Science.gov

Sample records for intake device aphid

  1. Aphid pheromones.

    PubMed

    Dewhirst, Sarah Y; Pickett, John A; Hardie, Jim

    2010-01-01

    Aphids are the main insect pests of agricultural crops in temperate regions causing major economic losses. Although broad-spectrum insecticides are available for control, alternative and more targeted methods are needed due to insecticide resistance and increasing environmental pressures. An alternative control method for aphids is to exploit their pheromones, which have been extensively studied in recent years. For example, aphids release alarm pheromones in response to natural enemy attack and these could be used to deter aphids from the crops. Sex pheromones have also been identified which could be used to interfere males locating conspecific females (oviparae), as well as for manipulating natural enemies. Several hypotheses relating to how species integrity is maintained via the aphid sex pheromone have been proposed. The composition and behavioral activity of these pheromones, and how their use could be implemented in integrated pest management systems to control aphids, is discussed. PMID:20831961

  2. Aphid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing and selecting for Russian wheat aphid (RWA) and greenbug resistance in WIT breeding lines continued this year. Several excellent lines with high levels of resistance advanced through the cultivar development process. Single plant selections from six experimental lines were retested to conf...

  3. A Novel Wearable Device for Food Intake and Physical Activity Recognition

    PubMed Central

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  4. A Novel Wearable Device for Food Intake and Physical Activity Recognition.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  5. Aphids as crop pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book of contributed articles by 68 leading aphid researchers is the most complete gathering of current aphid knowledge since the three volume work entitled “Aphids: Their Biology, Natural Enemies and Control” published in 1987 through 1989 (Minks and Harrewijn, 1987). The new book offers a cons...

  6. The semiochemistry of aphids.

    PubMed

    Pickett, John A; Allemannb, Rudolf K; Birketta, Michael A

    2013-10-11

    Chemical signalling between aphids (small insects that suck plant sap) formating and avoidance of antagonistic organisms, and between aphids and plants for location of hosts or avoidance of unsuitable plants, employs minute levels of small lipophilic molecules (SLMs), termed "semiochemicals". These semiochemicals, which include sex and alarm pheromones, although often involving relatively simple volatile compounds to allow aerial transmission, convey highly accurate information, either through the uniqueness of their chemical structure or by acting together in characteristic mixtures. In addition, by chemical instability, they do not remain in the environment after their essential signalling role has occurred. Aphids, as a consequence of direct feeding or virus transmission, are major pests of agriculture and horticulture. Aphid semiochemicals present novel opportunities for management of pest populations, but problems of synthesis costs and delivery need to be overcome. Genes for associated enzymes in aphids and plants offer solutions, either for production and subsequent deployment in agriculture, or for direct biosynthesis by crop plants as a new generation of genetically modified organisms (GMOs). These approaches are currently under active investigation. Semiochemicals released from plants during aphid feeding can also "switch on" defence chemistry-related genes in intact plants under field conditions, and the gene promoter sequences involved could be used to produce novel types of sentinel plants. The molecular recognition mechanisms employed in aphid olfactory systems are being investigated to provide potential tools for recognition of SLMs, and the acceptance of substrate analogues is explored with enzymes synthesising aphid semiochemicals in an attempt to provide more active or stable structural analogues. PMID:24156096

  7. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  8. Ants defend aphids against lethal disease.

    PubMed

    Nielsen, Charlotte; Agrawal, Anurag A; Hajek, Ann E

    2010-04-23

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138

  9. Experimental Study on Basic Shape of Simple Device for Prevention of Inflow and Accumulation of Buoyant Refuse at the Intake of Headworks

    NASA Astrophysics Data System (ADS)

    Namihira, Atsushi; Kobayashi, Hiroyasu; Takaki, Kyoji; Goto, Masahiro

    In this research, the basic shape of the device for prevention of inflow and accumulation of buoyant refuse at the intake of headworks is investigated by hydraulic model test. As results, it is clarified that an enough result is not obtained if the prismatic bar that floats on the water is set as the device for prevention so that it may cross the intake. On the other hands, it is clarified that the inflow and accumulation of buoyant refuse at the intake is decreased greatly if the bar is set so that it may be diagonally thrust out from the upstream edge of the intake to the downstream on the river side. In this case, it is necessary to decide the length and setting angle of the bar so that it may intersect with the boundary line of the area where the refuse flow into the intake with no device for prevention.

  10. Bird Cherry-Oat Aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • The bird cherry-oat aphid (Rhopalosiphum padi) is an important vector of barley yellow dwarf viruses that affect wheat and other small-grain crops, but the aphid may also cause direct feeding damage to wheat. • Various plant-resistance modalities and natural enemies are not equally applicable in s...

  11. Bird Cherry-Oat Aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid feeds on barley, oats, rye, triticale, and wheat by sucking plant juices. Its feeding may stunt plants and lead to yield loss, but it does not cause symptoms of yellowing and leaf curling. Bird cherry-oat aphid is also a vector of barley yellow dwarf virus. Biological, cultu...

  12. Symbiont infection affects aphid defensive behaviours.

    PubMed

    Dion, Emilie; Polin, Sarah Erika; Simon, Jean-Christophe; Outreman, Yannick

    2011-10-23

    Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies. PMID:21490007

  13. Volatile communication in plant-aphid interactions.

    PubMed

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. PMID:20627668

  14. Do aphids actively search for ant partners?

    PubMed

    Fischer, Christophe Y; Vanderplanck, Maryse; Lognay, Georges C; Detrain, Claire; Verheggen, François J

    2015-04-01

    The aphid-ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids' most mobile form) are able to select ant-frequented areas had not been investigated so far. Ant-frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants' services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant-frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant-frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies. PMID:24659520

  15. Soybean aphids making their summer appearance early

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two small, soft-bodied insects have begun showing up in South Dakota soybean. One is the soybean aphid, and the other is a mealybug. Soybean aphids are yellow to yellow/green and are usually found feeding on the underside of leaves. Incidence of soybean aphid has been a bit higher than typical fo...

  16. Aphids capable of fine resolution landing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids vector many devastating plant viruses, including the non-persistent papaya ringspot virus (PRSV), which reduces yield in both cucurbits and papaya. It has been demonstrated that some aphids are more attracted to colors symptomatic of virus infection, especially yellow. However, alate aphids a...

  17. Do aphid carcasses on the backs of larvae of green lacewing work as chemical mimicry against aphid-tending ants?

    PubMed

    Hayashi, Masayuki; Choh, Yasuyuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2014-06-01

    Ants attack and exclude natural enemies of aphids in ant-aphid mutualisms. However, larvae of the green lacewing, Mallada desjardinsi, prey on the cowpea aphid, Aphis craccivora, without exclusion by aphid-tending ants. Lacewing larvae are protected from ants by carrying aphid carcasses on their backs. Here, we tested whether cuticular hydrocarbons (CHCs) of aphid carcasses affected the aggressiveness of aphid-tending ants. Aphid carcasses were washed with n-hexane to remove lipids. Lacewing larvae with washed aphid carcasses were attacked by aphid-tending ants more frequently than those with untreated aphid carcasses. We measured the aggressiveness of aphid-tending ants to lacewing larvae that were either carrying a piece of cotton wool (a dummy aphid carcass) treated with CHCs from aphids or lacewing larvae, or carrying aphid carcasses. The rates of attack by ants on lacewing larvae carrying CHCs of aphids or aphid carcasses were lower than that of attack on lacewing larvae with conspecific CHCs. Chemical analysis by gas chromatography/mass spectrometry showed similarity of CHCs between aphids and aphid carcasses. These results suggest that aphid carcasses on the backs of lacewing larvae function via chemical camouflage to limit attacks by aphid-tending ants. PMID:24894158

  18. Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.

    PubMed

    Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi

    2016-03-01

    Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants. PMID:26939830

  19. Resistant and susceptible responses of cereal hosts to aphid feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cereal host resistance to aphids has been examined extensively, little information is available on etiology of aphid injury and biochemical responses of resistant and susceptible cereal hosts to aphid feeding. Our team examined both aphid and plant factors for the Russian wheat aphid (RWA)...

  20. Quantitation and localization of pospiviroids in aphids.

    PubMed

    Van Bogaert, N; De Jonghe, K; Van Damme, E J M; Maes, M; Smagghe, G

    2015-01-01

    In this paper, the potential role of aphids in viroid transmission was explored. Apterous aphids were fed on pospiviroid-infected plants and viroid targets in the aphids were consequently quantified through RT-qPCR and localized within the aphid body using fluorescence in situ hybridization (FISH). Based on the analytical sensitivity test, the limit of detection (LOD) was estimated at 1.69×10(6) viroid copies per individual aphid body. To localize the viroids in the aphids, a pospiviroid-generic Cy5-labelled probe was used and the fluorescent signal was determined by confocal microscopy. Viroids were clearly observed in the aphid's stylet and stomach, but not in the embryos. Viroids were detected in 29% of the aphids after a 24h feeding period, which suggests only a partial and low concentration viroid uptake by the aphid population including viroid concentrations under the LOD. However, these results show that viroids can be ingested by aphids while feeding on infected plants, thus potentially increasing the transmission risk. The combination of FISH and RT-qPCR provides reliable and fast localization and quantitation of viroid targets in individual aphids and thus constitutes a valuable tool in future epidemiological research. PMID:25455904

  1. Plant immunity in plant–aphid interactions

    PubMed Central

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  2. Exotic aphid control with pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic aphids are invading ecosystems worldwide. The principal factors favoring establishment of these pests are their small size, parthenogenetic reproduction, short generation time, ability for long distance dispersal as winged morphs, and explosive population dynamics. In the past, attention to i...

  3. SOYBEAN.APHID.LH.2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression of soybean aphid (SA) resistance was characterized among 496 soybean lines in a twice-replicated field-plot test at the Eastern South Dakota Soil and Water Research Farm near Brookings, SD, in 2009. Natural infestations of SA occurred but were supplemented by placing individual stems of ...

  4. Categorizing sugarcane cultivar resistance to the sugarcane aphid and yellow sugarcane aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in the U.S. is chiefly colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari, and the yellow sugarcane aphid, Sipha flava, which vector economically important viruses of the crop. Greenhouse experiments were conducted to categorize commercial sugarcane cultivars for the...

  5. Categorizing Sugarcane Cultivar Resistance to the Sugarcane Aphid and Yellow Sugarcane Aphid (Hemiptera: Aphidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). The main problem associated with M. sacchari is transmission of sugarcane yellow leaf virus, a disease that has been added to certifica...

  6. Aphid alarm pheromone as a cue for ants to locate aphid partners.

    PubMed

    Verheggen, François J; Diez, Lise; Sablon, Ludovic; Fischer, Christophe; Bartram, Stefan; Haubruge, Eric; Detrain, Claire

    2012-01-01

    The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field. PMID:22870255

  7. AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome

    PubMed Central

    Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis

    2015-01-01

    AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635

  8. Specialization of bacterial endosymbionts that protect aphids from parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by the bacterial endosymbiont HAMILTONELLA DEFENSA is capable of protecting the pea aphid from parasitism by APHIDIUS ERVI and the black bean aphid from parasitism by LYSIPHLEBUS FABARUM. Here we investigate protection of a third aphid species, the cowpea aphid, APHIS CRACCIVORA, from 4 p...

  9. Managing black pecan aphids and stink bugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black pecan aphid (Melanocallis caryafoliae) and stink bugs (Hemiptera: Pentatomidae) are serious threats to late season pecan production. Feeding injury by the black pecan aphid to pecan foliage can result in economic injury through decreased yield and quality of the pecan crop, depletion of c...

  10. SOYBEAN.APHID.2.SD.2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid (SA, Aphis glycines Matsumura) has been an important pest of soybean (Glycine max (L.) Merr.) in the United States since 2000. Identification and genetic characterization of SA resistance in early maturing soybean germplasm will facilitate development of aphid-resistant cultivars in no...

  11. Developing Metrics for Managing Soybean Aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stage-specific economic injury levels form the basis of integrated pest management for soybean aphid (Aphis glycines Matsumura) in soybean (Glycine max L.). Experimental objectives were to develop a procedure for calculating economic injury levels of the soybean aphid specific to the R2 (full bloom...

  12. Transparency Master: The Annual Aphid Cycle.

    ERIC Educational Resources Information Center

    Sessions, Mary Lynne

    1983-01-01

    Aphids, often referred to as plant lice, can be found in great numbers on stems, leaves, and flowers of many plants. In many cases these organisms are potentially harmful to their plant hosts. Provided is a description of the annual life cycle of the aphid and an accompanying transparency master. (Author/JN)

  13. Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins.

    PubMed

    Chaudhary, Ritu; Atamian, Hagop S; Shen, Zhouxin; Briggs, Steven P; Kaloshian, Isgouhi

    2015-04-01

    Aphids deliver saliva into plants and acquire plant sap for their nourishment using a specialized mouthpart or stylets. Aphid saliva is of great importance because it contains effectors that are involved in modulating host defense and metabolism. Although profiling aphid salivary glands and identifying secreted proteins have been successfully used, success in direct profiling of aphid saliva have been limited due to scarcity of saliva collected in artificial diets. Here we present the use of a neurostimulant, resorcinol, for inducing aphid salivation. Saliva of potato aphids (Macrosiphum euphorbiae), maintained on tomato, was collected in resorcinol diet. Salivary proteins were identified using mass spectrometry and compared with the existing M. euphorbiae salivary proteome collected in water. Comparative analysis was also performed with existing salivary proteomes from additional aphid species. Most of the proteins identified in the resorcinol diet were also present in the water diet and represented proteins with a plethora of functions in addition to a large number of unknowns. About half of the salivary proteins were not predicted for secretion or had canonical secretion signal peptides. We also analyzed the phosphorylation states of M. euphorbiae salivary proteins and identified three known aphid effectors, Me_WB01635/Mp1, Me10/Mp58, and Me23 that carry phosphorylation marks. In addition to insect proteins, tomato host proteins were also identified in aphid saliva. Our results indicate that aphid saliva is complex and provides a rich resource for functional characterization of effectors. PMID:25722084

  14. Long range migration of aphids into Sweden

    NASA Astrophysics Data System (ADS)

    Wiktelius, Staffan

    1984-09-01

    A five year study of migration of aphids across the southern part of the Baltic Sea is reported. The aphids were caught in a suction trap placed on a lighthouse 50 m from the shoreline. Large sections of the results are presented as case studies i.e. catches of aphids from periods containing at least three consecutive days with a southerly gradient wind. Some periods contained large and diverse catches and it is assumed that aphids regularly cross the Baltic Sea. The catches was largest on days when a cold front passed the trapping site within a period. More Myzus persicae were caught on days when the wind was southerly than on days with a northerly wind direction.

