Valeria; Conde, Belen; Cazorla, Cristian; Boccolini, Monica

    2017-04-01

    Glyphosate is a worldwide used herbicide as c. 90% of transgenic crops are tolerant to it. Microbial degradation of glyphosate molecule in soil is considered the most important process that determines its persistence in the environment. However, the impact of this herbicide on target groups of soil biota remains poorly understood. Our objective was to characterize the abundance of bacterial groups and global microbial activity, under controlled conditions with application of increasing doses of glyphosate. A bioassay was carried out in microcosms using an agricultural soil (Typic Argiudoll) with registered history of glyphosate application from National Institute of Agricultural Technology (INTA, EEA Marcos Juarez, Argentina). Glyphosate of commercial formulation (74.7%) was used and the following treatments were evaluated: Soil without glyphosate (control), and Soil with doses equivalent to 1.12 and 11.2 kg ai ha-1. Microbiological parameters were estimated at 3, 7, 14 and 21 days after herbicide application by counting heterotrophic, cellulolytic, nitrogen fixing (N), and nitrifying bacteria; and fluorescein diacetate hydrolysis (FDA), microbial respiration (MR) and microbial biomass (C-BM). The N cycle related bacteria showed greater sensitivity to glyphosate with significant increases in abundance. On the other hand the C cycle parameters were strongly conditioned by the time elapsed since the application of the herbicide, as did the MR. The FDA declined with the highest dose, while the C-BM was not affected. Therefore, we conclude that in the studied experimental conditions glyphosate stimulated bacterial growth (i.e. target abundances) representing a source of N, C and nutrients. On the other hand, enzymatic activity (FDA) decreased when glyphosate was applied in the highest dose, whereas, it had no effect on the MR nor C-BM, which could be attributable to the organic matter content of the soil. However, future research in field conditions is necessary, for

  6. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils.

    PubMed

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: K fa ~ 1.2 and K oc ~ 140 mL g(-1)). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated.

  7. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    PubMed Central

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  8. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.

    PubMed

    LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L

    2017-06-06

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.

  9. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils

    DOE PAGES

    LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...

    2017-05-04

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less

  10. Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.

    Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less

  11. A Semi-Quantitative Study of the Impact of Bacterial Pollutant Uptake Capability on Bioremediation in a Saturated Sand-Packed Two-Dimensional Microcosm: Experiments and Simulation

    NASA Astrophysics Data System (ADS)

    Zheng, S.; Ford, R.; Van den Berg, B.

    2016-12-01

    The transport of microorganisms through the saturated porous matrix of soil is critical to the success of bioremediation in polluted groundwater systems. Chemotaxis can direct the movement of microorganisms toward higher concentration of pollutants, which they chemically transform and use as carbon and energy sources, resulting in enhanced bioremediation efficiency. In addition to accessibility and degradation kinetics, bacterial uptake of the pollutants is a critical step in bioremediation. In order to study the impact of bacterial pollutant uptake capability on bioremediation, a two-dimensional microcosm packed with saturated sand was set up to mimic the natural groundwater system where mass transfer limitation poses a barrier (see the figure below). Toluene source was continuously injected into the microcosm from an injection port. Pseudomonas putida F1, either wild-type (WT) or genetic mutants (TodX knockout, TodX and CymD knockout) that exhibited impaired toluene uptake capability, were co-injected with a conservative tracer into the microcosm either above or below the toluene. After each run, samples were collected from a dozen effluent ports to determine the concentration profiles of the bacteria and tracers. Toluene serves as the only carbon source throughout the microcosm. So the percent recovery, which is the ratio of cells collected at the outlet over that at the inlet, can be used as the indicator for bioremediation efficiency. Comparisons were made between the WT and mutant strains, where PpF1 WT showed greater proliferation than the mutants. Comparisons for low and high toluene source concentrations showed that the PpF1 mutant strains exhibited a greater degree of growth inhibition than WT at higher toluene concentration. A mathematical model was applied to evaluate the impact of various parameters on toluene uptake illustrating that with reasonable parameter estimates, the bioremediation efficiency was more sensitive to proliferation than transport

  12. Biodegradation of insensitive munition formulations IMX101 and IMX104 in surface soils.

    PubMed

    Indest, Karl J; Hancock, Dawn E; Crocker, Fiona H; Eberly, Jed O; Jung, Carina M; Blakeney, Gary A; Brame, Jon; Chappell, Mark A

    2017-07-01

    The biodegradation potential of insensitive munition melt cast formulations IMX101 and IMX104 was investigated in two unamended training range soils under aerobic and anaerobic growth conditions. Changes in community profiles in soil microcosms were monitored via high-throughput 16S rRNA sequencing over the course of the experiments to infer key microbial phylotypes that may be linked to IMX degradation. Complete anaerobic biotransformation occurred for IMX101 and IMX104 constituents 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one during the 30-day incubation period with Camp Shelby (CS) soil. By comparison, soil from Umatilla chemical depot demonstrated incomplete DNAN degradation with reduced transformation rates for both IMX101 and IMX104. Aerobic soil microcosms for both soils demonstrated reduced transformation rates compared to anaerobic degradation for all IMX constituents with DNAN the most susceptible to biotransformation by CS soil. Overall, IMX constituents hexahydro-1,3,5-trinitro-1,3,5-triazine and 1-nitroguanidine did not undergo significant transformation. In CS soil, organisms that have been associated with explosives degradation, namely members of the Burkholderiaceae, Bacillaceae, and Paenibacillaceae phylotypes increased significantly in anaerobic treatments whereas Sphingomonadaceae increased significantly in aerobic treatments. Collectively, these data may be used to populate fate and transport models to provide more accurate estimates for assessing environmental costs associated with release of IMX101 and IMX104.

  13. Azolla-anabaena-bacteria system as a natural microcosm

    NASA Astrophysics Data System (ADS)

    Carrapico, Francisco J.

    2002-02-01

    Azolla is an aquatic fern that contains a permanent endosymbiotic prokaryotic community (cyanobacteria and bacteria) inside of the cavity in the leaf dorsal lobe of the pteridophyte. This is a unique situation and can be seen as a microcosm inside of an organism and also can be considered a good example of a living model for biological and environmental studies. These symbionts are specific of this symbiosis and lives immobilized in a mucilaginous fibrillar network, which fills part of the cavity. The symbionts works as immobilized organisms in a natural system that can be used as a model for biotechnological research and in biologically based life support systems. The nature and the complexity of this system is simultaneously a reference and a challenge for the research in the communication between the two levels of nature organization (microcosm and mesocosm), and can also be used as a reference for the design of new environmental engineered symbiotic systems that include man as a prelude to life in space.

  14. Ecological changes in oral microcosm biofilm during maturation

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Kang, Si-Mook; Lee, Eun-Song; Lee, Ji Hyun; Kim, Bo-Ra; Kim, Baek-Il

    2016-10-01

    The aim of this study was to evaluate the ecological changes in the biofilm at different stages of maturation using 16S rDNA gene amplicon sequencing and to identify correlations between red/green (R/G) fluorescence ratio and ecological changes. An oral microcosm biofilm was initiated from the saliva of a single donor and grown anaerobically for up to 10 days in basal medium mucin. Quantitative light-induced fluorescence analysis was shown that the R/G ratio of the biofilm increased consistently, but the slope rapidly decreased after six days. The bacterial compositions of 10 species also consistently changed over time. However, there was no significant correlation between each bacteria and red fluorescence. The monitoring of the maturation process of oral microcosm biofilm over 10 days revealed that the R/G ratio and the bacterial composition within biofilm consistently changed. Therefore, the R/G fluorescence ratio of biofilm may be related with its ecological change rather than specific bacteria.

  15. Soil Iron Content as a Predictor of Carbon and Nutrient Mobilization in Rewetted Fens

    PubMed Central

    Emsens, Willem-Jan; Aggenbach, Camiel J. S.; Schoutens, Ken; Smolders, Alfons J. P.; Zak, Dominik; van Diggelen, Rudy

    2016-01-01

    Rewetted, previously drained fens often remain sources rather than sinks for carbon and nutrients. To date, it is poorly understood which soil characteristics stimulate carbon and nutrient mobilization upon rewetting. Here, we assess the hypothesis that a large pool of iron in the soil negatively affects fen restoration success, as flooding-induced iron reduction (Fe3+ to Fe2+) causes a disproportionate breakdown of organic matter that is coupled with a release of inorganic compounds. We collected intact soil cores in two iron-poor and two iron-rich drained fens, half of which were subjected to a rewetting treatment while the other half was kept drained. Prolonged drainage led to the mobilization of nitrate (NO3-, > 1 mmol L-1) in all cores, regardless of soil iron content. In the rewetted iron-rich cores, a sharp increase in pore water iron (Fe) concentrations correlated with concentrations of inorganic carbon (TIC, > 13 mmol L-1) and dissolved organic carbon (DOC, > 16 mmol L-1). Additionally, ammonium (NH4+) accumulated up to phytotoxic concentrations of 1 mmol L-1 in the pore water of the rewetted iron-rich cores. Disproportionate mobilization of Fe, TIC, DOC and NH4+ was absent in the rewetted iron-poor cores, indicating a strong interaction between waterlogging and iron-mediated breakdown of organic matter. Concentrations of dissolved phosphorus (P) rose slightly in all cores upon rewetting, but remained low throughout the experiment. Our results suggest that large pools of iron in the top soil of drained fens can hamper the restoration of the fen’s sink-service for ammonium and carbon upon rewetting. We argue that negative effects of iron should be most apparent in fens with fluctuating water levels, as temporary oxygenation allows frequent regeneration of Fe3+. We conclude that rewetting of iron-poor fens may be more feasible for restoration. PMID:27050837

  16. Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment.

    PubMed

    Kelly-Hooper, Francine; Farwell, Andrea J; Pike, Glenna; Kennedy, Jocelyn; Wang, Zhendi; Grunsky, Eric C; Dixon, D George

    2013-10-01

    The Canadian Council of Ministers of the Environment (CCME) reference method for the Canada-wide standard (CWS) for petroleum hydrocarbon (PHC) in soil provides chemistry analysis standards and guidelines for the management of contaminated sites. However, these methods can coextract natural biogenic organic compounds (BOCs) from organic soils, causing false exceedences of toxicity guidelines. The present 300-d microcosm experiment used CWS PHC tier 1 soil extraction and gas chromatography-flame ionization detector (GC-FID) analysis to develop a new tier 2 mathematical approach to resolving this problem. Carbon fractions F2 (C10-C16), F3 (C16-C34), and F4 (>C34) as well as subfractions F3a (C16-C22) and F3b (C22-C34) were studied in peat and sand spiked once with Federated crude oil. These carbon ranges were also studied in 14 light to heavy crude oils. The F3 range in the clean peat was dominated by F3b, whereas the crude oils had approximately equal F3a and F3b distributions. The F2 was nondetectable in the clean peat but was a significant component in crude oil. The crude oil–spiked peat had elevated F2 and F3a distributions. The BOC-adjusted PHC F3 calculation estimated the true PHC concentrations in the spiked peat. The F2:F3b ratio of less than 0.10 indicated PHC absence in the clean peat, and the ratio of greater than or equal to 0.10 indicated PHC presence in the spiked peat and sand. Validation studies are required to confirm whether this new tier 2 approach is applicable to real-case scenarios. Potential adoption of this approach could minimize unnecessary ecological disruptions of thousands of peatlands throughout Canada while also saving millions of dollars in management costs. © 2013 SETAC.

  17. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    PubMed

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. A simple, inexpensive, and field-relevant microcosm tidal simulator for use in marsh macrophyte studies1

    PubMed Central

    MacTavish, Rachel M.; Cohen, Risa A.

    2014-01-01

    • Premise of the study: A microcosm unit with tidal simulation was developed to address the challenge of maintaining ecologically relevant tidal regimes while performing controlled greenhouse experiments on smooth cordgrass, Spartina alterniflora. • Methods and Results: We designed a simple, inexpensive, easily replicated microcosm unit with tidal simulation and tested whether S. alterniflora growth in microcosms with tidal simulation was similar to that of tidally influenced plants in the field on Sapelo Island, Georgia. After three months of exposure to either natural or simulated tidal treatment, plants in microcosms receiving tidal simulation had similar stem density, height, and above- and belowground biomass to plants in field plots. • Conclusions: The tidal simulator developed may provide an inexpensive, effective method for conducting studies on S. alterniflora and other tidally influenced plants in controlled settings to be used not only to complement field studies, but also in locations without coastal access. PMID:25383265

  19. Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms.

    PubMed

    Nyman, J A; Klerks, P L; Bhattacharyya, S

    2007-09-01

    We determined how a cleaner and a dispersant affected hydrocarbon biodegradation in wetland soils dominated by the plant Panicum hemitomon, which occurs throughout North and South America. Microcosms received no hydrocarbons, South Louisiana crude, or diesel; and no additive, a dispersant, or a cleaner. We determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydrocarbons in water and sediment fractions 1, 7, 31, and 186 days later. Disappearance was distinguished from biodegradation via hopane-normalization. After 186 days, TPH disappearance ranged from 24% to 97%. There was poor correlation among the four TPH measures, which indicated that each quantified a different suite of hydrocarbons. Hydrocarbon disappearance and biodegradation were unaltered by these additives under worse-case scenarios. Any use of these additives must generate benefits that outweigh the lack of effect on biodegradation demonstrated in this report, and the increase in toxicity that we reported earlier.

  20. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.

    PubMed

    Cuadrado, Virginia; Merini, Luciano J; Flocco, Cecilia G; Giulietti, Ana M

    2008-01-01

    The dissipation of 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) in high-humic-matter-containing soils from agricultural fields of the Argentinean Humid Pampa region was studied, employing soil microcosms under different experimental conditions. The added herbicide was dissipated almost completely by soils with and without history of herbicide use by day 28. At 500 ppm, both soils showed the same degradation rates; but at 5-ppm concentration, the chronically exposed soil demonstrated a faster degradation of the herbicide. 2,4-DB addition produced increases in herbicide-degrading bacteria of three and 1.5 orders of magnitude in soils with and without history of herbicide use, respectively, in microcosms with 5 ppm. At 500-ppm concentration, the increase in 2,4-DB degraders was five orders of magnitude after 14 days, independent of the history of herbicide use. No differences were observed in either 2,4-DB degradation rates or in degrader bacteria numbers in the presence and absence of alfalfa plants, in spite of some differential characteristics in patterns of 2,4-DB metabolite accumulation. The main factor affecting 2,4-DB degradation rate would be the history of herbicide use, as a consequence of the adaptation of the indigenous microflora to the presence of herbicides in the field.

  1. Arsenic mobilization and immobilization in paddy soils

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  2. Degradation and metabolite formation of estrogen conjugates in an agricultural soil

    USDA-ARS?s Scientific Manuscript database

    Estrogen conjugates are precursors of free estrogens such as 17beta-estradiol (E2) and estrone (E1), which causes potent endocrine disrupting effects on aquatic organisms. In this study, microcosm laboratory experiments were conducted in an agricultural soil to investigate the aerobic degradation an...

  3. Transfers and transformations of zinc in flow-through wetland microcosms.

    PubMed

    Gillespie, W B; Hawkins, W B; Rodgers, J H; Cano, M L; Dorn, P B

    1999-06-01

    Two microcosm-scale wetlands (570-liter containers) were integratively designed and constructed to investigate transfers and transformations of zinc associated with an aqueous matrix, and to provide future design parameters for pilot-scale constructed wetlands. The fundamental design of these wetland microcosms was based on biogeochemical principles regulating fate and transformations of zinc (pH, redox, etc.). Each wetland consisted of a 45-cm hydrosoil depth inundated with 25 cm of water, and planted with Scirpus californicus. Zinc ( approximately 2 mg/liter) as ZnCl2 was amended to each wetland for 62 days. Individual wetland hydraulic retention times (HRT) were approximately 24 h. Total recoverable zinc was measured daily in microcosm inflow and outflows, and zinc concentrations in hydrosoil and S. californicus tissue were measured pre- and post-treatment. Ceriodaphnia dubia and Pimephales promelas7-day aqueous toxicity tests were performed on wetland inflows and outflows, and Hyalella azteca whole sediment toxicity tests (10-day) were performed pre- and post-treatment. Approximately 75% of total recoverable zinc was transferred from the water column. Toxicity decreased from inflow to outflow based on 7-day C. dubia tests, and survival of H. azteca in hydrosoil was >80%. Data illustrate the ability of integratively designed wetlands to transfer and sequester zinc from the water column while concomitantly decreasing associated toxicity. Copyright 1999 Academic Press.

  4. Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients.

    PubMed Central

    DiGiovanni, G D; Neilson, J W; Pepper, I L; Sinclair, N A

    1996-01-01

    This study evaluated the potential for gene transfer of a large catabolic plasmid from an introduced organism to indigenous soil recipients. The donor organism Alcaligenes eutrophus JMP134 contained the 80-kb plasmid pJP4, which contains genes that code for mercury resistance. Genes on this plasmid plus chromosomal genes also allow degradation of 2,4-dichloruphenoxyacetic acid (2,4-D). When JMP134 was inoculated into a nonsterile soil microcosm amended with 1,000 micrograms of 2,4-D g-1, significant (10(6) g of soil-1) populations of indigenous recipients or transconjugants arose. These transconjugants all contained an 80-kb plasmid similar in size to pJP4, and all degraded 2,4-D. In addition, all transconjugants were resistant to mercury and contained the tfdB gene of pJP4 as detected by PCR. No mercury-resistant, 2,4-D-degrading organisms with large plasmids or the tfdB gene were found in the 2,4-D-amended but uninoculated control microcosm. These data clearly show that the plasmid pJP4 was transferred to indigenous soil recipients. Even more striking is the fact that not only did the indigenous transconjugant population survive and proliferate but also enhanced rates of 2,4-D degradation occurred relative to microcosms in which no such gene transfer occurred. Overall, these data indicate that gene transfer from introduced organisms is an effective means of bioaugmentation and that survival of the introduced organism is not a prerequisite for biodegradation that utilizes introduced biodegradative genes. PMID:8779592

  5. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil.

    PubMed

    Okano, Yutaka; Hristova, Krassimira R; Leutenegger, Christian M; Jackson, Louise E; Denison, R Ford; Gebreyesus, Binyam; Lebauer, David; Scow, Kate M

    2004-02-01

    Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and has a large global impact. In the past, the ecology and physiology of AOB were not well understood because these organisms are notoriously difficult to culture. Recent applications of molecular techniques have advanced our knowledge of AOB, but the necessity of using PCR-based techniques has made quantitative measurements difficult. A quantitative real-time PCR assay targeting part of the ammonia-monooxygenase gene (amoA) was developed to estimate AOB population size in soil. This assay has a detection limit of 1.3 x 10(5) cells/g of dry soil. The effect of the ammonium concentration on AOB population density was measured in soil microcosms by applying 0, 1.5, or 7.5 mM ammonium sulfate. AOB population size and ammonium and nitrate concentrations were monitored for 28 days after (NH4)2SO4 application. AOB populations in amended treatments increased from an initial density of approximately 4 x 10(6) cells/g of dry soil to peak values (day 7) of 35 x 10(6) and 66 x 10(6) cells/g of dry soil in the 1.5 and 7.5 mM treatments, respectively. The population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) remained between 0.7 x 10(9) and 2.2 x 10(9) cells/g of soil, regardless of the ammonia concentration. A fertilization experiment was conducted in a tomato field plot to test whether the changes in AOB density observed in microcosms could also be detected in the field. AOB population size increased from 8.9 x 10(6) to 38.0 x 10(6) cells/g of soil by day 39. Generation times were 28 and 52 h in the 1.5 and 7.5 mM treatments, respectively, in the microcosm experiment and 373 h in the ammonium treatment in the field study. Estimated oxidation rates per cell ranged initially from 0.5 to 25.0 fmol of NH4+ h(-1) cell(-1) and decreased with time in both microcosms and the field. Growth yields were 5.6 x 10(6), 17.5 x

  6. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    PubMed

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  7. Effect of isobutanol on toluene biodegradation in nitrate amended, sulfate amended and methanogenic enrichment microcosms.

    PubMed

    Jayamani, Indumathy; Cupples, Alison M

    2013-09-01

    Isobutanol is an alternate fuel additive that is being considered because of economic and lower emission benefits. However, future gasoline spills could result in co-contamination of isobutanol with gasoline components such as benzene, toluene, ethyl-benzene and xylene. Hence, isobutanol could affect the degradability of gasoline components thereby having an effect on contaminant plume length and half-life. In this study, the effect of isobutanol on the biodegradation of a model gasoline component (toluene) was examined in laboratory microcosms. For this, toluene and isobutanol were added to six different toluene degrading laboratory microcosms under sulfate amended, nitrate amended or methanogenic conditions. While toluene biodegradation was not greatly affected in the presence of isobutanol in five out of the six different experimental sets, toluene degradation was completely inhibited in one set of microcosms. This inhibition occurred in sulfate amended microcosms constructed with inocula from wastewater treatment plant activated sludge. Our data suggest that toluene degrading consortia are affected differently by isobutanol addition. These results indicate that, if co-contamination occurs, in some cases the in situ half-life of toluene could be significantly extended.

  8. CO2 and CH4 Production in Low-Temperature Soil Incubations from Low and High Centered Polygons, Barrow, Alaska, 2012-2013

    DOE Data Explorer

    Taniya RoyChowdhury; David Graham; Stan Wullschleger

    2016-08-29

    The dataset consists of respiration and methane production rates obtained from soil microcosm studies carried out under controlled temperature and incubation conditions. Soils represent the low- and high-centered polygon active layers and permafrost (when present) from the NGEE-Arctic Intensive Study Site 1.

  9. Fate of a metal-resistant inoculum in contaminated and pristine soils assessed by denaturing gradient gel electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, J.R.; Chang, Y.J.; MacNaughton, S.J.

    Cesium, cadmium, cobalt, and strontium are four contaminants frequently found in soils at biotoxic levels. Introduction of certain nongenetically modified bacteria has been frequently suggested as a method for the immobilization of heavy metal contaminants in soil, thereby reducing runoff and bioavailability. In this study, the authors have used the polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) to track the survival of the five bacterial species added to soil microcosms with and without the addition of a mixture of these metals. The PCR primers targeted conserved regions of the 165 rDNA molecular present in all bacteria. Themore » reaction products were shown to reflect the relative abundance of the bacteria both in mixtures of pure cultures and against a background of all the eubacterial species present in the soil following inoculation. Three of the species (Pseudomonas aeruginosa FRD-1, Shewanella putrifaciens 200, and Desulfovibrio vulgaris Hildenborough) decreased rapidly following inoculation into both soils. The proportion of Alcaligenes eutrophus CH34 remained at a constant level throughout the 8-week experiment in both soil treatments. Sphingomonas aromaticivorans B0695 showed toxic metal-dependent survival in that its relative abundance dropped rapidly in pristine soil but remained at approximately inoculation levels throughout the experiment in contaminated microcosms.« less

  10. Alteration of Rock Fragments from Columbia River Basalt Microcosms

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Thomas-Keprta, Kathie L.; Velbel, Michael A.; McKay, David S.; Stevens, Todd O.

    1999-01-01

    During an earlier study, microorganisms were grown microcosms consisting of sterilized chips of Columbia River Basalt (CRB) and natural CRB ground water with its natural microflora; environmental conditions simulated a deep subsurface, anaerobic, dark environment. Subsequent scanning and transmission electron microscope (SEM and TEM) studies revealed the presence of several types of bacteria and biofilm, some of which were mineralized. Some of these biological features are very similar to possible biogenic features found in two meteorites from Mars, ALH84001 (found in Antarctica) and Nakhla (observed to fall in Egypt). Both ALH84001 and Nakhla contain traces of low-temperature aqueous alteration of silicates, oxides, and sulfides. The goals of this study are to use high-resolution field-emission SEM (FE-SEM) to examine the CRB samples for evidence of alteration features similar to those in the martian meteorites, to determine the extent of alteration during the CRB microcosm experiments, and to determine whether effects of biological activity can be distinguished from inorganic effects.

  11. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation

    PubMed Central

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain

    2015-01-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. PMID:26002901

  12. Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments.

    PubMed

    dos Santos, A C F; Marques, E L S; Gross, E; Souza, S S; Dias, J C T; Brendel, M; Rezende, R P

    2012-01-27

    Currently, the effect of crude oil on ammonia-oxidizing bacterium communities from mangrove sediments is little understood. We studied the diversity of ammonia-oxidizing bacteria in mangrove microcosm experiments using mangrove sediments contaminated with 0.1, 0.5, 1, 2, and 5% crude oil as well as non-contaminated control and landfarm soil from near an oil refinery in Camamu Bay in Bahia, Brazil. The evolution of CO(2) production in all crude oil-contaminated microcosms showed potential for mineralization. Cluster analysis of denaturing gradient gel electrophoresis-derived samples generated with primers for gene amoA, which encodes the functional enzyme ammonia monooxygenase, showed differences in the sample contaminated with 5% compared to the other samples. Principal component analysis showed divergence of the non-contaminated samples from the 5% crude oil-contaminated sediment. A Venn diagram generated from the banding pattern of PCR-denaturing gradient gel electrophoresis was used to look for operational taxonomic units (OTUs) in common. Eight OTUs were found in non-contaminated sediments and in samples contaminated with 0.5, 1, or 2% crude oil. A Jaccard similarity index of 50% was found for samples contaminated with 0.1, 0.5, 1, and 2% crude oil. This is the first study that focuses on the impact of crude oil on the ammonia-oxidizing bacterium community in mangrove sediments from Camamu Bay.

  13. Plant uptake of pentachlorophenol from sludge-amended soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellin, C.A.; O'Connor, G.A.

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent ofmore » sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were <0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.« less

  14. Plant uptake of pentachlorophenol from sludge-amended soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellin, C.A.; O'Connor, G.A.

    A greenhouse study was conducted to determine the effects of sludge on plant uptake of {sup 14}C-pentachlorophenol (PCP). Plants included tall fescue (Festuca arundinacea Schreb.), lettuce (Latuca sativa L.), carrot (Daucus carota L.), and chile pepper (Capsicum annum L.). Minimal intact PCP was detected in the fescue and lettuce by gas chromatography/mass spectrometry (GC/MS) analysis. No intact PCP was detected in the carrot tissue extracts. Chile pepper was not analyzed for intact PCP because methylene chloride extracts contained minimal {sup 14}C. The GC/MS analysis of soil extracts at harvest suggests a half-life of PCP of about 10 d independent ofmore » sludge rate or PCP loading rate. Rapid degradation of PCP in the soil apparently limited PCP availability to the plant. Bioconcentration factors (dry plant wt./initial soil PCP concentration) based on intact PCP were < 0.01 for all crops, suggesting little PCP uptake. Thus, food-chain crop PCP uptake in these alkaline soils should not limit land application of sludge.« less

  15. Denitrification in nitrate-rich streams: Application of N2:Ar and 15N-tracer methods in intact cores

    USGS Publications Warehouse

    Smith, Lesley K.; Voytek, M.A.; Böhlke, J.K.; Harvey, J.W.

    2006-01-01

    Rates of benthic denitrification were measured using two techniques, membrane inlet mass spectrometry (MIMS) and isotope ratio mass spectrometry (IRMS), applied to sediment cores from two NO3--rich streams draining agricultural land in the upper Mississippi River Basin. Denitrification was estimated simultaneously from measurements of N 2:Ar (MIMS) and 15N[N2] (IRMS) after the addition of low-level 15NO3- tracer ( 15N:N = 0.03-0.08) in stream water overlying intact sediment cores. Denitrification rates ranged from about 0 to 4400 lmol N??m -2??h-1 in Sugar Creek and from 0 to 1300 ??mol N??m-2??h-1 in Iroquois River, the latter of which possesses greater streamflow discharge and a more homogeneous streambed and water column. Within the uncertainties of the two techniques, there is good agreement between the MIMS and IRMS results, which indicates that the production of N2 by the coupled process of nitrification/denitrification was relatively unimportant and surface-water NO3- was the dominant source of NO3- for benthic denitrification in these streams. Variation in stream NO3- concentration (from about 20 ??mol/L during low discharge to 1000 ??mol/L during high discharge) was a significant control of benthic denitrification rates, judging from the more abundant MIMS data. The interpretation that NO3- concentration directly affects denitrification rate was corroborated by increased rates of denitrification in cores amended with NO 3-. Denitrification in Sugar Creek removed ???11% per day of the instream NO3- in late spring and removed roughly 15-20% in late summer. The fraction of NO3- removed in Iroquois River was less than that of Sugar Creek. Although benthic denitrification rates were relatively high during periods of high stream flow, when NO3 concentrations were also high, the increase in benthic denitrification could not compensate for the much larger increase in stream NO3- fluxes during high flow. Consequently, fractional NO3- losses were relatively low

  16. Community and functional shifts in ammonia oxidizers across terrestrial and marine (soil/sediment) boundaries in two coastal Bay ecosystems.

    PubMed

    Zhang, Li-Mei; Duff, Aoife M; Smith, Cindy J

    2018-04-24

    Terrestrial-marine boundaries are significant sites of biogeochemical activity with delineated gradients from land to sea. While niche differentiation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) driven by pH and nitrogen is well known, the patterns and environmental drivers of AOA and AOB community structure and activity across soil-sediment boundaries have not yet been determined. In this study, nitrification potential rate, community composition and transcriptional activity of AOA and AOB in soil, soil/sediment interface and sediments of two coastal Bays were characterized using a combination of field investigations and microcosm incubations. At DNA level, amoA gene abundances of AOA were significantly greater than AOB in soil, while in sediments AOB were significantly more abundant than AOA, but at the soil/sediment interface there were equal numbers of AOA and AOB amoA genes. Microcosm incubations provided further evidence, through qPCR and DGGE-sequencing analysis of amoA transcripts, that AOA were active in soil, AOB in sediment and both AOA and AOB were active at the soil/sediment interface. The AOA and AOB community composition shifted across the coastal soil-interface-sediment gradient with salinity and pH identified as major environmental drivers. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    USGS Publications Warehouse

    Wieting, Celeste; Ebel, Brian A.; Singha, Kamini

    2017-01-01

    Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  18. METRICS OF PERFORMANCE FOR THE SABRE MICROCOSM STUDY (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, a laboratory microcosm study was conducted to provide...

  19. CHARACTERIZING THE MICROBIAL COMMUNITY IN SABRE MICROCOSM STUDIES (ABSTRACT ONLY)

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project will evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In preparation for a field scale pilot test, laboratory microcosm and column studies were conducte...

  20. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms.

    PubMed

    Gustafsson, Kerstin; Blidberg, Eva; Elfgren, Irene Karlsson; Hellström, Anna; Kylin, Henrik; Gorokhova, Elena

    2010-02-01

    The effects of the strobilurin fungicide azoxystrobin were studied in brackish water microcosms, with natural plankton communities and sediment. Two experiments were conducted: Experiment 1 (nominal conc. 0, 15 and 60 microg/L, 24-L outdoor microcosms for 21 days) and a second, follow-up, Experiment 2 (nominal conc. 0, 3, 7.5, 15 microg/L, 4-L indoor microcosms for 12 days). The microcosms represent a simplified brackish water community found in shallow semi-enclosed coastal areas in agricultural districts in the Baltic Sea region. Measured water concentrations of the fungicide (Experiment 1) were, on average, 83 and 62% of nominal concentrations directly after application, and 25 and 30% after 21 days, for the low and high dose treatments, respectively, corresponding to mean DT50-values of 15.1 and 25.8 days, for low and high dose treatments, respectively. In Experiment 1, direct toxic effects on calanoid copepods at both test concentrations were observed. Similarly, in Experiment 2, the copepod abundance was significantly reduced at all tested concentrations. There were also significant secondary effects on zooplankton and phytoplankton community structure, standing stocks and primary production. Very few ecotoxicological studies have investigated effects of plant protection products on Baltic organisms in general and effects on community structure and function specifically. Our results show that azoxystrobin is toxic to brackish water copepods at considerably lower concentrations than previously reported from single species tests on freshwater crustaceans, and that direct toxic effects on this ecologically important group may lead to cascade effects altering lower food webs and ecosystem functioning.

