Science.gov

Sample records for integral transform techniques

  1. Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a formal exact solution of the linear advection-diffusion transport equation with constant coefficients for both transient and steady-state regimes. A classical mathematical substitution transforms the original advection-diffusion equation into an exclusively diffusive equation. ...

  2. Generating functions via integral transforms

    NASA Astrophysics Data System (ADS)

    Ben Cheikh, Y.; Lamiri, I.

    2007-07-01

    In this paper, we use some integral transforms to derive, for a polynomial sequence {Pn(x)}n[greater-or-equal, slanted]0, generating functions of the type , starting from a generating function of type , where {[gamma]n}n[greater-or-equal, slanted]0 is a real numbers sequence independent on x and t. That allows us to unify the treatment of a generating function problem for many well-known polynomial sequences in the literature.

  3. Properties of the linear canonical integral transformation.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2007-11-01

    We provide a general expression and different classification schemes for the general two-dimensional canonical integral transformations that describe the propagation of coherent light through lossless first-order optical systems. Main theorems for these transformations, such as shift, scaling, derivation, etc., together with the canonical integral transforms of selected functions, are derived. PMID:17975592

  4. Transformational Leadership, Integrity, and Power

    ERIC Educational Resources Information Center

    Harrison, Laura M.

    2011-01-01

    Transformational leadership enjoys widespread appeal among student affairs professionals. National Association of Student Personnel Administrators (NASPA) and American College Personnel Association (ACPA) conferences frequently feature speakers who promote transformational leadership's two primary tenets: (1) change is the central purpose of…

  5. Data integration using color space transforms

    USGS Publications Warehouse

    Feuquay, Jay W.

    1987-01-01

    The demand for increased spatial resolution without sacrificing spectral discrimination can be fulfilled by integration of data from different sensor systems and satellite programs. Data of high spatial resolution are frequently available in panchromatic (black-and-white) form rather than multispectral. Techniques gave been developed to combine the higher resolution panchromatic data with a multispectral data set of lower spatial resolution. The standard method of integration modulates the intensity of the mutispectral with the panchromatic data. A less subjective approach uses an algorithm that describes color in terms of intensity (I), hue (H), and saturation (S). Combinations of high resolution panchromatic data (SPOT panchromatic) and lower resolution multispectral data [Landsat thematic mapper (TM), SPOT XS] have been developed. The SPOT data were acquired on April 3, 1986, and the Landsat TM data were acquired on April 5, 1986. The data sets were registered to each other and the multi-spectral data sets were contrast enhanced. The enhanced multispectral data sets were then transformed from red/green/blue (RGB) color space into IHS space. In each case (TM/SPOT panchromatic and SPOT XS/SPOT panchromatic), the SPOT panchromatic data were remapped on a cumulative histogram percentage basis to match the multispectral "I" data. These remapped SPOT panchromatic data were substituted for the original multispectral "I" and the hybrid IHS data transformed back into RGB space for display. While this technique is experimental and still being refined, the results, to date, indicate that the IHS method will be valuable for generating improved images that effectively present both high resolution spatial digital data and multispectral data.

  6. Wavelet transformation based watermarking technique for human electrocardiogram (ECG).

    PubMed

    Engin, Mehmet; Cidam, Oğuz; Engin, Erkan Zeki

    2005-12-01

    Nowadays, watermarking has become a technology of choice for a broad range of multimedia copyright protection applications. Watermarks have also been used to embed prespecified data in biomedical signals. Thus, the watermarked biomedical signals being transmitted through communication are resistant to some attacks. This paper investigates discrete wavelet transform based watermarking technique for signal integrity verification in an Electrocardiogram (ECG) coming from four ECG classes for monitoring application of cardiovascular diseases. The proposed technique is evaluated under different noisy conditions for different wavelet functions. Daubechies (db2) wavelet function based technique performs better than those of Biorthogonal (bior5.5) wavelet function. For the beat-to-beat applications, all performance results belonging to four ECG classes are highly moderate. PMID:16235811