  15. Organisms for Teaching: The Biology of Aphids.

    ERIC Educational Resources Information Center

    Llewellyn, M.

    1984-01-01

    Background information on the biology of aphids is supplied. Using this information in a wide variety of investigations, many involving equipment and techniques available in the school laboratory, can be carried out. An appendix lists possible projects. (Author)

  16. Ant semiochemicals limit apterous aphid dispersal.

    PubMed

    Oliver, Thomas H; Mashanova, Alla; Leather, Simon R; Cook, James M; Jansen, Vincent A A

    2007-12-22

    Some organisms can manipulate the nervous systems of others or alter their physiology in order to obtain benefit. Ants are known to limit alate aphid dispersal by physically removing wings and also through chemical manipulation of the alate developmental pathway. This results in reduced dispersal and higher local densities of aphids, which benefit ants in terms of increased honeydew and prey availability. Here, we show that the walking movement of mutualistic apterous aphids is also reduced by ant semiochemicals. Aphids walk slower and their dispersal from an unsuitable patch is hampered by ants. If aphid walking dispersal has evolved as a means of natural enemy escape, then ant chemicals may act as a signal indicating protection; hence, reduced dispersal could be adaptive for aphids. If, however, dispersal is primarily a means to reduce competition or to maintain persistent metapopulations, then manipulation by ants could be detrimental. Such manipulation strategies, common in host-parasite and predator-prey interactions, may be more common in mutualism than expected. PMID:17925280

  17. RNAi-mediated plant protection against aphids.

    PubMed

    Yu, Xiu-Dao; Liu, Zong-Cai; Huang, Si-Liang; Chen, Zhi-Qin; Sun, Yong-Wei; Duan, Peng-Fei; Ma, You-Zhi; Xia, Lan-Qin

    2016-06-01

    Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double-stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant-mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant-mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant-mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid-resistant plants through plant-mediated RNAi strategy. © 2016 Society of Chemical Industry. PMID:26888776

  18. Do Bacterial Symbionts Govern Aphid's Dropping Behavior?

    PubMed

    Lavy, Omer; Sher, Noa; Malik, Assaf; Chiel, Elad

    2015-06-01

    Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors. PMID:26313964

  19. AphID (Lucid key) http://AphID.AphidNet.org

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...

  20. Modulation of aphid alarm pheromone emission of pea aphid prey by predators.

    PubMed

    Joachim, Christoph; Hatano, Eduardo; David, Anja; Kunert, Maritta; Linse, Cornelia; Weisser, Wolfgang W

    2013-06-01

    Recent studies on animal alarm signaling have shown that alarm calls generally are not uniform, but may vary depending on the type and intensity of threat. While alarm call variability has been studied intensively in birds and mammals, little is known about such variation in insects. We investigated variability in alarm signaling in aphids, group-living insect herbivores. Under attack, aphids release droplets containing a volatile alarm pheromone, (E)-β-farnesene (EBF), that induces specific escape behavior in conspecifics. We used a handheld gas chromatograph (zNose™), which allows real-time volatile analysis, to measure EBF emission by pea aphids, Acyrthosiphon pisum, under attack from different predators, lacewing or ladybird larvae. We demonstrate that aphid alarm signaling is affected by the predator species attacking. Ladybirds generally elicited smaller EBF emission peaks and consumed aphids more quickly, resulting in lower total EBF emission compared to lacewing attacks. In 52 % of the replicates with lacewings and 23 % with ladybirds, no EBF was detectable in the headspace, although aphids secreted cornicle droplets after attack. We, therefore, examined EBF amounts contained in these droplets and the aphid body. While all aphid bodies always contained EBF, many secreted droplets did not. Our experiments show that alarm signaling in insects can be variable, and both the attacker as well as the attacked may affect alarm signal variation. While underlying mechanisms of such variation in aphid-predator interactions need to be investigated in more detail, we argue that at least part of this variation may be adaptive for the predator and the aphid. PMID:23686467

  1. Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density.

    PubMed

    Hodge, Simon; Ward, Jane L; Beale, Michael H; Bennett, Mark; Mansfield, John W; Powell, Glen

    2013-04-01

    Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid-host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g(-1) dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant. PMID:23242075

  2. Soybean Aphid Feeding Injury and Soybean Yield and Seed Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of the level of yield loss caused by soybean aphid feeding is considered to be the crux of integrated pest management for these pests. Despite the accumulating literature on the soybean aphid, there are currently few published data on the effects of soybean aphid populations on ...

  3. Mapping soybean aphid resistance genes in PI 567598B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) has been a major pest of soybean [Glycine max (L.) Merr.] in North America since it was first discovered in 2000. Plant introduction PI 567598B possesses strong antibiosis resistance to soybean aphids. Our previous study revealed that the aphid resistan...

  4. Plant derived compounds and extracts with potential as aphid repellents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We devised a method for screening various substances for possible aphid repellency. Corn leaf aphids (Rhopalosiphum maidis) were released in an arena and allowed to select paired green tiles coated with petroleum jelly alone or petroleum jelly containing 1% of the substance being tested. Aphids ad...

  5. Evaluation of aphid resistance among sugarcane cultivars in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane, interspecific hybrids of Saccharum spp., in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). Five sugarcane cultivars, LCP 85-384, HoCP 91-555, Ho 95-988, HoCP 96-540, and L 97-128, rep...

  6. Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction

    PubMed Central

    Hol, W. H. G.; Raaijmakers, Ciska E.; Mons, Ilse; Meyer, Katrin M.; van Dam, Nicole M.

    2016-01-01

    Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modeling approach to analyze the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction) would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring female–1 day–1) in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring female–1 day–1). The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments. PMID:26904074

  7. Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction.

    PubMed

    Hol, W H G; Raaijmakers, Ciska E; Mons, Ilse; Meyer, Katrin M; van Dam, Nicole M

    2016-01-01

    Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modeling approach to analyze the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction) would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring female(-1) day(-1)) in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring female(-1) day(-1)). The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments. PMID:26904074

  8. Partial aphid resistance in lettuce negatively affects parasitoids.

    PubMed

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids. PMID:25197882

  9. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  10. Symbiotic bacterium modifies aphid body color.

    PubMed

    Tsuchida, Tsutomu; Koga, Ryuichi; Horikawa, Mitsuyo; Tsunoda, Tetsuto; Maoka, Takashi; Matsumoto, Shogo; Simon, Jean-Christophe; Fukatsu, Takema

    2010-11-19

    Color variation within populations of the pea aphid influences relative susceptibility to predators and parasites. We have discovered that infection with a facultative endosymbiont of the genus Rickettsiella changes the insects' body color from red to green in natural populations. Approximately 8% of pea aphids collected in Western Europe carried the Rickettsiella infection. The infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments. The effect of the endosymbiont on body color is expected to influence prey-predator interactions, as well as interactions with other endosymbionts. PMID:21097935

  11. Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates.

    PubMed

    Feng, Ming-Guang; Chen, Chun; Chen, Bin

    2004-05-01

    Entomophthoralean mycoses are of general importance in the natural control of aphids, but mechanisms involved in their dissemination are poorly understood. Despite several possible means of fungal survival, the dispersal of the mycoses in aphids has never been related to the flight of their migratory alates that are able to locate suitable host plants. In this study, aphid-pathogenic fungi proved to be widely disseminated among various aphids by their alates through migratory flight based on the following findings. First, up to 36.6% of the 7139 migratory alates (including nine species of vegetable or cereal aphids) trapped from air > 30 m above the ground in three provinces of China were found bearing eight species of fungal pathogens. Of those, six were aphid-specific Entomophthorales dominated in individual cases by Pandora neoaphidis, which occurs globally but has no resting spores discovered to date. Secondly, infected alates were confirmed to be able to fly for hours, to initiate colonies on plants after flight and to transmit fungal infection to their offspring in a laboratory experiment, in which 238 Sitobion avenae alates were individually flown in a computer-monitoring flight mill system after exposure to a spore shower of P. neoaphidis and then allowed to colonize host plants. PMID:15049924

  12. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Ge, Feng

    2016-01-01

    Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies. PMID:27148325

  13. Plant–Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior

    PubMed Central

    Sun, Yucheng; Guo, Huijuan; Ge, Feng

    2016-01-01

    Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies. PMID:27148325

  14. National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid examination and identification. Aphid topics such as classification, morphology, plant disease transmission, and references are discussed. This dis...

  15. Angiotensin-converting enzymes modulate aphid-plant interactions.

    PubMed

    Wang, Wei; Luo, Lan; Lu, Hong; Chen, Shaoliang; Kang, Le; Cui, Feng

    2015-01-01

    Angiotensin-converting enzymes (ACEs) are key components of the renin-angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect-plant interaction. In this study, we showed that ACE modulates aphid-plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants. PMID:25744345

  16. Mechanisms and evolution of plant resistance to aphids.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2016-01-01

    Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. PMID:27250753

  17. Diversity of Bacteria Associated with Natural Aphid Populations

    PubMed Central

    Haynes, S.; Darby, A. C.; Daniell, T. J.; Webster, G.; van Veen, F. J. F.; Godfray, H.C.J.; Prosser, J. I.; Douglas, A. E.

    2003-01-01

    The bacterial communities of aphids were investigated by terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments generated by PCR with general eubacterial primers. By both methods, the γ-proteobacterium Buchnera was detected in laboratory cultures of six parthenogenetic lines of the pea aphid Acyrthosiphon pisum and one line of the black bean aphid Aphis fabae, and one or more of four previously described bacterial taxa were also detected in all aphid lines except one of A. pisum. These latter bacteria, collectively known as secondary symbionts or accessory bacteria, comprised three taxa of γ-proteobacteria (R-type [PASS], T-type [PABS], and U-type [PAUS]) and a rickettsia (S-type [PAR]). Complementary analysis of aphids from natural populations of four aphid species (A. pisum [n = 74], Amphorophora rubi [n = 109], Aphis sarothamni [n = 42], and Microlophium carnosum [n = 101]) from a single geographical location revealed Buchnera and up to three taxa of accessory bacteria, but no other bacterial taxa, in each aphid. The prevalence of accessory bacterial taxa varied significantly among aphid species but not with the sampling month (between June and August 2000). These results indicate that the accessory bacterial taxa are distributed across multiple aphid species, although with variable prevalence, and that laboratory culture does not generally result in a shift in the bacterial community in aphids. Both the transmission patterns of the accessory bacteria between individual aphids and their impact on aphid fitness are suggested to influence the prevalence of accessory bacterial taxa in natural aphid populations. PMID:14660369

  18. Plant Immune Responses: Aphids Strike Back.

    PubMed

    Reymond, Philippe; Calandra, Thierry

    2015-07-20

    To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses. PMID:26196486

  19. Citrus tristeza virus-aphid interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review chapter on aphid transmission of Citrus tristeza virus is provided for a book on “Vector-Mediated Transmission of Plant Pathogens”. Earliest uses of citrus goes back over two millennia as items of trade, gifts and medicinal compounds. Citrus propagation during this period was by seed and si...

  20. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids: green peach aphid, melon aphid, and foxglove aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against ...

  1. Soybean defense responses to the soybean aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcript profiles in resistant (cv. Dowling) and susceptible (cv. Williams 82) soybean [Glycine max (L.) Merrill] genotypes were compared at 6 and 12 h with and without aphid (Aphis glycines Matsumura) infestation using cDNA microarrays. One hundred and sixteen genes showed specific responses in r...

  2. Sugarbeet root aphid on postharvest root storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root aphid (SBRA), Pemphigus betae Doane, is a serious insect pest of sugarbeet in several North American sugarbeet production areas; however, it is rarely an economic pest in the Red River Valley (RRV). In 2012 and 2013, all RRV factory districts were impacted by SBRA outbreaks, and ...

  3. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  4. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    SciTech Connect

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-05-25

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  5. Research on recognition methods of aphid objects in complex backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Yan; Zhang, Ji-Hong

    2009-07-01

    In order to improve the recognition accuracy among the kinds of aphids in the complex backgrounds, the recognition method among kinds of aphids based on Dual-Tree Complex Wavelet Transform (DT-CWT) and Support Vector Machine (Libsvm) is proposed. Firstly the image is pretreated; secondly the aphid images' texture feature of three crops are extracted by DT-CWT in order to get the training parameters of training model; finally the training model could recognize aphids among the three kinds of crops. By contrasting to Gabor wavelet transform and the traditional extracting texture's methods based on Gray-Level Co-Occurrence Matrix (GLCM), the experiment result shows that the method has a certain practicality and feasibility and provides basic for aphids' recognition between the identification among same kind aphid.

