Science.gov

Sample records for intake device aphid

  1. Aphid pheromones.

    PubMed

    Dewhirst, Sarah Y; Pickett, John A; Hardie, Jim

    2010-01-01

    Aphids are the main insect pests of agricultural crops in temperate regions causing major economic losses. Although broad-spectrum insecticides are available for control, alternative and more targeted methods are needed due to insecticide resistance and increasing environmental pressures. An alternative control method for aphids is to exploit their pheromones, which have been extensively studied in recent years. For example, aphids release alarm pheromones in response to natural enemy attack and these could be used to deter aphids from the crops. Sex pheromones have also been identified which could be used to interfere males locating conspecific females (oviparae), as well as for manipulating natural enemies. Several hypotheses relating to how species integrity is maintained via the aphid sex pheromone have been proposed. The composition and behavioral activity of these pheromones, and how their use could be implemented in integrated pest management systems to control aphids, is discussed. PMID:20831961

  2. Aphid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing and selecting for Russian wheat aphid (RWA) and greenbug resistance in WIT breeding lines continued this year. Several excellent lines with high levels of resistance advanced through the cultivar development process. Single plant selections from six experimental lines were retested to conf...

  3. A Novel Wearable Device for Food Intake and Physical Activity Recognition

    PubMed Central

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  4. A Novel Wearable Device for Food Intake and Physical Activity Recognition.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-01-01

    Presence of speech and motion artifacts has been shown to impact the performance of wearable sensor systems used for automatic detection of food intake. This work presents a novel wearable device which can detect food intake even when the user is physically active and/or talking. The device consists of a piezoelectric strain sensor placed on the temporalis muscle, an accelerometer, and a data acquisition module connected to the temple of eyeglasses. Data from 10 participants was collected while they performed activities including quiet sitting, talking, eating while sitting, eating while walking, and walking. Piezoelectric strain sensor and accelerometer signals were divided into non-overlapping epochs of 3 s; four features were computed for each signal. To differentiate between eating and not eating, as well as between sedentary postures and physical activity, two multiclass classification approaches are presented. The first approach used a single classifier with sensor fusion and the second approach used two-stage classification. The best results were achieved when two separate linear support vector machine (SVM) classifiers were trained for food intake and activity detection, and their results were combined using a decision tree (two-stage classification) to determine the final class. This approach resulted in an average F1-score of 99.85% and area under the curve (AUC) of 0.99 for multiclass classification. With its ability to differentiate between food intake and activity level, this device may potentially be used for tracking both energy intake and energy expenditure. PMID:27409622

  5. Aphids as crop pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book of contributed articles by 68 leading aphid researchers is the most complete gathering of current aphid knowledge since the three volume work entitled “Aphids: Their Biology, Natural Enemies and Control” published in 1987 through 1989 (Minks and Harrewijn, 1987). The new book offers a cons...

  6. The semiochemistry of aphids.

    PubMed

    Pickett, John A; Allemannb, Rudolf K; Birketta, Michael A

    2013-10-11

    Chemical signalling between aphids (small insects that suck plant sap) formating and avoidance of antagonistic organisms, and between aphids and plants for location of hosts or avoidance of unsuitable plants, employs minute levels of small lipophilic molecules (SLMs), termed "semiochemicals". These semiochemicals, which include sex and alarm pheromones, although often involving relatively simple volatile compounds to allow aerial transmission, convey highly accurate information, either through the uniqueness of their chemical structure or by acting together in characteristic mixtures. In addition, by chemical instability, they do not remain in the environment after their essential signalling role has occurred. Aphids, as a consequence of direct feeding or virus transmission, are major pests of agriculture and horticulture. Aphid semiochemicals present novel opportunities for management of pest populations, but problems of synthesis costs and delivery need to be overcome. Genes for associated enzymes in aphids and plants offer solutions, either for production and subsequent deployment in agriculture, or for direct biosynthesis by crop plants as a new generation of genetically modified organisms (GMOs). These approaches are currently under active investigation. Semiochemicals released from plants during aphid feeding can also "switch on" defence chemistry-related genes in intact plants under field conditions, and the gene promoter sequences involved could be used to produce novel types of sentinel plants. The molecular recognition mechanisms employed in aphid olfactory systems are being investigated to provide potential tools for recognition of SLMs, and the acceptance of substrate analogues is explored with enzymes synthesising aphid semiochemicals in an attempt to provide more active or stable structural analogues. PMID:24156096

  7. Arabidopsis thaliana—Aphid Interaction

    PubMed Central

    Louis, Joe; Singh, Vijay; Shah, Jyoti

    2012-01-01

    Aphids are important pests of plants that use their stylets to tap into the sieve elements to consume phloem sap. Besides the removal of photosynthates, aphid infestation also alters source-sink patterns. Most aphids also vector viral diseases. In this chapter, we will summarize on recent significant findings in plant-aphid interaction, and how studies involving Arabidopsis thaliana and Myzus persicae (Sülzer), more commonly known as the green peach aphid (GPA), are beginning to provide important insights into the molecular basis of plant defense and susceptibility to aphids. The recent demonstration that expression of dsRNA in Arabidopsis can be used to silence expression of genes in GPA has further expanded the utility of Arabidopsis for evaluating the contribution of the aphid genome-encoded proteins to this interaction. PMID:22666177

  8. Ants defend aphids against lethal disease.

    PubMed

    Nielsen, Charlotte; Agrawal, Anurag A; Hajek, Ann E

    2010-04-23

    Social insects defend their own colonies and some species also protect their mutualist partners. In mutualisms with aphids, ants typically feed on honeydew produced by aphids and, in turn guard and shelter aphid colonies from insect natural enemies. Here we report that Formica podzolica ants tending milkweed aphids, Aphis asclepiadis, protect aphid colonies from lethal fungal infections caused by an obligate aphid pathogen, Pandora neoaphidis. In field experiments, bodies of fungal-killed aphids were quickly removed from ant-tended aphid colonies. Ant workers were also able to detect infective conidia on the cuticle of living aphids and responded by either removing or grooming these aphids. Our results extend the long-standing view of ants as mutualists and protectors of aphids by demonstrating focused sanitizing and quarantining behaviour that may lead to reduced disease transmission in aphid colonies. PMID:19923138

  9. Experimental Study on Basic Shape of Simple Device for Prevention of Inflow and Accumulation of Buoyant Refuse at the Intake of Headworks

    NASA Astrophysics Data System (ADS)

    Namihira, Atsushi; Kobayashi, Hiroyasu; Takaki, Kyoji; Goto, Masahiro

    In this research, the basic shape of the device for prevention of inflow and accumulation of buoyant refuse at the intake of headworks is investigated by hydraulic model test. As results, it is clarified that an enough result is not obtained if the prismatic bar that floats on the water is set as the device for prevention so that it may cross the intake. On the other hands, it is clarified that the inflow and accumulation of buoyant refuse at the intake is decreased greatly if the bar is set so that it may be diagonally thrust out from the upstream edge of the intake to the downstream on the river side. In this case, it is necessary to decide the length and setting angle of the bar so that it may intersect with the boundary line of the area where the refuse flow into the intake with no device for prevention.

  10. Bird Cherry-Oat Aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • The bird cherry-oat aphid (Rhopalosiphum padi) is an important vector of barley yellow dwarf viruses that affect wheat and other small-grain crops, but the aphid may also cause direct feeding damage to wheat. • Various plant-resistance modalities and natural enemies are not equally applicable in s...

  11. Bird Cherry-Oat Aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid feeds on barley, oats, rye, triticale, and wheat by sucking plant juices. Its feeding may stunt plants and lead to yield loss, but it does not cause symptoms of yellowing and leaf curling. Bird cherry-oat aphid is also a vector of barley yellow dwarf virus. Biological, cultu...

  12. Symbiont infection affects aphid defensive behaviours.

    PubMed

    Dion, Emilie; Polin, Sarah Erika; Simon, Jean-Christophe; Outreman, Yannick

    2011-10-23

    Aphids harbour both an obligate bacterial symbiont, Buchnera aphidicola, and a wide range of facultative ones. Facultative symbionts can modify morphological, developmental and physiological host traits that favour their spread within aphid populations. We experimentally investigated the idea that symbionts may also modify aphid behavioural traits to enhance their transmission. Aphids exhibit many behavioural defences against enemies. Despite their benefits, these behaviours have some associated costs leading to reduction in aphid reproduction. Some aphid individuals harbour a facultative symbiont Hamiltonella defensa that provides protection against parasitoids. By analysing aphid behaviours in the presence of parasitoids, we showed that aphids infected with H. defensa exhibited reduced aggressiveness and escape reactions compared with uninfected aphids. The aphid and the symbiont have both benefited from these behavioural changes: both partners reduced the fitness decrements associated with the behavioural defences. Such symbiont-induced changes of behavioural defences may have consequences for coevolutionary processes between host organisms and their enemies. PMID:21490007

  13. Volatile communication in plant-aphid interactions.

    PubMed

    de Vos, Martin; Jander, Georg

    2010-08-01

    Volatile communication plays an important role in mediating the interactions between plants, aphids, and other organisms in the environment. In response to aphid infestation, many plants initiate indirect defenses through the release of volatiles that attract ladybugs, parasitoid wasps, and other aphid-consuming predators. Aphid-induced volatile release in the model plant Arabidopsis thaliana requires the jasmonate signaling pathway. Volatile release is also induced by infection with aphid-transmitted viruses. Consistent with mathematical models of optimal transmission, viruses that are acquired rapidly by aphids induce volatile release to attract migratory aphids, but discourage long-term aphid feeding. Although the ecology of these interactions is well-studied, further research is needed to identify the molecular basis of aphid-induced and virus-induced changes in plant volatile release. PMID:20627668

  14. Do aphids actively search for ant partners?

    PubMed

    Fischer, Christophe Y; Vanderplanck, Maryse; Lognay, Georges C; Detrain, Claire; Verheggen, François J

    2015-04-01

    The aphid-ant mutualistic relationships are not necessarily obligate for neither partners but evidence is that such interactions provide them strong advantages in terms of global fitness. While it is largely assumed that ants actively search for their mutualistic partners namely using volatile cues; whether winged aphids (i.e., aphids' most mobile form) are able to select ant-frequented areas had not been investigated so far. Ant-frequented sites would indeed offer several advantages for these aphids including a lower predation pressure through ant presence and enhanced chances of establishing mutuaslistic interactions with neighbor ant colonies. In the field, aphid colonies are often observed in higher densities around ant nests, which is probably linked to a better survival ensured by ants' services. Nevertheless, this could also result from a preferential establishment of winged aphids in ant-frequented areas. We tested this last hypothesis through different ethological assays and show that the facultative myrmecophilous black bean aphid, Aphis fabae L., does not orientate its search for a host plant preferentially toward ant-frequented plants. However, our results suggest that ants reduce the number of winged aphids leaving the newly colonized plant. Thus, ants involved in facultative myrmecophilous interactions with aphids appear to contribute to structure aphid populations in the field by ensuring a better establishment and survival of newly established colonies rather than by inducing a deliberate plant selection by aphid partners based on the proximity of ant colonies. PMID:24659520

  15. Aphids capable of fine resolution landing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids vector many devastating plant viruses, including the non-persistent papaya ringspot virus (PRSV), which reduces yield in both cucurbits and papaya. It has been demonstrated that some aphids are more attracted to colors symptomatic of virus infection, especially yellow. However, alate aphids a...

  16. Soybean aphids making their summer appearance early

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two small, soft-bodied insects have begun showing up in South Dakota soybean. One is the soybean aphid, and the other is a mealybug. Soybean aphids are yellow to yellow/green and are usually found feeding on the underside of leaves. Incidence of soybean aphid has been a bit higher than typical fo...

  17. Do aphid carcasses on the backs of larvae of green lacewing work as chemical mimicry against aphid-tending ants?

    PubMed

    Hayashi, Masayuki; Choh, Yasuyuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2014-06-01

    Ants attack and exclude natural enemies of aphids in ant-aphid mutualisms. However, larvae of the green lacewing, Mallada desjardinsi, prey on the cowpea aphid, Aphis craccivora, without exclusion by aphid-tending ants. Lacewing larvae are protected from ants by carrying aphid carcasses on their backs. Here, we tested whether cuticular hydrocarbons (CHCs) of aphid carcasses affected the aggressiveness of aphid-tending ants. Aphid carcasses were washed with n-hexane to remove lipids. Lacewing larvae with washed aphid carcasses were attacked by aphid-tending ants more frequently than those with untreated aphid carcasses. We measured the aggressiveness of aphid-tending ants to lacewing larvae that were either carrying a piece of cotton wool (a dummy aphid carcass) treated with CHCs from aphids or lacewing larvae, or carrying aphid carcasses. The rates of attack by ants on lacewing larvae carrying CHCs of aphids or aphid carcasses were lower than that of attack on lacewing larvae with conspecific CHCs. Chemical analysis by gas chromatography/mass spectrometry showed similarity of CHCs between aphids and aphid carcasses. These results suggest that aphid carcasses on the backs of lacewing larvae function via chemical camouflage to limit attacks by aphid-tending ants. PMID:24894158

  18. Efficacy of Chemical Mimicry by Aphid Predators Depends on Aphid-Learning by Ants.

    PubMed

    Hayashi, Masayuki; Nomura, Masashi; Nakamuta, Kiyoshi

    2016-03-01

    Chemical mimicry is an effective strategy when signal receivers recognize and discriminate models by relying on chemical cues. Some aphid enemies mimic the cuticular chemicals of aphids through various means thus avoiding detection and attack by aphid-tending ants. However, because ants have been reported to learn the chemical signatures of aphids in order to distinguish the aphids, the efficacy of chemical mimicry is predicted to depend on the experience of the ants that had tended aphids. The present study tested this hypothesis using two predator species: larvae of the green lacewing Mallada desjardinsi, and larvae of the ladybeetle Scymnus posticalis. Lacewing larvae carry the carcasses of aphids on which they have preyed upon their backs, and these function via chemical camouflage to reduce the aggressiveness of aphid-tending ants toward the larvae. Ladybeetle larvae reportedly produce a covering of wax structures, and their chemicals appear to attenuate ant aggression. We examined whether the behavior of the ant Tetramorium tsushimae toward these predators changed depending on their aphid-tending experience. Ants moderated their aggressiveness toward both predators when they had previously tended aphids, indicating that chemical mimicry by both aphid predators is dependent on previous experience of the ants in tending aphids. Chemical mimicry by the predators of ant-tended aphids is therefore considered to exploit learning-dependent aphid recognition systems of ants. PMID:26939830

  19. Resistant and susceptible responses of cereal hosts to aphid feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although cereal host resistance to aphids has been examined extensively, little information is available on etiology of aphid injury and biochemical responses of resistant and susceptible cereal hosts to aphid feeding. Our team examined both aphid and plant factors for the Russian wheat aphid (RWA)...

  20. Quantitation and localization of pospiviroids in aphids.

    PubMed

    Van Bogaert, N; De Jonghe, K; Van Damme, E J M; Maes, M; Smagghe, G

    2015-01-01

    In this paper, the potential role of aphids in viroid transmission was explored. Apterous aphids were fed on pospiviroid-infected plants and viroid targets in the aphids were consequently quantified through RT-qPCR and localized within the aphid body using fluorescence in situ hybridization (FISH). Based on the analytical sensitivity test, the limit of detection (LOD) was estimated at 1.69×10(6) viroid copies per individual aphid body. To localize the viroids in the aphids, a pospiviroid-generic Cy5-labelled probe was used and the fluorescent signal was determined by confocal microscopy. Viroids were clearly observed in the aphid's stylet and stomach, but not in the embryos. Viroids were detected in 29% of the aphids after a 24h feeding period, which suggests only a partial and low concentration viroid uptake by the aphid population including viroid concentrations under the LOD. However, these results show that viroids can be ingested by aphids while feeding on infected plants, thus potentially increasing the transmission risk. The combination of FISH and RT-qPCR provides reliable and fast localization and quantitation of viroid targets in individual aphids and thus constitutes a valuable tool in future epidemiological research. PMID:25455904

  1. Plant immunity in plant–aphid interactions

    PubMed Central

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  2. Exotic aphid control with pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exotic aphids are invading ecosystems worldwide. The principal factors favoring establishment of these pests are their small size, parthenogenetic reproduction, short generation time, ability for long distance dispersal as winged morphs, and explosive population dynamics. In the past, attention to i...

  3. SOYBEAN.APHID.LH.2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression of soybean aphid (SA) resistance was characterized among 496 soybean lines in a twice-replicated field-plot test at the Eastern South Dakota Soil and Water Research Farm near Brookings, SD, in 2009. Natural infestations of SA occurred but were supplemented by placing individual stems of ...

  4. Categorizing sugarcane cultivar resistance to the sugarcane aphid and yellow sugarcane aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in the U.S. is chiefly colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari, and the yellow sugarcane aphid, Sipha flava, which vector economically important viruses of the crop. Greenhouse experiments were conducted to categorize commercial sugarcane cultivars for the...

  5. Categorizing Sugarcane Cultivar Resistance to the Sugarcane Aphid and Yellow Sugarcane Aphid (Hemiptera: Aphidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). The main problem associated with M. sacchari is transmission of sugarcane yellow leaf virus, a disease that has been added to certifica...

  6. Aphid alarm pheromone as a cue for ants to locate aphid partners.

    PubMed

    Verheggen, François J; Diez, Lise; Sablon, Ludovic; Fischer, Christophe; Bartram, Stefan; Haubruge, Eric; Detrain, Claire

    2012-01-01

    The mutualistic relationships that occur between myrmecophilous aphids and ants are based on the rich food supply that honeydew represents for ants and on the protection they provide against aphid natural enemies. While aphid predators and parasitoids actively forage for oviposition sites by using aphid semiochemicals, scouts of aphid-tending ant species would also benefit from locating honeydew resources by orienting toward aphid pheromone sources. The present study aims to provide additional information on the use of Aphis fabae alarm pheromone, i.e. (E)-β-farnesene (EβF), by ant scouts. The perception and behavioral impact of EβF on Lasius niger were investigated using electroantennography and two bio-assays measuring their attraction and orientation towards aphid semiochemicals. Pronounced electrical depolarizations were observed from L. niger scout antennae to stimulations of A. fabae alarm pheromone, while other sesquiterpenes elicited weak or no responses. L. niger scouts were significantly attracted toward EβF in a four-arm olfactometer, as well as in an two-choice bioassay. These laboratory results suggest for the first time that low amounts of aphid alarm pheromone can be used by L. niger scouts as a cue indicating the presence of aphid colonies and could therefore mediate the aphid-ant partnership in the field. PMID:22870255

  7. AphidBase: A centralized bioinformatic resource for annotation of the pea aphid genome

    PubMed Central

    Legeai, Fabrice; Shigenobu, Shuji; Gauthier, Jean-Pierre; Colbourne, John; Rispe, Claude; Collin, Olivier; Richards, Stephen; Wilson, Alex C. C.; Tagu, Denis

    2015-01-01

    AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at http://www.aphidbase.com. PMID:20482635

  8. Specialization of bacterial endosymbionts that protect aphids from parasitoids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by the bacterial endosymbiont HAMILTONELLA DEFENSA is capable of protecting the pea aphid from parasitism by APHIDIUS ERVI and the black bean aphid from parasitism by LYSIPHLEBUS FABARUM. Here we investigate protection of a third aphid species, the cowpea aphid, APHIS CRACCIVORA, from 4 p...

  9. Developing Metrics for Managing Soybean Aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stage-specific economic injury levels form the basis of integrated pest management for soybean aphid (Aphis glycines Matsumura) in soybean (Glycine max L.). Experimental objectives were to develop a procedure for calculating economic injury levels of the soybean aphid specific to the R2 (full bloom...

  10. SOYBEAN.APHID.2.SD.2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid (SA, Aphis glycines Matsumura) has been an important pest of soybean (Glycine max (L.) Merr.) in the United States since 2000. Identification and genetic characterization of SA resistance in early maturing soybean germplasm will facilitate development of aphid-resistant cultivars in no...

  11. Managing black pecan aphids and stink bugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black pecan aphid (Melanocallis caryafoliae) and stink bugs (Hemiptera: Pentatomidae) are serious threats to late season pecan production. Feeding injury by the black pecan aphid to pecan foliage can result in economic injury through decreased yield and quality of the pecan crop, depletion of c...

  12. Transparency Master: The Annual Aphid Cycle.

    ERIC Educational Resources Information Center

    Sessions, Mary Lynne

    1983-01-01

    Aphids, often referred to as plant lice, can be found in great numbers on stems, leaves, and flowers of many plants. In many cases these organisms are potentially harmful to their plant hosts. Provided is a description of the annual life cycle of the aphid and an accompanying transparency master. (Author/JN)

  13. Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins.

    PubMed

    Chaudhary, Ritu; Atamian, Hagop S; Shen, Zhouxin; Briggs, Steven P; Kaloshian, Isgouhi

    2015-04-01

    Aphids deliver saliva into plants and acquire plant sap for their nourishment using a specialized mouthpart or stylets. Aphid saliva is of great importance because it contains effectors that are involved in modulating host defense and metabolism. Although profiling aphid salivary glands and identifying secreted proteins have been successfully used, success in direct profiling of aphid saliva have been limited due to scarcity of saliva collected in artificial diets. Here we present the use of a neurostimulant, resorcinol, for inducing aphid salivation. Saliva of potato aphids (Macrosiphum euphorbiae), maintained on tomato, was collected in resorcinol diet. Salivary proteins were identified using mass spectrometry and compared with the existing M. euphorbiae salivary proteome collected in water. Comparative analysis was also performed with existing salivary proteomes from additional aphid species. Most of the proteins identified in the resorcinol diet were also present in the water diet and represented proteins with a plethora of functions in addition to a large number of unknowns. About half of the salivary proteins were not predicted for secretion or had canonical secretion signal peptides. We also analyzed the phosphorylation states of M. euphorbiae salivary proteins and identified three known aphid effectors, Me_WB01635/Mp1, Me10/Mp58, and Me23 that carry phosphorylation marks. In addition to insect proteins, tomato host proteins were also identified in aphid saliva. Our results indicate that aphid saliva is complex and provides a rich resource for functional characterization of effectors. PMID:25722084

  14. Long range migration of aphids into Sweden

    NASA Astrophysics Data System (ADS)

    Wiktelius, Staffan

    1984-09-01

    A five year study of migration of aphids across the southern part of the Baltic Sea is reported. The aphids were caught in a suction trap placed on a lighthouse 50 m from the shoreline. Large sections of the results are presented as case studies i.e. catches of aphids from periods containing at least three consecutive days with a southerly gradient wind. Some periods contained large and diverse catches and it is assumed that aphids regularly cross the Baltic Sea. The catches was largest on days when a cold front passed the trapping site within a period. More Myzus persicae were caught on days when the wind was southerly than on days with a northerly wind direction.

  15. Organisms for Teaching: The Biology of Aphids.

    ERIC Educational Resources Information Center

    Llewellyn, M.

    1984-01-01

    Background information on the biology of aphids is supplied. Using this information in a wide variety of investigations, many involving equipment and techniques available in the school laboratory, can be carried out. An appendix lists possible projects. (Author)

  16. RNAi-mediated plant protection against aphids.

    PubMed

    Yu, Xiu-Dao; Liu, Zong-Cai; Huang, Si-Liang; Chen, Zhi-Qin; Sun, Yong-Wei; Duan, Peng-Fei; Ma, You-Zhi; Xia, Lan-Qin

    2016-06-01

    Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double-stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant-mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant-mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant-mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid-resistant plants through plant-mediated RNAi strategy. © 2016 Society of Chemical Industry. PMID:26888776

  17. Ant semiochemicals limit apterous aphid dispersal.

    PubMed

    Oliver, Thomas H; Mashanova, Alla; Leather, Simon R; Cook, James M; Jansen, Vincent A A

    2007-12-22

    Some organisms can manipulate the nervous systems of others or alter their physiology in order to obtain benefit. Ants are known to limit alate aphid dispersal by physically removing wings and also through chemical manipulation of the alate developmental pathway. This results in reduced dispersal and higher local densities of aphids, which benefit ants in terms of increased honeydew and prey availability. Here, we show that the walking movement of mutualistic apterous aphids is also reduced by ant semiochemicals. Aphids walk slower and their dispersal from an unsuitable patch is hampered by ants. If aphid walking dispersal has evolved as a means of natural enemy escape, then ant chemicals may act as a signal indicating protection; hence, reduced dispersal could be adaptive for aphids. If, however, dispersal is primarily a means to reduce competition or to maintain persistent metapopulations, then manipulation by ants could be detrimental. Such manipulation strategies, common in host-parasite and predator-prey interactions, may be more common in mutualism than expected. PMID:17925280

  18. Do Bacterial Symbionts Govern Aphid's Dropping Behavior?

    PubMed

    Lavy, Omer; Sher, Noa; Malik, Assaf; Chiel, Elad

    2015-06-01

    Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors. PMID:26313964

  19. AphID (Lucid key) http://AphID.AphidNet.org

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This peer-reviewed web site concentrates on the 66 adult alate and apterous aphids that are the world's most cosmopolitan and polyphagous species. The site includes fact sheets about the various aphids species, a glossary of terms helpful to the student, hundreds of photographs and illustrations, a...

  20. Modulation of aphid alarm pheromone emission of pea aphid prey by predators.

    PubMed

    Joachim, Christoph; Hatano, Eduardo; David, Anja; Kunert, Maritta; Linse, Cornelia; Weisser, Wolfgang W

    2013-06-01

    Recent studies on animal alarm signaling have shown that alarm calls generally are not uniform, but may vary depending on the type and intensity of threat. While alarm call variability has been studied intensively in birds and mammals, little is known about such variation in insects. We investigated variability in alarm signaling in aphids, group-living insect herbivores. Under attack, aphids release droplets containing a volatile alarm pheromone, (E)-β-farnesene (EBF), that induces specific escape behavior in conspecifics. We used a handheld gas chromatograph (zNose™), which allows real-time volatile analysis, to measure EBF emission by pea aphids, Acyrthosiphon pisum, under attack from different predators, lacewing or ladybird larvae. We demonstrate that aphid alarm signaling is affected by the predator species attacking. Ladybirds generally elicited smaller EBF emission peaks and consumed aphids more quickly, resulting in lower total EBF emission compared to lacewing attacks. In 52 % of the replicates with lacewings and 23 % with ladybirds, no EBF was detectable in the headspace, although aphids secreted cornicle droplets after attack. We, therefore, examined EBF amounts contained in these droplets and the aphid body. While all aphid bodies always contained EBF, many secreted droplets did not. Our experiments show that alarm signaling in insects can be variable, and both the attacker as well as the attacked may affect alarm signal variation. While underlying mechanisms of such variation in aphid-predator interactions need to be investigated in more detail, we argue that at least part of this variation may be adaptive for the predator and the aphid. PMID:23686467

  1. Aphid-induced accumulation of trehalose in Arabidopsis thaliana is systemic and dependent upon aphid density.

    PubMed

    Hodge, Simon; Ward, Jane L; Beale, Michael H; Bennett, Mark; Mansfield, John W; Powell, Glen

    2013-04-01

    Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid-host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g(-1) dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant. PMID:23242075

  2. Mapping soybean aphid resistance genes in PI 567598B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) has been a major pest of soybean [Glycine max (L.) Merr.] in North America since it was first discovered in 2000. Plant introduction PI 567598B possesses strong antibiosis resistance to soybean aphids. Our previous study revealed that the aphid resistan...

  3. Plant derived compounds and extracts with potential as aphid repellents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We devised a method for screening various substances for possible aphid repellency. Corn leaf aphids (Rhopalosiphum maidis) were released in an arena and allowed to select paired green tiles coated with petroleum jelly alone or petroleum jelly containing 1% of the substance being tested. Aphids ad...

  4. Evaluation of aphid resistance among sugarcane cultivars in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane, interspecific hybrids of Saccharum spp., in Louisiana is colonized by two aphid species, the sugarcane aphid, Melanaphis sacchari (Zehntner), and the yellow sugarcane aphid, Sipha flava (Forbes). Five sugarcane cultivars, LCP 85-384, HoCP 91-555, Ho 95-988, HoCP 96-540, and L 97-128, rep...

  5. Soybean Aphid Feeding Injury and Soybean Yield and Seed Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of the level of yield loss caused by soybean aphid feeding is considered to be the crux of integrated pest management for these pests. Despite the accumulating literature on the soybean aphid, there are currently few published data on the effects of soybean aphid populations on ...

  6. Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction

    PubMed Central

    Hol, W. H. G.; Raaijmakers, Ciska E.; Mons, Ilse; Meyer, Katrin M.; van Dam, Nicole M.

    2016-01-01

    Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modeling approach to analyze the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction) would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring female–1 day–1) in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring female–1 day–1). The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments. PMID:26904074

  7. Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction.

    PubMed

    Hol, W H G; Raaijmakers, Ciska E; Mons, Ilse; Meyer, Katrin M; van Dam, Nicole M

    2016-01-01

    Empirical studies have shown that belowground feeding herbivores can affect the performance of aboveground herbivores in different ways. Often the critical life-history parameters underlying the observed performance effects remain unexplored. In order to better understand the cause for the observed effects on aboveground herbivores, these ecological mechanisms must be better understood. In this study we combined empirical experiments with a modeling approach to analyze the effect of two root feeding endoparasitic nematodes with different feeding strategies on the population growth of the aboveground feeding specialist aphid Brevicoryne brassicae on Brassica nigra. The aim was to test whether emerging differences in life history characteristics (days until reproduction, daily reproduction) would be sufficient to explain observed differences in aphid population development on plants with and without two species of nematodes. Aphid numbers were lower on plants with Pratylenchus penetrans in comparison to aphid numbers on plants with Meloidogyne spp. A dedicated experiment showed that aphid daily reproduction was lower on plants with P. penetrans (3.08 offspring female(-1) day(-1)) in comparison to both uninfested plants and plants with Meloidogyne spp. (3.50 offspring female(-1) day(-1)). The species-specific reduction of aphid reproduction appeared independent of changes in amino acids, soluble sugars or the glucosinolate sinigrin in the phloem. An individual-based model revealed that relatively small differences in reproduction rate per female were sufficient to yield a similar difference in aphid populations as was found in the empirical experiments. PMID:26904074

  8. Partial aphid resistance in lettuce negatively affects parasitoids.

    PubMed

    Lanteigne, Marie-Eve; Brodeur, Jacques; Jenni, Sylvie; Boivin, Guy

    2014-10-01

    This study investigated the effects of partial plant resistance on the lettuce aphid Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae), a major pest of cultivated lettuce (Lactuca sativa L.), and one of its parasitoids, Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids were reared on susceptible (L. sativa variety Estival; S) or partially resistant (Lactuca serriola L. PI 491093; PR) lettuce, and next parasitized by A. ervi females. Fitness proxies were measured for both aphids and parasitoids. Developmental time to adult stage took longer for alate and apterous aphids (an average of 3.5 and 1.5 additional days, respectively) on PR than on S lettuce, and fecundity of alate aphids reared on PR lettuce was reduced by 37.8% relative to those reared on S lettuce. Size (tibia length) and weight of aphids reared on PR lettuce were lower than for aphids reared on S lettuce from the third and second instar onward, respectively. Parasitism of aphids reared on PR plants resulted in lower parasitoid offspring emergence (-49.9%), lower adult female (-30.3%) and male (-27.5%) weight, smaller adult female (-17.5%) and male (-11.9%) size, and lower female fecundity (37.8% fewer eggs) than when parasitoids developed from aphids reared on S plants. Our results demonstrate that partial aphid resistance in lettuce negatively affects both the second and third trophic levels. Host plant resistance in cultivated lettuce may therefore create an ecological sink for aphid parasitoids. PMID:25197882

  9. Intake port

    DOEpatents

    Mendler, Edward Charles

    2005-02-01

    The volumetric efficiency and power of internal combustion engines is improved with an intake port having an intake nozzle, a venturi, and a surge chamber. The venturi is located almost halfway upstream the intake port between the intake valves and the intake plenum enabling the venturi throat diameter to be exceptionally small for providing an exceptionally high ram velocity and an exceptionally long and in turn high efficiency diffuser flowing into the surge chamber. The intake port includes an exceptionally large surge chamber volume for blow down of the intake air into the working cylinder of the engine.

  10. Symbiotic bacterium modifies aphid body color.

    PubMed

    Tsuchida, Tsutomu; Koga, Ryuichi; Horikawa, Mitsuyo; Tsunoda, Tetsuto; Maoka, Takashi; Matsumoto, Shogo; Simon, Jean-Christophe; Fukatsu, Takema

    2010-11-19

    Color variation within populations of the pea aphid influences relative susceptibility to predators and parasites. We have discovered that infection with a facultative endosymbiont of the genus Rickettsiella changes the insects' body color from red to green in natural populations. Approximately 8% of pea aphids collected in Western Europe carried the Rickettsiella infection. The infection increased amounts of blue-green polycyclic quinones, whereas it had less of an effect on yellow-red carotenoid pigments. The effect of the endosymbiont on body color is expected to influence prey-predator interactions, as well as interactions with other endosymbionts. PMID:21097935

  11. Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates.

    PubMed

    Feng, Ming-Guang; Chen, Chun; Chen, Bin

    2004-05-01

    Entomophthoralean mycoses are of general importance in the natural control of aphids, but mechanisms involved in their dissemination are poorly understood. Despite several possible means of fungal survival, the dispersal of the mycoses in aphids has never been related to the flight of their migratory alates that are able to locate suitable host plants. In this study, aphid-pathogenic fungi proved to be widely disseminated among various aphids by their alates through migratory flight based on the following findings. First, up to 36.6% of the 7139 migratory alates (including nine species of vegetable or cereal aphids) trapped from air > 30 m above the ground in three provinces of China were found bearing eight species of fungal pathogens. Of those, six were aphid-specific Entomophthorales dominated in individual cases by Pandora neoaphidis, which occurs globally but has no resting spores discovered to date. Secondly, infected alates were confirmed to be able to fly for hours, to initiate colonies on plants after flight and to transmit fungal infection to their offspring in a laboratory experiment, in which 238 Sitobion avenae alates were individually flown in a computer-monitoring flight mill system after exposure to a spore shower of P. neoaphidis and then allowed to colonize host plants. PMID:15049924

  12. Plant–Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior

    PubMed Central

    Sun, Yucheng; Guo, Huijuan; Ge, Feng

    2016-01-01

    Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies. PMID:27148325

  13. Plant-Aphid Interactions Under Elevated CO2: Some Cues from Aphid Feeding Behavior.

    PubMed

    Sun, Yucheng; Guo, Huijuan; Ge, Feng

    2016-01-01

    Although the increasing concentration of atmospheric carbon dioxide (CO2) accelerates the accumulation of carbohydrates and increases the biomass and yield of C3 crop plants, it also reduces their nitrogen concentration. The consequent changes in primary and secondary metabolites affect the palatability of host plants and the feeding of herbivorous insects. Aphids are phloem feeders and are considered the only feeding guild that positively responds to elevated CO2. In this review, we consider how elevated CO2 modifies host defenses, nutrients, and water-use efficiency by altering concentrations of the phytohormones jasmonic acid, salicylic acid, ethylene, and abscisic acid. We will describe how these elevated CO2-induced changes in defenses, nutrients, and water statusfacilitate specific stages of aphid feeding, including penetration, phloem-feeding, and xylem absorption. We conclude that a better understanding of the effects of elevated CO2 on aphids and on aphid damage to crop plants will require research on the molecular aspects of the interaction between plant and aphid but also research on aphid interactions with their intra- and inter-specific competitors and with their natural enemies. PMID:27148325

  14. National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid examination and identification. Aphid topics such as classification, morphology, plant disease transmission, and references are discussed. This dis...

  15. Angiotensin-converting enzymes modulate aphid-plant interactions.

    PubMed

    Wang, Wei; Luo, Lan; Lu, Hong; Chen, Shaoliang; Kang, Le; Cui, Feng

    2015-01-01

    Angiotensin-converting enzymes (ACEs) are key components of the renin-angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect-plant interaction. In this study, we showed that ACE modulates aphid-plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants. PMID:25744345

  16. Mechanisms and evolution of plant resistance to aphids.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2016-01-01

    Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. PMID:27250753

  17. Diversity of Bacteria Associated with Natural Aphid Populations

    PubMed Central

    Haynes, S.; Darby, A. C.; Daniell, T. J.; Webster, G.; van Veen, F. J. F.; Godfray, H.C.J.; Prosser, J. I.; Douglas, A. E.

    2003-01-01

    The bacterial communities of aphids were investigated by terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments generated by PCR with general eubacterial primers. By both methods, the γ-proteobacterium Buchnera was detected in laboratory cultures of six parthenogenetic lines of the pea aphid Acyrthosiphon pisum and one line of the black bean aphid Aphis fabae, and one or more of four previously described bacterial taxa were also detected in all aphid lines except one of A. pisum. These latter bacteria, collectively known as secondary symbionts or accessory bacteria, comprised three taxa of γ-proteobacteria (R-type [PASS], T-type [PABS], and U-type [PAUS]) and a rickettsia (S-type [PAR]). Complementary analysis of aphids from natural populations of four aphid species (A. pisum [n = 74], Amphorophora rubi [n = 109], Aphis sarothamni [n = 42], and Microlophium carnosum [n = 101]) from a single geographical location revealed Buchnera and up to three taxa of accessory bacteria, but no other bacterial taxa, in each aphid. The prevalence of accessory bacterial taxa varied significantly among aphid species but not with the sampling month (between June and August 2000). These results indicate that the accessory bacterial taxa are distributed across multiple aphid species, although with variable prevalence, and that laboratory culture does not generally result in a shift in the bacterial community in aphids. Both the transmission patterns of the accessory bacteria between individual aphids and their impact on aphid fitness are suggested to influence the prevalence of accessory bacterial taxa in natural aphid populations. PMID:14660369

  18. Soybean defense responses to the soybean aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcript profiles in resistant (cv. Dowling) and susceptible (cv. Williams 82) soybean [Glycine max (L.) Merrill] genotypes were compared at 6 and 12 h with and without aphid (Aphis glycines Matsumura) infestation using cDNA microarrays. One hundred and sixteen genes showed specific responses in r...

  19. Plant Immune Responses: Aphids Strike Back.

    PubMed

    Reymond, Philippe; Calandra, Thierry

    2015-07-20

    To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses. PMID:26196486

  20. Citrus tristeza virus-aphid interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review chapter on aphid transmission of Citrus tristeza virus is provided for a book on “Vector-Mediated Transmission of Plant Pathogens”. Earliest uses of citrus goes back over two millennia as items of trade, gifts and medicinal compounds. Citrus propagation during this period was by seed and si...

  1. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids: green peach aphid, melon aphid, and foxglove aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeking new isolates of entomopathogenic fungi with greater virulence against greenhouse aphid pests than those currently registered in North America for control of these insects, single-dose screening assays of 44 selected fungal isolates and 4 commercially available strains were conducted against ...

  2. Sugarbeet root aphid on postharvest root storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root aphid (SBRA), Pemphigus betae Doane, is a serious insect pest of sugarbeet in several North American sugarbeet production areas; however, it is rarely an economic pest in the Red River Valley (RRV). In 2012 and 2013, all RRV factory districts were impacted by SBRA outbreaks, and ...

  3. Aphid egg protection by ants: a novel aspect of the mutualism between the tree-feeding aphid Stomaphis hirukawai and its attendant ant Lasius productus

    NASA Astrophysics Data System (ADS)

    Matsuura, Kenji; Yashiro, Toshihisa

    2006-10-01

    Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.

  4. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    SciTech Connect

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-05-25

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  5. Research on recognition methods of aphid objects in complex backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Yan; Zhang, Ji-Hong

    2009-07-01

    In order to improve the recognition accuracy among the kinds of aphids in the complex backgrounds, the recognition method among kinds of aphids based on Dual-Tree Complex Wavelet Transform (DT-CWT) and Support Vector Machine (Libsvm) is proposed. Firstly the image is pretreated; secondly the aphid images' texture feature of three crops are extracted by DT-CWT in order to get the training parameters of training model; finally the training model could recognize aphids among the three kinds of crops. By contrasting to Gabor wavelet transform and the traditional extracting texture's methods based on Gray-Level Co-Occurrence Matrix (GLCM), the experiment result shows that the method has a certain practicality and feasibility and provides basic for aphids' recognition between the identification among same kind aphid.

  6. Aphid-encoded variability in susceptibility to a parasitoid

    PubMed Central

    2014-01-01

    Background Many animals exhibit variation in resistance to specific natural enemies. Such variation may be encoded in their genomes or derived from infection with protective symbionts. The pea aphid, Acyrthosiphon pisum, for example, exhibits tremendous variation in susceptibility to a common natural enemy, the parasitic wasp Aphidius ervi. Pea aphids are often infected with the heritable bacterial symbiont, Hamiltonella defensa, which confers partial to complete resistance against this parasitoid depending on bacterial strain and associated bacteriophages. That previous studies found that pea aphids without H. defensa (or other symbionts) were generally susceptible to parasitism, together with observations of a limited encapsulation response, suggested that pea aphids largely rely on infection with H. defensa for protection against parasitoids. However, the limited number of uninfected clones previously examined, and our recent report of two symbiont-free resistant clones, led us to explicitly examine aphid-encoded variability in resistance to parasitoids. Results After rigorous screening for known and unknown symbionts, and microsatellite genotyping to confirm clonal identity, we conducted parasitism assays using fifteen clonal pea aphid lines. We recovered significant variability in aphid-encoded resistance, with variation levels comparable to that contributed by H. defensa. Because resistance can be costly, we also measured aphid longevity and cumulative fecundity of the most and least resistant aphid lines under permissive conditions, but found no trade-offs between higher resistance and these fitness parameters. Conclusions These results indicate that pea aphid resistance to A. ervi is more complex than previously appreciated, and that aphids employ multiple tactics to aid in their defense. While we did not detect a tradeoff, these may become apparent under stressful conditions or when resistant and susceptible aphids are in direct competition. Understanding

  7. Armet is an effector protein mediating aphid-plant interactions.

    PubMed

    Wang, Wei; Dai, Huaien; Zhang, Yi; Chandrasekar, Raman; Luo, Lan; Hiromasa, Yasuaki; Sheng, Changzhong; Peng, Gongxin; Chen, Shaoliang; Tomich, John M; Reese, John; Edwards, Owain; Kang, Le; Reeck, Gerald; Cui, Feng

    2015-05-01

    Aphid saliva is predicted to contain proteins that modulate plant defenses and facilitate feeding. Armet is a well-characterized bifunctional protein in mammalian systems. Here we report a new role of Armet, namely as an effector protein in the pea aphid, Acyrthosiphon pisum. Pea aphid Armet's physical and chemical properties and its intracellular role are comparable to those reported for mammalian Armets. Uniquely, we detected Armet in aphid watery saliva and in the phloem sap of fava beans fed on by aphids. Armet's transcript level is several times higher in the salivary gland when aphids feed on bean plants than when they feed on an artificial diet. Knockdown of the Armet transcript by RNA interference disturbs aphid feeding behavior on fava beans measured by the electrical penetration graph technique and leads to a shortened life span. Inoculation of pea aphid Armet protein into tobacco leaves induced a transcriptional response that included pathogen-responsive genes. The data suggest that Armet is an effector protein mediating aphid-plant interactions. PMID:25678626

  8. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes. PMID:26603858

  9. Antagonistic effects of soybean viruses on soybean aphid performance.

    PubMed

    Donaldson, Jack R; Gratton, Claudio

    2007-08-01

    Although there is long-standing recognition that pest complexes require different management approaches than individual pests, relatively little research has explored how pests interact. In particular, little is known of how herbivorous insects and plant pathogens interact when sharing the same host plant. The soybean aphid, Aphis glycines Mastumura, a recently introduced pest of soybean in the upper midwestern United States, and a complex of plant viruses vectored to soybean by insects have become a major concern for growers in the region. Given the abundance of soybean aphid and the increase in virus incidence in recent years, soybean aphids often use soybean infected by plant viral pathogens. We tested the hypothesis that soybean aphid performance is affected by virus infection of soybean plants. We conducted a series of field and laboratory experiments that examined how infection of soybeans with the common plant viruses, alfalfa mosaic, soybean mosaic, and bean pod mottle viruses, influenced soybean aphid performance. Soybean plants (in the field and laboratory) were hand inoculated with individual viruses, and aphids were allowed to colonize plants naturally in field experiments or added to the plants in clip-cages or within mesh bags in laboratory assays. In the field, aphid density on uninfected control soybean plants was nearly double that on infected plants. In laboratory assays, aphid population growth rates were on average 20% lower for aphids on virus infected compared with uninfected plants. Life table analyses showed that increased mortality on virus-infected plants likely explain differences in aphid population growth. Although there was some heterogeneity in the significance of treatment effects among different experiments, when independent experiments are taken together, there is on average an overall negative effect of these viruses on soybean aphids. PMID:17716484

  10. SOYBEAN APHID ABUNDANCE AMONG CONTEMPORARY SOYBEAN LINES IN A GROWTH-CHAMBER TEST, 2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The abundance of soybean aphid was compared among eight contemporary soybean lines in a growth chamber test. All soybean lines had >500 soybean aphids per plant 2 wks after infestation. The number of soybean aphids per plant differed among lines, with Surge and 91B91 having more soybean aphids tha...

  11. National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid regulatory issues. Here the subject of aphids as they relate to disease transmission, biology, identification, and pathways is addressed. Aphid topi...

  12. Movement of winged aphids is poorly understood despite its importance in disease vectoring in Washington potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids are key pests of potatoes because they carry disease into potato fields from surrounding virus sources. Flight behavior of aphids is both difficult to study and poorly known. Many past studies of aphid flight in the field have been incomplete because of inadequate tools to mark aphids and ver...

  13. Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems. PMID:20186266

  14. Salivary proteins of Russian wheat aphid (Hempitera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salivary secretions play critical roles in aphid – host plant interactions and are responsible for damage associated with aphid feeding. The objectives of this study were to evaluate aspects of salivation and the salivary constituents of Diuraphis noxia (Hemiptera: Aphididae). Salivary proteins we...