  7. Mechanism of integrating foreign DNA during transformation of Bacillus subtilis.

    PubMed Central

    Duncan, C H; Wilson, G A; Young, F E

    1978-01-01

    Genes encoding thymidylate synthetase from Bacillus subtilis bacteriophages were cloned in Escherichia coli. Chimeric plasmids pCD1 and pCD3 were constructed from site-specific endonuclease digests of bacteriophage phi3T DNA cloned in pMB9 in E. coli. Similar cloning techniques with bacteriophage beta22 DNA yielded chimeric plasmids pCD4, pCD5, and pCD6. Endonuclease digests of DNA from pCD1 and pCD3 propagated in E. coli or from DNA isolated from bacteriophage phi3T propagated in B. subtilis transformed B. subtilis from Thy- to Thy+. Intact DNA from bacteriophage beta22, endonuclease digests of beta22 DNA, and a chimeric plasmid (pCD5) composed only of the thybeta22 gene and pMB9 did not transform B. subtilis from Thy- to Thy+ even though pCD5 could transform Thy- E. coli to Thy+. However, if the thybeta22 fragment from pCD5 was introduced into another chimeric plasmid, pCD2, that contains a region of homology to the chromosome of B. subtilis in addition to pMB9, transformation of Thy- clones of B. subtilis was possible. Furthermore, Southern hybridization analyses of the digests of chromosomal DNA from the Thy+ transformants established that the entire chimeric plasmid was incorporated into the chromosome of B. subtilis. Treatment of these plasmids with site-specific endonucleases abolished transformation. These results indicated that the entire chimeric plasmid can be incorporated into the chromosome of B. subtilis by a Campbell-like model. Therefore, an additional mechanism for transformation exists whereby plasmids can be integrated if sufficient chromosomal homology is maintained. Images PMID:99740

  8. Advanced Techniques for Fourier Transform Wavefront Reconstruction

    SciTech Connect

    Poyneer, L A

    2002-08-05

    The performance of Fourier transform (FT) reconstructors in large adaptive optics systems with Shack-Hartmann sensors and a deformable mirror is analyzed. FT methods, which are derived for point-based geometries, are adapted for use on the continuous systems. Analysis and simulation show how to compensate for effects such as misalignment of the deformable mirror and wavefront sensor gain. Further filtering methods to reduce noise and improve performance are presented. All these modifications can be implemented at the filtering stage, preserving the speed of FT reconstruction. Simulation of a large system shows how compensated FT methods can have equivalent or better performance to slower vector-matrix-multiply reconstructions.

  9. Allied health: integral to transforming health.

    PubMed

    Lizarondo, Lucylynn; Turnbull, Catherine; Kroon, Tracey; Grimmer, Karen; Bell, Alison; Kumar, Saravana; McEvoy, Maureen; Milanese, Steve; Russell, Mary; Sheppard, Lorraine; Walters, Julie; Wiles, Louise

    2016-04-01

    Objective South Australia is taking an innovative step in transforming the way its healthcare is organised and delivered to better manage current and future demands on the health system. In an environment of transforming health services, there are clear opportunities for allied health to assist in determining solutions to various healthcare challenges. A recent opinion piece proposed 10 clinician-driven strategies to assist in maximising value and sustainability of healthcare in Australia. The present study aimed to seek the perspectives of allied health clinicians, educators, researchers, policy makers and managers on these strategies and their relevance to allied health. Methods A survey of allied health practitioners was undertaken to capture their perspectives on the 10 clinician-driven strategies for maximising value and sustainability of healthcare in Australia. Survey findings were then layered with evidence from the literature. Results Highly relevant across allied health are the strategies of discontinuation of low value practices, targeting clinical interventions to those getting greatest benefit, active involvement of patients in shared decision making and self-management and advocating for integrated systems of care. Conclusions Allied health professionals have been involved in the South Australian healthcare system for a prolonged period, but their services are poorly recognised, often overlooked and not greatly supported in existing traditional practices. The results of the present study highlight ways in which healthcare services can implement strategies not only to improve the quality of patient outcomes, but also to offer innovative solutions for future, sustainable healthcare. The findings call for concerted efforts to increase the utilisation of allied health services to ensure the 'maximum value for spend' of the increasingly scarce health dollar. What is known about the topic? In medicine, clinician-driven strategies have been proposed to

  10. Technique for the metrology calibration of a Fourier transform spectrometer

    SciTech Connect

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  11. Teaching Integrative Thought: Techniques and Data.

    ERIC Educational Resources Information Center

    Malloy, Thomas E.

    Focusing on techniques for teaching students to integrate diverse ideas at a deep level of cognitive processing, a study evaluated an idea integration package for teaching writing in the college classroom. Subjects, 29 college students from an introductory psychology class at a Utah university, were divided into two groups. The integration group…

  12. Radon transforms and Gegenbauer-Chebyshev integrals, I

    NASA Astrophysics Data System (ADS)

    Rubin, Boris

    2016-04-01

    We suggest new modifications of the Helgason's support theorem and description of the kernel for the hyperplane Radon transform and its dual. The assumptions for functions are formulated in integral terms and close to minimal. The proofs rely on the properties of the Gegenbauer-Chebyshev integrals which generalize Abel type fractional integrals on the positive half-line.