  6. Aphid-encoded variability in susceptibility to a parasitoid

    PubMed Central

    2014-01-01

    Background Many animals exhibit variation in resistance to specific natural enemies. Such variation may be encoded in their genomes or derived from infection with protective symbionts. The pea aphid, Acyrthosiphon pisum, for example, exhibits tremendous variation in susceptibility to a common natural enemy, the parasitic wasp Aphidius ervi. Pea aphids are often infected with the heritable bacterial symbiont, Hamiltonella defensa, which confers partial to complete resistance against this parasitoid depending on bacterial strain and associated bacteriophages. That previous studies found that pea aphids without H. defensa (or other symbionts) were generally susceptible to parasitism, together with observations of a limited encapsulation response, suggested that pea aphids largely rely on infection with H. defensa for protection against parasitoids. However, the limited number of uninfected clones previously examined, and our recent report of two symbiont-free resistant clones, led us to explicitly examine aphid-encoded variability in resistance to parasitoids. Results After rigorous screening for known and unknown symbionts, and microsatellite genotyping to confirm clonal identity, we conducted parasitism assays using fifteen clonal pea aphid lines. We recovered significant variability in aphid-encoded resistance, with variation levels comparable to that contributed by H. defensa. Because resistance can be costly, we also measured aphid longevity and cumulative fecundity of the most and least resistant aphid lines under permissive conditions, but found no trade-offs between higher resistance and these fitness parameters. Conclusions These results indicate that pea aphid resistance to A. ervi is more complex than previously appreciated, and that aphids employ multiple tactics to aid in their defense. While we did not detect a tradeoff, these may become apparent under stressful conditions or when resistant and susceptible aphids are in direct competition. Understanding

  7. Armet is an effector protein mediating aphid-plant interactions.

    PubMed

    Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng

    2015-05-01

    Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions. PMID:25678626

  8. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes. PMID:26603858

  9. Antagonistic effects of soybean viruses on soybean aphid performance.

    PubMed

    Donaldson, Jack R; Gratton, Claudio

    2007-08-01

    Although there is long-standing recognition that pest complexes require different management approaches than individual pests, relatively little research has explored how pests interact. In particular, little is known of how herbivorous insects and plant pathogens interact when sharing the same host plant. The soybean aphid, Aphis glycines Mastumura, a recently introduced pest of soybean in the upper midwestern United States, and a complex of plant viruses vectored to soybean by insects have become a major concern for growers in the region. Given the abundance of soybean aphid and the increase in virus incidence in recent years, soybean aphids often use soybean infected by plant viral pathogens. We tested the hypothesis that soybean aphid performance is affected by virus infection of soybean plants. We conducted a series of field and laboratory experiments that examined how infection of soybeans with the common plant viruses, alfalfa mosaic, soybean mosaic, and bean pod mottle viruses, influenced soybean aphid performance. Soybean plants (in the field and laboratory) were hand inoculated with individual viruses, and aphids were allowed to colonize plants naturally in field experiments or added to the plants in clip-cages or within mesh bags in laboratory assays. In the field, aphid density on uninfected control soybean plants was nearly double that on infected plants. In laboratory assays, aphid population growth rates were on average 20% lower for aphids on virus infected compared with uninfected plants. Life table analyses showed that increased mortality on virus-infected plants likely explain differences in aphid population growth. Although there was some heterogeneity in the significance of treatment effects among different experiments, when independent experiments are taken together, there is on average an overall negative effect of these viruses on soybean aphids. PMID:17716484

  10. SOYBEAN APHID ABUNDANCE AMONG CONTEMPORARY SOYBEAN LINES IN A GROWTH-CHAMBER TEST, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of soybean aphid was compared among eight contemporary soybean lines in a growth chamber test. All soybean lines had >500 soybean aphids per plant 2 wks after infestation. The number of soybean aphids per plant differed among lines, with Surge and 91B91 having more soybean aphids tha...

  11. National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid regulatory issues. Here the subject of aphids as they relate to disease transmission, biology, identification, and pathways is addressed. Aphid topi...

  12. Movement of winged aphids is poorly understood despite its importance in disease vectoring in Washington potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids are key pests of potatoes because they carry disease into potato fields from surrounding virus sources. Flight behavior of aphids is both difficult to study and poorly known. Many past studies of aphid flight in the field have been incomplete because of inadequate tools to mark aphids and ver...

  13. Wheat Lines Resistant to Bird Cherry-Oat Aphid, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA) is one of the most common aphid pests of wheat worldwide, and resistant lines are needed as alternatives to chemical control. Several entries of wheat were evaluated against BCOA in a growth chamber test. The number of nymphs deposited by winged BCOA in the first 24 h ...

  14. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid, Rhopalosiphum padi L., is a serious pest of barley, Hordeum vulgare L., world-wide. It is the most efficient vector of barley yellow dwarf virus, the most important viral disease of small grains in the world. Not all bird cherry-oat aphids acquire the virus while feeding on ...

  15. Soybean Aphid (Hemiptera: Aphididae) Affects Soybean Spectral Reflectance.

    PubMed

    Alves, Tavvs M; Macrae, Ian V; Koch, Robert L

    2015-12-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most economically important insect pest of soybean in the north central United States. Scouting-based integrated pest management (IPM) programs could become more efficient and more widely adopted by using plant spectral reflectance to estimate soybean aphid injury. Our objective was to determine whether plant spectral reflectance is affected by soybean aphid feeding. Field trials were conducted in 2013 and 2014 using caged plots. Early-, late-, and noninfested treatments were established to create a gradient of soybean aphid pressure. Whole-plant soybean aphid densities were recorded weekly. Measurements of plant spectral reflectance occurred on two sample dates per year. Simple linear regression models were used to test the effect of cumulative aphid-days (CAD) on plant spectral reflectance at 680 nm (RED) and 800 nm (NIR), normalized difference vegetation index (NDVI), and relative chlorophyll content. Data indicated that CAD had no effect on canopy-level RED reflectance, but CAD decreased canopy-level NIR reflectance and NDVI. Canopy- and leaf-level measurements typically indicated similar plant spectral response to increasing CAD. CAD generally had no effect on relative chlorophyll content. The present study provides the first documentation that remote sensing holds potential for detecting changes in plant spectral reflectance induced by soybean aphid. The use of plant spectral reflectance in soybean aphid management may assist future IPM programs to reduce sampling costs and prevent prophylactic insecticide sprays. PMID:26470392

  16. Efficacy of inorganic compounds against soybean aphid, laboratory tests 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infestations by soybean aphids can reduce the yield of soybeans, and the efficacies of various compounds need evaluation for soybean aphid control. Efficacy of various inorganic compounds was compared to that of a water check and conventional insecticides in two growth-chamber tests. Soybean test ...

  17. Parasitism of aphids in canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola, Brassica napus L., production in Oklahoma has increased from essentially 0 ha in 2001 to 40,500 ha in 2011, and acreage is expected to continue to increase. Three aphid species typically infest canola fields in central Oklahoma, the turnip aphid Lypaphis erysimi (Kaltenbach), the cab...

  18. Aggressive mimicry coexists with mutualism in an aphid.

    PubMed

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-27

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  19. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  20. Salivary proteins of Russian wheat aphid (Hempitera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salivary secretions play critical roles in aphid – host plant interactions and are responsible for damage associated with aphid feeding. The objectives of this study were to evaluate aspects of salivation and the salivary constituents of Diuraphis noxia (Hemiptera: Aphididae). Salivary proteins we...

  1. Barley germplasm resistant to both Russian wheat aphid and greenbug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both Russian wheat aphid, Diuraphis noxia (Kurdjumov), and greenbug, Schizaphis graminum (Rondani) are potential pests on winter cereals grown in the southern plains. In outbreak years, both aphids can drastically reduce grain yield of susceptible cultivars. In barley, two single dominant genes, R...

  2. Triticale Lines Resistant to Bird Cherry-Oat Aphid, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA) is one of the most common aphid pests of small grains worldwide. Triticale is a promising source of resistance to BCOA that may be developed further or crossed with wheat to transfer resistance to that crop. Several entries of triticale were evaluated against BCOA in a...

  3. Prey foraging by Hippodamia convergens for cereal aphids on wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., plants in a laboratory arena, and developed a functional response model for the number of aphids eaten by an adult female con...

  4. Transcriptome profilng of defense responses to aphid feeding in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenbug (Schizaphis graminum) is a serious aphid pest in small grain crops in the southern Great Plains of the US. We are trying to understand the molecular mechanisms of host resistance against aphid infestation in the grass genome using wheat-greenbug as a model system. In the present study, a mi...

  5. Breeding for resistance to the sugarcane aphid [Melanaphis sacchari (Zehntner)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid [Melanaphis sacchari] (SCA) was first reported to damage sorghum [Sorghum bicolor (L.) Moench] in the United States in Louisiana and Texas in 2013, and was subsequently detected in Oklahoma and the Mississippi Delta. In 2014, the aphid spread and was eventually reported in state...

  6. Soybean Aphid (Hemiptera: Aphididae) Affects Soybean Spectral Reflectance

    PubMed Central

    Alves, Tavvs M.; Macrae, Ian V.; Koch, Robert L.

    2015-01-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most economically important insect pest of soybean in the north central United States. Scouting-based integrated pest management (IPM) programs could become more efficient and more widely adopted by using plant spectral reflectance to estimate soybean aphid injury. Our objective was to determine whether plant spectral reflectance is affected by soybean aphid feeding. Field trials were conducted in 2013 and 2014 using caged plots. Early-, late-, and noninfested treatments were established to create a gradient of soybean aphid pressure. Whole-plant soybean aphid densities were recorded weekly. Measurements of plant spectral reflectance occurred on two sample dates per year. Simple linear regression models were used to test the effect of cumulative aphid-days (CAD) on plant spectral reflectance at 680 nm (RED) and 800 nm (NIR), normalized difference vegetation index (NDVI), and relative chlorophyll content. Data indicated that CAD had no effect on canopy-level RED reflectance, but CAD decreased canopy-level NIR reflectance and NDVI. Canopy- and leaf-level measurements typically indicated similar plant spectral response to increasing CAD. CAD generally had no effect on relative chlorophyll content. The present study provides the first documentation that remote sensing holds potential for detecting changes in plant spectral reflectance induced by soybean aphid. The use of plant spectral reflectance in soybean aphid management may assist future IPM programs to reduce sampling costs and prevent prophylactic insecticide sprays. PMID:26470392

  7. Population genetic structure of the soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is an invasive pest of cultivated soybean [Glycine max (L.)] in North America. After the initial invasion in 2000, the aphid has quickly spread across most of the U.S. and Canada, suggesting large scale dispersals and rapid adaptations to new environment...

  8. NDVI to detect sugarcane aphid injury to grain sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. The purpose of this report is to describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants i...

  9. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan.

    PubMed

    Dutcher, James D; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006-2011) from full leaf expansion in May to leaf fall in October in "Desirable" variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  10. Initiation of leaf chlorosis benefits the black pecan aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between the black pecan aphid, Melanocallis caryaefoliae (Hemiptera: Aphididae), and the chlorosis it causes to foliage of pecan [Carya illinoinensis (Wangenh.) K. Koch)] is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, w...

  11. New Plant Introductions with Resistance to the Soybean Aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) (SA) was first found in the northern soybean, Glycine max (L.) Merr., growing regions of the USA in 2000. By 2005, the aphid had spread to 23 soybean growing states reaching as far south as Mississippi and Georgia and also north into Ontario, Canada. Th...

  12. Genome-wide association mapping of soybean aphid resistance traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid is the most damaging insect pest of soybean in the Upper Midwest and is primarily controlled by insecticides. Soybean aphid resistance (i.e., Rag genes) has been documented in some soybean lines at chromosomes 6, 7, 13, and 16, but more sources of resistance are needed. Genome-wide ass...

  13. Insects which challenge global wheat production: Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter on Russian wheat aphid, (Diuraphis noxia (Mord.)), is one of several that addresses significant pests in the book entitled, Wheat Science and Trade. The chapter gives a detailed account of the history of the Russian wheat aphid as global pest, and its biology, ecology and managemen...

  14. Detection of novel QTLs for foxglove aphid resistance in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb...

  15. Chlorophyll loss caused by soybean aphid (Hemiptera: Aphididae) feeding on soybean.

    PubMed

    Diaz-Montano, John; Reese, John C; Schapaugh, William T; Campbell, Leslie R

    2007-10-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a worldwide pest of soybean, Glycine max (L.) Merr. Studies to find control methods were initiated in 2000 when it was first detected in North America. A. glycines can reduce yields by as much as 50%, and it is the vector of several viral diseases. A. glycines removes phloem sap, which can result in a reduction of chlorophyll content. Quantification of chlorophyll loss caused by A. glycines feeding on soybean is of vital importance. The SPAD-502 chlorophyll meter is a device that has been used to measure chlorophyll loss caused by nonchewing insects. Chlorophyll loss was studied in no-choice tests on the infested and uninfested leaves of a susceptible check (KS4202). The minimum combined number of days and aphids needed to detect significant chlorophyll loss was 30 aphids confined for 10 d. In a similar experiment, seven resistant entries and two susceptible checks were evaluated. There was no significant chlorophyll reduction between infested and uninfested leaves of five of the resistant entries (K1621, K1639, Pioneer 95B97, Dowling, and Jackson). Percentage of loss of chlorophyll in the susceptible checks was approximately 40%; Jackson and Dowling had a significantly lower percentage loss (13 and 16%, respectively) compared with the susceptible checks. The percentages of chlorophyll loss of K1621, K1639, and Pioneer 95B97 were not statistically different from the percentage of loss of Jackson. PMID:17972645

  16. Entomopathogenic fungus, Isaria fumosorosea, and aphid parasitoid, Lysiphlebus testaceipes, for managing infestations of Brown citrus aphid, Toxoptera citricida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An insect-infecting fungal pathogen, (Isaria fumosorosea [Ifr])sold as the product PFR 97™ was shown to be effective at killing aphid pests while not decreasing beneficial parasitoids. The brown citrus aphid, Toxoptera citricida (Kirkaldy)(Hemiptera: Aphididae) spreads the plant-infecting virus, Cit...

  17. Chlorotic feeding injury by the black pecan aphid (hemiptera: aphididae) to pecan foliage promotes aphid settling and nymphal development.