  15. Barley germplasm resistant to both Russian wheat aphid and greenbug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both Russian wheat aphid, Diuraphis noxia (Kurdjumov), and greenbug, Schizaphis graminum (Rondani) are potential pests on winter cereals grown in the southern plains. In outbreak years, both aphids can drastically reduce grain yield of susceptible cultivars. In barley, two single dominant genes, R...

  16. Triticale Lines Resistant to Bird Cherry-Oat Aphid, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA) is one of the most common aphid pests of small grains worldwide. Triticale is a promising source of resistance to BCOA that may be developed further or crossed with wheat to transfer resistance to that crop. Several entries of triticale were evaluated against BCOA in a...

  17. Prey foraging by Hippodamia convergens for cereal aphids on wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., plants in a laboratory arena, and developed a functional response model for the number of aphids eaten by an adult female con...

  18. Wheat Lines Resistant to Bird Cherry-Oat Aphid, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA) is one of the most common aphid pests of wheat worldwide, and resistant lines are needed as alternatives to chemical control. Several entries of wheat were evaluated against BCOA in a growth chamber test. The number of nymphs deposited by winged BCOA in the first 24 h ...

  19. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid, Rhopalosiphum padi L., is a serious pest of barley, Hordeum vulgare L., world-wide. It is the most efficient vector of barley yellow dwarf virus, the most important viral disease of small grains in the world. Not all bird cherry-oat aphids acquire the virus while feeding on ...

  20. Soybean Aphid (Hemiptera: Aphididae) Affects Soybean Spectral Reflectance.

    PubMed

    Alves, Tavvs M; Macrae, Ian V; Koch, Robert L

    2015-12-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most economically important insect pest of soybean in the north central United States. Scouting-based integrated pest management (IPM) programs could become more efficient and more widely adopted by using plant spectral reflectance to estimate soybean aphid injury. Our objective was to determine whether plant spectral reflectance is affected by soybean aphid feeding. Field trials were conducted in 2013 and 2014 using caged plots. Early-, late-, and noninfested treatments were established to create a gradient of soybean aphid pressure. Whole-plant soybean aphid densities were recorded weekly. Measurements of plant spectral reflectance occurred on two sample dates per year. Simple linear regression models were used to test the effect of cumulative aphid-days (CAD) on plant spectral reflectance at 680 nm (RED) and 800 nm (NIR), normalized difference vegetation index (NDVI), and relative chlorophyll content. Data indicated that CAD had no effect on canopy-level RED reflectance, but CAD decreased canopy-level NIR reflectance and NDVI. Canopy- and leaf-level measurements typically indicated similar plant spectral response to increasing CAD. CAD generally had no effect on relative chlorophyll content. The present study provides the first documentation that remote sensing holds potential for detecting changes in plant spectral reflectance induced by soybean aphid. The use of plant spectral reflectance in soybean aphid management may assist future IPM programs to reduce sampling costs and prevent prophylactic insecticide sprays. PMID:26470392

  1. Efficacy of inorganic compounds against soybean aphid, laboratory tests 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infestations by soybean aphids can reduce the yield of soybeans, and the efficacies of various compounds need evaluation for soybean aphid control. Efficacy of various inorganic compounds was compared to that of a water check and conventional insecticides in two growth-chamber tests. Soybean test ...

  2. Parasitism of aphids in canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola, Brassica napus L., production in Oklahoma has increased from essentially 0 ha in 2001 to 40,500 ha in 2011, and acreage is expected to continue to increase. Three aphid species typically infest canola fields in central Oklahoma, the turnip aphid Lypaphis erysimi (Kaltenbach), the cab...

  3. Aggressive mimicry coexists with mutualism in an aphid.

    PubMed

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-27

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  4. Initiation of leaf chlorosis benefits the black pecan aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between the black pecan aphid, Melanocallis caryaefoliae (Hemiptera: Aphididae), and the chlorosis it causes to foliage of pecan [Carya illinoinensis (Wangenh.) K. Koch)] is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, w...

  5. New Plant Introductions with Resistance to the Soybean Aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) (SA) was first found in the northern soybean, Glycine max (L.) Merr., growing regions of the USA in 2000. By 2005, the aphid had spread to 23 soybean growing states reaching as far south as Mississippi and Georgia and also north into Ontario, Canada. Th...

  6. Genome-wide association mapping of soybean aphid resistance traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid is the most damaging insect pest of soybean in the Upper Midwest and is primarily controlled by insecticides. Soybean aphid resistance (i.e., Rag genes) has been documented in some soybean lines at chromosomes 6, 7, 13, and 16, but more sources of resistance are needed. Genome-wide ass...

  7. Breeding for resistance to the sugarcane aphid [Melanaphis sacchari (Zehntner)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid [Melanaphis sacchari] (SCA) was first reported to damage sorghum [Sorghum bicolor (L.) Moench] in the United States in Louisiana and Texas in 2013, and was subsequently detected in Oklahoma and the Mississippi Delta. In 2014, the aphid spread and was eventually reported in state...

  8. Soybean Aphid (Hemiptera: Aphididae) Affects Soybean Spectral Reflectance

    PubMed Central

    Alves, Tavvs M.; Macrae, Ian V.; Koch, Robert L.

    2015-01-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most economically important insect pest of soybean in the north central United States. Scouting-based integrated pest management (IPM) programs could become more efficient and more widely adopted by using plant spectral reflectance to estimate soybean aphid injury. Our objective was to determine whether plant spectral reflectance is affected by soybean aphid feeding. Field trials were conducted in 2013 and 2014 using caged plots. Early-, late-, and noninfested treatments were established to create a gradient of soybean aphid pressure. Whole-plant soybean aphid densities were recorded weekly. Measurements of plant spectral reflectance occurred on two sample dates per year. Simple linear regression models were used to test the effect of cumulative aphid-days (CAD) on plant spectral reflectance at 680 nm (RED) and 800 nm (NIR), normalized difference vegetation index (NDVI), and relative chlorophyll content. Data indicated that CAD had no effect on canopy-level RED reflectance, but CAD decreased canopy-level NIR reflectance and NDVI. Canopy- and leaf-level measurements typically indicated similar plant spectral response to increasing CAD. CAD generally had no effect on relative chlorophyll content. The present study provides the first documentation that remote sensing holds potential for detecting changes in plant spectral reflectance induced by soybean aphid. The use of plant spectral reflectance in soybean aphid management may assist future IPM programs to reduce sampling costs and prevent prophylactic insecticide sprays. PMID:26470392

  9. Population genetic structure of the soybean aphid, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is an invasive pest of cultivated soybean [Glycine max (L.)] in North America. After the initial invasion in 2000, the aphid has quickly spread across most of the U.S. and Canada, suggesting large scale dispersals and rapid adaptations to new environment...

  10. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan.

    PubMed

    Dutcher, James D; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006-2011) from full leaf expansion in May to leaf fall in October in "Desirable" variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  11. Insects which challenge global wheat production: Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter on Russian wheat aphid, (Diuraphis noxia (Mord.)), is one of several that addresses significant pests in the book entitled, Wheat Science and Trade. The chapter gives a detailed account of the history of the Russian wheat aphid as global pest, and its biology, ecology and managemen...

  12. NDVI to detect sugarcane aphid injury to grain sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. The purpose of this report is to describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants i...

  13. Transcriptome profilng of defense responses to aphid feeding in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenbug (Schizaphis graminum) is a serious aphid pest in small grain crops in the southern Great Plains of the US. We are trying to understand the molecular mechanisms of host resistance against aphid infestation in the grass genome using wheat-greenbug as a model system. In the present study, a mi...

  14. Detection of novel QTLs for foxglove aphid resistance in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foxglove aphid, Aulacorthum solani (Kaltenbach), is a Hemipteran insect that infected a wide variety of plants worldwide and caused serious yield losses in crops. The objective of this study was to identify the putative QTL for foxglove aphid resistance in wild soybean, PI 366121, (Glycine soja Sieb...

  15. Chlorophyll loss caused by soybean aphid (Hemiptera: Aphididae) feeding on soybean.

    PubMed

    Diaz-Montano, John; Reese, John C; Schapaugh, William T; Campbell, Leslie R

    2007-10-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a worldwide pest of soybean, Glycine max (L.) Merr. Studies to find control methods were initiated in 2000 when it was first detected in North America. A. glycines can reduce yields by as much as 50%, and it is the vector of several viral diseases. A. glycines removes phloem sap, which can result in a reduction of chlorophyll content. Quantification of chlorophyll loss caused by A. glycines feeding on soybean is of vital importance. The SPAD-502 chlorophyll meter is a device that has been used to measure chlorophyll loss caused by nonchewing insects. Chlorophyll loss was studied in no-choice tests on the infested and uninfested leaves of a susceptible check (KS4202). The minimum combined number of days and aphids needed to detect significant chlorophyll loss was 30 aphids confined for 10 d. In a similar experiment, seven resistant entries and two susceptible checks were evaluated. There was no significant chlorophyll reduction between infested and uninfested leaves of five of the resistant entries (K1621, K1639, Pioneer 95B97, Dowling, and Jackson). Percentage of loss of chlorophyll in the susceptible checks was approximately 40%; Jackson and Dowling had a significantly lower percentage loss (13 and 16%, respectively) compared with the susceptible checks. The percentages of chlorophyll loss of K1621, K1639, and Pioneer 95B97 were not statistically different from the percentage of loss of Jackson. PMID:17972645

  16. Entomopathogenic fungus, Isaria fumosorosea, and aphid parasitoid, Lysiphlebus testaceipes, for managing infestations of Brown citrus aphid, Toxoptera citricida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An insect-infecting fungal pathogen, (Isaria fumosorosea [Ifr])sold as the product PFR 97™ was shown to be effective at killing aphid pests while not decreasing beneficial parasitoids. The brown citrus aphid, Toxoptera citricida (Kirkaldy)(Hemiptera: Aphididae) spreads the plant-infecting virus, Cit...

  17. Chlorotic feeding injury by the black pecan aphid (hemiptera: aphididae) to pecan foliage promotes aphid settling and nymphal development.

    PubMed

    Cottrell, Ted E; Wood, Bruce W; Ni, Xinzhi

    2009-04-01

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of the black pecan aphid, when provided chlorotic pecan leaf discs resulting from previous black pecan aphid feeding and nonchlorotic leaf discs, under a normal photoperiod and constant dark. Additionally, aphid development from the first instar to the adult stage was examined when nymphs were either allowed to feed on the same leaf disc or moved daily to a new, nondamaged, same age leaf disc. After 24 h, a significantly higher percentage of black pecan aphids settled on chlorotic than on nonchlorotic leaf discs, regardless of photoperiod. When starting from the first instar, nymphs that were prevented from inducing leaf chlorosis by moving daily to new, same-age leaf discs took approximately 5 d longer to complete development, had a shorter body length, and had higher mortality than when aphids remained on the same leaf disc. These results show that black pecan aphid-induced leaf chlorosis plays an important role in the interaction of the black pecan aphid with its pecan host. PMID:19389290

  18. Distribution of the black pecan aphid, Melanocallis caryaefoliae, on the upper and lower surface of pecan foliage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three aphid species regularly feed on the foliage of pecan: the black pecan aphid Melanocallis caryaefoliae (Davis), the yellow pecan aphid Monelliopsis pecanis (Davis), and the blackmargined aphid Monellia caryella (Fitch). The black pecan aphid appears unique among these for frequently being obser...

  19. Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria

    PubMed Central

    Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya

    2013-01-01

    Abstract Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530

  20. Multiple Cues for Winged Morph Production in an Aphid Metacommunity

    PubMed Central

    Mehrparvar, Mohsen; Zytynska, Sharon E.; Weisser, Wolfgang W.

    2013-01-01

    Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity). The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare). We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects) inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues. PMID:23472179

  1. Faba bean forisomes can function in defence against generalist aphids.

    PubMed

    Medina-Ortega, Karla J; Walker, Gregory P

    2015-06-01

    Phloem sieve elements have shut-off mechanisms that prevent loss of nutrient-rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap-feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid-induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume-specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap. PMID:25311512

  2. Color polymorphism in an aphid is maintained by attending ants

    PubMed Central

    Watanabe, Saori; Murakami, Taiga; Yoshimura, Jin; Hasegawa, Eisuke

    2016-01-01

    The study of polymorphisms is particularly informative for enhancing our understanding of phenotypic and genetic diversity. The persistence of polymorphism in a population is generally explained by balancing selection. Color polymorphisms that are often found in many insects and arthropods are prime examples of the maintenance of polymorphisms via balancing selection. In some aphids, color morphs are maintained through frequency-dependent predation by two predatory insects. However, the presence of color polymorphism in ant-attended aphids cannot be explained by traditional balancing selection because these aphids are free from predation. We examined the selective advantages of the existence of two color (red and green) morphs in the ant-attended aphid, Macrosiphoniella yomogicola, in fields. We measured the degree of ant attendance on aphid colonies with different proportions of color morphs. The results show that the ants strongly favor aphid colonies with intermediate proportions of the two color morphs. The relationship between the degree of ant attendance and the proportion of color morphs in the field is convex when aphid colony size and ant colony size are controlled. This function has a peak of approximately 65% of green morphs in a colony. This system represents the first case of a balancing polymorphism that is not maintained by opposing factors but by a symbiotic relationship. PMID:27617289

  3. Aphid Transmission of the Ontario Isolate of Plum Pox Virus.

    PubMed

    Lowery, D Thomas; Vickers, Patricia M; Bittner, Lori A; Stobbs, Lorne W; Foottit, Robert G

    2015-10-01

    Utilization of timed virus acquisition access probes in studies of plum pox virus (PPV) transmission by aphids demonstrated that endemic species transmitted the virus readily from plum, Prunus domestica (L.) Batsch; peach, P. persica (L.); or dwarf flowering almond, P. glandulosa Thunberg., to peach seedlings. The green peach aphid, Myzus persicae (Sulzer), was shown to be the most efficient vector. Acquisition of virus by green peach aphids from infected peach leaves resulted in 18-28% infected peach seedlings, while aphids previously fed on infected leaves of plum transferred virus to 36% of peach seedlings. Although the spirea aphid, Aphis spiraecola (Patch), was a less efficient vector than M. persicae it is perhaps more important for the spread of PPV due to its greater abundance and occurrence earlier in the season when peach trees are thought to be more susceptible to infection. Virus transmission rates varied depending on the virus source and healthy test plant species. In contrast to many previous studies, aphid inoculation of the experimental host Nicotiana benthamiana Domin occurred at a low rate, never exceeding 4%. Acquisition of PPV by M. persicae from infected peach fruit was greatly reduced compared with acquisition from leaves. The results of this research indicate that the Ontario isolate of PPV-D is readily transmissible by aphids to peach and natural spread of the virus needs to be considered in future management or eradication programs. PMID:26453705

  4. Aphids (Hemiptera, Aphididae) on ornamental plants in greenhouses in Bulgaria.

    PubMed

    Yovkova, Mariya; Petrović-Obradović, Olivera; Tasheva-Terzieva, Elena; Pencheva, Aneliya

    2013-01-01

    Investigations on the species composition and host range of aphids on ornamental greenhouse plants in Bulgaria was conducted over a period of five years, from 2008 to 2012. Twenty greenhouses, growing ornamentals for landscaping, plant collections and other purposes were observed. They were located in the regions of Sofia, Plovdiv, Smolyan, Pavlikeni, Varna and Burgas. The total number of collected aphid samples was 279. Their composition included 33 aphid species and one subspecies from 13 genera and 5 subfamilies. Twenty-eight species were found to belong to subfamily Aphidinae. Almost 70 % of all recorded species were polyphagous. The most widespread aphid species was Myzus persicae, detected in 13 greenhouses all year round, followed by Aulacorthum solani (10 greenhouses) and Aphis gossypii (9 greenhouses). The widest host range was shown by Myzus persicae (43 hosts), Aulacorthum solani (32 hosts) and Aulacorthum circumflexum (23 hosts). The list of host plants includes 114 species from 95 genera and 58 families. The greatest variety of aphid species was detected on Hibiscus (9 species). Out of all aphid samples 12.9 % were collected on Hibiscus and 6.8 %, on Dendranthema. The greatest variety of aphid species was detected on Hibiscus (9 species). Periphyllus californiensis and Aphis (Aphis) fabae mordvilkoi are reported for the first time for Bulgaria. Furthermore, Aphis spiraecola has been found in new localities and has widened its host range in this country. PMID:24039530

  5. Photosynthetic responses of soybean to soybean aphid (Homoptera: Aphididae) injury.

    PubMed

    Macedo, T B; Bastos, C S; Higley, L G; Ostlie, K R; Madhavan, S

    2003-02-01

    The soybean aphid, Aphis glycines Matsumara, was discovered in the United States in the summer of 2000. Since that initial discovery, the aphid has spread across northern soybean production regions. In 2001, we examined the physiological responses of soybeans to low aphids densities (fewer than 50 aphids/leaf). In this study, we determined photosynthetic rates, leaf fluorescence responses, and photosynthetic responses to variable carbon dioxide and light levels. In addition, analyses for chlorophyll content and stable carbon isotope ratios were used to differentiate potential differences in stomatal versus mesophyll limitations to photosynthesis. We observed rate reductions of up to 50% on infested leaflets, including lealets with no apparent symptoms of aphid injury (such as chlorosis). Differences in fluorescence data indicated that photoelectron transport was not impaired. These results indicate that substantial physiological impact on soybean is possible even at low aphid densities. Also, the conventional view of aphid injury acting through reductions in chlorophyll content and light-harvesting reactions of photosynthesis is not supported by our findings in this system. PMID:12650361

  6. Color polymorphism in an aphid is maintained by attending ants.

    PubMed

    Watanabe, Saori; Murakami, Taiga; Yoshimura, Jin; Hasegawa, Eisuke

    2016-09-01

    The study of polymorphisms is particularly informative for enhancing our understanding of phenotypic and genetic diversity. The persistence of polymorphism in a population is generally explained by balancing selection. Color polymorphisms that are often found in many insects and arthropods are prime examples of the maintenance of polymorphisms via balancing selection. In some aphids, color morphs are maintained through frequency-dependent predation by two predatory insects. However, the presence of color polymorphism in ant-attended aphids cannot be explained by traditional balancing selection because these aphids are free from predation. We examined the selective advantages of the existence of two color (red and green) morphs in the ant-attended aphid, Macrosiphoniella yomogicola, in fields. We measured the degree of ant attendance on aphid colonies with different proportions of color morphs. The results show that the ants strongly favor aphid colonies with intermediate proportions of the two color morphs. The relationship between the degree of ant attendance and the proportion of color morphs in the field is convex when aphid colony size and ant colony size are controlled. This function has a peak of approximately 65% of green morphs in a colony. This system represents the first case of a balancing polymorphism that is not maintained by opposing factors but by a symbiotic relationship. PMID:27617289

  7. Social Aggregation in Pea Aphids: Experiment and Random Walk Modeling

    PubMed Central

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J.; Topaz, Chad M.

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control. PMID:24376691

  8. Social aggregation in pea aphids: experiment and random walk modeling.

    PubMed

    Nilsen, Christa; Paige, John; Warner, Olivia; Mayhew, Benjamin; Sutley, Ryan; Lam, Matthew; Bernoff, Andrew J; Topaz, Chad M

    2013-01-01

    From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions, as well as the random walk parameters, depend strongly on distance to an aphid's nearest neighbor. For large nearest neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of the experimental data that are not captured by the control. PMID:24376691

  9. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    PubMed

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  10. Inheritance of soybean aphid resistance from soybean PI 71506

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphids (Aphis glycines Matsumura) continually establish populations of economic importance in soybean [Glycine max (L.) Merr.] production areas. Insecticide application costs and yield losses prompt the development of resistant varieties. The soybean germplasm accession PI 71506 has been s...

  11. Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case

    SciTech Connect

    Anderson, B.P.; Dholakia, K.; Wright, E.M.

    2003-03-01

    We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-phase interference device (APHID). The two-ring APHID is shown to be sensitive to rotation.

  12. Aphids alter host-plant nitrogen isotope fractionation

    PubMed Central

    Wilson, Alex C. C.; Sternberg, Leonel da S. L.; Hurley, Katherine B.

    2011-01-01

    Plant sap-feeding insects and blood-feeding parasites are frequently depleted in 15N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in 15N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in 15N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid 15N depletion and host 15N enrichment was coupled by isotopic mass balance and determined that aphid 15N depletion and host 15N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ15N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism. PMID:21646532

  13. Do plant viruses facilitate their aphid vectors by inducing symptoms that alter behavior and performance?

    PubMed

    Hodge, Simon; Powell, Glen

    2008-12-01

    Aphids can respond both positively and negatively to virus-induced modifications of the shared host plant. It can be speculated that viruses dependent on aphids for their transmission might evolve to induce changes in the host plant that attract aphids and improve their performance, subsequently enhancing the success of the pathogen itself. We studied how pea aphids [Acyrthosiphon pisum (Harris)] responded to infection of tic beans (Vicia faba L.) by three viruses with varying degrees of dependence on this aphid for their transmission: pea enation mosaic virus (PEMV), bean yellow mosaic virus (BYMV), and broad bean mottle virus (BBMV). BYMV has a nonpersistent mode of transmission by aphids, whereas PEMV is transmitted in a circulative-persistent manner. BBMV is not aphid transmitted. When reared on plants infected by PEMV, no changes in aphid survival, growth, or reproductive performance were observed, whereas infection of beans by the other aphid-dependent virus, BYMV, actually caused a reduction in aphid survival in some assays. None of the viruses induced A. pisum to increase production of winged progeny, and aphids settled preferentially on leaf tissue from plants infected by all three viruses, the likely mechanism being visual responses to yellowing of foliage. Thus, in this system, the attractiveness of an infected host plant and its quality in terms of aphid growth and reproduction were not related to the pathogen's dependence on the aphid for transmission to new hosts. PMID:19161702

  14. Immunity and other defenses in pea aphids, Acyrthosiphon pisum

    PubMed Central

    2010-01-01

    Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models. Results Strikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes. Conclusions The absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection. PMID:20178569

  15. Aggressive mimicry coexists with mutualism in an aphid

    PubMed Central

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-01

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  16. Effects of parasitism on aphid nutritional and protective symbioses.

    PubMed

    Martinez, Adam J; Weldon, Stephanie R; Oliver, Kerry M

    2014-03-01

    Insects often carry heritable symbionts that negotiate interactions with food plants or natural enemies. All pea aphids, Acyrthosiphon pisum, require infection with the nutritional symbiont Buchnera, and many are also infected with Hamiltonella, which protects against the parasitoid Aphidius ervi. Hamiltonella-based protection requires bacteriophages called APSEs with protection levels varying by strain and associated APSE. Endoparasitoids, including A. ervi, may benefit from protecting the nutritional symbiosis and suppressing the protective one, while the aphid and its heritable symbionts have aligned interests when attacked by the wasp. We investigated the effects of parasitism on the abundance of aphid nutritional and protective symbionts. First, we determined strength of protection associated with multiple symbiont strains and aphid genotypes as these likely impact symbiont responses. Unexpectedly, some A. pisum genotypes cured of facultative symbionts were resistant to parasitism and resistant aphid lines carried Hamiltonella strains that conferred no additional protection. Susceptible aphid clones carried protective strains. qPCR estimates show that parasitism significantly influenced both Buchnera and Hamiltonella titres, with multiple factors contributing to variation. In susceptible lines, parasitism led to increases in Buchnera near the time of larval wasp emergence consistent with parasite manipulation, but effects were variable in resistant lines. Parasitism also resulted in increases in APSE and subsequent decreases in Hamiltonella, and we discuss how this response may relate to the protective phenotype. In summary, we show that parasitism alters the within-host ecology of both nutritional and protective symbioses with effects likely significant for all players in this antagonistic interaction. PMID:24152321

  17. Aphid polyphenisms: trans-generational developmental regulation through viviparity

    PubMed Central

    Ogawa, Kota; Miura, Toru

    2013-01-01

    Polyphenism, in which multiple discrete phenotypes develop from a single genotype, is considered to have contributed to the evolutionary success of aphids. Of the various polyphenisms observed in the complex life cycle of aphids, the reproductive and wing polyphenisms seen in most aphid species are conspicuous. In reproductive polyphenism, the reproductive modes can change between viviparous parthenogenesis and sexual reproduction in response to the photoperiod. Under short-day conditions in autumn, sexual morphs (males and oviparous females) are produced parthenogenetically. Winged polyphenism is observed in viviparous generations during summer, when winged or wingless (flightless) aphids are produced depending on a variety of environmental conditions (e.g., density, predators). Here, we review the physiological mechanisms underlying reproductive and wing polyphenism in aphids. In reproductive polyphenism, morph determination (male, oviparous or viviparous female) within mother aphids is regulated by juvenile hormone (JH) titers in the mothers. In wing polyphenism, although JH is considered to play an important role in phenotype determination (winged or wingless), the role is still controversial. In both cases, the acquisition of viviparity in Aphididae is considered to be the basis for maternal regulation of these polyphenisms, and through which environmental cues can be transferred to developing embryos through the physiological state of the mother. Although the mechanisms by which mothers alter the developmental programs of their progeny have not yet been clarified, continued developments in molecular biology will likely unravel these questions. PMID:24478714

  18. Encounters with aphid predators or their residues impede searching and oviposition by the aphid parasitoid Aphidius ervi (Hymenoptera: Aphidiinae).

    PubMed

    Almohamad, Raki; Hance, Thierry

    2014-04-01

    Intraguild predation (IGP) can be an important factor influencing the effectiveness of aphid natural enemies in biological control. In particular, aphid parasitoid foraging could be influenced by the presence of predators. This study investigated the effect of larvae of the predatory hoverfly Episyrphus balteatus DeGeer (Diptera: Syrphidae) and the multicolored Asian ladybird Harmonia axyridis Pallas (Coleoptera: Coccinellidae) on the foraging behavior of the aphid parasitoid, Aphidius ervi Haliday (Hymenoptera: Aphidiidae) in choice experiments using a leaf disc bioassay. Wasp response to chemical tracks left by those predator larvae was also tested. Parasitoid behavior was recorded using the Observer (Noldus Information Technology, version 5.0, Wageningen, the Netherlands). The experiments were conducted under controlled environmental conditions using leaves of the broad bean plant, Vicia faba L. (Fabaceae) with Myzus persicae Sulzer (Homoptera: Aphididae) as the host complex. A. ervi females avoided aphid patches when larvae of either predator were present. A similar avoidance response was shown by A. ervi to aphid patches with E. balteatus larval tracks, whereas no significant response was observed to tracks left by H. axyridis larvae. It was concluded that IG predator avoidance shown by the aphid parasitoid A. ervi may be a factor affecting their distribution among host patches. PMID:23955963

  19. Parasitism of the soybean aphid, Aphis glycines by Binodoxys communis: the role of aphid defensive behaviour and parasitoid reproductive performance

    PubMed Central

    Wyckhuys, K.A.G.; Stone, L.; Desneux, N.; Hoelmer, K.A.; Hopper, K.R.; Heimpel, G.E.

    2009-01-01

    The Asian parasitoid, Binodoxys communis (Gahan) (Hymenoptera: Braconidae), is a candidate for release against the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America. In this study, we examined preferences by B. communis for the different developmental stages of A. glycines and investigated consequences of these preferences for parasitoid fitness. We also determined to what extent aphid defensive behaviours mediate such preferences. We found that B. communis readily attacks and successfully develops in the different A. glycines developmental stages. Binodoxys communis development time gradually increased with aphid developmental stage, and wasps took longest to develop in alates. An average (±SE) of 54.01±0.08% of parasitized A. glycines alatoid nymphs transformed into winged adult aphids prior to mummification. No-choice assays showed a higher proportion of successful attacks for immature apterous A. glycines nymphs compared to adults and alatoid nymphs. Also, choice trials indicated avoidance and lower attack and oviposition of adults and alatoid nymphs. The different aphid stages exhibited a range of defensive behaviours, including body raising, kicking and body rotation. These defenses were employed most effectively by larger aphids. We discuss implications for the potential establishment, spread and biological control efficacy of A. glycines by B. communis in the event that it is released in North America. PMID:18294416

  20. Aphid (Hemiptera: Aphididae) species composition and potential aphid vectors of plum pox virus in Pennsylvania peach orchards.

    PubMed

    Wallis, C M; Fleischer, S J; Luster, D; Gildow, F E

    2005-10-01

    Plum pox, an invasive disease recently identified in Pennsylvania stone fruit orchards, is caused by the aphid-transmitted Plum pox virus (genus Potyvirus, family Potyviridae, PPV). To identify potential vectors, we described the aphid species communities and the seasonal dynamics of the dominant aphid species within Pennsylvania peach orchards. Aphids were trapped weekly in 2002 and 2003 from mid-April through mid-November within two central Pennsylvania orchards by using yellow and green water pan traps. In total, 42 aphid species were identified from both orchards over 2 yr. Within orchards, actual species richness ranged from 24 to 30 species. The Abundance Based Coverage Estimator predicted species richness to range from 30 to 36 species, indicating that trap catches were identifying most aphid species expected to occur in the orchard. Three species, Rhopalosiphum maidis (Fitch), Aphis spiraecola Patch, and Myzus persicae (Sulzer), were consistently dominant across locations and years. Orchard-trapped populations of these three species peaked in a similar chronological sequence each year. As expected, trap color influenced the total number and distribution of the predominate species collected. However, the same dominant species occurred in both yellow and green traps. Based on the seasonal population dynamics reported here and on published vector efficacy studies, the most probable significant PPV vector was identified as A. spiraecola. If the PPV pathogen escapes current quarantine or if subsequent reintroductions of PPV occur, these data will be useful for developing plum pox management strategies. PMID:16334309

  1. Can plant bioregulators be potential tools for managing black pecan aphids?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some classes of plant bioregulators (PBRs) possess the potential for usage on pecan (Carya illinoinensis [Wangenh.] K. Koch) to protect foliar canopies from black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), feeding injury. The black pecan aphid elicits localized chlorotic...

  2. Preparing soft-bodied arthropods for microscope examination: Aphids (Insecta: Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proper identification of aphids (Hemiptera: Aphididae) require preparation of the specimen on a microscope slide. This training video provides visual instruction on how to prepare aphid specimens on microscope slides for examination and indentification. Steps ranging from collection, specimen clear...

  3. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic broccoli growers in California typically control aphids by intercropping broccoli with strips of alyssum (Lobularia maritima (L.) Desv.) which attracts hoverflies (Diptera: Syrphidae) that are important predators of aphids. A three year study with transplanted organic broccoli in Salinas, ...

  4. Autumn leaf colouration: a new hypothesis involving plant-ant mutualism via aphids

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo

    2008-07-01

    Several recent hypotheses on the adaptive significance of autumn leaf colours have focused on specialist aphids. However, these hypotheses have overlooked several factors: the preferential investment by healthy vigorous trees in growth rather than defence against herbivores, variation among aphid species in their responses to bright autumn leaves and plant defences and the occurrence of tritrophic interactions in tree crowns. I incorporate these factors into a hypothesis that autumn leaf colours signal tree quality to myrmecophilous specialist aphids, with the aphids, in turn, attracting aphid-tending ants during the following spring, and the ants defending the trees from other aphids and herbivores. Therefore, bright autumn leaves may have adaptive significance, attracting myrmecophilous specialist aphids and their attending ants and, thus, reducing herbivory and competition among aphids.

  5. Ecological Factors Influencing Pea Aphid Outbreaks in the U.S. Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long term data set involving 26 years of ambient temperature data and pea aphid population cycles in grain legumes in the U.S. Pacific Northwest (PNW), and presented in an invited chaper for a book on global warming and aphid biodiversity, shows that outbreaks of this aphid and subsequent crop los...

  6. National Plant Diagnostic Network, Taxonomic training videos: Introduction to AphID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on the use of the expert system, AphID, for aphid examination and identification. The video demonstrates the use of different training modules that allow the user to gain familiarity wi...

  7. Comparison of transmission efficiency of different isolates of Potato virus Y among three aphid vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato virus Y (PVY) strains are transmitted by different aphid species in a non-persistent, non-circulative manner. Green peach aphid (GPA, Myzus persicae Sulzer; Aphididae, Macrosiphini) is the most efficient vector in laboratory studies, but potato aphid (PA, Macrosiphum euphorbiae Thomas; Aphidi...

  8. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein

    PubMed Central

    Elzinga, Dezi A.; De Vos, Martin

    2014-01-01

    The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana (Arabidopsis) plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose, and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and Nicotiana benthamiana. Together, these results demonstrate a role for Mp55, a protein with as yet unknown molecular function, in the interaction of M. persicae with its host plants. PMID:24654979

  9. Distribution of the black pecan aphid on pecan leaf surfaces: an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three species of aphids (Hemiptera: Aphididae) regularly attack pecan, Carya illinoinensis, foliage. Two of these species, i.e., the blackmargined aphid, Monellia caryella and the yellow pecan aphid, Monelliopsis pecanis, are predominantly distributed on the abaxial leaf surface, as are adults and ...

  10. Spectral sensing of aphid (Hemiptera: Aphididae) density using field spectrometry and radiometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), and bird cherry-oat aphid, Rhopalosiphum padi L., are aphid pests of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), sorghum (Sorghum bicolor L.), oat (Avena sativa L.), and other cereals worldwide. Greenbug and bird cherry-oat aphid infestati...

  11. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This training video provides provides an overview of general aphid morphology by using a compound microscope. The narrator discusses and highlights structures on the aphid that are important to make a species identification....

  12. Suppression of plant defenses by a Myzus persicae (green peach aphid) salivary effector protein.

    PubMed

    Elzinga, Dezi A; De Vos, Martin; Jander, Georg

    2014-07-01

    The complex interactions between aphids and their host plant are species-specific and involve multiple layers of recognition and defense. Aphid salivary proteins, which are released into the plant during phloem feeding, are a likely mediator of these interactions. In an approach to identify aphid effectors that facilitate feeding from host plants, eleven Myzus persicae (green peach aphid) salivary proteins and the GroEL protein of Buchnera aphidicola, a bacterial endosymbiont of this aphid species, were expressed transiently in Nicotiana tabacum (tobacco). Whereas two salivary proteins increased aphid reproduction, expression of three other aphid proteins and GroEL significantly decreased aphid reproduction on N. tabacum. These effects were recapitulated in stable transgenic Arabidopsis thaliana plants. Further experiments with A. thaliana expressing Mp55, a salivary protein that increased aphid reproduction, showed lower accumulation of 4-methoxyindol-3-ylmethylglucosinolate, callose and hydrogen peroxide in response to aphid feeding. Mp55-expressing plants also were more attractive for aphids in choice assays. Silencing Mp55 gene expression in M. persicae using RNA interference approaches reduced aphid reproduction on N. tabacum, A. thaliana, and N. benthamiana. Together, these results demonstrate a role for Mp55, a protein with as-yet-unknown molecular function, in the interaction of M. persicae with its host plants. PMID:24654979

  13. Testing the physiological barriers to viral transmission in aphids using microinjection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insec...

  14. Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (Diuraphis noxia (Mordvilko)) infests wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and other small grains and grasses. Russian wheat aphid infestations are unpredictable in time and space. In favorable conditions, Russian wheat aphid feeding can result in heavy...

  15. Cereal Aphid Colony Turnover and Persistence in Winter Wheat

    PubMed Central

    Winder, Linton; Alexander, Colin J.; Woolley, Chris; Perry, Joe N.; Holland, John M.

    2014-01-01

    An understanding of spatial and temporal processes in agricultural ecosystems provides a basis for rational decision-making with regards to the management and husbandry of crops, supporting the implementation of integrated farming strategies. In this study we investigated the spatial and temporal distribution of aphid pests (Sitobion avenae and Metopolophium dirhodum) within winter wheat fields. Using an intensive sampling programme we investigated distributions at both the small (single shoot) and large (field) scales. Within two fields, a grid with 82 locations was established (area 120 m by 168 m). At each location, 25 shoots were individually marked and aphid counts by observation conducted on 21 and 22 occasions as the crop matured, resulting in 43,050 and 45,100 counts being conducted in the two fields respectively. We quantified field scale spatial distributions, demonstrating that spatial pattern generally emerged, with temporal stability being both species- and field- dependent. We then measured turnover of colonies at the small (individual shoot) and large (field) scales by comparing consecutive pairs of sampling occasions. Four turnover categories were defined: Empty (no aphids recorded on either occasion); Colonised (aphids recorded on the second occasion but not the first); Extinction (aphids recorded on the first occasion but not the second); Stable (aphids recorded on both occasions). At the field scale, population stability soon established, but, at the small scale there was a consistently high proportion of unoccupied shoots with considerable colonisation and extinction and low stability. The redistribution of aphids within the crop at the local scale is a vulnerability which could be used to disrupt population development – by mediating exposure to ground-active natural enemies and by incurring a metabolic cost caused by the physiological demands to re-establish on a nearby host plant. PMID:25268240

  16. Mechanisms regulating caste differentiation in an aphid social system

    PubMed Central

    Kutsukake, Mayako; Matsuyama, Shigeru; Fukatsu, Takema; Shimada, Masakazu

    2010-01-01

    For evolution and maintenance of the social systems of insect colonies, caste production should be controlled in response to external cues so that caste ratio in the colony is kept at an optimal range. Recent developments using artificial diet rearing techniques have revealed an underlying mechanism for adaptive control of caste production in a social aphid, Tuberaphis styraci, which has a sterile soldier caste in the 2nd instar. Aphid density was the proximate cue that acts on 1st instar nymphs and embryos to induce soldier differentiation. The final determination of soldier differentiation occurred postnatally, probably at a late 1st instar stage. Direct contact stimuli from live non-soldier aphids mediated the density effect. While coexisting non-soldiers facilitated soldier differentiation in 1st instar nymphs, coexisting soldiers acted to suppress such differentiation. These results suggest that caste production in aphid colonies is controlled by positive and negative feedback mechanisms consisting of density-dependent induction and suppression of soldier differentiation. Here, we demonstrate the mechanisms that coordinate aphid society, and provide a striking case of clonal superorganism system where simple responses of colony members to local extrinsic stimuli are integrated into a highly organized regulation of the whole colony. PMID:20539772

  17. Particle film affects black pecan aphid (Homoptera: Aphididae) on pecan.

    PubMed

    Cottrell, Ted E; Wood, Bruce W; Reilly, Charles C

    2002-08-01

    Three species of aphids attack pecan foliage, Carya illinoensis (Wang.) K. Koch, and cause economic damage. We tested a kaolin-based particle film against one of these aphid species, black pecan aphid, Melanocallis caryaefoliae (Davis). Effect of particle film on host selection, adult mortality, and production of nymphs by M. caryaefoliae was tested on seedling pecans in the laboratory. Fewer M. caryaefoliae adults selected treated foliage compared with untreated foliage. A higher percentage of adults that did select treated foliage were recovered from upper leaf surfaces compared with the percentage of adults recovered from upper leaf surfaces of untreated leaves. Observations with a microscope revealed an accumulation of particle film on aphid body parts, especially on tarsi, and strongly suggests that aphid mobility was restricted. Adult mortality was higher on treated foliage and led to an overall decrease in production of nymphs on those seedlings. In addition, we measured spectral properties of treated seedling pecan foliage. Light reflectance by treated foliage was increased and absorptance decreased compared with control foliage whereas transmittance of light through control and particle film-treated leaves was similar. We did not detect any phytotoxic effect on pecan due to application of particle film. PMID:12216821

  18. A single gene, AIN, in Medicago truncatula mediates a hypersensitive response to both bluegreen aphid and pea aphid, but confers resistance only to bluegreen aphid

    PubMed Central

    Klingler, John P.; Nair, Ramakrishnan M.; Edwards, Owain R.; Singh, Karam B.

    2009-01-01

    Biotic stress in plants frequently induces a hypersensitive response (HR). This distinctive reaction has been studied intensively in several pathosystems and has shed light on the biology of defence signalling. Compared with microbial pathogens, relatively little is known about the role of the HR in defence against insects. Reference genotype A17 of Medicago truncatula Gaertn., a model legume, responds to aphids of the genus Acyrthosiphon with necrotic lesions resembling a HR. In this study, the biochemical nature of this response, its mode of inheritance, and its relationship with defence against aphids were investigated. The necrotic lesion phenotype and resistance to the bluegreen aphid (BGA, Acyrthosiphon kondoi Shinji) and the pea aphid (PA, Acyrthosiphon pisum (Harris)) were analysed using reference genotypes A17 and A20, their F2 progeny and recombinant inbred lines. BGA-induced necrotic lesions co-localized with the production of H2O2, consistent with an oxidative burst widely associated with hypersensitivity. This HR correlated with stronger resistance to BGA in A17 than in A20; these phenotypes cosegregated as a semi-dominant gene, AIN (Acyrthosiphon-induced necrosis). In contrast to BGA, stronger resistance to PA in A17, compared with A20, did not cosegregate with a PA-induced HR. The AIN locus resides in a cluster of sequences predicted to encode the CC-NBS-LRR subfamily of resistance proteins. AIN-mediated resistance presents a novel opportunity to use a model plant and model aphid to study the role of the HR in defence responses to phloem-feeding insects. PMID:19690018

  19. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants

    PubMed Central

    Sinha, Deepak K.; Chandran, Predeesh; Timm, Alicia E.; Aguirre-Rojas, Lina; Smith, C. Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  20. Virulent Diuraphis noxia Aphids Over-Express Calcium Signaling Proteins to Overcome Defenses of Aphid-Resistant Wheat Plants.

    PubMed

    Sinha, Deepak K; Chandran, Predeesh; Timm, Alicia E; Aguirre-Rojas, Lina; Smith, C Michael

    2016-01-01

    The Russian wheat aphid, Diuraphis noxia, an invasive phytotoxic pest of wheat, Triticum aestivum, and barley, Hordeum vulgare, causes huge economic losses in Africa, South America, and North America. Most acceptable and ecologically beneficial aphid management strategies include selection and breeding of D. noxia-resistant varieties, and numerous D. noxia resistance genes have been identified in T. aestivum and H. vulgare. North American D. noxia biotype 1 is avirulent to T. aestivum varieties possessing Dn4 or Dn7 genes, while biotype 2 is virulent to Dn4 and avirulent to Dn7. The current investigation utilized next-generation RNAseq technology to reveal that biotype 2 over expresses proteins involved in calcium signaling, which activates phosphoinositide (PI) metabolism. Calcium signaling proteins comprised 36% of all transcripts identified in the two D. noxia biotypes. Depending on plant resistance gene-aphid biotype interaction, additional transcript groups included those involved in tissue growth; defense and stress response; zinc ion and related cofactor binding; and apoptosis. Activation of enzymes involved in PI metabolism by D. noxia biotype 2 aphids allows depletion of plant calcium that normally blocks aphid feeding sites in phloem sieve elements and enables successful, continuous feeding on plants resistant to avirulent biotype 1. Inhibition of the key enzyme phospholipase C significantly reduced biotype 2 salivation into phloem and phloem sap ingestion. PMID:26815857

  1. Aphidophagous Parasitoids can Forage Wheat Crops Before Aphid Infestation, Parana State, Brazil

    PubMed Central

    Ceolin Bortolotto, Orcial; de Oliveira Menezes Júnior, Ayres; Thibes Hoshino, Adriano

    2015-01-01

    Aphid parasitoids are common in Brazilian wheat fields, and parasitize aphids at the wheat tillering stage. However, there is little information available about when this natural enemy occurs in wheat crops. This study investigated the initial occurrence of aphid parasitoids in four commercial wheat crops in northern Paraná during the 2009 crop season. We installed two Malaise traps at each wheat farm, and 400 tillers were assessed weekly in each field for aphid abundance. During this study, we captured 4,355 aphid parasitoids and 197 aphids. Three species of braconid parasitoids were identified, including Aphidius colemani (Viereck 1912), Lysiphlebus testaceipes (Cresson 1880), and Diaeretiella rapae (McIntosh 1855). The aphids species identified were Rhopalosiphum padi (Linnaeus 1758) and Sitobion avenae (Fabricius 1775). This study showed that aphid parasitoids are present in wheat crops even when aphid densities are low, and in one farm, occurred before the aphids colonization. These reports can justified the high efficiency of these natural enemies against aphids in wheat fields. PMID:25843593

  2. Parasitoids as vectors of facultative bacterial endosymbionts in aphids.

    PubMed

    Gehrer, Lukas; Vorburger, Christoph

    2012-08-23

    Heritable bacterial endosymbionts play an important role in aphid ecology. Sequence-based evidence suggests that facultative symbionts such as Hamiltonella defensa or Regiella insecticola also undergo horizontal transmission. Other than through male-to-female transfer during the sexual generation in autumn, the routes by which this occurs remain largely unknown. Here, we tested if parasitoids or ectoparasitic mites can act as vectors for horizontal transfer of facultative symbionts. Using symbiont-specific primers for diagnostic PCR, we demonstrate for the first time, to our knowledge, that parasitoids can indeed transfer H. defensa and R. insecticola by sequentially stabbing infected and uninfected individuals of their host, Aphis fabae, establishing new, heritable infections. Thus, a natural route of horizontal symbiont transmission is also available during the many clonal generations of the aphid life cycle. No transmissions by ectoparasitic mites were observed, nor did parasitoids that emerged from symbiont-infected aphids transfer any symbionts in our experiments. PMID:22417790

  3. Effects of chemically contaminated sewage sludge on an aphid population

    SciTech Connect

    Culliney, T.W.; Pimentel, D.

    1986-12-01

    Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

  4. Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant.