  1. Screening Spanish isolates of steinernematid nematodes for use as biological control agents through laboratory and greenhouse microcosm studies.

    PubMed

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2009-02-01

    Entomopathogenic nematodes (EPNs) are one of the best non-chemical alternatives for insect pest control, with native EPN strains that are adapted to local conditions considered to be ideal candidates for regional biological control programs. Virulence screening of 17 native Mediterranean EPN strains was performed to select the most promising strain for regional insect pest control. Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain produced 7%, 91% and 33% larval mortality for the insects Agriotes sordidus (Illiger) (Coleoptera: Elateridae), Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), respectively, and was selected as the most promising strain. The S. feltiae Rioja strain-S. littoralis combination was considered the most suitable to develop the Rioja strain as a biocontrol agent for soil applications. The effect of soil texture on the virulence of the Rioja strain against S. littoralis was determined through dose-response experiments. The estimated LC(90) to kill larvae in two days was 220, 753 and 4178 IJs/cm(2) for soils with a clay content of 5%, 14% and 24%, respectively, which indicates that heavy soils produced negative effects on the virulence of the Rioja strain. The nematode dose corresponding to the LC(90) for soils with a 5% and 14% clay content reduced insect damage to Capsicum annuum Linnaeus (Solanales: Solanaceae) plants under greenhouse microcosm conditions. The results of this research suggest that an accurate characterization of new EPN strains to select the most suitable combination of insect, nematode and soil texture might provide valuable data to obtain successful biological control under different ecological scenarios in future field applications.

  2. Population dynamics of transgenic strain Escherichia coli Z905/pPHL7 in freshwater and saline lake water microcosms with differing microbial community structures

    NASA Astrophysics Data System (ADS)

    Popova, L. Yu.; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.

    Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water.

  3. Distribution and bioaccumulation of selenium in aquatic microcosms

    USGS Publications Warehouse

    Besser, John M.; Huckins, James N.; Little, Edward E.; La Point, Thomas W.

    1989-01-01

    Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved 75Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of 75Se over the range 80–180 mg SO4 liter−1. When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.

  4. ANAEROBIC BIODEGRADATION OF ALKYLBENZENES IN LABORATORY MICROCOSMS REPRESENTING AMBIENT CONDITIONS

    EPA Science Inventory

    A microcosm study was performed to document the anaerobic biodegradation of benzene, toluene, ethylbenzene, m- xylene, and/or o-xylene in petroleum-contaminated aquifer sediment from sites in Michigan (MI) and North Carolina (NC) and relate the results to previous field investiga...

  5. Suppression of Native Soil Organic Matter Decomposition by Post-Fermentation Sludge in Agriculture Soil as Assessed by 13C Natural Abundance

    NASA Astrophysics Data System (ADS)

    Stelmach, W.; Bieganowski, A.; Kuzyakov, Y.

    2016-12-01

    Anaerobic digestion of organic wastes results in the production of biogas and post-fermentation sludge. Post-fermentation sludge, which is rich in nutrients and contains more easily accessible inorganic-N than comparable composts, can be used as an alternative fertilizer in organic agriculture systems. While the effects of post fermentation sludge application on crop health and productivity have been extensively studied, little is known about its effects on soil parameters and long-term soil health. Thus, the main aim of this study was to determine the effects of post-fermentation sludge fertilization on agriculture soil quality. Specifically, it examined the efficiency and sequence of sludge utilisation by microorganisms and its influence on the utilisation/stabilization of native soil organic matter (SOM).To determine changes in SOM turnover after the addition of sludge, we utilized a natural stable carbon isotope labelling approach. Sludge produced from C4 plant residues (e.g. maize) was applied to soil under C3 cropping, resulting in distinct stable isotope signatures of fertilizer and SOM. Measuring the carbon isotope composition of CO2 produced in this microcosm experiment permitted accurate determination of the proportion of CO2 fluxes arising from both C sources. The addition of post-fermentation sludge increased the CO2 emissions from the soil by 30%. δ13C analysis of the total CO2 efflux revealed that post-fermentation sludge decreased SOM decomposition by 42% compared to control. Only 34% of the post-fermentation sludge had been mineralized after two months of incubation in the soil.The collective results of our study reveal that application of post-fermentation sludge suppresses SOM decomposition, suggesting its use as a fertilizer could positively influence long-term soil quality. Finally, the success of the natural abundance microcosm labeling approach in our study supports its use as an effective method of analyzing the effects of various

  6. Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field.

    PubMed

    Roessink, I; Belgers, J D M; Crum, S J H; van den Brink, P J; Brock, T C M

    2006-07-01

    The study objectives were to shed light on the types of freshwater organism that are sensitive to triphenyltin acetate (TPT) and to compare the laboratory and microcosm sensitivities of the invertebrate community. The responses of a wide array of freshwater taxa (including invertebrates, phytoplankton and macrophytes) from acute laboratory Single Species Tests (SST) were compared with the concentration-response relationships of aquatic populations in two types of freshwater microcosms. Representatives of several taxonomic groups of invertebrates, and several phytoplankton and vascular plant species proved to be sensitive to TPT, illustrating its diverse modes of toxic action. Statistically calculated ecological risk thresholds (HC5 values) based on 96 h laboratory EC50 values for invertebrates were 1.3 microg/l, while these values on the basis of microcosm-Species Sensitivity Distributions (SSD) for invertebrates in sampling weeks 2-8 after TPT treatment ranged from 0.2 to 0.6 microg/l based on nominal peak concentrations. Responses observed in the microcosms did not differ between system types and sampling dates, indicating that ecological threshold levels are not affected by different community structures including taxa sensitive to TPT. The laboratory-derived invertebrate SSD curve was less sensitive than the curves from the microcosms. Possible explanations for the more sensitive field response are delayed effects and/or additional chronic exposure via the food chain in the microcosms.

  7. Population dynamics of transgenic strain Escherichia coli Z905/pPHL7 in freshwater and saline lake water microcosms with differing microbial community structures

    NASA Technical Reports Server (NTRS)

    Popova, L. Yu; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.

    2005-01-01

    Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. STUDIES ON CONTAMINANT BIODEGRADATION IN SLURRY, WAFER, AND COMPACTED SOIL TUBE REACTORS

    EPA Science Inventory

    A systematic experimental approach is presented to quantitatively evaluate biodegradation rates in intact soil systems. Knowledge of bioremediation rates in intact soil systems is important for evaluating the efficacy of in-situ biodegradation and approaches for enhancing degrad...

  9. Effect of soil composition, temperature, indigenous microflora, and environmental conditions on the survival of Escherichia coli O157:H7.

    PubMed

    Vidovic, Sinisa; Block, Hushton C; Korber, Darren R

    2007-07-01

    The survival of Escherichia coli O157:H7 in replicate soil microcosms was quantified in 2 types of silty clay loam soil (high carbon and low carbon) under either sterile or nonsterile conditions. Microcosms were held at -21, 4, and 22 degrees C under constant soil moisture content. Differences existed (P < 0.05) in survival of E. coli O157:H7 in low- and high-carbon soil at all temperatures, indicating an important role of soil composition on the survival of this pathogen. The highest death rate of E. coli O157:H7 in sterile soil occurred in the low-carbon soil at 4 degrees C, whereas in nonsterile soil the highest death rate was observed in the low-carbon soil at 22 degrees C. These results suggest that the most lethal effects on E. coli O157:H7 in the sterile system occurred via the synergy of nutrient limitation and cold stress, whereas in the nonsterile system lethality was owing to inhibition by indigenous soil microorganisms and starvation. Results obtained from an in situ field survival experiment demonstrated the apparent sensitivity of E. coli O157:H7 cells to dehydration, information that may be used to reduce environmental spread of this pathogen as well as formulate appropriate waste management strategies.

  10. Biodegradation of N-nitrosodimethylamine in soil from a water reclamation facility

    USGS Publications Warehouse

    Bradley, Paul M.; Carr, Steve A.; Baird, Rodger B.; Chapelle, Francis H.

    2005-01-01

    The potential introduction of N-nitrosodimethylamine (NDMA) into groundwater during water reclamation activities poses a significant risk to groundwater drinking supplies. Greater than 54% biodegradation of N-[methyl-14C]NDMA to 14CO2 or to 14CO2 and 14CH4 was observed in soil from a water reclamation facility under oxic or anoxic conditions, respectively. Likewise, biodegradation was significant in microcosms containing soil with no history of NDMA contamination. These results indicate that aerobic and anaerobic biodegradation of NDMA may be an effective component of NDMA attenuation in water reclamation facility soils.

  11. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation.

    PubMed

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain; Piveteau, Pascal

    2015-08-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Detection of a Reproducible, Single-Member Shift in Soil Bacterial Communities Exposed to Low Levels of Hydrogen▿

    PubMed Central

    Osborne, Catherine A.; Peoples, Mark B.; Janssen, Peter H.

    2010-01-01

    Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules. Although the size and overall composition of the soil bacterial community did not significantly alter after hydrogen exposure, one ribotype increased in relative abundance within each soil. This single-ribotype shift was identified by generating multiple terminal restriction fragment length polymorphism (T-RFLP) profiles of 16S rRNA genes from each soil sample, with gene sequence confirmation to identify terminal restriction fragments. The increased abundance of a single ribotype after hydrogen exposure, within an otherwise similar community, was found in replicate samples taken from each microcosm and was reproducible across replicate experiments. Similarly, only one member of the soil bacterial community increased in abundance in response to hydrogen exposure in soil surrounding the root nodules of field-grown soybean (Glycine max). The ribotypes that increased after hydrogen exposure in each soil system tested were all from known hydrogen-oxidizing lineages within the order Actinomycetales. We suggest that soil actinomycetes are important utilizers of hydrogen at relevant concentrations in soil and could be key contributors to soil's function as a sink in the global hydrogen cycle. PMID:20061453

  13. Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere.

    PubMed

    Jorquera, Milko A; Saavedra, Nicolás; Maruyama, Fumito; Richardson, Alan E; Crowley, David E; del C Catrilaf, Rosa; Henriquez, Evelyn J; de la Luz Mora, María

    2013-02-01

    Phytate-mineralizing rhizobacteria (PMR) perform an essential function for the mineralization of organic phosphorus but little is known about their ecology in soils and rhizosphere. In this study, PCR-based methods were developed for detection and quantification of the Bacillus β-propeller phytase (BPP) gene. Experiments were conducted to monitor the presence and persistence of a phytate-mineralizing strain, Bacillus sp. MQH19, after inoculation of soil microcosms and within the rhizosphere. The occurrence of the BPP gene in natural pasture soils from Chilean Andisols was also examined. The results showed that the Bacillus BPP gene was readily detected in sterile and nonsterile microcosms, and that the quantitative PCR (qPCR) methods could be used to monitor changes in the abundance of the BPP gene over time. Our results also show that the addition of phytate to nonsterile soils induced the expression of the BPP gene in the rhizosphere of ryegrass and the BPP gene was detected in all pasture soils sampled. This study shows that phytate addition soils induced changes in the abundance and expression of Bacillus BPP to genes in the rhizosphere and demonstrates that Bacillus BPP gene is cosmopolitan in pasture soils from Chilean Andisols. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon.

    PubMed

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu; Jia, Zhongjun

    2014-03-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the "heavy" DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that (13)CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both (13)C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated.

  15. Active Ammonia Oxidizers in an Acidic Soil Are Phylogenetically Closely Related to Neutrophilic Archaeon

    PubMed Central

    Wang, Baozhan; Zheng, Yan; Huang, Rong; Zhou, Xue; Wang, Dongmei; He, Yuanqiu

    2014-01-01

    All cultivated ammonia-oxidizing archaea (AOA) within the Nitrososphaera cluster (former soil group 1.1b) are neutrophilic. Molecular surveys also indicate the existence of Nitrososphaera-like phylotypes in acidic soil, but their ecological roles are poorly understood. In this study, we present molecular evidence for the chemolithoautotrophic growth of Nitrososphaera-like AOA in an acidic soil with pH 4.92 using DNA-based stable isotope probing (SIP). Soil microcosm incubations demonstrated that nitrification was stimulated by urea fertilization and accompanied by a significant increase in the abundance of AOA rather than ammonia-oxidizing bacteria (AOB). Real-time PCR analysis of amoA genes as a function of the buoyant density of the DNA gradient following the ultracentrifugation of the total DNA extracted from SIP microcosms indicated a substantial growth of soil AOA during nitrification. Pyrosequencing of the total 16S rRNA genes in the “heavy” DNA fractions suggested that archaeal communities were labeled to a much greater extent than soil AOB. Acetylene inhibition further showed that 13CO2 assimilation by nitrifying communities depended solely on ammonia oxidation activity, suggesting a chemolithoautotrophic lifestyle. Phylogenetic analysis of both 13C-labeled amoA and 16S rRNA genes revealed that most of the active AOA were phylogenetically closely related to the neutrophilic strains Nitrososphaera viennensis EN76 and JG1 within the Nitrososphaera cluster. Our results provide strong evidence for the adaptive growth of Nitrososphaera-like AOA in acidic soil, suggesting a greater metabolic versatility of soil AOA than previously appreciated. PMID:24375137

  16. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native species

    PubMed Central

    Slater, Heather; Gouin, Todd; Leigh, Mary Beth

    2011-01-01

    Rhizosphere bioremediation of polychlorinated biphenyls (PCBs) offers a potentially inexpensive approach to remediating contaminated soils that is particularly attractive in remote regions including the Arctic. We assessed the abilities of two tree species native to Alaska, Salix alaxensis (felt-leaf willow) and Picea glauca (white spruce), to promote microbial biodegradation of PCBs via the release of phytochemicals upon fine root death. Crushed fine roots, biphenyl (PCB analogue) or salicylate (willow secondary compound) were added to microcosms containing soil spiked with PCBs and resultant PCB disappearance, soil toxicity and microbial community changes were examined. After 180 d, soil treated with willow root crushates showed a significantly greater PCB loss than untreated soils for some PCB congeners, including the toxic congeners, PCB 77, 105 and 169, and showed a similar PCB loss pattern (in both extent of degradation and congeners degraded) to biphenyl-treated microcosms. Neither P. glauca (white spruce) roots nor salicylate enhanced PCB loss, indicating that biostimulation is plant species specific and was not mediated by salicylate. Soil toxicity assessed using the Microtox bioassay indicated that the willow treatment resulted in a less toxic soil environment. Molecular microbial community analyses indicated that biphenyl and salicylate promoted shifts in microbial community structure and composition that differed distinctly from each other and from the crushed root treatments. The biphenyl utilizing bacterium, Cupriavidus spp. was isolated from the soil. The findings suggest that S. alaxensis may be an effective plant for rhizoremediation by altering microbial community structure, enhancing the loss of some PCB congeners and reducing the toxicity of the soil environment. PMID:21596420

  17. Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil.

    PubMed

    Park, Ha Ju; Chae, Namyi; Sul, Woo Jun; Lee, Bang Yong; Lee, Yoo Kyung; Kim, Dockyu

    2015-04-01

    Humic substances (HS), primarily humic acids (HA) and fulvic acids (FA), are the largest constituent of soil organic matter. In microcosm systems with subarctic HS-rich tundra soil (site AK 1-75; approximately 5.6 °C during the thawing period) from Council, Alaska, the HA content significantly decreased to 48% after a 99-day incubation at 5 °C as part of a biologically mediated process. Accordingly, levels of FA, a putative byproduct of HA degradation, consistently increased to 172% during an identical incubation process. Culture-independent microbial community analysis showed that during the microcosm experiments, the relative abundance of phyla Proteobacteria (bacteria) and Euryarchaeota (archaea) largely increased, indicating their involvement in HS degradation. When the indigenous bacteria in AK 1-75 were enriched in an artificial mineral medium spiked with HA, the changes in relative abundance were most conspicuous in Proteobacteria (from 60.2 to 79.0%), specifically Betaproteobacteria-related bacteria. One hundred twenty-two HA-degrading bacterial strains, primarily from the genera Paenibacillus (phylum Firmicutes) and Pseudomonas (class Gammaproteobacteria), were cultivated from AK 1-75 and nearby sites. Through culture-dependent analysis with these bacterial isolates, we observed increasing HS-degradation rates in parallel with rising temperatures in a range of 0 °C to 20 °C, with the most notable increase occurring at 8 °C compared to 6 °C. Our results indicate that, although microbial-mediated HS degradation occurs at temperature as low as 5 °C in tundra ecosystems, increasing soil temperature caused by global climate change could enhance HS degradation rates. Extending the thawing period could also increase degradation activity, thereby directly affecting nearby microbial communities and rhizosphere environments.

  18. Effects of the inoculant strain Sphingomonas paucimobilis 20006FA on soil bacterial community and biodegradation in phenanthrene-contaminated soil.

    PubMed

    Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S

    2008-02-01

    The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.

  19. Nitrogen removal in Myriophyllum aquaticum wetland microcosms for swine wastewater treatment: 15 N-labelled nitrogen mass balance analysis.

    PubMed

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; He, Yang; Wu, Jinshui

    2017-01-01

    Ecological treatments are effective for treating agricultural wastewater. In this study, wetland microcosms vegetated with Myriophyllum aquaticum were designed for nitrogen (N) removal from two strengths of swine wastewater, and 15 N-labelled ammonium (NH 4 + -N) was added to evaluate the dominant NH 4 + -N removal pathway. The results showed that 98.8% of NH 4 + -N and 88.3% of TN (TN: 248.6 mg L -1 ) were removed from low-strength swine wastewater (SW1) after an incubation of 21 days, with corresponding values for high-strength swine wastewater (SW2) being 99.2% of NH 4 + -N and 87.8% of TN (TN: 494.9 mg L -1 ). Plant uptake and soil adsorption respectively accounted for 24.0% and 15.6% of the added 15 N. Meanwhile, above-ground tissues of M. aquaticum had significantly higher biomass and TN content than below-ground (P < 0.05). 15 N mass balance analysis indicated that gas losses contributed 52.0% to the added 15 N, but the N 2 O flux constituted only 7.5% of total gas losses. The dynamics of NO 3 - -N and N 2 O flux revealed that strong nitrification and denitrification occurred in M. aquaticum microcosms, which was a dominant N removal pathway. These findings demonstrated that M. aquaticum could feasibly be used to construct wetlands for high N-loaded animal wastewater treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Biodegradation and bioremediation of endosulfan contaminated soil.

    PubMed

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  1. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  2. Mobilization of microspheres from a fractured soil during intermittent infiltration events

    USGS Publications Warehouse

    Mohanty, Sanjay; Bulicek, Mark; Metge, David W.; Harvey, Ronald W.; Ryan, Joseph N.; Boehm, Alexandria B.

    2015-01-01

    Pathogens or biocolloids mobilized in the vadose zone may consequently contaminate groundwater. We found that microspheres were mobilized from a fractured soil during intermittent rainfall and the mobilization was greater when the microsphere size was larger and when the soil had greater water permeability.The vadose zone filters pathogenic microbes from infiltrating water and consequently protects the groundwater from possible contamination. In some cases, however, the deposited microbes may be mobilized during rainfall and migrate into the groundwater. We examined the mobilization of microspheres, surrogates for microbes, in an intact core of a fractured soil by intermittent simulated rainfall. Fluorescent polystyrene microspheres of two sizes (0.5 and 1.8 mm) and Br− were first applied to the core to deposit the microspheres, and then the core was subjected to three intermittent infiltration events to mobilize the deposited microspheres. Collecting effluent samples through a 19-port sampler at the base of the core, we found that water flowed through only five ports, and the flow rates varied among the ports by a factor of 12. These results suggest that flow paths leading to the ports had different permeabilities, partly due to macropores. Although 40 to 69% of injected microspheres were retained in the core during their application, 12 to 30% of the retained microspheres were mobilized during three intermittent infiltration events. The extent of microsphere mobilization was greater in flow paths with greater permeability, which indicates that macropores could enhance colloid mobilization during intermittent infiltration events. In all ports, the 1.8-mm microspheres were mobilized to a greater extent than the 0.5-mm microspheres, suggesting that larger colloids are more likely to mobilize. These results are useful in assessing the potential of pathogen mobilization and colloid-facilitated transport of contaminants in the subsurface under natural infiltration

  3. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    PubMed

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation

    PubMed Central

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J. Gregory

    2015-01-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of “conditionally rare taxa,” in which rareness is a temporary state conditioned by environmental constraints. PMID:26590285

  5. Natural Electrotransformation of Lightning-Competent Pseudomonas sp. Strain N3 in Artificial Soil Microcosms

    PubMed Central

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.

    2006-01-01

    The lightning-competent Pseudomonas sp. strain N3, recently isolated from soil, has been used to study the extent of natural electrotransformation (NET) or lightning transformation as a horizontal gene transfer mechanism in soil. The variation of electrical fields applied to the soil with a laboratory-scale lightning system provides an estimate of the volume of soil affected by NET. Based on the range of the electric field that induces NET of Pseudomonas strain N3, the volume of soil, where NET could occur, ranges from 2 to 950 m3 per lightning strike. The influence of DNA parameters (amount, size, and purity) and DNA soil residence time were also investigated. NET frequencies (electrotransformants/recipient cells) ranged from 10−8 for cell lysate after 1 day of residence in soil to 4 × 10−7 with a purified plasmid added immediately before the lightning. The electrical field gradient (in kilovolts per cm) also played a role as NET frequencies ranging from 1 × 10−5 at 2.3 kV/cm to 1.7 × 10−4 at 6.5 kV/cm. PMID:16597934

  6. Assessment of molecular marker compounds as an index of the biodegradation of diesel fuel hydrocarbons in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voos, G.; Mills, G.; O`Neill, J.

    1996-10-01

    The weathering of petroleum hydrocarbons in the soil environment is the sum of biological, physical and chemical processes. It is often difficult to clearly discern microbial from abiotic contributions to the overall process. This is especially important in assessing the effectiveness of various in-situ bioremediation technologies. We examined molecular marker compounds, including pristane, phytane, diterpenoid hydrocarbons, farnesane and norpristane, and the ratios n-C17/pristane and n-C18/phytane to evaluate their use as an index of biodegradation of diesel fuel in contaminated soil. The study was conducted using microcosms containing 200 g of contaminated soil. Microcosms were destructively sampled on days 0, 1,more » 2, 4, 8, 14, 33 and 64 of the experiment. The soil was analyzed for straight-chained, branched-chained, and alicyclic petroleum hydrocarbons using high-resolution gas chromatography. Results indicate that by day 33 of the experiment, pristane and phytane were present at significantly greater concentrations than their corresponding n-alkanes and the other marker compounds analyzed. There is a strong correlation between the amount of pristane and phytane present in the soil and the amount of total extractable petroleum hydrocarbons (TEPH) measured during the course of the experiment.« less

  7. Laboratory measurements of electrical resistivity versus water content on small soil cores

    NASA Astrophysics Data System (ADS)

    Robain, H.; Camerlynck, C.; Bellier, G.; Tabbagh, A.

    2003-04-01

    The assessment of soil water content variations more and more leans on geophysical methods that are non invasive and that allow a high spatial sampling. Among the different methods, DC electrical imaging is moving forward. DC Electrical resistivity shows indeed strong seasonal variations that principally depend on soil water content variations. Nevertheless, the widely used Archie's empirical law [1], that links resistivity with voids saturation and water conductivity is not well suited to soil materials with high clay content. Furthermore, the shrinking and swelling properties of soil materials have to be considered. Hence, it is relevant to develop new laboratory experiments in order to establish a relation between electrical resistivity and water content taking into account the rheological and granulometrical specificities of soil materials. The experimental device developed in IRD laboratory allows to monitor simultaneously (i) the water content, (ii) the electrical resistivity and (iii) the volume of a small cylindrical soil core (100cm3) put in a temperature controlled incubator (30°C). It provides both the shrinkage curve of the soil core (voids volume versus water content) and the electrical resistivity versus water content curve The modelisation of the shrinkage curve gives for each moisture state the water respectively contained in macro and micro voids [2], and then allows to propose a generalized Archie's like law as following : 1/Rs = 1/Fma.Rma + 1/Fmi.Rmi and Fi = Ai/(Vi^Mi.Si^Ni) with Rs : the soil resistivity. Fma and Fmi : the so called "formation factor" for macro and micro voids, respectively. Rma and Rmi : the resistivity of the water contained in macro and micro voids, respectively. Vi : the volume of macro and micro voids, respectively. Si : the saturation of macro and micro voids, respectively. Ai, Mi and Ni : adjustment coefficients. The variations of Rmi are calculated, assuming that Rma is a constant. Indeed, the rise of ionic

  8. Dual-Bioaugmentation Strategy To Enhance Remediation of Cocontaminated Soil

    PubMed Central

    Roane, T. M.; Josephson, K. L.; Pepper, I. L.

    2001-01-01

    Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 μg ml−1, these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-μg ml−1 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 μg of cadmium ml−1 in pure culture and up to 60 μg of cadmium g−1 in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 μg of cadmium g−1. Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils. PMID:11425743

  9. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms

    USGS Publications Warehouse

    Wang, N.; Besser, J.M.; Buckler, D.R.; Honegger, J.L.; Ingersoll, C.G.; Johnson, B. Thomas; Kurtzweil, M.L.; MacGregor, J.; McKee, M.J.

    2005-01-01

    The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water–sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l−1 nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43–83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23–97%) was only observed in overlying water sampled from water–sediment microcosms during the first 24 h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4–6 mg l−1) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.

  10. Molecular analysis of microbial community structures in pristine and contaminated aquifers--Field and laboratory microcosm experiments

    USGS Publications Warehouse

    Shi, Y.; Zwolinski, M.D.; Schreiber, M.E.; Bahr, J.M.; Sewell, G.W.; Hickey, W.J.

    1999-01-01

    Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experimentsvar callbackToken='531E8ACDB6C8511'; var subCode='asmjournal_sub'; var OAS_sitepage = 'aem.asm.org'; This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantlyBacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65

  11. Soil compaction: Evaluation of stress transmission and resulting soil structure

    NASA Astrophysics Data System (ADS)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas; Lamande, Mathieu

    2016-04-01

    Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied stresses. Total porosity was reduced 5-16% and macroporosity 50-85% at 620 kPa applied stress for the intact soils. Similarly, significant changes in the morphological indices of the macropore space were also observed with increasing applied stresses.

  12. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    NASA Astrophysics Data System (ADS)

    Ebel, Brian A.

    2012-12-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  13. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics

    PubMed Central

    Delmont, Tom O.; Eren, A. Murat; Maccario, Lorrie; Prestat, Emmanuel; Esen, Özcan C.; Pelletier, Eric; Le Paslier, Denis; Simonet, Pascal; Vogel, Timothy M.

    2015-01-01

    Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (<0.0001%) to relatively abundant (>0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment. PMID:25983722

  14. Effects of the fungicide metiram in outdoor freshwater microcosms: responses of invertebrates, primary producers and microbes.

    PubMed

    Lin, Ronghua; Buijse, Laura; Dimitrov, Mauricio R; Dohmen, Peter; Kosol, Sujitra; Maltby, Lorraine; Roessink, Ivo; Sinkeldam, Jos A; Smidt, Hauke; Van Wijngaarden, René P A; Brock, Theo C M

    2012-07-01

    The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 μg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT₅₀) of metiram was approximately 1-6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOEC(community) = 36 μg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 μg a.i./L on isolated sampling days and a NOEC of 36 μg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 μg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOEC(microcosm)) was 12-36 μg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks).

  15. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation.

    PubMed

    Sydow, Mateusz; Owsianiak, Mikołaj; Framski, Grzegorz; Woźniak-Karczewska, Marta; Piotrowska-Cyplik, Agnieszka; Ławniczak, Łukasz; Szulc, Alicja; Zgoła-Grześkowiak, Agnieszka; Heipieper, Hermann J; Chrzanowski, Łukasz

    2018-01-01

    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P 66614 ][Br] and [P 66614 ][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A potential new proxy for paleo-atmospheric pO2 from soil carbonate-hosted fluid inclusions applied to pristine Chinle soils from the Petrified Forest 1A core

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Pettitt, E.; Knobbe, T.

    2017-12-01

    Proxies for the concentration of O2 in the ancient atmosphere are scarce. We have developed a potential new proxy for ancient atmospheric O2 content based on soil carbonate-hosted fluid inclusions. Soils are in continuous atmospheric communication, and relatively static equilibration between soil gas and atmospheric gas during formation, such that a predictable amount of atmosphere infiltrates a soil. This atmosphere is trapped by inclusions during carbonate precipitation. Here we show that carbonate hosted fluid inclusions are faithful recorders of soil gas concentrations and isotope ratios, and specifically that soil O2 partial pressures can be derived from the total gas contents of these inclusions. Using carbonate nodules from a span of depths in a modern vertisol near Dallas, TX, as a test case, we employ an online crushing technique to liberate gases from soil carbonates into a small custom-built quadrupole mass spectrometer where all gases are measured in real time. We quantify the total oxygen content of the gas using a matrix-matched calibration, and define each species as a partial pressure of the total gas released from the nodule. Atmospheric pO2 is very simply derived from the soil-nodule partial pressures by accounting for the static productivity of the soil (using a small correction based on the CO2 concentration). When corrected for aqueous solubility using Henry's Law, these soil-carbonate hosted gas results reveal soil O2 concentrations that are comparable to modern-day dry atmosphere. Armed with this achievement in modern soils, and as a test on the applicability of the approach to ancient samples, we successfully apply the new proxy to nodules from the Late Triassic Chinle formation from the Petrified Forest National Park Core, taken as part of the Colorado Plateau Coring Project. Analysis of soil O2 from soil gas monitoring wells paired with measurements from contemporaneous soil carbonate nodules is needed to precisely calibrate the new proxy.

  17. Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process.

    PubMed

    Molina-Barahona, L; Vega-Loyo, L; Guerrero, M; Ramírez, S; Romero, I; Vega-Jarquín, C; Albores, A

    2005-02-01

    Evaluation of contaminated sites is usually performed by chemical analysis of pollutants in soil. This is not enough either to evaluate the environmental risk of contaminated soil nor to evaluate the efficiency of soil cleanup techniques. Information on the bioavailability of complex mixtures of xenobiotics and degradation products cannot be totally provided by chemical analytical data, but results from bioassays can integrate the effects of pollutants in complex mixtures. In the preservation of human health and environment quality, it is important to assess the ecotoxicological effects of contaminated soils to obtain a better evaluation of the healthiness of this system. The monitoring of a diesel-contaminated soil and the evaluation of a bioremediation technique conducted on a microcosm scale were performed by a battery of ecotoxicological tests including phytotoxicity, Daphnia magna, and nematode assays. In this study we biostimulated the native microflora of soil contaminated with diesel by adding nutrients and crop residue (corn straw) as a bulking agent and as a source of microorganisms and nutrients; in addition, moisture was adjusted to enhance diesel removal. The bioremediation process efficiency was evaluated directly by an innovative, simple phytotoxicity test system and the diesel extracts by Daphnia magna and nematode assays. Contaminated soil samples were revealed to have toxic effects on seed germination, seedling growth, and Daphnia survival. After biostimulation, the diesel concentration was reduced by 50.6%, and the soil samples showed a significant reduction in phytotoxicity (9%-15%) and Daphnia assays (3-fold), confirming the effectiveness of the bioremediation process. Results from our microcosm study suggest that in addition to the evaluation of the bioremediation processes efficiency, toxicity testing is different with organisms representative of diverse phylogenic levels. The integration of analytical, toxicological and bioremediation data

  18. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.