    PubMed

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2009-04-01

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host. PMID:19389290

  18. Distribution of the black pecan aphid, Melanocallis caryaefoliae, on the upper and lower surface of pecan foliage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three aphid species regularly feed on the foliage of pecan: the black pecan aphid Melanocallis caryaefoliae (Davis), the yellow pecan aphid Monelliopsis pecanis (Davis), and the blackmargined aphid Monellia caryella (Fitch). The black pecan aphid appears unique among these for frequently being obser...

  19. Multiple Cues for Winged Morph Production in an Aphid Metacommunity

    PubMed Central

    Mehrparvar, Mohsen; Zytynska, Sharon E.; Weisser, Wolfgang W.

    2013-01-01

    Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity). The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare). We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects) inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues. PMID:23472179

  20. Faba bean forisomes can function in defence against generalist aphids.

    PubMed

    Medina-Ortega, Karla J; Walker, Gregory P

    2015-06-01

    Phloem sieve elements have shut-off mechanisms that prevent loss of nutrient-rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap-feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid-induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume-specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap. PMID:25311512

  1. Color polymorphism in an aphid is maintained by attending ants

    PubMed Central

    Watanabe, Saori; Murakami, Taiga; Yoshimura, Jin; Hasegawa, Eisuke

    2016-01-01

    The study of polymorphisms is particularly informative for enhancing our understanding of phenotypic and genetic diversity. The persistence of polymorphism in a population is generally explained by balancing selection. Color polymorphisms that are often found in many insects and arthropods are prime examples of the maintenance of polymorphisms via balancing selection. In some aphids, color morphs are maintained through frequency-dependent predation by two predatory insects. However, the presence of color polymorphism in ant-attended aphids cannot be explained by traditional balancing selection because these aphids are free from predation. We examined the selective advantages of the existence of two color (red and green) morphs in the ant-attended aphid, Macrosiphoniella yomogicola, in fields. We measured the degree of ant attendance on aphid colonies with different proportions of color morphs. The results show that the ants strongly favor aphid colonies with intermediate proportions of the two color morphs. The relationship between the degree of ant attendance and the proportion of color morphs in the field is convex when aphid colony size and ant colony size are controlled. This function has a peak of approximately 65% of green morphs in a colony. This system represents the first case of a balancing polymorphism that is not maintained by opposing factors but by a symbiotic relationship. PMID:27617289

  2. Aphid Transmission of the Ontario Isolate of Plum Pox Virus.

    PubMed

    Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G

    2015-10-01

    Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. PMID:26453705

  3. Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria.

    PubMed

    Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya

    2013-01-01

    Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530

  4. Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria

    PubMed Central

    Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya

    2013-01-01

    Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530

  5. Color polymorphism in an aphid is maintained by attending ants.

    PubMed

    Watanabe, Saori; Murakami, Taiga; Yoshimura, Jin; Hasegawa, Eisuke

    2016-09-01

    The study of polymorphisms is particularly informative for enhancing our understanding of phenotypic and genetic diversity. The persistence of polymorphism in a population is generally explained by balancing selection. Color polymorphisms that are often found in many insects and arthropods are prime examples of the maintenance of polymorphisms via balancing selection. In some aphids, color morphs are maintained through frequency-dependent predation by two predatory insects. However, the presence of color polymorphism in ant-attended aphids cannot be explained by traditional balancing selection because these aphids are free from predation. We examined the selective advantages of the existence of two color (red and green) morphs in the ant-attended aphid, Macrosiphoniella yomogicola, in fields. We measured the degree of ant attendance on aphid colonies with different proportions of color morphs. The results show that the ants strongly favor aphid colonies with intermediate proportions of the two color morphs. The relationship between the degree of ant attendance and the proportion of color morphs in the field is convex when aphid colony size and ant colony size are controlled. This function has a peak of approximately 65% of green morphs in a colony. This system represents the first case of a balancing polymorphism that is not maintained by opposing factors but by a symbiotic relationship. PMID:27617289

  6. Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury.

    PubMed

    Macedo, T B; Bastos, C S; Higley, L G; Ostlie, K R; Madhavan, S

    2003-02-01

    The soybean aphid, Aphis glycines Matsumara, was discovered in the United States in the summer of 2000. Since that initial discovery, the aphid has spread across northern soybean production regions. In 2001, we examined the physiological responses of soybeans to low aphids densities (fewer than 50 aphids/leaf). In this study, we determined photosynthetic rates, leaf fluorescence responses, and photosynthetic responses to variable carbon dioxide and light levels. In addition, analyses for chlorophyll content and stable carbon isotope ratios were used to differentiate potential differences in stomatal versus mesophyll limitations to photosynthesis. We observed rate reductions of up to 50% on infested leaflets, including lealets with no apparent symptoms of aphid injury (such as chlorosis). Differences in fluorescence data indicated that photoelectron transport was not impaired. These results indicate that substantial physiological impact on soybean is possible even at low aphid densities. Also, the conventional view of aphid injury acting through reductions in chlorophyll content and light-harvesting reactions of photosynthesis is not supported by our findings in this system. PMID:12650361

  7. Social Aggregation in Pea Aphids: Experiment and Random Walk Modeling

    PubMed Central

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J.; Topaz, Chad M.

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control. PMID:24376691

  8. Social aggregation in pea aphids: experiment and random walk modeling.

    PubMed

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control. PMID:24376691

  9. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    PubMed

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  10. Inheritance of soybean aphid resistance from soybean PI 71506

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphids (Aphis glycines Matsumura) continually establish populations of economic importance in soybean [Glycine max (L.) Merr.] production areas. Insecticide application costs and yield losses prompt the development of resistant varieties. The soybean germplasm accession PI 71506 has been s...

  11. Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case

    SciTech Connect

    Anderson, B.P.; Dholakia, K.; Wright, E.M.

    2003-03-01

    We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-phase interference device (APHID). The two-ring APHID is shown to be sensitive to rotation.

  12. Aphids alter host-plant nitrogen isotope fractionation

    PubMed Central

    Wilson, Alex C. C.; Sternberg, Leonel da S. L.; Hurley, Katherine B.

    2011-01-01

    Plant sap-feeding insects and blood-feeding parasites are frequently depleted in 15N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in 15N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in 15N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid 15N depletion and host 15N enrichment was coupled by isotopic mass balance and determined that aphid 15N depletion and host 15N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ15N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism. PMID:21646532

  13. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?

    PubMed

    Hodge, Simon; Powell, Glen

    2008-12-01

    Aphids can respond both positively and negatively to virus-induced modifications of the shared host plant. It can be speculated that viruses dependent on aphids for their transmission might evolve to induce changes in the host plant that attract aphids and improve their performance, subsequently enhancing the success of the pathogen itself. We studied how pea aphids [Acyrthosiphon pisum (Harris)] responded to infection of tic beans (Vicia faba L.) by three viruses with varying degrees of dependence on this aphid for their transmission: pea enation mosaic virus (PEMV), bean yellow mosaic virus (BYMV), and broad bean mottle virus (BBMV). BYMV has a nonpersistent mode of transmission by aphids, whereas PEMV is transmitted in a circulative-persistent manner. BBMV is not aphid transmitted. When reared on plants infected by PEMV, no changes in aphid survival, growth, or reproductive performance were observed, whereas infection of beans by the other aphid-dependent virus, BYMV, actually caused a reduction in aphid survival in some assays. None of the viruses induced A. pisum to increase production of winged progeny, and aphids settled preferentially on leaf tissue from plants infected by all three viruses, the likely mechanism being visual responses to yellowing of foliage. Thus, in this system, the attractiveness of an infected host plant and its quality in terms of aphid growth and reproduction were not related to the pathogen's dependence on the aphid for transmission to new hosts. PMID:19161702

  14. Immunity and other defenses in pea aphids, Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models. Results Strikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes. Conclusions The absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection. PMID:20178569

  15. Aggressive mimicry coexists with mutualism in an aphid

    PubMed Central

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-01

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  16. Aphid polyphenisms: trans-generational developmental regulation through viviparity

    PubMed Central

    Ogawa, Kota; Miura, Toru

    2013-01-01

    Polyphenism, in which multiple discrete phenotypes develop from a single genotype, is considered to have contributed to the evolutionary success of aphids. Of the various polyphenisms observed in the complex life cycle of aphids, the reproductive and wing polyphenisms seen in most aphid species are conspicuous. In reproductive polyphenism, the reproductive modes can change between viviparous parthenogenesis and sexual reproduction in response to the photoperiod. Under short-day conditions in autumn, sexual morphs (males and oviparous females) are produced parthenogenetically. Winged polyphenism is observed in viviparous generations during summer, when winged or wingless (flightless) aphids are produced depending on a variety of environmental conditions (e.g., density, predators). Here, we review the physiological mechanisms underlying reproductive and wing polyphenism in aphids. In reproductive polyphenism, morph determination (male, oviparous or viviparous female) within mother aphids is regulated by juvenile hormone (JH) titers in the mothers. In wing polyphenism, although JH is considered to play an important role in phenotype determination (winged or wingless), the role is still controversial. In both cases, the acquisition of viviparity in Aphididae is considered to be the basis for maternal regulation of these polyphenisms, and through which environmental cues can be transferred to developing embryos through the physiological state of the mother. Although the mechanisms by which mothers alter the developmental programs of their progeny have not yet been clarified, continued developments in molecular biology will likely unravel these questions. PMID:24478714

  17. Effects of parasitism on aphid nutritional and protective symbioses.

    PubMed

    Martinez, Adam J; Weldon, Stephanie R; Oliver, Kerry M

    2014-03-01

    Insects often carry heritable symbionts that negotiate interactions with food plants or natural enemies. All pea aphids, Acyrthosiphon pisum, require infection with the nutritional symbiont Buchnera, and many are also infected with Hamiltonella, which protects against the parasitoid Aphidius ervi. Hamiltonella-based protection requires bacteriophages called APSEs with protection levels varying by strain and associated APSE. Endoparasitoids, including A. ervi, may benefit from protecting the nutritional symbiosis and suppressing the protective one, while the aphid and its heritable symbionts have aligned interests when attacked by the wasp. We investigated the effects of parasitism on the abundance of aphid nutritional and protective symbionts. First, we determined strength of protection associated with multiple symbiont strains and aphid genotypes as these likely impact symbiont responses. Unexpectedly, some A. pisum genotypes cured of facultative symbionts were resistant to parasitism and resistant aphid lines carried Hamiltonella strains that conferred no additional protection. Susceptible aphid clones carried protective strains. qPCR estimates show that parasitism significantly influenced both Buchnera and Hamiltonella titres, with multiple factors contributing to variation. In susceptible lines, parasitism led to increases in Buchnera near the time of larval wasp emergence consistent with parasite manipulation, but effects were variable in resistant lines. Parasitism also resulted in increases in APSE and subsequent decreases in Hamiltonella, and we discuss how this response may relate to the protective phenotype. In summary, we show that parasitism alters the within-host ecology of both nutritional and protective symbioses with effects likely significant for all players in this antagonistic interaction. PMID:24152321

  18. Parasitism of the soybean aphid, Aphis glycines by Binodoxys communis: the role of aphid defensive behaviour and parasitoid reproductive performance

    PubMed Central

    Wyckhuys, K.A.G.; Stone, L.; Desneux, N.; Hoelmer, K.A.; Hopper, K.R.; Heimpel, G.E.

    2009-01-01

    The Asian parasitoid, Binodoxys communis (Gahan) (Hymenoptera: Braconidae), is a candidate for release against the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America. In this study, we examined preferences by B. communis for the different developmental stages of A. glycines and investigated consequences of these preferences for parasitoid fitness. We also determined to what extent aphid defensive behaviours mediate such preferences. We found that B. communis readily attacks and successfully develops in the different A. glycines developmental stages. Binodoxys communis development time gradually increased with aphid developmental stage, and wasps took longest to develop in alates. An average (±SE) of 54.01±0.08% of parasitized A. glycines alatoid nymphs transformed into winged adult aphids prior to mummification. No-choice assays showed a higher proportion of successful attacks for immature apterous A. glycines nymphs compared to adults and alatoid nymphs. Also, choice trials indicated avoidance and lower attack and oviposition of adults and alatoid nymphs. The different aphid stages exhibited a range of defensive behaviours, including body raising, kicking and body rotation. These defenses were employed most effectively by larger aphids. We discuss implications for the potential establishment, spread and biological control efficacy of A. glycines by B. communis in the event that it is released in North America. PMID:18294416

  19. Encounters with aphid predators or their residues impede searching and oviposition by the aphid parasitoid Aphidius ervi (Hymenoptera: Aphidiinae).

    PubMed

    Almohamad, Raki; Hance, Thierry

    2014-04-01

    Intraguild predation (IGP) can be an important factor influencing the effectiveness of aphid natural enemies in biological control. In particular, aphid parasitoid foraging could be influenced by the presence of predators. This study investigated the effect of larvae of the predatory hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae) and the multicolored Asian ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae) on the foraging behavior of the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae) in choice experiments using a leaf disc bioassay. Wasp response to chemical tracks left by those predator larvae was also tested. Parasitoid behavior was recorded using the Observer (Noldus Information Technology, version 5.0, Wageningen, the Netherlands). The experiments were conducted under controlled environmental conditions using leaves of the broad bean plant, Vicia faba L. (Fabaceae) with Myzus persicae Sulzer (Homoptera: Aphididae) as the host complex. A. ervi females avoided aphid patches when larvae of either predator were present. A similar avoidance response was shown by A. ervi to aphid patches with E. balteatus larval tracks, whereas no significant response was observed to tracks left by H. axyridis larvae. It was concluded that IG predator avoidance shown by the aphid parasitoid A. ervi may be a factor affecting their distribution among host patches. PMID:23955963

  20. Aphid (Hemiptera: Aphididae) species composition and potential aphid vectors of plum pox virus in Pennsylvania peach orchards.