    PubMed

    Joschinski, Jens; Beer, Katharina; Helfrich-Förster, Charlotte; Krauss, Jochen

    2016-01-01

    Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum(Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light-dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant's rhythmicity. PMID:27012868

  5. How rapid is aphid-induced signal transfer between plants via common mycelial networks?

    PubMed

    Babikova, Zdenka; Johnson, David; Bruce, Toby; Pickett, John A; Gilbert, Lucy

    2013-11-01

    Arbuscular mycorrhizal (AM) fungi are important plant mutualists that can connect roots of neighboring plants to form common mycelial networks. A recent study demonstrated that these networks can act as conduits for aphid-induced signals between plants, activating chemical defenses in uninfested neighboring plants so that they become unattractive to aphids but attractive to their enemies (parasitoids). The benefit to the neighboring plants will increase if the signal speed is rapid, enabling them to respond before aphids attack. Here, we determine the speed of aphid-induced signal transfer between plants infested with aphids ("donor") and neighboring aphid-free plants that were either connected or unconnected to the donor via a common mycelial network. Induced changes in plant volatiles from neighbors connected to donors started within 24 h of aphid infestation of donors. This demonstrates a rapid signal, implying potential benefit to plants receiving the signal, and raises intriguing ecological and evolutionary questions. PMID:24563703

  6. Pea Aphids (Hemiptera: Aphididae) Have Diurnal Rhythms When Raised Independently of a Host Plant

    PubMed Central

    Joschinski, Jens; Beer, Katharina; Helfrich-Förster, Charlotte; Krauss, Jochen

    2016-01-01

    Seasonal timing is assumed to involve the circadian clock, an endogenous mechanism to track time and measure day length. Some debate persists, however, and aphids were among the first organisms for which circadian clock involvement was questioned. Inferences about links to phenology are problematic, as the clock itself is little investigated in aphids. For instance, it is unknown whether aphids possess diurnal rhythms at all. Possibly, the close interaction with host plants prevents independent measurements of rhythmicity. We reared the pea aphid Acyrthosiphon pisum (Harris) on an artificial diet, and recorded survival, moulting, and honeydew excretion. Despite their plant-dependent life style, aphids were independently rhythmic under light–dark conditions. This first demonstration of diurnal aphid rhythms shows that aphids do not simply track the host plant’s rhythmicity. PMID:27012868

  7. Carbohydrate intake.

    PubMed

    Leturque, Armelle; Brot-Laroche, Edith; Le Gall, Maude

    2012-01-01

    Carbohydrates represent more than 50% of the energy sources present in most human diets. Sugar intake is regulated by metabolic, neuronal, and hedonic factors, and gene polymorphisms are involved in determining sugar preference. Nutrigenomic adaptations to carbohydrate availability have been evidenced in metabolic diseases, in the persistence of lactose digestion, and in amylase gene copy number. Furthermore, dietary oligosaccharides, fermentable by gut flora, can modulate the microbiotal diversity to the benefit of the host. Genetic diseases linked to mutations in the disaccharidase genes (sucrase-isomaltase, lactase) and in sugar transporter genes (sodium/glucose cotransporter 1, glucose transporters 1 and 2) severely impact carbohydrate intake. These diseases are revealed upon exposure to food containing the offending sugar, and withdrawal of this sugar from the diet prevents disease symptoms, failure to thrive, and premature death. Tailoring the sugar composition of diets to optimize wellness and to prevent the chronic occurrence of metabolic diseases is a future goal that may yet be realized through continued development of nutrigenetics and nutrigenomics approaches. PMID:22656375

  8. The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid).

    PubMed

    Casteel, Clare L; Yang, Chunling; Nanduri, Ananya C; De Jong, Hannah N; Whitham, Steven A; Jander, Georg

    2014-02-01

    Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission. PMID:24372679

  9. Persistence and transgenerational effect of plant-mediated RNAi in aphids.

    PubMed

    Coleman, A D; Wouters, R H M; Mugford, S T; Hogenhout, S A

    2015-02-01

    Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid-plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12-14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40-60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses. PMID:25403918

  10. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids.

    PubMed

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non

  11. Long-term phenological trends, species accumulation rates, aphid traits and climate: five decades of change in migrating aphids

    PubMed Central

    Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard

    2015-01-01

    1. Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. 2. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. 3. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. 4. All 55 species studied had earlier first flight trends at rate of β = −0·611 ± SE 0·015 days year−1. Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = −0·010 ± SE 0·022 days year−1). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year−1), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year−1). 5. The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were

  12. The endosymbiont Arsenophonus is widespread in soybean aphid, Aphis glycines, but does not provide protection from parasitoids or a fungal pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont, Arsenophonus sp., ...

  13. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    PubMed

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  14. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    PubMed Central

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  15. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    PubMed Central

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  16. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    PubMed

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  17. High Susceptibility of Bt Maize to Aphids Enhances the Performance of Parasitoids of Lepidopteran Pests

    PubMed Central

    Faria, Cristina A.; Wäckers, Felix L.; Pritchard, Jeremy; Barrett, David A.; Turlings, Ted C.J.

    2007-01-01

    Concerns about possible undesired environmental effects of transgenic crops have prompted numerous evaluations of such crops. So-called Bt crops receive particular attention because they carry bacteria-derived genes coding for insecticidal proteins that might negatively affect non-target arthropods. Here we show a remarkable positive effect of Bt maize on the performance of the corn leaf aphid Rhopalosiphum maidis, which in turn enhanced the performance of parasitic wasps that feed on aphid honeydew. Within five out of six pairs that were evaluated, transgenic maize lines were significantly more susceptible to aphids than their near-isogenic equivalents, with the remaining pair being equally susceptible. The aphids feed from the phloem sieve element content and analyses of this sap in selected maize lines revealed marginally, but significantly higher amino acid levels in Bt maize, which might partially explain the observed increased aphid performance. Larger colony densities of aphids on Bt plants resulted in an increased production of honeydew that can be used as food by beneficial insects. Indeed, Cotesia marginiventris, a parasitoid of lepidopteran pests, lived longer and parasitized more pest caterpillars in the presence of aphid-infested Bt maize than in the presence of aphid-infested isogenic maize. Hence, depending on aphid pest thresholds, the observed increased susceptibility of Bt maize to aphids may be either a welcome or an undesirable side effect. PMID:17622345

  18. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that...

  19. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of...

  20. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  1. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines which are...

  2. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must be equipped...

  3. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  4. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  5. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended...

  6. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  7. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel...

  8. Persistence and transgenerational effect of plant-mediated RNAi in aphids

    PubMed Central

    Coleman, A. D.; Wouters, R. H. M.; Mugford, S. T.; Hogenhout, S. A.

    2015-01-01

    Plant-mediated RNA interference (RNAi) has been successfully used as a tool to study gene function in aphids. The persistence and transgenerational effects of plant-mediated RNAi in the green peach aphid (GPA) Myzus persicae were investigated, with a focus on three genes with different functions in the aphid. Rack1 is a key component of various cellular processes inside aphids, while candidate effector genes MpC002 and MpPIntO2 (Mp2) modulate aphid–plant interactions. The gene sequences and functions did not affect RNAi-mediated down-regulation and persistence levels in the aphids. Maximal reduction of gene expression was ~70% and this was achieved at between 4 d and 8 d of exposure of the aphids to double-stranded RNA (dsRNA)-producing transgenic Arabidopsis thaliana. Moreover, gene expression levels returned to wild-type levels within ~6 d after removal of the aphids from the transgenic plants, indicating that a continuous supply of dsRNA is required to maintain the RNAi effect. Target genes were also down-regulated in nymphs born from mothers exposed to dsRNA-producing transgenic plants, and the RNAi effect lasted twice as long (12–14 d) in these nymphs. Investigations of the impact of RNAi over three generations of aphids revealed that aphids reared on dsMpC002 transgenic plants experienced a 60% decline in aphid reproduction levels compared with a 40% decline of aphids reared on dsRack1 and dsMpPIntO2 plants. In a field setting, a reduction of the aphid reproduction by 40–60% would dramatically decrease aphid population growth, contributing to a substantial reduction in agricultural losses. PMID:25403918

  9. Ants Learn Aphid Species as Mutualistic Partners: Is the Learning Behavior Species-Specific?

    PubMed

    Hayashi, Masayuki; Nakamuta, Kiyoshi; Nomura, Masashi

    2015-12-01

    In ant-aphid associations, many aphid species provide ants with honeydew and are tended by ants, whereas others are never tended and are frequently preyed upon by ants. In these relationships, ants must have the ability to discriminate among aphid species, with mutualistic aphids being accepted as partners rather than prey. Although ants reportedly use cuticular hydrocarbons (CHCs) of aphids to differentiate between mutualistic and non-mutualistic species, it is unclear whether the ability to recognize mutualistic aphid species as partners is innate or involves learning. Therefore, we tested whether aphid recognition by ants depends on learning, and whether the learning behavior is species-specific. When workers of the ant Tetramorium tsushimae had previously tended the cowpea aphid, Aphis craccivora, they were less aggressive toward this species. In addition, ants also reduced their aggressiveness toward another mutualistic aphid species, Aphis fabae, after tending A. craccivora, whereas ants remained aggressive toward the non-mutualistic aphid, Acyrthosiphon pisum, regardless of whether or not they had previous experience in tending A. craccivora. When ants were offered glass dummies treated with CHCs of these aphid species, ants that had tended A. craccivora displayed reduced aggression toward CHCs of A. craccivora and A. fabae. Chemical analyses showed the similarity of the CHC profiles between A. craccivora and A. fabae but not with A. pisum. These results suggest that aphid recognition of ants involves learning, and that the learning behavior may not be species-specific because of the similarity of CHCs between different aphid species with which they form mutualisms. PMID:26590597

  10. Residue behavior of combination formulations of insecticides in/on cabbage and their efficacy against aphids and diamondback moth.

    PubMed

    Gupta, Suman; Sharma, Rakesh K; Gajbhiye, Vijay T; Gupta, Ram K

    2015-01-01

    Persistence behavior of insecticides chlorpyriphos, profenofos, triazophos, cypermethrin, and deltamethrin following the use of three combination formulations Action 505 (chlorpyriphos + cypermethrin), Roket 44EC (profenofos + cypermethrin), and Anaconda Plus (triazophos + deltamethrin) was studied in cabbage following the spray application at the recommended and double doses. Bio-efficacy of these formulations was also evaluated against mustard aphids (Lipaphis erysimi Kaltenbach) and diamondback moth (Plutella xylostella L.). The residues of different insecticides persisted for 5-8 days at low dose and 8-12 days at high dose. The residues dissipated with time and 87-100% dissipation was recorded on the 8th day. The half-life values varied from 0.4 to 1.6 days. Based on the acceptable daily intake (ADI) values, a safe waiting period of 1 day has been suggested for the formulations Action 505 and Roket 44EC and 3 days for Anaconda Plus at the recommended dose of application. Action (1.6 L/ha) treatment was found to be the best as it significantly reduced the diamondback moth (DBM) (~60%) and aphid population (~70%) besides giving the highest yield (170% increase over control). PMID:25384368

  11. Genetic characterization of an emerging aphid pest in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On July 2013, a new aphid in sorghum was observed in Texas. By the end of November the area of influence of this emergent pest included Texas, Oklahoma, Louisiana, and Florida. Sorghum fields in these States sustained considerable losses. In some locations, yield losses of 33% to 50% were observe...

  12. Associations of wheat with pea can reduce aphid infestations.

    PubMed

    Lopes, T; Bodson, B; Francis, F

    2015-06-01

    Increasing plant diversity within crops can be beneficial for pest control. In this field study, the effects of two wheat and pea associations (mixed cropping and strip cropping) on aphid populations were compared with pure stands of both crops by observations on tillers and plants. Pea was more susceptible to infestations than wheat. As expected, the density of aphid colonies was significantly higher in pure stands during the main occurrence periods, compared with associations. Additionally, flying beneficials, such as not only aphidophagous adult ladybirds but also parasitoid, hoverfly and lacewing species that feed on aphids at the larval stage, were monitored using yellow pan traps. At specific times of the sampling season, ladybirds and hoverflies were significantly more abundant in the pure stand of pea and wheat, respectively, compared with associations. Few parasitoids and lacewings were trapped. This study showed that increasing plant diversity within crops by associating cultivated species can reduce aphid infestations, since host plants are more difficult to locate. However, additional methods are needed to attract more efficiently adult beneficials into wheat and pea associations. PMID:26013274

  13. Room temperature DNA storage with slide-mounted Aphid specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most of the conventional molecular studies of aphids destroy the specimen in order to extract DNA. This DNA is subsequently stored in low temperature freezers. Room temperature storage of DNA with microscope slide-mounted voucher material is demonstrated by developing a system that uses filter pa...

  14. Bird cherry-oat aphid: do we have resistance?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a highly efficient, non-propagative, persistent vector of the phloem limited leutovirus BYD-PAV. BYD is the most important viral disease of cereal grains in the world and PAV is the most prevalent strain of BYD in North America. Not all BCO...

  15. Multifaceted determinants of host specificity in an aphid parasitoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of behavioral and physiological factors that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Bin...

  16. Biotype differences for resistance to Russian wheat aphid in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) is a worldwide insect pest of barley, causing crop losses each year. Previously identified resistant barley lines do not show variable reactions to the eight USA RWA biotypes identified by wheat reactions. However, additional RWA isolates have been identified outside the ...

  17. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  18. Miyazakia, a new aphid genus from Japan (Hemiptera: Aphididae: Macrosiphini).

    PubMed

    Stekolshchikov, Andrey V

    2014-01-01

    Miyazakia gen. nov. with type species Miyazakia ranunculi (Miyazaki, 1971) comb. nov. is described. The species is illustrated and biometric data are provided for all morphs, except the fundatrix. This aphid genus is closely related to Sappaphis Matsumura, 1919. M. ranunculi is a heteroecious species; its primary host is probably Photinia villosa (Thunb.) DC and its secondary host is Ranunculus.  PMID:25283430

  19. Predicting potential ecological impact of soybean aphid biological control introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, APHIS GLYCINES, was first reported in the US in 2000; since then, it has spread to 22 states, putting >24 million hectares of soybean at risk. In China, APHIS GLYCINES rarely reaches damaging levels and has a diverse complex of predators and parasitoids. In the US, parasitoids are...

  20. Screening for Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  1. Screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  2. Inheritance of soybean aphid resistance in 21 soybean plant introductions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] is one of the most important insect pests on soybean [Glycine max (L.) Merr] in the northern USA and southern Canada, and four resistance loci (Rag1 to 4) have been discovered since the pest was identified in the USA in 2000. The ob...

  3. Venomous protease of aphid soldier for colony defense.

    PubMed

    Kutsukake, Mayako; Shibao, Harunobu; Nikoh, Naruo; Morioka, Mizue; Tamura, Tomohiro; Hoshino, Tamotsu; Ohgiya, Satoru; Fukatsu, Takema

    2004-08-01

    In social aphids, morphological, behavioral, and physiological differences between soldiers and normal insects are attributed to differences in gene expression between them, because they are clonal offspring parthenogenetically produced by the same mothers. By using cDNA subtraction, we identified a soldier-specific cysteine protease of the family cathepsin B in a social aphid, Tuberaphis styraci, with a second-instar soldier caste. The cathepsin B gene was specifically expressed in soldiers and first-instar nymphs destined to be soldiers. The cathepsin B protein was preferentially produced in soldiers and showed a protease activity typical of cathepsin B. The cathepsin B mRNA and protein were localized in the midgut of soldiers. For colony defense, soldiers attack enemies with their stylet, which causes paralysis and death of the victims. Notably, after soldiers attacked moth larvae, the cathepsin B protein was detected from the paralyzed larvae. Injection of purified recombinant cathepsin B protein certainly killed the recipient moth larvae. From these results, we concluded that the cathepsin B protein is a major component of the aphid venom produced by soldiers of T. styraci. Soldier-specific expression of the cathepsin B gene was found in other social aphids of the genus Tuberaphis. The soldier-specific cathepsin B gene showed an accelerated molecular evolution probably caused by the action of positive selection, which had been also known from venomous proteins of other animals. PMID:15277678

  4. Catalog of the Aphid Genera Described from the New World

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript presents a synthesis and catalogue of the genera of New World aphids (sensu stricto) from 1758 to 2004. It includes information on 215 generic and subgeneric names, type localities, bibliographic information, etymology, as well as synonymic and other nomenclatural data. Two nomencl...

  5. Sugarcane aphid in Oklahoma: Responding to a new pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid (SCA) was first found in Oklahoma in 2013, and quickly became a major threat to grain sorghum production. Scientists at Oklahoma State University and the USDA's Wheat, Peanut and Other Field Crops Research Lab in Stillwater, working with cooperators in other sorghum producing st...

  6. Pan trapping soybean aphids (Hemiptera: Aphididae) using attractants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since it’s introduction into the United States in the past ten years, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), has been a damaging pest to soybean (Glycine max (L.) Merr.). Predicting their arrival in a soybean field on a year-by-year basis has been difficult as little is ...

  7. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont.

    PubMed

    Shigenobu, Shuji; Stern, David L

    2013-01-01

    Aphids evolved novel cells, called bacteriocytes, that differentiate specifically to harbour the obligatory mutualistic endosymbiotic bacteria Buchnera aphidicola. The genome of the host aphid Acyrthosiphon pisum contains many orphan genes that display no similarity with genes found in other sequenced organisms, prompting us to hypothesize that some of these orphan genes are related to lineage-specific traits, such as symbiosis. We conducted deep sequencing of bacteriocytes mRNA followed by whole mount in situ hybridizations of over-represented transcripts encoding aphid-specific orphan proteins. We identified a novel class of genes that encode small proteins with signal peptides, which are often cysteine-rich, that are over-represented in bacteriocytes. These genes are first expressed at a developmental time point coincident with the incorporation of symbionts strictly in the cells that contribute to the bacteriocyte and this bacteriocyte-specific expression is maintained throughout the aphid's life. The expression pattern suggests that recently evolved secretion proteins act within bacteriocytes, perhaps to mediate the symbiosis with beneficial bacterial partners, which is reminiscent of the evolution of novel cysteine-rich secreted proteins of leguminous plants that regulate nitrogen-fixing endosymbionts. PMID:23173201

  8. Relationships between soybean shoot nitrogen components and soybean aphid populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defining the relationships between soybean (Glycine max [L.] merr.) shoot nitrogen (N) components and soybean aphid (Aphis glycines Matsumura) populations will increase understanding of the biology of this important insect pest. In this 2-year field study, caged soybean plants were infested with so...

  9. Sugarcane aphid resistance in sorghum and a host range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid (SCA), Melanaphis sacchari, has been present in the United States primarily on sugarcane in Florida, Hawaii, and Louisiana until 2013 where it was found on grain sorghum near Beaumont, Texas. Since 2013, the SCA has been rapidly spreading and overwintering. Depending on the plant...

  10. A Candidate Gene for Aphid Resistance in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of small grain crops in many parts of the world. A single dominant gene, Gb3 originated from Aegilops tauschii has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields. Previously, we mapp...

  11. Relative susceptibility of pecan germplasm to blackmargined aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The blackmargined aphid, Monellia caryella (Fitch), is an important phytophage in the pecan, Carya illinoinensis (Wangenh.) K. Koch, agroecosystem where it often is treated with insecticide. Pecan cultivars released by the USDA Pecan Breeding Program vary in susceptibility and risk of damage from t...

  12. Screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  13. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View

    PubMed Central

    Sicard, Anne; Zeddam, Jean-Louis; Yvon, Michel; Michalakis, Yannis; Gutiérrez, Serafin

    2015-01-01

    ABSTRACT Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that

  14. Differential reactions of soybean isolines with combinations of aphid resistance genes Rag1, Rag2, and Rag3 to four soybean aphid biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the discovery of the soybean aphid (Aphis glycines Matsumura) as a devastating insect pest of soybean (Glycine max (L.) Merr.) in the United States, host resistance was recognized as an important management option. However, the identification of soybean aphid isolates exhibiting strong virulenc...

  15. Gene Expression Analysis of Parthenogenetic Embryonic Development of the Pea Aphid, Acyrthosiphon pisum, Suggests That Aphid Parthenogenesis Evolved from Meiotic Oogenesis

    PubMed Central

    Srinivasan, Dayalan G.; Abdelhady, Ahmed; Stern, David L.

    2014-01-01

    Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis) during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity. PMID:25501006

  16. Blackmargined aphid (Monellia caryella (Fitch); Hemiptera: Aphididae) honeydew production in pecan (Carya illinoinesis (Koch)) and implications for managing the pecan aphid complex in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field studies of the blackmargined aphid, Monellia caryella (Fitch), were conducted on three cultivars, “Cheyenne,” “Kiowa,” and “Pawnee,” of pecan, Carya illinoinisis (Wang) K. Koch. Aphid and natural enemy (lacewings, ladybird beetles, and spiders) densities were determined twice weekly by direct...

  17. Interactions among three species of cereal aphids simultaneously infesting wheat

    PubMed Central

    Qureshi, Jawwad A.; Michaud, J. P.

    2005-01-01

    Interactions among greenbug, Schizaphis graminum (Rondani), Russian wheat aphid, Diuraphis noxia (Mordvilko), and bird cherry-oat aphid Rhopalosiphum padi (L.) were examined on wheat plants (Triticum aestivum L., cultivar TAM 107). Nymphs were released on the plants as conspecific and heterospecific pairs of either first or fourth instars and evaluated for survival, developmental time, fecundity, intra-plant movement, and affinity to plant tissues. Survival from first instar to onset of reproduction averaged 90–100% across all pair combinations. Diuraphis noxia developed faster as conspecifics than in any heterospecific combination, and faster as conspecifics feeding on the same plant tissue than on different tissues. Fecundity of S. graminum was higher for conspecifics that developed on the same plant tissue than for those feeding separately. There was evidence of amensalism (one species was harmed while the other was unaffected) in that D. noxia experienced delayed development feeding in tandem with S. graminum, and reduced fecundity with both S. graminum and R. padi. Furthermore, S. graminum nymphs had reduced survival when their mothers matured on a same plant with R. padi. Both D. noxia and R. padi changed position on the plant more often when developing with S. graminum. Survival of second generation S. graminum nymphs was reduced when this species developed and reproduced in tandem with R. padi. Preferred feeding locations were S. graminum - primary leaf, D. noxia - tertiary leaf and R. padi - stem and these were not altered in any heterospecific combinations. Heterospecific aphids had no impact on fecundity or progeny survival in any species combination when fourth instars matured and reproduced on plants not previously exposed to aphid feeding, supporting the inference that systemic, aphid-induced changes in plant physiology mediated the effects observed when first instars developed and reproduced on the same plants. PMID:16341245

  18. Parasitism of the soybean aphid Aphis glycines by Binodoxys communis: the role of aphid defensive behavior and parasitoid reproductive performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the candidate natural enemies for release against the exotic soybean aphid Aphis glycines (Hemiptera: Aphididae) in North America is the Asian parasitoid Binodoxys communis (Hymenoptera: Braconidae). We examined B. communis preferences for different developmental stages of A. glycines and in...

  19. Chlorotic feeding injury by the black pecan aphid (Hemiptera: Aphididae) to pecan foliage promotes aphid settling and nymphal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nature of the interaction between the black pecan aphid, Melanocallis caryaefoliae (Hemiptera: Aphididae), and the chlorosis it causes to foliage of its pecan [Carya illinoinensis (Wangenh.) K. Koch)] host is poorly understood. Laboratory experiments were conducted on the settling behavior of t...

  20. Intake technologies: Research status: Final report

    SciTech Connect

    McGroddy, P.M.; Matousek, J.A.

    1989-03-01

    This report summarizes recent research activities related to fish protection at water intake structures, with particular emphasis on research reported on or conducted at pumped cooling-water intakes. Information gathered from 51 organizations (33 utilities, seven equipment manufacturers, six research organizations, two private engineering firms, one steel mill, and two government agencies) is provided along with specific summaries of EPRI-sponsored research on behavioral barriers at pumped and hydroelectric facilities. The level of research activity indicted by utilities at pumped intakes has decreased recently, although the interest in potential plant operational impact mitigative techniques remains high. Two studies sponsored by EPRI at pumped cooling-water intake structures evaluated the individual and combined deterrent capabilities of three devices: an air bubble curtain, pneumatic guns, and underwater strobe lights. A study conducted during 1985 and 1986 at Ontario Hydro's nearshore test facility, located in Lake Ontario off the Pickering Nuclear Generating Station intake, indicated that all three devices and combinations of devices elicited an avoidance response in alewife. The pneumatic gun exhibited the highest deterrent capability and the air bubble curtain the lowest. Studies conducted using the same deterrent devices at the intake of Central Hudson Gas and Electric Corporation's Roseton Generating Station on the Hudson River did not indicate an overall avoidance response; some species-specific responses to the devices were noted. 22 refs., 9 tabs.

  1. Expression of Monstera deliciosa agglutinin gene (mda) in tobacco confers resistance to peach-potato aphids.

    PubMed

    Kai, Guoyin; Ji, Qian; Lu, Yang; Qian, Zhongying; Cui, Lijie

    2012-08-01

    The aphid is one of the most serious pests that causes damage to crops worldwide. Lectins from Araceae plant had been proved useful to control the aphid. Herein, the full-length cDNA of Monstera deliciosa agglutinin (mda) gene was cloned and then introduced into tobacco and the influence of the expression of mda in transgenic tobacco against peach-potato aphids (Myzus persicae) was investigated. Among 92 regenerated plants, 59 positive tobacco lines were obtained. Real-time PCR assays and aphid bioassay test revealed that there is a positive correlation between the expression level of mda and the inhibitory effect on peach-potato aphids. The average anti-pests ability of mda transgenic tobacco was 74%, which was higher than that of other reported lectins from Araceae plant. These results indicated that MDA is one of promising insect resistance proteins selected for the control of peach-potato aphids. PMID:22660606

  2. Enhanced aphid detoxification when confronted by a host with elevated ROS production

    PubMed Central

    Lei, Jiaxin; Zhu-Salzman, Keyan

    2015-01-01

    Reactive oxygen species (ROS) plays an important role in plant defense responses against bacteria, fungi and insect pests. Most recently, we have demonstrated that loss of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) function releases its suppression of aphid-induced H2O2 production and cell death, rendering the bik1 mutant more resistant to green peach aphid (Myzus persicae) than wild-type plants. However, little is known regarding how ROS-related gene expression is correlated with bik1-mediated resistance to aphids, or whether these aphids biochemically respond to the oxidative stress. Here, we show that the bik1 mutant exhibited elevated basal expression of ROS-generating and -responsive genes, but not ROS-metabolizing genes. Conversely, we detected enhanced detoxification enzymatic activities in aphids reared on bik1 plants compared to those on wild-type plants, suggesting that aphids counter the oxidative stress associated with bik1 through elevated metabolic resistance. PMID:25932782

  3. DNA Barcoding and the Associated PhylAphidB@se Website for the Identification of European Aphids (Insecta: Hemiptera: Aphididae)

    PubMed Central

    Coeur d’acier, Armelle; Cruaud, Astrid; Artige, Emmanuelle; Genson, Gwenaëlle; Clamens, Anne-Laure; Pierre, Eric; Hudaverdian, Sylvie; Simon, Jean-Christophe; Jousselin, Emmanuelle; Rasplus, Jean-Yves

    2014-01-01

    Aphids constitute a diverse group of plant-feeding insects and are among the most important crop pests in temperate regions. Their morphological identification is time-consuming and requires specific knowledge, training and skills that may take years to acquire. We assessed the advantages and limits of DNA barcoding with the standard COI barcode fragment for the identification of European aphids. We constructed a large reference dataset of barcodes from 1020 specimens belonging to 274 species and 87 genera sampled throughout Europe and set up a database-driven website allowing species identification from query sequences. Results In this unbiased sampling of the taxonomic diversity of European aphids, intraspecific divergence ranged from 0.0% to 3.9%, with a mean value of 0.29%, whereas mean congeneric divergence was 6.4%, ranging from 0.0% to 15%. Neighbor-joining analysis generated a tree in which most species clustered in distinct genetic units. Most of the species with undifferentiated or overlapping barcodes belonged to the genus Aphis or, to a lesser extent, the genera Brachycaudus, Dysaphis and Macrosiphum. The taxa involved were always morphologically similar or closely related and belonged to species groups known to present taxonomic difficulties. Conclusions These data confirm that COI barcoding is a useful identification tool for aphids. Barcode identification is straightforward and reliable for 80% of species, including some difficult to distinguish on the basis of morphological characters alone. Unsurprisingly, barcodes often failed to distinguish between species from groups for which classical taxonomy has also reached its limits, leading to endless revisions and discussions about species and subspecies definitions. In such cases, the development of an effective procedure for the accurate identification of aphid specimens continues to pose a difficult challenge. PMID:24896814

  4. Comparative Life Histories of Greenbugs and Sugarcane Aphids (Hemiptera: Aphididae) Coinfesting Susceptible and Resistant Sorghums.

    PubMed

    Bayoumy, Mohamed H; Perumal, Ramaswamy; Michaud, J P

    2016-02-01

    Host-plant resistance has been a fundamental component of aphid management in cereal crops. Over decades, various sources of resistance to greenbug, Schizaphis graminum (Rondani), were bred into cultivars of sorghum, Sorghum bicolor (L.) Moench, to counter recurring virulent greenbug biotypes. The recent invasion of sugarcane aphid, Melanaphis sacchari (Zehntner), raised questions about plant-mediated interactions between the two aphids and the possibility of using greenbug antibiosis against sugarcane aphid. The present work was undertaken to characterize the impact of PI 550610 resistance to 'biotype I' greenbug, expressed in seed parental line KS 116B, on aphid life histories and to observe plant-mediated interactions between aphid species in its presence and absence. At 23°C, sugarcane aphid nymphs matured 1.5 d faster than greenbug nymphs on susceptible hybrid P8500, but at similar rates on the resistant line, which delayed maturity by 1-1.5 d in both species and increased juvenile mortality by three- to fourfold. Sugarcane aphid reproductive rate was double that of greenbug on susceptible sorghum (4.45 vs. 2.30 nymphs per female per day), but not significantly different on the resistant one (3.09 vs. 2.27). Thus, PI 550610 expresses antibiosis, not tolerance, to these aphids. Coinfestation of P8500 had a positive effect on greenbug intrinsic rate of increase (rm), which changed to negative on KS 116B, whereas the rm of sugarcane aphid was unaffected by coinfestation with greenbug on either cultivar. The results indicate that KS 116B will be useful for producing sugarcane aphid-resistant hybrids, and that PI 550610 antibiosis changes the sugarcane aphid-greenbug interspecific relationship from commensalism to amensalism. PMID:26357844

  5. [Uses of monomolecular lipid film for control of udo aphid (Toxoptera odinae (Van der Goot))].

    PubMed

    Chen, J; Cheng, H Z; Lin, Y L

    1993-02-01

    The biological character of udo aphid was observed and monomolecular lipid film was used to control it. The results showed that at 100 and 200 times the lipid film, the hatch rate of over-winter eggs was lower than the control by 30.76% and 12.15% respectively, and at 50, 100 and 200 times the lipid film the mortality of young nymph aphids was 100% and those of old nymph aphids and adult aphids were 8.31%, 32.62% and 3.31% respectively. PMID:8323704

  6. New data on aphid fauna (Hemiptera, Aphididae) in Algeria

    PubMed Central

    Laamari, Malik; d’Acier, Armelle Coeur; Jousselin, Emmanuelle

    2013-01-01

    Abstract A survey of aphids was carried out during the period 2008-2011 in different regions of Algeria by collecting and identifying aphids and their host plants. Aphids were collected from 46 host plants. Forty-six species were reported including thirty-six species which were recorded for the first time in this country and thirty species which were recorded for the first time in the Maghreb (North Africa). This study extends the number of known Algerian aphid to 156 species. PMID:24039520

  7. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.

    PubMed

    Naessens, Elodie; Dubreuil, Géraldine; Giordanengo, Philippe; Baron, Olga Lucia; Minet-Kebdani, Naïma; Keller, Harald; Coustau, Christine

    2015-07-20

    Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species. PMID:26119751

  8. Stochastic modeling of aphid population growth with nonlinear, power-law dynamics.

    PubMed

    Matis, James H; Kiffe, Thomas R; Matis, Timothy I; Stevenson, Douglass E

    2007-08-01

    This paper develops a deterministic and a stochastic population size model based on power-law kinetics for the black-margined pecan aphid. The deterministic model in current use incorporates cumulative-size dependency, but its solution is symmetric. The analogous stochastic model incorporates the prolific reproductive capacity of the aphid. These models are generalized in this paper to include a delayed feedback mechanism for aphid death. Whereas the per capita aphid death rate in the current model is proportional to cumulative size, delayed feedback is implemented by assuming that the per capita rate is proportional to some power of cumulative size, leading to so-called power-law dynamics. The solution to the resulting differential equations model is a left-skewed abundance curve. Such skewness is characteristic of observed aphid data, and the generalized model fits data well. The assumed stochastic model is solved using Kolmogrov equations, and differential equations are given for low order cumulants. Moment closure approximations, which are simple to apply, are shown to give accurate predictions of the two endpoints of practical interest, namely (1) a point estimate of peak aphid count and (2) an interval estimate of final cumulative aphid count. The new models should be widely applicable to other aphid species, as they are based on three fundamental properties of aphid population biology. PMID:17306309

  9. Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community.

    PubMed

    Traugott, M; Bell, J R; Broad, G R; Powell, W; van Veen, F J F; Vollhardt, I M G; Symondson, W O C

    2008-09-01

    Insect parasitoids play a major role in terrestrial food webs as they are highly diverse, exploit a wide range of niches and are capable of affecting host population dynamics. Formidable difficulties are encountered when attempting to quantify host-parasitoid and parasitoid-parasitoid trophic links in diverse parasitoid communities. Here we present a DNA-based approach to effectively track trophic interactions within an aphid-parasitoid food web, targeting, for the first time, the whole community of parasitoids and hyperparasitods associated with a single host. Using highly specific and sensitive multiplex and singleplex polymerase chain reaction, endoparasitism in the grain aphid Sitobion avenae (F) by 11 parasitoid species was quantified. Out of 1061 aphids collected during 12 weeks in a wheat field, 18.9% were found to be parasitized. Parasitoids responded to the supply of aphids, with the proportion of aphids parasitized increasing monotonically with date, until the aphid population crashed. In addition to eight species of primary parasitoids, DNA from two hyperparasitoid species was detected within 4.1% of the screened aphids, with significant hyperparasitoid pressure on some parasitoid species. In 68.2% of the hyperparasitized aphids, identification of the primary parasitoid host was also possible, allowing us to track species-specific parasitoid-hyperparasitoid links. Nine combinations of primary parasitoids within a single host were found, but only 1.6% of all screened aphids were multiparasitized. The potential of this approach to parasitoid food web research is discussed. PMID:18662231

  10. Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins

    PubMed Central

    Haubruge, Eric; Hance, Thierry; Thonart, Philippe; De Pauw, Edwin; Francis, Frédéric

    2013-01-01

    Aphids feed on the phloem sap of plants, and are the most common honeydew-producing insects. While aphid honeydew is primarily considered to comprise sugars and amino acids, its protein diversity has yet to be documented. Here, we report on the investigation of the honeydew proteome from the pea aphid Acyrthosiphon pisum. Using a two-Dimensional Differential in-Gel Electrophoresis (2D-Dige) approach, more than 140 spots were isolated, demonstrating that aphid honeydew also represents a diverse source of proteins. About 66% of the isolated spots were identified through mass spectrometry analysis, revealing that the protein diversity of aphid honeydew originates from several organisms (i.e. the host aphid and its microbiota, including endosymbiotic bacteria and gut flora). Interestingly, our experiments also allowed to identify some proteins like chaperonin, GroEL and Dnak chaperones, elongation factor Tu (EF-Tu), and flagellin that might act as mediators in the plant-aphid interaction. In addition to providing the first aphid honeydew proteome analysis, we propose to reconsider the importance of this substance, mainly acknowledged to be a waste product, from the aphid ecology perspective. PMID:24086359

  11. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    PubMed

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology. PMID:25740334

  12. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    PubMed

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain

  13. Aphid infestation affecting the biogeochemistry of European beech saplings

    NASA Astrophysics Data System (ADS)

    Michalzik, B.; Levia, D. F., Jr.; Bischoff, S.; Näthe, K.

    2014-12-01

    Mass outbreaks of herbivore insects are known to perturb the functional properties of forests. However, it is less clear how endemic to moderate aboveground herbivory affects the vertical flow of nutrients from tree canopies to the soil. Here, we report on the effects of low to moderate infestation levels of the woolly beech aphid (Phyllaphis fagi L.) on the nutrient dynamics and hydrology of European beech (Fagus sylvatica L.). In a potted sapling experiment, we followed the vertical dynamics of nutrients via throughfall (TF), stemflow (SF) and litter leachates (LL) collected over ten weeks underneath infested and uninfested control trees. Aphid infestation amplifies the fluxes of K+, Mn2+ and particulate nitrogen (0.45μm < PN < 500 μm) in TF solution by 42% for K+, 59% for Mn2+ and 13% for PN relative to the control. In contrast, fluxes of NH4-N and SO4-S diminished during peaking aphid abundance by 26 and 16%, respectively. Differences in canopy-derived dissolved nitrogen and carbon compounds, sulfur (S), Ca2+, Mg2+, Na+ were < 10%. The effect of aphid abundance on nutrient dynamics was most notable in TF and SF and diminished in LL.Aphid infestation greatly altered the SF fluxes of DOC, K+, Mn2+, DON and sulfur-species, which were significantly concentrated at the tree base by "funneling" the rainfall through the canopy biomass to the trunk. Normalized to one square meter, water and nutrient fluxes were amplified by a factor of up to 200 compared to TF.Imaging of leaf surfaces by scanning electron microscopy exhibited notable differences of the surface morphology and microbiology of control, lightly infested, and heavily infested leaves. This observation might point to an aphid-mediated alteration of the phyllosphere ecology triggering the microbial uptake of NH4-N and SO4-S and its transformation to particulate N by magnified biomass growth of the phyllosphere microflora, consequently changing the chemical partitioning and temporal availability of nitrogen.

  14. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation.

    PubMed

    Kettles, Graeme J; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant-aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues. PMID:27536306

  15. The Potato Aphid Salivary Effector Me47 Is a Glutathione-S-Transferase Involved in Modifying Plant Responses to Aphid Infestation

    PubMed Central

    Kettles, Graeme J.; Kaloshian, Isgouhi

    2016-01-01

    Polyphagous aphid pests cause considerable economic damage to crop plants, primarily through the depletion of photoassimilates and transfer of viruses. The potato aphid (Macrosiphum euphorbiae) is a notable pest of solanaceous crops, however, the molecular mechanisms that underpin the ability to colonize these hosts are unknown. It has recently been demonstrated that like other aphid species, M. euphorbiae injects a battery of salivary proteins into host plants during feeding. It is speculated that these proteins function in a manner analagous to secreted effectors from phytopathogenic bacteria, fungi and oomycetes. Here, we describe a novel aphid effector (Me47) which was identified from the potato aphid salivary secretome as a putative glutathione-S-transferase (GST). Expression of Me47 in Nicotiana benthamiana enhanced reproductive performance of green peach aphid (Myzus persicae). Similarly, delivery of Me47 into leaves of tomato (Solanum lycopersicum) by Pseudomonas spp. enhanced potato aphid fecundity. In contrast, delivery of Me47 into Arabidopsis thaliana reduced GPA reproductive performance, indicating that Me47 impacts the outcome of plant–aphid interactions differently depending on the host species. Delivery of Me47 by the non-pathogenic Pseudomonas fluorescens revealed that Me47 protein or activity triggers defense gene transcriptional upregulation in tomato but not Arabidopsis. Recombinant Me47 was purified and demonstrated to have GST activity against two specific isothiocyanates (ITCs), compounds implicated in herbivore defense. Whilst GSTs have previously been associated with development of aphid resistance to synthetic insecticides, the findings described here highlight a novel function as both an elicitor and suppressor of plant defense when delivered into host tissues. PMID:27536306

  16. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Li, Yuefei; Tong, Bin; Harris, Marvin; Zhu-Salzman, Keyan; Ge, Feng

    2013-10-01

    Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2). PMID:23686968

  17. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids

    PubMed Central

    2014-01-01

    Background Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Results Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Conclusions Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved. PMID:25331082

  18. Indian Bt Cotton Varieties Do Not Affect the Performance of Cotton Aphids

    PubMed Central

    Lawo, Nora C.; Wäckers, Felix L.; Romeis, Jörg

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) when grown on three Indian Bt (Cry1Ac) cotton varieties (MECH 12, MECH 162, MECH 184) and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields. PMID:19279684

  19. Host Plant Specialization in the Sugarcane Aphid Melanaphis sacchari

    PubMed Central

    Nibouche, Samuel; Mississipi, Stelly; Fartek, Benjamin; Delatte, Hélène; Reynaud, Bernard; Costet, Laurent

    2015-01-01

    Most aphids are highly specialized on one or two related plant species and generalist species often include sympatric populations adapted to different host plants. Our aim was to test the hypothesis of the existence of host specialized lineages of the aphid Melanaphis sacchari in Reunion Island. To this end, we investigated the genetic diversity of the aphid and its association with host plants by analyzing the effect of wild sorghum Sorghum bicolor subsp. verticilliflorum or sugarcane as host plants on the genetic structuring of populations and by performing laboratory host transfer experiments to detect trade-offs in host use. Genotyping of 31 samples with 10 microsatellite loci enabled identification of 13 multilocus genotypes (MLG). Three of these, Ms11, Ms16 and Ms15, were the most frequent ones. The genetic structure of the populations was linked to the host plants. Ms11 and Ms16 were significantly more frequently observed on sugarcane, while Ms15 was almost exclusively collected in colonies on wild sorghum. Laboratory transfer experiments demonstrated the existence of fitness trade-offs. An Ms11 isofemale lineage performed better on sugarcane than on sorghum, whereas an Ms15 lineage developed very poorly on sugarcane, and two Ms16 lineages showed no significant difference in performances between both hosts. Both field and laboratory results support the existence of host plant specialization in M. sacchari in Reunion Island, despite low genetic differentiation. This study illustrates the ability of asexual aphid lineages to rapidly undergo adaptive changes including shifting from one host plant to another. PMID:26600253

  20. Variable Performance of Bird Cherry-Oat Aphid on Neotyphodium-infected Wild Tall Fescue from Tunisia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent of Neotyphodium based resistance in wild fescue to bird cherry-oat aphid (Rhopalosiphum padi) was determined by quantifying densities of this aphid on a series of Neotyphodium – infected (E+) and uninfected (E-) tall fescue entries. Little or no aphid survival was observed on plants from ...

  1. Tangible benefits of the pea aphid genome sequencing in proteomics research: enhancements in protein identification, data incorporation, and evaluation criteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pea aphid, Acyrthosiphon pisum, is an important agricultural pest and a model system for numerous aspects of aphid biology, including sexual and asexual reproduction, bacterial endosymbiosis, insecticide resistance, and the evolution of aphid and plant host interactions. Recently, its complete ...

  2. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Her...

  3. Maintaining genetic diversity and population panmixia through dispersal and not gene flow in a Holocyclic heteroecious aphid species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heteroecious holocyclic aphids alternate between sexual and asexual reproduction on primary and secondary hosts, respectively. Most of these aphids are generalists, but the aphid specialist Aphis glycines survives only on the primary host buckthorn (Rhamnus spp.) and the secondary host soybean (Gly...

  4. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.

    PubMed

    Lin, Fang-Jing; Bosquée, Emilie; Liu, Ying-Jie; Chen, Ju-Lian; Yong, Liu; Francis, Frédéric

    2016-09-01

    Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals. PMID:27185564

  5. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... the Biological Control of the Soybean Aphid in the Continental United States; Availability of an... release of Aphelinus glycinis for the biological control of the soybean aphid, Aphis glycines, in the...-2323. SUPPLEMENTARY INFORMATION: Background The soybean aphid, Aphis glycinis, which is native to...