    PubMed

    Lu, Lu; Jia, Zhongjun

    2013-06-01

    The metabolic traits of ammonia-oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea-amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water-amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time-course incubations indicated that archaeal amoA genes were increasingly labelled by (13) CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the (13) C-DNA, and acetylene inhibition suggests that autotrophic growth of urease-containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a-associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Modelling algae-duckweed interaction under chemical pressure within a laboratory microcosm.

    PubMed

    Lamonica, Dominique; Clément, Bernard; Charles, Sandrine; Lopes, Christelle

    2016-06-01

    Contaminant effects on species are generally assessed with single-species bioassays. As a consequence, interactions between species that occur in ecosystems are not taken into account. To investigate the effects of contaminants on interacting species dynamics, our study describes the functioning of a 2-L laboratory microcosm with two species, the duckweed Lemna minor and the microalgae Pseudokirchneriella subcapitata, exposed to cadmium contamination. We modelled the dynamics of both species and their interactions using a mechanistic model based on coupled ordinary differential equations. The main processes occurring in this two-species microcosm were thus formalised, including growth and settling of algae, growth of duckweeds, interspecific competition between the two species and cadmium effects. We estimated model parameters by Bayesian inference, using simultaneously all the data issued from multiple laboratory experiments specifically conducted for this study. Cadmium concentrations ranged between 0 and 50 μg·L(-1). For all parameters of our model, we obtained biologically realistic values and reasonable uncertainties. Only duckweed dynamics was affected by interspecific competition, while algal dynamics was not impaired. Growth rate of both species decreased with cadmium concentration, as well as competition intensity showing that the interspecific competition pressure on duckweed decreased with cadmium concentration. This innovative combination of mechanistic modelling and model-guided experiments was successful to understand the algae-duckweed microcosm functioning without and with contaminant. This approach appears promising to include interactions between species when studying contaminant effects on ecosystem functioning. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    NASA Astrophysics Data System (ADS)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  1. Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms.

    PubMed

    Bouldin, J L; Farris, J L; Moore, M T; Smith, S; Stephens, W W; Cooper, C M

    2005-10-01

    Contaminants such as nutrients, metals, and pesticides can interact with constructed wetlands and existing drainage ditches used as agricultural best-management practices. Our research has shown that the presence of macrophytes and a hydrologic regime aid in the transfer and transformation of pesticides associated with agricultural runoff. This study consisted of application of both atrazine (triazine herbicide) and lambda-cyhalothrin (pyrethroid insecticide) to vegetated and unvegetated microcosms in order to measure the fate and effects of pesticides applied at suggested field application rates. Exposures focused on monocultures of Ludwigia peploides (water primrose) and Juncus effusus (soft rush). Pesticide sorption was evident through concentrations of atrazine and lambda-cyhalothrin in plant tissue as high as 2461.4 and 86.50 microg/kg, respectively. Toxicity was measured in water from unvegetated microcosms for 28 days and in Chironomus tentans (midge larvae) exposed to sediment collected from 3 h to 56 days in microcosms receiving the pesticide combination. The comparative survival of test organisms in this study suggests that effective mitigation of pesticides from runoff can depend on the macrophyte contact and vegetative attributes associated with ditches. (c) 2005 Wiley Periodicals, Inc.

  2. Effect of Toxic Metals on Indigenous Soil β-Subgroup Proteobacterium Ammonia Oxidizer Community Structure and Protection against Toxicity by Inoculated Metal-Resistant Bacteria

    PubMed Central

    Stephen, John R.; Chang, Yun-Juan; Macnaughton, Sarah J.; Kowalchuk, George A.; Leung, Kam T.; Flemming, Cissy A.; White, David C.

    1999-01-01

    Contamination of soils with toxic metals is a major problem on military, industrial, and mining sites worldwide. Of particular interest to the field of bioremediation is the selection of biological markers for the end point of remediation. In this microcosm study, we focus on the effect of addition of a mixture of toxic metals (cadmium, cobalt, cesium, and strontium as chlorides) to soil on the population structure and size of the ammonia oxidizers that are members of the beta subgroup of the Proteobacteria (β-subgroup ammonia oxidizers). In a parallel experiment, the soils were also treated by the addition of five strains of metal-resistant heterotrophic bacteria. Effects on nitrogen cycling were measured by monitoring the NH3 and NH4+ levels in soil samples. The gene encoding the α-subunit of ammonia monooxygenase (amoA) was selected as a functional molecular marker for the β-subgroup ammonia oxidizing bacteria. Community structure comparisons were performed with clone libraries of PCR-amplified fragments of amoA recovered from contaminated and control microcosms for 8 weeks. Analysis was performed by restriction digestion and sequence comparison. The abundance of ammonia oxidizers in these microcosms was also monitored by competitive PCR. All amoA gene fragments recovered grouped with sequences derived from cultured Nitrosospira. These comprised four novel sequence clusters and a single unique clone. Specific changes in the community structure of β-subgroup ammonia oxidizers were associated with the addition of metals. These changes were not seen in the presence of the inoculated metal-resistant bacteria. Neither treatment significantly altered the total number of β-subgroup ammonia-oxidizing cells per gram of soil compared to untreated controls. Following an initial decrease in concentration, ammonia began to accumulate in metal-treated soils toward the end of the experiment. PMID:9872765

  3. Isolation of Lightning-Competent Soil Bacteria

    PubMed Central

    Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.

    2004-01-01

    Artificial transformation is typically performed in the laboratory by using either a chemical (CaCl2) or an electrical (electroporation) method. However, laboratory-scale lightning has been shown recently to electrotransform Escherichia coli strain DH10B in soil. In this paper, we report on the isolation of two “lightning-competent” soil bacteria after direct electroporation of the Nycodenz bacterial ring extracted from prairie soil in the presence of the pBHCRec plasmid (Tcr, Spr, Smr). The electrotransformability of the isolated bacteria was measured both in vitro (by electroporation cuvette) and in situ (by lightning in soil microcosm) and then compared to those of E. coli DH10B and Pseudomonas fluorescens C7R12. The electrotransformation frequencies measured reached 10−3 to 10−4 by electroporation and 10−4 to 10−5 by simulated lightning, while no transformation was observed in the absence of electrical current. Two of the isolated lightning-competent soil bacteria were identified as Pseudomonas sp. strains. PMID:15466589

  4. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    PubMed

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  5. Does S-Metolachlor Affect the Performance of Pseudomonas sp. Strain ADP as Bioaugmentation Bacterium for Atrazine-Contaminated Soils?

    PubMed Central

    Viegas, Cristina A.; Costa, Catarina; André, Sandra; Viana, Paula; Ribeiro, Rui; Moreira-Santos, Matilde

    2012-01-01

    Atrazine (ATZ) and S-metolachlor (S-MET) are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g−1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD)), the presence of pure S-MET significantly affected neither bacteria survival (∼107 initial viable cells g−1 of soil) nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50×RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days) and extensively (>96%) removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil. PMID:22615921

  6. Biotransformation and Degradation of the Insensitive Munitions Compound, 3-Nitro-1,2,4-triazol-5-one, by Soil Bacterial Communities.

    PubMed

    Krzmarzick, Mark J; Khatiwada, Raju; Olivares, Christopher I; Abrell, Leif; Sierra-Alvarez, Reyes; Chorover, Jon; Field, James A

    2015-05-05

    Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.

  7. Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species.

    PubMed

    Slater, Heather; Gouin, Todd; Leigh, Mary Beth

    2011-06-01

    Rhizosphere bioremediation of polychlorinated biphenyls (PCBs) offers a potentially inexpensive approach to remediating contaminated soils that is particularly attractive in remote regions including the Arctic. We assessed the abilities of two tree species native to Alaska, Salix alaxensis (felt-leaf willow) and Picea glauca (white spruce), to promote microbial biodegradation of PCBs via the release of phytochemicals upon fine root death. Crushed fine roots, biphenyl (PCB analogue) or salicylate (willow secondary compound) were added to microcosms containing soil spiked with PCBs and resultant PCB disappearance, soil toxicity and microbial community changes were examined. After 180d, soil treated with willow root crushates showed a significantly greater PCB loss than untreated soils for some PCB congeners, including the toxic congeners, PCB 77, 105 and 169, and showed a similar PCB loss pattern (in both extent of degradation and congeners degraded) to biphenyl-treated microcosms. Neither P. glauca (white spruce) roots nor salicylate enhanced PCB loss, indicating that biostimulation is plant species specific and was not mediated by salicylate. Soil toxicity assessed using the Microtox bioassay indicated that the willow treatment resulted in a less toxic soil environment. Molecular microbial community analyses indicated that biphenyl and salicylate promoted shifts in microbial community structure and composition that differed distinctly from each other and from the crushed root treatments. The biphenyl utilizing bacterium, Cupriavidus spp. was isolated from the soil. The findings suggest that S. alaxensis may be an effective plant for rhizoremediation by altering microbial community structure, enhancing the loss of some PCB congeners and reducing the toxicity of the soil environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Molecular Analysis of Microbial Community Structures in Pristine and Contaminated Aquifers: Field and Laboratory Microcosm Experiments

    PubMed Central

    Shi, Y.; Zwolinski, M. D.; Schreiber, M. E.; Bahr, J. M.; Sewell, G. W.; Hickey, W. J.

    1999-01-01

    This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% β- and γ-Proteobacteria (B+G), 31 to 35% α-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the

  9. Laboratory study on leachability of five herbicides in South Australian soils.

    PubMed

    Ying, G G; Williams, B

    2000-03-01

    Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.

  10. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that

  11. Special Education: A Microcosm of Bureaucracy. Part Two: The Elements of the System

    ERIC Educational Resources Information Center

    Clark, Ann D.

    1971-01-01

    Delineates a case study of special education that provides a unique microcosm of the emergence of an educational subsystem with inherent and forceful bureaucratic controls that were present from its inception. (Author)

  12. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core.

    PubMed

    Moumene, Missoum; Geisler, Fred H

    2007-08-01

    Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.

  13. Successive chlorothalonil applications inhibit soil nitrification and discrepantly affect abundances of functional genes in soil nitrogen cycling.

    PubMed

    Teng, Ying; Zhang, Manyun; Yang, Guangmei; Wang, Jun; Christie, Peter; Luo, Yongming

    2017-02-01

    Broad-spectrum fungicide chlorothalonil (CTN) is successively applied into intensive agriculture soil. However, the impacts of successive CTN applications on soil nitrification and related microorganisms remain poorly understood. A microcosm study was conducted to reveal the effects of successive CTN applications on soil nitrification and functional genes involved in soil nitrogen (N) cycling. The CTN at the dosages of 5 mg kg -1 dry soil (RD) and 25 mg kg -1 dry soil (5RD) was successively applied into the test soil at 7-day intervals which resulted in the accumulations of CTN residues. After 28 days of incubation, CTN residues in the RD and 5RD treatments were 3.14 and 69.7 mg kg -1 dry soil respectively. Net nitrification rates in the RD and 5RD treatments were lower than that obtained from the blank control (CK). Real-time PCR analysis revealed that AOA and AOB amoA gene abundances were significantly decreased by CTN applications. Moreover, CTN applications also discrepantly decreased the abundances of functional genes involved in soil denitrification, with the exception of nosZ gene. Principal component analysis further supported the observation that successive CTN applications could result in enhanced ecological toxicity.

  14. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.

    PubMed

    Aaen, Karoline Nolsø; Holm, Peter E; Priemé, Anders; Hung, Ngoc Ngo; Brandt, Kristian Koefoed

    2011-03-01

    Pollution-induced community tolerance (PICT) constitutes a sensitive and ecologically relevant impact parameter in ecotoxicology. We report the development and application of a novel anaerobic [(3) H]leucine incorporation assay and its comparison with the conventional aerobic [(3) H]leucine incorporation assay for PICT detection in soil bacterial communities. Selection of bacterial communities was performed over 42 d in bulk soil microcosms (no plants) and in rice (Oryza sativa) rhizosphere soil mesocosms. The following experimental treatments were imposed using a full factorial design: two soil types, two soil water regimes, and four Cu application rates (0, 30, 120, or 280 µg g(-1)). Bacterial communities in bulk soil microcosms exhibited similar Cu tolerance patterns when assessed by aerobic and anaerobic PICT assays, whereas aerobic microorganisms tended to be more strongly selected for Cu tolerance than anaerobic microorganisms in rhizosphere soil. Despite similar levels of water-extractable Cu, bacterial Cu tolerance was significantly higher in acid sulfate soil than in alluvial soil. Copper amendment selected for significant PICT development in soils subjected to alternate wetting and drying, but not in continuously flooded soils. Our results demonstrate that soil bacterial communities subjected to alternate wetting and drying may be more affected by Cu than bacterial communities subjected to continuous flooding. We conclude that the parallel use of anaerobic and aerobic [(3) H]leucine PICT assays constitutes a valuable improvement over existing procedures for PICT detection in irrigated soils and other redox gradient environments such as sediments and wetlands. Copyright © 2010 SETAC.

  15. Leaching of Salmonella Senftenberg and Cryptosporidium Parvum in Intact Clay Columns

    NASA Astrophysics Data System (ADS)

    Bech, T. B.; Forslund, A.; Dalsgaard, A.; Jacobsen, O.; Jacobsen, C. S.

    2008-12-01

    Manure application on land has been associated with both environmental and public health problems, even when management is within the current guidelines. Outbreaks of infection have been associated with water or food, including processed fruits and vegetables, contaminated with animal manure. A wide range of pathogenic microorganisms can be found in animal waste, including bacteria, protozoan, and viruses. When animal waste is disposed on agricultural land different factors will influence the risk for contaminating the groundwater. 1) Animal waste application method, rate, volume and frequency will have an effect on contamination. 2) Survival of the pathogens in the soil will e.g. depend on soil water content, temperature and pH. Salmonella species can survive up to 332 days and Cryptosporidium species can remain viable for several years in the soil environment. In the present study we compared the transport between the pathogenic bacteria S. senftenberg and the pathogenic protozoan C. parvum in intact clay columns. Furthermore, we compared the effect from surface and sub-surface manure application on the transport potential. 15 intact clay columns were placed in an outdoor multi-column lysimeter for 36 days. Manure inoculated with S. senftenberg, C. parvum and chloride was added to the soil surface or injected 8 cm into the columns. Drainage water was collected from the soil columns and DNA was extracted to quantify S. senftenberg and C. parvum by quantitative PCR. In addition S. senftenberg was enumerated by plate counting. Acid yellow was applied to selected columns to visualize the pathway down through the soil column. The highest concentration of S. senftenberg was in the first drainage sample ranging from 100-10000 CFU/ml. Breakthrough curves for chloride and S. senftenberg indicates the importance of preferential flow as well as a faster transport for the bacteria compared to chloride. C. parvum is retained to a higher degree in the soil but is still found

  16. Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2017-12-19

    Residual wastewater solids are a significant reservoir of antibiotic resistance genes (ARGs). While treatment technologies can reduce ARG levels in residual wastewater solids, the effects of these technologies on ARGs in soil during subsequent land-application are unknown. In this study we investigated the use of numerous treatment technologies (air drying, aerobic digestion, mesophilic anaerobic digestion, thermophilic anaerobic digestion, pasteurization, and alkaline stabilization) on the fate of ARGs and class 1 integrons in wastewater solids-amended soil microcosms. Six ARGs [erm(B), qnrA, sul1, tet(A), tet(W), and tet(X)], the integrase gene of class 1 integrons (intI1), and 16S rRNA genes were quantified using quantitative polymerase chain reaction. The quantities of ARGs and intI1 decreased in all microcosms, but thermophilic anaerobic digestion, alkaline stabilization, and pasteurization led to the most extensive decay of ARGs and intI1, often to levels similar to that of the control microcosms to which no wastewater solids had been applied. In contrast, the rates by which ARGs and intI1 declined using the other treatment technologies were generally similar, typically varying by less than 2 fold. These results demonstrate that wastewater solids treatment technologies can be used to decrease the persistence of ARGs and intI1 during their subsequent application to soil.

  17. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    USGS Publications Warehouse

    Ebel, Brian A.

    2012-01-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  18. Inhibition of Biodegradation of Hydraulic Fracturing Compounds by Glutaraldehyde: Groundwater Column and Microcosm Experiments.

    PubMed

    Rogers, Jessica D; Ferrer, Imma; Tummings, Shantal S; Bielefeldt, Angela R; Ryan, Joseph N

    2017-09-05

    The rapid expansion of unconventional oil and gas development has raised concerns about the potential contamination of aquifers; however, the groundwater fate and transport of hydraulic fracturing fluid compounds and mixtures remains a significant data gap. Degradation kinetics of five hydraulic fracturing compounds (2-propanol, ethylene glycol, propargyl alcohol, 2-butoxyethanol, and 2-ethylhexanol) in the absence and presence of the biocide glutaraldehyde were investigated under a range of redox conditions using sediment-groundwater microcosms and flow-through columns. Microcosms were used to elucidate biodegradation inhibition at varying glutaraldehyde concentrations. In the absence of glutaraldehyde, half-lives ranged from 13 d to >93 d. Accurate mass spectrometry indicated that a trimer was the dominant aqueous-phase glutaraldehyde species. Microbial inhibition was observed at glutaraldehyde trimer concentrations as low as 5 mg L -1 , which demonstrated that the trimer retained some biocidal activity. For most of the compounds, biodegradation rates slowed with increasing glutaraldehyde concentrations. For many of the compounds, degradation was faster in the columns than the microcosms. Four compounds (2-propanol, ethylene glycol, propargyl alcohol, and 2-butoxyethanol) were found to be both mobile and persistent in groundwater under a range of redox conditions. The glutaraldehyde trimer and 2-ethylhexanol were more rapidly degraded, particularly under oxic conditions.

  19. Emissions of NO and N2O in wetland microcosms for swine wastewater treatment.

    PubMed

    Zhang, Shunan; Liu, Feng; Xiao, Runlin; Li, Yong; Zhou, Juan; Wu, Jinshui

    2015-12-01

    Nitric oxide (NO) and nitrous oxide (N2O) emitted from wetland systems contribute an important proportion to the global warming effect. In this study, four wetland microcosms vegetated with Myriophyllum elatinoides (WM), Alternanthera philoxeroides (WA), Eichhornia crassipes (WE), or without vegetation (NW) were compared to investigate the emissions of NO and N2O during nitrogen (N) removal process when treating swine wastewater. After 30-day incubation, TN removal rates of 96.4, 74.2, 97.2, and 47.3 % were observed for the WM, WA, WE, and NW microcosms, respectively. Yet, no significant difference was observed in WM and WE (p > 0.05). The average NO and N2O emissions in WE was significantly higher than those in WM, WA, and NW (p < 0.05). In addition, the emission of N2O in WE accounted for 2.10 % of initial TN load and 2.17 % of the total amount of TN removal, compared with less than 1 % in the other microcosms. These findings indicate that wetland vegetated with M. elatinoides may be an optimal system for swine wastewater treatment, based on its higher removal of N and lower emissions of NO and N2O.

  20. EFFECTS OF MICROCOSM PREPARATION ON RATES OF TOLUENE BIODEGRADATION UNDER DENITRIFYING CONDITIONS

    EPA Science Inventory

    Microcosms were prepared with subsurface material from two aquifers to examine the effects of preparation methods on rates of toluene biodegradation under denitrifying conditions. In both cases, the data fit a zero-order kinetics plot. However, rates of removal were generally pro...

  1. Microcosm Studies to Evaluate Aerobic Cometabolism of Low Concentrations of 1,4-Dioxane by Isobutane-utilizing Microorganisms in the Presence of Chlorinated Solvent Co-contaminants

    NASA Astrophysics Data System (ADS)

    Rolston, H. M.; Azizian, M.; Hyman, M. R.; Semprini, L.

    2015-12-01

    Due to its use as a stabilizer for chlorinated solvents, 1,4-dioxane (1,4D), a probable human carcinogen, is a common co-contaminant in solvent spills at industrial and military sites and landfills. Its persistence in large groundwater plumes at low concentrations makes it a relevant candidate for in-situ bioremediation via cometabolism. Microcosm studies are being performed to evaluate the capability of aerobic microorganisms to cometabolize mixtures of 1,4D and chlorinated solvents, such as trichloroethylene (TCE), 1,1,1-trichloroethane (1,1,1TCA), and 1,1-dichloroethene (1,1DCE), with isobutane as the primary substrate. Microcosms were constructed using aquifer solids from Fort Carson, Colorado, a site contaminated with 1,4D and TCE, to assess the isobutane uptake and transformation of 1,4D and chlorinated solvents by microorganisms native to the site. Additional microcosms were augmented with Rhodococcus rhodochrous, a bacterium shown to cometabolize 1,4D and chlorinated solvents. Results indicate that native microcosms cometabolized 1,4D upon stimulation with isobutane after a lag period of about 15 days. TCE was also transformed, but at significantly slower rates. The presence of 1,4D and TCE at 500 and 300 ppb, respectively, did not inhibit the growth of native microorganisms on isobutane, with isobutane uptake and 1,4D transformation occurring simultaneously. Bioaugmented microcosms transformed 1,4D immediately after inoculation with R. rhodochrous. Tests in bioaugmented microorganisms indicated that the presence of TCE at low concentrations inhibits but does not block the transformation of 1,4D. Results from the microcosms will be used to design field tests to be performed at Fort Carson. Additional microcosm studies will compare the stimulation of native and bioaugmented microcosms and the transformation of mixtures of 1,4D, 1,1,1TCA and 1,1DCE. Molecular methods will analyze the monoxygenase enzymes expressed in the native and bioaugmented microcosms.

  2. Mercury Distribution, Methylation and Volatilization in Microcosms with and without the Sea Anemone Bunodosoma caissarum

    NASA Astrophysics Data System (ADS)

    Ansari, N. R.; Correia, R. R. S.; Fernandez, M. A. S.; Cordeiro, R. C.; Guimarães, J. R. D.

    2014-12-01

    Mercury (Hg) can be a dangerous contaminant and has a complex biogeochemical cycling in aquatic environments. The sea anemone Bunodosoma caissarum is an endemic species in Brazil capable of bioaccumulating Hg from the ambient seawater. The radiotracer 203Hg was used in order to investigate mechanisms of Hg uptake and depuration of B. caissarum and the distribution of Hg in laboratory model systems, with and without B. caissarum. A single initial spike of 203Hg was added to each microcosm. Microcosms had continuous air renovation and trapping of Hg volatile forms. Total Hg in different compartments was measured by gamma spectrometry. In the uptake experiment 203Hg activity was determined periodically in seawater and specimens for 6 days. At the end, specimens had an average bioconcentration factor of 70. After the uptake experiment, methylmercury (MeHg) in seawater was extracted and measured by liquid scintillation. In microcosms with and without B. caissarum, respectively 0.05% and 0.32% of the initial spike was found as MeHg. Hg was probably less available for methylation in the first because of bioaccumulation and higher concentrations of suspended particulate matter that could form complexes with Hg. After that, specimens were transferred to unspiked microcosms. After a 48 day depuration specimens still retained 35 - 70% of the previously bioaccumulated Hg and 0.2 - 2.4% of the total Hg was MeHg. The presence of B. caissarum resulted in an unexpected higher volatilization of Hg (58%) compared to controls (17%). This increased volatilization is possibly a result of Hg2+ reduction mediated by microorganisms associated with its tissues and mucus secretions and/or an unknown defense mechanism of this species.

  3. The San Dimas Soil Core Sampler

    Treesearch

    L. A. Andrews; W. M. Broadfoot

    1958-01-01

    The search for satisfactory methods of sampling soils for various purposes under a wide variety of conditions has led to the development of the equally wide variety of soil samplers described by Hoover, Olson, and Metz (5), Lull and Reinhart (8), and the U. S. Dept. Agr. Soil Survey staff (11). Although many of these samplers proved successful for the particular...

  4. Transport and fate of estrogenic hormones in slurry-treated soil monoliths.

    PubMed

    Laegdsmand, Mette; Andersen, Henrik; Jacobsen, Ole Hørbye; Halling-Sørensen, Bent

    2009-01-01

    The naturally occurring hormones, such as 17-beta-estradiol, 17-alpha-estradiol, and estrone, present in livestock manure may have detrimental environmental effects if released into surface waters. In areas where manure application is intensive, estrogens have been found in surface waters in concentrations known to affect the endocrine system of fish and amphibians. How the estrogens reach the surface waters is unclear. To investigate whether leaching through the soil profile plays a significant role, we conducted leaching experiments on intact soil cores. Lysimeter soil monoliths (60 cm in diameter and 100 cm long) were excavated from two sites in Denmark (one loamy and one sandy soil). The soil monoliths were treated with pig slurry containing estrogenic hormones and amended with an estrogen tracer (17-alpha-ethinylestradiol) and a conservative tracer (bromide). 17-alpha-ethinylestradiol is a synthetic analog of 17-beta-estradiol with sorption characteristics and molecular structure similar to those of the naturally occurring estrogens in slurry. The monoliths were exposed to a short-term irrigation event (12 h) followed by a long-term semi-field experiment (16 wk), during which leaching of natural estrogens and tracers was followed. Estrogens from slurry were transported to a depth of 1 m in loamy soil and sandy soil. The estrogen concentrations in the leachate were at a level known to affect the endocrine system of aquatic organisms.

  5. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores.

    PubMed

    Bartelt-Hunt, Shannon L; Smith, James A

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  6. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific. © 2013.

  7. Immunohistochemical and histomorphometric evaluation of vascular distribution in intact canine cranial cruciate ligament.

    PubMed

    Hayashi, Kei; Bhandal, Jitender; Kim, Sun Young; Rodriguez, Carlos O; Entwistle, Rachel; Naydan, Diane; Kapatkin, Amy; Stover, Susan M

    2011-02-01

    To (1) describe vascular distribution in the grossly intact canine cranial cruciate ligament (CCL) using immunohistochemical techniques specific to 2 components of blood vessels (factor VIII for endothelial cells, laminin for basement membrane); and (2) compare the vascularity in different areas of interest (craniomedial versus caudolateral bands; core versus epiligamentous regions; and proximal versus middle versus distal portions) in the intact normal canine CCL. In vitro study. Large, mature dogs (n=7) of breeds prone to CCL disease that were euthanatized for nonorthopedic conditions. Intact CCL were collected from fresh canine cadavers free from stifle pathology. CCL tissue was processed for immunohistochemistry and stained for factor VIII and laminin. Vascular density was determined by histomorphometric analysis. Specific vascular staining was sparsely identified throughout the CCL; however, the proximal portion of the CCL appears to have a greater number of vessels than the middle or distal portion of the ligament. The CCL is a hypovascular tissue and its vascular distribution is not homogeneous. © Copyright 2010 by The American College of Veterinary Surgeons.

  8. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-04

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.

  9. The Apollo 14 regolith - Petrology of cores 14210/14211 and 14220 and soils 14141, 14148, and 14149

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Laul, J. C.

    1982-01-01

    New modal data are presented for continuous polished thin sections from double drive tube 14210/14211, and single drive tube 14220, and for polished grain mounts of four soils from the double drive tube, one from the single drive tube, and the soils 14148 (trench top), 14149 (trench bottom), and 14141 (Cone Crater). Modal data show that the Cone Crater soil is immature, whereas the 'smooth plains' soils are mature and rich in agglutinates and breccias. Neither core exhibits any major variations with depth. Microprobe analyses of mineral and glass fragments are consistent with derivation of the soils predominantly from the local rocks, with about 5-11% exotic mare component indicated by the modal data. About 4% of the glasses are SiO2- and K2O-rich granitic glasses which are comminuted mesostasis from the local melt rocks. The soils are depleted in feldspar relative to the source rocks. The preferred explanation for this depletion is that feldspar is concentrated in the less than 10 microns fines and is consumed in the formation of agglutinates, regolith breccias, and feldspathic glass.

  10. ENANTIOSELECTIVE REDUCTIVE TRANSFORMATION OF CHIRAL POLYCHLORINATED BIPHENYLS IN LAKE SEDIMENT MICROCOSMS

    EPA Science Inventory

    The transformation rates and enantiomeric ratios of two chiral poylchlorinated biphenyls (PCBs), 2,2',3,4',5',6-hexachlorobiphenyl (2,2',3,4',5',6-HCB) and 2,2',3,3',4,4',5,6-octachlorobiphenyl (2,2',3,3',4,4',5,6-OCB), were determined in anaerobic lake sediment microcosms (25oC)...

  11. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    PubMed

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Atrazine distribution measured in soil and leachate following infiltration conditions.

    PubMed

    Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba

    2004-01-01

    Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.

  13. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    PubMed

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  14. Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms

    USGS Publications Warehouse

    Jooste, A.M.; Du Preez, L.H.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Solomon, K.R.

    2005-01-01

    The potential effects of atrazine on gonadal development in metamorphs and subadults of the African clawed frog (Xenopus laevis) were studied under conditions of natural photoperiod and temperatures in outdoor microcosms from August 2002 to June 2003 in South Africa. Triplicate 1100 L microcosms for each nominal concentration of 0.0, 1, 10, and 25 ??g of atrazine/L were used. Measured atrazine concentrations varied <25% throughout the study, and no atrazine was detected in the control microcosms. Tadpoles developed well at all concentrations. On the basis of histological examination of testes of recently metamorphosed stage 66 frogs, 57% of the individuals in the reference group exhibited testicular oocytes as compared with 57, 59, and 39% of the 1, 10, and 25 ??g/L atrazine groups, respectively. The average prevalence of testicular oocytes for all of the treatments including the controls was 54% in a single testis, while, in 35% of individuals, testicular oocytes were observed in both testes. The number of testicular oocytes per individual ranged from 0 to 58 with means of 9.5, 9.8, 8.5, and 11.1 for the 0.0, 1, 10, and 25 ??g of atrazine/L groups, respectively. Ten months after metamorphosis, another subset of juveniles was examined, and the maximum number of testicular oocytes observed was five in one animal. The presence of testicular oocytes was not related to exposure to atrazine and may be a natural phenomenon during ontogeny. ?? 2005 American Chemical Society.

  15. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils.

    PubMed

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-02-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated (13)C from labeled hemicellulose, analyzing (13)C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  16. Long-term effects of timber harvesting on hemicellulolytic microbial populations in coniferous forest soils

    PubMed Central

    Leung, Hilary T C; Maas, Kendra R; Wilhelm, Roland C; Mohn, William W

    2016-01-01

    Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears

  17. BIODEGRADATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAH) FROM CRUDE OIL IN SANDY-BEACH MICROCOSMS.

    EPA Science Inventory

    Though the lower n-alkanes are considered the most degradable components of crude oil, our experiments with microcosms simulating oiled beaches showed substantial depletion of fluorene, phenanthrene, dibenzothiophene, and other PAH in control treatments consisting of raw seawater...