    PubMed

    Wallis, C M; Fleischer, S J; Luster, D; Gildow, F E

    2005-10-01

    Plum pox, an invasive disease recently identified in Pennsylvania stone fruit orchards, is caused by the aphid-transmitted Plum pox virus (genus Potyvirus, family Potyviridae, PPV). To identify potential vectors, we described the aphid species communities and the seasonal dynamics of the dominant aphid species within Pennsylvania peach orchards. Aphids were trapped weekly in 2002 and 2003 from mid-April through mid-November within two central Pennsylvania orchards by using yellow and green water pan traps. In total, 42 aphid species were identified from both orchards over 2 yr. Within orchards, actual species richness ranged from 24 to 30 species. The Abundance Based Coverage Estimator predicted species richness to range from 30 to 36 species, indicating that trap catches were identifying most aphid species expected to occur in the orchard. Three species, Rhopalosiphum maidis (Fitch), Aphis spiraecola Patch, and Myzus persicae (Sulzer), were consistently dominant across locations and years. Orchard-trapped populations of these three species peaked in a similar chronological sequence each year. As expected, trap color influenced the total number and distribution of the predominate species collected. However, the same dominant species occurred in both yellow and green traps. Based on the seasonal population dynamics reported here and on published vector efficacy studies, the most probable significant PPV vector was identified as A. spiraecola. If the PPV pathogen escapes current quarantine or if subsequent reintroductions of PPV occur, these data will be useful for developing plum pox management strategies. PMID:16334309

  1. Preparing soft-bodied arthropods for microscope examination: Aphids (Insecta: Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper identification of aphids (Hemiptera: Aphididae) require preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare aphid specimens on microscope slides for examination and indentification. Steps ranging from collection, specimen clear...

  2. Can plant bioregulators be potential tools for managing black pecan aphids?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some classes of plant bioregulators (PBRs) possess the potential for usage on pecan (Carya illinoinensis [Wangenh.] K. Koch) to protect foliar canopies from black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding injury. The black pecan aphid elicits localized chlorotic...

  3. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  4. Autumn leaf colouration: a new hypothesis involving plant-ant mutualism via aphids

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo

    2008-07-01

    Several recent hypotheses on the adaptive significance of autumn leaf colours have focused on specialist aphids. However, these hypotheses have overlooked several factors: the preferential investment by healthy vigorous trees in growth rather than defence against herbivores, variation among aphid species in their responses to bright autumn leaves and plant defences and the occurrence of tritrophic interactions in tree crowns. I incorporate these factors into a hypothesis that autumn leaf colours signal tree quality to myrmecophilous specialist aphids, with the aphids, in turn, attracting aphid-tending ants during the following spring, and the ants defending the trees from other aphids and herbivores. Therefore, bright autumn leaves may have adaptive significance, attracting myrmecophilous specialist aphids and their attending ants and, thus, reducing herbivory and competition among aphids.

  5. Testing the physiological barriers to viral transmission in aphids using microinjection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insec...

  6. Distribution of the black pecan aphid on pecan leaf surfaces: an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three species of aphids (Hemiptera: Aphididae) regularly attack pecan, Carya illinoinensis, foliage. Two of these species, i.e., the blackmargined aphid, Monellia caryella and the yellow pecan aphid, Monelliopsis pecanis, are predominantly distributed on the abaxial leaf surface, as are adults and ...

  7. Spectral sensing of aphid (Hemiptera: Aphididae) density using field spectrometry and radiometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), and bird cherry-oat aphid, Rhopalosiphum padi L., are aphid pests of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), sorghum (Sorghum bicolor L.), oat (Avena sativa L.), and other cereals worldwide. Greenbug and bird cherry-oat aphid infestati...

  8. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  9. Ecological Factors Influencing Pea Aphid Outbreaks in the U.S. Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long term data set involving 26 years of ambient temperature data and pea aphid population cycles in grain legumes in the U.S. Pacific Northwest (PNW), and presented in an invited chaper for a book on global warming and aphid biodiversity, shows that outbreaks of this aphid and subsequent crop los...

  10. National Plant Diagnostic Network, Taxonomic training videos: Introduction to AphID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on the use of the expert system, AphID, for aphid examination and identification. The video demonstrates the use of different training modules that allow the user to gain familiarity wi...

  11. Comparison of transmission efficiency of different isolates of Potato virus Y among three aphid vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato virus Y (PVY) strains are transmitted by different aphid species in a non-persistent, non-circulative manner. Green peach aphid (GPA, Myzus persicae Sulzer; Aphididae, Macrosiphini) is the most efficient vector in laboratory studies, but potato aphid (PA, Macrosiphum euphorbiae Thomas; Aphidi...

  12. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein

    PubMed Central

    Elzinga, Dezi A.; De Vos, Martin

    2014-01-01

    The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana (Arabidopsis) plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose, and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and Nicotiana benthamiana. Together, these results demonstrate a role for Mp55, a protein with as yet unknown molecular function, in the interaction of M. persicae with its host plants. PMID:24654979

  13. Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (Diuraphis noxia (Mordvilko)) infests wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and other small grains and grasses. Russian wheat aphid infestations are unpredictable in time and space. In favorable conditions, Russian wheat aphid feeding can result in heavy...

  14. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein.

    PubMed

    Elzinga, Dezi A; De Vos, Martin; Jander, Georg

    2014-07-01

    The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and N. benthamiana. Together, these results demonstrate a role for Mp55, a protein with as-yet-unknown molecular function, in the interaction of M. persicae with its host plants. PMID:24654979

  15. Cereal Aphid Colony Turnover and Persistence in Winter Wheat

    PubMed Central

    Winder, Linton; Alexander, Colin J.; Woolley, Chris; Perry, Joe N.; Holland, John M.

    2014-01-01

    An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum) within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot) and large (field) scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m). At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot) and large (field) scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion); Colonised (aphids recorded on the second occasion but not the first); Extinction (aphids recorded on the first occasion but not the second); Stable (aphids recorded on both occasions). At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development – by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant. PMID:25268240

  16. Mechanisms regulating caste differentiation in an aphid social system

    PubMed Central

    Kutsukake, Mayako; Matsuyama, Shigeru; Fukatsu, Takema; Shimada, Masakazu

    2010-01-01

    For evolution and maintenance of the social systems of insect colonies, caste production should be controlled in response to external cues so that caste ratio in the colony is kept at an optimal range. Recent developments using artificial diet rearing techniques have revealed an underlying mechanism for adaptive control of caste production in a social aphid, Tuberaphis styraci, which has a sterile soldier caste in the 2nd instar. Aphid density was the proximate cue that acts on 1st instar nymphs and embryos to induce soldier differentiation. The final determination of soldier differentiation occurred postnatally, probably at a late 1st instar stage. Direct contact stimuli from live non-soldier aphids mediated the density effect. While coexisting non-soldiers facilitated soldier differentiation in 1st instar nymphs, coexisting soldiers acted to suppress such differentiation. These results suggest that caste production in aphid colonies is controlled by positive and negative feedback mechanisms consisting of density-dependent induction and suppression of soldier differentiation. Here, we demonstrate the mechanisms that coordinate aphid society, and provide a striking case of clonal superorganism system where simple responses of colony members to local extrinsic stimuli are integrated into a highly organized regulation of the whole colony. PMID:20539772

  17. Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.

    PubMed

    Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C

    2002-08-01

    Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film. PMID:12216821

  18. A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid

    PubMed Central

    Klingler, John P.; Nair, Ramakrishnan M.; Edwards, Owain R.; Singh, Karam B.

    2009-01-01

    Biotic stress in plants frequently induces a hypersensitive response (HR). This distinctive reaction has been studied intensively in several pathosystems and has shed light on the biology of defence signalling. Compared with microbial pathogens, relatively little is known about the role of the HR in defence against insects. Reference genotype A17 of Medicago truncatula Gaertn., a model legume, responds to aphids of the genus Acyrthosiphon with necrotic lesions resembling a HR. In this study, the biochemical nature of this response, its mode of inheritance, and its relationship with defence against aphids were investigated. The necrotic lesion phenotype and resistance to the bluegreen aphid (BGA, Acyrthosiphon kondoi Shinji) and the pea aphid (PA, Acyrthosiphon pisum (Harris)) were analysed using reference genotypes A17 and A20, their F2 progeny and recombinant inbred lines. BGA-induced necrotic lesions co-localized with the production of H2O2, consistent with an oxidative burst widely associated with hypersensitivity. This HR correlated with stronger resistance to BGA in A17 than in A20; these phenotypes cosegregated as a semi-dominant gene, AIN (Acyrthosiphon-induced necrosis). In contrast to BGA, stronger resistance to PA in A17, compared with A20, did not cosegregate with a PA-induced HR. The AIN locus resides in a cluster of sequences predicted to encode the CC-NBS-LRR subfamily of resistance proteins. AIN-mediated resistance presents a novel opportunity to use a model plant and model aphid to study the role of the HR in defence responses to phloem-feeding insects. PMID:19690018

  19. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    PubMed

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  20. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants

    PubMed Central

    Sinha, Deepak K.; Chandran, Predeesh; Timm, Alicia E.; Aguirre-Rojas, Lina; Smith, C. Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  1. Aphidophagous Parasitoids can Forage Wheat Crops Before Aphid Infestation, Parana State, Brazil

    PubMed Central

    Ceolin Bortolotto, Orcial; de Oliveira Menezes Júnior, Ayres; Thibes Hoshino, Adriano

    2015-01-01

    Aphid parasitoids are common in Brazilian wheat fields, and parasitize aphids at the wheat tillering stage. However, there is little information available about when this natural enemy occurs in wheat crops. This study investigated the initial occurrence of aphid parasitoids in four commercial wheat crops in northern Paraná during the 2009 crop season. We installed two Malaise traps at each wheat farm, and 400 tillers were assessed weekly in each field for aphid abundance. During this study, we captured 4,355 aphid parasitoids and 197 aphids. Three species of braconid parasitoids were identified, including Aphidius colemani (Viereck 1912), Lysiphlebus testaceipes (Cresson 1880), and Diaeretiella rapae (McIntosh 1855). The aphids species identified were Rhopalosiphum padi (Linnaeus 1758) and Sitobion avenae (Fabricius 1775). This study showed that aphid parasitoids are present in wheat crops even when aphid densities are low, and in one farm, occurred before the aphids colonization. These reports can justified the high efficiency of these natural enemies against aphids in wheat fields. PMID:25843593

  2. Effects of chemically contaminated sewage sludge on an aphid population

    SciTech Connect

    Culliney, T.W.; Pimentel, D.

    1986-12-01

    Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

  3. Parasitoids as vectors of facultative bacterial endosymbionts in aphids.

    PubMed

    Gehrer, Lukas; Vorburger, Christoph

    2012-08-23

    Heritable bacterial endosymbionts play an important role in aphid ecology. Sequence-based evidence suggests that facultative symbionts such as Hamiltonella defensa or Regiella insecticola also undergo horizontal transmission. Other than through male-to-female transfer during the sexual generation in autumn, the routes by which this occurs remain largely unknown. Here, we tested if parasitoids or ectoparasitic mites can act as vectors for horizontal transfer of facultative symbionts. Using symbiont-specific primers for diagnostic PCR, we demonstrate for the first time, to our knowledge, that parasitoids can indeed transfer H. defensa and R. insecticola by sequentially stabbing infected and uninfected individuals of their host, Aphis fabae, establishing new, heritable infections. Thus, a natural route of horizontal symbiont transmission is also available during the many clonal generations of the aphid life cycle. No transmissions by ectoparasitic mites were observed, nor did parasitoids that emerged from symbiont-infected aphids transfer any symbionts in our experiments. PMID:22417790

  4. How rapid is aphid-induced signal transfer between plants via common mycelial networks?

    PubMed

    Babikova, Zdenka; Johnson, David; Bruce, Toby; Pickett, John A; Gilbert, Lucy

    2013-11-01

    Arbuscular mycorrhizal (AM) fungi are important plant mutualists that can connect roots of neighboring plants to form common mycelial networks. A recent study demonstrated that these networks can act as conduits for aphid-induced signals between plants, activating chemical defenses in uninfested neighboring plants so that they become unattractive to aphids but attractive to their enemies (parasitoids). The benefit to the neighboring plants will increase if the signal speed is rapid, enabling them to respond before aphids attack. Here, we determine the speed of aphid-induced signal transfer between plants infested with aphids ("donor") and neighboring aphid-free plants that were either connected or unconnected to the donor via a common mycelial network. Induced changes in plant volatiles from neighbors connected to donors started within 24 h of aphid infestation of donors. This demonstrates a rapid signal, implying potential benefit to plants receiving the signal, and raises intriguing ecological and evolutionary questions. PMID:24563703

  5. Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant.

    PubMed

    Joschinski, Jens; Beer, Katharina; Helfrich-Förster, Charlotte; Krauss, Jochen

    2016-01-01

    Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum(Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity. PMID:27012868

  6. Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant

    PubMed Central

    Joschinski, Jens; Beer, Katharina; Helfrich-Förster, Charlotte; Krauss, Jochen

    2016-01-01

    Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light–dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant’s rhythmicity. PMID:27012868

  7. Carbohydrate intake.

    PubMed

    Leturque, Armelle; Brot-Laroche, Edith; Le Gall, Maude

    2012-01-01

    Carbohydrates represent more than 50% of the energy sources present in most human diets. Sugar intake is regulated by metabolic, neuronal, and hedonic factors, and gene polymorphisms are involved in determining sugar preference. Nutrigenomic adaptations to carbohydrate availability have been evidenced in metabolic diseases, in the persistence of lactose digestion, and in amylase gene copy number. Furthermore, dietary oligosaccharides, fermentable by gut flora, can modulate the microbiotal diversity to the benefit of the host. Genetic diseases linked to mutations in the disaccharidase genes (sucrase-isomaltase, lactase) and in sugar transporter genes (sodium/glucose cotransporter 1, glucose transporters 1 and 2) severely impact carbohydrate intake. These diseases are revealed upon exposure to food containing the offending sugar, and withdrawal of this sugar from the diet prevents disease symptoms, failure to thrive, and premature death. Tailoring the sugar composition of diets to optimize wellness and to prevent the chronic occurrence of metabolic diseases is a future goal that may yet be realized through continued development of nutrigenetics and nutrigenomics approaches. PMID:22656375

  8. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).