  6. Coping with shorter days: do phenology shifts constrain aphid fitness?

    PubMed Central

    Hovestadt, Thomas; Krauss, Jochen

    2015-01-01

    Climate change can alter the phenology of organisms. It may thus lead seasonal organisms to face different day lengths than in the past, and the fitness consequences of these changes are as yet unclear. To study such effects, we used the pea aphid Acyrthosiphon pisum as a model organism, as it has obligately asexual clones which can be used to study day length effects without eliciting a seasonal response. We recorded life-history traits under short and long days, both with two realistic temperature cycles with means differing by 2 °C. In addition, we measured the population growth of aphids on their host plant Pisum sativum. We show that short days reduce fecundity and the length of the reproductive period of aphids. Nevertheless, this does not translate into differences at the population level because the observed fitness costs only become apparent late in the individual’s life. As expected, warm temperature shortens the development time by 0.7 days/°C, leading to faster generation times. We found no interaction of temperature and day length. We conclude that day length changes cause only relatively mild costs, which may not decelerate the increase in pest status due to climate change. PMID:26207194

  7. A water-specific aquaporin involved in aphid osmoregulation.

    PubMed

    Shakesby, A J; Wallace, I S; Isaacs, H V; Pritchard, J; Roberts, D M; Douglas, A E

    2009-01-01

    The osmotic pressure of plant phloem sap is generally higher than that of insect body fluids. Water cycling from the distal to proximal regions of the gut is believed to contribute to the osmoregulation of aphids and other phloem-feeding insects, with the high flux of water mediated by a membrane-associated aquaporin. A putative aquaporin referred to as ApAQP1 was identified by RT-PCR of RNA isolated from the guts of pea aphids Acyrthosiphon pisum. The ApAQP1 protein has a predicted molecular mass 28.94kDa. Molecular modeling suggests that ApAQP1 has the general aquaporin topology and possesses the conserved pore properties of water-specific aquaporins. When expressed in Xenopus oocytes, ApAQP1 showed the hallmarks of aquaporin-mediated water transport, including an 18-fold increase in the osmotic water permeability of the oolemma, a reduced activation energy, and inhibition of elevated water transport activity by Hg ions. The ApAQP1 transcript was localised to the stomach and distal intestine, and RNAi-mediated knockdown of its expression resulted in elevated osmotic pressure of the haemolymph. Taken together, these data suggest that ApAQP1 contributes to the molecular basis of water cycling in the aphid gut. PMID:18983920

  8. The insecticidal activity of recombinant garlic lectins towards aphids.

    PubMed

    Fitches, Elaine; Wiles, Duncan; Douglas, Angela E; Hinchliffe, Gareth; Audsley, Neil; Gatehouse, John A

    2008-10-01

    The heterodimeric and homodimeric garlic lectins ASAI and ASAII were produced as recombinant proteins in the yeast Pichia pastoris. The proteins were purified as functional dimeric lectins, but underwent post-translational proteolysis. Recombinant ASAII was a single homogenous polypeptide which had undergone C-terminal processing similar to that occurring in planta. The recombinant ASAI was glycosylated and subject to variable and heterogenous proteolysis. Both lectins showed insecticidal effects when fed to pea aphids (Acyrthosiphon pisum) in artificial diet, ASAII being more toxic than ASAI at the same concentration. Acute toxicity (mortality at < or =48 h exposure; similar timescale to starvation) was only apparent at the highest lectin concentrations tested (2.0 mg ml(-)1), but dose-dependent chronic toxicity (mortality at >3d exposure) was observed over the concentration range 0.125-2.0 mg ml(-1). The recombinant lectins caused mortality in both symbiotic and antibiotic-treated aphids, showing that toxicity is not dependent on the presence of the bacterial symbiont (Buchnera aphidicola), or on interaction with symbiont proteins, such as the previously identified lectin "receptor" symbionin. A pull-down assay coupled with peptide mass fingerprinting identified two abundant membrane-associated aphid gut proteins, alanyl aminopeptidase N and sucrase, as "receptors" for lectin binding. PMID:18707000

  9. Wild Solanum resistance to aphids: antixenosis or antibiosis?

    PubMed

    Le Roux, Vincent; Dugravot, Sébastien; Campan, Erick; Dubois, Françoise; Vincent, Charles; Giordanengo, Philippe

    2008-04-01

    The type (antixenosis or antibiosis) of resistance against the aphids Myzus persicae (Sulzer) and Macrosiphum euphorbiae (Thomas) was characterized for the wild tuber-bearing potatoes, Solanum chomatophilum Bitter and Solanum stoloniferum Schltdl. & Bouché through behavioral (olfactometry and electrical penetration graph) and physiological studies. In dual-choice assays, only S. stoloniferum exerted attraction to M. euphorbiae. This ruled out the possibility that plant volatiles of S. chomatophilum and S. stoloniferum may contribute to the high resistance expressed. In electrical penetration graph experiments, aphids feeding on S. stoloniferum showed increased salivation phases, whereas phloem ingestion was drastically reduced for both aphid species. Because reaching phloem elements was not delayed in both species, the resistance mechanism was phloem-located. The antixenosis exhibited by S. stoloniferum was similar on young and mature leaves. S. chomatophilum also showed phloem-located antixenosis against M. persicae. In contrast, M. euphorbiae had no difficulty to reach S. chomatophilum phloem tissues and to ingest sap. S. chomatophilum resistance against M. euphorbiae was antibiosis and only expressed in mature leaves, where a complete nymphal mortality was observed. PMID:18459428

  10. Aphidoletes aphidimyza oviposition behaviour when multiple aphid pests are present in the greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generalist aphid predator Aphidoletes aphidimyza was investigated for oviposition behaviour on the pest aphids Myzus persicae and Aulacorthum solani in greenhouse trials. Oviposition was significantly lower on A. solani than M. persicae. Myzus persicae were concentrated at the growing points of ...

  11. Book review: Aphids on the world's herbaceous plants and shrubs, Volume 1 & 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant damage from aphids has resulted in billions of dollars losses annually. This book review is directed toward the first comprehensive host-based identification guide for any significant group of phytophagous insects. The work covers over 3,000 aphid species. Not only does it have diagnostic ke...

  12. Experiences with the sugarcane aphid as a pest of sugarcane in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid, Melanaphis sacchari (Zehntner), has been a sporadic but sometimes serious problem on sugarcane in Louisiana since its first discovery in 1999. LSU AgCenter and USDA-ARS scientists have studied aspects of sugarcane aphid management on sugarcane, including pest status, varietal re...

  13. Outbreak of sorghum/sugarcane aphid on sorghum: First detections, distribution, and notes on management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of an invasive aphid was discovered damaging grain sorghum in Texas and neighboring states in 2013. It may be a new variant of sugarcane aphid, Melanaphis sacchari, that has a high preference for sorghum, or a very closely related species (M. sorghi). We designate it sorghum/sugarcane ...

  14. (E)-β-farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum).

    PubMed

    Yu, Xiudao; Jones, Huw D; Ma, Youzhi; Wang, Genping; Xu, Zhaoshi; Zhang, Baoming; Zhang, Yongjun; Ren, Guangwei; Pickett, John A; Xia, Lanqin

    2012-03-01

    Aphids are major agricultural pests which cause significant yield losses of the crop plants each year. (E)-β-farnesene (EβF) is the alarm pheromone involved in the chemical communication between aphids and particularly in the avoidance of predation. In the present study, two EβF synthase genes were isolated from sweet wormwood and designated as AaβFS1 and AaβFS2, respectively. Overexpression of AaβFS1 or AaβFS2 in tobacco plants resulted in the emission of EβF ranging from 1.55 to 4.65 ng/day/g fresh tissues. Tritrophic interactions involving the peach aphids (Myzus persicae), predatory lacewings (Chrysopa septempunctata) demonstrated that the transgenic tobacco expressing AaβFS1 and AaβFS2 could repel peach aphids, but not as strongly as expected. However, AaβFS1 and AaβFS2 lines exhibited strong and statistically significant attraction to lacewings. Further experiments combining aphids and lacewing larvae in an octagon arrangement showed transgenic tobacco plants could repel aphids and attract lacewing larvae, thus minimizing aphid infestation. Therefore, we demonstrated a potentially valuable strategy of using EβF synthase genes from sweet wormwood for aphid control in tobacco or other economic important crops in an environmentally benign way. PMID:21847661

  15. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  16. Identification of Resistance to the Large Raspberry Aphid in Black Raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large raspberry aphid, Amphorophora agathonica Hottes, is an important vector of viruses in Rubus across North America. Although breeding for aphid resistance has long been recognized as an important tool for protecting red raspberries from viral infection, this is the first report of resistance...

  17. SEASONAL OCCURRENCE OF APHIDS AND NATURAL ENEMIES IN WHEAT AND ALTERNATIVE CROPS GROWN IN OKLAHOMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We monitored experimental plantings of winter wheat and 12 other grain and forage crops for aphids and aphid natural enemies throughout the growing season of each crop for three years. Sorghum (Sorghum vulgare Prescott), cotton (Gossypium hirsutum L.), and winter canola (Brassica napus L.) hosted a...

  18. Field and laboratory evaluations of soybean lines against the soybean aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host-plant resistance a...

  19. Grass hosts of cereal aphids (Hemiptera: Aphididae) between wheat-cropping cycles in South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several grasses may serve as alternative hosts for cereal aphids during the interim between small-grain crops in South Dakota, but field studies to determine which grasses are important have not been undertaken. We sampled annual and perennial grasses for cereal aphids in 18 counties in South Dakot...

  20. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of Paecilomyces fumosoroseus to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Ra...

  1. Two Species of Symbiotic Bacteria Present in the Soybean Aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids, which feed solely on plant phloem sap, have developed symbiotic associations with bacteria that provide them with the amino acids that are lacking in phloem. Three soybean aphid (Aphis glycines Mat samura) populations were screened for the presence of Buchnera aphidicola and three common spe...

  2. Aphid population fluctuations and patterns of species dominance in Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Papaya ringspot virus (PRSV) is a non-persistently transmitted virus affecting papaya and cucurbit production worldwide. Papaya is not known to be colonized by any species of aphid, but multiple species can transmit the virus. That means that transmission depends on aphid populat...

  3. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Myzus persicae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the green peach aphid, Myzus persicae, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures t...

  4. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Cerataphis brasiliensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the palm aphid, Cerataphis brasiliensis, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures...

  5. The ability of insect-killing fungi to kill pecan aphids under laboratory conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is need for efficacious biocontrol agents for pecan aphids in commercial orchards. We determined the virulence (killing power) of several beneficial fungi to pecan aphids. We tested three species (kinds) of fungi: 1) Isaria fumosorosea (two strains of this species were tested: ARSEF 3581 a...

  6. National Plant Diagnostic Network, Taxonomic training videos: Aphids under the microscope - Aphis gossypii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides provides training to identify the cotton aphid, Aphis gossypii, using a compound microscope and an electronic identification key called “LUCID.” The video demonstrates key morphological structures that ca...

  7. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Greenbug (Schizaphis graminum Rondani) and Russian wheat aphid appear in the Great Plains almost every year and have had significant economic impacts on wheat yields. Early detection of aphid infestation is a critical part of integrated pest management (IPM) for wheat and sorghum produ...

  8. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  9. Evidence for the biochemical basis of host virulence in the greenbug aphid, Schizaphis graminum (Homoptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort to develop aphid-resistant, small grain varieties to limit in...

  10. Aphids and parasitoids in wheat and nearby canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In central Oklahoma, winter canola has recently become the primary rotational winter crop with wheat. Annual aphid pest outbreaks in canola have resulted in widespread insecticide applications. Insect parasitoids, which frequently suppress aphids in nearby wheat, may move to canola due to the larg...

  11. Cloning and characterization of mariner-like elements in the soybean aphid, Aphis glycines Matsumura

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is currently the most important insect pest of soybean (Glycine max (L.) Merr.) in the United States and it causes significant economic damage worldwide. The adaptation to host plant resistance can lead to the evolution of soybean aphid ...

  12. Risk to native Uroleucon aphids (Hemiptera: Aphididae) from non-native lady beetles (Coleoptera: Coccinellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids in the genus Uroleucon Mordvilko (Hemiptera: Aphididae) are native herbivores that feed on goldenrod (Solidago spp.) and other Asteraceae in North America. The aphids are potential prey for a wide variety of natural enemies, including native and non-native species of lady beetles (Coleoptera...

  13. Crop Mineral Nutrient and Yield Responses to Aphids or BYDV in Spring Wheat and Oats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little information available that describes how changes in root system biomass caused by aphid feeding or aphid-transmitted viral disease affect root system function in spring wheat (Triticum aestivum L.) or oat (Avena sativa L.). This 2-yr field experiment was conducted to determine how l...

  14. Screening USDA-ARS wheat germplasm for bird cherry-oat aphid tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bird cherry-oat aphid (Rhopalosiphum padi L.) can cause significant yield reduction in wheat (Triticum aestivum L.) without causing aboveground visual damage signs or symptoms. This lack of obvious aboveground symptom development makes it difficult to use standard aphid tolerance testing protoc...

  15. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  16. Evidence of the biochemical basis of host virulence in the greenbug aphid, Schizaphis graminum (Homoptera: Aphididae).

    PubMed

    Pinheiro, Patricia; Bereman, Michael S; Burd, John; Pals, Melissa; Armstrong, Scott; Howe, Kevin J; Thannhauser, Theodore W; MacCoss, Michael J; Gray, Stewart M; Cilia, Michelle

    2014-04-01

    Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort developing aphid-resistant, small-grain varieties to limit insecticide control of the greenbug, Schizaphis graminum. However, new S. graminum biotypes frequently emerge that break resistance. Mechanisms of virulence on the aphid side of the plant-insect interaction are not well understood. S. graminum biotype H is highly virulent on most small grain varieties. This characteristic makes biotype H ideal for comparative proteomics to investigate the basis of biotype virulence in aphids. In this study, we used comparative proteomics to identify protein expression differences associated with virulence. Aphid proteins involved in the tricarboxylic acid cycle, immune system, cell division, and antiapoptosis pathways were found to be up-regulated in biotype H relative to other biotypes. Proteins from the bacterial endosymbiont of aphids were also differentially expressed in biotype H. Guided by the proteome results, we tested whether biotype H had a fitness advantage compared with other S. graminum biotypes and found that biotype H had a higher reproductive fitness as compared with two other biotypes on a range of different wheat germplasms. Finally, we tested whether aphid genetics can be used to further dissect the genetic mechanisms of biotype virulence in aphids. The genetic data showed that sexual reproduction is a source of biotypic variation observed in S. graminum. PMID:24588548

  17. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.

    PubMed

    Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe

    2014-06-01

    Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. PMID:24382700

  18. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense.

    PubMed

    Chaudhary, Ritu; Atamian, Hagop S; Shen, Zhouxin; Briggs, Steven P; Kaloshian, Isgouhi

    2014-06-17

    Aphids are sap-feeding plant pests and harbor the endosymbiont Buchnera aphidicola, which is essential for their fecundity and survival. During plant penetration and feeding, aphids secrete saliva that contains proteins predicted to alter plant defenses and metabolism. Plants recognize microbe-associated molecular patterns and induce pattern-triggered immunity (PTI). No aphid-associated molecular pattern has yet been identified. By mass spectrometry, we identified in saliva from potato aphids (Macrosiphum euphorbiae) 105 proteins, some of which originated from Buchnera, including the chaperonin GroEL. Because GroEL is a widely conserved bacterial protein with an essential function, we tested its role in PTI. Applying or infiltrating GroEL onto Arabidopsis (Arabidopsis thaliana) leaves induced oxidative burst and expression of PTI early marker genes. These GroEL-induced defense responses required the known coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1. In addition, in transgenic Arabidopsis plants, inducible expression of groEL activated PTI marker gene expression. Moreover, Arabidopsis plants expressing groEL displayed reduced fecundity of the green peach aphid (Myzus persicae), indicating enhanced resistance against aphids. Furthermore, delivery of GroEL into tomato (Solanum lycopersicum) or Arabidopsis through Pseudomonas fluorescens, engineered to express the type III secretion system, also reduced potato aphid and green peach aphid fecundity, respectively. Collectively our data indicate that GroEL is a molecular pattern that triggers PTI. PMID:24927572

  19. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage

    PubMed Central

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G.; Athanassiou, Christos G.; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  20. Life history and morphological plasticity of three biotypes of soybean aphid (Aphis glycines)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a pest of soybean, Glycine max (L.) Merr. (Fabaceae), from eastern Asia that was first reported in North America in 2000. The influence of temperature on plasticity of life history and morphological traits of the soybean aphid ha...

  1. Fine Mapping the Soybean Aphid Resistance Gene Rag1 in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid [Aphis glycines Matsumura] is an important soybean [Glycine max (L.) Merr.] pest in North America. The dominant aphid resistance gene Rag1 was previously mapped from the cultivar ‘Dowling’ to a 12 centiMorgan (cM) marker interval on soybean chromosome 7 [formerly linkage group (LG)...

  2. First report on the entomopathogenic genus Neozygites (Entomophthoromycota) and Neozygites osornensis on aphids in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Neozygites has been known in Brazil until now only on mites, and this is its first report on aphids in Brazil. Tree-dwelling aphids (Cinara sp.) on a cypress tree were regularly monitored for entomopathogenic fungi in the city of Terezópolis de Goiás in Central Brazil between July 2014 and...

  3. Geographic distribution of soybean aphid biotypes in USA and Canada during 2008 - 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is a native pest of soybean in eastern Asia and was detected on soybeans in North America in 2000. In 2004, the soybean variety ‘“Dowling”’ was described to be resistant to soybean aphids with the Rag1 gene for resistance. In 2006, a virulent biotype of s...

  4. The Effects of Aphid Traits on Parasitoid Host Use and Specialist Advantage.

    PubMed

    Gagic, Vesna; Petrović-Obradović, Olivera; Fründ, Jochen; Kavallieratos, Nickolas G; Athanassiou, Christos G; Starý, Petr; Tomanović, Željko

    2016-01-01

    Specialization is a central concept in ecology and one of the fundamental properties of parasitoids. Highly specialized parasitoids tend to be more efficient in host-use compared to generalized parasitoids, presumably owing to the trade-off between host range and host-use efficiency. However, it remains unknown how parasitoid host specificity and host-use depends on host traits related to susceptibility to parasitoid attack. To address this question, we used data from a 13-year survey of interactions among 142 aphid and 75 parasitoid species in nine European countries. We found that only aphid traits related to local resource characteristics seem to influence the trade-off between host-range and efficiency: more specialized parasitoids had an apparent advantage (higher abundance on shared hosts) on aphids with sparse colonies, ant-attendance and without concealment, and this was more evident when host relatedness was included in calculation of parasitoid specificity. More traits influenced average assemblage specialization, which was highest in aphids that are monophagous, monoecious, large, highly mobile (easily drop from a plant), without myrmecophily, habitat specialists, inhabit non-agricultural habitats and have sparse colonies. Differences in aphid wax production did not influence parasitoid host specificity and host-use. Our study is the first step in identifying host traits important for aphid parasitoid host specificity and host-use and improves our understanding of bottom-up effects of aphid traits on aphid-parasitoid food web structure. PMID:27309729

  5. Grain and vegetative biomass reduction by the Russian wheat aphid in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a severe pest of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), other small grains, and grasses. Although the Russian wheat aphid is a significant pest of small grains, its feeding effects on grain yield and vegetative biomass in ...

  6. Parasitoids and hyperparasitoids (Hymenoptera) on aphids (Hemiptera) infesting citrus in east Mediterranean region of Turkey.

    PubMed

    Satar, Serdar; Satar, Gül; Karacaoğlu, Mehmet; Uygun, Nedim; Kavallieratos, Nickolas G; Starý, Petr; Athanassiou, Christos G

    2014-01-01

    The aphids, aphid parasitoids, and hyperparasitoids found in citrus orchards, the parasitoids' and hyperparasitoids' seasonal abundance, and the plant-aphid-parasitoid relationships in Hatay, Osmaniye, Adana, and Mersin provinces of the east Mediterranean region of Turkey are presented in the present 2-yr study. Aphidius colemani Viereck, Binodoxys angelicae (Haliday), and Lysiphlebus confusus Tremblay and Eady (Hymenoptera: Braconidae: Aphidiinae) were encountered as the most common parasitoids among 10 identified aphidiine and aphelinid taxa on different citrus species. Hyperparasitoids belonging to the genera Alloxysta, Phaenoglyphis, Asaphes, Pachyneuron, Syrphophagus, and Dendrocerus are reported for the first time emerging from aphids feeding on citrus in Turkey. Among them, Asaphes spp., Pachyneuron spp., and Syrphophagus spp. were recorded as the most common ones. Citrus reticulata Blanco and Citrus limon (L.) Burm. fil. were recorded as main hosts for the aphid parasitoids and their hyperparasitoids. PMID:25480969

  7. Relationships Between Aphids (Insecta: Homoptera: Aphididae) and Slugs (Gastropoda: Stylommatophora: Agriolimacidae) Pests of Legumes (Fabaceae: Lupinus)

    PubMed Central

    Kozłowski, Jan; Strażyński, Przemysław; Jaskulska, Monika; Kozłowska, Maria

    2016-01-01

    Lupin plants are frequently damaged by various herbivorous invertebrates. Significant among these are slugs and aphids, which sometimes attack the same plants. Relationships between aphids, slugs and food plant are very interesting. Grazing by these pests on young plants can lead to significant yield losses. There is evidence that the alkaloids present in some lupin plants may reduce grazing by slugs, aphids and other invertebrates. In laboratory study was analyzed the relationships between aphid Aphis craccivora and slug Deroceras reticulatum pests of legumes Lupinus angustifolius. It was found that the presence of aphids significantly reduced slug grazing on the plants. The lupin cultivars with high alkaloid content were found to be less heavily damaged by D. reticulatum, and the development of A. craccivora was found to be inhibited on such plants. PMID:27324580

  8. Reliable screening technique for evaluation of wild crucifers against mustard aphid Lipaphis erysimi (Kalt.).

    PubMed

    Singh, S P; Kumar, Sandeep; Singh, Y P; Singh, Ram

    2014-12-01

    Wild crucifers namely Arabidopsis thaliana, Brassica fruticulosa, B. rugosa, B. spinescens, B. tournefortii, Camelina sativa, Capsella bursa-pastoris, Crambe abysinnica, Cronopus didymus, Diplotaxis assurgens, D. gomez-campoi, D. muralis, D. siettiana, D. tenuisiliqua, Enatharocarpus lyratus, Lepidium sativum and Sinapis alba along with five cultivated Brassica species including B. rapa (BSH-1), B. juncea (Rohini), B. napus (GSC-6), B. carinata (DLSC-2) and Eruca sativa (T-27) were screened against mustard aphid Lipaphis erysimi (Kalt.) with a standardized technique under definite level of aphid pressure developed using specially designed cages. Observations have revealed that B. fruticulosa, B. spinescens, Camelina sativa, Crambe abysinnica and Lepidium sativum were resistant to mustard aphid L. erysimi with aphid infestation index (AII) ≤ 1. Capsella bursa-pastoris was highly susceptible to bean aphid, Aphis fabae during its vegetative stage (with 100% mortality). Other genotypes were found in the range of 'susceptible' to 'highly susceptible' with AII ranging 3-5. PMID:25651614

  9. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies

    PubMed Central

    Leroy, Pascal D.; Sabri, Ahmed; Heuskin, Stéphanie; Thonart, Philippe; Lognay, Georges; Verheggen, François J.; Francis, Frédéric; Brostaux, Yves; Felton, Gary W.; Haubruge, Eric

    2011-01-01

    Aphids are one of the most serious pests of crops worldwide, causing major yield and economic losses. To control aphids, natural enemies could be an option but their efficacy is sometimes limited by their dispersal in natural environment. Here we report the first isolation of a bacterium from the pea aphid Acyrthosiphon pisum honeydew, Staphylococcus sciuri, which acts as a kairomone enhancing the efficiency of aphid natural enemies. Our findings represent the first case of a host-associated bacterium driving prey location and ovipositional preference for the natural enemy. We show that this bacterium has a key role in tritrophic interactions because it is the direct source of volatiles used to locate prey. Some specific semiochemicals produced by S. sciuri were also identified as significant attractants and ovipositional stimulants. The use of this host-associated bacterium could certainly provide a novel approach to control aphids in field and greenhouse systems. PMID:21673669

  10. Relationships Between Aphids (Insecta: Homoptera: Aphididae) and Slugs (Gastropoda: Stylommatophora: Agriolimacidae) Pests of Legumes (Fabaceae: Lupinus).

    PubMed

    Kozłowski, Jan; Strażyński, Przemysław; Jaskulska, Monika; Kozłowska, Maria

    2016-01-01

    Lupin plants are frequently damaged by various herbivorous invertebrates. Significant among these are slugs and aphids, which sometimes attack the same plants. Relationships between aphids, slugs and food plant are very interesting. Grazing by these pests on young plants can lead to significant yield losses. There is evidence that the alkaloids present in some lupin plants may reduce grazing by slugs, aphids and other invertebrates. In laboratory study was analyzed the relationships between aphid Aphis craccivora and slug Deroceras reticulatum pests of legumes Lupinus angustifolius. It was found that the presence of aphids significantly reduced slug grazing on the plants. The lupin cultivars with high alkaloid content were found to be less heavily damaged by D. reticulatum, and the development of A. craccivora was found to be inhibited on such plants. PMID:27324580

  11. Parasitization of commercially available parasitoid species against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae).

    PubMed

    Shrestha, G; Skovgård, H; Enkegaard, A

    2014-12-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. Little documentation exists for the control efficacy of aphid parasitoids against N. ribisnigri. This laboratory study evaluated three commercially available parasitoid species: Aphidius colemani (Viereck), Lysiphlebus testaceipes (Cresson), and Aphelinus abdominalis (Dalman) for their mortality impact on N. ribisnigri. The green peach aphid Myzus persicae (Sulzer) was included as a reference aphid. The study showed that A. abdominalis successfully parasitized 39 and 13% of the offered N. ribisnigri and M. persicae, respectively, within a 24-h exposure period. In contrast, none of the lettuce aphids exposed to Ap. colemani or L. testaceipes were successfully parasitized, whereas 60 and 3.5% of M. persicae, respectively, were successfully parasitized within a 6-h exposure period. Lettuce aphid mortality due to incomplete parasitization was 26 and 31% when exposed to Ap. colemani and L. testaceipes, respectively, with corresponding values for M. persicae being 5 and 10%, respectively. Mortality as a result of incomplete parasitization when aphids were exposed to A. abdominalis was low for both aphid species. The total mortality inflicted by A. abdominalis within a 24-h exposure period was 51% for the lettuce aphids and significantly less (19%) for green peach aphids. In contrast, Ap. colemani inflicted a higher mortality in M. persicae (65%) compared with N. ribisnigri (26%) within a 6-h exposure period. L. testaceipes caused a greater mortality in N. ribisnigri as compared with M. persicae. This study concludes that A. abdominalis has the potential to be used against N. ribisnigri in inoculative biocontrol programs as compared with the other parasitoid species based on successful parasitization. PMID:25290653

  12. Parasitoid- and hyperparasitoid-mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae).

    PubMed

    Nematollahi, Mohammad Reza; Fathipour, Yaghoub; Talebi, Ali Asghar; Karimzadeh, Javad; Zalucki, Myron Philip

    2014-12-01

    The population dynamics of the cabbage aphid, Brevicoryne brassicae (L.), its parasitoid, Diaeretiella rapae McIntosh, and hyperparasitoids, Pachyneuron spp., were quantified under field conditions during 2011-2013, by examining synchronization, parasitoid: aphid ratio, possible effect of density on the finite rate of increase, and spatial coincidence. The rates of parasitism and hyperparasitism were based on rearing field-collected mummies and live parasitized aphids, and density of the aphid were estimated using heat extraction and subsampling techniques. Only one parasitoid, D. rapae (80% on average), and two hyperparasitoid species from the genus of Pachyneuron (6.5% on average), namely Pachyneuron aphidis (Bouché) and Pachyneuron groenlandicum (Holmgren), were reared from the aphid mummies. Significant Pearson's time lagged correlations for percentage parasitism versus aphid density and for percentage hyperparasitism versus mummy density indicated that 2-3 wk is needed for D. rapae and Pachyneuron spp. to show impact on their respective host's population. In early spring, the parasitoid: aphid ratio was low (0.11 on average) while aphid density was increasing. Based on Taylor's power law, D. rapae and Pachyneuron spp., as well as B. brassicae, had an aggregated distribution among canola plants. Moreover, a high degree of spatial overlap was found between D. rapae and B. brassicae and between Pachyneuron spp. and D. rapae. In general, the parasitoid had good spatial coincidence with its aphid host but because of a lack of parasitoid-host synchronization and low parasitoid: aphid ratio, impact on the host population was low. PMID:25479198

  13. The stimuli evoking the aerial-righting posture of falling pea aphids.

    PubMed

    Meresman, Yonatan; Ribak, Gal; Weihs, Daniel; Inbar, Moshe

    2014-10-01

    Some wingless insects possess aerial righting reflexes, suggesting that adaptation for controlling body orientation while falling through air could have preceded flight. When threatened by natural enemies, wingless pea aphids (Acyrthosiphon pisum) may drop off their host plant and assume a stereotypic posture that rotates them in midair to land on their feet. The sensory information triggering aphids to assume this posture has so far been unknown. We subjected aphids to a series of tests, isolating the sensory cues experienced during free-fall. Falling aphids assumed the righting posture and landed upright irrespective of whether the experiments were carried out in the light or in complete darkness. Detachment of the tarsi from the substrate triggered the aphids to assume the posture rapidly, but only for a brief period. Rotation (mainly roll and yaw) of the body in air, in the light, caused aphids to assume the posture and remain in it throughout rotation. In contrast, aphids rotated in the dark did not respond. Acceleration associated with falling or airflow over the body per se did not trigger the posture. However, sensing motion relative to air heightened the aphids' responsiveness to rotation in the light. These results suggest that the righting posture of aphids is triggered by a tarsal reflex, but, once the aphid is airborne, vision and a sense of motion relative to air can augment the response. Hence, aerial righting in a wingless insect could have emerged as a basic tarsal response and developed further to include secondary sensory cues typical of falling. PMID:25104755

  14. What is the economic threshold of soybean aphids (Hemiptera: Aphididae) in enemy-free space?

    PubMed

    McCarville, M T; Kanobe, C; MacIntosh, G C; O'Neal, M

    2011-06-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a serious pest of soybean, Glycine max (L.) Merr., in the North Central United States. Current management recommendations rely on the application of insecticides based on an economic threshold (ET) of 250 aphids per plant. Natural enemies are important in slowing the increase of aphid populations and can prevent them from reaching levels that can cause economic losses. However, biological control of A. glycines is inconsistent and can be affected negatively by the intensity of agricultural activity. We measured the impact of a natural-enemy-free environment on the capacity of the current ET to limit yield loss. In 2008 and 2009, caged microplots were assigned to one of three treatments: plants kept aphid-free (referred to as the control), plants that experienced a population of 250 aphids per plant (integrated pest management [IPM]), and plants that experienced unlimited aphid population growth (unlimited). The population growth rate of aphids in the unlimited treatment for the 10 d after the application of insecticides to the IPM treatment was calculated using linear regression. The linear equation was solved to determine the mean number of days between the ET and the EIL for an aphid population in absence of predators. The number of days was determined to be 6.97 +/- 1.11 d. The 2-yr average yield for the IPM treatment was 99.93% of the control treatment. Our study suggests the current soybean aphid ET of 250 aphids per plant can effectively protect yield even if the impact of natural enemies is reduced. PMID:21735903

  15. Silencing of Aphid Genes by dsRNA Feeding from Plants

    PubMed Central

    Maffei, Massimo E.; Ridout, Christopher J.; Hogenhout, Saskia A.

    2011-01-01

    Background RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs. Methodology/Principal Findings In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions. Conclusions/Significance Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control. PMID:21998682

  16. Feeding Behavior of Soybean Aphid (Hemiptera: Aphididae) Biotype 2 on Resistant and Susceptible Soybean.

    PubMed

    Todd, Jane C; Rouf Mian, M A; Backus, Elaine A; Finer, John J; Redinbaugh, Margaret G

    2016-02-01

    Host plant resistance to the soybean aphid, Aphis glycines Matsumura, is an effective means of controlling populations of this introduced pest species in the United States. Rag (Resistance to Aphis glycines) genes identified in soybean germplasm have been incorporated into commercial cultivars, but differential responses by soybean aphid biotypes to the Rag genes have made understanding mechanisms underlying resistance associated with Rag genes increasingly important. We compared the behavior of biotype 2 aphids on the resistant soybean line PI243540, which is a source of Rag2, and the susceptible cultivar Wyandot. Scanning electron microscopy revealed that the abaxial surface of leaves from resistant plants had a higher density of both long and glandulartrichomes, which might repel aphids, on veins. Time-lapse animation also suggested a repellent effect of resistant plants on aphids. However, electropenatography (EPG) indicated that the time to first probe did not differ between aphids feeding on the resistant and susceptible lines. EPG also indicated that fewer aphids feeding on resistant plants reached the phloem, and the time before reaching the phloem was much longer relative to susceptible soybean. For aphids that reached the phloem, there was no difference in either number of feedings or their duration in phloem. However, aphids feeding on resistant soybean had fewer prolonged phases of active salivation (E1) and many more pathway activities and non-probing intervals. Together, the feeding behavior of aphids suggested that Rag2 resistance has strong antixenosis effects, in addition to previously reported antibiosis, and was associated with epidermal and mesophyll tissues. PMID:26578627

  17. Overexpression of IRM1 Enhances Resistance to Aphids in Arabidopsis thaliana

    PubMed Central

    Chen, Xi; Zhang, Zhao; Visser, Richard G. F.; Broekgaarden, Colette; Vosman, Ben

    2013-01-01

    Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A. thaliana trades off with plant growth. PMID:23951039

  18. The Green Lacewing, Chrysoperla carnea: Preference between Lettuce Aphids, Nasonovia ribisnigri, and Western Flower Thrips, Frankliniella occidentalis

    PubMed Central

    Shrestha, Govinda; Enkegaard, Annie

    2013-01-01

    This study investigated the prey preference of 3rd instar green lacewing, Chrysoperla carnea Stephens (Neuroptera: Chrysopidae), between western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and lettuce aphids, Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) in laboratory experiments at 25 ± 1° C and 70 ± 5% RH with five prey ratios (10 aphids:80 thrips, 25 aphids:65 thrips, 45 aphids:45 thrips, 65 aphids:25 thrips, and 80 aphids:10 thrips). Third instar C. carnea larvae readily preyed upon both thrips and aphids, with thrips mortality varying between 40 and 90%, and aphid mortality between 52 and 98%. Chrysoperla carnea had a significant preference for N. ribisnigri at two ratios (10 aphids:80 thrips, 65 aphids:25 thrips), but no preference for either prey at the other ratios. There was no significant linear relationship between preference index and prey ratio, but a significant intercept of the linear regression indicated an overall preference of C. carnea for aphids with a value of 0.651 ± 0.054. The possible implications of these findings for control of N. ribisnigri and F. occidentalis by C. carnea are discussed. PMID:24205864

  19. The Endosymbiont Arsenophonus Provides a General Benefit to Soybean Aphid (Hemiptera: Aphididae) Regardless of Host Plant Resistance (Rag).

    PubMed

    Wulff, Jason A; White, Jennifer A

    2015-06-01

    Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), invokes substantial chemical treatment and economic cost in North America. Resistant soybean genotypes hold promise as a low-impact control methodology, but soybean aphid "biotypes" capable of development on resistant soy cast doubt on the durability of soy resistance. We hypothesized that variation in soybean aphid ability to colonize resistant soy is partially attributable to a bacterial symbiont of soybean aphid, Arsenophonus. We used microinjection to manipulate Arsenophonus infection in both virulent and avirulent aphid biotypes, resulting in five pairs of infected versus uninfected isolines. These isolines were subjected to various population growth rate assays on resistant Rag versus susceptible soybean. We found that aphid virulence on Rag soybean was not dependent on Arsenophonus: virulent aphid biotypes performed well on Rag soybean, and avirulent aphid biotypes performed poorly on Rag soybean, regardless of whether Arsenophonus was present or not. However, we did find that Arsenophonus-infected clones on average performed significantly better than their paired uninfected isolines. This pattern was not consistently evident on every date for every clone, either in the population assays nor when we compared lifetime fecundity of individual aphids in a separate experiment. Nevertheless, this overall benefit for infected aphids may be sufficient to explain the high frequency of Arsenophonus infection in soybean aphids. PMID:26313962

  20. The genomewide transcriptional response underlying the pea aphid wing polyphenism.

    PubMed

    Vellichirammal, Neetha N; Madayiputhiya, Nandakumar; Brisson, Jennifer A

    2016-09-01

    Phenotypic plasticity is a key life history strategy used by many plants and animals living in heterogeneous environments. A multitude of studies have investigated the costs and limits of plasticity, as well as the conditions under which it evolves. Much less well understood are the molecular genetic mechanisms that enable an organism to sense its environment and respond in a plastic manner. The pea aphid wing polyphenism is a compelling laboratory model to study these mechanisms. In this polyphenism, environmental stressors like high density cause asexual, viviparous adult female aphids to change the development of their embryos from wingless to winged morphs. The life history trade-offs between the two morphs have been intensively studied, but the molecular mechanisms underlying this process remain largely unknown. We therefore performed a genomewide study of the maternal transcriptome at two time points with and without a crowding stress to discover the maternal molecular changes that lead to the development of winged vs. wingless offspring. We observed significant transcriptional changes in genes associated with odorant binding, neurotransmitter transport, hormonal activity and chromatin remodelling in the maternal transcriptome. We also found that titres of serotonin, dopamine and octopamine were higher in solitary compared to crowded aphids. We use these results to posit a model for how maternal signals inform a developing embryo to be winged or wingless. Our findings add significant insights into the identity of the molecular mechanisms that underlie environmentally induced morph determination and suggest a possible role for biogenic amine regulation in polyphenisms generally. PMID:27393739

  1. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling

    PubMed Central

    Kloth, Karen J.; Wiegers, Gerrie L.; Busscher-Lange, Jacqueline; van Haarst, Jan C.; Kruijer, Willem; Bouwmeester, Harro J.; Dicke, Marcel; Jongsma, Maarten A.

    2016-01-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae. The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA–SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  2. The structural sheath protein of aphids is required for phloem feeding.

    PubMed

    Will, Torsten; Vilcinskas, Andreas

    2015-02-01

    Aphids produce two types of saliva that mediate their interactions with plants. Watery saliva is secreted during cell penetration and ingestion, whereas gel saliva is secreted during stylet movement through the apoplast where it forms a sheath around the stylet to facilitate penetration and seal puncture sites on cell membranes. In order to study the function of the sheath when aphids interact with plants, we used RNA interference (RNAi) to silence the aphid structural sheath protein (SHP) in the pea aphid Acyrthosiphon pisum. The injection of 50 ng of double stranded RNA completely disrupted sheath formation, as confirmed by scanning electron microscopy. Aphid behavior was monitored using the electrical penetration graph technique, revealing that disrupted sheath formation prevented efficient long-term feeding from sieve tubes, with a silencing effect on reproduction but not survival. We propose that sealing the stylet penetration site in the sieve tube plasma membrane is part of a two-step mechanism to suppress sieve-tube occlusion by preventing calcium influx into the sieve tube lumen. The SHP is present in several aphid species and silencing has a similar impact to aphid-resistant plants, suggesting that SHP is an excellent target for RNAi-mediated pest control. PMID:25527379

  3. Differential expression of superoxide dismutase genes in aphid-stressed maize (Zea mays L.) seedlings.

    PubMed

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  4. Nonrandom Distribution of Cabbage Aphids (Hemiptera: Aphididae) in Dryland Canola (Brassicales: Brassicaceae).

    PubMed

    Severtson, Dustin; Flower, Ken; Nansen, Christian

    2015-06-01

    Characterization of spatial distribution patterns of pests in large-scale agricultural fields is important because these patterns affect the sampling effort needed to accurately detect and estimate their population density. In this study, we conducted experimental releases of alate cabbage aphids (Brevicoryne brassicae L.) into centers of small plots of canola (Brassica napus L.), and their gradual spread over a 7-wk period was characterized. The small-plot experiment demonstrated gradient effects from plot centers and a nonrandom vertical distribution, with initial colonization occurring on the abaxial side of lower canopy leaves and, later, highest numbers of cabbage aphids occurring on racemes. We also conducted large-scale distribution analyses of cabbage aphid infestations in two commercial canola fields, using visual inspection and sweep net sampling. We used canola plant phenological and landscape features as explanatory variables of the spatial distribution of cabbage aphid counts. These large-scale experiments showed strong edge effects with negative associations between cabbage aphid counts and distance to crop edges, including tree lines and contour banks. Cabbage aphid distribution was more effectively displayed using logistic regression than ordinary regression, Spatial Analysis by Distance IndicEs, or both. Based on the study findings, a nonrandom or optimized inspection approach is proposed to focus monitoring efforts on canola plants within 20 m from field edges with particular attention to the abaxial side of lower-canopy leaves. Detection of advanced cabbage aphid infestations should target the racemes within 20 m from field edges. PMID:26313983

  5. Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome.

    PubMed

    Ferry, Natalie; Stavroulakis, Stylianos; Guan, Wenzhu; Davison, Gillian M; Bell, Howard A; Weaver, Robert J; Down, Rachel E; Gatehouse, John A; Gatehouse, Angharad M R

    2011-05-01

    Aphids are major insect pests of cereal crops, acting as virus vectors as well as causing direct damage. The responses of wheat to infestation by cereal aphid (Sitobion avenae) were investigated in a proteomic analysis. Approximately, 500 protein spots were reproducibly detected in the extracts from leaves of wheat seedlings after extraction and 2-DE. Sixty-seven spots differed significantly between control and infested plants following 24 h of aphid feeding, with 27 and 11 up-regulated, and 8 and 21 down-regulated, in local or systemic tissues, respectively. After 8 days, 80 protein spots differed significantly between control and aphid treatments with 13 and 18 up-regulated and 27 and 22 down-regulated in local or systemic tissues, respectively. As positive controls, plants were treated with salicylic acid or methyl jasmonate; 81 and 37 differentially expressed protein spots, respectively, were identified for these treatments. Approximately, 50% of differentially expressed protein spots were identified by PMF, revealing that the majority of proteins altered by aphid infestation were involved in metabolic processes and photosynthesis. Other proteins identified were involved in signal transduction, stress and defence, antioxidant activity, regulatory processes, and hormone responses. Responses to aphid attack at the proteome level were broadly similar to basal non-specific defence and stress responses in wheat, with evidence of down-regulation of insect-specific defence mechanisms, in agreement with the observed lack of aphid resistance in commercial wheat lines. PMID:21500340

  6. Differential Expression of Superoxide Dismutase Genes in Aphid-Stressed Maize (Zea mays L.) Seedlings

    PubMed Central

    Sytykiewicz, Hubert

    2014-01-01

    The aim of this study was to compare the expression patterns of superoxide dismutase genes (sod2, sod3.4, sod9 and sodB) in seedling leaves of the Zea mays L. Tasty Sweet (susceptible) and Ambrozja (relatively resistant) cultivars infested with one of two hemipteran species, namely monophagous Sitobion avenae F. (grain aphid) or oligophagous Rhopalosiphum padi L. (bird cherry-oat aphid). Secondarily, aphid-elicited alternations in the antioxidative capacity towards DPPH (1,1-diphenyl-2-picrylhydrazyl) radical in insect-stressed plants were evaluated. Comprehensive comparison of expression profiles of the four sod genes showed that both insect species evoked significant upregulation of three genes sod2, sod3.4 and sod9). However, aphid infestation affected non-significant fluctuations in expression of sodB gene in seedlings of both maize genotypes. The highest levels of transcript accumulation occurred at 8 h (sod2 and sod3.4) or 24 h (sod9) post-infestation, and aphid-induced changes in the expression of sod genes were more dramatic in the Ambrozja cultivar than in the Tasty Sweet variety. Furthermore, bird cherry-oat aphid colonization had a more substantial impact on levels of DPPH radical scavenging activity in infested host seedlings than grain aphid colonization. Additionally, Ambrozja plants infested by either hemipteran species showed markedly lower antioxidative capacity compared with attacked Tasty Sweet plants. PMID:24722734

  7. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.

    PubMed

    Kloth, Karen J; Wiegers, Gerrie L; Busscher-Lange, Jacqueline; van Haarst, Jan C; Kruijer, Willem; Bouwmeester, Harro J; Dicke, Marcel; Jongsma, Maarten A

    2016-05-01

    Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus persicae The transcription factor WRKY22 is known to be involved in pathogen-triggered immunity, and WRKY22 gene expression has been shown to be induced by aphids. Assessment of aphid population development and feeding behaviour on knockout mutants and overexpression lines showed that WRKY22 increases susceptibility to M. persicae via a mesophyll-located mechanism. mRNA sequencing analysis of aphid-infested wrky22 knockout plants revealed the up-regulation of genes involved in salicylic acid (SA) signalling and down-regulation of genes involved in plant growth and cell-wall loosening. In addition, mechanostimulation of knockout plants by clip cages up-regulated jasmonic acid (JA)-responsive genes, resulting in substantial negative JA-SA crosstalk. Based on this and previous studies, WRKY22 is considered to modulate the interplay between the SA and JA pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences. PMID:27107291

  8. A cost of alarm pheromone production in cotton aphids, Aphis gossypii

    NASA Astrophysics Data System (ADS)

    Byers, John A.

    2005-02-01

    The sesquiterpene, (E)-β-farnesene, is used by many aphid species as an alarm pheromone to warn related individuals of predation. Disturbed cotton aphids, Aphis gossypii Glover, released (E)-β-farnesene into the air as detected by solid phase microextraction and gas chromatography mass spectrometry (GC MS). Solvent extracts of cotton aphids of various life stages and weights also were analyzed by GC MS for sums of ions 69 and 93, which discriminated (E)-β-farnesene from coeluting compounds. Aphids of all life stages and sizes reared on cotton plants in both an environmental chamber and glasshouse contained (E)-β-farnesene in amounts ranging from 0.1 to 1.5 ng per individual. The quantities of (E)-β-farnesene in aphids increased in relation to increasing body weight, and variation in individual weights explained about 82% of the variation in alarm pheromone. However, the concentrations (ng/mg fresh weight) declined exponentially with increasing body weight. These findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts. This suggests that young aphids need to balance costs of growth and maturation with costs of producing the alarm pheromone.

  9. Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids.

    PubMed

    Zhang, Yuan-Chen; Cao, Wen-Jie; Zhong, Le-Rong; Godfray, H Charles J; Liu, Xiang-Dong

    2016-04-01

    Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids. PMID:26850304

  10. Gene Family Expansions in Aphids Maintained by Endosymbiotic and Nonsymbiotic Traits

    PubMed Central

    Duncan, Rebecca P.; Feng, Honglin; Nguyen, Douglas M.; Wilson, Alex C. C.