  18. Potential effects of earthworm activity on C and N dynamics in tropical paddy soil

    NASA Astrophysics Data System (ADS)

    John, Katharina; Zaitsev, Andrey S.; Wolters, Volkmar

    2016-04-01

    Earthworms are involved in key ecosystem processes and are generally considered important for sustainable crop production. However, their provision of essential ecosystem services and contribution to tropical soil carbon and nitrogen balance in rice-based agroecosystems are not yet completely understood. We carried out two microcosm experiments to quantify the impact of a tropical earthworm Pheretima sp. from the Philippines on C and N turnover in rice paddy soils. First one was conducted to understand the modulation impact of soil water saturation level and nitrogen fertilizer input intensity on C and N cycles. The second one focused on the importance of additional organic matter (rice straw) amendment on the earthworm modulation of mineralization in non-flooded conditions. We measured CO2, CH4 (Experiments 1 and 2) and N2O evolution (Experiment 2) from rice paddy soil collected at the fields of the International Rice Research Institute (Philippines). Further we analysed changes in soil C and N content as well as nutrient loss via leaching induced by earthworms (Experiment 2). Addition of earthworms resulted in the strong increase of CH4 release under flooded conditions as well as after rice straw amendment. Compared to flooded conditions, earthworms suppressed the distinct CO2 respiration maximum at intermediate soil water saturation levels. In the first few days after the experiment establishment (Experiment 1) intensive nitrogen application resulted in the suppression of CO2 emission by earthworms at non-flooded soil conditions. However, at the longer term perspective addressed in the second experiment (30 days) earthworm activity rather increased average soil respiration under intensive fertilization or rice straw amendment. The lowest N2O release rates were revealed in the microcosms with earthworm and straw treatments. The combined effect of N fertilizer and straw addition to microcosms resulted in the increased leachate volume due to earthworm bioturbation

  19. Biotransformation at 10 C of di-n-butyl phthalate in subsurface microcosms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauret, C.; Inniss, W.E.; Mayfield, C.I.

    1996-09-01

    Di-n-butyl phthalate (DBP) was found to be transformed by microorganisms under aerobic and anaerobic conditions at 10 C in microcosms simulating the Canadian Forces Base (CFB) Borden subsurface environment. Biotransformation of DBP was observed under aerobic, nitrate-reducing, Fe(III)-reducing, and sulfate-reducing conditions. The biotransformation of DBP in the microcosms was significantly decrease3d as the redox potential was lowered, especially under sulfate-reducing conditions. However, other factors such as nutrient depletion and buildup of toxic intermediates could have affected the biotransformation rates. The highest DBP biotransformation rate (0.57 {micro}g DBP{center_dot}g sediment{sup {minus}1}{center_dot}day{sup {minus}1}) was under sulfate-reducing conditions. Biotransformation of DBP at 10 Cmore » was significantly enhanced by the addition of 10 mM NaNO{sub 3} suggesting that both the addition of nitrate and high redox conditions favor its biotransformation in subsurface environments.« less

  20. Comparison of Intact PTH and Bio-Intact PTH Assays Among Non-Dialysis Dependent Chronic Kidney Disease Patients.

    PubMed

    Einbinder, Yael; Benchetrit, Sydney; Golan, Eliezer; Zitman-Gal, Tali

    2017-09-01

    The third-generation bio-intact parathyroid hormone (PTH) (1-84) assay was designed to overcome problems associated with the detection of C-terminal fragments by the second-generation intact PTH assay. The two assays have been compared primarily among dialysis populations. The present study evaluated the correlations and differences between these two PTH assays among patients with chronic kidney disease (CKD) stages 3 to 5 not yet on dialysis. Blood samples were collected from 98 patients with CKD stages 3 to 5. PTH concentrations were measured simultaneously by using the second-generation - PTH intact-STAT and third-generation bio-intact 1-84 PTH assays. Other serum biomarkers of bone mineral disorders were also assessed. CKD stage was calculated by using the CKD-Epidemiology Collaboration (EPI) formula. Serum bio-intact PTH concentrations were strongly correlated but significantly lower than the intact PTH concentrations (r=0.963, P<0.0001). This finding was consistent among CKD stages 3 to 5. PTH concentrations by both assays (intact and bio-intact PTH) positively correlated with urea (r=0.523, r=0.504; P=0.002, respectively), phosphorus (r=0.532, r=0.521; P<0.0001, respectively) and negatively correlated with blood calcium (r=-0.435, r=-0.476; P<0.0001, respectively), 25(OH) vitamin D, (r=-0.319, r=-0.353; respectively, P<0.0001) and the estimated glomerular filtration rate (r=-0.717, r=-0.688; P<0.0001, respectively). Among patients with CKD stages 3 to 5 not on dialysis, the bio-intact PTH assay detected significantly lower PTH concentrations compared with intact PTH assay. Additional studies that correlate the diagnosis and management of CKD mineral and bone disorders with bone histomorphometric findings are needed to determine whether bio-intact PTH assay results are better surrogate markers in these early stages of CKD. © The Korean Society for Laboratory Medicine

  1. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    PubMed Central

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649

  2. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.

    PubMed

    Laquitaine, L; Durimel, A; de Alencastro, L F; Jean-Marius, C; Gros, O; Gaspard, S

    2016-01-01

    Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae.

  3. Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada).

    PubMed

    Garneau, Marie-Ève; Michel, Christine; Meisterhans, Guillaume; Fortin, Nathalie; King, Thomas L; Greer, Charles W; Lee, Kenneth

    2016-10-01

    The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at -1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by (3)H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. © Fisheries and Oceans Canada [2016].

  4. Recollections of Parent Characteristics and Attachment Patterns for College Women of Intact vs. Non-Intact Families

    ERIC Educational Resources Information Center

    Kilmann, Peter R.; Carranza, Laura V.; Vendemia, Jennifer M. C.

    2006-01-01

    This study contrasted offsprings' attachment patterns and recollections of parent characteristics in two college samples: 147 females from intact biological parents and 157 females of parental divorce. Secure females from intact or non-intact families rated parents positively, while insecure females rated parents as absent, distant, and demanding.…

  5. Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil

    PubMed Central

    Harter, Johannes; Guzman-Bustamante, Ivan; Kuehfuss, Stefanie; Ruser, Reiner; Well, Reinhard; Spott, Oliver; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that is produced during microbial nitrogen transformation processes such as nitrification and denitrification. Soils represent the largest sources of N2O emissions with nitrogen fertilizer application being the main driver of rising atmospheric N2O concentrations. Soil biochar amendment has been proposed as a promising tool to mitigate N2O emissions from soils. However, the underlying processes that cause N2O emission suppression in biochar-amended soils are still poorly understood. We set up microcosm experiments with fertilized, wet soil in which we used 15N tracing techniques and quantitative polymerase chain reaction (qPCR) to investigate the impact of biochar on mineral and gaseous nitrogen dynamics and denitrification-specific functional marker gene abundance and expression. In accordance with previous studies our results showed that biochar addition can lead to a significant decrease in N2O emissions. Furthermore, we determined significantly higher quantities of soil-entrapped N2O and N2 in biochar microcosms and a biochar-induced increase in typical and atypical nosZ transcript copy numbers. Our findings suggest that biochar-induced N2O emission mitigation is based on the entrapment of N2O in water-saturated pores of the soil matrix and concurrent stimulation of microbial N2O reduction resulting in an overall decrease of the N2O/(N2O + N2) ratio. PMID:28008997

  6. New molecular insights into the pools and mechanisms of Arctic soil organic matter decomposition under warming

    NASA Astrophysics Data System (ADS)

    Gu, B.

    2017-12-01

    It is estimated that Arctic permafrost soils store approximately half of the global belowground organic carbon, which is susceptible to microbial decomposition under warming climate. Studies have shown that rates of soil organic carbon (SOC) decomposition are controlled not only by temperature but also SOC substrate quality or chemical composition. However, detailed molecular-scale characterization of SOC and its susceptibility to degradation are lacking, due to extremely complex nature of SOC. Here, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was utilized to determine compositional changes of SOC during a microcosm warming experiment using tundra soils that were collected from the Barrow Environmental Observatory in Alaska, USA. Soil microcosm incubation was conducted with both organic and mineral active layer soils at two temperatures (-2°C and 8°C) up to 122 days, and water-extractable SOC was analyzed. Results indicate that peptides, amino sugars, and carbohydrate-like compounds are among the most labile SOC compounds to be degraded, with nitrogen-containing compounds degrading at a much faster rate than those containing no nitrogen. Refractory SOC components are dominated by the lignin- or tannin-like compounds and, to a less extent, the aliphatic compounds. Additionally, elemental ratios of O:C, H:C, and N:C were found to decrease with incubation time, and SOC in the mineral soil exhibited lower O:C and N:C ratios than those of the organic-rich soil. A biodegradation index is proposed to facilitate the incorporation of mass spectrometry data into mechanistic models of SOC degradation and thus improved prediction model of climate feedbacks in the Arctic.

  7. New molecular insights into the pools and mechanisms of Arctic soil organic matter decomposition under warming

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.

    2016-12-01

    It is estimated that Arctic permafrost soils store approximately half of the global belowground organic carbon, which is susceptible to microbial decomposition under warming climate. Studies have shown that rates of soil organic carbon (SOC) decomposition are controlled not only by temperature but also SOC substrate quality or chemical composition. However, detailed molecular-scale characterization of SOC and its susceptibility to degradation are lacking, due to extremely complex nature of SOC. Here, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was utilized to determine compositional changes of SOC during a microcosm warming experiment using tundra soils that were collected from the Barrow Environmental Observatory in Alaska, USA. Soil microcosm incubation was conducted with both organic and mineral active layer soils at two temperatures (-2°C and 8°C) up to 122 days, and water-extractable SOC was analyzed. Results indicate that peptides, amino sugars, and carbohydrate-like compounds are among the most labile SOC compounds to be degraded, with nitrogen-containing compounds degrading at a much faster rate than those containing no nitrogen. Refractory SOC components are dominated by the lignin- or tannin-like compounds and, to a less extent, the aliphatic compounds. Additionally, elemental ratios of O:C, H:C, and N:C were found to decrease with incubation time, and SOC in the mineral soil exhibited lower O:C and N:C ratios than those of the organic-rich soil. A biodegradation index is proposed to facilitate the incorporation of mass spectrometry data into mechanistic models of SOC degradation and thus improved prediction model of climate feedbacks in the Arctic.

  8. Archaeal communities in boreal forest tree rhizospheres respond to changing soil temperatures.

    PubMed

    Bomberg, Malin; Münster, Uwe; Pumpanen, Jukka; Ilvesniemi, Hannu; Heinonsalo, Jussi

    2011-07-01

    Temperature has generally great effects on both the activity and composition of microbial communities in different soils. We tested the impact of soil temperature and three different boreal forest tree species on the archaeal populations in the bulk soil, rhizosphere, and mycorrhizosphere. Scots pine, silver birch, and Norway spruce seedlings were grown in forest humus microcosms at three different temperatures, 7-11.5°C (night-day temperature), 12-16°C, and 16-22°C, of which 12-16°C represents the typical mid-summer soil temperature in Finnish forests. RNA and DNA were extracted from indigenous ectomycorrhiza, non-mycorrhizal long roots, and boreal forest humus and tested for the presence of archaea by nested PCR of the archaeal 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE) profiling and sequencing. Methanogenic Euryarchaeota belonging to Methanolobus sp. and Methanosaeta sp. were detected on the roots and mycorrhiza. The most commonly detected archaeal 16S rRNA gene sequences belonged to group I.1c Crenarchaeota, which are typically found in boreal and alpine forest soils. Interestingly, also one sequence belonging to group I.1b Crenarchaeota was detected from Scots pine mycorrhiza although sequences of this group are usually found in agricultural and forest soils in temperate areas. Tree- and temperature-related shifts in the archaeal population structure were observed. A clear decrease in crenarchaeotal DGGE band number was seen with increasing temperature, and correspondingly, the number of euryarchaeotal DGGE bands, mostly methanogens, increased. The greatest diversity of archaeal DGGE bands was detected in Scots pine roots and mycorrhizas. No archaea were detected from humus samples from microcosms without tree seedling, indicating that the archaea found in the mycorrhizosphere and root systems were dependent on the plant host. The detection of archaeal 16S rRNA gene sequences from both RNA and DNA extractions show that the

  9. Soil fungal community shift evaluation as a potential cadaver decomposition indicator.

    PubMed

    Chimutsa, Monica; Olakanye, Ayodeji O; Thompson, Tim J U; Ralebitso-Senior, T Komang

    2015-12-01

    Fungi metabolise organic matter in situ and so alter both the bio-/physico-chemical properties and microbial community structure of the ecosystem. In particular, they are responsible reportedly for specific stages of decomposition. Therefore, this study aimed to extend previous bacteria-based forensic ecogenomics research by investigating soil fungal community and cadaver decomposition interactions in microcosms with garden soil (20 kg, fresh weight) and domestic pig (Sus scrofa domesticus) carcass (5 kg, leg). Soil samples were collected at depths of 0-10 cm, 10-20 cm and 20-30 cm on days 3, 28 and 77 in the absence (control -Pg) and presence (experimental +Pg) of Sus scrofa domesticus and used for total DNA extraction and nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) profiling of the 18S rRNA gene. The Shannon-Wiener (H') community diversity indices were 1.25±0.21 and 1.49±0.30 for the control and experimental microcosms, respectively, while comparable Simpson species dominance (S) values were 0.65±0.109 and 0.75±0.015. Generally, and in contrast to parallel studies of the bacterial 16S rRNA and 16S rDNA profiles, statistical analysis (t-test) of the 18S dynamics showed no mathematically significant shifts in fungal community diversity (H'; p=0.142) and dominance (S; p=0.392) during carcass decomposition, necessitating further investigations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  11. Effects of sediment-spiked lufenuron on benthic macroinvertebrates in outdoor microcosms and single-species toxicity tests.

    PubMed

    Brock, T C M; Bas, D A; Belgers, J D M; Bibbe, L; Boerwinkel, M-C; Crum, S J H; Diepens, N J; Kraak, M H S; Vonk, J A; Roessink, I

    2016-08-01

    Sediment ecotoxicity studies were conducted with lufenuron to (i) complement the results of a water-spiked mesocosm experiment with this lipophilic benzoylurea insecticide, (ii) to explore the predictive value of laboratory single-species tests for population and community-level responses of benthic macroinvertebrates, and (iii) to calibrate the tier-1 effect assessment procedure for sediment organisms. For this purpose the concentration-response relationships for macroinvertebrates between sediment-spiked microcosms and those of 28-d sediment-spiked single-species toxicity tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus were compared. Lufenuron persisted in the sediment of the microcosms. On average, 87.7% of the initial lufenuron concentration could still be detected in the sediment after 12 weeks. Overall, benthic insects and crustaceans showed treatment-related declines and oligochaetes treatment-related increases. The lowest population-level NOEC in the microcosms was 0.79μg lufenuron/g organic carbon in dry sediment (μg a.s./g OC) for Tanytarsini, Chironomini and Dero sp. Multivariate analysis of the responses of benthic macroinvertebrates revealed a community-level NOEC of 0.79μg a.s./g OC. The treatment-related responses observed in the microcosms are in accordance with the results of the 28-d laboratory toxicity tests. These tests showed that the insect C. riparius and the crustacean H. azteca were approximately two orders of magnitude more sensitive than the oligochaete L. variegatus. In our laboratory tests, using field-collected sediment, the lowest 28-d EC10 (0.49μg a.s./g OC) was observed for C. riparius (endpoint survival), while for the standard OECD test with this species, using artificial sediment, a NOEC of 2.35μg a.s./g OC (endpoint emergence) is reported. In this particular case, the sediment tier-1 effect assessment using the chronic EC10 (field-collected sediment) or chronic NOEC (artificial sediment) of C

  12. Direct mass spectrometric measurement of gases in soil monoliths.

    PubMed

    Sheppard, S K; Lloyd, D

    2002-07-01

    An integrated approach to gas analysis in soil cores was conducted to provide a novel method for observing the gas dynamics associated with upland soil ecosystems. Depth profiles of the O(2), Ar, CO(2), CH(4), N(2) and NO(x) concentrations in intact soil monoliths were obtained simultaneously using membrane inlet mass spectrometry (MIMS). This technique enables the direct measurement of multiple gas species throughout the soil core with minimal disturbance. Depth profiles provided data on the vertical heterogeneity of gas concentrations, while horizontal heterogeneity was monitored by comparison between profiles. Detailed descriptions of the modifications to current MIMS methods for in situ environmental monitoring of terrestrial soils are provided. These included a thorough examination of calibration of the MIMS probe in gas phase, stirred and unstirred H(2)O, or between glass beads immersed in H(2)O. Calibration was also carried out in sterile (autoclaved) soil. The mean concentrations of CO(2) and CH(4) in the soil monoliths increased from 27 microM and undetectable levels respectively at the surface, to maximum values of 3.6 mM and 4.3 microM at 12-cm depth. These changes corresponded with decreases in mean O(2), Ar and N(2) concentration from 300, 20 and 720 microM respectively to 0-6, 10 and 574 microM at 12-cm depth. These data indicated the presence of a gradient within the core from an aerobic environment to an O(2)-depleted, but not in all cases a completely anaerobic, one. This transition corresponded, to some extent, with that between the upper and lower soil horizons. The increased methane and CO(2) concentrations observed at depth are indicative of anaerobic environments. General trends associated with the gradually changing vertical heterogeneity of these gas profiles and the transition towards anaerobiosis did not provide evidence for the existence of localised microsites. Some evidence for microsite-specific microbial communities was however

  13. Tree specie effects on soil microbial community composition and greenhouse gases emissions in a Mediterranean ecotone forest

    NASA Astrophysics Data System (ADS)

    Fernandez, Maria Jose; Ortiz, Carlos; Kitzler, Barbara; Curiel, Jorge; Rubio, Agustin

    2016-04-01

    Over recent decades in the Iberian Peninsula, altitudinal shifts from Pinus sylvestris L. to Quercus pyrenaica Willd species has been observed as a consequence of Global Change, meaning changes in temperature, precipitation, land use and forestry. The forest conversion from pine to oak can alter the litter quality and quantity provided to the soil and thereby the soil microbial community composition and functioning. Since soil microbiota plays an important role in organic matter decomposition, and this in turn is key in biogeochemical cycles and forest ecosystems productivity, the rate in which forests produce and consume greenhouse gases can be also affected by changes in forest composition. In other words, changes in litter decomposition will ultimately affect downstream carbon and nitrogen dynamics although this impact is uncertain. In order to predict changes in carbon and nitrogen stocks in Global Change scenarios, it is necessary to deepen the impact of vegetation changes on soil microbial communities, litter decomposition dynamics (priming effect) and the underlying interactions between these factors. To test this, we conducted a full-factorial transplant microcosms experiment mixing both fresh soils and litter from Pyrenean oak, Scots pine and mixed stands collected inside their transitional area in Central Spain. The microcosms consisted in soil cylinders inside Kilner jars used as chambers inside an incubator. In this experiment, we investigated how and to what extent the addition of litter with different quality (needles, oak leaves and mixed needles-leaves) to soil inoculums with contrasting soil microbiota impact on (i) soil CO2, NO, N2O and CH4 efflux rates, (ii) total organic carbon and nitrogen and (iii) dissolved organic carbon and nitrogen. Furthermore, we assessed if these responses were controlled by changes in the microbial community structure using the PLFA analyses prior and after the incubation period of 54 days.

  14. Analysis of glyphosate degradation in a soil microcosm.

    PubMed

    la Cecilia, Daniele; Maggi, Federico

    2018-02-01

    Glyphosate (GLP) herbicide leaching into soil can undergo abiotic degradation and two enzymatic oxidative or hydrolytic reactions in both aerobic and anaerobic conditions; biotic oxidation produces aminomethylphosphonic acid (AMPA). Both GLP and AMPA are phytotoxic. A comprehensive GLP degradation reaction network was developed from the literature to account for the above pathways, and fifteen experimental data sets were used to determine the corresponding Michaelis-Menten-Monod (MMM) kinetic parameters. Various sensitivity analyses were designed to assess GLP and AMPA degradation potential against O 2 (aq) and carbon (C) availability, pH, and birnessite mineral content, and showed that bacteria oxidized or hydrolyzed up to 98% of GLP and only 9% of AMPA. Lack of a C source limited the GLP cometabolic hydrolytic pathways, which produces non-toxic byproducts and promotes AMPA biodegradation. Low bacterial activity in O 2 (aq)-limited conditions or non-neutral pH resulted in GLP accumulation. Birnessite mineral catalyzed fast GLP and AMPA chemodegradation reaching alone efficiencies of 79% and 88%, respectively, regardless of the other variables and produced non-toxic byproducts. Overall, O 2 (aq) and birnessite availability played the major roles in determining the partitioning of GLP and its byproducts mass fluxes across the reaction network, while birnessite, C availability, and pH affected GLP and AMPA biodegradation effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Laboratory-scale evaluation of a combined soil amendment for the enhanced biodegradation of propylene glycol-based aircraft de-icing fluids.

    PubMed

    Libisch, Balázs; French, Helen K; Hartnik, Thomas; Anton, Attila; Biró, Borbála

    2012-01-01

    A combined soil amendment was tested in microcosm experiments with an aim to enhance the aerobic biodegradation of propylene glycol (PG)-based aircraft de-icing fluids during and following the infiltration of contaminated snowmelt. A key objective under field conditions is to increase degradation of organic pollutants in the surface soil where higher microbial activity and plant rhizosphere effects may contribute to a more efficient biodegradation of PG, compared to subsoil ground layers, where electron acceptors and nutrients are often depleted. Microcosm experiments were set up in Petri dishes using 50 g of soil mixed with appropriate additives. The samples contained an initial de-icing fluid concentration of 10,000 mg/kg soil. A combined amendment using calcium peroxide, activated carbon and 1 x Hoagland solution resulted in significantly higher degradation rates for PG both at 4 and 22 degrees C. Most probable numbers of bacteria capable of utilizing 10,000 mg/kg de-icing fluid as a sole carbon source were about two orders of magnitude higher in the amended soil samples compared to unamended controls at both temperatures. The elevated numbers of such bacteria in surface soil may be a source of cells transported to the subsoil by snowmelt infiltration. The near-surface application of amendments tested here may enhance the growth of plants and plant roots in the contaminated area, as well as microbes to be found at greater depth, and hence increase the degradation of a contaminant plume present in the ground.

  16. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils.

    PubMed

    Gou, Min; Hu, Hang-Wei; Zhang, Yu-Jing; Wang, Jun-Tao; Hayden, Helen; Tang, Yue-Qin; He, Ji-Zheng

    2018-01-15

    Composting has been suggested as a potential strategy to eliminate antibiotic residues and pathogens in livestock manure before its application as an organic fertilizer in agro-ecosystems. However, the impacts of composting on antibiotic resistance genes (ARGs) in livestock manure and their temporal succession following the application of compost to land are not well understood. We examined how aerobic composting affected the resistome profiles of cattle manure, and by constructing laboratory microcosms we compared the effects of manure and compost application to agricultural soils on the temporal succession of a wide spectrum of ARGs. The high-throughput quantitative PCR array detected a total of 144 ARGs across all the soil, manure and compost samples, with Macrolide-Lincosamide-Streptogramin B, aminoglycoside, multidrug, tetracycline, and β-lactam resistance as the most dominant types. Composting significantly reduced the diversity and relative abundance of ARGs and mobile genetic elements (MGEs) in the cattle manure. In the 120-day microcosm incubation, the diversity and abundance of ARGs in manure-treated soils were significantly higher than those in compost-treated soils at the beginning of the experiment. The level of antibiotic resistance rapidly declined over time in all manure- and compost-treated soils, coupled with similar temporal patterns of manure- and compost-derived bacterial communities as revealed by SourceTracker analysis. The network analysis revealed more intensive interactions/associations among ARGs and MGEs in manure-treated soils than in compost-treated soils, suggesting that mobility potential of ARGs was lower in soils amended with compost. Our results provide evidence that aerobic composting of cattle manure may be an effective approach to mitigate the risk of antibiotic resistance propagation associated with land application of organic wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  18. Nitrification Is a Primary Driver of Nitrous Oxide Production in Laboratory Microcosms from Different Land-Use Soils.

    PubMed

    Liu, Rui; Hu, Hangwei; Suter, Helen; Hayden, Helen L; He, Jizheng; Mele, Pauline; Chen, Deli

    2016-01-01

    Most studies on soil N2O emissions have focused either on the quantifying of agricultural N2O fluxes or on the effect of environmental factors on N2O emissions. However, very limited information is available on how land-use will affect N2O production, and nitrifiers involved in N2O emissions in agricultural soil ecosystems. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O emissions from different land-use soils and identifying the potential underlying microbial mechanisms. A (15)N-tracing experiment was conducted under controlled laboratory conditions on four agricultural soils collected from different land-use. We measured N2O fluxes, nitrate ([Formula: see text]), and ammonium ([Formula: see text]) concentration and (15)N2O, (15)[Formula: see text], and (15)[Formula: see text] enrichment during the incubation. Quantitative PCR was used to quantify ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our results showed that nitrification was the main contributor to N2O production in soils from sugarcane, dairy pasture and cereal cropping systems, while denitrification played a major role in N2O production in the vegetable soil under the experimental conditions. Nitrification contributed to 96.7% of the N2O emissions in sugarcane soil followed by 71.3% in the cereal cropping soil and 70.9% in the dairy pasture soil, while only around 20.0% of N2O was produced from nitrification in vegetable soil. The proportion of nitrified nitrogen as N2O (PN2O-value) varied across different soils, with the highest PN2O-value (0.26‰) found in the cereal cropping soil, which was around 10 times higher than that in other three systems. AOA were the abundant ammonia oxidizers, and were significantly correlated to N2O emitted from nitrification in the sugarcane soil, while AOB were significantly correlated with N2O emitted from nitrification in the cereal cropping soil. Our findings suggested that soil

  19. Effects of Vegetation Removal and Soil Disturbance on Soil Organic and Inorganic Carbon Dynamics in California Desert Ecosystems

    NASA Astrophysics Data System (ADS)

    Swanson, A. C.; Allen, E. B.; Allen, M. F.; Hernandez, R. R.

    2015-12-01

    Solar energy developments are projected to be deployed over desert wildland areas with deep soil inorganic carbon (SIC) deposits, which often involves elimination of deep-rooted vegetation. This land cover change may systemically alter SIC pools since respired CO2 is the carbon (C) source during SIC formation. We sought to understand how removal of creosote bush scrub affects soil C pools. We hypothesized that vegetation is important for maintaining SIC and soil organic C (SOC) pools and that disturbance to the vegetation and soil will change CO2 flux with increased losses from SIC. Soils were collected from sites that had intact creosote bush scrub habitat adjacent to disturbed, bare areas where the native vegetation had been previously removed. Samples were taken from beneath shrub canopies and interspaces in intact areas, and from random points in the disturbed area. Soils were analyzed for SIC, SOC, microbial and labile C, and δ13C. Soils were also incubated to determine the potential CO2 flux from disturbed and undisturbed soils along with the sources of CO2. Three replicates per soil underwent a control and water addition treatment and flux and δ13C of CO2 were measured continuously. Control replicates yielded no significant CO2 flux. CO2 flux from watered soils was higher beneath shrub canopy (18.57µmol g soil-1 day-1±1.86) than the interspace soils (0.86 µmol g soil-1 day-1±0.17). Soils collected from bare areas had an intermediate flux (5.41 µmol g soil-1 day-1±2.68 and 3.68 µmol g soil-1 day-1±0.85, respectively) lying between shrub canopy and interspace soils. There was no significant difference between the δ13C values of CO2 from shrub canopy and interspace soils, both of which had a very low δ13C values (-22.60‰±0.64 and -23.88‰±0.89, respectively), resembling that of organic C. However, the isotopic values of CO2 from disturbed soils were significantly higher (-16.68‰±1.36 and -15.22‰±2.12, respectively) suggesting that these

  20. Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils

    DOE PAGES

    Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; ...

    2016-06-15

    Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO 2) exchange, methane (CH 4) emissions, dissolved organic carbon (DOC) and nitrogenmore » (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for similar to 33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate(NO 3 -) leaching was highest during the fall (5.33 ± 1.45 mgNm -2 d -1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg Nm -2 d -1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH 4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Furthermore, large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.« less

  1. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    PubMed

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The

  2. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ziming; Yang, Sihang; Van Nostrand, Joy D.

    Microbial decomposition of soil organic carbon (SOC) in the thawing Arctic permafrost is one of the most important, but poorly understood, processes in determining the greenhouse gases feedback of tundra ecosystems to climate. Here in this paper, we examine changes in microbial community structure during an anoxic incubation at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC chemistry, and GeoChips were used to determine microbial community structure and functional genes associated with C degradation andmore » Fe(III) reduction. We observed notable decreases in functional gene diversity (at P < 0.05) in response to warming at 8 °C, particularly in the organic soil. A number of genes associated with SOC degradation, fermentation, methanogenesis, and iron cycling decreased significantly (P < 0.05) after 122 days of incubation, which coincided well with decreasing labile SOC content, soil respiration, methane production, and iron reduction. The soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant environmental factors impacting the functional community structure. In contrast, the functional structure was largely unchanged in the –2 °C incubation due to low microbial activity resulting in less competition or exclusion. These results demonstrate the vulnerability of SOC in Arctic tundra to warming, facilitated by iron reduction and methanogenesis, and the importance of microbial communities in moderating such vulnerability.« less

  3. Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment

    DOE PAGES

    Yang, Ziming; Yang, Sihang; Van Nostrand, Joy D.; ...

    2017-09-19

    Microbial decomposition of soil organic carbon (SOC) in the thawing Arctic permafrost is one of the most important, but poorly understood, processes in determining the greenhouse gases feedback of tundra ecosystems to climate. Here in this paper, we examine changes in microbial community structure during an anoxic incubation at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC chemistry, and GeoChips were used to determine microbial community structure and functional genes associated with C degradation andmore » Fe(III) reduction. We observed notable decreases in functional gene diversity (at P < 0.05) in response to warming at 8 °C, particularly in the organic soil. A number of genes associated with SOC degradation, fermentation, methanogenesis, and iron cycling decreased significantly (P < 0.05) after 122 days of incubation, which coincided well with decreasing labile SOC content, soil respiration, methane production, and iron reduction. The soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant environmental factors impacting the functional community structure. In contrast, the functional structure was largely unchanged in the –2 °C incubation due to low microbial activity resulting in less competition or exclusion. These results demonstrate the vulnerability of SOC in Arctic tundra to warming, facilitated by iron reduction and methanogenesis, and the importance of microbial communities in moderating such vulnerability.« less

  4. Positive Youth Development, Life Satisfaction, and Problem Behaviors of Adolescents in Intact and Non-Intact Families in Hong Kong

    PubMed Central

    Shek, Daniel T. L.; Leung, Hildie

    2013-01-01

    This study investigated whether Chinese adolescents living in intact and non-intact families differed in their positive development, life satisfaction, and risk behavior. A total of 3,328 Secondary 1 students responded to measures of positive youth development (such as resilience and psychosocial competencies), life satisfaction, and risk behavior (substance abuse, delinquency, Internet addiction, consumption of pornographic materials, self-harm, and behavioral intention to engage in problem behavior). Findings revealed that adolescents growing up in intact families reported higher levels of positive developmental outcomes and life satisfaction as compared with adolescents from non-intact families. Adolescents in non-intact families also reported higher levels of risk behaviors than those growing up in intact families. PMID:24400264

  5. Positive youth development, life satisfaction, and problem behaviors of adolescents in intact and non-intact families in Hong Kong.

    PubMed

    Shek, Daniel T L; Leung, Hildie

    2013-01-01

    This study investigated whether Chinese adolescents living in intact and non-intact families differed in their positive development, life satisfaction, and risk behavior. A total of 3,328 Secondary 1 students responded to measures of positive youth development (such as resilience and psychosocial competencies), life satisfaction, and risk behavior (substance abuse, delinquency, Internet addiction, consumption of pornographic materials, self-harm, and behavioral intention to engage in problem behavior). Findings revealed that adolescents growing up in intact families reported higher levels of positive developmental outcomes and life satisfaction as compared with adolescents from non-intact families. Adolescents in non-intact families also reported higher levels of risk behaviors than those growing up in intact families.