    PubMed

    Casteel, Clare L; Yang, Chunling; Nanduri, Ananya C; De Jong, Hannah N; Whitham, Steven A; Jander, Georg

    2014-02-01

    Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission. PMID:24372679

  9. Persistence and transgenerational effect of plant-mediated RNAi in aphids.

    PubMed

    Coleman, A D; Wouters, R H M; Mugford, S T; Hogenhout, S A

    2015-02-01

    Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid-plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12-14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40-60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses. PMID:25403918

  10. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids

    PubMed Central

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    1. Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. 2. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. 3. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. 4. All 55 species studied had earlier first flight trends at rate of β = −0·611 ± SE 0·015 days year−1. Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = −0·010 ± SE 0·022 days year−1). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year−1), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year−1). 5. The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were

  11. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.

    PubMed

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non

  12. The endosymbiont Arsenophonus is widespread in soybean aphid, Aphis glycines, but does not provide protection from parasitoids or a fungal pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont, Arsenophonus sp., ...

  13. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    PubMed

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  14. High Susceptibility of Bt Maize to Aphids Enhances the Performance of Parasitoids of Lepidopteran Pests

    PubMed Central

    Faria, Cristina A.; Wäckers, Felix L.; Pritchard, Jeremy; Barrett, David A.; Turlings, Ted C.J.

    2007-01-01

    Concerns about possible undesired environmental effects of transgenic crops have prompted numerous evaluations of such crops. So-called Bt crops receive particular attention because they carry bacteria-derived genes coding for insecticidal proteins that might negatively affect non-target arthropods. Here we show a remarkable positive effect of Bt maize on the performance of the corn leaf aphid Rhopalosiphum maidis, which in turn enhanced the performance of parasitic wasps that feed on aphid honeydew. Within five out of six pairs that were evaluated, transgenic maize lines were significantly more susceptible to aphids than their near-isogenic equivalents, with the remaining pair being equally susceptible. The aphids feed from the phloem sieve element content and analyses of this sap in selected maize lines revealed marginally, but significantly higher amino acid levels in Bt maize, which might partially explain the observed increased aphid performance. Larger colony densities of aphids on Bt plants resulted in an increased production of honeydew that can be used as food by beneficial insects. Indeed, Cotesia marginiventris, a parasitoid of lepidopteran pests, lived longer and parasitized more pest caterpillars in the presence of aphid-infested Bt maize than in the presence of aphid-infested isogenic maize. Hence, depending on aphid pest thresholds, the observed increased susceptibility of Bt maize to aphids may be either a welcome or an undesirable side effect. PMID:17622345

  15. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    PubMed Central

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  16. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  17. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  18. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that...

  19. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of...

  20. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  1. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines which are...

  2. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must be equipped...

  3. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  4. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  5. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  6. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  7. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  8. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    PubMed

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms. PMID:26590597

  9. Persistence and transgenerational effect of plant-mediated RNAi in aphids

    PubMed Central

    Coleman, A. D.; Wouters, R. H. M.; Mugford, S. T.; Hogenhout, S. A.

    2015-01-01

    Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid–plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12–14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40–60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses. PMID:25403918

  10. Residue behavior of combination formulations of insecticides in/on cabbage and their efficacy against aphids and diamondback moth.

    PubMed

    Gupta, Suman; Sharma, Rakesh K; Gajbhiye, Vijay T; Gupta, Ram K

    2015-01-01

    Persistence behavior of insecticides chlorpyriphos, profenofos, triazophos, cypermethrin, and deltamethrin following the use of three combination formulations Action 505 (chlorpyriphos + cypermethrin), Roket 44EC (profenofos + cypermethrin), and Anaconda Plus (triazophos + deltamethrin) was studied in cabbage following the spray application at the recommended and double doses. Bio-efficacy of these formulations was also evaluated against mustard aphids (Lipaphis erysimi Kaltenbach) and diamondback moth (Plutella xylostella L.). The residues of different insecticides persisted for 5-8 days at low dose and 8-12 days at high dose. The residues dissipated with time and 87-100% dissipation was recorded on the 8th day. The half-life values varied from 0.4 to 1.6 days. Based on the acceptable daily intake (ADI) values, a safe waiting period of 1 day has been suggested for the formulations Action 505 and Roket 44EC and 3 days for Anaconda Plus at the recommended dose of application. Action (1.6 L/ha) treatment was found to be the best as it significantly reduced the diamondback moth (DBM) (~60%) and aphid population (~70%) besides giving the highest yield (170% increase over control). PMID:25384368

  11. Predicting potential ecological impact of soybean aphid biological control introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, APHIS GLYCINES, was first reported in the US in 2000; since then, it has spread to 22 states, putting >24 million hectares of soybean at risk. In China, APHIS GLYCINES rarely reaches damaging levels and has a diverse complex of predators and parasitoids. In the US, parasitoids are...

  12. Screening for Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  13. Screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  14. Inheritance of soybean aphid resistance in 21 soybean plant introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] is one of the most important insect pests on soybean [Glycine max (L.) Merr] in the northern USA and southern Canada, and four resistance loci (Rag1 to 4) have been discovered since the pest was identified in the USA in 2000. The ob...

  15. Venomous protease of aphid soldier for colony defense.

    PubMed

    Kutsukake, Mayako; Shibao, Harunobu; Nikoh, Naruo; Morioka, Mizue; Tamura, Tomohiro; Hoshino, Tamotsu; Ohgiya, Satoru; Fukatsu, Takema

    2004-08-01

    In social aphids, morphological, behavioral, and physiological differences between soldiers and normal insects are attributed to differences in gene expression between them, because they are clonal offspring parthenogenetically produced by the same mothers. By using cDNA subtraction, we identified a soldier-specific cysteine protease of the family cathepsin B in a social aphid, Tuberaphis styraci, with a second-instar soldier caste. The cathepsin B gene was specifically expressed in soldiers and first-instar nymphs destined to be soldiers. The cathepsin B protein was preferentially produced in soldiers and showed a protease activity typical of cathepsin B. The cathepsin B mRNA and protein were localized in the midgut of soldiers. For colony defense, soldiers attack enemies with their stylet, which causes paralysis and death of the victims. Notably, after soldiers attacked moth larvae, the cathepsin B protein was detected from the paralyzed larvae. Injection of purified recombinant cathepsin B protein certainly killed the recipient moth larvae. From these results, we concluded that the cathepsin B protein is a major component of the aphid venom produced by soldiers of T. styraci. Soldier-specific expression of the cathepsin B gene was found in other social aphids of the genus Tuberaphis. The soldier-specific cathepsin B gene showed an accelerated molecular evolution probably caused by the action of positive selection, which had been also known from venomous proteins of other animals. PMID:15277678

  16. Catalog of the Aphid Genera Described from the New World

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript presents a synthesis and catalogue of the genera of New World aphids (sensu stricto) from 1758 to 2004. It includes information on 215 generic and subgeneric names, type localities, bibliographic information, etymology, as well as synonymic and other nomenclatural data. Two nomencl...

  17. Sugarcane aphid in Oklahoma: Responding to a new pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid (SCA) was first found in Oklahoma in 2013, and quickly became a major threat to grain sorghum production. Scientists at Oklahoma State University and the USDA's Wheat, Peanut and Other Field Crops Research Lab in Stillwater, working with cooperators in other sorghum producing st...

  18. Pan trapping soybean aphids (Hemiptera: Aphididae) using attractants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since it’s introduction into the United States in the past ten years, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), has been a damaging pest to soybean (Glycine max (L.) Merr.). Predicting their arrival in a soybean field on a year-by-year basis has been difficult as little is ...

  19. Genetic characterization of an emerging aphid pest in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On July 2013, a new aphid in sorghum was observed in Texas. By the end of November the area of influence of this emergent pest included Texas, Oklahoma, Louisiana, and Florida. Sorghum fields in these States sustained considerable losses. In some locations, yield losses of 33% to 50% were observe...

  20. Associations of wheat with pea can reduce aphid infestations.

    PubMed

    Lopes, T; Bodson, B; Francis, F

    2015-06-01

    Increasing plant diversity within crops can be beneficial for pest control. In this field study, the effects of two wheat and pea associations (mixed cropping and strip cropping) on aphid populations were compared with pure stands of both crops by observations on tillers and plants. Pea was more susceptible to infestations than wheat. As expected, the density of aphid colonies was significantly higher in pure stands during the main occurrence periods, compared with associations. Additionally, flying beneficials, such as not only aphidophagous adult ladybirds but also parasitoid, hoverfly and lacewing species that feed on aphids at the larval stage, were monitored using yellow pan traps. At specific times of the sampling season, ladybirds and hoverflies were significantly more abundant in the pure stand of pea and wheat, respectively, compared with associations. Few parasitoids and lacewings were trapped. This study showed that increasing plant diversity within crops by associating cultivated species can reduce aphid infestations, since host plants are more difficult to locate. However, additional methods are needed to attract more efficiently adult beneficials into wheat and pea associations. PMID:26013274

  1. Room temperature DNA storage with slide-mounted Aphid specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most of the conventional molecular studies of aphids destroy the specimen in order to extract DNA. This DNA is subsequently stored in low temperature freezers. Room temperature storage of DNA with microscope slide-mounted voucher material is demonstrated by developing a system that uses filter pa...

  2. Bird cherry-oat aphid: do we have resistance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a highly efficient, non-propagative, persistent vector of the phloem limited leutovirus BYD-PAV. BYD is the most important viral disease of cereal grains in the world and PAV is the most prevalent strain of BYD in North America. Not all BCO...

  3. Multifaceted determinants of host specificity in an aphid parasitoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of behavioral and physiological factors that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Bin...

  4. Biotype differences for resistance to Russian wheat aphid in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) is a worldwide insect pest of barley, causing crop losses each year. Previously identified resistant barley lines do not show variable reactions to the eight USA RWA biotypes identified by wheat reactions. However, additional RWA isolates have been identified outside the ...

  5. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  6. Miyazakia, a new aphid genus from Japan (Hemiptera: Aphididae: Macrosiphini).

    PubMed

    Stekolshchikov, Andrey V

    2014-01-01

    Miyazakia gen. nov. with type species Miyazakia ranunculi (Miyazaki, 1971) comb. nov. is described. The species is illustrated and biometric data are provided for all morphs, except the fundatrix. This aphid genus is closely related to Sappaphis Matsumura, 1919. M. ranunculi is a heteroecious species; its primary host is probably Photinia villosa (Thunb.) DC and its secondary host is Ranunculus.  PMID:25283430

  7. Screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  8. A Candidate Gene for Aphid Resistance in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of small grain crops in many parts of the world. A single dominant gene, Gb3 originated from Aegilops tauschii has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields. Previously, we mapp...

  9. Sugarcane aphid resistance in sorghum and a host range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid (SCA), Melanaphis sacchari, has been present in the United States primarily on sugarcane in Florida, Hawaii, and Louisiana until 2013 where it was found on grain sorghum near Beaumont, Texas. Since 2013, the SCA has been rapidly spreading and overwintering. Depending on the plant...

  10. Relative susceptibility of pecan germplasm to blackmargined aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The blackmargined aphid, Monellia caryella (Fitch), is an important phytophage in the pecan, Carya illinoinensis (Wangenh.) K. Koch, agroecosystem where it often is treated with insecticide. Pecan cultivars released by the USDA Pecan Breeding Program vary in susceptibility and risk of damage from t...

  11. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont.

    PubMed

    Shigenobu, Shuji; Stern, David L

    2013-01-01

    Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts. PMID:23173201

  12. Relationships between soybean shoot nitrogen components and soybean aphid populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defining the relationships between soybean (Glycine max [L.] merr.) shoot nitrogen (N) components and soybean aphid (Aphis glycines Matsumura) populations will increase understanding of the biology of this important insect pest. In this 2-year field study, caged soybean plants were infested with so...

  13. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View

    PubMed Central

    Sicard, Anne; Zeddam, Jean-Louis; Yvon, Michel; Michalakis, Yannis; Gutiérrez, Serafin

    2015-01-01

    ABSTRACT Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that

  14. Differential reactions of soybean isolines with combinations of aphid resistance genes Rag1, Rag2, and Rag3 to four soybean aphid biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the discovery of the soybean aphid (Aphis glycines Matsumura) as a devastating insect pest of soybean (Glycine max (L.) Merr.) in the United States, host resistance was recognized as an important management option. However, the identification of soybean aphid isolates exhibiting strong virulenc...

  15. Blackmargined aphid (Monellia caryella (Fitch); Hemiptera: Aphididae) honeydew production in pecan (Carya illinoinesis (Koch)) and implications for managing the pecan aphid complex in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies of the blackmargined aphid, Monellia caryella (Fitch), were conducted on three cultivars, “Cheyenne,” “Kiowa,” and “Pawnee,” of pecan, Carya illinoinisis (Wang) K. Koch. Aphid and natural enemy (lacewings, ladybird beetles, and spiders) densities were determined twice weekly by direct...

  16. Gene Expression Analysis of Parthenogenetic Embryonic Development of the Pea Aphid, Acyrthosiphon pisum, Suggests That Aphid Parthenogenesis Evolved from Meiotic Oogenesis

    PubMed Central

    Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006

  17. Interactions among three species of cereal aphids simultaneously infesting wheat

    PubMed Central

    Qureshi, Jawwad A.; Michaud, J. P.