    2016-01-01

    Facilitating the evolution of new gene functions, gene duplication is a major mechanism driving evolutionary innovation. Gene family expansions relevant to host/symbiont interactions are increasingly being discovered in eukaryotes that host endosymbiotic microbes. Such discoveries entice speculation that gene duplication facilitates the evolution of novel, endosymbiotic relationships. Here, using a comparative transcriptomic approach combined with differential gene expression analysis, we investigate the importance of endosymbiosis in retention of amino acid transporter paralogs in aphid genomes. To pinpoint the timing of amino acid transporter duplications we inferred gene phylogenies for five aphid species and three outgroups. We found that while some duplications arose in the aphid common ancestor concurrent with endosymbiont acquisition, others predate aphid divergence from related insects without intracellular symbionts, and still others appeared during aphid diversification. Interestingly, several aphid-specific paralogs have conserved enriched expression in bacteriocytes, the insect cells that host primary symbionts. Conserved bacteriocyte enrichment suggests that the transporters were recruited to the aphid/endosymbiont interface in the aphid common ancestor, consistent with a role for gene duplication in facilitating the evolution of endosymbiosis in aphids. In contrast, the temporal variability of amino acid transporter duplication indicates that endosymbiosis is not the only trait driving selection for retention of amino acid transporter paralogs in sap-feeding insects. This study cautions against simplistic interpretations of the role of gene family expansion in the evolution of novel host/symbiont interactions by further highlighting that multiple complex factors maintain gene family paralogs in the genomes of eukaryotes that host endosymbiotic microbes. PMID:26878871

  11. Gene Family Expansions in Aphids Maintained by Endosymbiotic and Nonsymbiotic Traits.

    PubMed

    Duncan, Rebecca P; Feng, Honglin; Nguyen, Douglas M; Wilson, Alex C C

    2016-03-01

    Facilitating the evolution of new gene functions, gene duplication is a major mechanism driving evolutionary innovation. Gene family expansions relevant to host/symbiont interactions are increasingly being discovered in eukaryotes that host endosymbiotic microbes. Such discoveries entice speculation that gene duplication facilitates the evolution of novel, endosymbiotic relationships. Here, using a comparative transcriptomic approach combined with differential gene expression analysis, we investigate the importance of endosymbiosis in retention of amino acid transporter paralogs in aphid genomes. To pinpoint the timing of amino acid transporter duplications we inferred gene phylogenies for five aphid species and three outgroups. We found that while some duplications arose in the aphid common ancestor concurrent with endosymbiont acquisition, others predate aphid divergence from related insects without intracellular symbionts, and still others appeared during aphid diversification. Interestingly, several aphid-specific paralogs have conserved enriched expression in bacteriocytes, the insect cells that host primary symbionts. Conserved bacteriocyte enrichment suggests that the transporters were recruited to the aphid/endosymbiont interface in the aphid common ancestor, consistent with a role for gene duplication in facilitating the evolution of endosymbiosis in aphids. In contrast, the temporal variability of amino acid transporter duplication indicates that endosymbiosis is not the only trait driving selection for retention of amino acid transporter paralogs in sap-feeding insects. This study cautions against simplistic interpretations of the role of gene family expansion in the evolution of novel host/symbiont interactions by further highlighting that multiple complex factors maintain gene family paralogs in the genomes of eukaryotes that host endosymbiotic microbes. PMID:26878871

  12. Stress-induced changes in abundance differ among obligate and facultative endosymbionts of the soybean aphid.

    PubMed

    Enders, Laramy S; Miller, Nicholas J

    2016-02-01

    Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host-plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival × reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host-plant defenses a 1.4-fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1-stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5-fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3-fold) and Wolbachia increasing (1.5-fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi-locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host-symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types. PMID:26865969

  13. Change in Biotypic Diversity of Russian Wheat Aphid (Hemiptera: Aphididae) Populations in the United States.

    PubMed

    Puterka, G J; Giles, K L; Brown, M J; Nicholson, S J; Hammon, R W; Peairs, F B; Randolph, T L; Michaels, G J; Bynum, E D; Springer, T L; Armstrong, J S; Mornhinweg, D W

    2015-04-01

    A key component of Russian wheat aphid, Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing the Dn4 gene. Biotypic diversity in Russian wheat aphid populations has not been addressed since 2005 when RWA2 dominated the biotype complex. Our objectives were to determine the biotypic diversity in the Central Great Plains and Colorado Plateau at regional (2010, 2011, 2013) and local (2012) levels and detect the presence of new Russian wheat aphid biotypes. Regional and within-field aphid collections were screened against Russian wheat aphid-resistant wheat genotypes containing genes Dn3, Dn4, Dn6, Dn7, Dn9, CI2401; and resistant barley STARS 9301B. In 2010, all aphid collections from Texas were avirulent to the Dn4 resistance gene in wheat. Regional results revealed Dn4 avirulent RWA6 was widespread (55-84%) in populations infesting wheat in both regions. Biotypes RWA1, 2, and 3/7 were equally represented with percentages<20% each while RWA8 was rarely detected. Combining percentages of RWA1, 6, and 8 across regions to estimate avirulence to Dn4 gene revealed high percentages for both 2011 (64-80%) and 2013 (69-90%). In contrast, the biotype structure at the local level differed where biotype percentages varied up to ≥2-fold between fields. No new biotypes were detected; therefore, Dn7, CI2401, and STARS9301B remained resistant to all known Russian wheat aphid biotypes. This study documents a shift to Dn4 avirulent biotypes and serves as a valuable baseline for biotypic diversity in Russian wheat aphid populations prior to the deployment of new Russian wheat aphid-resistant wheat cultivars. PMID:26470192

  14. Differential Life History Trait Associations of Aphids with Nonpersistent Viruses in Cucurbits.

    PubMed

    Angelella, G M; Egel, D S; Holland, J D; Nemacheck, J A; Williams, C E; Kaplan, I

    2015-06-01

    The diversity of vectors and fleeting nature of virus acquisition and transmission renders nonpersistent viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a 2-yr survey of aphids and nonpersistent viruses on commercial pumpkin farms. We quantified aphid alightment using pan traps, while testing leaf samples with multiplex RT-PCR targeting cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and papaya ringspot virus (PRSV). Overall, we identified 53 aphid species (3,899 individuals), from which the melon aphid, Aphis gossypii Glover, a pumpkin-colonizing species, predominated (76 and 37% of samples in 2010 and 2011, respectively). CMV and ZYMV were not detected, but WMV and PRSV were prevalent, both regionally (WMV: 28/29 fields, PRSV: 21/29 fields) and within fields (infection rates = 69 and 55% for WMV in 2010 and 2011; 28 and 25% for PRSV in 2010 and 2011). However, early-season samples showed extremely low infection levels, suggesting cucurbit viruses are not seed-transmitted and implicating aphid activity as a causal factor driving virus spread. Interestingly, neither noncolonizer and colonizer alightment nor total aphid alightment were good predictors of virus presence, but community analyses revealed species-specific relationships. For example, cowpea aphid (Aphis craccivora Koch) and spotted alfalfa aphid (Therioaphis trifolii Monell f. maculata) were associated with PRSV infection, whereas the oleander aphid (Aphis nerii Bover de Fonscolombe) was associated with WMV spread within fields. These outcomes highlight the need for tailored management plans targeting key vectors of nonpersistent viruses in agricultural systems. PMID:26313961

  15. Changes in activity of lysine decarboxylase in winter triticale in response to grain aphid feeding.

    PubMed

    Sempruch, C; Leszczyński, B; Wójcicka, Agnieszka; Makosz, M; Matok, H; Chrzanowski, G

    2010-12-01

    Changes in lysine decarboxylase (LDC) activity caused by Sitobion avenae (F.) feeding on two winter triticale cultivars (cvs) were studied. The aphid fecundity and values of intrinsic rate of natural increase showed that cv Witon was less susceptible to S. avenae than cv Tornado. The grain aphid feeding on more susceptible triticale caused a decrease in the LDC activity, with exceptions of root tissues after two weeks of the feeding. In case of less susceptible cv Witon reduction of the LDC activity was observed only during initial period of S. avenae feeding. Later the aphid infestation induced activity of the LDC within tissues of cv Witon. PMID:21112841

  16. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae.

    PubMed

    Fan, Jia; Zhang, Yong; Francis, Frédéric; Cheng, Dengfa; Sun, Jingrun; Chen, Julian

    2015-09-01

    Olfaction is crucial for short distance host location and pheromone detection by insects. Complexes of olfactory receptors (ORs) are composed of odor-specific ORs and OR co-receptors (Orco). Orcos are widely co-expressed with odor-specific ORs and are conserved across insect taxa. A number of Orco orthologs have been studied to date, although none has been identified in cereal aphids. In this study, an Orco gene ortholog was cloned from the grain aphid, Sitobion avenae, and named "SaveOrco"; RNA interference (RNAi) reduced the expression of SaveOrco to 34.11% in aphids, resulting in weaker EAG (electroantennogram) responses to plant volatiles (Z-3-hexene-1-ol; methyl salicylate, MeSA) and aphid alarm pheromone (E-β-farnesene, EBF). Aphid wing differentiation induced by EBF was investigated in both RNAi treated and untreated aphids. EBF induced production of winged aphids in both pre-natal and post-natal periods in untreated aphids, but no such induction was observed in the RNAi-treated aphids. We conclude that SaveOrco is crucial for the aphid's response to pheromones and other volatiles, and is involved in wing differentiation triggered by EBF. PMID:26187252

  17. Microsatellite and Chromosome Evolution of Parthenogenetic Sitobion Aphids in Australia

    PubMed Central

    Sunnucks, P.; England, P. R.; Taylor, A. C.; Hales, D. F.

    1996-01-01

    Single-locus microsatellite variation correlated perfectly with chromosome number in Sitobion miscanthi aphids. The microsatellites were highly heterozygous, with up to 10 alleles per locus in this species. Despite this considerable allelic variation, only seven different S. miscanthi genotypes were discovered in 555 individuals collected from a wide range of locations, hosts and sampling periods. Relatedness between genotypes suggests only two successful colonizations of Australia. There was no evidence for genetic recombination in 555 S. miscanthi so the occurrence of recent sexual reproduction must be near zero. Thus diversification is by mutation and chromosomal rearrangement alone. Since the aphids showed no sexual recombination, microsatellites can mutate without meiosis. Five of seven microsatellite differences were a single repeat unit, and one larger jump is likely. The minimum numbers of changes between karyotypes corresponded roughly one-to-one with microsatellite allele changes, which suggests very rapid chromosomal evolution. A chromosomal fission occurred in a cultured line, and a previously unknown chromosomal race was detected. All 121 diverse S. near fragariae were heterozygous but revealed only one genotype. This species too must have a low rate of sexual reproduction and few colonizations of Australia. PMID:8889535

  18. Nitrogen-Mediated Interaction: A Walnut-Aphid-Parasitoid System.

    PubMed

    Mace, Kevi C; Mills, Nicholas J

    2016-08-01

    The effects of plant quality on natural enemies are often overlooked in planning and executing biological control programs for insect pests in agriculture. Plant quality, however, could help to explain some of the observed variation in effectiveness of biological control, as it can indirectly influence natural enemy populations. In this study, we used the walnut aphid Chromaphis juglandicola (Kaltenbach) to address the effect of increased nitrogen availability to the host plant on parasitism by the specialist parasitoid Trioxys pallidus (Haliday). In laboratory experiments with walnut seedlings, a higher chlorophyll content index of the foliage in response to added nitrogen was correlated with a decrease in the number of mummies produced by female parasitoids over a 24-h period but an increase in the proportion and the size of female offspring. In field sampling of walnut orchards, there was no relationship between the percent parasitism of walnut aphids by T. pallidus and the chlorophyll content index of the trees. Nitrogen fertilizer and plant quality can clearly affect biological control and should be given greater consideration in integrated pest management. PMID:27271943

  19. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids

    PubMed Central

    Li, Hu; Cai, Wanzhi

    2016-01-01

    The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini. PMID:27314587

  20. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants.

    PubMed

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-11-01

    In plant-ant-hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  1. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  2. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    PubMed

    Song, Nan; Zhang, Hao; Li, Hu; Cai, Wanzhi

    2016-01-01

    The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini. PMID:27314587

  3. Application of plant growth regulators mitigates chlorotic foliar injury by the black pecan aphid (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorotic feeding injury by the black pecan aphid, Melanocallis caryaefoliae (Davis) (Hemiptera: Aphididae), to pecan (Carya illinoinensis [Wangenh.] K. Koch) foliage can result in leaf senescence and abscission. The plant growth regulators chlorforfenuron (CPPU), gibberellic acid (GA3) and aminoet...

  4. Variable effects of fungal endophyte-infected grasses on the performance of pestiferous aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extent of fungal endophyte (Neotyphodium) based antibiosis resistance in temperate grasses (Lolium spp., Hordeum spp.) to five pestiferous aphid species (Rhopalosiphum padi (L.), Diuraphis noxia (Kurdjumov), Schizaphis graminum (Rondani), Metopolophium dirhodum (Walker), Aploneura lentisci (Pass...

  5. Factors limiting the spread of the protective symbiont HAMILTONELLA DEFENSA in the aphid APHIS CRACCIVORA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many insects are associated with heritable facultative symbionts that mediate important ecological interactions, including host protection against natural enemies. Despite such benefits, facultative symbionts are commonly found at intermediate frequencies in surveyed populations. The cowpea aphid,...

  6. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack.

    PubMed

    Babikova, Zdenka; Gilbert, Lucy; Bruce, Toby J A; Birkett, Michael; Caulfield, John C; Woodcock, Christine; Pickett, John A; Johnson, David

    2013-07-01

    The roots of most land plants are colonised by mycorrhizal fungi that provide mineral nutrients in exchange for carbon. Here, we show that mycorrhizal mycelia can also act as a conduit for signalling between plants, acting as an early warning system for herbivore attack. Insect herbivory causes systemic changes in the production of plant volatiles, particularly methyl salicylate, making bean plants, Vicia faba, repellent to aphids but attractive to aphid enemies such as parasitoids. We demonstrate that these effects can also occur in aphid-free plants but only when they are connected to aphid-infested plants via a common mycorrhizal mycelial network. This underground messaging system allows neighbouring plants to invoke herbivore defences before attack. Our findings demonstrate that common mycorrhizal mycelial networks can determine the outcome of multitrophic interactions by communicating information on herbivore attack between plants, thereby influencing the behaviour of both herbivores and their natural enemies. PMID:23656527

  7. Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids

    PubMed Central

    Louis, Joe; Shah, Jyoti

    2013-01-01

    The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed. PMID:23847627

  8. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid

    PubMed Central

    Margaritopoulos, John T; Kasprowicz, Louise; Malloch, Gaynor L; Fenton, Brian

    2009-01-01

    Background Global commerce and human transportation are responsible for the range expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers provide the opportunity to examine the genetic structure of aphid populations, identify aphid genotypes and infer their evolutionary history and routes of expansion which is of value in developing management strategies. One of the most widespread aphid species is the peach-potato aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the world. The present study examined the genetic variation of this aphid at a world scale and then related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around the world were analysed with six microsatellite loci. Results Bayesian clustering and admixture analysis split the aphid genotypes into three genetic clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae nicotianae. This partition was supported by FST and genetic distance analyses. The results showed two further points, a possible connection between genotypes found in the UK and New Zealand and globalization of nicotianae associated with colonisation of regions where tobacco is not cultivated. In addition, we report the presence of geographically widespread clones and for the first time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote deficiency was detected in some sexual and asexual populations. Conclusion The study revealed important genetic variation among the aphid populations we examined and this was partitioned according to region and host-plant. Clonal selection and gene flow between sexual and asexual lineages are important factors shaping the genetic structure of the aphid populations. In addition, the results reflected the globalization of two subspecies of M. persicae with successful clones being spread at various scales throughout the

  9. A Trio of Viral Proteins Tunes Aphid-Plant Interactions in Arabidopsis thaliana

    PubMed Central

    Du, Zhiyou; Murphy, Alex M.; Anggoro, Damar Tri; Tungadi, Trisna; Luang-In, Vijitra; Lewsey, Mathew G.; Rossiter, John T.; Powell, Glen; Smith, Alison G.; Carr, John P.

    2013-01-01

    Background Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV), on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: ‘peach-potato aphid’, ‘green peach aphid’). Methodology/Principal Findings Infection of Arabidopsis (ecotype Col-0) with CMV strain Fny (Fny-CMV) induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M). 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase), triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1), a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s) toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. Conclusions/Significance Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b) appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis) that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences between

  10. Dietary Reference Intakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dietary Reference Intakes (DRI) are recommendations intended to provide a framework for nutrient intake evaluation, as well as meal planning on the basis of nutrient adequacy. They are nutrient, not food based recommendations, created with chronic disease risk reduction as the primary goal, as ...

  11. Deep Sequencing of the Transcriptomes of Soybean Aphid and Associated Endosymbionts

    PubMed Central

    Liu, Sijun; Chougule, Nanasaheb P.; Vijayendran, Diveena; Bonning, Bryony C.

    2012-01-01

    Background The soybean aphid has significantly impacted soybean production in the U.S. Transcriptomic analyses were conducted for further insight into leads for potential novel management strategies. Methodology/Principal Findings Transcriptomic data were generated from whole aphids and from 2,000 aphid guts using an Illumina GAII sequencer. The sequence data were assembled de novo using the Velvet assembler. In addition to providing a general overview, we demonstrate (i) the use of the Multiple-k/Multiple-C method for de novo assembly of short read sequences, followed by BLAST annotation of contigs for increased transcript identification: From 400,000 contigs analyzed, 16,257 non-redundant BLAST hits were identified; (ii) analysis of species distributions of top non-redundant hits: 80% of BLAST hits (minimum e-value of 1.0-E3) were to the pea aphid or other aphid species, representing about half of the pea aphid genes; (iii) comparison of relative depth of sequence coverage to relative transcript abundance for genes with high (membrane alanyl aminopeptidase N) or low transcript abundance; (iv) analysis of the Buchnera transcriptome: Transcripts from 57.6% of the genes from Buchnera aphidicola were identified; (v) identification of Arsenophonus and Wolbachia as potential secondary endosymbionts; (vi) alignment of full length sequences from RNA-seq data for the putative salivary gland protein C002, the silencing of which has potential for aphid management, and the putative Bacillus thuringiensis Cry toxin receptors, aminopeptidase N and alkaline phosphatase. Conclusions/Significance This study provides the most comprehensive data set to date for soybean aphid gene expression: This work also illustrates the utility of short-read transcriptome sequencing and the Multiple-k/Multiple-C method followed by BLAST annotation for rapid identification of target genes for organisms for which reference genome sequences are not available, and extends the utility to include the

  12. The Cellular Immune Response of the Pea Aphid to Foreign Intrusion and Symbiotic Challenge

    PubMed Central

    Schmitz, Antonin; Anselme, Caroline; Ravallec, Marc; Rebuf, Christian; Simon, Jean-Christophe; Gatti, Jean-Luc; Poirié, Marylène

    2012-01-01

    Recent studies suggest that the pea aphid (Acyrthosiphon pisum) has low immune defenses. However, its immune components are largely undescribed, and notably, extensive characterization of circulating cells has been missing. Here, we report characterization of five cell categories in hemolymph of adults of the LL01 pea aphid clone, devoid of secondary symbionts (SS): prohemocytes, plasmatocytes, granulocytes, spherulocytes and wax cells. Circulating lipid-filed wax cells are rare; they otherwise localize at the basis of the cornicles. Spherulocytes, that are likely sub-cuticular sessile cells, are involved in the coagulation process. Prohemocytes have features of precursor cells. Plasmatocytes and granulocytes, the only adherent cells, can form a layer in vivo around inserted foreign objects and phagocytize latex beads or Escherichia coli bacteria injected into aphid hemolymph. Using digital image analysis, we estimated that the hemolymph from one LL01 aphid contains about 600 adherent cells, 35% being granulocytes. Among aphid YR2 lines differing only in their SS content, similar results to LL01 were observed for YR2-Amp (without SS) and YR2-Ss (with Serratia symbiotica), while YR2-Hd (with Hamiltonella defensa) and YR2(Ri) (with Regiella insecticola) had strikingly lower adherent hemocyte numbers and granulocyte proportions. The effect of the presence of SS on A. pisum cellular immunity is thus symbiont-dependent. Interestingly, Buchnera aphidicola (the aphid primary symbiont) and all SS, whether naturally present, released during hemolymph collection, or artificially injected, were internalized by adherent hemocytes. Inside hemocytes, SS were observed in phagocytic vesicles, most often in phagolysosomes. Our results thus raise the question whether aphid symbionts in hemolymph are taken up and destroyed by hemocytes, or actively promote their own internalization, for instance as a way of being transmitted to the next generation. Altogether, we demonstrate here a

  13. Specificity of Multi-Modal Aphid Defenses against Two Rival Parasitoids

    PubMed Central

    Martinez, Adam J.; Kim, Kyungsun L.; Harmon, Jason P.; Oliver, Kerry M.

    2016-01-01

    Insects are often attacked by multiple natural enemies, imposing dynamic selective pressures for the development and maintenance of enemy-specific resistance. Pea aphids (Acyrthosiphon pisum) have emerged as models for the study of variation in resistance against natural enemies, including parasitoid wasps. Internal defenses against their most common parasitoid wasp, Aphidius ervi, are sourced through two known mechanisms– 1) endogenously encoded resistance or 2) infection with the heritable bacterial symbiont, Hamiltonella defensa. Levels of resistance can range from nearly 0–100% against A. ervi but varies based on aphid genotype and the strain of toxin-encoding bacteriophage (called APSE) carried by Hamiltonella. Previously, other parasitoid wasps were found to commonly attack this host, but North American introductions of A. ervi have apparently displaced all other parasitoids except Praon pequodorum, a related aphidiine braconid wasp, which is still found attacking this host in natural populations. To explain P. pequodorum’s persistence, multiple studies have compared direct competition between both wasps, but have not examined specificity of host defenses as an indirectly mediating factor. Using an array of experimental aphid lines, we first examined whether aphid defenses varied in effectiveness toward either wasp species. Expectedly, both types of aphid defenses were effective against A. ervi, but unexpectedly, were completely ineffective against P. pequodorum. Further examination showed that P. pequodorum wasps suffered no consistent fitness costs from developing in even highly ‘resistant’ aphids. Comparison of both wasps’ egg-larval development revealed that P. pequodorum’s eggs have thicker chorions and hatch two days later than A. ervi’s, likely explaining their differing abilities to overcome aphid defenses. Overall, our results indicate that aphids resistant to A. ervi may serve as reservoirs for P. pequodorum, hence contributing to

  14. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge.

    PubMed

    Schmitz, Antonin; Anselme, Caroline; Ravallec, Marc; Rebuf, Christian; Simon, Jean-Christophe; Gatti, Jean-Luc; Poirié, Marylène

    2012-01-01

    Recent studies suggest that the pea aphid (Acyrthosiphon pisum) has low immune defenses. However, its immune components are largely undescribed, and notably, extensive characterization of circulating cells has been missing. Here, we report characterization of five cell categories in hemolymph of adults of the LL01 pea aphid clone, devoid of secondary symbionts (SS): prohemocytes, plasmatocytes, granulocytes, spherulocytes and wax cells. Circulating lipid-filed wax cells are rare; they otherwise localize at the basis of the cornicles. Spherulocytes, that are likely sub-cuticular sessile cells, are involved in the coagulation process. Prohemocytes have features of precursor cells. Plasmatocytes and granulocytes, the only adherent cells, can form a layer in vivo around inserted foreign objects and phagocytize latex beads or Escherichia coli bacteria injected into aphid hemolymph. Using digital image analysis, we estimated that the hemolymph from one LL01 aphid contains about 600 adherent cells, 35% being granulocytes. Among aphid YR2 lines differing only in their SS content, similar results to LL01 were observed for YR2-Amp (without SS) and YR2-Ss (with Serratia symbiotica), while YR2-Hd (with Hamiltonella defensa) and YR2(Ri) (with Regiella insecticola) had strikingly lower adherent hemocyte numbers and granulocyte proportions. The effect of the presence of SS on A. pisum cellular immunity is thus symbiont-dependent. Interestingly, Buchnera aphidicola (the aphid primary symbiont) and all SS, whether naturally present, released during hemolymph collection, or artificially injected, were internalized by adherent hemocytes. Inside hemocytes, SS were observed in phagocytic vesicles, most often in phagolysosomes. Our results thus raise the question whether aphid symbionts in hemolymph are taken up and destroyed by hemocytes, or actively promote their own internalization, for instance as a way of being transmitted to the next generation. Altogether, we demonstrate here a

  15. Sugarcane Aphid (Hemiptera: Aphididae): Host Range and Sorghum Resistance Including Cross-Resistance From Greenbug Sources.

    PubMed

    Armstrong, J Scott; Rooney, William L; Peterson, Gary C; Villenueva, Raul T; Brewer, Michael J; Sekula-Ortiz, Danielle

    2015-04-01

    The graminous host range and sources of sorghum [Sorghum bicolor (L.) Moench.] plant resistance, including cross-resistance from greenbug, Schizaphis graminum (Rondani), were studied for the newly emerging sugarcane aphid, Melanaphis sacchari (Zehntner), in greenhouse no-choice experiments and field evaluations. The sugarcane aphid could not survive on field corn, Zea mays (L.), Teff grass, Eragrostis tef (Zucc.), proso millet, Panicum miliaceum L., barley, Hordeum vulgare L., and rye, Secale cereale L. Only sorghum genotypes served as hosts including Johnsongrass, Sorghum halepense (L.), a highly suitable noncrop host that generates high numbers of sugarcane aphid and maintains moderate phenotypic injury. The greenbug-resistant parental line RTx2783 that is resistant to greenbug biotypes C and E was resistant to sugarcane aphid in both greenhouse and field tests, while PI 55607 greenbug resistant to biotypes B, C, and E was highly susceptible. PI 55610 that is greenbug resistant to biotypes B, C, and E maintained moderate resistance to the sugarcane aphid, while greenbug-resistant PI 264453 was highly susceptible to sugarcane aphid. Two lines and two hybrids from the Texas A&M breeding program B11070, B11070, AB11055-WF1-CS1/RTx436, and AB11055-WF1-CS1/RTx437 were highly resistant to sugarcane aphid, as were parental types SC110, SC170, and South African lines Ent62/SADC, (Macia/TAM428)-LL9, (SV1*Sima/IS23250)-LG15. Tam428, a parental line that previously showed moderate resistance in South Africa and India, also showed moderate resistance in these evaluations. Overall, 9 of 20 parental sorghum entries tested for phenotypic damage in the field resulted in good resistance to the sugarcane aphid and should be utilized in breeding programs that develop agronomically acceptable sorghums for the southern regions of the United States. PMID:26470168

  16. Specificity of Multi-Modal Aphid Defenses against Two Rival Parasitoids.

    PubMed

    Martinez, Adam J; Kim, Kyungsun L; Harmon, Jason P; Oliver, Kerry M

    2016-01-01

    Insects are often attacked by multiple natural enemies, imposing dynamic selective pressures for the development and maintenance of enemy-specific resistance. Pea aphids (Acyrthosiphon pisum) have emerged as models for the study of variation in resistance against natural enemies, including parasitoid wasps. Internal defenses against their most common parasitoid wasp, Aphidius ervi, are sourced through two known mechanisms- 1) endogenously encoded resistance or 2) infection with the heritable bacterial symbiont, Hamiltonella defensa. Levels of resistance can range from nearly 0-100% against A. ervi but varies based on aphid genotype and the strain of toxin-encoding bacteriophage (called APSE) carried by Hamiltonella. Previously, other parasitoid wasps were found to commonly attack this host, but North American introductions of A. ervi have apparently displaced all other parasitoids except Praon pequodorum, a related aphidiine braconid wasp, which is still found attacking this host in natural populations. To explain P. pequodorum's persistence, multiple studies have compared direct competition between both wasps, but have not examined specificity of host defenses as an indirectly mediating factor. Using an array of experimental aphid lines, we first examined whether aphid defenses varied in effectiveness toward either wasp species. Expectedly, both types of aphid defenses were effective against A. ervi, but unexpectedly, were completely ineffective against P. pequodorum. Further examination showed that P. pequodorum wasps suffered no consistent fitness costs from developing in even highly 'resistant' aphids. Comparison of both wasps' egg-larval development revealed that P. pequodorum's eggs have thicker chorions and hatch two days later than A. ervi's, likely explaining their differing abilities to overcome aphid defenses. Overall, our results indicate that aphids resistant to A. ervi may serve as reservoirs for P. pequodorum, hence contributing to its persistence in

  17. Within-plant distribution of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae), in Bt and non-Bt cotton fields.

    PubMed

    Fernandes, F S; Ramalho, F S; Nascimento, J L; Malaquias, J B; Nascimento, A R B; Silva, C A D; Zanuncio, J C

    2012-02-01

    Knowledge of the vertical and horizontal distribution of Aphis gossypii Glover (Hemiptera: Aphididae) on genetically modified cotton plants over time could help optimize decision-making in integrated cotton aphid management programs. Therefore, the aim of the present study was to determine the vertical and horizontal distribution of A. gossypii in non-transgenic Bt cotton and transgenic Bt-cotton over time during two cotton seasons by examining plants throughout the seasons. There was no significant interaction between years and cotton cultivar treatments for apterous or alate aphids. Considering year-to-year data, analyses on season-long averages of apterous or alate aphids showed that aphid densities per plant did not differ among years. The number of apterous aphids found per plant for the Bt transgenic cultivar (2427 apterous aphids per plant) was lower than for its isoline (3335 apterous aphids per plant). The number of alate aphids found per plant on the Bt transgenic cultivar (12.28 alate aphids per plant) was lower than for the isoline (140.56 alate aphids per plant). With regard to the vertical distribution of apterous aphids or alate aphids, there were interactions between cotton cultivar, plant age and plant region. We conclude that in comparison to non-Bt cotton (DP 4049), Bt cotton (DP 404 BG (Bollgard)) has significant effects on the vertical, horizontal, spatial and temporal distribution patterns of A. gossypii, showing changes in its distribution behaviour inside the plant as the cotton crop develops. The results of our study are relevant for understanding the vertical and horizontal distribution of A. gossypii on Bt cotton cultivar (DP 404 BG (Bollgard)) and on its isoline (DP 4049), and could be useful in decision-making, implementing controls and determining the timing of population peaks of this insect. PMID:21791143

  18. Root Exudation by Aphid Leaf Infestation Recruits Root-Associated Paenibacillus spp. to Lead Plant Insect Susceptibility.

    PubMed

    Kim, Bora; Song, Geun Cheol; Ryu, Choong-Min

    2016-03-01

    Aphids are a large group of hemipteran pests that affect the physiology, growth, and development of plants by using piercing mouthparts to consume fluids from the host. Based an recent data, aphids modulate the microbiomes of plants and thereby affect the overall outcome of the biological interaction. However, in a few reports, aboveground aphids manipulate the metabolism of the host and facilitate infestations by rhizosphere bacteria (rhizobacteria). In this study, we evaluated whether aphids alter the plant resistance that is mediated by the bacterial community of the root system. The rhizobacteria were affected by aphid infestation of pepper, and a large population of gram-positive bacteria was detected. Notably, Paenibacillus spp. were the unique gram-positive bacteria to respond to changes induced by the aphids. Paenibacillus polymyxa E681 was used as a rhizobacterium model to assess the recruitment of bacteria to the rhizosphere by the phloem-sucking of aphids and to test the effect of P. polymyxa on the susceptibility of plants to aphids. The root exudates secreted from peppers infested with aphids increased the growth rate of P. polymyxa E681. The application of P. polymyxa E681 to pepper roots promoted the colonization of aphids within 2 days of inoculation. Collectively, our results suggest that aphid infestation modulated the root exudation, which led to the recruitment of rhizobacteria that manipulated the resistance of peppers to aphids. In this study, new information is provided on how the infestation of insects is facilitated through insect-derived modulation of plant resistance with the attraction of gram-positive rhizobacteria. PMID:26699743

  19. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)

    PubMed Central

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  20. A new approach for the identification of aphid vectors (Hemiptera: Aphididae) of potato virus Y.

    PubMed

    Pelletier, Y; Nie, X; Giguère, M A; Nanayakkara, U; Maw, E; Foottit, R

    2012-12-01

    Potato virus Y (PVY) is one of the most economically important viruses affecting potato crops worldwide. PVY can be transmitted from potato to potato by several aphid species, most of which do not colonize the potato crop. New methods including preservation of viral RNA on stylets of aphids collected from yellow pan trap samples, polymerase chain reaction detection of PVY from the stylets of one aphid, and aphid identification using DNA barcoding were used to identify possible PVY vectors from field samples. In total, 65 aphid taxa were identified from the samples that tested positive for PVY. Among those, 45 taxa had never been evaluated for their ability to transmit PVY, and 7 were previously labeled as nonvectors. These results demonstrated that the list of PVY vectors is likely longer than previously reported and that most (if not all) species of aphids could be considered as potential vectors. This premise has important implications in the management of PVY in seed potato production. PMID:23356053

  1. In vitro interactions of the aphid endosymbiotic SymL chaperonin with barley yellow dwarf virus.

    PubMed

    Filichkin, S A; Brumfield, S; Filichkin, T P; Young, M J

    1997-01-01

    Barley yellow dwarf virus (BYDV)-vector relationships suggest that there are specific interactions between BYDV virions and the aphid's cellular components. However, little is known about vector factors that mediate virion recognition, cellular trafficking, and accumulation within the aphid. Symbionins are molecular chaperonins produced by intracellular endosymbiotic bacteria and are the most abundant proteins found in aphids. To elucidate the potential role of symbionins in BYDV transmission, we have isolated and characterized two new symbionin symL genes encoded by the endosymbionts which are harbored by the BYDV aphid vectors Rhopalosiphum padi and Sitobion avenae. Endosymbiont symL-encoded proteins have extensive homology with the pea aphid SymL and Escherichia coli GroEL chaperonin. Recombinant and native SymL proteins can be assembled into oligomeric complexes which are similar to the GroEL oligomer. R. padi SymL protein demonstrates an in vitro binding affinity for BYDV and its recombinant readthrough polypeptide. In contrast to the R. padi SymL, the closely related GroEL does not exhibit a significant binding affinity either for BYDV or for its recombinant readthrough polypeptide. Comparative sequence analysis between SymL and GroEL was used to identify potential SymL-BYDV binding sites. Affinity binding of SymL to BYDV in vitro suggests a potential involvement of endosymbiotic chaperonins in interactions with virions during their trafficking through the aphid. PMID:8985385

  2. Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2014-10-01

    Research into the impact of atmospheric change on predator-prey interactions has mainly focused on density dependent responses and trophic linkages. As yet, the chemical ecology underpinning predator-prey interactions has received little attention in environmental change research. Group living animals have evolved behavioral mechanisms to escape predation, including chemical alarm signalling. Chemical alarm signalling between conspecific prey could be susceptible to environmental change if the physiology and behavior of these organisms are affected by changes in dietary quality resulting from environmental change. Using Rubus idaeus plants, we show that elevated concentrations of atmospheric CO2 (eCO2) severely impaired escape responses of the aphid Amphorophora idaei to predation by ladybird larvae (Harmonia axyridis). Escape responses to ladybirds was reduced by >50% after aphids had been reared on plants grown under eCO2. This behavioral response was rapidly induced, occurring within 24 h of being transferred to plants grown at eCO2 and, once induced, persisted even after aphids were transferred to plants grown at ambient CO2. Escape responses were impaired due to reduced sensitivity to aphid alarm pheromone, (E)-β-farnesene, via an undefined plant-mediated mechanism. Aphid abundance often increases under eCO2, however, reduced efficacy of conspecific signalling may increase aphid vulnerability to predation, highlighting the need to study the chemical ecology of predator-prey interactions under environmental change. PMID:25273846

  3. Aphid Parasitoid Mothers Don't Always Know Best through the Whole Host Selection Process.

    PubMed

    Chesnais, Quentin; Ameline, Arnaud; Doury, Géraldine; Le Roux, Vincent; Couty, Aude

    2015-01-01

    Parasitoid host selection behaviour has been extensively studied in experimentally simplified tritrophic systems formed by one single food chain (one plant, one herbivore and one parasitoid species). The "Mother knows best" hypothesis predicts that the preference for a plant-host complex should be positively correlated with plant quality for offspring performance. We studied the host selection behaviour of the generalist endoparasitoid Aphidius matricariae towards the black bean aphid Aphis fabae in the intercrop system including Vicia faba as a focal plant and its companion plant Camelina sativa. Dual-choice laboratory bioassays revealed that parasitoid females preferred to orientate towards (1) the plant-aphid complex over the non-infested plant whatever the complex (2) the C. sativa-A. fabae complex over the V. faba-A. fabae complex. In dual choice attack rate bioassays, parasitoid females showed more interest towards the aphids on C. sativa but paradoxically chose to oviposit more in aphids on V. faba. Ultimately, parasitoids that had developed on the V. faba-A. fabae complex exhibited better fitness parameters. By demonstrating that parasitoid females were able to discriminate the aphid host that offered the highest fitness to their offspring but selected beforehand the least suitable plant-aphid complex, we provide key insight into the disruption in their host selection behaviour potentially triggered by diverse habitats. This suggests that the "Mother knows best" hypothesis could be thwarted by increasing the complexity of the studied systems. PMID:26270046

  4. Does the Aphid Alarm Pheromone (E)-β-farnesene Act as a Kairomone under Field Conditions?

    PubMed

    Joachim, Christoph; Weisser, Wolfgang W

    2015-03-01

    Insect natural enemies use several environmental cues for host/prey finding, and adjust their foraging behavior according to these signals. In insects, such cues are mainly chemical, derived from the host plant or the prey itself. The aphid alarm pheromone, (E)-β-farnesene (EBF), is believed to be such a cue, because several aphid enemies are able to perceive EBF and show attractant behavior. These studies are, however, based mainly on electroantennogram or olfactometer assays, and often use unnaturally high pheromone concentrations. It is, therefore, unclear if EBF is used to locate prey in the field when only naturally released amounts are present. We monitored the frequencies and durations of plant visits by aphid natural enemies in the field using long-duration camera observations. By placing pheromone releasers emitting no, natural or exaggerated amounts of EBF next to small colonies of pea aphids (Acyrthosiphon pisum), we analyzed if EBF presence altered long-range foraging behavior of natural enemies. Thirteen potential groups of aphid natural enemies were observed in 720 hr of analyzed video data. There was no effect of EBF on the number of predator visits to an aphid colony, or on predator patch residence times. The number of plant visits increased at exaggerated EBF amounts but not at natural EBF levels. We conclude that while there may be potential for use of high EBF concentrations for agricultural pest management strategies, an ecological role of EBF as a kairomone in a natural context is doubtful. PMID:25779875

  5. Expression profiling of selected glutathione transferase genes in Zea mays (L.) seedlings infested with cereal aphids.

    PubMed

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype. PMID:25365518

  6. Expression Profiling of Selected Glutathione Transferase Genes in Zea mays (L.) Seedlings Infested with Cereal Aphids

    PubMed Central

    Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary

    2014-01-01

    The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•− generation in comparison with the Tasty Sweet genotype. PMID:25365518

  7. Large-scale label-free quantitative proteomics of the pea aphid-Buchnera symbiosis.

    PubMed

    Poliakov, Anton; Russell, Calum W; Ponnala, Lalit; Hoops, Harold J; Sun, Qi; Douglas, Angela E; van Wijk, Klaas J

    2011-06-01

    Many insects are nutritionally dependent on symbiotic microorganisms that have tiny genomes and are housed in specialized host cells called bacteriocytes. The obligate symbiosis between the pea aphid Acyrthosiphon pisum and the γ-proteobacterium Buchnera aphidicola (only 584 predicted proteins) is particularly amenable for molecular analysis because the genomes of both partners have been sequenced. To better define the symbiotic relationship between this aphid and Buchnera, we used large-scale, high accuracy tandem mass spectrometry (nanoLC-LTQ-Orbtrap) to identify aphid and Buchnera proteins in the whole aphid body, purified bacteriocytes, isolated Buchnera cells and the residual bacteriocyte fraction. More than 1900 aphid and 400 Buchnera proteins were identified. All enzymes in amino acid metabolism annotated in the Buchnera genome were detected, reflecting the high (68%) coverage of the proteome and supporting the core function of Buchnera in the aphid symbiosis. Transporters mediating the transport of predicted metabolites were present in the bacteriocyte. Label-free spectral counting combined with hierarchical clustering, allowed to define the quantitative distribution of a subset of these proteins across both symbiotic partners, yielding no evidence for the selective transfer of protein among the partners in either direction. This is the first quantitative proteome analysis of bacteriocyte symbiosis, providing a wealth of information about molecular function of both the host cell and bacterial symbiont. PMID:21421797

  8. Biology and Demographic Growth Parameters of Cowpea Aphid (Aphis craccivora) on Faba Bean (Vicia faba) Cultivars

    PubMed Central

    Soffan, A.; Aldawood, A. S.

    2014-01-01

    The performance of cowpea aphid, Aphis craccivora Koch. (Hemiptera: Aphididae), on five faba bean, Vicia faba L. (Fabales: Fabaceae) cultivars was evaluated. Colony development, biology, and demographic parameters were studied to measure the cowpea aphid performance. Two methods, whole plant and detached leaf, were used in these experiments. After 14 d, the number of apterous adult, nymphs, and total cowpea aphids were significantly lower in cultivar Gazira2 and highest on cultivar Misr1. Assuming that low aphid numbers per plant represented high resistance, the order of resistant cultivars was as follows: Gazira2 > Misr > Giza3 Improved > Goff1 > Misr1. Aphid infestation significantly inhibited plant growth compared with uninfested plants, as indicated by factorial analysis using plant height (F = 41.38, P < 0.0001). The detached-leaf biological assay showed that the cultivar Gazira2 was less suitable than Misr1 because it had longer prereproductive, reproductive, and post reproductive periods, longer total longevity, and lower number of progeny. Similarly, demographic parameters also justified the suggested lower suitability of Gazira2 compared with Misr1, indicated by significantly lower net reproduction rate, intrinsic rate of increase, finite rate of increase, but longer generation time and doubling time on Gazira2. It was shown that cowpea aphid performed differently on the whole plant as compared with detached leaves. The detached-leaf biological assay is recommended for future experiments because it is more accurate and efficient and it produces reliable data. PMID:25368064

  9. Tillage impacts cereal-aphid (Homoptera: Aphididae) infestations in spring small grains.

    PubMed

    Hesler, L S; Berg, R K

    2003-12-01

    We compared infestation levels of cereal aphids (Homoptera: Aphididae) in spring-seeded wheat and barley grown with and without preplant tillage for 8 site yr in eastern South Dakota. Crop residue covered approximately 25% of the soil surface with preplant tillage, whereas without preplant tillage 50% or more of surface residue was conserved. Rhopalosiphum padi (L.) comprised nearly 90% of all cereal aphids sampled, and R. maidis (Fitch), Schizaphis graminum (Rondani), and Sitobion avenae (F.) collectively comprised the remainder. R. padi routinely infested lower parts of tillers and were generally concealed by surface residue in plots with no preplant tillage. Across 7 site yr, R. padi were more abundant in plots with no preplant tillage than with preplant tillage (272.6 +/- 54.4 versus 170.1 +/- 37.2 aphid days per 25 tillers). However, in comparisons at individual site years, R. padi were greater in no-preplant tillage plots only once. For all cereal-aphid species combined, infestations were greater in plots with no preplant tillage for 1 of 8 site yr, but did not differ with tillage when compared across all site years. Cereal aphids were never more abundant in plots with preplant tillage. Our results show that conservation tillage leads to greater infestations of R. padi in spring small grains, as increased surface residue provides a favorable microhabitat for this aphid. PMID:14977117

  10. Aphid Sex Pheromone Compounds Interfere with Attraction of Common Green Lacewings to Floral Bait.

    PubMed

    Koczor, Sándor; Szentkirályi, Ferenc; Pickett, John A; Birkett, Michael A; Tóth, Miklós

    2015-06-01

    Common green lacewings (Chrysoperla carnea complex) form a group of generalist predators important for biological control. Several reports show attraction of these insects to plant volatiles, and a highly attractive ternary compound floral bait has been developed. With aphids being a preferred prey of larvae, one might expect these lacewings to be attracted to aphid semiochemicals, for instance, to aphid sex pheromones, as found for several other green lacewing species. However, in a previous study, we found that traps containing aphid sex pheromone compounds (1R,4aS,7S,7aR)-nepetalactol (NEPOH), (4aS,7S,7aR)-nepetalactone (NEPONE), and a ternary floral bait attracted fewer individuals than those containing the ternary floral bait alone. In the present study, possible causes for this effect of NEPOH and NEPONE on trap capture were studied. We established that C. carnea complex catches in traps with a ternary floral lure were not influenced by the presence of Chrysopa formosa individuals in traps (attracted by NEPOH and NEPONE) or by synthetic skatole (a characteristic component of Chrysopa defense secretion). A direct negative effect of NEPOH and NEPONE on attraction of C. carnea complex was found, suggesting active avoidance of these aphid sex pheromone components. This finding is surprising as the larvae of these lacewings prey preferentially on aphids. Possible mechanisms underlying this phenomenon are discussed. PMID:25956798

  11. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China

    PubMed Central

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Cui, Jin-Jie

    2016-01-01

    Aphids are infected with a wide variety of endosymbionts that can confer ecologically relevant traits. However, the bacterial communities of most aphid species are still poorly characterized. This study investigated the bacterial diversity of the cotton aphid Aphis gossypii associated with Bt cotton in northern China by targeting the V4 region of the 16S rDNA using the Illumina MiSeq platform. Our sequencing data revealed that bacterial communities of A. gossypii were generally dominated by the primary symbiont Buchnera, together with the facultative symbionts Arsenophonus and Hamiltonella. To our knowledge, this is the first report documenting the facultative symbiont Hamiltonella in A. gossypii. Moreover, the bacterial community structure was similar within aphids from the same province, but distinct among those from different provinces. The taxonomic diversity of the bacterial community is greater in Hebei Province compared with in samples from Henan and Shandong Provinces. The selection pressure exerted by the different geographical locations could explain the differences found among the various provinces. These findings broaden our understanding of the interactions among aphids, endosymbionts and their environments, and provide clues to develop potential biocontrol techniques against this cotton aphid. PMID:27079679

  12. Plant neighborhood influences colonization of Brassicaceae by specialist and generalist aphids.

    PubMed

    Le Guigo, Pauline; Rolier, Alexandre; Le Corff, Josiane

    2012-07-01

    A plant's own characteristics, but also those of its neighbors, might have an impact on its probability of being colonized by herbivorous insects. A plant might be less colonized and experience associational resistance when it grows near repellent neighbors. In contrast, it might be more colonized and experience associational susceptibility near attractive neighbors. To date, mechanisms that drive associational defense are not really understood. In order to gain insights into the occurrence of associational resistance versus associational susceptibility under field conditions, we conducted an experiment to determine the influence of neighboring plants on the colonization of a focal plant by aphids. The focal plant was always Brassica oleracea. The neighbors were B. oleracea (control), B. napus, B. nigra, or Solanum lycopersicum, which represent contrasting levels of physical and chemical defenses. The focal plant, B. oleracea, was more colonized by the specialist aphid Brevicoryne brassicae, and experienced associational susceptibility when it was surrounded by B. nigra or B. napus. In contrast, B. oleracea was less colonized by the generalist aphid Myzus persicae, and experienced associational resistance when it was surrounded by S. lycopersicum, B. nigra or B. napus. Neighboring plants had no significant impact on host plant choice by the generalist aphid Macrosiphum euphorbiae. In conclusion, attraction or repulsion of the specialist aphid B. brassicae and the generalist aphid M. persicae by B. nigra, B. napus, and S. lycopersicum resulted in associational susceptibility or associational resistance for B. oleracea. PMID:22218942

  13. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  14. Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan.