  6. Comparison and Correlation of Subsurface Media Properties Reflected in Both Extracted Soil Pore Water From Sectioned Cores and Homogenized Groundwater From Monitoring Wells

    NASA Astrophysics Data System (ADS)

    Moon, J. W.; Paradis, C. J.; von Netzer, F.; Dixon, E.; Majumder, E.; Joyner, D.; Zane, G.; Fitzgerald, K.; Xiaoxuan, G.; Thorgersen, M. P.; Lui, L.; Adams, B.; Brewer, S. S.; Williams, D.; Lowe, K. A.; Rodriguez, M., Jr.; Mehlhorn, T. L.; Pfiffner, S. M.; Chakraborty, R.; Arkin, A. P.; Terry, A. Y.; Wall, J. D.; Stahl, D. A.; Elias, D. A.; Hazen, T. C.

    2017-12-01

    Conventional monitoring wells have produced useful long-term data about the contaminants, carbon flux, microbial population and their evolution. The averaged homogenized groundwater matrix from these wells is insufficient to represent all media properties in subsurface. This pilot study investigated the solid, liquid and gas phases from soil core samples from both uncontaminated and contaminated areas of the ENIGMA field research site at Oak Ridge, Tennessee. We focused on a site-specific assessment with depth perspective that included soil structure, soil minerals, major and trace elements and biomass for the solid phase; centrifuged soil pore water including cations, anions, organic acid, pH and conductivity for the liquid phase; and gas (CO2, CH4, N2O) evolution over a 4 week incubation with soil and unfiltered groundwater. Pore water from soil core sections showed a correlation between contamination levels with depth and the potential abundance of sulfate- and nitrate-reducing bacteria based on the 2-order of magnitude decreased concentration. A merged interpretation with mineralogical consideration revealed a more complicated correlation among contaminants, soil texture, clay minerals, groundwater levels, and biomass. This sampling campaign emphasized that subsurface microbial activity and metabolic reactions can be influenced by a variety of factors but can be understood by considering the influence of multiple geochemical factors from all subsurface phases including water, air, and solid along depth rather than homogenized groundwater.

  7. Growth of streptomycetes in soil and their impact on bioremediation.

    PubMed

    Schütze, Eileen; Klose, Michael; Merten, Dirk; Nietzsche, Sandor; Senftleben, Dominik; Roth, Martin; Kothe, Erika

    2014-02-28

    The impact of the extremely heavy metal resistant actinomycete Streptomyces mirabilis P16B-1 on heavy metal mobilization/stabilization, phytoremediation and stress level of plants was analyzed in the presence and absence of Sorghum bicolor in sterile microcosms containing highly metal contaminated or control soil. For control, a metal sensitive S. lividans TK24 was used. The metal contents with respect to the mobile and specifically adsorbed fractions of the contaminated soil were considerably decreased by addition of both, living and dead biomass of the strains, with the heavy metal resistant S. mirabilis P16B-1 showing considerably higher impact. Both strains could grow in control soil, while only S. mirabilis P16B-1 formed new tip growth in the metal contaminated soil. A plant growth promoting effect was visible for S. mirabilis P16B-1 in contaminated soil enhancing the dry weight of inoculated Sorghum plants. Thus, metal resistant strains like S. mirabilis P16B-1 are able to enhance phytoremediation of heavy metal contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Microbial decomposition of dead grassland roots and its influence on the carbon cycle under changing precipitation patterns

    NASA Astrophysics Data System (ADS)

    Becerra, C.; Schimel, J.

    2013-12-01

    Soil is the largest reservoir of organic carbon in terrestrial ecosystems and as such, represents a potential sink for carbon dioxide.The decomposition products of dead roots buried in the soil is a contributor to soil organic carbon. However, changing precipitation patterns may affect its fate by influencing the microbial community responsible for decomposing dead roots. To assess the impact of changing precipitation patterns, we constructed microcosms with grassland soil collected from the UCSB Sedgwick Reserve, an active and long-term research site, and dead roots from greenhouse-grown grass, Bromus diandrus. Microcosms were wetted continuously, every seven days, or every twenty days. Sets of microcosms were periodically deconstructed to assess the soil versus the roots-associated microbial community and its function. Differences in respiration rates of microcosms continuously wetted or wetted every 7 days versus microcosms wetted every 20 days existed for the first 70 days. After which, no differences in respiration rates were seen with microcosms containing roots and the no roots control. Relatedly, after a 70% roots mass loss by day 50, there was no difference in the respiration rate of microcosms containing roots and the no roots control. More than half of the roots mass loss had occurred by 30 days. By the end of the incubation period, the roots mass loss in continuously wet and 7-day wetted microcosms were over 80% compared to 67% for the microcosms wetted every 20 days. Microbial biomass in the soil were constant over time and showed no difference in treatment except with the no roots control during the first half of the incubation period. Hydrolytic enzyme activities (β-1,4-glucosidase; α-1,4-glucosidase; β-1,4-xylosidase; β-1,4-cellobiosidase) on the roots versus the soil attached to the roots were over an order greater and decreased faster with the exception of N-acetyl-glucosaminidase and acid phosphatase. Oxidative enzyme activities (phenol

  9. Treatment of munitions in soils using phytoslurries.

    PubMed

    Medina, Victor F; Larson, Steven L; Agwaramgbo, Lovell; Perez, Waleska

    2002-01-01

    Phytoremediation is an established technology for the treatment of explosives in water and soil. This study investigated the possibility of using slurried plants (or phytoslurries) to treat explosives (TNT and RDX). The degradation of TNT in solution using intact and slurried parrotfeather (Myriophyllum aquaticum), spinach (Spinicia oleracea), and mustard greens (Brassica juncea) was evaluated. Phytoslurries of parrotfeather and spinach removed the TNT faster than the intact plant. Conversely, the removal rate constants for slurried and intact mustard greens were about the same. A study using pressurized heating to destroy enzymatic activity in the phytoslurries was also conducted to compare removal from released plant chemicals to adsorptive removal. Aqueous phase removal of TNT by autoclaved spinach phytoslurry was compared with nonautoclaved spinach phytoslurry. The autoclaved phytoslurry did remove TNT, but not as completely as nonautoclaved slurry. This suggests that some removal is due to adsorption, but not all. Phytoslurries of mustard greens and parrotfeather had higher RDX removal rates compared with intact plant removal, but the rates for parrotfeather in either case were relatively low. Phytoslurries of spinach had relatively modest increases in RDX removal rates compared with intact plant. Studies were then conducted with phytoslurry/soil mixtures at two scales: 60 ml and 1.5 l. In both cases, phytoslurries of mustard greens and spinach removed TNT and RDX at higher levels than control slurries.

  10. EFFECTS OF A LIGNIN PEROXIDASE-EXPRESSING RECOMBINANT STREPTOMYCES LIVIDANS TK23.1 ON BIOGEOCHEMICAL CYCLING AND THE NUMBERS AND ACTIVITIES OF MICROORGANISMS IN SOIL

    EPA Science Inventory

    A recombinant actinomycete, Streptomyces lividans TK23.1, expressing a pIJ702-encoded extracellular lignin peroxidase gene cloned from the chromosome of Streptomyces virodosporus T7A, was released into soil in flask- and microcosm-scale studies to determine its effects on humific...

  11. Microbial community dynamics induced by rewetting dry soil: summer precipitation matters

    NASA Astrophysics Data System (ADS)

    Barnard, Romain; Osborne, Catherine; Firestone, Mary

    2015-04-01

    The massive soil CO2 efflux associated with rewetting dry soils after the dry summer period significantly contributes to the annual carbon budget of Mediterranean grasslands. Rapid reactivation of soil heterotrophic activity and available carbon are both required to fuel the CO2 pulse. Better understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting future changes in carbon cycling. We investigated the effects of a controlled rewetting event on the soil CO2 efflux pulse and on the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores previously subjected to three different precipitation patterns over four months (full summer dry season, extended wet season, and absent dry season). Phylogenetic marker genes for bacteria (16S) and fungi (28S) were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. Even after having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response, reflecting contrasting life-strategies for different groups. Moreover, we found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry conditions (predicted to change under future climate) is important in conditioning the response potential of the soil bacterial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.

  12. Insecticide applications to soil contribute to the development of Burkholderia mediating insecticide resistance in stinkbugs.

    PubMed

    Tago, Kanako; Kikuchi, Yoshitomo; Nakaoka, Sinji; Katsuyama, Chie; Hayatsu, Masahito

    2015-07-01

    Some soil Burkholderia strains are capable of degrading the organophosphorus insecticide, fenitrothion, and establish symbiosis with stinkbugs, making the host insects fenitrothion-resistant. However, the ecology of the symbiotic degrading Burkholderia adapting to fenitrothion in the free-living environment is unknown. We hypothesized that fenitrothion applications affect the dynamics of fenitrothion-degrading Burkholderia, thereby controlling the transmission of symbiotic degrading Burkholderia from the soil to stinkbugs. We investigated changes in the density and diversity of culturable Burkholderia (i.e. symbiotic and nonsymbiotic fenitrothion degraders and nondegraders) in fenitrothion-treated soil using microcosms. During the incubation with five applications of pesticide, the density of the degraders increased from less than the detection limit to around 10(6)/g of soil. The number of dominant species among the degraders declined with the increasing density of degraders; eventually, one species predominated. This process can be explained according to the competitive exclusion principle using V(max) and K(m) values for fenitrothion metabolism by the degraders. We performed a phylogenetic analysis of representative strains isolated from the microcosms and evaluated their ability to establish symbiosis with the stinkbug Riptortus pedestris. The strains that established symbiosis with R. pedestris were assigned to a cluster including symbionts commonly isolated from stinkbugs. The strains outside the cluster could not necessarily associate with the host. The degraders in the cluster predominated during the initial phase of degrader dynamics in the soil. Therefore, only a few applications of fenitrothion could allow symbiotic degraders to associate with their hosts and may cause the emergence of symbiont-mediated insecticide resistance. © 2015 John Wiley & Sons Ltd.

  13. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  14. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John M; Li, Bin; Kahlon, Charanjit S

    2010-01-01

    In the United States, petroleum extraction, refinement, and transportation present countless opportunities for spillage mishaps. A method for rapid field appraisal and mapping of petroleum hydrocarbon-contaminated soils for environmental cleanup purposes would be useful. Visible near-infrared (VisNIR, 350-2500 nm) diffuse reflectance spectroscopy (DRS) is a rapid, nondestructive, proximal-sensing technique that has proven adept at quantifying soil properties in situ. The objective of this study was to determine the prediction accuracy of VisNIR DRS in quantifying petroleum hydrocarbons in contaminated soils. Forty-six soil samples (including both contaminated and reference samples) were collected from six different parishes in Louisiana. Each soil sample was scanned using VisNIR DRS at three combinations of moisture content and pretreatment: (i) field-moist intact aggregates, (ii) air-dried intact aggregates, (iii) and air-dried ground soil (sieved through a 2-mm sieve). The VisNIR spectra of soil samples were used to predict total petroleum hydrocarbon (TPH) content in the soil using partial least squares (PLS) regression and boosted regression tree (BRT) models. Each model was validated with 30% of the samples that were randomly selected and not used in the calibration model. The field-moist intact scan proved best for predicting TPH content with a validation r2 of 0.64 and relative percent difference (RPD) of 1.70. Because VisNIR DRS was promising for rapidly predicting soil petroleum hydrocarbon content, future research is warranted to evaluate the methodology for identifying petroleum contaminated soils.

  15. The Tale of a Neglected Energy Source: Elevated Hydrogen Exposure Affects both Microbial Diversity and Function in Soil.

    PubMed

    Khdhiri, Mondher; Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G; Constant, Philippe

    2017-06-01

    The enrichment of H 2 -oxidizing bacteria (HOB) by H 2 generated by nitrogen-fixing nodules has been shown to have a fertilization effect on several different crops. The benefit of HOB is attributed to their production of plant growth-promoting factors, yet their interactions with other members of soil microbial communities have received little attention. Here we report that the energy potential of H 2 , when supplied to soil, alters ecological niche partitioning of bacteria and fungi, with multifaceted consequences for both generalist and specialist microbial functions. We used dynamic microcosms to expose soil to the typical atmospheric H 2 mixing ratio (0.5 ppmv) permeating soils, as well as mixing ratios comparable to those found at the soil-nodule interface (10,000 ppmv). Elevated H 2 exposure exerted direct effects on two HOB subpopulations distinguished by their affinity for H 2 while enhancing community level carbon substrate utilization potential and lowering CH 4 uptake activity in soil. We found that H 2 triggered changes in the abundance of microorganisms that were reproducible yet inconsistent across soils at the taxonomic level and even among HOB. Overall, H 2 exposure altered microbial process rates at an intensity that depends upon soil abiotic and biotic features. We argue that further examination of direct and indirect effects of H 2 on soil microbial communities will lead to a better understanding of the H 2 fertilization effect and soil biogeochemical processes. IMPORTANCE An innovative dynamic microcosm chamber system was used to demonstrate that H 2 diffusing in soil triggers changes in the distribution of HOB and non-HOB. Although the response was uneven at the taxonomic level, an unexpected coordinated response of microbial functions was observed, including abatement of CH 4 oxidation activity and stimulation of carbon turnover. Our work suggests that elevated H 2 rewires soil biogeochemical structure through a combination of direct effects

  16. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Clarke, J. D. A.; Direito, S.; Foing, B.

    2011-01-01

    The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores

  17. Exploratory investigations of hypervelocity intact capture spectroscopy

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Griffiths, D. J.

    1993-01-01

    The ability to capture hypervelocity projectiles intact opens a new technique available for hypervelocity research. A determination of the reactions taking place between the projectile and the capture medium during the process of intact capture is extremely important to an understanding of the intact capture phenomenon, to improving the capture technique, and to developing a theory describing the phenomenon. The intact capture of hypervelocity projectiles by underdense media generates spectra, characteristic of the material species of projectile and capture medium involved. Initial exploratory results into real-time characterization of hypervelocity intact capture techniques by spectroscopy include ultra-violet and visible spectra obtained by use of reflecting gratings, transmitting gratings, and prisms, and recorded by photographic and electronic means. Spectrometry proved to be a valuable real-time diagnostic tool for hypervelocity intact capture events, offering understanding of the interactions of the projectile and the capture medium during the initial period and providing information not obtainable by other characterizations. Preliminary results and analyses of spectra produced by the intact capture of hypervelocity aluminum spheres in polyethylene (PE), polystyrene (PS), and polyurethane (PU) foams are presented. Included are tentative emission species identifications, as well as gray body temperatures produced in the intact capture process.

  18. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Connecting soil microbial communities to soil functioning and soil health

    USDA-ARS?s Scientific Manuscript database

    One of the most important functions soils perform, is the capacity to buffer anthropogenic disturbances to sustain productivity while improving water and air quality. At the core of a healthy soil is a biological active and diverse community that provides internal nutrient cycling and is resilient t...

  20. FIELD TRAPPING OF SUBSURFACE VAPOR PHASE PETROLEUM HYDROCARBONS

    EPA Science Inventory

    Soil gas samples from intact soil cores were collected on adsorbents at a field site, then thermally desorbed and analyzed by laboratory gas chromatography (GC). ertical concentration profiles of predominant vapor phase petroleum hydrocarbons under ambient conditions were obtaine...

  1. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    PubMed

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  2. Short-term changes of metal availability in soil. Part I: comparing sludge-amended with metal-spiked soils.

    PubMed

    Natal-da-Luz, T; Ojeda, G; Costa, M; Pratas, J; Lanno, R P; Van Gestel, C A M; Sousa, J P

    2012-08-01

    Sewage sludge application to soils is regulated by its total metal content. However, the real risk of metals is determined by the fraction that is biologically available. The available fraction is highly related to the strength of metal binding by the matrix, which is a dynamic process. The evaluation of the fate of metals in time can contribute increased accuracy of ecological risk assessment. Aiming to evaluate short-term changes in metal availability when metals were applied to soil directly (metal-spiked) or by way of an organic matrix (sludge-amended), a laboratory experiment was performed using open microcosms filled with agricultural soil. A concentration gradient of industrial sludge (11, 15, 55, and 75 t/ha) that was contaminated predominantly with chromium, copper, nickel, and zinc, or soil freshly spiked with the same concentrations of these metals, were applied on top of the agricultural soil. After 0, 3, 6, and 12 weeks, total (HNO(3) 69 %) and 0.01 M CaCl(2)-extractable metal concentrations in soil and metal content in the percolates were measured. Results demonstrated that comparison between sludge-amended and metal-spiked soils may give important information about the role of sludge matrix on metal mobility and availability in soil. In sludge-amended soils, extractable-metal concentrations were independent of the sludge concentration and did not change over time. In metal-spiked soils, metal extractability decreased with time due to ageing and transport of metals to deeper layers. In general, the sludge matrix increased the adsorption of metals, thus decreasing their mobility in soils.

  3. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures

    PubMed Central

    Lim, Joonwon; Narayan Maiti, Uday; Kim, Na-Young; Narayan, Rekha; Jun Lee, Won; Sung Choi, Dong; Oh, Youngtak; Min Lee, Ju; Yong Lee, Gil; Hun Kang, Seok; Kim, Hyunwoo; Kim, Yong-Hyun; Ouk Kim, Sang

    2016-01-01

    Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of −85° of phase angle at 120 Hz. PMID:26796993

  4. Uncovering stability mechanisms in microbial ecosystems - combining microcosm experiments, computational modelling and ecological theory in a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Kästner, Matthias; Miltner, Anja; Thullner, Martin; Wick, Lukas

    2015-04-01

    Although bacterial degraders in soil are commonly exposed to fluctuating environmental conditions, the functional performance of the biodegradation processes can often be maintained by resistance and resilience mechanisms. However, there is still a gap in the mechanistic understanding of key factors contributing to the stability of such an ecosystem service. Therefore we developed an integrated approach combining microcosm experiments, simulation models and ecological theory to directly make use of the strengths of these disciplines. In a continuous interplay process, data, hypotheses, and central questions are exchanged between disciplines to initiate new experiments and models to ultimately identify buffer mechanisms and factors providing functional stability. We focus on drying and rewetting-cycles in soil ecosystems, which are a major abiotic driver for bacterial activity. Functional recovery of the system was found to depend on different spatial processes in the computational model. In particular, bacterial motility is a prerequisite for biodegradation if either bacteria or substrate are heterogeneously distributed. Hence, laboratory experiments focussing on bacterial dispersal processes were conducted and confirmed this finding also for functional resistance. Obtained results will be incorporated into the model in the next step. Overall, the combination of computational modelling and laboratory experiments identified spatial processes as the main driving force for functional stability in the considered system, and has proved a powerful methodological approach.

  5. Regulation of Boreal soil respiration: evidence from a Swedish forest fire chronosequence.

    NASA Astrophysics Data System (ADS)

    Mason, Kelly; Oakley, Simon; Ostle, Nicholas; DeLuca, Thomas; Arróniz-Crespo, María; Jones, Davey

    2014-05-01

    dominated by ericaceous dwarf shrubs and feather mosses. Soil properties including microbial community composition, C:N, pH, and extractable NH4and NO3 were measured and two microcosm experiments were conducted on cores incubated under controlled conditions. In the first experiment, ammonium nitrate (NH4NO3) fertilizer was applied and the dose-response of GHG emissions was measured over several weeks. Differences in fluxes between sites were observed in response to N additions, with greatest differences in N2O emissions compared to CH4 and CO2. In a second experiment, respiration was analysed from cores incubated at different temperatures over two weeks and Q10 values were calculated for the different sites. Q10 values obtained were approximately 2.5-3.5, indicating higher sensitivity to rising temperatures in these soils than predicted in most climate models5. We will present how these differences in N limitation and temperature sensitivity are driven by differences in soil properties along the chronosequence. References 1 DeLuca et al. 2002. Nature. 419. 2 Zackrisson et al. 2004. Ecology. 85. 3 Friedlingstein et al. 2006. JClimate. 19. 4 Dentener et al. 2006. Global Biogeochem Cy. 20. 5 Kilpeläinen et al. 2010. Climatic Change. 103.

  6. Intact glycopeptide characterization using mass spectrometry.

    PubMed

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prytkova, Iya; Wu, Si

    2016-05-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.

  7. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity

    PubMed Central

    Li, Hui-Chao; Hu, Ya-Lin; Mao, Rong; Zhao, Qiong; Zeng, De-Hui

    2015-01-01

    This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots. PMID:26657180

  8. Estimating the spatial distribution of soil organic matter density and geochemical properties in a polygonal shaped Arctic Tundra using core sample analysis and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Soom, F.; Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.

    2016-12-01

    The Arctic tundra with its permafrost dominated soils is one of the regions most affected by global climate change, and in turn, can also influence the changing climate through biogeochemical processes, including greenhouse gas release or storage. Characterization of shallow permafrost distribution and characteristics are required for predicting ecosystem feedbacks to a changing climate over decadal to century timescales, because they can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. In this study, part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we use X-ray computed tomography (CT) to estimate wet bulk density of cores extracted from a field site near Barrow AK, which extend 2-3m through the active layer into the permafrost. We use multi-dimensional relationships inferred from destructive core sample analysis to infer organic matter density, dry bulk density and ice content, along with some geochemical properties from nondestructive CT-scans along the entire length of the cores, which was not obtained by the spatially limited destructive laboratory analysis. Multi-parameter cross-correlations showed good agreement between soil properties estimated from CT scans versus properties obtained through destructive sampling. Soil properties estimated from cores located in different types of polygons provide valuable information about the vertical distribution of soil and permafrost properties as a function of geomorphology.

  9. Soil invertebrate fauna affect N2 O emissions from soil.

    PubMed

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P < 0.001), but the cumulative N2 O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  10. Influence of crop residues on trifluralin mineralization in a silty clay loam soil.

    PubMed

    Farenhorst, Annemieke

    2007-01-01

    Trifluralin is typically applied onto crop residues (trash, stubble) at the soil surface, or onto the bare soil surface after the incorporation of crop residues into the soil. The objective of this study was to quantify the effect of the type and amount of crop residues in soil on trifluralin mineralization in a Wellwood silty clay loam soil. Leaves and stubble of Potato (Solanum tuberosum) (P); Canola (Brassica napus) (C), Wheat (Triticum aestivum) (W), Oats (Avena sativa), (O), and Alfalfa (Medicago sativa) (A) were added to soil microcosms at rates of 2%, 4%, 8% and 16% of the total soil weight (25 g). The type and amount of crop residues in soil had little influence on the trifluralin first-order mineralization rate constant, which ranged from 3.57E-03 day(-1) in soil with 16% A to 2.89E-02 day(-1) in soil with 8% W. The cumulative trifluralin mineralization at 113 days ranged from 1.15% in soil with 16% P to 3.21% in soil with 4% C, again demonstrating that the observed differences across the treatments are not of agronomic or environmental importance.

  11. Test of tree core sampling for screening of toxic elements in soils from a Norwegian site.

    PubMed

    Algreen, Mette; Rein, Arno; Legind, Charlotte N; Amundsen, Carl Einar; Karlson, Ulrich Gosewinkel; Trapp, Stefan

    2012-04-01

    Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and < 1 mg/kg for Cd, Cr, As and Ni. The concentrations in wood samples from the polluted test site were compared to those derived from a reference site. For all except one case, mean concentrations from the test site were higher than those from the reference site, but the difference was small and not always significant. Differences between tree species were usually higher than differences between reference and test site. Furthermore, all these elements occur naturally, and Cu, Ni, and Zn are essential minerals. Thus, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with same species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.

  12. Development of Soil Bacterial Communities in Volcanic Ash Microcosms in a Range of Climates.

    PubMed

    Kerfahi, Dorsaf; Tateno, Ryunosuke; Takahashi, Koichi; Cho, HyunJun; Kim, Hyoki; Adams, Jonathan M

    2017-05-01

    There is considerable interest in understanding the processes of microbial development in volcanic ash. We tested the predictions that there would be (1) a distinctive bacterial community associated with soil development on volcanic ash, including groups previously implicated in weathering studies; (2) a slower increase in bacterial abundance and soil C and N accumulation in cooler climates; and (3) a distinct communities developing on the same substrate in different climates. We set up an experiment, taking freshly fallen, sterilized volcanic ash from Sakurajima volcano, Japan. Pots of ash were positioned in multiple locations, with mean annual temperature (MAT) ranging from 18.6 to -3 °C. Within 12 months, bacteria were detectable by qPCR in all pots. By 24 months, bacterial copy numbers had increased by 10-100 times relative to a year before. C and N content approximately doubled between 12 and 24 months. HiSeq and MiSeq sequencing of the 16S rRNA gene revealed a distinctive bacterial community, different from developed vegetated soils in the same areas, for example in containing an abundance of unclassified bacterial groups. Community composition also differed between the ash pots at different sites, while showing no pattern in relation to MAT. Contrary to our predictions, the bacterial abundance did not show any relation to MAT. It also did not correlate to pH or N, and only C was statistically significant. It appears that bacterial community development on volcanic ash can be a rapid process not closely sensitive to temperature, involving distinct communities from developed soils.

  13. Links between ammonia oxidizer species composition, functional diversity and nitrification kinetics in grassland soils.

    PubMed

    Webster, Gordon; Embley, T Martin; Freitag, Thomas E; Smith, Zena; Prosser, James I

    2005-05-01

    Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.

  14. Sulfate-reducing bacteria in rice field soil and on rice roots.

    PubMed

    Wind, T; Stubner, S; Conrad, R

    1999-05-01

    Rice plants that were grown in flooded rice soil microcosms were examined for their ability to exhibit sulfate reducing activity. Washed excised rice roots showed sulfate reduction potential when incubated in anaerobic medium indicating the presence of sulfate-reducing bacteria. Rice plants, that were incubated in a double-chamber (phylloshpere and rhizosphere separated), showed potential sulfate reduction rates in the anoxic rhizosphere compartment. These rates decreased when oxygen was allowed to penetrate through the aerenchyma system of the plants into the anoxic root compartment, indicating that sulfate reducers on the roots were partially inhibited by oxygen or that sulfate was regenerated by oxidation of reduced S-compounds. The potential activity of sulfate reducers on rice roots was consistent with MPN enumerations showing that H2-utilizing sulfate-reducing bacteria were present in high numbers on the rhizoplane (4.1 x 10(7) g-1 root fresh weight) and in the adjacent rhizosperic soil (2.5 x 10(7) g-1 soil dry weight). Acetate-oxidizing sulfate reducers, on the other hand, showed highest numbers in the unplanted bulk soil (1.9 x 10(6) g-1 soil dry weight). Two sulfate reducing bacteria were isolated from the highest dilutions of the MPN series and were characterized physiologically and phylogenetically. Strain F1-7b which was isolated from the rhizoplane with H2 as electron donor was related to subgroup II of the family Desulfovibrionaceae. Strain EZ-2C2, isolated from the rhizoplane on acetate, grouped together with Desulforhabdus sp. and Syntrophobacter wolinii. Other strains of sulfate-reducing bacteria originated from bulk soil of rice soil microcosms and were isolated using different electron donors. From these isolates, strains R-AcA1, R-IbutA1, R-PimA1 and R-AcetonA170 were Gram-positive bacteria which were affiliated with the genus Desulfotomaculum. The other isolates were members of subgroup II of the Desulfovibrionaceae (R-SucA1 and R-LacA1), were

  15. Measurement of variation in soil solute tracer concentration across a range of effective pore sizes

    USGS Publications Warehouse

    Harvey, Judson W.

    1993-01-01

    Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.

  16. Response of Soil Mesofauna to Long-Term Application of Feedlot Manure on Irrigated Cropland.

    PubMed

    Miller, Jim J; Battigelli, Jeff P; Beasley, Bruce W; Drury, Craig F

    2017-01-01

    Long-term application of feedlot manure to cropland may influence soil mesofauna. These organisms affect the health, structure, and fertility of soils, organic matter decomposition, and crop growth. The objective was to study the long-term (16-17 yr) influence of feedlot manure type and bedding on soil mesofauna over 2 yr (2014-2015). Stockpiled or composted feedlot manure with straw (ST) or wood-chip (WD) bedding (plus unamended control) was annually applied (13 Mg ha dry wt.) to an irrigated clay loam soil with continuous barley (). Intact cores were taken from surface (0-5 cm) soil in the fall, and the densities of Acari (mites) suborders and Collembola (springtails) families were determined. Manure type had no significant ( > 0.05) effect on soil mesofauna density. In contrast, there was a significant two- to sixfold increase in density with WD- compared with ST-amended soils of total Acari in 2014 and 2015, as well as total Collembola, total Acari and Collembola, oribatid mites, and entomobryid springtails in 2014. The bedding effect was attributed to significantly greater soil water content and lower bulk density for WD than ST. Density of soil mesofauna was not significantly greater in amended soils than in unamended soils. A shift by feedlot producers from stockpiled to composted feedlot manure application should have no effect on soil mesofauna density, whereas a shift from ST to WD bedding may increase the density of certain soil mesofauna, which may have a beneficial effect on soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    NASA Astrophysics Data System (ADS)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  18. An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications.

    PubMed

    McErlean, Colum; Marchant, Roger; Banat, Ibrahim M

    2006-08-01

    Initially sixteen fungi were screened for potential ligninolytic activity using decolourisation of a polymeric dye Poly R-478. From this, four fungi were selected, Trametes versicolor, Pleurotus ostreatus, Collybia sp., and an isolate (identified as Rhizoctonia solani) isolated from a grassland soil. Differences in the ligninolytic enzyme profiles of each of the fungi were observed. All of the four fungi tested produced MnP and laccase while the Collybia sp. and R. solani produced LiP in addition. Enzyme activity levels also varied greatly over the 21 days of testing with T. versicolor producing levels of MnP and laccase three to four times greater than the other fungi. The four fungi were then tested for their ability to colonise sand, peat (forest) and basalt and marl mixed till (field) soils through visual measurement and biomass detection in soil microcosms. Trametes versicolor and the Collybia sp. failed to grow in any of the non-sterilised soils whereas the R. solani and P. ostreatus isolates grew satisfactorily. Primers were designed to detect MnP and laccase genes in P. ostreatus and RTPCR was used to detect that these genes are expressed in forest and field soils.

  19. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate

    DOE PAGES

    Sun, Jing; Chillrud, Steven N.; Mailloux, Brian J.; ...

    2015-10-23

    Magnetite strongly retains As, and is relatively stable under Fe(III)-reducing conditions common in aquifers that release As. In this paper, laboratory microcosm experiments were conducted to investigate a potential As remediation method involving magnetite formation, using groundwater and sediments from the Vineland Superfund site. The microcosms were amended with various combinations of nitrate, Fe(II) (aq) (as ferrous sulfate) and lactate, and were incubated for more than 5 weeks. In the microcosms enriched with 10 mM nitrate and 5 mM Fe(II) (aq), black magnetic particles were produced, and As removal from solution was observed even under sustained Fe(III) reduction stimulated bymore » the addition of 10 mM lactate. The enhanced As retention was mainly attributed to co-precipitation within magnetite and adsorption on a mixture of magnetite and ferrihydrite. Sequential chemical extraction, X-ray absorption spectroscopy and magnetic susceptibility measurements showed that these minerals formed at pH 6–7 following nitrate-Fe(II) addition, and As-bearing magnetite was stable under reducing conditions. Scanning electron microscopy and X-ray diffraction indicated that nano-particulate magnetite was produced as coatings on fine sediments, and no aging effect was detected on morphology over the course of incubation. Finally, these results suggest that a magnetite based strategy may be a long-term remedial option for As-contaminated aquifers.« less

  20. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities

    PubMed Central

    Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.