  13. Techniques for integrating ‐omics data

    PubMed Central

    Akula, Siva Prasad; Miriyala, Raghava Naidu; Thota, Hanuman; Rao, Allam Appa; Gedela, Srinubabu

    2009-01-01

    The challenge for -omics research is to tackle the problem of fragmentation of knowledge by integrating several sources of heterogeneous information into a coherent entity. It is widely recognized that successful data integration is one of the keys to improve productivity for stored data. Through proper data integration tools and algorithms, researchers may correlate relationships that enable them to make better and faster decisions. The need for data integration is essential for present ‐omics community, because ‐omics data is currently spread world wide in wide variety of formats. These formats can be integrated and migrated across platforms through different techniques and one of the important techniques often used is XML. XML is used to provide a document markup language that is easier to learn, retrieve, store and transmit. It is semantically richer than HTML. Here, we describe bio warehousing, database federation, controlled vocabularies and highlighting the XML application to store, migrate and validate -omics data. PMID:19255651

  14. Improved digital filters for evaluating Fourier and Hankel transform integrals

    USGS Publications Warehouse

    Anderson, Walter L.

    1975-01-01

    New algorithms are described for evaluating Fourier (cosine, sine) and Hankel (J0,J1) transform integrals by means of digital filters. The filters have been designed with extended lengths so that a variable convolution operation can be applied to a large class of integral transforms having the same system transfer function. A f' lagged-convolution method is also presented to significantly decrease the computation time when computing a series of like-transforms over a parameter set spaced the same as the filters. Accuracy of the new filters is comparable to Gaussian integration, provided moderate parameter ranges and well-behaved kernel functions are used. A collection of Fortran IV subprograms is included for both real and complex functions for each filter type. The algorithms have been successfully used in geophysical applications containing a wide variety of integral transforms

  15. A Transformative Approach to Work Integrated Learning in Legal Education

    ERIC Educational Resources Information Center

    Babacan, Alperhan; Babacan, Hurriyet

    2015-01-01

    Purpose: The purpose of this paper is to discuss the current context, scope and problems in the provision of work-integrated learning (WIL) in legal education and how the adoption transformative pedagogies in WIL which is offered in legal education can foster personal and social transformation in addition to enhancing lawyering skills. The paper…

  16. Techniques for integrated water resources management

    NASA Astrophysics Data System (ADS)

    The course, Decision Support Techniques for Integrated Water Resources Management, is designed mainly for technical managers and staff of water resources management agencies at the international, national, regional, and local water board level, as well as consultants in other professions working in or interested in the field of water resources development, planning, and operation. It will be held in Wageningen, The Netherlands, June 10-15, 1991.The course objective is to promote better understanding and dissemination of techniques to be applied in “real-world” integrated water resources management. The course offers an introduction to the concepts of decision modeling, plus ample case studies to demonstrate their applicability. It covers decision theory, operations research and simulation methods, as well as certain aspects of law and psychology. Selected multiple objective techniques will be presented, followed by an overview of recent trends in the field. Computer-based techniques will be demonstrated.

  17. Alternative representation of the linear canonical integral transform.

    PubMed

    Alieva, Tatiana; Bastiaans, Martin J

    2005-12-15

    Starting with the Iwasawa-type decomposition of a first-order optical system (or ABCD system) as a cascade of a lens, a magnifier, and an orthosymplectic system (a system that is both symplectic and orthogonal), a further decomposition of the orthosymplectic system in the form of a separable fractional Fourier transformer embedded between two spatial-coordinate rotators is proposed. The resulting decomposition of the entire first-order optical system then shows a physically attractive representation of the linear canonical integral transformation, which, in contrast to Collins integral, is valid for any ray transformation matrix. PMID:16389812

  18. Improving Maladaptive Behaviors Using Sensory Integration Techniques.

    ERIC Educational Resources Information Center

    Shuman, Theresa

    A study examined the use of sensory integration techniques to reduce the maladaptive behaviors that interfered with the learning of nine high school students with mental impairments attending a special school. Maladaptive behaviors identified included rocking, toe walking, echolalia, resistance to change, compulsive behaviors, aggression,…

  19. The functional integral formulation of the Schrieffer–Wolff transformation

    NASA Astrophysics Data System (ADS)

    Zamani, Farzaneh; Ribeiro, Pedro; Kirchner, Stefan

    2016-06-01

    We revisit the Schrieffer–Wolff transformation and present a path integral version of this important canonical transformation. The equivalence between the low-energy sector of the Anderson model in the so-called local moment regime and the spin-isotropic Kondo model is usually established via a canonical transformation performed on the Hamiltonian, followed by a projection. Here we present a path integral formulation of the Schrieffer–Wolff transformation which relates the functional integral form of the partition function of the Anderson model to that of its effective low-energy model. The resulting functional integral assumes the form of a spin path integral and includes a geometric phase factor, i.e. a Berry phase. Our approach stresses the underlying symmetries of the model and allows for a straightforward generalization of the transformation to more involved models. It thus not only sheds new light on a classic problem, it also offers a systematic route of obtaining effective low-energy models and higher order corrections. This is demonstrated by obtaining the effective low-energy model of a quantum dot attached to two ferromagnetic leads.