    2005-01-01

    Interactions among greenbug, Schizaphis graminum (Rondani), Russian wheat aphid, Diuraphis noxia (Mordvilko), and bird cherry-oat aphid Rhopalosiphum padi (L.) were examined on wheat plants (Triticum aestivum L., cultivar TAM 107). Nymphs were released on the plants as conspecific and heterospecific pairs of either first or fourth instars and evaluated for survival, developmental time, fecundity, intra-plant movement, and affinity to plant tissues. Survival from first instar to onset of reproduction averaged 90–100% across all pair combinations. Diuraphis noxia developed faster as conspecifics than in any heterospecific combination, and faster as conspecifics feeding on the same plant tissue than on different tissues. Fecundity of S. graminum was higher for conspecifics that developed on the same plant tissue than for those feeding separately. There was evidence of amensalism (one species was harmed while the other was unaffected) in that D. noxia experienced delayed development feeding in tandem with S. graminum, and reduced fecundity with both S. graminum and R. padi. Furthermore, S. graminum nymphs had reduced survival when their mothers matured on a same plant with R. padi. Both D. noxia and R. padi changed position on the plant more often when developing with S. graminum. Survival of second generation S. graminum nymphs was reduced when this species developed and reproduced in tandem with R. padi. Preferred feeding locations were S. graminum - primary leaf, D. noxia - tertiary leaf and R. padi - stem and these were not altered in any heterospecific combinations. Heterospecific aphids had no impact on fecundity or progeny survival in any species combination when fourth instars matured and reproduced on plants not previously exposed to aphid feeding, supporting the inference that systemic, aphid-induced changes in plant physiology mediated the effects observed when first instars developed and reproduced on the same plants. PMID:16341245

  18. Intake technologies: Research status: Final report

    SciTech Connect

    McGroddy, P.M.; Matousek, J.A.

    1989-03-01

    This report summarizes recent research activities related to fish protection at water intake structures, with particular emphasis on research reported on or conducted at pumped cooling-water intakes. Information gathered from 51 organizations (33 utilities, seven equipment manufacturers, six research organizations, two private engineering firms, one steel mill, and two government agencies) is provided along with specific summaries of EPRI-sponsored research on behavioral barriers at pumped and hydroelectric facilities. The level of research activity indicted by utilities at pumped intakes has decreased recently, although the interest in potential plant operational impact mitigative techniques remains high. Two studies sponsored by EPRI at pumped cooling-water intake structures evaluated the individual and combined deterrent capabilities of three devices: an air bubble curtain, pneumatic guns, and underwater strobe lights. A study conducted during 1985 and 1986 at Ontario Hydro's nearshore test facility, located in Lake Ontario off the Pickering Nuclear Generating Station intake, indicated that all three devices and combinations of devices elicited an avoidance response in alewife. The pneumatic gun exhibited the highest deterrent capability and the air bubble curtain the lowest. Studies conducted using the same deterrent devices at the intake of Central Hudson Gas and Electric Corporation's Roseton Generating Station on the Hudson River did not indicate an overall avoidance response; some species-specific responses to the devices were noted. 22 refs., 9 tabs.

  19. Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the candidate natural enemies for release against the exotic soybean aphid Aphis glycines (Hemiptera: Aphididae) in North America is the Asian parasitoid Binodoxys communis (Hymenoptera: Braconidae). We examined B. communis preferences for different developmental stages of A. glycines and in...

  20. Chlorotic feeding injury by the black pecan aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of t...

  1. Expression of Monstera deliciosa agglutinin gene (mda) in tobacco confers resistance to peach-potato aphids.

    PubMed

    Kai, Guoyin; Ji, Qian; Lu, Yang; Qian, Zhongying; Cui, Lijie

    2012-08-01

    The aphid is one of the most serious pests that causes damage to crops worldwide. Lectins from Araceae plant had been proved useful to control the aphid. Herein, the full-length cDNA of Monstera deliciosa agglutinin (mda) gene was cloned and then introduced into tobacco and the influence of the expression of mda in transgenic tobacco against peach-potato aphids (Myzus persicae) was investigated. Among 92 regenerated plants, 59 positive tobacco lines were obtained. Real-time PCR assays and aphid bioassay test revealed that there is a positive correlation between the expression level of mda and the inhibitory effect on peach-potato aphids. The average anti-pests ability of mda transgenic tobacco was 74%, which was higher than that of other reported lectins from Araceae plant. These results indicated that MDA is one of promising insect resistance proteins selected for the control of peach-potato aphids. PMID:22660606

  2. Enhanced aphid detoxification when confronted by a host with elevated ROS production

    PubMed Central

    Lei, Jiaxin; Zhu-Salzman, Keyan

    2015-01-01

    Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance. PMID:25932782

  3. DNA Barcoding and the Associated PhylAphidB@se Website for the Identification of European Aphids (Insecta: Hemiptera: Aphididae)

    PubMed Central

    Coeur d’acier, Armelle; Cruaud, Astrid; Artige, Emmanuelle; Genson, Gwenaëlle; Clamens, Anne-Laure; Pierre, Eric; Hudaverdian, Sylvie; Simon, Jean-Christophe; Jousselin, Emmanuelle; Rasplus, Jean-Yves

    2014-01-01

    Aphids constitute a diverse group of plant-feeding insects and are among the most important crop pests in temperate regions. Their morphological identification is time-consuming and requires specific knowledge, training and skills that may take years to acquire. We assessed the advantages and limits of DNA barcoding with the standard COI barcode fragment for the identification of European aphids. We constructed a large reference dataset of barcodes from 1020 specimens belonging to 274 species and 87 genera sampled throughout Europe and set up a database-driven website allowing species identification from query sequences. Results In this unbiased sampling of the taxonomic diversity of European aphids, intraspecific divergence ranged from 0.0% to 3.9%, with a mean value of 0.29%, whereas mean congeneric divergence was 6.4%, ranging from 0.0% to 15%. Neighbor-joining analysis generated a tree in which most species clustered in distinct genetic units. Most of the species with undifferentiated or overlapping barcodes belonged to the genus Aphis or, to a lesser extent, the genera Brachycaudus, Dysaphis and Macrosiphum. The taxa involved were always morphologically similar or closely related and belonged to species groups known to present taxonomic difficulties. Conclusions These data confirm that COI barcoding is a useful identification tool for aphids. Barcode identification is straightforward and reliable for 80% of species, including some difficult to distinguish on the basis of morphological characters alone. Unsurprisingly, barcodes often failed to distinguish between species from groups for which classical taxonomy has also reached its limits, leading to endless revisions and discussions about species and subspecies definitions. In such cases, the development of an effective procedure for the accurate identification of aphid specimens continues to pose a difficult challenge. PMID:24896814

  4. Comparative Life Histories of Greenbugs and Sugarcane Aphids (Hemiptera: Aphididae) Coinfesting Susceptible and Resistant Sorghums.

    PubMed

    Bayoumy, Mohamed H; Perumal, Ramaswamy; Michaud, J P

    2016-02-01

    Host-plant resistance has been a fundamental component of aphid management in cereal crops. Over decades, various sources of resistance to greenbug, Schizaphis graminum (Rondani), were bred into cultivars of sorghum, Sorghum bicolor (L.) Moench, to counter recurring virulent greenbug biotypes. The recent invasion of sugarcane aphid, Melanaphis sacchari (Zehntner), raised questions about plant-mediated interactions between the two aphids and the possibility of using greenbug antibiosis against sugarcane aphid. The present work was undertaken to characterize the impact of PI 550610 resistance to 'biotype I' greenbug, expressed in seed parental line KS 116B, on aphid life histories and to observe plant-mediated interactions between aphid species in its presence and absence. At 23°C, sugarcane aphid nymphs matured 1.5 d faster than greenbug nymphs on susceptible hybrid P8500, but at similar rates on the resistant line, which delayed maturity by 1-1.5 d in both species and increased juvenile mortality by three- to fourfold. Sugarcane aphid reproductive rate was double that of greenbug on susceptible sorghum (4.45 vs. 2.30 nymphs per female per day), but not significantly different on the resistant one (3.09 vs. 2.27). Thus, PI 550610 expresses antibiosis, not tolerance, to these aphids. Coinfestation of P8500 had a positive effect on greenbug intrinsic rate of increase (rm), which changed to negative on KS 116B, whereas the rm of sugarcane aphid was unaffected by coinfestation with greenbug on either cultivar. The results indicate that KS 116B will be useful for producing sugarcane aphid-resistant hybrids, and that PI 550610 antibiosis changes the sugarcane aphid-greenbug interspecific relationship from commensalism to amensalism. PMID:26357844

  5. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.

    PubMed

    Naessens, Elodie; Dubreuil, Géraldine; Giordanengo, Philippe; Baron, Olga Lucia; Minet-Kebdani, Naïma; Keller, Harald; Coustau, Christine

    2015-07-20

    Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species. PMID:26119751

  6. [Uses of monomolecular lipid film for control of udo aphid (Toxoptera odinae (Van der Goot))].

    PubMed

    Chen, J; Cheng, H Z; Lin, Y L

    1993-02-01

    The biological character of udo aphid was observed and monomolecular lipid film was used to control it. The results showed that at 100 and 200 times the lipid film, the hatch rate of over-winter eggs was lower than the control by 30.76% and 12.15% respectively, and at 50, 100 and 200 times the lipid film the mortality of young nymph aphids was 100% and those of old nymph aphids and adult aphids were 8.31%, 32.62% and 3.31% respectively. PMID:8323704

  7. New data on aphid fauna (Hemiptera, Aphididae) in Algeria

    PubMed Central

    Laamari, Malik; d’Acier, Armelle Coeur; Jousselin, Emmanuelle

    2013-01-01

    Abstract A survey of aphids was carried out during the period 2008-2011 in different regions of Algeria by collecting and identifying aphids and their host plants. Aphids were collected from 46 host plants. Forty-six species were reported including thirty-six species which were recorded for the first time in this country and thirty species which were recorded for the first time in the Maghreb (North Africa). This study extends the number of known Algerian aphid to 156 species. PMID:24039520

  8. Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community.

    PubMed

    Traugott, M; Bell, J R; Broad, G R; Powell, W; van Veen, F J F; Vollhardt, I M G; Symondson, W O C

    2008-09-01

    Insect parasitoids play a major role in terrestrial food webs as they are highly diverse, exploit a wide range of niches and are capable of affecting host population dynamics. Formidable difficulties are encountered when attempting to quantify host-parasitoid and parasitoid-parasitoid trophic links in diverse parasitoid communities. Here we present a DNA-based approach to effectively track trophic interactions within an aphid-parasitoid food web, targeting, for the first time, the whole community of parasitoids and hyperparasitods associated with a single host. Using highly specific and sensitive multiplex and singleplex polymerase chain reaction, endoparasitism in the grain aphid Sitobion avenae (F) by 11 parasitoid species was quantified. Out of 1061 aphids collected during 12 weeks in a wheat field, 18.9% were found to be parasitized. Parasitoids responded to the supply of aphids, with the proportion of aphids parasitized increasing monotonically with date, until the aphid population crashed. In addition to eight species of primary parasitoids, DNA from two hyperparasitoid species was detected within 4.1% of the screened aphids, with significant hyperparasitoid pressure on some parasitoid species. In 68.2% of the hyperparasitized aphids, identification of the primary parasitoid host was also possible, allowing us to track species-specific parasitoid-hyperparasitoid links. Nine combinations of primary parasitoids within a single host were found, but only 1.6% of all screened aphids were multiparasitized. The potential of this approach to parasitoid food web research is discussed. PMID:18662231

  9. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins

    PubMed Central

    Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric

    2013-01-01

    Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359

  10. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    PubMed

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology. PMID:25740334

  11. Stochastic modeling of aphid population growth with nonlinear, power-law dynamics.

    PubMed

    Matis, James H; Kiffe, Thomas R; Matis, Timothy I; Stevenson, Douglass E

    2007-08-01

    This paper develops a deterministic and a stochastic population size model based on power-law kinetics for the black-margined pecan aphid. The deterministic model in current use incorporates cumulative-size dependency, but its solution is symmetric. The analogous stochastic model incorporates the prolific reproductive capacity of the aphid. These models are generalized in this paper to include a delayed feedback mechanism for aphid death. Whereas the per capita aphid death rate in the current model is proportional to cumulative size, delayed feedback is implemented by assuming that the per capita rate is proportional to some power of cumulative size, leading to so-called power-law dynamics. The solution to the resulting differential equations model is a left-skewed abundance curve. Such skewness is characteristic of observed aphid data, and the generalized model fits data well. The assumed stochastic model is solved using Kolmogrov equations, and differential equations are given for low order cumulants. Moment closure approximations, which are simple to apply, are shown to give accurate predictions of the two endpoints of practical interest, namely (1) a point estimate of peak aphid count and (2) an interval estimate of final cumulative aphid count. The new models should be widely applicable to other aphid species, as they are based on three fundamental properties of aphid population biology. PMID:17306309

  12. Aphid infestation affecting the biogeochemistry of European beech saplings

    NASA Astrophysics Data System (ADS)

    Michalzik, B.; Levia, D. F., Jr.; Bischoff, S.; Näthe, K.

    2014-12-01

    Mass outbreaks of herbivore insects are known to perturb the functional properties of forests. However, it is less clear how endemic to moderate aboveground herbivory affects the vertical flow of nutrients from tree canopies to the soil. Here, we report on the effects of low to moderate infestation levels of the woolly beech aphid (Phyllaphis fagi L.) on the nutrient dynamics and hydrology of European beech (Fagus sylvatica L.). In a potted sapling experiment, we followed the vertical dynamics of nutrients via throughfall (TF), stemflow (SF) and litter leachates (LL) collected over ten weeks underneath infested and uninfested control trees. Aphid infestation amplifies the fluxes of K+, Mn2+ and particulate nitrogen (0.45μm < PN < 500 μm) in TF solution by 42% for K+, 59% for Mn2+ and 13% for PN relative to the control. In contrast, fluxes of NH4-N and SO4-S diminished during peaking aphid abundance by 26 and 16%, respectively. Differences in canopy-derived dissolved nitrogen and carbon compounds, sulfur (S), Ca2+, Mg2+, Na+ were < 10%. The effect of aphid abundance on nutrient dynamics was most notable in TF and SF and diminished in LL.Aphid infestation greatly altered the SF fluxes of DOC, K+, Mn2+, DON and sulfur-species, which were significantly concentrated at the tree base by "funneling" the rainfall through the canopy biomass to the trunk. Normalized to one square meter, water and nutrient fluxes were amplified by a factor of up to 200 compared to TF.Imaging of leaf surfaces by scanning electron microscopy exhibited notable differences of the surface morphology and microbiology of control, lightly infested, and heavily infested leaves. This observation might point to an aphid-mediated alteration of the phyllosphere ecology triggering the microbial uptake of NH4-N and SO4-S and its transformation to particulate N by magnified biomass growth of the phyllosphere microflora, consequently changing the chemical partitioning and temporal availability of nitrogen.