    PubMed

    Kunkel, Brian A; Cottrell, Ted E

    2007-06-01

    Pecan foliage is attacked by three species of aphids [Monellia caryella (Fitch), Melanocallis caryaefoliae (Davis), and Monelliopsis pecanis Bissell], resulting in damage that can reduce tree nut yield. In this study, we assayed the ovipositional response of the green lacewing Chrysoperla rufilabris (Burmeister) to M. caryella and M. caryaefoliae at high and low aphid densities and the development of C. rufilabris larvae when fed solely on each of the three pecan aphid species. During 2004 and 2005, combinations of attractants and food sprays were applied to pecan trees in an orchard to monitor green lacewing ovipositional response. We found that C. rufilabris laid more eggs on seedling trees infested with the M. caryella (at both high and low densities) than on seedlings infested with M. caryaefoliae. Development of C. rufilabris was unaffected by aphid species. At least one attractant/food spray treatment applied to trees in an orchard significantly increased green lacewing oviposition for three of the five treatment dates over both years. These results show that larvae of C. rufilabris will consume all aphid species attacking pecan, even though female ovipositional response can differ for aphid species. It is likely that combinations of attractants and food sprays can be used to enhance green lacewing populations in orchards. PMID:17540067

  15. Aphid Parasitoid Mothers Don't Always Know Best through the Whole Host Selection Process

    PubMed Central

    Chesnais, Quentin; Ameline, Arnaud; Doury, Géraldine; Le Roux, Vincent; Couty, Aude

    2015-01-01

    Parasitoid host selection behaviour has been extensively studied in experimentally simplified tritrophic systems formed by one single food chain (one plant, one herbivore and one parasitoid species). The "Mother knows best" hypothesis predicts that the preference for a plant-host complex should be positively correlated with plant quality for offspring performance. We studied the host selection behaviour of the generalist endoparasitoid Aphidius matricariae towards the black bean aphid Aphis fabae in the intercrop system including Vicia faba as a focal plant and its companion plant Camelina sativa. Dual-choice laboratory bioassays revealed that parasitoid females preferred to orientate towards (1) the plant-aphid complex over the non-infested plant whatever the complex (2) the C. sativa-A. fabae complex over the V. faba-A. fabae complex. In dual choice attack rate bioassays, parasitoid females showed more interest towards the aphids on C. sativa but paradoxically chose to oviposit more in aphids on V. faba. Ultimately, parasitoids that had developed on the V. faba-A. fabae complex exhibited better fitness parameters. By demonstrating that parasitoid females were able to discriminate the aphid host that offered the highest fitness to their offspring but selected beforehand the least suitable plant-aphid complex, we provide key insight into the disruption in their host selection behaviour potentially triggered by diverse habitats. This suggests that the "Mother knows best" hypothesis could be thwarted by increasing the complexity of the studied systems. PMID:26270046

  16. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.).

    PubMed

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar 'EP6392' which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  17. Winged Pea Aphids Can Modify Phototaxis in Different Development Stages to Assist Their Host Distribution

    PubMed Central

    Zhang, Yi; Wang, Xing-Xing; Jing, Xiangfeng; Tian, Hong-Gang; Liu, Tong-Xian

    2016-01-01

    The pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), shows wing polyphenism (winged and wingless morphs) in its life cycle. The winged morph is adapted for dispersal; its two developmental adult stages (for dispersal and reproduction) are based on its breeding periods. The two morphs show different phototactic behavior and the winged can change its preference to light according to the developmental stages. To determine the mechanism and ecological functions of phototaxis for A. pisum, we first investigated the phototaxis of the two aphid morphs at different stages and analyzed the phototactic response to lights of different wavelengths; the correlation between alate fecundity and their phototactic behaviors were then studied. Finally, we focused on the possible functions of phototaxis in aphid host location and distribution in combination with gravitaxis behaviors. Negative phototaxis was found for breeding winged adults but all the other stages of both winged and wingless morphs showed positive phototaxis. The reactions of the aphids to different wavelengths were also different. Nymph production in winged adults showed negative correlation to phototaxis. The dopamine pathway was possibly involved in these behavior modifications. We speculated that winged adults can use light for dispersal in the early dispersal stage and for position holding in the breeding stage. Based on our results, we assume that light signals are important for aphid dispersal and distribution, and are also essential for the pea aphids to cope with environmental changes. PMID:27531980

  18. Winged Pea Aphids Can Modify Phototaxis in Different Development Stages to Assist Their Host Distribution.

    PubMed

    Zhang, Yi; Wang, Xing-Xing; Jing, Xiangfeng; Tian, Hong-Gang; Liu, Tong-Xian

    2016-01-01

    The pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), shows wing polyphenism (winged and wingless morphs) in its life cycle. The winged morph is adapted for dispersal; its two developmental adult stages (for dispersal and reproduction) are based on its breeding periods. The two morphs show different phototactic behavior and the winged can change its preference to light according to the developmental stages. To determine the mechanism and ecological functions of phototaxis for A. pisum, we first investigated the phototaxis of the two aphid morphs at different stages and analyzed the phototactic response to lights of different wavelengths; the correlation between alate fecundity and their phototactic behaviors were then studied. Finally, we focused on the possible functions of phototaxis in aphid host location and distribution in combination with gravitaxis behaviors. Negative phototaxis was found for breeding winged adults but all the other stages of both winged and wingless morphs showed positive phototaxis. The reactions of the aphids to different wavelengths were also different. Nymph production in winged adults showed negative correlation to phototaxis. The dopamine pathway was possibly involved in these behavior modifications. We speculated that winged adults can use light for dispersal in the early dispersal stage and for position holding in the breeding stage. Based on our results, we assume that light signals are important for aphid dispersal and distribution, and are also essential for the pea aphids to cope with environmental changes. PMID:27531980

  19. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China.

    PubMed

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Cui, Jin-Jie

    2016-01-01

    Aphids are infected with a wide variety of endosymbionts that can confer ecologically relevant traits. However, the bacterial communities of most aphid species are still poorly characterized. This study investigated the bacterial diversity of the cotton aphid Aphis gossypii associated with Bt cotton in northern China by targeting the V4 region of the 16S rDNA using the Illumina MiSeq platform. Our sequencing data revealed that bacterial communities of A. gossypii were generally dominated by the primary symbiont Buchnera, together with the facultative symbionts Arsenophonus and Hamiltonella. To our knowledge, this is the first report documenting the facultative symbiont Hamiltonella in A. gossypii. Moreover, the bacterial community structure was similar within aphids from the same province, but distinct among those from different provinces. The taxonomic diversity of the bacterial community is greater in Hebei Province compared with in samples from Henan and Shandong Provinces. The selection pressure exerted by the different geographical locations could explain the differences found among the various provinces. These findings broaden our understanding of the interactions among aphids, endosymbionts and their environments, and provide clues to develop potential biocontrol techniques against this cotton aphid. PMID:27079679

  20. Vagus Nerve Stimulation and Food Intake

    PubMed Central

    Schneider, Kristin L.; Oleski, Jessica; Gordon, Katherine; Rothschild, Anthony J.; Pagoto, Sherry L.

    2014-01-01

    Animal research suggests that vagus nerve stimulation (VNS) is associated with weight loss and decreased appetite. Results from human studies are mixed; some suggest that VNS affects weight whereas others do not, and it is unclear how VNS affects eating behaviors. Baseline body mass index (BMI) and VNS device settings may moderate the effects of VNS on caloric intake. This study investigates the association among BMI, VNS device settings, and caloric intake of highly palatable foods during VNS on versus VNS off sessions in 16 adult patients (62.5% female; BMI mean = 29.11 ± 6.65) using VNS therapy for either epilepsy or depression. Participants attended 2 experimental sessions (VNS on versus off) where they were presented with 4 preferred snack foods totaling 1600 calories. At the start of the session, they either had their VNS devices turned off or left on. Caloric intake was calculated by weighing foods before and after each session. BMI category (overweight/obese and lean) was the between group factor in the analysis. After controlling for covariates, an interaction of condition and BMI category (P = .03) was found. There was an interaction of condition and device output current (P = .05) and a trend toward an interaction of condition and device on time (P = .07). Excess weight may impact how neurobiological signals from the vagus nerve affect appetite and eating. Future research is needed to further elucidate this relationship. PMID:24876624

  1. A protein from the salivary glands of the pea aphid, Acyrthosiphon pisum, is essential in feeding on a host plant.

    PubMed

    Mutti, Navdeep S; Louis, Joe; Pappan, Loretta K; Pappan, Kirk; Begum, Khurshida; Chen, Ming-Shun; Park, Yoonseong; Dittmer, Neal; Marshall, Jeremy; Reese, John C; Reeck, Gerald R

    2008-07-22

    In feeding, aphids inject saliva into plant tissues, gaining access to phloem sap and eliciting (and sometimes overcoming) plant responses. We are examining the involvement, in this aphid-plant interaction, of individual aphid proteins and enzymes, as identified in a salivary gland cDNA library. Here, we focus on a salivary protein we have arbitrarily designated Protein C002. We have shown, by using RNAi-based transcript knockdown, that this protein is important in the survival of the pea aphid (Acyrthosiphon pisum) on fava bean, a host plant. Here, we further characterize the protein, its transcript, and its gene, and we study the feeding process of knockdown aphids. The encoded protein fails to match any protein outside of the family Aphididae. By using in situ hybridization and immunohistochemistry, the transcript and the protein were localized to a subset of secretory cells in principal salivary glands. Protein C002, whose sequence contains an N-terminal secretion signal, is injected into the host plant during aphid feeding. By using the electrical penetration graph method on c002-knockdown aphids, we find that the knockdown affects several aspects of foraging and feeding, with the result that the c002-knockdown aphids spend very little time in contact with phloem sap in sieve elements. Thus, we infer that Protein C002 is crucial in the feeding of the pea aphid on fava bean. PMID:18621720

  2. The Effect of Plant Inbreeding and Stoichiometry on Interactions with Herbivores in Nature: Echinacea angustifolia and Its Specialist Aphid

    PubMed Central

    Wagenius, Stuart; Stanton-Geddes, John; Shaw, Ruth G.

    2011-01-01

    Fragmentation of once widespread communities may alter interspecific interactions by changing genetic composition of interacting populations as well as their abundances and spatial distributions. In a long-term study of a fragmented population of Echinacea angustifolia, a perennial plant native to the North American prairie, we investigated influences on its interaction with a specialist aphid and tending ants. We grew plant progeny of sib-matings (I), and of random pairings within (W) and between (B) seven remnants in a common field within 8 km of the source remnants. During the fifth growing season, we determined each plant's burden of aphids and ants, as well as its size and foliar elemental composition (C, N, P). We also assayed composition (C, N) of aphids and ants. Early in the season, progeny from genotypic classes B and I were twice as likely to harbor aphids, and in greater abundance, than genotypic class W; aphid loads were inversely related to foliar concentration of P and positively related to leaf N and plant size. At the end of the season, aphid loads were indistinguishable among genotypic classes. Ant abundance tracked aphid abundance throughout the season but showed no direct relationship with plant traits. Through its potential to alter the genotypic composition of remnant populations of Echinacea, fragmentation can increase Echinacea's susceptibility to herbivory by its specialist aphid and, in turn, perturb the abundance and distribution of aphids. PMID:21935460

  3. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China

    PubMed Central

    Ali, Abid; Desneux, Nicolas; Lu, Yanhui; Liu, Bing; Wu, Kongming

    2016-01-01

    Planting Bt cotton in China since 1997 has led to important changes in the natural enemy communities occurring in cotton, however their specific effect on suppressing the cotton aphids (being notorious in conventional cotton ecosystem) has not been fully documented yet. We observed strong evidence for top-down control of the aphid population, e.g. the control efficiency of natural enemies on cotton aphid increased significantly in open field cages compared to exclusion cages, accounted for 60.2, 87.2 and 76.7% in 2011, 2012 and 2013 season, respectively. The cotton aphid populations peaked in early June to late July (early and middle growth stages) in open field cotton survey from 2011 to 2013. The population densities of cotton aphids and natural enemies were highest on middle growth stage while lowest densities were recorded on late stage for aphids and on early plant stage for natural enemies. Aphid parasitoids (Trioxys spp., Aphidius gifuensis), coccinellids and spiders were key natural enemies of cotton aphid. Briefly, natural enemies can suppress aphid population increase from early to middle plant growth stages by providing biocontrol services in Chinese Bt cotton. PMID:27075171

  4. Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China.

    PubMed

    Ali, Abid; Desneux, Nicolas; Lu, Yanhui; Liu, Bing; Wu, Kongming

    2016-01-01

    Planting Bt cotton in China since 1997 has led to important changes in the natural enemy communities occurring in cotton, however their specific effect on suppressing the cotton aphids (being notorious in conventional cotton ecosystem) has not been fully documented yet. We observed strong evidence for top-down control of the aphid population, e.g. the control efficiency of natural enemies on cotton aphid increased significantly in open field cages compared to exclusion cages, accounted for 60.2, 87.2 and 76.7% in 2011, 2012 and 2013 season, respectively. The cotton aphid populations peaked in early June to late July (early and middle growth stages) in open field cotton survey from 2011 to 2013. The population densities of cotton aphids and natural enemies were highest on middle growth stage while lowest densities were recorded on late stage for aphids and on early plant stage for natural enemies. Aphid parasitoids (Trioxys spp., Aphidius gifuensis), coccinellids and spiders were key natural enemies of cotton aphid. Briefly, natural enemies can suppress aphid population increase from early to middle plant growth stages by providing biocontrol services in Chinese Bt cotton. PMID:27075171

  5. Hoverfly preference for high honeydew amounts creates enemy-free space for aphids colonizing novel host plants.

    PubMed

    Vosteen, Ilka; Gershenzon, Jonathan; Kunert, Grit

    2016-09-01

    The existence of an enemy-free space can play an important role in aphid host race formation processes, but little is known about the mechanisms that create an area of low predation pressure on particular host plants. In this paper, we identify a mechanism generating lower predation pressure that promotes the maintenance of the different host races of the pea aphid (Acyrthosiphon pisum) complex, a well-studied model for ecological speciation. The pea aphid consists of at least 15 genetically distinct host races which are native to specific host plants of the legume family, but can all develop on the universal host plant Vicia faba. Previous work showed that hoverfly (Episyrphus balteatus) oviposition preferences contribute to the enemy-free space that helps to maintain the different pea aphid host races, and that higher amounts of honeydew are more attractive to ovipositing hoverflies. Here we demonstrated that aphid honeydew is produced in large amounts when aphid reproduction rate was highest, and is an important oviposition cue for hoverflies under field conditions. However, on less suitable host plants, where honeydew production is reduced, pea aphids enjoy lower predation rates. A reduction in enemy pressure can mitigate the performance disadvantages of aphids colonizing a novel host and probably plays an important role in pea aphid host race formation. PMID:27328648

  6. Alternaria toxin-induced resistance against rose aphids and olfactory response of aphids to toxin-induced volatiles of rose plants*

    PubMed Central

    Yang, Fa-zhong; Li, Li; Yang, Bin

    2012-01-01

    The search for active toxins for managing weeds or plant diseases is believed to be a promising avenue of investigation. However, the effects of Alternaria toxins on insects have just begun to be investigated. Bioactivities of toxins from four strains of Alternaria alternata on Rosa chinensis and rose aphid Macrosiphum rosivorum were tested in the present study. At a concentration of 50.0 μg/ml, the crude extract (toxin) of strain 7484 was found not to be harmful to rose plants with excised leaf-puncture method (P≥0.079), and rose plants showed enhanced resistance to rose aphids when this Alternaria toxin was sprayed on the plants (P≤0.001). However, this toxin caused no detrimental effects on aphids in insecticidal bioassay at a concentration of 10.0 to 160.0 μg/ml (P≥0.096). Therefore, the Alternaria toxin had significantly induced the resistance of rose plants against rose aphids, demonstrating that the resistance mechanism triggered by the Alternaria toxin in the rose plant may also be used by the plant to defend itself against insects. Further bioassays aimed to discover the olfactory responses of aphids to the toxin-induced volatiles of host plants. The aphids were significantly more attracted to both volatiles emitted and collected from control rose plants than to both volatiles emitted and collected from the toxin-treated rose plants (P≤0.014). This result showed that the toxin-induced resistance related to the volatile changes of host plants. PMID:22302426

  7. Combined use of 2-D reverse phase chromatography & data independent mass spectrometry simultaneously characterizing proteomes of Schizaphis graminum & its obligate endosymbiont Buchnera aphidicola, from whole aphid extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular pathways coordinating protein biosynthesis and trafficking by aphids and the involvement of endosymbiont bacterium, Buchnera aphidicola in those processes, is critical to discovering the mechanisms of virus transmission by aphids as well as leveraging that knowledge towar...

  8. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean

    PubMed Central

    Nachappa, Punya; Culkin, Christopher T.; Saya, Peter M.; Han, Jinlong; Nalam, Vamsi J.

    2016-01-01

    Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid

  9. Plant resistance reduces the strength of consumptive and non-consumptive effects of predators on aphids.

    PubMed

    Kersch-Becker, Mônica F; Thaler, Jennifer S

    2015-09-01

    1. The impact of predators on prey has traditionally been attributed to the act of consumption. Prey responses to the presence of the predator (non-consumptive effects), however, can be as important as predation itself. While plant defences are known to influence predator-prey interactions, their relative effects on consumptive vs. non-consumptive effects are not well understood. 2. We evaluated the consequences of plant resistance and predators (Hippodamia convergens) on the mass, number of nymphs, population growth, density and dispersal of aphids (Macrosiphum euphorbiae). We tested for the effects of plant resistance on non-consumptive and consumptive effects of predators on aphid performance and dispersal using a combination of path analysis and experimental manipulation of predation risk. 3. We manipulated plant resistance using genetically modified lines of tomato (Solanum lycopersicum) that vary incrementally in the expression of the jasmonate pathway, which mediates induced resistance to insects and manipulated aphid exposure to lethal and risk predators. Predation risk predators had mandibles impaired to prevent killing. 4. Plant resistance reduced predation rate (consumptive effect) on high resistance plants. As a consequence, predators had no impact on the number of nymphs, aphid density or population growth on high resistance plants, whereas on low resistance plants, predators reduced aphid density by 35% and population growth by 86%. Path analysis and direct manipulation of predation risk showed that predation risk rather than predation rate promoted aphid dispersal and varied with host plant resistance. Aphid dispersal in response to predation risk was greater on low compared to high resistance plants. The predation risk experiment also showed that the number of aphid nymphs increased in the presence of risk predators but did not translate into increased population growth. 5. In conclusion, the consumptive and non-consumptive components of predators

  10. Water Stress Modulates Soybean Aphid Performance, Feeding Behavior, and Virus Transmission in Soybean.

    PubMed

    Nachappa, Punya; Culkin, Christopher T; Saya, Peter M; Han, Jinlong; Nalam, Vamsi J

    2016-01-01

    Little is known about how water stress including drought and flooding modifies the ability of plants to resist simultaneous attack by insect feeding and transmission of insect-vectored pathogen. We analyzed insect population growth, feeding behaviors, virus transmission, and plant amino acid profiles and defense gene expression to characterize mechanisms underlying the interaction between water stress, soybean aphid and aphid-transmitted, Soybean mosaic virus, on soybean plants. Population growth of non-viruliferous aphids was reduced under drought stress and saturation, likely because the aphids spent less time feeding from the sieve element on these plants compared to well-watered plants. Water stress did not impact population growth of viruliferous aphids. However, virus incidence and transmission rate was lowest under drought stress and highest under saturated conditions since viruliferous aphids took the greatest amount time to puncture cells and transmit the virus under saturated conditions and lowest time under drought stress. Petiole exudates from drought-stressed plants had the highest level of total free amino acids including asparagine and valine that are critical for aphid performance. Aphids did not benefit from improved phloem sap quality as indicated by their lower densities on drought-stressed plants. Saturation, on the other hand, resulted in low amino acid content compared to all of the other treatments. Drought and saturation had significant and opposing effects on expression of marker genes involved in abscisic acid (ABA) signaling. Drought alone significantly increased expression of ABA marker genes, which likely led to suppression of salicylic acid (SA)- and jasmonic acid (JA)-related genes. In contrast, ABA marker genes were down-regulated under saturation, while expression of SA- and JA-related genes was up-regulated. We propose that the apparent antagonism between ABA and SA/JA signaling pathways contributed to an increase in aphid

  11. Shallot aphids, Myzus ascalonicus, in strawberry: biocontrol potential of three predators and three parasitoids.

    PubMed

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  12. Shallot Aphids, Myzus ascalonicus, in Strawberry: Biocontrol Potential of Three Predators and Three Parasitoids

    PubMed Central

    Enkegaard, Annie; Sigsgaard, Lene; Kristensen, Kristian

    2013-01-01

    The parasitization capacity of 3 parasitoids and the predation capacity of 3 predators towards the shallot aphid, Myzus ascalonicus Doncaster (Homoptera: Aphididae), on strawberry, Fragaria x ananassa Duchesne (Rosales: Rosaceae) cv. Honeoye, were examined in laboratory experiments. In Petri dish assays, both Aphidius colemani Viereck (Hymenoptera: Aphidiidae) and A. ervi Haliday readily stung shallot aphids, with no significant difference in stinging frequency between the two species. A. ervi induced a significantly higher mortality (79.0 ± 7.2%) in terms of stung aphids compared with A. colemani (55.3 ± 4.1%); however, only a minor fraction (2.7 ± 1.8% and 7.1 ± 3.1%, respectively) of the killed aphids resulted in formation of mummies, presumably due to a physiological response to parasitism. The low percentage of mummification precludes the use of either Aphidius species in anything but inundative biocontrol. In similar set-ups, Aphelinus abdominalis (Dalman) (Hymenoptera: Aphelinidae) killed almost half (49.6 ± 5.3%) of the exposed aphids through host feeding. In addition, 23.2 ± 7.3% of non-host-fed aphids developed into mummified aphids, and 38.1 ± 13.2% of non-host-fed aphids died from other parasitoid-induced causes. However, the host feeding rate was reduced to only 1.2 ± 0.8%, and no significant parasitization mortality was observed on strawberry plants, suggesting that host plants interfered with A. abdominalis activity. This parasitoid does not, therefore, seem to be suited to either inoculative or inundative biocontrol of shallot aphids in strawberry. The three predators studied were the green lacewing, Chrysoperla carnea Steph. (Neuroptera: Chrysopidae), the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae), and the gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae). Third instars of all 3 predators readily preyed upon the shallot aphid in Petri dish set-ups with significant differences in daily

  13. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling

    PubMed Central

    Wu, Chengjun; Avila, Carlos A.; Goggin, Fiona L.

    2015-01-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643

  14. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling.

    PubMed

    Wu, Chengjun; Avila, Carlos A; Goggin, Fiona L

    2015-02-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643

  15. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transmission of viruses in the Luteoviridae, such as Cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus proteins, plant proteins, and aphid proteins. These viruses are retained in the phloem for aphid acquisition and are transmitted by aphids...

  16. Development of genic-SSR markers from soybean aphid sequences generated by high-throughput sequencing of cDNA library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid (Aphis glycines Matsumura) is the most important insect pest of soybean [Glycine max (L.) Merr.] in North America and three biotypes of the aphid have been confirmed. Knowledge of aphid population genetics is needed for deployment of host-plant resistance and other control measures...

  17. Toxicity of newly isolated piperideine alkaloids from the red imported fire ant, Solenopsis invicta Buren, against the green peach aphid, Myzus persicae (Sulzer)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The green peach aphid, Myzus persicae (Sulzer), is a major insect pest of many agronomic and horticultural crops and is distributed worldwide Aphid management is often based on application of insecticides. However, the aphid is now resistant to many of these and much interest has recently develope...

  18. Pest control of aphids depends on landscape complexity and natural enemy interactions.

    PubMed

    Martin, Emily A; Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  19. The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum.

    PubMed

    Bouvaine, Sophie; T Behmer, Spencer; Lin, George G; Faure, Marie-Line; Grebenok, Robert J; Douglas, Angela E

    2012-11-01

    The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three sterols, cholesterol, stigmasterol and sitosterol, in a 2:2:1 ratio. To investigate the nutritional value of these sterols, pea aphids were reared on chemically-defined diets containing each sterol at 0.1, 1 and 10μgml(-1) with a sterol-free diet as control. Larval growth rate and aphid lifespan did not vary significantly across the diets, indicating that sterol reserves can buffer some performance indices against a shortfall in dietary sterol over at least one generation. However, lifetime reproductive output was depressed in aphids on diets containing stigmasterol or no sterol, relative to diets supplemented with cholesterol or sitosterol. The cholesterol density of embryos in teneral adults was significantly higher than in the total body; and the number and biomass of embryos in aphids on diets with stigmasterol and no sterols were reduced relative to diets with cholesterol or sitosterol, indicating that the reproductive output of the pea aphid can be limited by the amount and composition of dietary sterol. In a complementary RNA-seq analysis of pea aphids reared on plants and diets with different sterol contents, 7.6% of the 17,417 detected gene transcripts were differentially expressed. Transcript abundance of genes with annotated function in sterol utilization did not vary significantly among treatments, suggesting that the metabolic response to dietary sterol may be mediated primarily at the level of enzyme function or metabolite concentration. PMID:22878342

  20. Potential cotton aphid, Aphis gossypii, population suppression by arthropod predators in upland cotton.

    PubMed

    Shrestha, Ram B; Parajulee, Megha N

    2013-12-01

    The cotton aphid, Aphis gossypii Glover, predation rate of convergent lady beetle, Hippodamia convergens Guerin-Meneville, was determined by assigning a single predator randomly to each of four prey density treatments in the laboratory. Prey densities included 25, 50, 100, and 200 aphids per Petri dish arena. Predation response was recorded at 1, 4, 8, 16, 24, and 48 h after assigning predators to their prey treatments. Rate of consumption increased through time, with all 25 aphids consumed during the first 4 h of the experiment. At the highest density, adult lady beetle consumed on average 49, 99, 131, 163, 183, and 200 aphids within 1, 4, 8, 16, 24 and 48 h, respectively. Predators showed a curvilinear feeding response in relation to total available time, indicating that convergent lady beetles have the potential to suppress larger populations of aphids through continuous feeding by regulating their predation efficiency during feeding. The analysis of age-specific mortality in absence of prey revealed that lady beetles could survive for an extended period of time (more than 2 weeks) without prey. The ability of a predator to survive without prey delays or prevents the rebound of pest populations that is a significant factor in natural biological control. A two-year field sampling of 10 cotton arthropod predator species showed that spiders (27%) were the most dominant foliage dwelling predators in the Texas High Plains cotton followed by convergent lady beetles (23.5%), hooded beetles (13.5%), minute pirate bugs (11%), green lacewings (9.5%), bigeyed bugs (7.5%), scymnus beetles (3%), soft-winged flower beetles (2%), damsel bugs (1.5%), and assassin bugs (1.5%). A field cage study showed that one H. convergens adult per plant released at prey density of one aphid per leaf kept the aphid population below economic threshold for the entire growing season. PMID:23956125

  1. Soybean aphid and soybean cyst nematode interactions in the field and effects on soybean yield.

    PubMed

    Hong, S C; MacGuidwin, A; Gratton, C

    2011-10-01

    How above- and belowground plant pests interact with each other and how these interactions affect productivity is a relatively understudied aspect of crop production. Soybean cyst nematode, Heterodera glycines Ichinohe, a root parasite of soybean, Glycine max (L.) Merr., is the most threatening pathogen in soybean production and soybean aphid, Aphis glycines Matsumura, an aboveground phloem-feeding insect that appeared in North America in 2000, is the key aboveground herbivore of soybean in the midwestern United States. Now, both soybean aphid and soybean cyst nematode co-occur in soybean-growing areas in the Upper Midwest. The objectives of this study were to examine aphid colonization patterns and population growth on soybean across a natural gradient of nematode density (range, approximately 900 and 27,000 eggs per 100 cm3 soil), and to investigate the effect of this pest complex on soybean productivity. Alate (winged) soybean aphid colonization of soybean was negatively correlated to soybean cyst nematode egg density (r = -0.363, P = 0.0095) at the end of July, at the onset of peak alate colonization. However, both a manipulative cage study and openly colonized plants showed that soybean cyst nematode density below ground was unrelated to variation in aphid population growth (r approximately -0.01). Based on regression analyses, soybean aphids and cyst nematodes had independent effects on soybean yield through effects on different yield components. High soybean cyst nematode density was associated with a decline in soybean yield (kg ha(-1)), whereas increasing soybean aphid density (both alate and apterous) significantly decreased seed weight (g 100 seeds(-1)). PMID:22066186

  2. Seasonal Phenology and Species Composition of the Aphid Fauna in a Northern Crop Production Area

    PubMed Central

    Kirchner, Sascha M.; Hiltunen, Lea; Döring, Thomas F.; Virtanen, Elina; Palohuhta, Jukka P.; Valkonen, Jari P. T.

    2013-01-01

    Background The species diversity of aphids and seasonal timing of their flight activity can have significant impacts on crop production, as aphid species differ in their ability to transmit plant viruses and flight timing affects virus epidemiology. The aim of the study was to characterise the species composition and phenology of aphid fauna in Finland in one of the northernmost intensive crop production areas of the world (latitude 64°). Methodology/Principal Findings Flight activity was monitored in four growing seasons (2007–010) using yellow pan traps (YPTs) placed in 4–8 seed potato fields and a Rothamsted suction trap. A total of 58,528 winged aphids were obtained, identified to 83 taxa based on morphology, and 34 species were additionally characterised by DNA barcoding. Seasonal flight activity patterns analysed based on YPT catch fell into three main phenology clusters. Monoecious taxa showed early or middle-season flight activity and belonged to species living on shrubs/trees or herbaceous plants, respectively. Heteroecious taxa occurred over the entire potato growing season (ca. 90 days). Abundance of aphids followed a clear 3-year cycle based on suction trap data covering a decade. Rhopalosiphum padi occurring at the end of the potato growing season was the most abundant species. The flight activity of Aphis fabae, the main vector of Potato virus Y in the region, and Aphis gossypii peaked in the beginning of potato growing season. Conclusions/Significance Detailed information was obtained on phenology of a large number aphid species, of which many are agriculturally important pests acting as vectors of plant viruses. Aphis gossypii is known as a pest in greenhouses, but our study shows that it occurs also in the field, even far in the north. The novel information on aphid phenology and ecology has wide implications for prospective pest management, particularly in light of climate change. PMID:23967149

  3. Clonal mixing in the soldier-producing aphid Pemphigus spyrothecae (Hemiptera: Aphididae).

    PubMed

    Johnson, Paul C D; Whitfield, John A; Foster, William A; Amos, William

    2002-08-01

    Illuminating the genetic relationships within soldier-producing aphid colonies is an essential element of any attempt to explain the evolution of the altruistic soldier caste. Pemphigus spyrothecae is a soldier-producing aphid that induces galls on the leaf petioles of its host (trees of the genus Populus). At least a quarter of the aphids within the clonally produced gall population are morphologically and behaviourally distinct first-instar soldiers that defend the gall population from predation. Using field trapping and microsatellites, we investigated the degree of clonal mixing within natural gall populations. Field trapping in the UK showed that all the migrants of P. spyrothecae and of two other Pemphigus species were wingless first-instar soldiers. The average degree of mixing estimated from trapping P. spyrothecae migrants was 0.68% (range = 0-15%). Microsatellite genotyping of 277 aphids from 13 galls collected in Italy revealed an average mixing level of 10.4% (range = 0-59%). Six galls contained more than one clone (range = 2-5 clones). Non-kin aphids were not restricted to the soldier caste but were evenly distributed across instars. An additional gall, from which 527 occupants were genotyped, contained 12 non-kin aphids distributed among nine clones, showing that clonal diversity can be high even when mixing is very low. These observations suggest that although soldiers migrate regularly and can moult and reproduce within foreign galls, clonal mixing in this species is generally low and is unlikely to provide a barrier to the evolution of investment by the aphid clones in an altruistic soldier caste. PMID:12144671

  4. Pest control of aphids depends on landscape complexity and natural enemy interactions

    PubMed Central

    Reineking, Björn; Seo, Bumsuk; Steffan-Dewenter, Ingolf

    2015-01-01

    Aphids are a major concern in agricultural crops worldwide, and control by natural enemies is an essential component of the ecological intensification of agriculture. Although the complexity of agricultural landscapes is known to influence natural enemies of pests, few studies have measured the degree of pest control by different enemy guilds across gradients in landscape complexity. Here, we use multiple natural-enemy exclosures replicated in 18 fields across a gradient in landscape complexity to investigate (1) the strength of natural pest control across landscapes, measured as the difference between pest pressure in the presence and in the absence of natural enemies; (2) the differential contributions of natural enemy guilds to pest control, and the nature of their interactions across landscapes. We show that natural pest control of aphids increased up to six-fold from simple to complex landscapes. In the absence of pest control, aphid population growth was higher in complex than simple landscapes, but was reduced by natural enemies to similar growth rates across all landscapes. The effects of enemy guilds were landscape-dependent. Particularly in complex landscapes, total pest control was supplied by the combined contribution of flying insects and ground-dwellers. Birds had little overall impact on aphid control. Despite evidence for intraguild predation of flying insects by ground-dwellers and birds, the overall effect of enemy guilds on aphid control was complementary. Understanding pest control services at large spatial scales is critical to increase the success of ecological intensification schemes. Our results suggest that, where aphids are the main pest of concern, interactions between natural enemies are largely complementary and lead to a strongly positive effect of landscape complexity on pest control. Increasing the availability of seminatural habitats in agricultural landscapes may thus benefit not only natural enemies, but also the effectiveness of

  5. Fractionated extracts of Russian wheat aphid eliciting defense responses in wheat.

    PubMed

    Lapitan, Nora L V; Li, You-Chun; Peng, Junhua; Botha, Anna-Maria

    2007-06-01

    It is hypothesized that the interaction between aphids and plants follows a gene-for-gene model. The recent appearance of several new Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), biotypes in the United States and the differential response of wheat, Triticum aestivum L., genotypes containing different resistance genes also suggest a gene-for-gene interaction. However, aphid elicitors remain unknown. This study was conducted to identify fractionated Russian wheat aphid extracts capable of eliciting differential responses between resistant and susceptible wheat genotypes. We extracted whole soluble compounds and separated proteins and metabolites from two Russian wheat aphid biotypes (1 and 2), injected these extracts into seedlings of susceptible wheat Gamtoos (dn7) and resistant 94M370 (Dn7), and determined phenotypic and biochemical plant responses. Injections of whole extract or protein extract from both biotypes induced the typical susceptible symptom, leaf rolling, in the susceptible cultivar, but not in the resistant cultivar. Furthermore, multiple injections with protein extract from biotype 2 induced the development of chlorosis, head trapping, and stunting in susceptible wheat. Injection with metabolite, buffer, or chitin, did not produce any susceptible symptoms in either genotype. The protein extract from the two biotypes also induced significantly higher activities of three defense-response enzymes (catalase, peroxidase, and beta-glucanase) in 94M370 than in Gamtoos. These results indicate that a protein elicitor from the Russian wheat aphid is recognized by a plant receptor, and the recognition is mediated by the Dn7-gene product. The increased activities of defense-response enzymes in resistant plants after injection with the protein fraction suggest that defense response genes are induced after recognition of aphid elicitors by the plant. PMID:17598566

  6. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  7. Weed host specificity of the aphid, Aphis spiraecola: developmental and reproductive performance of aphids in relation to plant growth and leaf chemicals of the Siam weed, Chromolaena odorata.

    PubMed

    Agarwala, B K; Das, Jhuma

    2012-01-01

    Density, distribution, and nutritional quality of plants are the causal basis of host plant selection in aphids. Nutritional qualities of a plant vary according to its growth stage and also in response to seasonal variation. How host plant growth stages shape aphid performance was studied in Aphis spiraecola Patch (Homoptera: Aphididae) on the perennial Siam weed, Chromolaena odorata (L.) King and Robinson (Asterales: Asteraceae). This plant species is the preferred host in the hot and humid tropical parts of northeast and southern India. Variations in developmental and reproductive performances in apterous viviparous female aphids were recorded in relation to differences in leaf chemicals in different growth stages of C. odorata. Aphids reproduced at higher rates in the vegetative stage of C. odorata when developmental time was shortest, and fecundity was higher in a longer reproductive time. Intrinsic rate of increase and net reproductive rate were also recorded to be higher in the vegetative stage of the weed host. In the vegetative stage, leaves contained higher quantity of proteins and nitrogen, which are vital for insect reproduction. Results of this study have demonstrated that A spiraecola showed synchronization of its developmental and reproductive performances to growth stages of C. odorata, which occur in high abundance in the study area. PMID:22950746

  8. Host selection and probing behavior of the poplar aphid Chaitophorus leucomelas (Sternorrhyncha: Aphididae) on two poplar hybrids with contrasting susceptibility to aphids.

    PubMed

    Barrios-San Martín, Joceline; Quiroz, Andrés; Verdugo, Jaime A; Parra, Leonardo; Hormazabal, Emilio; Astudillo, Luis A; Rojas-Herrera, Marcelo; Ramírez, Claudio C

    2014-02-01

    Poplars are frequently attacked by aphids. The differential susceptibility of poplar hybrids to the aphid Chaitophorus leucomelas Koch (Sternorrhyncha: Aphididae) has been described, but the mechanism underlying this pattern is unknown. This work tested the hypothesis that poplar resistance to this aphid is associated with the presence of volatiles and secondary plant compounds that affect host selection and feeding behavior. This hypothesis was tested by studying the host choice and feeding behavior of C. leucomelas on two poplar hybrids with contrasting susceptibilities to this aphid ([Populus trichocarpa Torrey & Gray x Populus deltoides Bartram ex Marshall] x P. deltoides [TD x D], and [P. trichocarpa x Populus maximowiczii Henry] x [P. trichocarpa x P. maximowiczii] [TM x TM]). The results showed that C. leucomelas rejected leaves of the TM x TM hybrid and did not prefer odors from either hybrid. Electronic monitoring of the probing behavior of C. leucomelas suggested the involvement of antifeedant factors in the TM x TM hybrid. In addition, the chemical characterization of volatiles, epicuticular waxes, and internal phenols of leaves from both poplar hybrids revealed that TM x TM had a higher abundance of monoterpenes, sesquiterpenes, n-alkanes, and phenols. These results are discussed in terms of their contribution to poplar breeding programs aimed at enhancing insect resistance. PMID:24665710

  9. Potential exposure of a classical biological control agent of the soybean aphid, Aphis glycines, on non-target aphids in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In summer 2007, the Asian parasitoid Binodoxys communis (Hymenoptera: Braconidae) was released in North America for control of the exotic soybean aphid, Aphis glycines (Homoptera: Aphididae). Despite its comparatively narrow host range, releases of B. communis may still constitute a risk to native a...

  10. Weed Host Specificity of the Aphid, Aphis spiraecola: Developmental and Reproductive Performance of Aphids in Relation to Plant Growth and Leaf Chemicals of the Siam Weed, Chromolaena odorata

    PubMed Central

    Agarwala, B.K.; Das, Jhuma

    2012-01-01

    Density, distribution, and nutritional quality of plants are the causal basis of host plant selection in aphids. Nutritional qualities of a plant vary according to its growth stage and also in response to seasonal variation. How host plant growth stages shape aphid performance was studied in Aphis spiraecola Patch (Homoptera: Aphididae) on the perennial Siam weed, Chromolaena odorata (L.) King and Robinson (Asterales: Asteraceae). This plant species is the preferred host in the hot and humid tropical parts of northeast and southern India. Variations in developmental and reproductive performances in apterous viviparous female aphids were recorded in relation to differences in leaf chemicals in different growth stages of C. odorata. Aphids reproduced at higher rates in the vegetative stage of C. odorata when developmental time was shortest, and fecundity was higher in a longer reproductive time. Intrinsic rate of increase and net reproductive rate were also recorded to be higher in the vegetative stage of the weed host. In the vegetative stage, leaves contained higher quantity of proteins and nitrogen, which are vital for insect reproduction. Results of this study have demonstrated that A spiraecola showed synchronization of its developmental and reproductive performances to growth stages of C. odorata, which occur in high abundance in the study area. PMID:22950746

  11. Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce aphid, Nasonovia ribisnigri Mosley (Homoptera : Aphididae), is a major insect pest of lettuce, Lactuca sativa L, in many commercial lettuce productions areas around the world. Resistance to lettuce aphid was first reported in Lactuca virosa L. accession IVT 280 and characterized as complete,...

  12. Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although several wheat genes differentially expressed during the Russian wheat aphid resistance response have recently been identified, their requirement for and specific role in resistance remain unclear. Progress in wheat-aphid interaction research is hampered by inadequate collections of mutant g...

  13. Role of syrphid larvae and other predators in suppressing aphid infestations in organic lettuce on California's Central Coast.

    PubMed

    Smith, Hugh A; Chaney, William E; Bensen, Tiffany A

    2008-10-01

    Organic lettuce, Lactuca sativa L., growers on the Central Coast of California rely on conservation biological control to manage Nasonovia ribisnigri Mosley (Hemiptera: Aphididae) and other aphid pests of lettuce. In 2006, we carried out five replicated field trials to determine the importance of syrphid larvae in the suppression of N. ribisnigri and other aphids infesting organic romaine lettuce. We used Entrust, a spinosad-based insecticide approved for use on organic farms, to suppress syrphid larvae in aphid-infested romaine. Romaine treated with Entrust was unmarketable at harvest because of aphid infestation, whereas insecticide-free romaine was marketable. Syrphid larvae composed 85% or more of total predators in most trials, and they were the only predators consistently recovered from romaine that was infested with aphids early and largely aphid-free by harvest. The species mix of nonsyrphid predators varied from site to site. Applications of Entrust suppressed nonsyrphid predators in two trials, and so was an imperfect tool for selectively suppressing syrphid larvae. The relative importance of syrphid larvae and other predators in the conservation biological control of aphids in organic romaine is discussed. We conclude that syrphid larvae are primarily responsible for the suppression of aphids in organic romaine on California's Central Coast. PMID:18950033

  14. Using multispectral imagery to compare the spatial pattern of injury to wheat caused by Russian wheat aphid and greenbug

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), and greenbug, Schizaphis graminum (Rondani), are important aphid pests of wheat. Outbreaks of both pests in commercial wheat fields occur almost every year in the Great Plains of the United States. Infestations of both pests in wheat fields are...

  15. Coupling genetics and proteomics to identify aphid proteins associated with vector-specific transmission of Polerovirus (Luteoviridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal yellow dwarf virus-RPV (CYDV-RPV) is transmitted specifically by the aphids Rhopalosiphum padi and Schizaphis graminum in a circulative nonpropagative manner. The high level of vector-specificity results from the vector aphids having the functional components of the receptor-mediated endocyto...

  16. Identification of soybean proteins and genes differentially regulated in near isogenic lines differing in resistance to aphid infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, a plant sap sucking insect, is an important soybean pest in the USA causing significant yield losses. The Rag2 gene of soybean provides resistance to soybean aphid biotypes 1 and 2. Transcriptomic and proteomic analyses were performed on near isogenic lines (NILs) with the Rag2 al...

  17. Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis Glycines Matsumura

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded mole...

  18. Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded mole...

  19. Attraction of the tea aphid, toxoptera aurantii, attraction to combinations of volatiles and colors related to tea plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tea aphid, Toxoptera aurantii Boyer (Homoptera: Aphididae), is a major pest of the tea plant, Camellia sinensis. Fourteen volatile compounds were identified by GC-MS from air passed over intact tea shoots (ITSV). Electrophysiological and behavioral responses of the winged tea aphids to ITSV as w...

  20. DEVELOPMENT OF A SAMPLING PLAN IN WINTER WHEAT THAT ESTIMATES CEREAL APHID PARASITISM LEVELS AND PREDICTS POPULATION SUPPRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 1998 to 2001, the relationship between the proportion of cereal aphids parasitized (Pp) and the proportion of tillers with > 0 mummified aphids (Ptm) was estimated on 57 occasions in fields of hard red winter wheat located in central and western Oklahoma. Both original (57 fields) and validati...

  1. Combination of genomic and proteomic approaches to characterize the symbiotic population of the banana aphid (Hemiptera: Aphididae).

    PubMed

    De Clerck, C; Tsuchida, T; Massart, S; Lepoivre, P; Francis, F; Jijakli, M H

    2014-02-01

    Aphids are known to live in symbiosis with specific bacteria called endosymbionts that have positive or negative impacts on their hosts. In this study, six banana aphid (Pentalonia nigronervosa Coquerel) strains from various geographical origins (Gabon, Madagascar, and Burundi) were screened to determine their symbiotic content, using complementary genomic (16S rDNA sequencing and specific polymerase chain reaction) and proteomic (two-dimensional difference gel electrophoresis coupled with protein identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry) approaches. Despite the geographical heterogeneity, the combined methods allowed us to identify the same two symbionts in the six aphids strains tested: Buchnera aphidicola and Wolbachia. Although B. aphidicola is found in almost all aphid species, the systematic presence of Wolbachia in banana aphids is particularly interesting, as this bacterium usually has a low prevalence in aphid species. Phylogenetic analyses showed that the Wolbachia sp. strain found in P. nigronervosa was very similar to the strain present in aphids of the genus Cinara, known to have developed a strong and long-term symbiotic association with Wolbachia. The high level of asexual reproduction in P. nigronervosa could be linked to the presence of Wolbachia, but its prevalence also suggests that this symbiotic bacterium could play a more essential role in its aphid host. PMID:24472200

  2. Pea Aphid Outbreaks and Virus Epidemics on Peas in the U.S. Pacific Northwest: Histories, Mysteries, and Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pea aphid adversely affects the health and vigor of peas in the U.S. Pacific Northwest by sucking sap from leaves, stems, and pods and by transmitting four different pathogenic viruses. In eastern Washington, field peas are devastated by pea aphid feeding damage and legume viruses during periodi...

  3. Use of refuse in host plant resistance systems for the control of virulent biotype adaptation in the soybean aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plant resistant (HPR) soybean varieties have the potential to offer economic control of the soybean aphid (Aphis glycines). However, virulent aphid biotypes capable of overcoming plant resistance have caused challenges for the integration of HPR. The widespread planting of HPR soybean would inc...