    2013-01-01

    Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394

  1. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities.

    PubMed

    Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K

    2013-11-01

    Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Composition and maturity of the 60013/14 core

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Morris, Richard V.; Lauer, Howard V., Jr.

    1993-01-01

    The 60013/14 double drive tube (62 cm deep) is one of three regolith cores taken 35-40 m apart in a triangular array on the Cayley plains at station 10' (LM/ALSEP), Apollo 16. This trio, which includes double drive tube 60009/10 (59 cm deep) and deep drill core 60001-7 (220 cm), is the only such array of cores returned from the Moon. The top 45 cm of 60013/14 is mature, as is surface reference soil 60601 taken nearby. Maturity generally decreases with depth, with soil below 45 cm being submature. The zone of lowest maturity (34 is less than or equal to I(sub s)/FeO is less than 50) extends from 46 to 58 cm depth, and corresponds to the distinct region of light-colored soil observed during core processing. In the other two cores, most of the compositional variation results from mixing between fine-grained, mature soil with 10-11 micro-g/g Sc and coarse-grained ferroan anorthosite consisting of greater than 99% plagioclase with less than 0.5 micro-g/g Sc. This is most evident in 60009/10 which contains a high abundance of plagioclase at about 54 cm depth (minimum Sc: 3-4 micro-g/g); a similar zone occurs in 60001-7 at 17-22 cm (MPU-C), although it is not as rich in plagioclase (minimum Sc: 6-7 micro-g/g). Compositional variations are less in 60013/14 than in the other two cores (range: 7.9-10.0 micro-g/g Sc), but are generally consistent with the 'plagioclase dilution' effect seen in 60009/10, i.e., most 60013/14 samples plot along the mixing line of 60009/10. However, a plagioclase component is not the cause of the lower maturity and lighter color of the unit at 46-58 cm depth in 60013/14. Many of the samples in this zone have distinctly lower Sm/Sc ratios than typical LM-area soils and plot off the mixing trend defined by 60009/10. This requires a component with moderately high Sc, but low-Sm/Sc, such as feldspathic fragmental breccia (FFB) or granulitic breccia. A component of Descartes regolith, such as occurs at North Ray Crater (NRC) and which is rich in FFB

  3. The IntAct molecular interaction database in 2012

    PubMed Central

    Kerrien, Samuel; Aranda, Bruno; Breuza, Lionel; Bridge, Alan; Broackes-Carter, Fiona; Chen, Carol; Duesbury, Margaret; Dumousseau, Marine; Feuermann, Marc; Hinz, Ursula; Jandrasits, Christine; Jimenez, Rafael C.; Khadake, Jyoti; Mahadevan, Usha; Masson, Patrick; Pedruzzi, Ivo; Pfeiffenberger, Eric; Porras, Pablo; Raghunath, Arathi; Roechert, Bernd; Orchard, Sandra; Hermjakob, Henning

    2012-01-01

    IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275 000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intact. PMID:22121220

  4. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil.

    PubMed

    Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal

    2013-01-01

    Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.

  5. Effects of acute gamma-irradiation on the aquatic microbial microcosm in comparison with chemicals.

    PubMed

    Fuma, Shoichi; Ishii, Nobuyoshi; Takeda, Hiroshi; Miyamoto, Kiriko; Yanagisawa, Kei; Doi, Kazutaka; Kawaguchi, Isao; Tanaka, Nobuyuki; Inamori, Yuhei; Polikarpov, Gennady G

    2009-12-01

    Effects of acute gamma-irradiation were investigated in the aquatic microcosm consisting of green algae (Chlorella sp. and Scenedesmus sp.) and a blue-green alga (Tolypothrix sp.) as producers; an oligochaete (Aeolosoma hemprichi), rotifers (Lecane sp. and Philodina sp.) and a ciliate protozoan (Cyclidium glaucoma) as consumers; and more than four species of bacteria as decomposers. At 100 Gy, populations were not affected in any taxa. At 500-5000 Gy, one or three taxa died out and populations of two or three taxa decreased over time, while that of Tolypothrix sp. increased. This Tolypothrix sp. increase was likely an indirect effect due to interspecies interactions. The principal response curve analysis revealed that the main trend of the effects was a dose-dependent population decrease. For a better understanding of radiation risks in aquatic microbial communities, effect doses of gamma-rays compared with copper, herbicides and detergents were evaluated using the radiochemoecological conceptual model and the effect index for microcosm.

  6. A simple procedure for estimating soil porosity

    NASA Astrophysics Data System (ADS)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Holden, Nick

    2016-04-01

    Soil degradation from mismanagement is of international concern. Simple, accessible tools for rapidly assessing impacts of soil management are required. Soil structure is a key component of soil quality and porosity is a useful indicator of structure. We outline a version of a procedure described by Piwowarczyk et al. (2011) used to estimate porosity of samples taken during a soil quality survey of 38 sites across Ireland as part of the Government funded SQUARE (Soil Quality Assessment Research) project. This required intact core (r = 2.5 cm, H = 5cm) samples taken at 5-10 cm and 10-20 cm depth, to be covered with muslin cloth at one end and secured with a jubilee clip. Samples were saturated in sealable water tanks for ≈ 64 hours, then allowed to drain by gravity for 24 hours, at which point Field Capacity (F.C.) was assumed to have been reached, followed by oven drying with weight determined at each stage. This allowed the calculation of bulk density and the estimation of water content at saturation and following gravitational drainage, thus total and functional porosity. The assumption that F.C. was reached following 24 hours of gravitational drainage was based on the Soil Moisture Deficit model used in Ireland to predict when soils are potentially vulnerable to structural damage and used nationally as a management tool. Preliminary results indicate moderately strong, negative correlations between estimated total porosity at 5-10 cm and 10-20 cm depth (rs = -0.7, P < 0.01 in both cases) and soil quality scores of the Visual Evaluation of Soil Structure (VESS) method which was conducted at each survey site. Estimated functional porosity at 5-10 cm depth was found to moderately, negatively correlate with VESS scores (rs = - 0.5, P < 0.05). This simple procedure requires inexpensive equipment and appears useful in indicating porosity of a large quantity of samples taken at numerous sites or if done periodically, temporal changes in porosity at a field scale

  7. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  8. Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico.

    PubMed

    López-Lozano, Nguyen E; Heidelberg, Karla B; Nelson, William C; García-Oliva, Felipe; Eguiarte, Luis E; Souza, Valeria

    2013-01-01

    Ecological succession is one of the most important concepts in ecology. However for microbial community succession, there is a lack of a solid theoretical framework regarding succession in microorganisms. This is in part due to microbial community complexity and plasticity but also because little is known about temporal patterns of microbial community shifts in different kinds of ecosystems, including arid soils. The Cuatro Cienegas Basin (CCB) in Coahuila, Mexico, is an arid zone with high diversity and endemisms that has recently been threatened by aquifer overexploitation. The gypsum-based soil system of the CCB is one of the most oligotrophic places in the world. We undertook a comparative 16S rRNA 454 pyrosequencing study to evaluate microbial community succession and recovery over a year after disturbance at two sites. Results were related to concurrent measurements of humidity, organic matter and total C and N content. While each site differed in both biogeochemistry and biodiversity, both present similar pattern of change at the beginning of the succession that diverged in later stages. After one year, experimentally disturbed soil was not similar to established and undisturbed adjacent soil communities indicating recovery and succession in disturbed soils is a long process.

  9. 50 CFR 622.381 - Landing fish intact.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Landing fish intact. 622.381 Section 622... Migratory Pelagic Resources (Gulf of Mexico and South Atlantic) § 622.381 Landing fish intact. (a) Cobia... head and fins intact. Such fish may be eviscerated, gilled, and scaled, but must otherwise be...

  10. 50 CFR 622.381 - Landing fish intact.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Landing fish intact. 622.381 Section 622... Migratory Pelagic Resources (Gulf of Mexico and South Atlantic) § 622.381 Landing fish intact. (a) Cobia... head and fins intact. Such fish may be eviscerated, gilled, and scaled, but must otherwise be...

  11. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean±sd; n=6) on composite control was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical

  12. Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature.

    PubMed

    Simmler, Michael; Bommer, Jérôme; Frischknecht, Sarah; Christl, Iso; Kotsev, Tsvetan; Kretzschmar, Ruben

    2017-12-01

    Mining activities have contaminated many riverine floodplains with arsenic (As). When floodplain soils become anoxic under water-saturated conditions, As can be released from the solid phase. Several microbially-driven As solubilization processes and numerous influential factors were recognized in the past. However, the interplay and relative importance of soil properties and the influence of environmental factors such as temperature remain poorly understood, especially considering the (co)variation of soil properties in a floodplain. We conducted anoxic microcosm experiments at 10, 17.5, and 25 °C using 65 representative soils from the mining-impacted Ogosta River floodplain in Bulgaria. To investigate the processes of As solubilization and its quantitative variation we followed the As and Fe redox dynamics in the solid and the dissolved phase and monitored a range of other solution parameters including pH, Eh, dissolved organic C, and dissolved Mn. We related soil properties to dissolved As observed after 20 days of microcosm incubation to identify key soil properties for As solubilization. Our results evidenced reductive dissolution of As-bearing Fe(III)-oxyhydroxides as the main cause for high solubilization. The availability of nutrients, most likely organic C as the source of energy for microorganisms, was found to limit this process. Following the vertical nutrient gradient common in vegetated soil, we observed several hundred μM dissolved As after 1-2 weeks for some topsoils (0-20 cm), while for subsoils (20-40 cm) with comparable total As levels only minor solubilization was observed. While high Mn contents were found to inhibit As solubilization, the opposite applied for higher temperature (Q 10 2.3-6.1 for range 10-25 °C). Our results suggest that flooding of nutrient-rich surface layers might be more problematic than water-saturation of nutrient-poor subsoil layers, especially in summer floodings when soil temperature is higher than in winter or

  13. Short-term transcriptional response of microbial communities to N-fertilization in pine forest soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albright, Michaeline Burr Nelson; Johansen, Renee; Lopez, Deanna

    Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems, however N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) timescale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (c.a. 1mg/g of soil material) in laboratory microcosms. Here, we hypothesized that N fertilization would repress the expression of fungalmore » and bacterial genes linked to N-mining from plant litter. However, despite N-suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ~4% of metabolic genes changed in expression with N addition, while three times as many (~12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N-addition observed in longer-term field studies likely results from changes in microbial composition.« less

  14. Short-term transcriptional response of microbial communities to N-fertilization in pine forest soil

    DOE PAGES

    Albright, Michaeline Burr Nelson; Johansen, Renee; Lopez, Deanna; ...

    2018-05-25

    Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems, however N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) timescale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (c.a. 1mg/g of soil material) in laboratory microcosms. Here, we hypothesized that N fertilization would repress the expression of fungalmore » and bacterial genes linked to N-mining from plant litter. However, despite N-suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, ~4% of metabolic genes changed in expression with N addition, while three times as many (~12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N-addition observed in longer-term field studies likely results from changes in microbial composition.« less

  15. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  16. 50 CFR 622.276 - Landing fish intact.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Landing fish intact. 622.276 Section 622... Wahoo Fishery Off the Atlantic States § 622.276 Landing fish intact. (a) Dolphin and wahoo in or from the Atlantic EEZ must be maintained with head and fins intact. Such fish may be eviscerated, gilled...

  17. 50 CFR 622.276 - Landing fish intact.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Landing fish intact. 622.276 Section 622... Wahoo Fishery Off the Atlantic States § 622.276 Landing fish intact. (a) Dolphin and wahoo in or from the Atlantic EEZ must be maintained with head and fins intact. Such fish may be eviscerated, gilled...

  18. The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system.

    PubMed

    Kumar, Deepak; Parashar, Abhinav; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2017-07-01

    Zero-valent iron nanoparticles are used for the degradation of organic compounds and the immobilization of metals and metalloids. The lack of information on the effect of nZVI in freshwater system necessitated the risk assessment of zero-valent iron nanoparticles in lake water environment. The present study deals with the stability and fate of synthesized zero-valent iron nanoparticles in the upper and lower layers of freshwater microcosm system at a concentration of 1000 mg L -1 . The study was divided into two different exposure periods: short-term exposure, up to 24 h after the introduction of nanoparticles, and long-term exposure period up to 180 days (4416 h). Aggregation kinetics of nZVI in freshwater microcosm was studied by measuring the mean hydrodynamic size of the nanoparticles with respect to time. A gradual increase in the particle size with time was observed up to 14 h. The algal population and total chlorophyll content declined for the short exposure period, i.e., 2-24 h, while in the case of longer exposure period, i.e., 24 h to 180 days (4416 h), a gradual increase of both the algal population and total chlorophyll was noted. Five different physico-chemical parameters such as pH, temperature, conductivity, salinity, and total dissolved solids were recorded for 180 days (6 calendar months). The study suggested that the nanoscale zero-valent iron did not exhibit significant toxicity at an exposure concentration of 1000 mg L -1 on the resident algal population in the microcosm system over the longer exposure period tested.

  19. Effects Of Nutrient Source And Supply On Crude Oil Biodegradation In Continuous-Flow Beach Microcosms

    EPA Science Inventory

    Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...

  20. 50 CFR 622.38 - Landing fish intact.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Landing fish intact. 622.38 Section 622... § 622.38 Landing fish intact. The operator of a vessel that fishes in the EEZ is responsible for ensuring that fish on that vessel in the EEZ are maintained intact and, if taken from the EEZ, are...

  1. 50 CFR 622.38 - Landing fish intact.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Landing fish intact. 622.38 Section 622... § 622.38 Landing fish intact. The operator of a vessel that fishes in the EEZ is responsible for ensuring that fish on that vessel in the EEZ are maintained intact and, if taken from the EEZ, are...

  2. Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico

    PubMed Central

    López-Lozano, Nguyen E.; Heidelberg, Karla B.; Nelson, William C.; García-Oliva, Felipe; Eguiarte, Luis E.

    2013-01-01

    Ecological succession is one of the most important concepts in ecology. However for microbial community succession, there is a lack of a solid theoretical framework regarding succession in microorganisms. This is in part due to microbial community complexity and plasticity but also because little is known about temporal patterns of microbial community shifts in different kinds of ecosystems, including arid soils. The Cuatro Cienegas Basin (CCB) in Coahuila, Mexico, is an arid zone with high diversity and endemisms that has recently been threatened by aquifer overexploitation. The gypsum-based soil system of the CCB is one of the most oligotrophic places in the world. We undertook a comparative 16S rRNA 454 pyrosequencing study to evaluate microbial community succession and recovery over a year after disturbance at two sites. Results were related to concurrent measurements of humidity, organic matter and total C and N content. While each site differed in both biogeochemistry and biodiversity, both present similar pattern of change at the beginning of the succession that diverged in later stages. After one year, experimentally disturbed soil was not similar to established and undisturbed adjacent soil communities indicating recovery and succession in disturbed soils is a long process. PMID:23638384

  3. Nitrification and Autotrophic Nitrifying Bacteria in a Hydrocarbon-Polluted Soil

    PubMed Central

    Deni, Jamal; Penninckx, Michel J.

    1999-01-01

    In vitro ammonia-oxidizing bacteria are capable of oxidizing hydrocarbons incompletely. This transformation is accompanied by competitive inhibition of ammonia monooxygenase, the first key enzyme in nitrification. The effect of hydrocarbon pollution on soil nitrification was examined in situ. In a microcosm study, adding diesel fuel hydrocarbon to an uncontaminated soil (agricultural unfertilized soil) treated with ammonium sulfate dramatically reduced the amount of KCl-extractable nitrate but stimulated ammonium consumption. In a soil with long history of pollution that was treated with ammonium sulfate, 90% of the ammonium was transformed into nitrate after 3 weeks of incubation. Nitrate production was twofold higher in the contaminated soil than in the agricultural soil to which hydrocarbon was not added. To assess if ammonia-oxidizing bacteria acquired resistance to inhibition by hydrocarbon, the contaminated soil was reexposed to diesel fuel. Ammonium consumption was not affected, but nitrate production was 30% lower than nitrate production in the absence of hydrocarbon. The apparent reduction in nitrification resulted from immobilization of ammonium by hydrocarbon-stimulated microbial activity. These results indicated that the hydrocarbon inhibited nitrification in the noncontaminated soil (agricultural soil) and that ammonia-oxidizing bacteria in the polluted soil acquired resistance to inhibition by the hydrocarbon, possibly by increasing the affinity of nitrifying bacteria for ammonium in the soil. PMID:10473409

  4. In vitro biomechanical comparison after fixed- and mobile-core artificial cervical disc replacement versus fusion

    PubMed Central

    Lou, Jigang; Li, Yuanchao; Wang, Beiyu; Meng, Yang; Wu, Tingkui; Liu, Hao

    2017-01-01

    Abstract In vitro biomechanical analysis after cervical disc replacement (CDR) with a novel artificial disc prosthesis (mobile core) was conducted and compared with the intact model, simulated fusion, and CDR with a fixed-core prosthesis. The purpose of this experimental study was to analyze the biomechanical changes after CDR with a novel prosthesis and the differences between fixed- and mobile-core prostheses. Six human cadaveric C2–C7 specimens were biomechanically tested sequentially in 4 different spinal models: intact specimens, simulated fusion, CDR with a fixed-core prosthesis (Discover, DePuy), and CDR with a mobile-core prosthesis (Pretic-I, Trauson). Moments up to 2 Nm with a 75 N follower load were applied in flexion–extension, left and right lateral bending, and left and right axial rotation. The total range of motion (ROM), segmental ROM, and adjacent intradiscal pressure (IDP) were calculated and analyzed in 4 different spinal models, as well as the differences between 2 disc prostheses. Compared with the intact specimens, the total ROM, segmental ROM, and IDP at the adjacent segments showed no significant difference after arthroplasty. Moreover, CDR with a mobile-core prosthesis presented a little higher values of target segment (C5/6) and total ROM than CDR with a fixed-core prosthesis (P > .05). Besides, the difference in IDP at C4/5 after CDR with 2 prostheses was without statistical significance in all the directions of motion. However, the IDP at C6/7 after CDR with a mobile-core prosthesis was lower than CDR with a fixed-core prosthesis in flexion, extension, and lateral bending, with significant difference (P < .05), but not under axial rotation. CDR with a novel prosthesis was effective to maintain the ROM at the target segment and did not affect the ROM and IDP at the adjacent segments. Moreover, CDR with a mobile-core prosthesis presented a little higher values of target segment and total ROM, but lower IDP at the inferior

  5. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment.

    PubMed

    Piveteau, Pascal; Depret, Géraldine; Pivato, Barbara; Garmyn, Dominique; Hartmann, Alain

    2011-01-01

    Listeria monocytogenes is a ubiquitous opportunistic pathogen responsible for listeriosis. In order to study the processes underlying its ability to adapt to the soil environment, whole-genome arrays were used to analyse transcriptome modifications 15 minutes, 30 minutes and 18 h after inoculation of L. monocytogenes EGD-e in soil extracts. Growth was observed within the first day of incubation and large numbers were still detected in soil extract and soil microcosms one year after the start of the experiment. Major transcriptional reprofiling was observed. Nutrient acquisition mechanisms (phosphoenolpyruvate-dependent phosphotransferase systems and ABC transporters) and enzymes involved in catabolism of specific carbohydrates (β-glucosidases; chitinases) were prevalent. This is consistent with the overrepresentation of the CodY regulon that suggests that in a nutrient depleted environment, L. monocytogenes recruits its extensive repertoire of transporters to acquire a range of substrates for energy production.

  6. Wrinkly-Spreader Fitness in the Two-Dimensional Agar Plate Microcosm: Maladaptation, Compensation and Ecological Success

    PubMed Central

    Spiers, Andrew J.

    2007-01-01

    Bacterial adaptation to new environments often leads to the establishment of new genotypes with significantly altered phenotypes. In the Wrinkly Spreader (WS), ecological success in static liquid microcosms was through the rapid colonisation of the air-liquid interface by the production of a cellulose-based biofilm. Rapid surface spreading was also seen on agar plates, but in this two-dimensional environment the WS appears maladapted and rapidly reverts to the ancestral smooth (SM)-like colony genotype. In this work, the fitness of WS relative to SM in mixed colonies was found to be low, confirming the WS instability on agar plates. By examining defined WS mutants, the maladaptive characteristic was found to be the expression of cellulose. SM-like revertants had a higher growth rate than WS and no longer expressed significant amounts of cellulose, further confirming that the expression of this high-cost polymer was the basis of maladaptation and the target of compensatory mutation in developing colonies. However, examination of the fate of WS-founded populations in either multiple-colony or single mega-colony agar plate microcosms demonstrated that the loss of WS lineages could be reduced under conditions in which the rapid spreading colony phenotype could dominate nutrient and oxygen access more effectively than competing SM/SM-like genotypes. WS-like isolates recovered from such populations showed increased WS phenotype stability as well as changes in the degree of colony spreading, confirming that the WS was adapting to the two-dimensional agar plate microcosm. PMID:17710140

  7. Cool Core Disruption in Abell 1763

    NASA Astrophysics Data System (ADS)

    Douglass, Edmund; Blanton, Elizabeth L.; Clarke, Tracy E.; Randall, Scott W.; Edwards, Louise O. V.; Sabry, Ziad

    2017-01-01

    We present the analysis of a 20 ksec Chandra archival observation of the massive galaxy cluster Abell 1763. A model-subtracted image highlighting excess cluster emission reveals a large spiral structure winding outward from the core to a radius of ~950 kpc. We measure the gas of the inner spiral to have significantly lower entropy than non-spiral regions at the same radius. This is consistent with the structure resulting from merger-induced motion of the cluster’s cool core, a phenomenon seen in many systems. Atypical of spiral-hosting clusters, an intact cool core is not detected. Its absence suggests the system has experienced significant disruption since the initial dynamical encounter that set the sloshing core in motion. Along the major axis of the elongated ICM distribution we detect thermal features consistent with the merger event most likely responsible for cool core disruption. The merger-induced transition towards non-cool core status will be discussed. The interaction between the powerful (P1.4 ~ 1026 W Hz-1) cluster-center WAT radio source and its ICM environment will also be discussed.

  8. A short-term study on the interaction of bacteria, fungi and endosulfan in soil microcosm.

    PubMed

    Xie, Huijun; Gao, Fuwei; Tan, Wei; Wang, Shu-Guang

    2011-12-15

    Endosulfan is one of the few organic chlorine insecticides still in use today in many developing countries. It has medium toxicity for fish and aquatic invertebrates. In this study, we added different concentrations of endosulfan to a series of soil samples collected from Baihua Park in Jinan, Shandong Province, China. Interactions of exogenous endosulfan, bacteria and fungi were analyzed by monitoring the changes in microbe-specific phospholipid fatty acids (PLFA), residual endosulfan and its metabolites which include; endosulfan sulfate, endosulfan lactone and endosulfan diol during a 9 days incubation period. Our results showed that endosulfan reduced fungi biomass by 47% on average after 9 days, while bacteria biomass increased 76% on average. In addition, we found that endosulfan degraded 8.62% in natural soil (NE), 5.51% in strepolin soil (SSE) and 2.47% in sterile soil (SE). Further analysis of the endosulfan metabolites in NE and SSE, revealed that the amount of endosulfan sulfate (ES) significantly increased and that of endosulfan lactone (EL) slightly decreased in both samples after 9 days. However, that of endosulfan diol (ED) increased in NE and decreased in SSE. After collective analysis our data demonstrated that fungi and bacteria responded differently to exogeous endosulfan, in a way that could promote the formation of endosulfan diol during endosulfan degradation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Creating deep soil core monoliths: Beyond the solum

    USDA-ARS?s Scientific Manuscript database

    Soil monoliths serve as useful teaching aids in the study of the Earth’s critical zone where rock, soil, water, air, and organisms interact. Typical monolith preparation has so far been confined to the 1 to 2-m depth of the solum. Critical ecosystem services provided by soils include materials from ...

  10. Glyceria maxima as new test species for the EU risk assessment for herbicides: a microcosm study.

    PubMed

    Mohr, S; Schott, J; Hoenemann, L; Feibicke, M

    2015-03-01

    In its recent guidance document on tiered risk assessment for plant protection products for aquatic organisms, the European Food Safety Authority (EFSA) proposed to use Glyceria maxima as monocotyledonous grass species for the testing of special herbicide groups. However, published toxicity data for this species is very limited and there is no test guideline for Glyceria sp. For this reason a microcosm study was conducted in order to gain experience on the degree of sensitivity of G. maxima to the herbicidal substances clodinafop-propargyl (grass herbicide) and fluroxypyr (auxin) in comparison to the already established test organism water milfoil Myriophyllum spicatum and the duckweed species Landoltia punctata. Five concentrations without replicates were tested for each test substance using 10 microcosms and three microcosms served as controls. The experiment was run for 8 weeks. Morphological endpoints were used to determine growth and EC50 values. The results show that M. spicatum was most sensitive to fluroxypyr (37 days EC50 for roots: 62 µg/L) and G. maxima most sensitive to clodinafop-propargyl (22 days EC50 for total shoot length: 48 µg/L) whereas the duckweed species was considerable less sensitive. Hence, G. maxima turns out to be a good candidate for testing grass specific herbicides, supporting its inclusion as an additional macrophyte test for the risk assessment of herbicides as proposed by the EFSA.

  11. Methyl t-Butyl Ether Mineralization in Surface-Water Sediment Microcosms under Denitrifying Conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.

  12. Dynamic changes in the structure of microbial communities in Baltic Sea coastal seawater microcosms modified by crude oil, shale oil or diesel fuel.

    PubMed

    Viggor, Signe; Juhanson, Jaanis; Jõesaar, Merike; Mitt, Mario; Truu, Jaak; Vedler, Eve; Heinaru, Ain

    2013-08-25

    The coastal waters of the Baltic Sea are constantly threatened by oil spills, due to the extensive transportation of oil products across the sea. To characterise the hydrocarbon-degrading bacterial community of this marine area, microcosm experiments on diesel fuel, crude oil and shale oil were performed. Analysis of these microcosms, using alkane monooxygenase (alkB) and 16S rRNA marker genes in PCR-DGGE experiments, demonstrated that substrate type and concentration strongly influence species composition and the occurrence of alkB genes in respective oil degrading bacterial communities. Gammaproteobacteria (particularly the genus Pseudomonas) and Alphaproteobacteria were dominant in all microcosms treated with oils. All alkB genes carried by bacterial isolates (40 strains), and 8 of the 11 major DGGE bands from the microcosms, had more than 95% sequence identity with the alkB genes of Pseudomonas fluorescens. However, the closest relatives of the majority of sequences (54 sequences from 79) of the alkB gene library from initially collected seawater DNA were Actinobacteria. alkB gene expression, induced by hexadecane, was recorded in isolated bacterial strains. Thus, complementary culture dependent and independent methods provided a more accurate picture about the complex seawater microbial communities of the Baltic Sea. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Phosphorus and greenhouse gas dynamics in a drained calcareous wetland soil in Minnesota.

    PubMed

    Berryman, Erin M; Venterea, Rodney T; Baker, John M; Bloom, Paul R; Elf, Brandy

    2009-01-01

    Restoration of wetland hydrology can produce ecological benefits but may have unintended consequences. We examined effects of altered water level on release of dissolved reactive phosphorus (DRP) and greenhouse gases (GHG) in soil cores from a marsh being evaluated for restoration. We also measured field concentrations of DRP and other constituents in wetland porewater. Intact cores from a sampling location with higher Fe and lower calcium carbonate (CaCO(3)) contents released more DRP than another location, and displayed higher DRP under completely saturated compared to partly drained conditions. Porewater samples collected from the high-Fe location also contained higher DRP levels. Chemical data suggest that redox-driven reactions largely controlled DRP levels at the high-Fe site, while CaCO(3) adsorption was more important at the low-Fe site. Over the long term, water table elevation may attenuate P draining from the wetland due to decreased mineralization. However, such measures may increase P release in the short term. Raising the water level in soil cores resulted in decreased nitrous oxide (N(2)O) emissions, increased methane (CH(4)) emissions, and an overall increase in total global warming potential (GWP). The proportion of total GWP contributed by N(2)O decreased from 14% to < or = 1% as water level was raised, while the proportion contributed by CH(4) increased from 10 to 20% to 60 to 80%. Restoration of hydrology in the Rice Lake wetland has the potential to affect both local water quality and global air quality. These combined effects complicate the cost-to-benefit analysis of such wetland restoration efforts.

  14. Accelerated biodegradation of BPA in water-sediment microcosms with Bacillus sp. GZB and the associated bacterial community structure.

    PubMed

    Xiong, Jukun; An, Taicheng; Li, Guiying; Peng, Ping'an

    2017-10-01

    Bisphenol A (BPA) is a synthetic chemical primarily used to produce polycarbonate plastics and epoxy resins. Significant industrial and consumer's consumption of BPA-containing products has contributed to extensive contamination in different environmental matrices. In this study, microcosms bioaugmented with Bacillus sp. GZB were constructed to investigate BPA biodegradation, identify the main bacterial community, and evaluate bacterial community responses in the microcosms. Under aerobic conditions, BPA was quickly depleted as a result of bioaugmentation with Bacillus sp. GZB in water-sediment contaminated with pollutants. The pollutants used were generally associated with the electronic wastes (mobile phones, computers, televisions) dismantling process. Adding BPA affected the bacterial community composition in the water-sediment. Furthermore, BPA biodegradation was enhanced by adding electron donors/co-substrates: humic acid, NaCl, glucose, and yeast extract. Metagenomic analysis of the total 16S rRNA genes from the BPA-degrading microcosms with bioaugmentation illustrated that the genera Bacillus, Thiobacillus, Phenylobacterium, and Cloacibacterium were dominant after a 7-week incubation period. A consortium of microorganisms from different bacterial genera may be involved in BPA biodegradation in electronic waste contaminated water-sediment. This study provides new insights about BPA bioaugmentation and bacterial ecology in the BPA-degrading environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.

    PubMed

    Li, Jing; Liu, Yu-Rong; Cui, Li-Juan; Hu, Hang-Wei; Wang, Jun-Tao; He, Ji-Zheng

    2017-11-01

    Increasing efforts have been devoted to exploring the impact of environmental stresses on soil bacterial communities, but the work on the archaeal community is seldom. Here, we constructed microcosm experiments to investigate the responses of archaeal communities to the subsequent dry-rewetting (DW) disturbance in two contrasting soils (fluvo-aquic and red soil) after 6 years of copper pollution. Ten DW cycles were exerted on the two soils with different copper levels, followed by a 6-week recovery period. In both soils, archaeal diversity (Shannon index) in the high copper-level treatments increased over the incubation period, and archaeal community structure changed remarkably as revealed by the non-metric multidimensional scaling ordinations. In both soils, copper pollution altered the response of dominant operational taxonomic units (OTUs) to the DW disturbance. Throughout the incubation and recovery period, the resistance of archaeal abundance to the DW disturbance was higher in the copper-polluted soils than soils without pollution. Taken together, copper pollution altered the response of soil archaeal diversity and community composition to the DW disturbance and increased the resistance of the archaeal abundance. These findings have important implications for understanding soil microbial responses to ongoing environmental change.

  16. Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin from soils inoculated with Sphingomonas sp. strain RW1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halden, R.U.; Halden, B.G.; Dwyer, D.F.

    Removal of dibenzofuran, dibenzo-p-dioxin, and 2-chlorodibenzo-p-dioxin (2-CDD) (10 ppm each) from soil microcosms to final concentrations in the parts-per-billion range was affected by the addition of Sphingomonas sp. strain RW1. Rates and extents of removal were influenced by the density of RW1 organisms. For 2-CDD, the rate of removal was dependent on the content of soil organic matter (SOM), with half-life values ranging from 5.8 h (0% SOM) to 26.3 h (5.5% SOM).