  13. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    PubMed

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  14. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation

    PubMed Central

    Kettles, Graeme J.; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant–aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues. PMID:27536306

  15. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    PubMed

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues. PMID:27536306

  16. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Li, Yuefei; Tong, Bin; Harris, Marvin; Zhu-Salzman, Keyan; Ge, Feng

    2013-10-01

    Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2). PMID:23686968

  17. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids

    PubMed Central

    2014-01-01

    Background Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Results Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Conclusions Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved. PMID:25331082

  18. Indian Bt Cotton Varieties Do Not Affect the Performance of Cotton Aphids

    PubMed Central

    Lawo, Nora C.; Wäckers, Felix L.; Romeis, Jörg

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) when grown on three Indian Bt (Cry1Ac) cotton varieties (MECH 12, MECH 162, MECH 184) and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields. PMID:19279684

  19. Host Plant Specialization in the Sugarcane Aphid Melanaphis sacchari

    PubMed Central

    Nibouche, Samuel; Mississipi, Stelly; Fartek, Benjamin; Delatte, Hélène; Reynaud, Bernard; Costet, Laurent

    2015-01-01

    Most aphids are highly specialized on one or two related plant species and generalist species often include sympatric populations adapted to different host plants. Our aim was to test the hypothesis of the existence of host specialized lineages of the aphid Melanaphis sacchari in Reunion Island. To this end, we investigated the genetic diversity of the aphid and its association with host plants by analyzing the effect of wild sorghum Sorghum bicolor subsp. verticilliflorum or sugarcane as host plants on the genetic structuring of populations and by performing laboratory host transfer experiments to detect trade-offs in host use. Genotyping of 31 samples with 10 microsatellite loci enabled identification of 13 multilocus genotypes (MLG). Three of these, Ms11, Ms16 and Ms15, were the most frequent ones. The genetic structure of the populations was linked to the host plants. Ms11 and Ms16 were significantly more frequently observed on sugarcane, while Ms15 was almost exclusively collected in colonies on wild sorghum. Laboratory transfer experiments demonstrated the existence of fitness trade-offs. An Ms11 isofemale lineage performed better on sugarcane than on sorghum, whereas an Ms15 lineage developed very poorly on sugarcane, and two Ms16 lineages showed no significant difference in performances between both hosts. Both field and laboratory results support the existence of host plant specialization in M. sacchari in Reunion Island, despite low genetic differentiation. This study illustrates the ability of asexual aphid lineages to rapidly undergo adaptive changes including shifting from one host plant to another. PMID:26600253

  20. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Her...

  1. Maintaining genetic diversity and population panmixia through dispersal and not gene flow in a Holocyclic heteroecious aphid species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heteroecious holocyclic aphids alternate between sexual and asexual reproduction on primary and secondary hosts, respectively. Most of these aphids are generalists, but the aphid specialist Aphis glycines survives only on the primary host buckthorn (Rhamnus spp.) and the secondary host soybean (Gly...

  2. Variable Performance of Bird Cherry-Oat Aphid on Neotyphodium-infected Wild Tall Fescue from Tunisia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent of Neotyphodium based resistance in wild fescue to bird cherry-oat aphid (Rhopalosiphum padi) was determined by quantifying densities of this aphid on a series of Neotyphodium – infected (E+) and uninfected (E-) tall fescue entries. Little or no aphid survival was observed on plants from ...

  3. Tangible benefits of the pea aphid genome sequencing in proteomics research: enhancements in protein identification, data incorporation, and evaluation criteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pea aphid, Acyrthosiphon pisum, is an important agricultural pest and a model system for numerous aspects of aphid biology, including sexual and asexual reproduction, bacterial endosymbiosis, insecticide resistance, and the evolution of aphid and plant host interactions. Recently, its complete ...

  4. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.

    PubMed

    Lin, Fang-Jing; Bosquée, Emilie; Liu, Ying-Jie; Chen, Ju-Lian; Yong, Liu; Francis, Frédéric

    2016-09-01

    Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals. PMID:27185564

  5. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... the Biological Control of the Soybean Aphid in the Continental United States; Availability of an... release of Aphelinus glycinis for the biological control of the soybean aphid, Aphis glycines, in the...-2323. SUPPLEMENTARY INFORMATION: Background The soybean aphid, Aphis glycinis, which is native to...

  6. Coping with shorter days: do phenology shifts constrain aphid fitness?

    PubMed Central

    Hovestadt, Thomas; Krauss, Jochen

    2015-01-01

    Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual’s life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change. PMID:26207194

  7. A water-specific aquaporin involved in aphid osmoregulation.

    PubMed

    Shakesby, A J; Wallace, I S; Isaacs, H V; Pritchard, J; Roberts, D M; Douglas, A E

    2009-01-01

    The osmotic pressure of plant phloem sap is generally higher than that of insect body fluids. Water cycling from the distal to proximal regions of the gut is believed to contribute to the osmoregulation of aphids and other phloem-feeding insects, with the high flux of water mediated by a membrane-associated aquaporin. A putative aquaporin referred to as ApAQP1 was identified by RT-PCR of RNA isolated from the guts of pea aphids Acyrthosiphon pisum. The ApAQP1 protein has a predicted molecular mass 28.94kDa. Molecular modeling suggests that ApAQP1 has the general aquaporin topology and possesses the conserved pore properties of water-specific aquaporins. When expressed in Xenopus oocytes, ApAQP1 showed the hallmarks of aquaporin-mediated water transport, including an 18-fold increase in the osmotic water permeability of the oolemma, a reduced activation energy, and inhibition of elevated water transport activity by Hg ions. The ApAQP1 transcript was localised to the stomach and distal intestine, and RNAi-mediated knockdown of its expression resulted in elevated osmotic pressure of the haemolymph. Taken together, these data suggest that ApAQP1 contributes to the molecular basis of water cycling in the aphid gut. PMID:18983920

  8. The insecticidal activity of recombinant garlic lectins towards aphids.

    PubMed

    Fitches, Elaine; Wiles, Duncan; Douglas, Angela E; Hinchliffe, Gareth; Audsley, Neil; Gatehouse, John A

    2008-10-01

    The heterodimeric and homodimeric garlic lectins ASAI and ASAII were produced as recombinant proteins in the yeast Pichia pastoris. The proteins were purified as functional dimeric lectins, but underwent post-translational proteolysis. Recombinant ASAII was a single homogenous polypeptide which had undergone C-terminal processing similar to that occurring in planta. The recombinant ASAI was glycosylated and subject to variable and heterogenous proteolysis. Both lectins showed insecticidal effects when fed to pea aphids (Acyrthosiphon pisum) in artificial diet, ASAII being more toxic than ASAI at the same concentration. Acute toxicity (mortality at < or =48 h exposure; similar timescale to starvation) was only apparent at the highest lectin concentrations tested (2.0 mg ml(-)1), but dose-dependent chronic toxicity (mortality at >3d exposure) was observed over the concentration range 0.125-2.0 mg ml(-1). The recombinant lectins caused mortality in both symbiotic and antibiotic-treated aphids, showing that toxicity is not dependent on the presence of the bacterial symbiont (Buchnera aphidicola), or on interaction with symbiont proteins, such as the previously identified lectin "receptor" symbionin. A pull-down assay coupled with peptide mass fingerprinting identified two abundant membrane-associated aphid gut proteins, alanyl aminopeptidase N and sucrase, as "receptors" for lectin binding. PMID:18707000

  9. Wild Solanum resistance to aphids: antixenosis or antibiosis?

    PubMed

    Le Roux, Vincent; Dugravot, Sébastien; Campan, Erick; Dubois, Françoise; Vincent, Charles; Giordanengo, Philippe

    2008-04-01

    The type (antixenosis or antibiosis) of resistance against the aphids Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) was characterized for the wild tuber-bearing potatoes, Solanum chomatophilum Bitter and Solanum stoloniferum Schltdl. & Bouché through behavioral (olfactometry and electrical penetration graph) and physiological studies. In dual-choice assays, only S. stoloniferum exerted attraction to M. euphorbiae. This ruled out the possibility that plant volatiles of S. chomatophilum and S. stoloniferum may contribute to the high resistance expressed. In electrical penetration graph experiments, aphids feeding on S. stoloniferum showed increased salivation phases, whereas phloem ingestion was drastically reduced for both aphid species. Because reaching phloem elements was not delayed in both species, the resistance mechanism was phloem-located. The antixenosis exhibited by S. stoloniferum was similar on young and mature leaves. S. chomatophilum also showed phloem-located antixenosis against M. persicae. In contrast, M. euphorbiae had no difficulty to reach S. chomatophilum phloem tissues and to ingest sap. S. chomatophilum resistance against M. euphorbiae was antibiosis and only expressed in mature leaves, where a complete nymphal mortality was observed. PMID:18459428

  10. Fine Mapping the Soybean Aphid Resistance Gene Rag1 in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid [Aphis glycines Matsumura] is an important soybean [Glycine max (L.) Merr.] pest in North America. The dominant aphid resistance gene Rag1 was previously mapped from the cultivar ‘Dowling’ to a 12 centiMorgan (cM) marker interval on soybean chromosome 7 [formerly linkage group (LG)...

  11. SEASONAL OCCURRENCE OF APHIDS AND NATURAL ENEMIES IN WHEAT AND ALTERNATIVE CROPS GROWN IN OKLAHOMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We monitored experimental plantings of winter wheat and 12 other grain and forage crops for aphids and aphid natural enemies throughout the growing season of each crop for three years. Sorghum (Sorghum vulgare Prescott), cotton (Gossypium hirsutum L.), and winter canola (Brassica napus L.) hosted a...

  12. Field and laboratory evaluations of soybean lines against the soybean aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host-plant resistance a...

  13. Grass hosts of cereal aphids (Hemiptera: Aphididae) between wheat-cropping cycles in South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several grasses may serve as alternative hosts for cereal aphids during the interim between small-grain crops in South Dakota, but field studies to determine which grasses are important have not been undertaken. We sampled annual and perennial grasses for cereal aphids in 18 counties in South Dakot...

  14. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of Paecilomyces fumosoroseus to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Ra...

  15. Two Species of Symbiotic Bacteria Present in the Soybean Aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids, which feed solely on plant phloem sap, have developed symbiotic associations with bacteria that provide them with the amino acids that are lacking in phloem. Three soybean aphid (Aphis glycines Mat samura) populations were screened for the presence of Buchnera aphidicola and three common spe...

  16. Aphid population fluctuations and patterns of species dominance in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Papaya ringspot virus (PRSV) is a non-persistently transmitted virus affecting papaya and cucurbit production worldwide. Papaya is not known to be colonized by any species of aphid, but multiple species can transmit the virus. That means that transmission depends on aphid populat...

  17. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  18. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  19. The ability of insect-killing fungi to kill pecan aphids under laboratory conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is need for efficacious biocontrol agents for pecan aphids in commercial orchards. We determined the virulence (killing power) of several beneficial fungi to pecan aphids. We tested three species (kinds) of fungi: 1) Isaria fumosorosea (two strains of this species were tested: ARSEF 3581 a...

  20. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  1. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Greenbug (Schizaphis graminum Rondani) and Russian wheat aphid appear in the Great Plains almost every year and have had significant economic impacts on wheat yields. Early detection of aphid infestation is a critical part of integrated pest management (IPM) for wheat and sorghum produ...

  2. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  3. Evidence for the biochemical basis of host virulence in the greenbug aphid, Schizaphis graminum (Homoptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort to develop aphid-resistant, small grain varieties to limit in...

  4. Aphids and parasitoids in wheat and nearby canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In central Oklahoma, winter canola has recently become the primary rotational winter crop with wheat. Annual aphid pest outbreaks in canola have resulted in widespread insecticide applications. Insect parasitoids, which frequently suppress aphids in nearby wheat, may move to canola due to the larg...

  5. Cloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is currently the most important insect pest of soybean (Glycine max (L.) Merr.) in the United States and it causes significant economic damage worldwide. The adaptation to host plant resistance can lead to the evolution of soybean aphid ...

  6. Risk to native Uroleucon aphids (Hemiptera: Aphididae) from non-native lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids in the genus Uroleucon Mordvilko (Hemiptera: Aphididae) are native herbivores that feed on goldenrod (Solidago spp.) and other Asteraceae in North America. The aphids are potential prey for a wide variety of natural enemies, including native and non-native species of lady beetles (Coleoptera...

  7. Crop Mineral Nutrient and Yield Responses to Aphids or BYDV in Spring Wheat and Oats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little information available that describes how changes in root system biomass caused by aphid feeding or aphid-transmitted viral disease affect root system function in spring wheat (Triticum aestivum L.) or oat (Avena sativa L.). This 2-yr field experiment was conducted to determine how l...

  8. Screening USDA-ARS wheat germplasm for bird cherry-oat aphid tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bird cherry-oat aphid (Rhopalosiphum padi L.) can cause significant yield reduction in wheat (Triticum aestivum L.) without causing aboveground visual damage signs or symptoms. This lack of obvious aboveground symptom development makes it difficult to use standard aphid tolerance testing protoc...

  9. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  10. Aphidoletes aphidimyza oviposition behaviour when multiple aphid pests are present in the greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generalist aphid predator Aphidoletes aphidimyza was investigated for oviposition behaviour on the pest aphids Myzus persicae and Aulacorthum solani in greenhouse trials. Oviposition was significantly lower on A. solani than M. persicae. Myzus persicae were concentrated at the growing points of ...