  4. Genetics coupled to quantitative intact proteomics links heritable aphid and endosymbiont protein isoform expression to polerovirus transmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow dwarf viruses in the family Luteoviridae, such as Cereal yellow dwarf virus-RPV (CYDV-RPV), are vectored by aphids and cause the most economically important virus disease of cereal crops worldwide. The identification of aphid proteins mediating virus transmission will better define transmiss...

  5. Mutualistic and antagonistic trophic interactions in canola: the role of aphids in shaping pest and predator populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphids have important effects on the abundance and occurrence of tending ants, predators, and pests in agronomic systems, and DNA-based gut content analysis can aid in establishing predator-prey interactions. The purpose of this study was to determine how the presence of aphids, ants, and pest indiv...

  6. Susceptibility of Five Sugar Beet Cultivars to the Black Bean Aphid, Aphis fabae Scopoli (Hemiptera: Aphididae).

    PubMed

    Golizadeh, A; Abedi, Z; Borzoui, E; Golikhajeh, N; Jafary, M

    2016-08-01

    The black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae), is one of the important pests of sugar beet. The relative impact of resistance, including antibiosis and antixenosis of five sugar beet cultivars (Doroti, Perimer, Pershia, Rozier and 006) on A. fabae was studied under laboratory conditions using clip cages. The antibiosis test was based on life table parameters. Significant differences on developmental time, mean number of nymphs/aphid/day, fecundity, and adult longevity of A. fabae were found across tested sugar beet cultivars. In addition, there were significant differences among the sugar beet cultivars for population growth parameters such as the intrinsic rate of natural increase (r m ), net reproductive rate (R 0), finite rate of increase (λ), doubling time (DT), and mean generation time (T) of A. fabae. The highest and lowest (r m ) values were observed on Pershia (0.449 nymphs/female/day) and Perimer (0.358 nymphs/female/day), respectively. No significant differences were found for the preference of the black bean aphid, and antixenosis had no effect on resistance against this aphid. As a result, our findings showed that the Pershia cultivar was a relatively susceptible host plant. Two cultivars (Perimer and Rozier) were relatively resistant to A. fabae, which could prove useful in the development of IPM programs for this aphid in sugar beet fields. PMID:26927334

  7. Population dynamics and associated factors of cereal aphids and armyworms under global change

    PubMed Central

    Wang, Leyun; Hui, Cang; Sandhu, Hardev S.; Li, Zhihong; Zhao, Zihua

    2015-01-01

    Studying the impacts of global change, which comprises largely climate and landscape changes, on agricultural pests is crucial for developing sustainable pest management. This research is focused on understanding the factors associated with population dynamics of cereal aphids and armyworms feeding on wheat in Henan province in China from 1987 to 2010. Association between changes in climate (temperature, precipitation, and relative humidity) and agricultural characteristics (wheat proportion, crop diversity, fertilizer input, and wheat yield per unit area) and damage from cereal aphids and armyworms were examined. Cereal aphid damage has been rising, while armyworm damage had no obvious trends, but with strong year-to-year fluctuations. The analysis indicates that the factors most strongly associated with the population dynamics of cereal aphids are fertilizer input and mean temperature in February, while the population dynamics of armyworms is significantly related to precipitation in May. By comparing the characteristics of these two agricultural pests, we identify possible reasons for the disparity between their associated factors, which are related to the differences in their foraging behaviour, host range, migration capacity, and life history. These results may contribute to developing ecologically based pest management for cereal aphids and armyworms under global change. PMID:26689373

  8. Aphid salivary proteases are capable of degrading sieve-tube proteins.

    PubMed

    Furch, Alexandra C U; van Bel, Aart J E; Will, Torsten

    2015-02-01

    Sieve tubes serve as transport conduits for photo-assimilates and other resources in angiosperms and are profitable targets for piercing-sucking insects such as aphids. Sieve-tube sap also contains significant amounts of proteins with diverse functions, for example in signalling, metabolism, and defence. The identification of salivary proteases in Acyrthosiphon pisum led to the hypothesis that aphids might be able to digest these proteins and by doing so suppress plant defence and access additional nitrogen sources. Here, the scarce knowledge of proteases in aphid saliva is briefly reviewed. In order to provide a better platform for discussion, we conducted a few tests on in vitro protease activity and degradation of sieve-tube sap proteins of Cucurbita maxima by watery saliva. Inhibition of protein degradation by EDTA indicates the presence of different types of proteases (e.g. metalloproteses) in saliva of A. pisum. Proteases in the watery saliva from Macrosiphum euphorbiae and A. pisum were able to degrade the most abundant phloem protein, which is phloem protein 1. Our results provide support for the breakdown of sieve-element proteins by aphid saliva in order to suppress/neutralize the defence responses of the plant and to make proteins of sieve-tube sap accessible as a nitrogen source, as is discussed in detail. Finally, we discuss whether glycosylation of sieve-element proteins and the presence of protease inhibitors may confer partial protection against the proteolytic activity of aphid saliva. PMID:25540441

  9. Aphid Transmission Alters the Genomic and Defective RNA Populations of Citrus tristeza virus Isolates.

    PubMed

    Albiach-Martí, M R; Guerri, J; de Mendoza, A H; Laigret, F; Ballester-Olmos, J F; Moreno, P

    2000-02-01

    ABSTRACT A total of 14 Spanish isolates of Citrus tristeza virus (CTV) and 1 isolate from Japan were transmitted by Aphis gossypii, and the subisolates obtained were compared with the source isolates for symptom expression and double-stranded RNA (dsRNA) pattern. Of the 14 Spanish isolates, 9 showed altered dsRNA patterns after aphid transmission but only minor variations in the intensity of symptoms induced on Mexican lime. Northern blot hybridization with complementary DNA (cDNA) probes corresponding to both the 5' and the 3' termini of the CTV genomic RNA (gRNA) showed that the dsRNA bands that could be used to discriminate between the dsRNA pattern of the source and the aphid-transmitted isolates were the replicative forms of defective RNAs (D-RNAs). Conversely, the Japanese isolate and two subisolates obtained from it by aphid transmission had the same dsRNA pattern, but one of the subisolates induced milder symptoms in several hosts. Dot-blot hybridization with cDNA probes representing several regions of the gRNA showed that most of the aphid-transmitted isolates differed from the corresponding source isolate by their hybridization pattern. Our results indicate that aphid transmission often sorts the populations of gRNA variants and D-RNAs present in CTV isolates. PMID:18944601

  10. Volatiles from Plants Induced by Multiple Aphid Attacks Promote Conidial Performance of Lecanicillium lecanii

    PubMed Central

    Avery, Pasco Bruce; Qasim, Muhammad; Fang, Dalin; Wang, Liande

    2016-01-01

    Herbivore-induced plant volatiles (HIPVs) are clues that help predatory insects search for food. The hypothesis that entomopathogenic fungi, which protect plants, benefit from the release of HIPVs was tested. The plant Arabidopsis thaliana was used as the source of HIPVs. The insect herbivore Lipaphis erysimi (Kaltenbach) was used as the inducer, and the fungal pathogen of the aphid Lecanicillium lecanii was exposed to HIPVs to test our hypothesis. When exposed to aphid-induced A. thaliana volatiles, the mortality of aphids pre-treated with a conidial suspension of L. lecanii, the conidial germination and the appressorial formation were significantly increased compared with the control. The decan-3-ol and 4-methylpentyl isothiocyanate that were detected in the headspace seemed to have positive and negative affection, respectively. Moreover, HIPVs generated from groups of eight aphids per plant promoted significantly increased conidial germination and appressorial formation compared with HIPVs from groups of one, two and four aphids per plant. Our results demonstrated that the pathogenicity of the entomopathogenic fungus L. lecanii was enhanced when exposed to HIPVs and that the HIPVs were affected by the number of insect herbivores that induced them. PMID:26999795

  11. Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana.

    PubMed

    Kim, Jeong Jun; Jeong, Gayoung; Han, Ji Hee; Lee, Sangyeob

    2013-12-01

    Aphids are one of the most destructive pests in crop production such as pepper, cucumber, and eggplants. The importance of entomopathogenic fungi as alternative pest control agents is increasing. Conidia of entomopathogenic fungi are influenced by environmental conditions, such as temperature and relative humidity, and cause slow and fluctuating mortality. These factors have prevented wider application and use of biocontrol agents. For investigation of means of mitigation of such problems, we conducted bioassays with 47 fungal culture filtrates in order to evaluate the potential of secondary metabolites produced by entomopathogenic fungi for use in aphid control. Among 47 culture filtrates cultured potato dextrose broth, filtrate of Beauveria bassiana Bb08 showed the highest mortality (78%) against green peach aphid three days after treatments. Filtrate of Bb08 cultured in Adamek's medium showed higher toxicity as 100% to third instar nymphs of the aphid compared with seven other filtrates cultured in different broths amended with colloidal chitin or oil. The culture filtrates and fungal cultures from media amended with colloidal chitin or oil had lower control efficacies than filtrates without these additives in three different media. These results indicate that the fungal culture fluid or culture filtrate of B. bassiana Bb08 cultured in Adamek's medium has potential for development as a mycopesticide for aphid control. PMID:24493943

  12. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora.

    PubMed

    Chen, Chia-Yu; Chiu, Ming-Chih; Kuo, Mei-Hwa

    2013-08-01

    To estimate the net effect of climate change on natural populations, we must take into account the positive and negative effects of temperature oscillations and climate variability. Warming because of climate change will likely exceed the physiological optima of tropical insects, which currently live very close to their thermal optima. Tropical insects will be negatively affected if their optima are exceeded otherwise warming may affect them positively. We evaluate the demographic responses of the cowpea aphid, Aphis craccivora, to summer warming in subtropical and tropical Taiwan, and examine the effects of diel temperature oscillation on these responses. Aphids were reared at four temperatures (current summer mean, +1.4, +3.9 and +6.4 °C), the latter three simulating different levels of warming. At each average temperature, aphids experienced constant or oscillating (from -2.9 to +3.6 °C of each mean temperature) regimes. As the simulated summer temperatures increased, so did the negative effects on life-history traits and demographic parameters. Compared with aphids reared in constant temperatures, aphids reared in oscillating temperatures developed more slowly and had a longer mean generation time, but their net reproductive rate was higher. These findings demonstrate that climate warming will affect demographic parameters and life-history traits differentially. Studies that use constant temperatures are unlikely to accurately predict biotic responses to climate change. PMID:23448233

  13. Population dynamics and associated factors of cereal aphids and armyworms under global change.

    PubMed

    Wang, Leyun; Hui, Cang; Sandhu, Hardev S; Li, Zhihong; Zhao, Zihua

    2015-01-01

    Studying the impacts of global change, which comprises largely climate and landscape changes, on agricultural pests is crucial for developing sustainable pest management. This research is focused on understanding the factors associated with population dynamics of cereal aphids and armyworms feeding on wheat in Henan province in China from 1987 to 2010. Association between changes in climate (temperature, precipitation, and relative humidity) and agricultural characteristics (wheat proportion, crop diversity, fertilizer input, and wheat yield per unit area) and damage from cereal aphids and armyworms were examined. Cereal aphid damage has been rising, while armyworm damage had no obvious trends, but with strong year-to-year fluctuations. The analysis indicates that the factors most strongly associated with the population dynamics of cereal aphids are fertilizer input and mean temperature in February, while the population dynamics of armyworms is significantly related to precipitation in May. By comparing the characteristics of these two agricultural pests, we identify possible reasons for the disparity between their associated factors, which are related to the differences in their foraging behaviour, host range, migration capacity, and life history. These results may contribute to developing ecologically based pest management for cereal aphids and armyworms under global change. PMID:26689373

  14. Effect of Host Genotype on Symbiont Titer in the Aphid-Buchnera Symbiosis.

    PubMed

    Vogel, Kevin J; Moran, Nancy A

    2011-01-01

    Obligate nutritional symbioses require balance between the energetic needs of the host and the symbiont. The resident symbiont population size within a host may have major impacts on host fitness, as both host and symbiont consume and supply metabolites in a shared metabolite pool. Given the massive genome degradation that is a hallmark of bacterial endosymbionts of insects, it is unclear at what level these populations are regulated, and how regulation varies among hosts within natural populations. We measured the titer of the endosymbiont Buchnera aphidicola from different clones of the pea aphid, Acyrthosiphon pisum, and found significant variation in titer, measured as Buchnera genomes per aphid genome, among aphid clones. Additionally, we found that titer can change with the age of the host, and that the number of bacteriocytes within an aphid is one factor likely controlling Buchnera titer. Buchnera titer measurements in clones from a sexual cross indicate that the symbiont genotype is not responsible for variation in titer and that this phenotype is likely non-heritable across sexual reproduction. Symbiont titer is more variable among lab-produced F₁ aphid clones than among field-collected ones, suggesting that intermediate titer is favored in natural populations. Potentially, a low heritability of titer during the sexual phase may generate clones with extreme and maladaptive titers each season. PMID:26467737

  15. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola.

    PubMed

    Nováková, Eva; Hypša, Václav; Klein, Joanne; Foottit, Robert G; von Dohlen, Carol D; Moran, Nancy A

    2013-07-01

    Reliable phylogenetic reconstruction, as a framework for evolutionary inference, may be difficult to achieve in some groups of organisms. Particularly for lineages that experienced rapid diversification, lack of sufficient information may lead to inconsistent and unstable results and a low degree of resolution. Coincidentally, such rapidly diversifying taxa are often among the biologically most interesting groups. Aphids provide such an example. Due to rapid adaptive diversification, they feature variability in many interesting biological traits, but consequently they are also a challenging group in which to resolve phylogeny. Particularly within the family Aphididae, many interesting evolutionary questions remain unanswered due to phylogenetic uncertainties. In this study, we show that molecular data derived from the symbiotic bacteria of the genus Buchnera can provide a more powerful tool than the aphid-derived sequences. We analyze 255 Buchnera gene sequences from 70 host aphid species and compare the resulting trees to the phylogenies previously retrieved from aphid sequences, only. We find that the host and symbiont data do not conflict for any major phylogenetic conclusions. Also, we demonstrate that the symbiont-derived phylogenies support some previously questionable relationships and provide new insights into aphid phylogeny and evolution. PMID:23542003

  16. Predation Determines Different Selective Pressure on Pea Aphid Host Races in a Complex Agricultural Mosaic

    PubMed Central

    Balog, Adalbert; Schmitz, Oswald J.

    2013-01-01

    Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR) and alfalfa race (AR) pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover) and fitness benefits when on red clover (higher fitness on red clover relative to broad bean), whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants. PMID:23409081

  17. Predation determines different selective pressure on pea aphid host races in a complex agricultural mosaic.

    PubMed

    Balog, Adalbert; Schmitz, Oswald J

    2013-01-01

    Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR) and alfalfa race (AR) pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover) and fitness benefits when on red clover (higher fitness on red clover relative to broad bean), whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants. PMID:23409081

  18. Light activation of Russian wheat aphid-elicited physiological responses in susceptible wheat.

    PubMed

    Macedo, T B; Higley, L G; Ni, X; Quisenberry, S S

    2003-02-01

    The impact of light and its role in Russian wheat aphid, Diuraphis noxia (Mordvilko), damage symptom formation, and photosynthetic capacity in 'Arapahoe' wheat (Triticum aestivum L.) were examined. After 72 h under continuous dark or continuous light regimes, the number of aphids (nymphs), leaf rolling and chlorosis ratings, fresh leaf weight, and chlorophyll contents were recorded. Photosynthetic rates, chlorophyll a, kinetics and chlorophyll extractions also were determined. Aphid infestation caused significant reductions in plant height, fresh weight, gas exchange, and chlorophyll fluorescence only under continuous light. Under the 72 h continuous dark regime, aphid infestation did not cause either damage symptom formation or reduction in plant growth or metabolism (photosynthesis). Furthermore, significantly more D. noxia nymphs were produced under continuous light condition than continuous dark. Our results demonstrate that the development of D. noxia feeding damage symptoms (i.e., leaf rolling and chlorotic streaks) on susceptible wheat seedlings is a light-activated process, even though the elicitor of the plant damage symptoms is aphid feeding. PMID:12650362

  19. Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid.

    PubMed

    Franzen, Lisa D; Gutsche, Andrea R; Heng-Moss, Tiffany M; Higley, Leon G; Sarath, Gautam; Burd, John D

    2007-10-01

    We examined the physiological and biochemical responses of resistant ('Halt' and 'Prairie Red') and susceptible ('TAM 107') wheat, Triticum aestivum L., to injury by the Russian wheat aphid, Diuraphis noxia (Mordvilko). Photosynthetic capacity was evaluated by measuring assimilation/internal CO2 (A/Ci) curves, chlorophyll fluorescence, chlorophyll, and nonstructural carbohydrate content. Total protein and peroxidase specific activity also were determined. No significant differences were detected in chlorophyll concentration between aphid-infested and control TAM 107 plants. The aphid-infested resistant cultivars had similar or significantly higher chlorophyll concentrations compared with their respective control plants. Measurements over time showed that infested Halt plants had delays in photosynthetic senescence, Prairie Red plants had photosynthetic rate changes that were similar to control plants, and TAM 107 plants displayed accelerated photosynthetic senescence patterns. The photochemical and nonphotochemical quenching coefficients were significantly higher in infested Halt plants compared with their respective control plants on day 3. Infested TAM 107 plants had significantly higher photochemical quenching compared with control plants at all times evaluated, and they had significantly higher nonphotochemical quenching on day 3. Throughout the experiment, infested Prairie Red plants exhibited photochemical and nonphotochemical quenching coefficient values that were not significantly different from control plants. Total protein content was not significantly different between aphid-infested and control plants for all cultivars. Differences between physiological responses of infested susceptible and resistant cultivars, particularly temporal changes in photosynthetic activity, imply that resistant Halt and Prairie Red wheat tolerate some impacts of aphid injury on photosynthetic integrity. PMID:17972650

  20. Protection of Pea Aphids Associated with Coinfecting Bacterial Symbionts Persists During Superparasitism by a Braconid Wasp.

    PubMed

    Donald, K J; Clarke, H V; Mitchell, C; Cornwell, R M; Hubbard, S F; Karley, A J

    2016-01-01

    Bacterial endosymbionts that associate facultatively with insect herbivores can influence insect fitness and trophic interactions. The pea aphid, Acyrthosiphon pisum, can be protected from parasitism by the braconid wasp Aphidius ervi when harbouring particular symbiotic bacteria, with specific endosymbiont coinfections providing almost complete protection. However, studies often quantify aphid mummification with no control over parasitoid oviposition per aphid; thus, if mummy production fails or is low, the causes are often unclear. Here, we show that the high level of protection associated with the coinfecting endosymbionts Hamiltonella defensa and X-type is maintained even when pea aphids are superparasitised. This contrasts strongly with the protection provided by H. defensa alone, which has been shown by others to be overcome by superparasitism. By dissecting aphids exposed to two parasitoid attacks, we reveal that A. ervi deposits eggs equally freely in endosymbiont-infected and uninfected nymphs, and lack of mummification in endosymbiont-protected nymphs arises from failure of the wasp eggs to hatch or emerging larvae to develop. PMID:26520831

  1. A simple wax-embedding method for isolation of aphid hemolymph for detection of luteoviruses in the hemocoel.

    PubMed

    Liu, Sijun; Bonning, Bryony C; Allen Miller, W

    2006-03-01

    A protocol for isolating hemolymph from viruliferous aphids has been developed. This method uses warm melted wax to immobilize the aphid. Following removal of a hind leg, the hemolymph can be collected readily. Flushing with RNase-free water allows for collection of sufficient hemolymph for RNA extraction from individual aphids. The extracted RNA was successfully used for detection of barley yellow dwarf virus (BYDV) and pea enation mosaic virus (PEMV) from individual viruliferous Rhopalosiphum padi and Acyrthosiphon pisum aphids, respectively. A TaqMan real-time RT-PCR protocol for quantitation of PEMV in the hemolymph of individual aphids was developed. The wax-embedding hemolymph collection technique provides a useful tool for studying molecular interactions between persistent and circulative plant viruses and their insect vectors. PMID:16307802

  2. Combining Next-Generation Sequencing Strategies for Rapid Molecular Resource Development from an Invasive Aphid Species, Aphis glycines

    PubMed Central

    Bai, Xiaodong; Zhang, Wei; Orantes, Lucia; Jun, Tae-Hwan; Mittapalli, Omprakash; Mian, M. A. Rouf; Michel, Andrew P.

    2010-01-01

    Background Aphids are one of the most important insect taxa in terms of ecology, evolutionary biology, genetics and genomics, and interactions with endosymbionts. Additionally, many aphids are serious pest species of agricultural and horticultural plants. Recent genetic and genomic research has expanded molecular resources for many aphid species, including the whole genome sequencing of the pea aphid, Acrythosiphon pisum. However, the invasive soybean aphid, Aphis glycines, lacks in any significant molecular resources. Methodology/Principal Findings Two next-generation sequencing technologies (Roche-454 and Illumina GA-II) were used in a combined approach to develop both transcriptomic and genomic resources, including expressed genes and molecular markers. Over 278 million bp were sequenced among the two methods, resulting in 19,293 transcripts and 56,688 genomic sequences. From this data set, 635 SNPs and 1,382 microsatellite markers were identified. For each sequencing method, different soybean aphid biotypes were used which revealed potential biotype specific markers. In addition, we uncovered 39,822 bp of sequence that were related to the obligatory endosymbiont, Buchnera aphidicola, as well as sequences that suggest the presence of Hamiltonella defensa, a facultative endosymbiont. Conclusions and Significance Molecular resources for an invasive, non-model aphid species were generated. Additionally, the power of next-generation sequencing to uncover endosymbionts was demonstrated. The resources presented here will complement ongoing molecular studies within the Aphididae, including the pea aphid whole genome, lead to better understanding of aphid adaptation and evolution, and help provide novel targets for soybean aphid control. PMID:20614011

  3. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    PubMed

    Han, Peng; Niu, Chang-ying; Desneux, Nicolas

    2014-01-01

    The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ) in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt)+CpTI (Cowpea trypsin inhibitor) cotton field in 2011. The aphid population growth in the open field (control) was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1%) and spiders (1.5%). The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma). Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation). The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild. PMID:25170907

  4. Elicitation of jasmonate-mediated host defense in Brassica juncea (L.) attenuates population growth of mustard aphid Lipaphis erysimi (Kalt.).

    PubMed

    Koramutla, Murali Krishna; Kaur, Amandeep; Negi, Manisha; Venkatachalam, Perumal; Bhattacharya, Ramcharan

    2014-07-01

    The productivity of Brassica oilseeds is severely affected by its major pest: aphids. Unavailability of resistance source within the crossable germplasms has stalled the breeding efforts to derive aphid resistant cultivars. In this study, jasmonate-mediated host defense in Indian mustard Brassica juncea (L.) Czern. was evaluated and compared with regard to its elicitation in response to mustard aphid Lipaphis erysimi (Kalt.) and the defense elicitor methyl jasmonate (MeJ). Identification of jasmonate-induced unigenes in B. juncea revealed that most are orthologous to aphid-responsive genes, identified in taxonomically diverse plant-aphid interactions. The unigenes largely represented genes related to signal transduction, response to biotic and abiotic stimuli and homeostasis of reactive oxygen species (ROS), in addition to genes related to cellular and metabolic processes involved in cell organization, biogenesis, and development. Gene expression studies revealed induction of the key jasmonate biosynthetic genes (LOX, AOC, 12-OPDR), redox genes (CAT3 and GST6), and other downstream defense genes (PAL, ELI3, MYR, and TPI) by several folds, both in response to MeJ and plant-wounding. However, interestingly aphid infestation even after 24 h did not elicit any activation of these genes. In contrast, when the jasmonate-mediated host defense was elicited by exogenous application of MeJ the treated B. juncea plants showed a strong antibiosis effect on the infesting aphids and reduced the growth of aphid populations. The level of redox enzymes CAT, APX, and SOD, involved in ROS homeostasis in defense signaling, and several defense enzymes viz. POD, PPO, and PAL, remained high in treated plants. We conclude that in B. juncea, the jasmonate activated endogenous-defense, which is not effectively activated in response to mustard aphids, has the potential to reduce population growth of mustard aphids. PMID:24771023

  5. Population Dynamics of Aphids on Cereals: Digging in the Time-Series Data to Reveal Population Regulation Caused by Temperature

    PubMed Central

    Brabec, Marek; Honěk, Alois; Pekár, Stano; Martinková, Zdenka

    2014-01-01

    Aphid populations show periodic fluctuations and many causes are attributed to their dynamic. We investigated the regulation by temperature of the aphid populations composed of Metopolophium dirhodum, Sitobion avenae, and Rhopalosiphum padi on winter wheat using a 24 years long time series data. We computed the sum of daily temperatures above 5°C, the threshold temperature for aphid development, and the sum of daily temperatures within the [0(threshold for wheat development),5] °C interval. Applying Generalised Additive Model framework we tested influences of temperature history expressed via degree days before the start of the aphid immigration on the length of their occurrence. We aimed to estimate the magnitude and direction of this influence, and how far to the past before the start of the aphid season the temperature effect goes and then identify processes responsible for the effect. We fitted four models that differed in the way of correcting for abundance in the previous year and in specification of temperature effects. Abundance in the previous year did not affect the length of period of aphid population growth on wheat. The temperature effect on the period length increased up to 123 days before the start of the current season, i.e. when wheat completed vernalization. Increased sum of daily temperatures above 5°C and the sum of daily temperatures within the [0,5] °C interval both shortened the length of period of aphid population growth. Stronger effect of the latter suggests that wheat can escape from aphid attacks if during winter temperatures range from 0 to 5°C. The temperature influence was not homogeneous in time. The strongest effect of past temperature was about 50 to 80 and 90 to 110 days before the beginning of the current aphid season indicating important role of termination of aphid egg dormancy and egg hatching. PMID:25184219

  6. Identification of Top-Down Forces Regulating Cotton Aphid Population Growth in Transgenic Bt Cotton in Central China

    PubMed Central

    Han, Peng; Niu, Chang-ying; Desneux, Nicolas

    2014-01-01

    The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ) in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt)+CpTI (Cowpea trypsin inhibitor) cotton field in 2011. The aphid population growth in the open field (control) was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1%) and spiders (1.5%). The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma). Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation). The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild. PMID:25170907

  7. Salicylic acid-induced changes in physiological parameters and genes of the flavonoid biosynthesis pathway in Artemisia vulgaris and Dendranthema nankingense during aphid feeding.

    PubMed

    Sun, Y; Xia, X L; Jiang, J F; Chen, S M; Chen, F D; Lv, G S

    2016-01-01

    Phloem-feeding aphids cause serious damage to plants. The mechanisms of plant-aphid interactions are only partially understood and involve multiple pathways, including phytohormones. In order to investigate whether salicylic acid (SA) is involved and how it plays a part in the defense response to the aphid Macrosiphoniella sanbourni, physiological changes and gene expression profiles in response to aphid inoculation with or without SA pretreatment were compared between the aphid-resistant Artemisia vulgaris 'Variegata' and the susceptible chrysanthemum, Dendranthema nankingense. Changes in levels of reactive oxygen species, malondialdehyde (MDA), and flavonoids, and in the expression of genes involved in flavonoid biosynthesis, including PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase), CHI (chalcone isomerase), F3H (flavanone 3-hydroxylase), F3'H (flavanone 3'-hydroxylase), and DFR (dihydroflavonol reductase), were investigated. Levels of hydrogen peroxide, superoxide anions, MDA, and flavonoids, and their related gene expression, increased after aphid infestation and SA pretreatment followed by aphid infestation; the aphid-resistant A. vulgaris exhibited a more rapid response than the aphid-susceptible D. nankingense to SA treatment and aphid infestation. Taken together, our results suggest that SA could be used to increase aphid resistance in the chrysanthemum. PMID:26909993

  8. Factors contributing to the poor performance of a soybean aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae) on an herbivore resistant soybean cultivar.

    PubMed

    Ballman, E S; Ghising, K; Prischmann-Voldseth, D A; Harmon, J P

    2012-12-01

    Host plant resistance and biological control are important components of integrated pest management programs. However, plants expressing resistance to herbivores may also have direct or indirect negative effects on natural enemies simultaneously providing pest suppression. Soybean aphids (Aphis glycines Matsumura) are invasive and serious pests of soybean (Glycine max L.) in the United States. Several soybean lines with aphid resistance have been identified, but the long-term impact of these resistant plants on soybean aphid biological control agents is uncertain. In a previous study, we reported that a soybean aphid parasitoid, Binodoxys communis (Gahan) had lower mummy production on resistant plants compared with a near isogenic susceptible soybean line, but the reason for this was unclear. Therefore, we examined three possible mechanisms to explain these findings: 1) resistant plants directly impact wasp emergence and longevity, 2) varying aphid density influences parasitism rates, and 3) resistant plants indirectly affect wasp development through reduced aphid longevity. We found that parasitoids in this study were not directly influenced by resistant cultivars, as there was no difference in wasp adult emergence or longevity between resistant and susceptible plants. There was also no significant effect of aphid density on mummy production over the range of aphid densities we tested. However, aphids on resistant plants had significantly shorter lifespans and were unable to survive long enough to develop into mummies compared with aphids on susceptible plants. We discuss these results and possible implications for integrating biological control and host plant resistance within soybean aphid integrated pest management programs. PMID:23321088

  9. Selection of Nothofagus host trees by the aphids Neuquenaphis staryi and Neuquenaphis edwardsi.

    PubMed

    Russell, Graeme B; Faundez, Eric H; Niemeyer, Hermann M

    2004-11-01

    Leaf volatiles were collected from three Nothofagus species growing in close proximity in Los Ruiles National Reserve, Chile. The volatile preparation from leaves of No. alessandrii were attractive to the specialist aphid, Neuquenaphis staryi, but not to the generalist aphid, Ne. edwardsi, while the volatile preparations of No. dombeyi and No. glauca were attractive to Ne. edwardsi, but not to Ne. staryi. This reflects the pattern of aphid/host-plant associations. Alpha-Agarofuran was found to occur in all leaf volatile preparations and was shown by electroantennography and olfactometry to be attractive for both Neuquenaphis spp., suggesting it may be the Nothofagus host-recognition factor for Neuquenaphis. The factor(s) mediating Ne. stayi's specialization on No. alessandrii remain to be identified. PMID:15672667

  10. Characterization of mariner-like transposons of the mauritiana Subfamily in seven tree aphid species.

    PubMed

    Kharrat, Imen; Mezghani, Maha; Casse, Nathalie; Denis, Françoise; Caruso, Aurore; Makni, Hanem; Capy, Pierre; Rouault, Jacques-Deric; Chénais, Benoît; Makni, Mohamed

    2015-02-01

    Mariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit tree aphid species out of eight species studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers. All the sequences detected were deleted copies of full-length elements that included the 3'- and 5'-TIRs but displayed internal deletions affecting Mos1 activity. Networks based on the mtDNA cytochrome oxidase subunit-I (CO-I) and MLE sequences were incongruent, suggesting that mutations in transposon sequences had accumulated before speciation of tree aphid species occurred, and that they have been maintained in this species via vertical transmissions. This is the first evidence of the widespread occurrence of MLEs in aphids. PMID:25555688

  11. Gall volatiles defend aphids against a browsing mammal

    PubMed Central

    2013-01-01

    Background Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies. PMID:24020365

  12. Characterisation of aphid myrosinase and degradation studies of glucosinolates.

    PubMed

    Francis, Frédéric; Lognay, Georges; Wathelet, Jean-Paul; Haubruge, Eric

    2002-08-01

    Myrosinase from Brevicoryne brassicae was purified by ammonium sulfate fractionation, dialysis, and chromatography on a DEAE column. The chromatography yielded a single peak and a 115.6-fold purification. Further FPLC gel filtration gave a single peak at 120 kDa. Denaturing SDS/PAGE of the protein revealed a single band at 60 kDa, indicating that the native B. brassicae myrosinase is a dimer. Kinetic parameters towards 8 glucosinolates were calculated. Strong differences of V(max) and K(m) were observed depending on the substrate. Degradation products of each glucosinolate were identified and quantified by GC-MS and GLC-FID, respectively. Using both crude aphid homogenates and purified myrosinase, two unique hydroxyglucosinolates, 3-butenyl- and benzyl-isothiocyanates were identified from progoitrin ((2S)-2-hydroxybut-3-enyl-glucosinolate) and sinalbin (4-hydroxybenzyl-glucosinolate) degradation respectively. Addition of ascorbic acid to the reaction mixtures containing sinalbin and progoitrin caused the production of hydroxylated degradation products usually associated with plant myrosinase metabolisation. The occurrence of the myrosinase system in B. brassicae is discussed in terms of similar allelochemical adaptation between the herbivore and its host plant. PMID:12125058

  13. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize.

    PubMed

    Tzin, Vered; Lindsay, Penelope L; Christensen, Shawn A; Meihls, Lisa N; Blue, Levi B; Jander, Georg

    2015-11-01

    Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within-species variation in such plant-mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore-induced methylation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) to form 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) promotes caterpillar resistance, lower DIMBOA-Glc levels favour aphid reproduction. Thus, caterpillar-induced DIMBOA-Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O-methyltransferases that convert DIMBOA-Glc to HDMBOA-Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua -induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21. PMID:26462033

  14. Cryptic virulence and avirulence alleles revealed by controlled sexual recombination in pea aphids.

    PubMed

    Kanvil, Sadia; Collins, C Matilda; Powell, Glen; Turnbull, Colin G N

    2015-02-01

    Although aphids are worldwide crop pests, little is known about aphid effector genes underlying virulence and avirulence. Here we show that controlling the genetics of both aphid and host can reveal novel recombinant genotypes with previously undetected allelic variation in both virulence and avirulence functions. Clonal F1 progeny populations were derived from reciprocal crosses and self-matings between two parental genotypes of pea aphid (Acyrthosiphon pisum) differing in virulence on a Medicago truncatula host carrying the RAP1 and RAP2 resistance genes. These populations showed Mendelian segregation consistent with aphid performance being controlled largely by a dominant virulence allele derived from only one parent. Altered segregation ratios on near-isogenic host genotypes differing in the region carrying RAP1 were indicative of additional heritable functions likely related to avirulence genes originating from both parents. Unexpectedly, some virulent F1 progeny were recovered from selfing of an avirulent parent, suggesting a reservoir of cryptic alleles. Host chlorosis was associated with virulence, whereas necrotic hypersensitive-like response was not. No maternal inheritance was found for any of these characteristics, ruling out sex-linked, cytoplasmic, and endosymbiotic factors. Our results demonstrate the tractability of dissecting the genetic basis of pest-host resistance mechanisms and indicate that the annual sexual cycle in aphids may lead to frequent novel genotypes with both increased and decreased virulence. Availability of genomes for both pest and host can facilitate definition of cognate gene-for-gene relationships, potentially leading to selection of crop genotypes with multiple resistance traits. PMID:25519896

  15. Increased Susceptibility to Aphids of Flowering Wheat Plants Exposed to Low Temperatures.

    PubMed

    Lacoste, C; Nansen, C; Thompson, S; Moir-Barnetson, L; Mian, A; McNee, M; Flower, K C

    2015-06-01

    Frost is known to directly affect flowering wheat plants (Triticum aestivum L.) and lead to reduced grain yield. Additionally, it may increase wheat susceptibility to economically important pests, such as aphids (Hemiptera: Aphididae). Wheat plants at flowering stage were exposed to one of the three temperature treatments: ambient (11-12°C), 0°C, and -3°C for 60 min. Preference (3-choice) and performance (no-choice) bioassays with aphids (Rhopalosiphum padi L.) were conducted 1, 3, 6, and 12 d after temperature treatments to assess effects of temperature-induced stress over time. As an initial feasibility study of using remote sensing technologies to detect frost-induced stress in flowering wheat plants, hyperspectral imaging data were acquired from wheat plants used in preference bioassays. Element analysis of wheat plants was included to determine the effect of temperature-induced stress on the nutritional composition of flowering wheat plants. The results from this study support the following cause-effect scenario: a 60-min exposure to low temperatures caused a significant decrease in potassium and copper content of wheat plants 6 d after temperature exposure, and it coincided with a marked increase in preference by aphids of wheat plants. The preference exhibited by aphids correlated positively with performance of aphids, so the preference-performance hypothesis was confirmed and possibly driven by potassium and copper content of wheat plants. In addition, we demonstrated that hyperspectral imaging data can be used to detect frost-induced susceptibility to aphid infestation in flowering wheat plants. These findings justify further research into airborne remote sensing of frost-induced stress and the possible secondary effects on crop susceptibility to arthropod pests. PMID:26313967

  16. Bad housekeeping: why do aphids leave their exuviae inside the colony?

    PubMed Central

    2008-01-01

    Background Animals can gain protection against predators and parasites by living in groups. The encounter-dilution effect provides protection when the probability of detection of a group does not increase in proportion to group size (i.e. encounter effect), so that predators do not offset the encounter effect by attacking more members of the group (i.e. dilution effect). In this paper, we propose a novel mechanism by which prey insects could gain by producing decoys that act as multiple targets for predators or parasitoids if these decoys are recognised as preys or hosts and negatively affect the patch foraging strategy of these predators and parasitoids. Such a decoy mechanism could be present in aphid colonies in which aphid exuviae are recognised and attacked by Aphidiine wasps. Results We conducted a behavioural study to evaluate the effect of exuviae on parasitoid patch residence time and egg allocation in experimental aphid patches with or without exuviae. We showed that exuviae are recognised and attacked at the same level as aphids when both are present in the patch. While parasitism rate was not significantly lower in patches with exuviae when the parasitoid left the patch, the time wasted by parasitoids to handle exuviae did influence the patch residence time. As a consequence, the attack rate on the live aphids was lower in patches that contain exuviae. Conclusion Aphids had more time available to flee and thus each individual might gain protection against parasitoids by leaving their exuviae near and within the colony. These results demonstrate that the encounter-dilution effect provided by living in a group can be enhanced by extra-materials that act as decoy for natural enemies. PMID:19099559

  17. Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory.

    PubMed

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2008-11-01

    There is need for efficacious biocontrol agents for aphids in commercial orchards. As a preliminary step to this end we determined the virulence of several Hypocreales fungi to pecan aphids. In the first experiment we tested the virulence of Isaria fumosorosea (ARSEF 3581) blastospores to three pecan aphids Monellia caryella, Melanocallis caryaefoliae, and Monelliopsis pecanis under laboratory conditions. Rates of 1x10(7) or 1x10(8) spores per ml were applied in 2 ml via a spray tower to 90 mm Petri dishes containing 10 aphids each. Mortality and mycosis were determined after 24, 48 and 72 h. Treatment effects were observed by 48 h post-application, and by 72 h the higher application rate caused >90% mortality and mycosis in M. caryella and M. caryaefoliae, whereas <70% was observed in M. pecanis. We conducted two subsequent experiments (Experiments 2 and 3), using the same methodology, to compare the virulence of several Hypocreales species and strains against the aphid of primary economic concern to most pecan growers, M. caryaefoliae. In Experiment 2, we compared blastospores and conidia of two I. fumosorosea strains (ARSEF 3581 and ATCC 20874 [= strain 97]). The blastospores of ARSEF 3581 and conidia of ATCC 20874 showed higher virulence than other treatments and thus were included in Experiment 3, which also compared the virulence of conidia of Beauveria bassiana (GHA strain) and Metarhizium anisopliae (F52 strain). Results in Experiment 3 indicated the highest virulence in I. fumosorosea 3581 blastospores and M. anisopliae (F52) followed by I. fumosorosea (20874) conidia. The detection of pathogenicity to pecan aphids establishes the potential for commercial usage and additional study. Results reported here will narrow treatments to test in future greenhouse and field trials. PMID:18675272

  18. Cryptic Virulence and Avirulence Alleles Revealed by Controlled Sexual Recombination in Pea Aphids

    PubMed Central

    Kanvil, Sadia; Collins, C. Matilda; Powell, Glen; Turnbull, Colin G. N.

    2015-01-01

    Although aphids are worldwide crop pests, little is known about aphid effector genes underlying virulence and avirulence. Here we show that controlling the genetics of both aphid and host can reveal novel recombinant genotypes with previously undetected allelic variation in both virulence and avirulence functions. Clonal F1 progeny populations were derived from reciprocal crosses and self-matings between two parental genotypes of pea aphid (Acyrthosiphon pisum) differing in virulence on a Medicago truncatula host carrying the RAP1 and RAP2 resistance genes. These populations showed Mendelian segregation consistent with aphid performance being controlled largely by a dominant virulence allele derived from only one parent. Altered segregation ratios on near-isogenic host genotypes differing in the region carrying RAP1 were indicative of additional heritable functions likely related to avirulence genes originating from both parents. Unexpectedly, some virulent F1 progeny were recovered from selfing of an avirulent parent, suggesting a reservoir of cryptic alleles. Host chlorosis was associated with virulence, whereas necrotic hypersensitive-like response was not. No maternal inheritance was found for any of these characteristics, ruling out sex-linked, cytoplasmic, and endosymbiotic factors. Our results demonstrate the tractability of dissecting the genetic basis of pest-host resistance mechanisms and indicate that the annual sexual cycle in aphids may lead to frequent novel genotypes with both increased and decreased virulence. Availability of genomes for both pest and host can facilitate definition of cognate gene-for-gene relationships, potentially leading to selection of crop genotypes with multiple resistance traits. PMID:25519896

  19. Host settling behavior, reproductive performance, and effects on plant growth of an exotic cereal aphid, Metopolophium festucae subsp. cerealium (Hemiptera: Aphididae).

    PubMed

    Davis, T S; Wu, Y; Eigenbrode, S D

    2014-06-01

    The cereal aphid Metopolophium festucae subsp. cerealium (Stroyan) is a recent addition to North America, but little is known about this species in its exotic habitat. We surveyed aphid populations for 3 years (2011-2013) to investigate changes in aphid density in the Pacific Northwest United States. We tested aphid host settling preference and fecundity on eight grass species, four native grasses (bluebunch wheatgrass, blue wild rye, Idaho fescue, and rough fescue) and four cereal crops (corn, wheat, barley, and oat), and evaluated the effects of aphid feeding on plant biomass. Four important findings emerged: 1) aphid prevalence in sweep net samples increased from 2011 to 2012, but remained stable from 2012 to 2013; 2) aphids preferentially settled on wheat and avoided corn, but aphids did not discriminate between barley, oat, and native grasses; 3) aphid fecundity was high on wheat and barley, intermediate on oat and blue wild rye, low on Idaho fescue, rough fescue, and bluebunch wheatgrass, and aphids did not reproduce at all on corn; and 4) barley, corn, oats, Idaho fescue, and blue wild rye were not susceptible to aphid feeding damage, but wheat, rough fescue, and bluebunch wheatgrass were susceptible to aphid feeding damage. Our results suggest that wheat and barley are preferred by M. festucae cerealium, and that aphids reproduce most rapidly on these hosts and cause significant reductions in wheat but not barley growth. Also, M. festucae cerealium appears capable of surviving on native grasses, although only bluebunch wheatgrass and rough fescue were susceptible to aphid feeding damage. PMID:24874155

  20. What do spring migrants reveal about sex and host selection in the melon aphid?

    PubMed Central

    2012-01-01

    Background Host plants exert considerable selective pressure on aphids because the plants constitute their feeding, mating and oviposition sites. Therefore, host specialisation in aphids evolves through selection of the behavioural and chemical mechanisms of host-plant location and recognition, and through metabolic adaptation to the phloem content of the host plant. How these adaptive traits evolve in an aphid species depends on the complexity of the annual life cycle of that species. The purpose of this field study was to determine how winged spring-migrant populations contribute to the evolution and maintenance of host specialisation in Aphis gossypii through host-plant choice and acceptance. We also assessed whether host-specialised genotypes corresponded exclusively to anholocyclic lineages regardless of the environmental conditions. Results The spring populations of cotton-melon aphids visiting newly planted melon crops exhibited an unexpectedly high level of genetic diversity that contrasted with the very low diversity characterising the host-specialised populations of this aphid species. This study illustrated in natura host-plant-selection pressure by showing the great differences in genetic diversity between the spring-migrant populations (alate aphids) and the melon-infesting populations (the apterous offspring of the alate aphids). Moreover, an analysis of the genetic composition of these alate and apterous populations in four geographic regions suggested differences in life-history strategies, such as host choice and reproductive mode, and questioned the common assertion that A. gossypii is an anholocyclic species throughout its distribution area, including Europe. Conclusions Our results clearly demonstrate that the melon plant acts as a selective filter against the reproduction of non-specialised individuals. We showed that olfactory cues are unlikely to be decisive in natura for host recognition by spring-migrant aphid populations that are not

  1. First record of the adventive oriental aphid Schizaphis piricola (Matsumura, 1917) (Hemiptera, Aphididae) in Europe

    PubMed Central

    Nicolás, Pérez Hidalgo; Ángel, Umaran; M. Pilar, Mier Durante

    2011-01-01

    Abstract The oriental aphid Schizaphis piricola (Matsumura) is recorded for the first time in Europe, on the ornamental pear tree Pyrus calleryana in landscaped areas in Madrid (Spain). Data on the morphology of the forms on primary host (apterous and alate fundatrigeniae and fundatrices), and their biology and distribution are given. The keys for identifying species of Schizaphis (Schizaphis) in the Iberian Peninsula are updated. Two species of aphids are also recorded for the first time on Pyrus calleryana: Schizaphis piricola and Aphis pomi. PMID:21594084

  2. First record of the adventive oriental aphid Schizaphis piricola (Matsumura, 1917) (Hemiptera, Aphididae) in Europe.

    PubMed

    Nicolás, Pérez Hidalgo; Angel, Umaran; M Pilar, Mier Durante

    2011-01-01

    The oriental aphid Schizaphis piricola (Matsumura) is recorded for the first time in Europe, on the ornamental pear tree Pyrus calleryana in landscaped areas in Madrid (Spain). Data on the morphology of the forms on primary host (apterous and alate fundatrigeniae and fundatrices), and their biology and distribution are given. The keys for identifying species of Schizaphis (Schizaphis) in the Iberian Peninsula are updated. Two species of aphids are also recorded for the first time on Pyrus calleryana: Schizaphis piricola and Aphis pomi. PMID:21594084

  3. An evolutionarily-unique heterodimeric voltage-gated cation channel found in aphids

    PubMed Central

    Amey, Joanna S.; O’Reilly, Andrias O.; Burton, Mark J.; Puinean, Alin M.; Mellor, Ian R.; Duce, Ian R.; Field, Linda M.; Wallace, B.A.; Williamson, Martin S.; Davies, T.G. Emyr

    2015-01-01

    We describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel’s novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels. PMID:25637326

  4. POROUS DIKE INTAKE EVALUATION

    EPA Science Inventory

    The report gives results of an evaluation of a porous dike intake. A small-scale test facility was constructed and continuously operated for 2 years under field conditions. Two stone dikes of gabion construction were tested: one consisted of 7.5 cm stones; and the other, 20 cm st...