  17. Transport of atrazine and dicamba through silt and loam soils

    USGS Publications Warehouse

    Tindall, James A.; Friedel, Michael J.

    2016-01-01

    The objectives of this research were to determine the role of preferential flow paths in the transport of atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) and dicamba (3-6-dichloro-2-methoxybenzoic acid) through silt and loam soils overlying the High Plains aquifer in Nebraska. In a previous study, 3 of 6 study areas demonstrated high percentages of macropores; those three areas were used in this study for analysis of chemical transport. As a subsequent part of the study, 12 intact soil cores (30-cm diameter by 40-cm height), were excavated sequentially, two from each of the following depths: 0-40cm and 40-80cm. These cores were used to study preferential flow characteristics using dye staining and to determine hydraulic properties. Two undisturbed experimental field plots, each with a 3-m2 surface area, were installed in three study areas in Nebraska. Each was instrumented with suction lysimeters and tensiometers at depths of 10cm to 80cm in 10-cm increments. Additionally, each plot was planted with corn (Zea mays). A neutron probe access tube was installed in each plot to determine soil w ater content at 15-cm intervals. All plots were enclosed w ith a raised frame (of 8-cm height) to prevent surface runoff. All suction lysimeters were purged monthly for three months and were sampled immediately prior to pre-plant herbicide application to obtain background chemical concentrations. Atrazine and dicamba moved rapidly through the soil, but only after a heavy rainfall event, probably owing to the presence of preferential flow paths and lack of microbial degradation in these soil areas. Staining of laboratory cores showed a positive correlation between the percent area stained by depth and the subsequent breakthrough of Br- in the laboratory and leaching of field-applied herbicides owing to large rainfall events. Suction lysimeter samples in the field showed increases in concentrations of herbicides at depths where laboratory data indicated greater

  18. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  19. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  20. Microbial Diversity and Structure Are Drivers of the Biological Barrier Effect against Listeria monocytogenes in Soil

    PubMed Central

    Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal

    2013-01-01

    Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment. PMID:24116193

  1. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizospheremore » colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.« less

  2. Inhibition effect of zinc in wastewater on the N2O emission from coastal loam soils.

    PubMed

    Huang, Yan; Ou, Danyun; Chen, Shunyang; Chen, Bin; Liu, Wenhua; Bai, Renao; Chen, Guangcheng

    2017-03-15

    The effects of zinc (Zn) on nitrous oxide (N 2 O) fluxes from coastal loam soil and the abundances of soil nitrifier and denitrifier were studied in a tidal microcosm receiving livestock wastewater with different Zn levels. Soil N 2 O emission significantly increased due to discharge of wastewater rich in ammonia (NH 4 + -N) while the continuous measurements of gas flux showed a durative reduction in N 2 O flux by high Zn input (40mgL -1 ) during the low tide period. Soil inorganic nitrogen concentrations increased at the end of the experiment and even more soil NH 4 + -N was measured in the high-Zn-level treatment, indicating an inhibition of ammonia oxidation by Zn input. Quantitative PCR of soil amoA, narG and nirK genes encoding ammonia monooxygenase, nitrate reductase and nitrite reductase, respectively, showed that the microbial abundances involved in these metabolisms were neither affected by wastewater discharge nor Zn contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Deposition and regional distribution of HCHs and p,p'-DDX in the western and southern Tibetan Plateau: records from a lake sediment core and the surface soils.

    PubMed

    Tao, Yu-Qiang; Lei, Guo-Liang; Xue, Bin; Yao, Shu-Chun; Pu, Yang; Zhang, Hu-Cai

    2014-02-01

    Tibetan Plateau is the world's highest plateau, which provides a unique location for the investigation of global fractionation of organochlorine pesticides (OCPs). In this study, deposition and regional distribution of HCHs and p,p'-DDX in the western and southern Tibetan Plateau were investigated by the records from a sediment core of Lake Zige Tangco and 24 surface soils. Concentration of ΣHCHs in the surface soils of the western Tibetan Plateau was much higher than that of the southern part. Maximum fluxes of α-, β-, and δ-HCH in the sediment core were 9.0, 222, and 21 pg cm(-2) year(-1), respectively, which appeared in the mid-1960s. Significant correlations were observed between concentrations of α- and β-HCH in both the surface soils and the sediment core. Concentrations of both α- and β-HCH increased with the inverse of the average annual temperature of these sites. γ-HCH became the dominant isomer of HCHs after the late 1970s, and reached the maximum flux of 160 pg cm(-2) year(-1) in the early 1990s. There were no significant correlations between concentrations of γ-HCH and the other isomers in both the surface soils and the sediment core. The results suggested that there was input of Lindane at scattered sites in this area. In contrast to ΣHCHs, concentration of Σp,p'-DDX in the surface soils of the southern part was much higher than that of the western part. Maximum flux of Σp,p'-DDX was 44 pg cm(-2) year(-1), which appeared in the mid-1960s. Local emission of p,p'-DDT was found at scattered sites. This study provides novel data and knowledge for the OCPs in the western and southern Tibetan Plateau, which will help understand the global fractionation of OCPs in remote alpine regions.

  4. Development of Second Generation Intact Stability Criteria

    DTIC Science & Technology

    2011-12-01

    the intact stability performance of ships, have motivated the development of the second generation intact stability criteria by the IMO Subcommittee on...primary modes of stability failures which are being addressed. The second generation intact stability criteria are planned to have a multitiered structure...and 2 vulnerability criteria that are used as a preliminary design process check of dynamic stability failure risk. This report describes the U.S

  5. COMPARISON OF MICROBIAL TRANSFORMATION RATE COEFFICIENTS OF XENOBIOTIC CHEMICALS BETWEEN FIELD-COLLECTED AND LABORATORY MICROCOSM MICROBIOTA

    EPA Science Inventory

    Two second-order transformation rate coefficients--kb, based on total plate counts, and kA, based on periphyton-colonized surface areas--were used to compare xenobiotic chemical transformation by laboratory-developed (microcosm) and by field-collected microbiota. Similarity of tr...

  6. Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems.

    PubMed

    Fernández, María Dolores; Alonso-Blázquez, María Nieves; García-Gómez, Concepción; Babin, Mar

    2014-11-01

    To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant decreases (p<0.05) in Vicia sativa germination at the lowest (76.2%) and medium (95.2%) application rates, decreases in the fresh biomass for Triticum aestivum (19.5%), Raphanus sativus (64.1%), V. sativa (37.4%) and Eisenia fetida (33.6%) at the highest application rate and a dose-related significant increase (p<0.05) in earthworm mortality. In WTS amended soils, significant reductions (p<0.05) of the fresh biomass (17.2%) and the chlorophyll index (24.4%) for T. aestivum and the fresh biomass for R. sativus (31.4%) were only recorded at the highest application doses. In addition, the soil phosphatase enzymatic activity decreased significantly (p<0.05) in both WWTS (dose related) and WTS treatments. For water organisms, a slight inhibition of the growth of Chlorella vulgaris was observed (WWTS treated soils), along with statistically significant dose-related inhibition responses on total glutathione cell content, and statistically significant dose-related induction responses on the glutathione S-transferase enzyme activity and the reactive oxygen species generation on the RTG-2 fish cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fate of pathogenic bacteria in microcosms mimicking human body sites.

    PubMed

    Castellani, Francesco; Ghidini, Valentina; Tafi, Maria Carla; Boaretti, Marzia; Lleo, Maria M

    2013-07-01

    During the infectious process, pathogens may reach anatomical sites where they are exposed to substances interfering with their growth. These substances can include molecules produced by the host, and his resident microbial population, as well as exogenous antibacterial drugs. Suboptimal concentrations of inhibitory molecules and stress conditions found in vivo (high or low temperatures, lack of oxygen, extreme pH) might induce in bacteria the activation of survival mechanisms blocking their division capability but allowing them to stay alive. These "dormant" bacteria can be reactivated in particular circumstances and would be able to express their virulence traits. In this study, it was evaluated the effect of some environmental conditions, such as optimal and suboptimal temperatures, direct light and antibiotic sub-inhibitory concentrations doses of antibiotic, on the human pathogens Escherichia coli and Enterococcus faecalis when incubated in fluids accumulated in the body of patients with different pathologies. It is shown that inoculation in a number of accumulated body fluids and the presence of gentamicin, reliable conditions encountered during pathological states, induce stress-responding strategies enabling bacteria to persist in microcosms mimicking the human body. Significant differences were detected in Gram-negative and Gram-positive species with E. faecalis surviving, as starved or viable but non-culturable forms, in any microcosm and condition tested and E. coli activating a viable but non-culturable state only in some clinical samples. The persistence of bacteria under these conditions, being non-culturable, might explain some recurrent infections without isolation of the causative agent after application of the standard microbiological methods.

  8. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  9. Surfactant-enhanced flushing enhances colloid transport and alters macroporosity in diesel-contaminated soil.

    PubMed

    Guan, Zhuo; Tang, Xiang-Yu; Nishimura, Taku; Katou, Hidetaka; Liu, Hui-Yun; Qing, Jing

    2018-02-01

    Soil contamination by diesel has been often reported as a result of accidental spillage, leakage and inappropriate use. Surfactant-enhanced soil flushing is a common remediation technique for soils contaminated by hydrophobic organic chemicals. In this study, soil flushing with linear alkylbenzene sulfonates (LAS, an anionic surfactant) was conducted for intact columns (15cm in diameter and 12cm in length) of diesel-contaminated farmland purple soil aged for one year in the field. Dynamics of colloid concentration in column outflow during flushing, diesel removal rate and resulting soil macroporosity change by flushing were analyzed. Removal rate of n-alkanes (representing the diesel) varied with the depth of the topsoil in the range of 14%-96% while the n-alkanes present at low concentrations in the subsoil were completely removed by LAS-enhanced flushing. Much higher colloid concentrations and larger colloid sizes were observed during LAS flushing in column outflow compared to water flushing. The X-ray micro-computed tomography analysis of flushed and unflushed soil cores showed that the proportion of fine macropores (30-250μm in diameter) was reduced significantly by LAS flushing treatment. This phenomenon can be attributed to enhanced clogging of fine macropores by colloids which exhibited higher concentration due to better dispersion by LAS. It can be inferred from this study that the application of LAS-enhanced flushing technique in the purple soil region should be cautious regarding the possibility of rapid colloid-associated contaminant transport via preferential pathways in the subsurface and the clogging of water-conducting soil pores. Copyright © 2017. Published by Elsevier B.V.

  10. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities

    NASA Astrophysics Data System (ADS)

    Lorah, Michelle M.; Voytek, Mary A.

    2004-05-01

    The biodegradation pathways of 1,1,2,2-tetrachloroethane (TeCA) and 1,1,2-trichloroethane (112TCA) and the associated microbial communities in anaerobic wetland sediments were evaluated using concurrent geochemical and genetic analyses over time in laboratory microcosm experiments. Experimental results were compared to in situ porewater data in the wetland to better understand the factors controlling daughter product distributions in a chlorinated solvent plume discharging to a freshwater tidal wetland at Aberdeen Proving Ground, Maryland. Microcosms constructed with wetland sediment from two sites showed little difference in the initial degradation steps of TeCA, which included simultaneous hydrogenolysis to 112TCA and dichloroelimination to 1,2-dichloroethene (12DCE). The microcosms from the two sites showed a substantial difference, however, in the relative dominance of subsequent dichloroelimination of 112TCA. A greater dominance of 112TCA dichloroelimination in microcosms constructed with sediment that was initially iron-reducing and subsequently simultaneously iron-reducing and methanogenic caused approximately twice as much vinyl chloride (VC) production as microcosms constructed with sediment that was methanogenic only throughout the incubation. The microcosms with higher VC production also showed substantially more rapid VC degradation. Field measurements of redox-sensitive constituents, TeCA, and its anaerobic degradation products along flowpaths in the wetland porewater also showed greater production and degradation of VC with concurrent methanogenesis and iron reduction. Molecular fingerprinting indicated that bacterial species [represented by a peak at a fragment size of 198 base pairs (bp) by MnlI digest] are associated with VC production from 112TCA dichloroelimination, whereas methanogens (190 and 307 bp) from the Methanococcales or Methanobacteriales family are associated with VC production from 12DCE hydrogenolysis. Acetate-utilizing methanogens

  11. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities

    USGS Publications Warehouse

    Lorah, Michelle M.; Voytek, Mary A.

    2004-01-01

    The biodegradation pathways of 1,1,2,2-tetrachloroethane (TeCA) and 1,1,2-trichloroethane (112TCA) and the associated microbial communities in anaerobic wetland sediments were evaluated using concurrent geochemical and genetic analyses over time in laboratory microcosm experiments. Experimental results were compared to in situ porewater data in the wetland to better understand the factors controlling daughter product distributions in a chlorinated solvent plume discharging to a freshwater tidal wetland at Aberdeen Proving Ground, Maryland. Microcosms constructed with wetland sediment from two sites showed little difference in the initial degradation steps of TeCA, which included simultaneous hydrogenolysis to 112TCA and dichloroelimination to 1,2-dichloroethene (12DCE). The microcosms from the two sites showed a substantial difference, however, in the relative dominance of subsequent dichloroelimination of 112TCA. A greater dominance of 112TCA dichloroelimination in microcosms constructed with sediment that was initially iron-reducing and subsequently simultaneously iron-reducing and methanogenic caused approximately twice as much vinyl chloride (VC) production as microcosms constructed with sediment that was methanogenic only throughout the incubation. The microcosms with higher VC production also showed substantially more rapid VC degradation. Field measurements of redox-sensitive constituents, TeCA, and its anaerobic degradation products along flowpaths in the wetland porewater also showed greater production and degradation of VC with concurrent methanogenesis and iron reduction.Molecular fingerprinting indicated that bacterial species [represented by a peak at a fragment size of 198 base pairs (bp) by MnlI digest] are associated with VC production from 112TCA dichloroelimination, whereas methanogens (190 and 307 bp) from the Methanococcales or Methanobacteriales family are associated with VC production from 12DCE hydrogenolysis. Acetate-utilizing methanogens

  12. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: Biogeochemical controls and associations with microbial communities

    USGS Publications Warehouse

    Lorah, M.M.; Voytek, M.A.

    2004-01-01

    The biodegradation pathways of 1,1,2,2-tetrachloroethane (TeCA) and 1,1,2-trichloroethane (112TCA) and the associated microbial communities in anaerobic wetland sediments were evaluated using concurrent geochemical and genetic analyses over time in laboratory microcosm experiments. Experimental results were compared to in situ porewater data in the wetland to better understand the factors controlling daughter product distributions in a chlorinated solvent plume discharging to a freshwater tidal wetland at Aberdeen Proving Ground, Maryland. Microcosms constructed with wetland sediment from two sites showed little difference in the initial degradation steps of TeCA, which included simultaneous hydrogenolysis to 112TCA and dichloroelimination to 1,2-dichloroethene (12DCE). The microcosms from the two sites showed a substantial difference, however, in the relative dominance of subsequent dichloroelimination of 112TCA. A greater dominance of 112TCA dichloroelimination in microcosms constructed with sediment that was initially iron-reducing and subsequently simultaneously iron-reducing and methanogenic caused approximately twice as much vinyl chloride (VC) production as microcosms constructed with sediment that was methanogenic only throughout the incubation. The microcosms with higher VC production also showed substantially more rapid VC degradation. Field measurements of redox-sensitive constituents, TeCA, and its anaerobic degradation products along flowpaths in the wetland porewater also showed greater production and degradation of VC with concurrent methanogenesis and iron reduction. Molecular fingerprinting indicated that bacterial species [represented by a peak at a fragment size of 198 base pairs (bp) by MnlI digest] are associated with VC production from 112TCA dichloroelimination, whereas methanogens (190 and 307 bp) from the Methanococcales or Methanobacteriales family are associated with VC production from 12DCE hydrogenolysis. Acetate-utilizing methanogens

  13. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling

    PubMed Central

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-01-01

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P < 0.05) increased the gene alpha-diversity in terms of richness and Shannon – Simpson’s indexes for all three types of soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning. PMID:26396042

  14. Soil Microbial Community Responses to Additions of Organic Carbon Substrates and Heavy Metals (Pb and Cr)

    PubMed Central

    Nakatsu, Cindy H.; Carmosini, Nadia; Baldwin, Brett; Beasley, Federico; Kourtev, Peter; Konopka, Allan

    2005-01-01

    Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear. PMID:16332740

  15. Effects of hydrocarbon contamination on a free living marine nematode community: results from microcosm experiments.

    PubMed

    Mahmoudi, Ezzeddine; Essid, Naceur; Beyrem, Hamouda; Hedfi, Amor; Boufahja, Fehmi; Vitiello, Pierre; Aissa, Patricia

    2005-11-01

    Anthropogenic inputs of crude and refined petroleum hydrocarbons into the sea require knowledge of the effects of these contaminants on the receiving assemblages of organisms. A microcosm experiment was carried out to study the influence of diesel on a free living nematode community of a Tunisian lagoon. Sediments were contaminated by diesel that ranged in concentration from 0.5 to 20 mg diesel kg(-1) dry weight (dw), and effects were examined after 90 days. Gradual changes in community structure were revealed depending on the quantity of diesel administrated. In the medium (1 mg diesel kg(-1) and 5 mg diesel kg(-1) (dw)) and high (10 mg diesel kg(-1), 15 mg diesel kg(-1) and 20 mg kg(-1) (dw)) treated microcosms, most univariate measures, including diversity and species richness, decreased significantly with increasing level of diesel contamination whereas nematode assemblage from the low treated microcosm (0.5 mg diesel kg(-1) (dw)) remained unaffected. Results from multivariate analyses of the species abundance data demonstrated that responses of nematode species to the diesel treatments were varied: Chaetonema sp. was eliminated at all doses tested and seemed to be intolerant species to diesel contamination; Pomponema sp. and Oncholaimus campylocercoïdes were significantly affected at all diesel contamination levels but they were not eliminated, these species were categorized as "diesel-sensitive"; Hypodontolaimus colesi, Daptonema trabeculosum and Daptonema fallax which significantly increased respectively at 0.5, 1 and 5 mg diesel kg(-1) (dw) concentrations and appeared to be "opportunistic" species at these doses whereas Marylynnia stekhoveni which increased at all high doses (10, 15 and 20 mg diesel kg(-1) (dw)) seemed to be a "diesel-resistant" species.

  16. The Use of Phosphate Amendments for Chemical Immobilization of Uranium in Contaminated Soil.

    NASA Astrophysics Data System (ADS)

    Baker, M.; Coutelot, F.; Seaman, J. C.

    2017-12-01

    Past Department of Energy (DOE) production of nuclear materials has resulted in uranium (U) contaminated soil and groundwater posing a significant risk to the environment and human health. In situ remediation strategies are typically less expensive and rely on the introduction of chemical additives in order to reduce contaminant migration and ultimately the associated exposure hazard. Phosphate addition to U-contaminated subsurface environments has been proposed as a U remediation strategy. Saturated and unsaturated batch experiments were performed to investigate the ability of three different phosphate source treatments: hydroxyapatite (HA), phytic acid (IP6) and sodium tripolyphosphate (TPP) to chemically immobilize U in contaminated Savannah River Site (SRS) soil (2,040 mg U/kg soil). Amendment treatments ranged from 925 to 4620 mg P /kg soil. Unsaturated test samples were equilibrated for 3 weeks at 60% of the soil's field capacity, followed by pore-water extraction by centrifugation to provide an indication of the remaining mobile U fraction. Saturated batch experiments were equilibrated on an orbital shaker for 30 days under both oxic and anoxic conditions, with aliquots taken at specific intervals for chemical analysis. In the saturated microcosms, HA decreased the mobile U concentration by 98% in both redox environments and at all treatment levels. IP6 and TPP were able to decrease the soluble U concentration at low treatment levels, but tended to release U at higher treatment levels compared to the control. Unsaturated microcosms also showed HA to be the most effective treatment for immobilizing U, but IP6 and TPP were as effective as HA at the lowest treatment level. The limited contaminant immobilization following TPP and IP6 amendments correlated with the dispersion of organic matter and organo-mineral colloids. For both experiment types, TPP and IP6 samples showed a very limited ortho-phosphate (PO4-) in the solution, indicating the slow mineralization

  17. [Exploration of microcosmic Chinese medicine used by western medicine].

    PubMed

    Zheng, Zhi-jing

    2015-02-01

    "Microcosmic syndrome", "treatment based on syndrome differentiation", and "combination of disease identification and syndrome differentiation" generally refer to a mode: following the syndrome if with no disease identified, following the disease if with no syndrome type differentiated. For example, Chinese medical treatment of hypertension, high blood lipids, increased transaminase, and so on candirectly use Chinese recipes, but no longer with syndrome differentiation. Clinical application of Chinese patent medicine can also obtain favorable clinical. Western doctors need not follow syndrome differentiation. The invention of artemisinin was screened from more than 40 000 kinds of compounds and herbs, but with no reference of any traditional Chinese medical theory. A lot of folk remedy and empirical recipes have obtained effective efficacy but unnecessarily with profound Chinese medical theories. Various evidences showed that disease can also be cured without syndrome differentiation. I held that it might be associated with the same mechanism of Chinese medicine and Western medicine. Any disease can be cured or alleviated by Chinese medicine is a result from its modern pharmacological effect, which is achieved by improving etiologies, and pathogeneses. I was inspired by whether we can directly use traditional Chinese medicine with modern pharmacological effects to treat symptomatic disease. So I raised an idea of microcosmic Chinese medicine used by Western medicine, i.e., we find and use Chinese herbs with relatively effective modern pharmacological effect to treat diseases targeting at patients' clinical symptoms and signs, as well as various positive laboratory results (collectively called as microscopic dialectical indicators). More Western doctors would use it to treat disease due to omission of complicated and mysterious syndrome differentiation. This will promote extensive application and expansion of Chi- nese medicine and pharmacy, enlarge the team of

  18. STIMULATION OF THE REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE IN ANAEROBIC AQUIFER MICROCOSMS BY THE ADDITION OF TOLUENE

    EPA Science Inventory

    In this study, the biologically mediated interactions of toluene and PCE under anaerobic conditions were investigated by using microcosms constructed with aquifer solids from an area that was exposed to both alkylbenzenes and chlorinated ethenes at the U.S. Coast Guard Air Statio...

  19. Influence of diesel contamination on the benthic microbial/meiofaunal food web of a Louisiana salt marsh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, K.R.; Fleeger, J.W.; Pomarico, S.

    The authors studied the influence of diesel-contaminated sediments on the benthic microbial/meiofaunal food web from a Louisiana salt marsh. Diesel-contaminated sediment was added to microcosms (intact cores of marsh mud) in a range of doses, and a suite of microbial and meiofaunal responses were measured over a 28-day period. The authors measured bacterial and microalgal (Chl a) abundance, bacterial and microalgal activity using radiotracers ({sup 14}C-acetate and {sup 14}CO{sub 2}, respectively), meiofaunal grazing on microalgae, meiofaunal community structure, and meiofaunal physiological condition. Preliminary results indicate that diesel-contaminated sediments influence microalgal biomass and activity, as well as the life histories ofmore » benthic copepod species.« less

  20. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Chowdhury, Taniya; Graham, David

    2013-12-08

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties. In February 2016, two columns (carbon and carbon:nitrogen in soil layer) were added to the data but no existing data values changed. See documentation. The new filename is version 2. In July 2016, data for two soil cores were added. The new filename is version 3.

  1. Vertebrate Decomposition Is Accelerated by Soil Microbes

    PubMed Central

    Lauber, Christian L.; Metcalf, Jessica L.; Keepers, Kyle; Ackermann, Gail; Carter, David O.

    2014-01-01

    Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology. PMID:24907317

  2. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium.

    PubMed

    Cheng, Lei; Weir, Michael D; Zhang, Ke; Wu, Eric J; Xu, Sarah M; Zhou, Xuedong; Xu, Hockin H K

    2012-08-01

    Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (p<0.05). Total microorganisms, total streptococci, and mutans streptococci CFU counts (mean ± sd; n = 6) on composite control was 6-fold those on NACP +17.5% QADM nanocomposite. Composite control had long strings of bacterial cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the composite strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO(4) or antibacterial activity. A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties

  3. Interactions among buffelgrass, phenanthrene and phenanthrene-degrading bacteria in gnotobiotic microcosms.

    PubMed

    Robert, Francoise M; Sun, Wenhao H; Toma, Marisa; Jones, Ryan K; Tang, Chung-Shih

    2008-07-15

    An experiment was undertaken in gnotobiotic microcosms to determine the role of buffelgrass (Cenchrus ciliaris) and a phenanthrene-degrading bacterium (strain PM600) in the degradation of phenanthrene. The Gram-negative bacterium was identified as a Sphingomonas sp. by 16S rRNA gene sequence analysis and as S. paucimobilis by biochemical tests (API 20 NE strips). Its yellow pigment corresponded to nostoxanthin and its cellular fatty acids were typical of the genus Sphingomonas. Moreover, it was devoid of lipopolysaccharides. Strain PM600 was tested for growth on mineral medium supplemented with No. 2 diesel, hexadecane, mineral oil, pristane, phenanthrene, and pyrene as single carbon sources. It was capable of utilizing phenanthrene only. In the gnotobiotic microcosms silica sand was either or not supplemented with 150 mg of phenanthrene kg(-1) sand, inoculated with strain PM600, and planted to sterile young seedlings of buffelgrass. After 28 days, 67% of the reduction of the phenanthrene concentration was assigned to degradation by the bacterium and ca. 20% to abiotic factors. No statistically significant effect of the young buffelgrass was found. In the absence of phenanthrene, the bacterial population significantly increased in the rhizosphere of buffelgrass. However, in the presence of buffelgrass and phenanthrene, the bacterial population preferentially responded to phenanthrene. The growth of buffelgrass was severely curtailed by phenanthrene in the absence of the bacterium. However, strain PM600 effectively protected buffelgrass against the phytotoxicity of phenanthrene.

  4. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms.

    PubMed

    Sumon, Kizar Ahmed; Ritika, Afifat Khanam; Peeters, Edwin T H M; Rashid, Harunur; Bosma, Roel H; Rahman, Md Shahidur; Fatema, Mst Kaniz; Van den Brink, Paul J

    2018-05-01

    The neonicotinoid insecticide imidacloprid is used in Bangladesh for a variety of crop protection purposes. Imidacloprid may contaminate aquatic ecosystems via spray drift, surface runoff and ground water leaching. The present study aimed at assessing the fate and effects of imidacloprid on structural (phytoplankton, zooplankton, macroinvertebrates and periphyton) and functional (organic matter decomposition) endpoints of freshwater, sub-tropical ecosystems in Bangladesh. Imidacloprid was applied weekly to 16 freshwater microcosms (PVC tanks containing 400 L de-chlorinated tap water) at nominal concentrations of 0, 30, 300, 3000 ng/L over a period of 4 weeks. Results indicated that imidacloprid concentrations from the microcosm water column declined rapidly. Univariate and multivariate analysis showed significant effects of imidacloprid on the zooplankton and macroinvertebrate community, some individual phytoplankton taxa, and water quality variables (i.e. DO, alkalinity, ammonia and nitrate), with Cloeon sp., Diaptomus sp. and Keratella sp. being the most affected species, i.e. showing lower abundance values in all treatments compared to the control. The observed high sensitivity of Cloeon sp. and Diaptomus sp. was confirmed by the results of single species tests. No significant effects were observed on the species composition of the phytoplankton, periphyton biomass and organic matter decomposition for any of the sampling days. Our study indicates that (sub-)tropical aquatic ecosystems can be much more sensitive to imidacloprid compared to temperate ones. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. [Dental plaque microcosm biofilm behavior on a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt].

    PubMed

    Junling, Wu; Qiang, Zhang; Ruinan, Sun; Ting, Zhu; Jianhua, Ge; Chuanjian, Zhou

    2015-12-01

    To develop a resin composite incorporated with nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt, and to measure its effect on human dental plaque microcosm biofilm. A novel nano-antibacterial inorganic filler containing long-chain alkyl quaternary ammonium salt was synthesized according to methods introduced in previous research. Samples of the novel nano-antibacterial inorganic fillers were modified by a coupling agent and then added into resin composite at 0%, 5%, 10%, 15% or 20% mass fractions; 0% composite was used as control. A flexural test was used to measure resin composite mechanical properties. Results showed that a dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming unit (CFU) counts, lactic acid production, and live/dead assay of biofilm on the resin composite were calculated to test the effect of the resin composite on human dental plaque microcosm biofilm. The incorporation of nano-antibacterial inorganic fillers with as much as 15% concentration into the resin composite showed no adverse effect on the mechanical properties of the resin composite (P > 0.05). Resin composite containing 5% or more nano-antibacterial inorganic fillers significantly inhibited the metabolic activity of dental plaque microcosm biofilm, suggesting its strong antibacterial potency (P < 0.05). This novel resin composite exhibited a strong antibacterial property upon the addition of up to 5% nano-antibacterial inorganic fillers, thereby leading to effective caries inhibition in dental application.

  6. Pore-Scale Effects of Soil Structure And Microbial EPS Production On Soil Water Retention

    NASA Astrophysics Data System (ADS)

    Orner, E.; Anderson, E.; Rubinstein, R. L.; Chau, J. F.; Shor, L. M.; Gage, D. J.

    2013-12-01

    Climate-induced changes to the hydrological cycle will increase the frequency of extreme weather events including powerful storms and prolonged droughts. Moving forward, one of the major factors limiting primary productivity in terrestrial ecosystems will be sub-optimal soil moisture. We focus here on the ability of soils to retain moisture under drying conditions. A soil's ability to retain moisture is influenced by many factors including its texture, its structure, and the activities of soil microbes. In soil microcosms, the addition of small amounts of microbially-produced extracellular polymeric substances (EPS) can dramatically shift moisture retention curves. The objective of this research is to better understand how soil structure and EPS may act together to retain moisture in unsaturated soils. Replicate micromodels with exactly-conserved 2-D physical geometry were initially filled with aqueous suspensions of one of two types of bacteria: one mutant was ultra- muccoid and the other was non-muccoid. Replicate micromodels were held at a fixed, external, relative humidity, and the position of the air-water interface was imaged over time as water evaporates. There was no forced convection of air or water inside the micromodels: drying was achieved by water evaporation and diffusion alone. We used a fully automated, inverted microscope to image replicate drying lanes each with dimensions of 1 mm x 10 mm. A complete set of images was collected every 30 minutes for 30 hours. The results show devices loaded with the highly muccoid strain remained >40% hydrated for 13 h, while devices loaded with the non-muccoid remained >40% hydrated for only 6 h, and were completely dry by 13 h. Current work is comparing interfacial water fluxes in structured and unstructured settings, and is attempting to model the synergistic effects of soil structure and EPS content on moisture retention in real soils. This research may allow more accurate description of naturally

  7. Denitrification and potential nitrous oxide and carbon dioxide production in brownfield wetland soils.

    PubMed

    Palta, Monica M; Ehrenfeld, Joan G; Groffman, Peter M

    2013-09-01

    Brownfields, previously developed sites that are derelict, vacant, or underused, are ubiquitous in urban areas. Wetlands on brownfields often retain rain and stormwater longer than the surrounding landscape because they are low-lying; this increases the possibility for these areas to process waterborne contaminants from the urban environment. In the northeastern United States, atmospheric deposition of nitrate (NO) is high. Denitrification, a microbial process common in wetlands, is a means of removing excess NO. Nitrogen gas is the desired end product of denitrification, but incomplete denitrification results in the production of NO, a greenhouse gas. The goal of this study was to investigate the potential of brownfield wetlands to serve as sinks for inorganic nitrogen and sources of greenhouse gases. We examined limitations to denitrification and NO production in brownfield wetland soils in New Jersey. Soil C:N ratios were high (18-40) and intact core denitrification (-0.78 to 11.6 μg NO-N kg dry soil d) and N mineralization (0.11-2.97 mg N kg dry soil d) were low for all sites. However, soil NO increased during dry periods. Nitrate additions to soil slurries increased denitrification rates, whereas labile C additions did not, indicating that soil denitrifiers were nitrogen limited. Incubations indicated that the end product of denitrification was primarily NO and not N. These results indicate that brownfield wetlands can develop significant denitrification capacity, potentially causing NO limitation. They might be significant sinks for atmospheric NO but may also become a significant source of NO if NO deposition were to increase. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Stabilization of lunar core samples

    NASA Technical Reports Server (NTRS)

    Nagle, J. S.; Duke, M. B.