  5. Peptides and food intake.

    PubMed

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  6. Peptides and Food Intake

    PubMed Central

    Sobrino Crespo, Carmen; Perianes Cachero, Aránzazu; Puebla Jiménez, Lilian; Barrios, Vicente; Arilla Ferreiro, Eduardo

    2014-01-01

    The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the plethora of other factors are inhibitors of appetite, suggesting its physiological relevance in the regulation of food intake and energy homeostasis. Nutrients generated by food digestion have been proposed to activate G-protein-coupled receptors on the luminal side of enteroendocrine cells, e.g., the L-cells. This stimulates the release of gut hormones into the circulation such as glucagon-like peptide-1 (GLP-1), oxyntomodulin, pancreatic polypeptides, peptide tyrosine tyrosine, and cholecystokinin, which inhibit appetite. Ghrelin is a peptide secreted from the stomach and, in contrast to other gut hormones, plasma levels decrease after a meal and potently stimulate food intake. Other circulating factors such as insulin and leptin relay information regarding long-term energy stores. Both hormones circulate at proportional levels to body fat content, enter the CNS proportionally to their plasma levels, and reduce food intake. Circulating hormones can influence the activity of the arcuate nucleus (ARC) neurons of the hypothalamus, after passing across the median eminence. Circulating factors such as gut hormones may also influence the nucleus of the tractus solitarius (NTS) through the adjacent circumventricular organ. On the other hand, gastrointestinal vagal afferents converge in the NTS of the brainstem. Neural projections from the NTS, in turn, carry signals to the hypothalamus. The ARC acts as an integrative center, with two major subpopulations of neurons influencing appetite, one of them coexpressing neuropeptide Y and agouti-related protein (AgRP) that increases food

  7. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae)

    PubMed Central

    Zhang, Fangmei; Li, Xiangrui; Zhang, Yunhui; Coates, Brad; Zhou, Xuguo “Joe”; Cheng, Dengfa

    2015-01-01

    Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone) and abiotic factors (temperature, humidity, and photoperiod). The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat) worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass, and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (<24 h old) offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests. PMID:26042046

  8. Identification of Critical Conditions for Immunostaining in the Pea Aphid Embryos: Increasing Tissue Permeability and Decreasing Background Staining.

    PubMed

    Lin, Gee-Way; Chang, Chun-che

    2016-01-01

    The pea aphid Acyrthosiphon pisum, with a sequenced genome and abundant phenotypic plasticity, has become an emerging model for genomic and developmental studies. Like other aphids, A. pisum propagate rapidly via parthenogenetic viviparous reproduction, where the embryos develop within egg chambers in an assembly-line fashion in the ovariole. Previously we have established a robust platform of whole-mount in situ hybridization allowing detection of mRNA expression in the aphid embryos. For analyzing the expression of protein, though, established protocols for immunostaining the ovarioles of asexual viviparous aphids did not produce satisfactory results. Here we report conditions optimized for increasing tissue permeability and decreasing background staining, both of which were problems when applying established approaches. Optimizations include: (1) incubation of proteinase K (1 µg/ml, 10 min), which was found essential for antibody penetration in mid- and late-stage aphid embryos; (2) replacement of normal goat serum/bovine serum albumin with a blocking reagent supplied by a Digoxigenin (DIG)-based buffer set and (3) application of methanol rather hydrogen peroxide (H2O2) for bleaching endogenous peroxidase; which significantly reduced the background staining in the aphid tissues. These critical conditions optimized for immunostaining will allow effective detection of gene products in the embryos of A. pisum and other aphids. PMID:26862939

  9. Use of slow-release plant infochemicals to control aphids: a first investigation in a Belgian wheat field

    PubMed Central

    Zhou, Haibo; Chen, Longsheng; Liu, Yong; Chen, Julian; Francis, Frédéric

    2016-01-01

    Using infochemicals to develop a push–pull strategy in pest control is a potential way to promote sustainable crop production. Infochemicals from plant essential oils were mixed with paraffin oil for slow release in field experiments on wheat to control the population density of cereal aphids and to enhance their natural enemies. (Z)-3-Hexenol (Z3H) attracted Metopolophum dirhodum and Sitobion avenae, the predominant species on wheat in Belgium, and may be a useful infochemical for aphid control by attracting aphids away from field plots. Release of (E)-β-farnesene (EBF) or a garlic extract (GE) led to a significant decrease in the abundance of wheat aphids. The main natural enemies of cereal aphids found were lacewings (47.8%), hoverflies (39.4%), and ladybirds (12.8%). Ladybird abundance varied little before the end of the wheat-growing season. Our results suggest that these chemicals can form the basis of a “push–pull” strategy for aphid biological control, with GE and EBF acting as a pest- and beneficial-pulling stimulus and Z3H for aphid pulling. PMID:27530318

  10. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae).

    PubMed

    Zhang, Fangmei; Li, Xiangrui; Zhang, Yunhui; Coates, Brad; Zhou, Xuguo Joe; Cheng, Dengfa

    2015-01-01

    Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone) and abiotic factors (temperature, humidity, and photoperiod). The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat) worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass, and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (<24 h old) offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests. PMID:26042046

  11. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum

    PubMed Central

    Rausch, Michael A.; Chougule, Nanasaheb P.; Deist, Benjamin R.; Bonning, Bryony C.

    2016-01-01

    Aphids are sap-sucking insects (order: Hemiptera) that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry) toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance. PMID:27171411

  12. Use of slow-release plant infochemicals to control aphids: a first investigation in a Belgian wheat field.

    PubMed

    Zhou, Haibo; Chen, Longsheng; Liu, Yong; Chen, Julian; Francis, Frédéric

    2016-01-01

    Using infochemicals to develop a push-pull strategy in pest control is a potential way to promote sustainable crop production. Infochemicals from plant essential oils were mixed with paraffin oil for slow release in field experiments on wheat to control the population density of cereal aphids and to enhance their natural enemies. (Z)-3-Hexenol (Z3H) attracted Metopolophum dirhodum and Sitobion avenae, the predominant species on wheat in Belgium, and may be a useful infochemical for aphid control by attracting aphids away from field plots. Release of (E)-β-farnesene (EBF) or a garlic extract (GE) led to a significant decrease in the abundance of wheat aphids. The main natural enemies of cereal aphids found were lacewings (47.8%), hoverflies (39.4%), and ladybirds (12.8%). Ladybird abundance varied little before the end of the wheat-growing season. Our results suggest that these chemicals can form the basis of a "push-pull" strategy for aphid biological control, with GE and EBF acting as a pest- and beneficial-pulling stimulus and Z3H for aphid pulling. PMID:27530318

  13. Modification of Cry4Aa toward Improved Toxin Processing in the Gut of the Pea Aphid, Acyrthosiphon pisum.

    PubMed

    Rausch, Michael A; Chougule, Nanasaheb P; Deist, Benjamin R; Bonning, Bryony C

    2016-01-01

    Aphids are sap-sucking insects (order: Hemiptera) that cause extensive damage to a wide range of agricultural crops. Our goal was to optimize a naturally occurring insecticidal crystalline (Cry) toxins produced by the soil-dwelling bacterium Bacillus thuringiensis for use against the pea aphid, Acyrthosiphon pisum. On the basis that activation of the Cry4Aa toxin is a rate-limiting factor contributing to the relatively low aphicidal activity of this toxin, we introduced cathepsin L and cathepsin B cleavage sites into Cry4Aa for rapid activation in the aphid gut environment. Incubation of modified Cry4Aa and aphid proteases in vitro demonstrated enhanced processing of the toxin into the active form for some of the modified constructs relative to non-modified Cry4Aa. Aphids fed artificial diet with toxin at a final concentration of 125 μg/ml showed enhanced mortality after two days for one of the four modified constructs. Although only modest toxin improvement was achieved by use of this strategy, such specific toxin modifications designed to overcome factors that limit aphid toxicity could be applied toward managing aphid populations via transgenic plant resistance. PMID:27171411

  14. Sink-source interactions between a galling aphid and its narrowleaf cottonwood host: Within and between plant variation

    SciTech Connect

    Larson, K.C.

    1989-01-01

    The authors examined within and between plant variation in the capacity of the leaf gallin aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). Within a plant, a series of {sup 14}C-labeling experiments showed that P. betae actively manipulated host translocation patterns by acting as a strong sink and fed on assimilates produced in surrounding plant tissues serving as sources. Food resources drawn into the galled leaf from storage tissues in the stem and from surrounding leaves were a major resource for this herbivore in addition to resources from the galled leaf blade. Aphids compete for resources with natural plant sinks, such as developing fruits. In common gardens containing aphid resistant and aphid susceptible clones, I tested the hypothesis that aphid gall success on resistant trees is limited by competition between aphid-induced sinks and the plant's natural sinks, and that the intensity of intraplant competition was determined by the genetically determined architecture of the tree. Through bud removal, a resistant clone could be given the architecture of a susceptible clone. Aphid survival was increased two fold on architecturally modified resistant clones.

  15. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  16. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA.

    PubMed

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was

  17. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays1[OPEN

    PubMed Central

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A.; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R.; Meihls, Lisa N.; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A.; Jander, Georg

    2015-01-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  18. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays.

    PubMed

    Tzin, Vered; Fernandez-Pozo, Noe; Richter, Annett; Schmelz, Eric A; Schoettner, Matthias; Schäfer, Martin; Ahern, Kevin R; Meihls, Lisa N; Kaur, Harleen; Huffaker, Alisa; Mori, Naoki; Degenhardt, Joerg; Mueller, Lukas A; Jander, Georg

    2015-11-01

    As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions. PMID:26378100

  19. BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT41[W][OPEN

    PubMed Central

    Lei, Jiaxin; A. Finlayson, Scott; Salzman, Ron A.; Shan, Libo; Zhu-Salzman, Keyan

    2014-01-01

    BOTRYTIS-INDUCED KINASE1 (BIK1) plays important roles in induced defense against fungal and bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Its tomato (Solanum lycopersicum) homolog is required for host plant resistance to a chewing insect herbivore. However, it remains unknown whether BIK1 functions in plant defense against aphids, a group of insects with a specialized phloem sap-feeding style. In this study, the potential role of BIK1 was investigated in Arabidopsis infested with the green peach aphid (Myzus persicae). In contrast to the previously reported positive role of intact BIK1 in defense response, loss of BIK1 function adversely impacted aphid settling, feeding, and reproduction. Relative to wild-type plants, bik1 displayed higher aphid-induced hydrogen peroxide accumulation and more severe lesions, resembling a hypersensitive response (HR) against pathogens. These symptoms were limited to the infested leaves. The bik1 mutant showed elevated basal as well as induced salicylic acid and ethylene accumulation. Intriguingly, elevated salicylic acid levels did not contribute to the HR-like symptoms or to the heightened aphid resistance associated with the bik1 mutant. Elevated ethylene levels in bik1 accounted for an initial, short-term repellence. Introducing a loss-of-function mutation in the aphid resistance and senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) into the bik1 background blocked both aphid resistance and HR-like symptoms, indicating bik1-mediated resistance to aphids is PAD4 dependent. Taken together, Arabidopsis BIK1 confers susceptibility to aphid infestation through its suppression of PAD4 expression. Furthermore, the results underscore the role of reactive oxygen species and cell death in plant defense against phloem sap-feeding insects. PMID:24963070

  20. Neozygites osornensis sp. nov., a fungal species causing mortality to the cypress aphid Cinara cupressi in Chile.

    PubMed

    Retamal, Cristian Montalva; Barta, Marek; Pérez, Eladio Rojas; Flores, Eduardo Valenzuela

    2013-01-01

    An entomophthoralean fungus causing epizootics in populations of the cypress aphid, Cinara cupressi Buckton, in Chile is described as a new species, Neozygites osornensis Montalva et Barta. The aphid pathogen is described based on morphological characters. An exhaustive description, illustrations and a comparison with closely related species are provided. The fungus differs from similar Neozygites species by smaller hyphal bodies, nuclei, primary conidia, capilliconidia and capilliphores and by noticeably different shape of capilliconidia. A key to aphid-pathogenic species of Neozygites is also included. PMID:23233508

  1. Parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Northeastern Iran: Aphidiine-Aphid-Plant Associations, Key and Description of a New Species

    PubMed Central

    Rakhshani, Ehsan; Kazemzadeh, Sedigheh; Starý, Petr; Barahoei, Hossein; Kavallieratos, Nickolas G.; Ćetković, Aleksandar; Popović, Anđelka; Bodlah, lmran; Tomanović, Željko

    2012-01-01

    Aphid parasitoids of the subfamily Aphidiinae (Hymenoptera: Braconidae) of northeastern Iran were studied in this paper. A total of 29 species are keyed and illustrated with line drawings. The aphidiines presented in this work have been reared from 42 aphid host taxa occurring on 49 plant taxa from a total of 33 sampling sites. Sixty-six aphidiine-aphid-plant associations are presented. Trioxys metacarpalis sp. nov. from Chaitaphis tenuicaudata Nevsky (Hemiptera: Aphididae) on Kochia scoparia, is described. The species diversity based on the comparative faunistic analysis is discussed. PMID:23463939

  2. First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Suakwa aphid-borne yellows virus (SABYV), from East Timor. The isolate sequenced came from a virus-infected pumpkin plant. The East Timorese genome had a nucleotide identity of 86.5% with the only other SABYV genome available, which is from Taiwan. PMID:27469955

  3. Differential life history trait associations of aphids with nonpersistent viruses in cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of vectors and fleeting nature of virus acquisition and transmission render nonpersistent crop viruses a challenge to manage. We assessed the importance of noncolonizing versus colonizing vectors with a two-year survey of aphids and nonpersistent viruses on commercial pumpkin farms. We...

  4. First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor.

    PubMed

    Maina, Solomon; Edwards, Owain R; de Almeida, Luis; Ximenes, Abel; Jones, Roger A C

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Suakwa aphid-borne yellows virus (SABYV), from East Timor. The isolate sequenced came from a virus-infected pumpkin plant. The East Timorese genome had a nucleotide identity of 86.5% with the only other SABYV genome available, which is from Taiwan. PMID:27469955

  5. Establishment and host effects of cereal aphids on switchgrass (Panicum virgatum L.) cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential widespread plantings of switchgrass (Panicum virgatum L.) for use as a high biomass-yielding crop for use in the cellulosic production of ethanol prompted its evaluation as a suitable host for economically important cereal aphids. Seedlings of four cultivars of switchgrass, 'Kanlow' (sout...

  6. Managing papaya ringspot virus: Impact of grass barriers on alate aphid immigration into papaya orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya ringspot virus, transmitted by alate aphids, is the most limiting factor of papaya production in the Caribbean region. Although there are transgenic papaya varieties that provide protection from this virus, these varieties are effective only in certain regions against certain strains of the v...

  7. Horizontal Transfer of Bacterial Symbionts: Heritability and Fitness Effects in a Novel Aphid Host

    PubMed Central

    Russell, Jacob A.; Moran, Nancy A.

    2005-01-01

    Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects. PMID:16332777

  8. Differential consumption of four aphid species by four lady beetle species.

    PubMed

    Finlayson, Christy; Alyokhin, Andrei; Gross, Serena; Porter, Erin

    2010-01-01

    The acceptability of four different aphid species Macrosiphum albifrons (Essig), Macrosiphum euphorbiae (Thomas), Macrosiphum pseudorosae Patch, and Myzus persicae (Sulzer) (Hemiptera: Aphididae), as prey for four lady beetle species, one native species Coccinella trifasciata L, and three non-native Coccinella septempunctata L, Harmonia axyridis Pallas, Propylea quatuordecimpunctata L (Coleoptera: Coccinellidae) were tested in the laboratory. The relative field abundance of adults of the same lady beetle species on host vegetation, Lupinus polyphyllus Lindley (Fabales: Fabaceae), Solanum tuberosum L (Solanales: Solanaceae), and Rosa multiflora Thunberg (Rosales: Rosaceae), both with and without aphids present was also observed. In the laboratory, H. axyridis generally consumed the most aphids, while P. quatuordecimpunctata consumed the fewest. The exception was P. quatuordecimpunctata, which consumed a greater number of M. albifrons nymphs, and C. trifasciata, which consumed a greater number of M. albifrons nymphs and adults, compared with the other two beetle species. Lady beetles consumed fewer M. albifrons compared with the other three aphid species, likely because of deterrent compounds sequestered by this species from its host plant. In the field, P. quatuordecimpunctata was the most abundant species found on L. polyphyllus and S. tuberosum. PMID:20578952

  9. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic growers in California typically devote 5 to 10% of the area in lettuce (Lactuca sativa L.) fields to insectary strips of alyssum (Lobularia maritime (L.) Desv.) to attract syrphid flies (Syrphidae) whose larvae provide biological control of aphids. A 2-year study with organic romaine lettuc...

  10. Greenhouse Studies of Soybean Aphid Effects on Plant Growth, Seed Yield, and Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is little published information available that describes the effects of soybean aphids (Aphis glycines Matsumura) on soybean [Glycine max (L.) merr] growth, yield, and seed composition. The objective of this research was to measure how soybean growth, yield, and yield components are affected ...

  11. Changes in large-scale climate alter spatial synchrony of aphid pests

    NASA Astrophysics Data System (ADS)

    Sheppard, Lawrence W.; Bell, James R.; Harrington, Richard; Reuman, Daniel C.

    2016-06-01

    Spatial synchrony, the tendency of distant populations to fluctuate similarly, is a major concern in ecology. Except in special circumstances, researchers historically had difficulty identifying drivers of synchrony in field systems. Perhaps for this reason, the possibility that changes in large-scale climatic drivers may modify synchrony, thereby impacting ecosystems and human concerns, has been little examined. Here, we use wavelets to determine environmental drivers of phenological synchrony across Britain for 20 aphid species, most major crop pests. Consistently across species, changes in drivers produced large changes in aphid synchrony. Different drivers acted on different timescales: using a new wavelet analogue of the Moran theorem, we show that on long timescales (>4 years), 80% of synchrony in aphid first flights is due to synchrony in winter climate; but this explanation accounts for less short-timescale (<=4 years) synchrony. Changes in aphid synchrony over time also differed by timescale: long-timescale synchrony fell from before 1993 to after, caused by similar changes in winter climate; whereas short-timescale synchrony increased. Shifts in winter climate are attributable to the North Atlantic Oscillation, an important climatic phenomenon, so effects described here may influence other taxa. This study documents a new way that climatic changes influence populations, through altered Moran effects.

  12. Plant responses to seven Russian wheat aphid (Hemiptera: Aphididae) biotypes found in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The virulence to resistant cereals and the classification of recently described Russian wheat aphid Biotypes 1-7 were investigated by utilizing 24 cereal differentials at two research facilities, Colorado State University and the USDA-ARS Plant Science Research Laboratory in Stillwater, OK. Differe...

  13. Development and survivorship of a predatory lady beetle, Coccinella novemnotata, on various aphid diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have documented declines in native lady beetles species in North America, including Coccinella novemnotata, the ninespotted lady beetle, which was a common aphid predator distributed throughout much of America north of Mexico. Ex situ rearing may be important in C. novemnotata conse...

  14. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium).

    PubMed

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Du, Xinping; Sheng, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation. PMID:26650759

  15. Screening for host plant resistance to the sugarcane aphid in grain sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarcane aphid has increased in distribution into the southern United States causing economic damage to grain sorghum by infesting what is generally considered later in the production season. Typically, after two years of observation, the infestations explode with sorghum plants entering the b...

  16. AFLP genetic diversity analysis in Russian wheat aphid resistant wheat accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is a serious insect pest which causes severe economic losses in wheat (Triticum spp.). Among the various US RWA biotypes detected, biotype 1 (RWA1) and biotype 2 (RWA2) are the most prevalent and most virulent on many cultivated genotypes. Al...

  17. Registration of nineteen spring six-rowed barley germplasm lines resistant to Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) is a new and devastating pest of barley in the western US. No resistance was found in US cultivars whether two-row, six-row, malt, feed, spring or winter. A screening of the entire collection of barley accessions in the National Small Grains Collection by the USDA-ARS in ...

  18. Registration of 'Sidney' spring feed barley resistant to Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Sidney' (Reg. No. , PI 641939) is a spring, two-rowed, Russian wheat aphid-resistant, feed barley (Hordeum vulgare L.) developed for the high dry plains of eastern Colorado and western Nebraska where RWA is a persistent pest. Sidney was developed by USDA-ARS, in Stillwater, OK, and tested coop...

  19. Oviposition preference by the green lacewing Chrysoperla rufilabris for blackmargined aphids on pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecan is attacked by three species of aphids (Monellia caryella [Fitch], Melanocallis caryaefoliae [Davis], and Monelliopsis pecanis Bissell) causing damage to leaves that can reduce tree nut yield. In this study, we assayed the ovipositional response of the green lacewing Chrysoperla rufilabris (B...

  20. Expression Profiling of R Gene-Mediated Host Defense Against Aphid Feeding in Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), is an important aphid pest of wheat in the southern High Plains of the U.S. The single dominant gene, Gb3 confers consistent and durable resistance against prevailing greenbug biotypes in wheat fields. However, molecular mechanisms of R gene mediated host...

  1. Biology and management of woolly apple aphid, Eriosoma lanigerum (Hausmann), in Washington State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten rootstock selections were tested for their ability to host woolly apple aphid aerial colonies. Differences among the various rootstocks were apparent within a few weeks of artificial infestation. After 4 wk, the susceptible rootstocks (including M.9, M.26, Bud 9, Bud 118, and seedlings from New ...

  2. Greenhouse screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains through its role as a vector of the PAV strain of barley yellow dwarf virus (BYDV) and by feeding damage to winter and spring small grains. Barley accessions have been reported to have BCOA ...

  3. Limited genetic variation within and between Russian wheat aphid (Hemiptera: Aphididae) biotypes in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five Russian wheat aphid, Diuraphis noxia (Kurdjumov) biotypes have been described in the US and given number designations 1 through 5. Of these only Biotypes 1 and 2 (non-damaging and damaging to Dn4 resistant wheat, respectively) are common and agriculturally important. Only a single clone of Bi...

  4. Registration of 'Stoneham' spring feed barley resistant to Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Stoneham' (REG. No.; PI 641940) a Russian wheat aphid (RWA, Diuraphis noxia Kurdjumov)-resistant, spring, two-rowed, feed barley (Hordeum vulgare) tested as 97BX 27-132, was developed and released by the USDA-ARS, Stillwater, OK and Aberdeen, ID; Colorado State University; and the University of Neb...

  5. Potential sources of genetic resistance in lettuce to the lettuce aphid, Nasanovia ribisnigri (Mosely) (Homoptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce aphid, Nasanovia ribisnigri (Mosely) (Homoptera:Aphididae), is an economically important pest of lettuce (Lactuca sativa L.). High-level resistance was found in a wild relative, Lactuca virosa L. accession PIVT-280, and transferred to European cultivars. This resistance is conditioned by the...

  6. Foraging by Hippodamia convergens for the aphid Sitobion avenae on wheat plants growing in greenhouse plots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated predation by adult convergent lady beetle, Hippodamia convergens Guerin-Meneville, on English grain aphid, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate wheat in a typical pro...

  7. Prey foraging movements by Hippodamia convergens in wheat are influenced by hunger and aphids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated foraging movements by adult female convergent lady beetles, Hippodamia convergens Guerin-Meneville, on English grain aphids, Sitobion avenae L., on wheat, Triticum aestivum L., growing in 1.8 x 1.8 m plantings in a greenhouse with a soil floor. The wheat was planted to simulate whea...

  8. Coexistence of Wolbachia with Buchnera aphidicola and a Secondary Symbiont in the Aphid Cinara cedri

    PubMed Central

    Gómez-Valero, Laura; Soriano-Navarro, Mario; Pérez-Brocal, Vicente; Heddi, Abdelaziz; Moya, Andrés; García-Verdugo, José Manuel; Latorre, Amparo

    2004-01-01

    Intracellular symbiosis is very common in the insect world. For the aphid Cinara cedri, we have identified by electron microscopy three symbiotic bacteria that can be characterized by their different sizes, morphologies, and electrodensities. PCR amplification and sequencing of the 16S ribosomal DNA (rDNA) genes showed that, in addition to harboring Buchnera aphidicola, the primary endosymbiont of aphids, C. cedri harbors a secondary symbiont (S symbiont) that was previously found to be associated with aphids (PASS, or R type) and an α-proteobacterium that belongs to the Wolbachia genus. Using in situ hybridization with specific bacterial probes designed for symbiont 16S rDNA sequences, we have shown that Wolbachia was represented by only a few minute bacteria surrounding the S symbionts. Moreover, the observed B. aphidicola and the S symbionts had similar sizes and were housed in separate specific bacterial cells, the bacteriocytes. Interestingly, in contrast to the case for all aphids examined thus far, the S symbionts were shown to occupy a similarly sized or even larger bacteriocyte space than B. aphidicola. These findings, along with the facts that C. cedri harbors the B. aphidicola strain with the smallest bacterial genome and that the S symbionts infect all Cinara spp. analyzed so far, suggest the possibility of bacterial replacement in these species. PMID:15375144

  9. Relationship between Russian wheat aphid abundance and edaphic and topographic characteristics of wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explores the spatial relationship between Russian wheat aphid population density and variation in edaphic or topographic factors within wheat fields. Multiple regression analysis was applied to data collected from six wheat fields located in three States, Colorado, Wyoming, and Nebraska....

  10. Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In terms of both the increased cost of pest control and reduced final yield, the effects of insect infestation in agricultural crops are of major economic interest. One of the economically important insect pests of wheat (Triticum aestivum L.) is the Russian wheat aphid (RWA: Diuraphis noxia Mordvi...

  11. Reproduction and Population Dynamics as Biotypic Markers of Russian Wheat Aphid Diuraphis noxia (Kurdjumov)

    PubMed Central

    Ngenya, Watson; Malinga, Joyce; Tabu, Isaiah; Masinde, Emily

    2016-01-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) is widely established in wheat-growing countries where it causes significant economic losses. The development and use of Russian wheat aphid (RWA)-resistant wheat varieties has been constrained by the variation in resident RWA populations and the evolution of virulent biotypes. An experiment was set up at the Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, to characterize RWA populations based on phenotypic characteristics of reproduction, development and population dynamics. RWA populations from the regions of Eldoret, Mau Narok and Njoro were used in the study. A factorial experiment was set up in randomized complete block design replicated eleven times. A single day-old nymph was placed on a new, fully-open leaf in a 0.5 cm-diameter clear plastic straw leaf cage and observed daily for its entire lifetime. The results showed that there were variations in aphid lifespan, reproductive longevity and aphid fecundity between populations, indicating that the phenotypic markers used to determine biotypes were good enough to show distinct biotypes among populations of the RWA in Kenya. Further, the study concluded that the use of phenotypic life and reproductive markers was a valid way of characterizing biotypes of RWA worldwide. PMID:27049398

  12. Isolation and characterization of microsatellite loci from the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten novel microsatellite loci were isolated and characterized from the soybean aphid, APHIS GLYCINES, a serious invasive pest of soybeans in North America. The isolated loci were polymorphic, with two to 19 alleles in 48 wild individuals collected from Korea, Japan, and the United States. All loci ...

  13. Population genetic structure of the soybean aphid from Asia and North America based on microsatellites.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean aphid, APHIS GLYCINES Matsumura, was recently introduced from Asia into North America (NA) where it has become a serious pest of soybeans. This invasive pest spread rapidly throughout the north central United States and southern Canada since its discovery in 2000. We examined 593 individ...

  14. Bird cherry-oat aphid (Hemiptera: Sternorrhyncha, Aphidinae): Biology, pest status, and management in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a worldwide pest of wheat and other small grains. This paper provides an overview of BCOA life history, reviews its pest status in wheat, synthesizes and integrates information on different management strategies, and gives up-to-date inf...

  15. Population genetic structure and genetic diversity of soybean aphids from USA, Korea and Japan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following its recent invasion of North America, the soybean aphid (Aphis glycines Matsumura) has become the number one insect pest of soybean (Glycine max L. Merr.) in the north central states of USA. Very little is known about the population genetic structure and genetic diversity of the soybean ap...

  16. Status of greenhouse seedling screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous or virulifer...

  17. Doppler radar detection of exceptional mass-migration of aphids into Finland.

    PubMed

    Nieminen, M; Leskinen, M; Helenius, J

    2000-11-01

    Our objective was to detect mass migrations of insects of economic significance by insect traps and a Doppler weather radar. Migrants were sampled by suction traps, tow nets and light traps in the Helsinki region. We used radar to observe the migrating insects, and trajectories to backtrack mass migrations of aphids (Homoptera, Aphididae) in spring 1988. The aphid migrations were clearly observed in trap catches and by radar. The first migration, mainly involving Euceraphis betulae, occurred on 18 May and was tracked back to northern Poland. The second migration, mainly of Rhopalosiphum padi (a serious pest of small-grain cereals), occurred 3 days later and was tracked back to a large area covering Latvia and western Russia south of St Petersburg. The third migration included both E. betulae and R. padi, and took place on 30 May. It originated from Estonia. Neither trap nor radar data provide exact quantitative information on migrations. Trapping efficiency depends strongly on wind speed and insect size. Radar echo intensity is very strongly related to the sizes of insects in the large volume of air measured, and the sizes are not known accurately. Weather data, especially temperature, can be used in predicting the development of aphids, and air-parcel trajectories in estimating the source areas of migrants. These methods for forecasting aphid migrations, combined with radar observations, are useful for warning purposes and to intensify insect trapping. This would contribute to more efficient agricultural pest management. PMID:11131288

  18. Coccinellids, Aphids, and Pollen in Diversified Vegetable Fields with Transgenic and Isoline Cultivars

    PubMed Central

    Hoheisel, G.-A.; Fleischer, S. J.

    2007-01-01

    The influence of concurrent introduction of three transgenic vegetable cultivars on seasonal dynamics of coccinellids and their food, aphids and pollen, was examined within diversified farm systems practicing insect pest management in northeastern US agroecosystems. The transgenic cultivars used included sweet corn, potato, and winter squash, expressing Cry1(A)b, Cry3A, and plant viral coat proteins that target Lepidoptera, Coleoptera, and aphid-transmitted viruses, respectively. Transgenic systems reduced insecticides by 25%. Weekly differences in coccinellid density between transgenic and isoline crops were rare and transitory, governed by timing of at-planting or foliar insecticide use patterns; however cumulative frequencies for three of the six coccinellid species differed between transgenic and isoline crops. At a multicrop, farm systems level, seasonal dynamics of the coccinellids and aphids tracked dynamics in the sweet corn, which far surpassed the other crops in abundance of coccinellids and pollen, and harbored consistently higher aphid densities. Although these results warrant further study, the patterns suggest that diversified transgenic vegetable crops under current commercial management demonstrated transitory conservation of coccinellids, and that integration with selective insecticides or other IPM tactics could increase this potential. PMID:20307238

  19. Longitudinal clines in the frequency distribution of 'super-clones' in an aphid crop pest.

    PubMed

    Gilabert, A; Dedryver, C-A; Stoeckel, S; Plantegenest, M; Simon, J-C

    2015-12-01

    Parthenogenesis is the main mode of reproduction of aphids. Their populations are therefore composed of clones whose frequency distribution varies in space and time. Previous population genetic studies on aphids have highlighted the existence of highly abundant clones ('super-clones'), distributed over large geographic areas and persisting over time. Whether the abundance of 'super-clones' results from their ecological success or from stochastic forces, such as drift and migration, is an open question. Here, we looked for the existence of clines in clonal frequency along a climatic gradient in the cereal aphid Rhopalosiphum padi (Linnaeus, 1758) and examined the possible influence of geographical distance and environmental variables in the buildup and maintenance of such clonal clines. We investigated the spatial distribution of the commonest genotypes of R. padi by sampling populations along an east-west transect in maize fields in the northern half of France in both spring and late summer. Individual aphids were genotyped at several polymorphic loci, allowing the assessment of frequency distributions of multilocus genotypes (MLGs) across the cropping season. We found several MLGs showing longitudinal clines in their frequency distribution in both spring and summer. In particular, two dominant asexual genotypes of R. padi showed inverted geographical clines, which could suggest divergent adaptations to environmental conditions. We concluded that while the distribution of some 'super-clones' of R. padi seems most likely driven by the action of migration and genetic drift, selection could be also involved in the establishment of longitudinal clines of others. PMID:26278064

  20. Resistance to Soybean Aphid Among Soybean Lines, Growth-chamber Tests, 2006 Through 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested for resistance to the soybean aphid (SBA, Aphis glycines) among several soybean lines, and rated lines as resistant or susceptible in seven tests. The ratings of plants with respect to SBA infestation differed among lines in all tests. Kosamame (PI 171451, test II), Bhart (PI 165989, tes...

  1. Registration of seventeen spring two-rowed barley germplasm lines resistant to Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) is a new and devastating pest of barley in the western US. No resistance was found in US cultivars whether two-row, six-row, malt, feed, spring or winter. A screening of the entire collection of barley accessions in the National Small Grains Collection by the USDA-ARS in ...

  2. Natural occurrence of entomophthoroid fungi (Entomophthoromycota) of aphids (Hemiptera: Aphididae) of cereal crops in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spectrum of entomophthoroid fungal species parasitizing aphids of cereal crops and a study of the phenology and prevalence of these pathogens was investigated in Argentina. The studies were conducted at six different sites cultivated with crops of Triticum aestivum L. (wheat), Avena sativa L. (o...

  3. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.

    PubMed

    Takei, Mami; Yoshida, Sayaka; Kawai, Takashi; Hasegawa, Morifumi; Suzuki, Yoshihito

    2015-01-01

    Insect galls are abnormal plant tissues induced by external stimuli from parasitizing insects. It has been suggested that the stimuli include phytohormones such as auxin and cytokinins produced by the insects. In our study on the role of hormones in gall induction by the aphid Tetraneura nigriabdominalis, it was found that feedback regulation related to auxin and cytokinin activity is absent in gall tissues, even though the aphids contain higher concentrations of those phytohormones than do plant tissues. Moreover, jasmonic acid signaling appears to be compromised in gall tissue, and consequently, the production of volatile organic compounds, which are a typical defense response of host plants to herbivory, is diminished. These findings suggest that these traits of the gall tissue benefit aphids, because the gall tissue is highly sensitive to auxin and cytokinin, which induce and maintain it. The induced defenses against aphid feeding are also compromised. The abnormal responsiveness to phytohormones is regarded as a new type of extended phenotype of gall-inducing insects. PMID:25437243

  4. Development and reproduction of the foxglove aphid (Hemiptera: Aphididae) on invasive swallow-worts (Vincetoxicum spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The foxglove aphid, Aulacorthum solani (Kaltenbach), was recently documented utilizing the invasive species pale and black swallow-wort (Vincetoxicum rossicum (Kleopow) Barbar. and V. nigrum (L.) Moench, respectively) as host plants. Because these are new host plant records for this polyphagous spec...

  5. Greenhouse screening for bird cherry-oat aphid resistance to barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains through its role as a vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by feeding damage to winter and spring small grains. Barley accessions have been reported to have BCOA ...

  6. Identification and molecular mapping of two soybean aphid resistance genes in soybean PI 587732

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] continues to be plagued by the soybean aphid (Aphis glycines Matsumura: SA) in North America. New soybean resistance sources are needed to combat the four identified SA biotypes. The objectives of this study were to determine the inheritance of SA resistance in PI 58...

  7. Host Plant Resistance to Green Peach Aphid, Myzus persicae (Sulzar), by Some Wild Types of Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The green peach aphid, Myzus persicae (Sulzar), is an important pest of many vegetable crops. It damages crops by feeding and vectoring viruses. Potential sources of plant resistance against M. persicae were examined for watermelon. A multiple choice experiment was conducted with leaves of six wi...

  8. Fine genetic mapping of greenbug aphid resistance gene Gb3 in Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug is a serious aphid pest of wheat and sorghum in the southern High Plains of the US. The greenbug resistant gene Gb3 originated from the goatgrass has shown consistent and durable resistance against prevailing greenbug biotypes in wheat fields for moer than 30 years. Our goal is to clone...

  9. Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecan is attacked by three species of aphids (Monellia caryella [Fitch], Melanocallis caryaefoliae [Davis], and Monelliopsis pecanis Bissell) causing damage to leaves that can reduce tree nut yield. In this study, we assayed the ovipositional response of the green lacewing Chrysoperla rufilabris (B...

  10. Establishment and host effects of cereal aphids on switchgrass (Panicum virgatum L.) cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential for widespread plantings of switchgrass, Panicum virgatum L., as a biomass feedstock prompted its evaluation as a host for economically important cereal aphids. Seedlings of four cultivars of switchgrass, 'Kanlow', 'Blackwell', 'Cave-In-Rock', and 'Sunburst', were evaluated as hosts for g...

  11. Probing Behavior of Apterous and Alate Morphs of two Potato—Colonizing Aphids

    PubMed Central

    Boquel, Sébastien; Giordanengo, Philippe; Ameline, Arnaud

    2011-01-01

    Secondary host plant colonization by aphids involves alate and apterous morphs to spread in the population at a large scale by flying or, at a finer one, by walking. Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae) and Myzus persicae Sulzer (Hemiptera: Aphididae) are two polyphagous aphids that cause serious losses on many crops, particularly on potato, Solanum tuberosum L. (Solanales: Solanaceae). When settlement of virginoparous alate aphids occurs, apterous individuals are produced and spread within the potato field. As these two potato colonizers originate from different areas and show different body length, this study compared probing behaviors of virginoparous alate and apterous M. persicae and M. euphorbiae on one of their secondary host plants, Solanum tuberosum. Non—choice bioassays and electrical penetration graph (EPG) recordings were performed. Most M. euphorbiae of the two morphs rapidly accepted potato plants and exhibited long duration of probing, phloem sap salivation, and ingestion phases. In contrast, at the end of the experiment, most alates of M. persicae left the potato leaflet after brief gustative probes. Moreover, EPG experiments showed that the main difference between both morphs of the two species concerned the xylem ingestion parameter. Differences between species were also reported, such as an increased total duration of probing in both morphs and enhanced phloem ingestion duration in apterous M. euphorbiae. All the differences highlighted in this study are discussed according to the variations observed in aphid body size and to their historical association with Solanum species. PMID:22242548

  12. Probing behavior of apterous and alate morphs of two potato-colonizing aphids.

    PubMed

    Boquel, Sébastien; Giordanengo, Philippe; Ameline, Arnaud

    2011-01-01

    Secondary host plant colonization by aphids involves alate and apterous morphs to spread in the population at a large scale by flying or, at a finer one, by walking. Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae) and Myzus persicae Sulzer (Hemiptera: Aphididae) are two polyphagous aphids that cause serious losses on many crops, particularly on potato, Solanum tuberosum L. (Solanales: Solanaceae). When settlement of virginoparous alate aphids occurs, apterous individuals are produced and spread within the potato field. As these two potato colonizers originate from different areas and show different body length, this study compared probing behaviors of virginoparous alate and apterous M. persicae and M. euphorbiae on one of their secondary host plants, Solanum tuberosum. Non–choice bioassays and electrical penetration graph (EPG) recordings were performed. Most M. euphorbiae of the two morphs rapidly accepted potato plants and exhibited long duration of probing, phloem sap salivation, and ingestion phases. In contrast, at the end of the experiment, most alates of M. persicae left the potato leaflet after brief gustative probes. Moreover, EPG experiments showed that the main difference between both morphs of the two species concerned the xylem ingestion parameter. Differences between species were also reported, such as an increased total duration of probing in both morphs and enhanced phloem ingestion duration in apterous M. euphorbiae. All the differences highlighted in this study are discussed according to the variations observed in aphid body size and to their historical association with Solanum species. PMID:22242548

  13. Reproduction and Population Dynamics as Biotypic Markers of Russian Wheat Aphid Diuraphis noxia (Kurdjumov).

    PubMed

    Ngenya, Watson; Malinga, Joyce; Tabu, Isaiah; Masinde, Emily

    2016-01-01

    Russian wheat aphid Diuraphis noxia (Kurdjumov) is widely established in wheat-growing countries where it causes significant economic losses. The development and use of Russian wheat aphid (RWA)-resistant wheat varieties has been constrained by the variation in resident RWA populations and the evolution of virulent biotypes. An experiment was set up at the Kenya Agricultural and Livestock Research Organization (KALRO), Njoro, to characterize RWA populations based on phenotypic characteristics of reproduction, development and population dynamics. RWA populations from the regions of Eldoret, Mau Narok and Njoro were used in the study. A factorial experiment was set up in randomized complete block design replicated eleven times. A single day-old nymph was placed on a new, fully-open leaf in a 0.5 cm-diameter clear plastic straw leaf cage and observed daily for its entire lifetime. The results showed that there were variations in aphid lifespan, reproductive longevity and aphid fecundity between populations, indicating that the phenotypic markers used to determine biotypes were good enough to show distinct biotypes among populations of the RWA in Kenya. Further, the study concluded that the use of phenotypic life and reproductive markers was a valid way of characterizing biotypes of RWA worldwide. PMID:27049398

  14. Sex pheromone of the black citrus aphid, Toxoptera aurantii (Boyer de Fonscolombe)(Hemiptera: Aphididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black citrus aphid, Toxoptera aurantii, also called the “tea aphid”, is one of the most destructive pest insects in the commercial tea plantations/gardens in Southern China. It has an autoecious holocyclic life cycle on the tea plants in the subtropical and temperate regions. In autumn, as day-l...

  15. Phylogenetic Relationships of the Symbiotic Bacteria in the Aphid Sitobion avenae (Hemiptera: Aphididae).

    PubMed

    Alkhedir, Hussein; Karlovsky, Petr; Mashaly, Ashraf Mohamed Ali; Vidal, Stefan

    2015-10-01

    Aphids have developed symbiotic associations with different bacterial species, and some morphological and molecular analyses have provided evidence of the host relationship between the primary symbiotic bacteria (Buchnera aphidicola) and the aphid while the contrary with the secondary symbiotic bacteria. In this study, we investigated the phylogenetic relationships of the bacterial endosymbionts in the aphid Sitobion avenae (F.). We characterized all bacterial endosymbionts in 10 genetically defined S. avenae clones by denaturing gradient gel electrophoresis and, from these clones, sequenced the 16S rRNA genes of both the primary endosymbiont, B. aphidicola (for the first time), and the secondary endosymbionts, Regiella insecticola and Hamiltonella defensa (for the first time). The phylogenetic analysis indicated that Buchnera from Sitobion related to those in Macrosiphoni. The analysis of the secondary endosymbionts indicated that there is no host relationship between H. defensa and R. insecticola from Sitobion and those from other aphid species. In this study, therefore, we identified further evidence for the relationship between Buchnera and its host and reported a relationship within the secondary endosymbionts of S. avenae from the same country, even though there were no relationships between the secondary bacteria and their host. We also discussed the diversity within the symbiotic bacteria in S. avenae clones. PMID:26314016

  16. Shifts in Buchnera aphidicola density in soybean aphids (Aphis glycines) feeding on virus-infected soybean.

    PubMed

    Cassone, Bryan J; Redinbaugh, Margaret G; Dorrance, Anne E; Michel, Andrew P

    2015-08-01

    Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics. PMID:25845267

  17. Registration of ‘Wyandot-14’ soybean with resistance to soybean aphid and powdery mildew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Wyandot-14’ soybean [Glycine max (L.) Merr.] with resistance to soybean aphid biotypes 1 and 2 and resistance to powdery mildew was jointly released by the USDA-Agricultural Research Service and The Ohio Agricultural Research and Development Center (OARDC) as a late maturity group (MG) II (2.9) foo...

  18. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  19. Change in biotypic diversity of Russian wheat aphid (Hemiptera: Aphididae) populations in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key component of Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing Dn4 gene. Biotypic diversity in RWA populations has not been...

  20. Cotton photosynthesis-related PSAK1 protein is involved in plant response to aphid attack.

    PubMed

    Zhang, Jian-Min; Huang, Geng-Qing; Li, Yang; Zheng, Yong; Li, Xue-Bao

    2014-05-01

    It is believed that hundreds of genes, including photosynthesis-related genes, are typically involved in plant response to aphid feeding. Up to now, however, it is little known on the relationship between the photosynthesis-related genes and plant response to herbivores. In this study, we identified a cotton photosynthesis-related gene (GhPSAK1) which belongs to PSI-PSAK family and encodes a putative protein of 162 amino acids. RT-PCR analysis revealed that GhPSAK1 transcripts in leaves were increased at 12-24 h, but decreased at 48-72 h after cotton aphid attack or wounding induction. Choice assay and no-choice assay demonstrated that overexpression of GhPSAK1 in Arabidopsis improved plant tolerance to green peach aphids (Myzus persicae). The defense response genes related to salicylic acid signaling pathway were enhanced in the GhPSAK1 overexpressing transgenic plants. In addition, the callose amount in transgenic Arabidopsis leaves was more than that of wild type. Contents of the soluble sugars and total amino acids were also altered in leaves of transgenic Arabidopsis plants. Activities of superoxide dismutase and peroxidase in transgenic leaves were higher than those of wild type. These results suggested that GhPSAK1 may be involved in regulation of cotton response and tolerance to aphid attack. PMID:24469731