    1974-01-01

    Processing of lunar cores includes: (1) careful dissection for study of loose fines, and (2) stabilization of the residue by peeling and impregnation. The newly developed technique for preparing thin peels of lunar cores requires application of the methacrylate adhesive to a backing strip, before taking the peel. To ensure complete impregnation of the very fine, dry lunar soil, the low-viscosity epoxy, Araldite 506, is gently flowed onto the core, under vacuum.

  9. Astrocyte activation and wound healing in intact-skull mouse after focal brain injury.

    PubMed

    Suzuki, Takayuki; Sakata, Honami; Kato, Chiaki; Connor, John A; Morita, Mitsuhiro

    2012-12-01

    Localised brain tissue damage activates surrounding astrocytes, which significantly influences subsequent long-term pathological processes. Most existing focal brain injury models in rodents employ craniotomy to localise mechanical insults. However, the craniotomy procedure itself induces gliosis. To investigate perilesional astrocyte activation under conditions in which the skull is intact, we created focal brain injuries using light exposure through a cranial window made by thinning the skull without inducing gliosis. The lesion size was maximal at ~ 12 h and showed substantial recovery over the subsequent 30 days. Two distinct types of perilesional reactive astrocyte, identified by GFAP upregulation and hypertrophy, were found. In proximal regions the reactive astrocytes proliferated and expressed nestin, whereas in regions distal to the injury core the astrocytes showed increased GFAP expression but did not proliferate, lacked nestin expression, and displayed different morphology. Simply making the window did not induce any of these changes. There were also significant numbers of neurons in the recovering cortical tissue. In the recovery region, reactive astrocytes radially extended processes which appeared to influence the shapes of neuronal nuclei. The proximal reactive astrocytes also formed a cell layer which appeared to serve as a protective barrier, blocking the spread of IgG deposition and migration of microglia from the lesion core to surrounding tissue. The recovery was preceded by perilesional accumulation of leukocytes expressing vascular endothelial growth factor. These results suggest that, under intact skull conditions, focal brain injury is followed by perilesional reactive astrocyte activities that foster cortical tissue protection and recovery. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Marine Microcosm Experiments on Effects of Copper and Tributylin-Based Antifouling Paint Leachates

    DTIC Science & Technology

    1988-06-01

    consumers in HliOrg microcosms were probably the thick carpets of green algae ( Cladophora socialis) that developed in those tanks during leachate and...and bottom substrate in the SPG-4 tanks were dominated by a low-diversity community composed primarily of Cladophora socialis, a filamentous green...coverage and diversity of species after 4 weeks of’ exposure. Moderate to thick growths of filamentous green algae ( Cladophora socialis) covered with

  11. Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater

    NASA Astrophysics Data System (ADS)

    Klečka, G. M.; Carpenter, C. L.; Gonsior, S. J.

    1998-10-01

    The ability of naturally occurring microorganisms to biodegrade 1,2-dichloroethane was examined in soil/water microcosms prepared using aquifer material obtained from manufacturing sites in Louisiana and Texas with known histories of exposure to the compound, as well as in aquifer samples taken from a site in Oklahoma with no known history of 1,2-dichloroethane contamination. Biotransformation of 1,2-dichloroethane was noted under methanogenic or sulfate reducing conditions in all samples. Under anaerobic conditions, 1,2-dichloroethane was transformed to ethylene in a single step via reductive dihaloelimination. No other metabolites were detected in the reaction mixtures. Microbial adaptation appeared to be required for biotransformation of 1,2-dichloroethane. Lag periods ranging from 7 to 8 weeks preceded degradation in microcosms prepared with aquifer material from the Texas and Oklahoma sites. In contrast, no lag period was evident prior to biotransformation in microcosms prepared from the Louisiana manufacturing site, which is consistent with field evidence for natural biological attenuation in situ based on analysis of the groundwater chemistry. Aerobic biodegradation of 1,2-dichloroethane to carbon dioxide was also observed after 13 weeks in aquifer material from the Louisiana site, but was not evident in samples from the Texas or Oklahoma sites following 18 weeks of incubation. The ability of naturally occurring microorganisms to degrade 1,2-dichloroethane has bearing on assessments of the fate and lifetime of the compound in the environment, as well as having potential application in the remediation of contaminated groundwater.

  12. Composition and Maturity of Apollo 16 Regolith Core 60013/14

    NASA Technical Reports Server (NTRS)

    Korotev, Randy T.; Morris, Richard V.

    1993-01-01

    Samples from every half-centimeter dissection interval of double drive tube 60013/14 (sections 60013 and 60014) were analyzed by magnetic techniques for Fe concentration and surface maturity parameter I(sub s)/ Fe(O), and by neutron activation for concentrations of 25 lithophile and siderophile elements. Core 60013/14 is one of three regolith cores taken in a triangular array 40-50 m apart on the Cayley plains during Apollo 16 mission to the Moon. The core can be divided into three zones based both on I(sub s)/FeO and composition. Unit A (0-44 cm depth) is compositionally similar to other soils from the surface of the central region of the site and is mature throughout, although maturity decreases with depth. Unit B (44-59 cm) is submature and compositionally more feldspathic than Unit A. Regions of lowest maturity in Unit B are characterized by lower Sm/Sc ratios than any soil obtained from the Cayley plains as a result of some unidentified lithologic component with low surface maturity. The component is probably some type of mafic anorthosite that does not occur in such high abundance in any of the other returned soils. Unit C (59-62 cm) is more mature than Unit B and compositionally equivalent to an 87: 13 mixture of soil such as that from Unit A and plagioclase such as found in ferroan anorthosite. Similar soils, but containing greater abundances of anorthosite (plagioclase), are found at depth in the other two cores of the array. These units of immature to submature soil enriched to varying degrees (compared to the mature surface soil) in ferroan anorthosite consisting of approx. 99% plagioclase are the only compositionally distinct subsurface similarities among the three cores. Each of the cores contains other units that are compositionally dissimilar to any soil unit in the other two cores. These compositionally distinct units probably derive from local subsurface blocks deposited by the event(s) that formed the Cayley plains. The ferroan anorthosite with

  13. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    PubMed Central

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-01-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357

  14. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  15. Use Of Statistical Tools To Evaluate The Reductive Dechlorination Of High Levels Of TCE In Microcosm Studies

    EPA Science Inventory

    A large, multi-laboratory microcosm study was performed to select amendments for supporting reductive dechlorination of high levels of trichloroethylene (TCE) found at an industrial site in the United Kingdom (UK) containing dense non-aqueous phase liquid (DNAPL) TCE. The study ...

  16. Effects of different remediation treatments on crude oil contaminated saline soil.

    PubMed

    Gao, Yong-Chao; Guo, Shu-Hai; Wang, Jia-Ning; Li, Dan; Wang, Hui; Zeng, De-Hui

    2014-12-01

    Remediation of the petroleum contaminated soil is essential to maintain the sustainable development of soil ecosystem. Bioremediation using microorganisms and plants is a promising method for the degradation of crude oil contaminants. The effects of different remediation treatments, including nitrogen addition, Suaeda salsa planting, and arbuscular mycorrhiza (AM) fungi inoculation individually or combined, on crude oil contaminated saline soil were assessed using a microcosm experiment. The results showed that different remediation treatments significantly affected the physicochemical properties, oil contaminant degradation and bacterial community structure of the oil contaminated saline soil. Nitrogen addition stimulated the degradation of total petroleum hydrocarbon significantly at the initial 30d of remediation. Coupling of different remediation techniques was more effective in degrading crude oil contaminants. Applications of nitrogen, AM fungi and their combination enhanced the phytoremediation efficiency of S. salsa significantly. The main bacterial community composition in the crude oil contaminated saline soil shifted with the remediation processes. γ-Proteobacteria, β-Proteobacteria, and Actinobacteria were the pioneer oil-degraders at the initial stage, and Firmicutes were considered to be able to degrade the recalcitrant components at the later stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Incorporation of 13C labeled Pinus ponderosa needle and fine root litter into soil organic matter measured by Py-GC/MS-C-IRMS

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Gleixner, G.; Dawson, T. E.; Bird, J. A.; Torn, M. S.

    2006-12-01

    Developing effective strategies for enhancing C storage in soils requires understanding the influence of plant C quality. In turn, plant C quality impacts the decay continuum between plant residue and humified, stable SOM. This remains one of the least understood aspects of soil biogeochemistry. We investigated the initial phase of incorporation of 13C labeled Pinus ponderosa needle and fine root litter into SOM. The two litter types were placed in separate microcosms in the A horizon in a temperate conifer soil. Curie-point pyrolysis-gas chromatography coupled with on-line mass spectrometry and isotope ratio mass spectrometry (Py-GC/MS-C- IRMS) were used to determine the identity and the 13C enrichment of pyrolysis products (fragments of carbohydrates, lignin, proteins and lipids). We compared the two initial litter types, needles and fine roots, to samples of the bulk soil (A horizon, < 2mm) and soil humin fraction (from chemical solubility) obtained from each microcosm 1.5y after litter addition. Pyrolysis of plant material and SOM produced 56 suitable products for isotopic analysis; of them, 15 occurred in both the litter and bulk soil, 7 in both the litter and the humin fraction and 9 in both bulk soil and the humin fraction. The pyrolysis products found in common in the plant and soil were related either to polysaccharides or were non-specific and could have originated from various precursors. The data suggest that the majority of plant inputs, both from needles or fine roots, were degraded very rapidly. In the humin fraction, the most recalcitrant pool of C in soil, with a measured turnover time of 260y (this soil), only products from the fragmentation of polysaccharides and alkyl-benzene compounds were found. Comparisons of the enrichment normalized by input level suggest little difference between the incorporation of C from needles versus fine roots into SOM. The most enriched fragments in the humin fraction were products from polysaccharides degradation

  18. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres.

    PubMed

    Wei, Yi; Wang, Yu Xia; Wang, Wei; Ho, Sa V; Qi, Feng; Ma, Guang Hui; Su, Zhi Guo

    2012-10-02

    The microcosmic mechanisms of protein (recombinant human growth hormone, rhGH) incomplete release and stability from amphiphilic poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres were investigated. PELA with different hydrophilicities (PELA-1, PELA-2, and PELA-3) based on various ratios of mPEG to PLA were employed to prepare microspheres exhibiting a narrow size distribution using a combined double emulsion and premix membrane emulsification method. The morphology, rhGH encapsulation efficiency, in vitro release profile, and rhGH stability of PELA microspheres during the release were characterized and compared in detail. It was found that increasing amounts of PLA enhanced the encapsulation efficiency of PELA microspheres but reduced both the release rate of rhGH and its stability. Contact angle, atomic force microscope (AFM), and quartz crystal microbalance with dissipation (QCM-D) techniques were first combined to elucidate the microcosmic mechanism of incomplete release by measuring the hydrophilicity of the PELA film and its interaction with rhGH. In addition, the pH change within the microsphere microenvironment was monitored by confocal laser scanning microscopy (CLSM) employing a pH-sensitive dye, which clarified the stability of rhGH during the release. These results suggested that PELA hydrophilicity played an important role in rhGH incomplete release and stability. Thus, the selection of suitable hydrophilic polymers with adequate PEG lengths is critical in the preparation of optimum protein drug sustained release systems. This present work is a first report elucidating the microcosmic mechanisms responsible for rhGH stability and its interaction with the microspheres. Importantly, this research demonstrated the application of promising new experimental methods in investigating the interaction between biomaterials and biomacromolecules, thus opening up a range of exciting potential applications in the biomedical field

  19. Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core

    NASA Astrophysics Data System (ADS)

    Kendall, Jordan D.; Melosh, H. J.

    2016-08-01

    The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.

  20. Changing Summer Precipitation Pattern Alters Microbial Community Response to Fall Wet-up in a Mediterranean Soil

    NASA Astrophysics Data System (ADS)

    Barnard, R. L.; Osborne, C. A.; Firestone, M. K.

    2014-12-01

    The large soil CO2 efflux associated with rewetting dry soils after the dry summer period significantly contributes to the annual carbon budget of Mediterranean grasslands. Rapid reactivation of soil heterotrophic activity and a pulse of available carbon are both required to fuel the CO2 pulse. Better understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting future changes in carbon cycling. Here, we investigated the effects of a controlled rewetting event on the soil CO2 efflux pulse and on the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores previously subjected to three different precipitation patterns over four months (full summer dry season, extended wet season, and absent dry season). Phylogenetic marker genes for bacteria (16S) and fungi (28S) were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. Even after having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response. Moreover, we found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry conditions (predicted to change under future climate) is important in conditioning the response potential of the soil bacterial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.

  1. Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate.

    PubMed

    Barnard, Romain L; Osborne, Catherine A; Firestone, Mary K

    2015-03-17

    A large soil CO2 pulse is associated with rewetting soils after the dry summer period under a Mediterranean-type climate, significantly contributing to grasslands' annual carbon budget. Rapid reactivation of soil heterotrophs and a pulse of available carbon are both required to fuel the CO2 pulse. Understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting changes in carbon cycling. Here, we investigated the effects of extending winter rainfall into the normally dry summer period on soil microbial response to a controlled rewetting event, by following the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores (from a California annual grassland) previously subjected to three different precipitation patterns over 4 months (full summer dry season, extended wet season and absent dry season). Phylogenetic marker genes for bacteria and fungi were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. After having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response. We found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry summer conditions characteristic of the Mediterranean climate is important in conditioning the response potential of the soil microbial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.

  2. Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis

    NASA Astrophysics Data System (ADS)

    Milleret, R.; Le Bayon, R.-C.; Lamy, F.; Gobat, J.-M.; Boivin, P.

    2009-07-01

    SummarySoil biota such as earthworms, arbuscular mycorrhizal fungi (AMF) and plant roots are known to play a major role in engineering the belowground part of the terrestrial ecosystems, thus strongly influencing the water budget and quality on earth. However, the effect of soil organisms and their interactions on the numerous soil physical properties to be considered are still poorly understood. Shrinkage analysis allows quantifying a large spectrum of soil properties in a single experiment, with small standard errors. The objectives of the present study were, therefore, to assess the ability of the method to quantify changes in soil properties as induced by single or combined effects of leek roots ( Allium porrum), AMF ( Glomus intraradices) and earthworms ( Allolobophora chlorotica). The study was performed on homogenised soil microcosms and the experiments lasted 35 weeks. The volume of the root network and the external fungal hyphae was measured at the end, and undisturbed soil cores were collected. Shrinkage analysis allowed calculating the changes in soil hydro-structural stability, soil plasma and structural pore volumes, soil bulk density and plant available water, and structural pore size distributions. Data analysis revealed different impacts of the experimented soil biota on the soil physical properties. At any water content, the presence of A. chlorotica resulted in a decrease of the specific bulk volume and the hydro-structural stability around 25%, and in a significant increase in the bulk soil density. These changes went with a decrease of the structural pore volumes at any pore size, a disappearing of the thinnest structural pores, a decrease in plant available water, and a hardening of the plasma. On the contrary, leek roots decreased the bulk soil density up to 1.23 g cm -3 despite an initial bulk density of 1.15 g cm -3. This increase in volume was accompanied with a enhanced hydro-structural stability, a larger structural pore volume at any

  3. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  4. Water regime history drives responses of soil Namib Desert microbial communities to wetting events.

    PubMed

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A

    2015-07-21

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  5. Response of the Predatory Bacterium, Halobacteriovorax, and Virus to an Influx of a Prey Bacterium in a Natural Water Microcosm and a Three Membered Artificial Sea Water Microcosm.

    NASA Astrophysics Data System (ADS)

    Williams, H.; Chen, H.; Laws, E. A.; Gulig, P. A.

    2016-02-01

    Halobacteriovorax (HBx) is a predatory bacterium that preys on Vibrio sp. and many other gram negative bacteria. There is strong evidence that suggest HBx has a role in bacterial mortality in marine and brackish systems. However, its role has not been appropriately explored. In this study the rate of HBx predation on Vibrio vulnificus in comparison to that of viruses has been investigated. Initial experiments compared the responses of HBx and viruses in estuarine water systems to an input of V. vulnificus. Environmental water samples were filtered to remove larger protists and other organisms and debris. The filtered samples were used to establish laboratory microcosms to which was added a suspension of V. vulnificus. To measure the responses of HBx and viruses to the influx of V. vulnificus, samples were removed at intervals over a 40 h incubation period to enumerate HBx and V. vulnificus by culture and viruses by direct microscopic counts. In a subsequent experiment we investigated the responses of a virus and HBx strain when cultured with a suspension of V. vulnificus in a laboratory controlled microcosm of artificial sea water. The results of both experiments revealed that HBx was the first and most rapid responder to the inoculum of V. vulnificus and reduced their numbers significantly. The viruses were relatively non-responsive and did not substantially reduce V. vulnifius numbers. These results show that HBx may be a major contributor to bacterial mortality in conjunction with protists and viruses

  6. N2O and N2 emissions from contrasting soil environments - interactive effects of soil nitrogen, hydrology and microbial communities

    NASA Astrophysics Data System (ADS)

    Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara

    2016-04-01

    Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site

  7. Temporal dynamics of the compositions and activities of soil microbial communities post-application of the insecticide chlorantraniliprole in paddy soils.

    PubMed

    Wu, Meng; Liu, Jia; Li, Weitao; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2017-10-01

    Chlorantraniliprole (CAP) is a newly developed insecticide widely used in rice fields in China. There has been few studies evaluating the toxicological effects of CAP on soil-associated microbes. An 85-day microcosm experiment was performed to reveal the dissipation dynamics of CAP in three types of paddy soils in subtropical China. The effects of CAP on microbial activities (microbial biomass carbon-MBC, basal soil respiration-BSR, microbial metabolic quotient-qCO 2 , acid phosphatase and sucrose invertase activities) in the soils were periodically evaluated. Microbial phospholipid fatty acid (PLFA) analysis was used to evaluate the change of soil microbial community composition on day 14 and 50 of the experiment. CAP residues were extracted using the quick, easy, cheap, effective, rugged, and safe (QuChERS) method and quantification was measured by high performance liquid chromatography (HPLC). The half-lives (DT 50 ) of CAP were in the range of 41.0-53.0 days in the three soils. The results showed that CAP did not impart negative effects on MBC during the incubation. CAP inhibited BSR, qCO 2 , acid phosphatase and sucrose invertase activities in the first 14 days of incubation in all the soils. After day 14, the soil microbial parameters of CAP-treated soils became statistically at par with their controls. Principal component analysis (PCA) determining abundance of biomarker PLFAs indicated that the application of CAP significantly changed the compositions of microbial communities in all three paddy soils on day 14 but the compositions of soil microbial communities recovered by day 50. This study indicates that CAP does not ultimately impair microbial activities and microbial compositions of these three paddy soil types. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Leaching behaviour of azoxystrobin and metabolites in soil columns.

    PubMed

    Ghosh, Rakesh Kumar; Singh, Neera

    2009-09-01

    Azoxystrobin [methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate], a strobilurin fungicide, is a broad-spectrum, systemic and soil-applied fungicide. Azoxystrobin has been registered for rice cultivation in India, but no information is available on its leaching behaviour in Indian soils. Therefore, leaching behaviour of azoxystrobin was studied in packed and intact soil columns under different irrigation regimes. Azoxystrobin did not leach out of the 300 mm long columns after 126 and 362 mm rainfall. After percolating water equivalent to 362 mm rainfall, azoxystrobin leached down to 10-15 cm (packed columns) and 15-20 cm (intact columns) depth. Azoxystrobin was not detected in the leachate from the packed column leached with 94.5 mL water every week (140 mm rainfall per month) during the 28 weeks of the study period. However, azoxystrobin acid, formed by azoxystrobin degradation, was detected in the leachate after 18 weeks. At the end of the study, azoxystrobin had leached down to 5-10 cm depth, and only 60% of initially applied azoxystrobin was recovered from the soil. The results indicate that azoxystrobin is fairly immobile in sandy loam soil, but azoxystrobin acid, a major metabolite of azoxystrobin, is quite mobile and may pose a threat of soil and groundwater contamination. Copyright 2009 Society of Chemical Industry.

  9. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  10. From a microcosm to the catchment scale: studying the fate of organic runoff pollutants in aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Böttcher, T.; Schroll, R.

    2009-04-01

    Spray-drift, drainage, erosion and runoff events are the major causes responsible for deportation of agrochemicals as micropollutants to aquatic non-target sites. These processes can lead to the contamination of nearby freshwater ecosystems with considerably high concentrations of xenobiotics. Thus, it is important to unravel the fate of these pollutants and to evaluate their ecological effects. A novel approach to address this goal was established by the development of a microcosm with multiple sampling abilities enabling quantitative assessment of organic volatilisation, mineralization, metabolization and distribution within the aquatic ecosystem. This microcosm system was designed to support modelling approaches of the catchment scale and gain insights into the fate of pesticides simulating a large scale water body. The potential of this microcosm was exemplified for Isoproturon (IPU), a phenylurea derived systemic herbicide, which is frequently found as contaminant in water samples and with the free-floating macrophyte Lemna minor as non-target species, that is common to occur in rural water bodies. During 21 days exposure time, only a small amount of 14C labeled IPU was removed from the aquatic medium. The major portion (about 5%) was accumulated by Lemna minor resulting in a BCF of 15.8. IPU-volatilisation was very low with 0.13% of the initially applied herbicide. Only a minor amount of IPU was completely metabolized, presumably by rhizosphere microorganisms and released as 14CO2. The novel experimental system allowed to quantitatively investigate the fate of IPU and showed a high reproducibility with a mean average 14C-recovery rate of 97.1

  11. Digging Deep: how the convergence of national-scale and field-based soil core data shines a light on sustainability of wetland carbon sequestration

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Holmquist, J. R.; Sundquist, E. T.; Drexler, J. Z.; Bliss, N.

    2016-12-01

    Wetland soils have long been recognized as conditional archives of past environments, including vegetation structure, nutrient status, sediment supply and the variability in those factors. Both sedimentary processes and organic accretion processes form the soil matrix that identifies wetland soils as "hydric" while also providing archival insights. As repositories of information on net biogeochemical processes, their down-core and across-site structure can show both consistency and distinction. Through several related studies, we have been exploring the use of component-level U.S. Natural Resources Conservation Service (NRCS) Soil Survey data (SSURGO) to map carbon density to 1m depth across wetlands of the US, with an emphasis on coastal wetlands. To assess the accuracy of mapped carbon data from SSURGO, several field-generated datasets (public or compiled for the NASA-funded Blue Carbon Monitoring Project) have been extracted for key metrics such as dry bulk density (g/cc), organic carbon content (%C by combustion) and the combination, soil carbon density (g C /cc) with depth. These profiles indicate ecogeomorphic feedbacks of elevation, vegetation structure and biogeochemical processes through millennia, illustrating both resilience and shifts in behavior that constrain wetland extent as well as wetland function. National datasets such as SSURGO and validation datasets such as the EPA's National Wetland Condition Assessment (NWCA) and Louisiana's Coastwide Reference Monitoring System (CRMS) are publically available and have been underutilized for predicting and/or validating changes in wetland carbon dynamics. We have explored their use for interpretating and understanding changing carbon accretion rates, changing wetland extents through elevation gain or loss, and changing methane emissions. This talk will focus on insights for wetland carbon sequestration functions as determined by soil core structure, both for coastal settings and potentially for inland

  12. Carbon Turnover in Organic Soils of Central Saskatchewan: Insights From a Core-Based Decomposition Study

    NASA Astrophysics Data System (ADS)

    Bauer, I. E.; Bhatti, J. S.; Hurdle, P. A.

    2004-05-01

    Field-based decomposition studies that examine several site types tend to use one of two approaches: Either the decay of one (or more) standard litters is examined in all sites, or litters native to each site type are incubated in the environment they came from. The first of these approaches examines effects of environment on decay, whereas the latter determines rates of mass loss characteristic of each site type. Both methods are usually restricted to a limited number of litters, and neither allows for a direct estimate of ecosystem-level parameters (e.g. heterotrophic respiration). In order to examine changes in total organic matter turnover along forest - peatland gradients in central Saskatchewan, we measured mass loss of native peat samples from six different depths (surface to 50 cm) over one year. Samples were obtained by sectioning short peat cores, and cores and samples were returned to their original position after determining the initial weight of each sample. A standard litter (birch popsicle sticks) was included at each depth, and water tables and soil temperature were monitored over the growing season. After one year, average mass loss in surface peat samples was similar to published values from litter bag studies, ranging from 12 to 21 percent in the environments examined. Native peat mass loss showed few systematic differences between sites or along the forest - peatland gradient, with over 60 percent of the total variability explained by depth alone. Mass loss of standard litter samples was highly variable, with high values in areas at the transition between upland and peatland that may have experienced recent disturbance. In combination, these results suggest strong litter-based control over natural rates of organic matter turnover. Estimates of heterotrophic respiration calculated from the mass loss data are higher than values obtained by eddy covariance or static chamber techniques, probably reflecting loss of material during the handling of

  13. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  14. Aerobic degradation of N-methyl-4-nitroaniline (MNA) by Pseudomonas sp. strain FK357 isolated from soil.

    PubMed

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  15. Multivariate analysis of the impacts of the turbine fuel JP-4 in a microcosm toxicity test with implications for the evaluation of ecosystem dynamics and risk assessment.

    PubMed

    Landis, W G; Matthews, R A; Markiewicz, A J; Matthews, G B

    1993-12-01

    Turbine fuels are often the only aviation fuel available in most of the world. Turbine fuels consist of numerous constituents with varying water solubilities, volatilities and toxicities. This study investigates the toxicity of the water soluble fraction (WSF) of JP-4 using the Standard Aquatic Microcosm (SAM). Multivariate analysis of the complex data, including the relatively new method of nonmetric clustering, was used and compared to more traditional analyses. Particular emphasis is placed on ecosystem dynamics in multivariate space.The WSF is prepared by vigorously mixing the fuel and the SAM microcosm media in a separatory funnel. The water phase, which contains the water-soluble fraction of JP-4 is then collected. The SAM experiment was conducted using concentrations of 0.0, 1.5 and 15% WSF. The WSF is added on day 7 of the experiments by removing 450 ml from each microcosm including the controls, then adding the appropriate amount of toxicant solution and finally bringing the final volume to 3 L with microcosm media. Analysis of the WSF was performed by purge and trap gas chromatography. The organic constituents of the WSF were not recoverable from the water column within several days of the addition of the toxicant. However, the impact of the WSF on the microcosm was apparent. In the highest initial concentration treatment group an algal bloom ensued, generated by the apparent toxicity of the WSF of JP-4 to the daphnids. As the daphnid populations recovered the algal populations decreased to control values. Multivariate methods clearly demonstrated this initial impact along with an additional oscillation seperating the four treatment groups in the latter segment of the experiment. Apparent recovery may be an artifact of the projections used to describe the multivariate data. The variables that were most important in distinguishing the four groups shifted during the course of the 63 day experiment. Even this simple microcosm exhibited a variety of dynamics

  16. Quantitative detection of antibiotic resistance genes using magnetic/luminescent core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Son, Ahjeong; Hristova, Krassimira R.; Dosev, Dosi; Kennedy, Ian M.

    2008-02-01

    Nanoscale magnetic/luminescent core-shell particles were used for DNA quantification in a hybridization-in-solution format. We demonstrated a simple, high-throughput, and non-PCR based DNA assay for quantifying antibiotic resistance gene tetQ. Fe 3O 4/Eu:Gd IIO 3 nanoparticles (NPs) synthesized by spray pyrolysis were biofunctionalized by passive adsorption of NeutrAvidin. Following immobilization of biotinylated probe DNA on the particles' surfaces, target dsDNA and signaling probe DNA labeled with Cy3 were hybridized with NPs-probe DNA. Hybridized DNA complexes were separated from solution by a magnet, while non-hybridized DNA remained in solution. A linear quantification (R2 = 0.99) of a target tetQ gene was achieved based on the normalized fluorescence (Cy3/NPs) of DNANP hybrids. A real-time qPCR assay was used for evaluation of the NPs assay sensitivity and range of quantification. The quantity of antibiotic resistance tetQ genes in activated sludge microcosms, with and without addition of tetracycline or triclosan has been determined, indicating the potential of the optimized assay for monitoring the level of antibiotic resistance in environmental samples. In addition, the tetQ gene copy numbers in microcosms determined by NPhybridization were well correlated with the numbers measured by real-time qPCR assay (R2 = 0.92).

  17. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance.

    PubMed

    Castillo Diaz, Jean Manuel; Martin-Laurent, Fabrice; Beguet, Jérèmie; Nogales, Rogelio; Romero, Esperanza

    2017-02-01

    The fate and impact of pesticide on soil depend partly on the agricultural practices, such as prior treatment with pesticide and/or organic amendments. As a means of determining how the previous soil conditions can affect the fate of imidacloprid (IMI) and its effect on soil functions, experiments were made with soil samples, double-amended or not with either vine-shoot (W) or olive cake (O) vermicompost or contaminated or not with IMI. These soil samples, incubated for 3months, were placed in two microcosms (M1 with the pre-amended soils and M2 with the pre-exposed soils), treated with IMI and amended with vermicomposts and then incubated for 3months. The IMI distribution on soil fractions, sorption processes, dissipation kinetics, and biochemical as well as genetic structure and bacterial abundance were determined to assess the fate and impact of IMI on the soil. The addition of W vermicompost to the soil reduced the IMI availability. The dissipation kinetic in soils from M1 and M2 followed, respectively, a single first-order and a double first-order in parallel models. The lowest IMI persistence corresponded to the soil from M2 amended with O-vermicompost with DT50 and DT90 values of 67d and 265d, while in the other soils 90% dissipation required >512d. The vermicomposts-amended contaminated soils increased the dehydrogenase activity by 2- and 4-fold respect the control soils. However, the urease activity decreased due to the IMI influence. The changes in the bacterial community in the contaminated soil amended with O-vermicompost during incubation were correlated with the dissipation rate constant of IMI, suggesting a better tolerance of microorganisms to IMI. Thus, in the soil contaminated with IMI, the amendment with the vermicompost from olive cake can mitigate the impact of this insecticide on soil functions and promote its depuration capability while minimizing environmental risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores

    PubMed Central

    Flores, Lorea; Bailey, R. A.; Elosegi, Arturo; Larrañaga, Aitor; Reiss, Julia

    2016-01-01

    Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems. PMID:27802267

  19. 46 CFR 28.570 - Intact righting energy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Intact righting energy. 28.570 Section 28.570 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Stability § 28.570 Intact righting energy. (a) Except as provided in paragraph (c) of this...

  20. 46 CFR 28.570 - Intact righting energy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Intact righting energy. 28.570 Section 28.570 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Stability § 28.570 Intact righting energy. (a) Except as provided in paragraph (c) of this...