  20. Integrated nuclear techniques to detect illicit materials

    SciTech Connect

    DeVolpi, A.

    1997-10-01

    This paper discusses the problem of detecting explosives in the context of an object being transported for illicit purposes. The author emphasizes that technologies developed for this particular application have payoffs in many related problem areas. The author discusses nuclear techniques which can be applied to this detection problem. These include: x-ray imaging; neutronic interrogation; inelastic neutron scattering; fieldable neutron generators. He discusses work which has been done on the applications of these technologies, including results for detection of narcotics. He also discusses efforts to integrate these techniques into complementary systems which offer improved performance.

  1. DNA transformations of Candida tropicalis with replicating and integrative vectors.

    PubMed

    Sanglard, D; Fiechter, A

    1992-12-01

    The alkane-assimilating yeast Candida tropicalis was used as a host for DNA transformations. A stable ade2 mutant (Ha900) obtained by UV-mutagenesis was used as a recipient for different vectors carrying selectable markers. A first vector, pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication, was compatible for transforming Ha900. Two transformant types were observed: (i) pink transformants which easily lose pMK16 under non-selective growth conditions; (ii) white transformants, in which the same plasmid exhibited a higher mitotic stability. In both cases pMK16 could be rescued from these cells in Escherichia coli. A second vector, pADE2, containing the isolated C. tropicalis ADE2, gene, was used to transform Ha900. This vector integrated in the yeast genome at homologous sites of the ade2 locus. Different integration types were observed at one or both ade2 alleles in single or in tandem repeats. PMID:1293885

  2. A dynamic integrated fault diagnosis method for power transformers.

    PubMed

    Gao, Wensheng; Bai, Cuifen; Liu, Tong

    2015-01-01

    In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841

  3. Integration of a piezoelectric transformer and an ultrasonic motor.

    PubMed

    Manuspiya, Suwan; Laoratanakul, Pitak; Uchino, Kenji

    2003-03-01

    Ultrasonic motors are usually operated at an AC voltage higher than a regular battery. This implies the need of a voltage step-up transformer. In this paper, we report the integration of a piezoelectric transformer (PT) with an ultrasonic motor and a simple drive circuit. The stator of the ultrasonic motor and the PT were operated in the same radial vibration mode. Their dimensions were very close to each other yielding nearly matching resonance frequencies. Consequently, they could be combined together without inductor. The drive circuit was designed by using a 555 timer as an astable multivibrator, and high-speed dual MOSFET drivers as a class D half-bridge switching amplifier. This integrated PT-ultrasonic motor performed reasonably without the use of electromagnetic transformer or inductor. PMID:12565071

  4. Factorization of the polarization transformation matrix in integrated photoelasticity.

    PubMed

    Ainola, Leo; Aben, Hillar

    2007-11-01

    In integrated photoelasticity, assessment of stresses in a three-dimensional specimen is based on the measurement of the change of polarization on many light rays that pass the specimen. Since the medium is optically anisotropic and inhomogeneous, the optical phenomena are nonlinear and solution of the inverse problem is complicated. Several methods of solving the inverse problem demand an efficient algorithm for solving the direct problem, i.e., for the calculation of the polarization transformation matrix on the basis of the stress field in the medium. We propose for this use factorization of the transformation matrix. We show that if the transformation of polarization is described by characteristic parameters, the three characteristic parameters can be determined by solving a single third-order differential equation. Since characteristic parameters can be measured experimentally, this approach can be used in practical three-dimensional stress analysis with integrated photoelasticity. PMID:17975565

  5. Transforming the Economics Curriculum by Integrating Threshold Concepts

    ERIC Educational Resources Information Center

    Karunaratne, Prashan Shayanka Mendis; Breyer, Yvonne A.; Wood, Leigh N.

    2016-01-01

    Purpose: Economics is catering to a diverse student cohort. This cohort needs to be equipped with transformative concepts that students can integrate beyond university. When a curriculum is content-driven, threshold concepts are a useful tool in guiding curriculum re-design. The paper aims to discuss these issues. Design/Methodology/Approach: The…

  6. Path Integrals, Fourier Transforms, and Feynman's Operational Calculus

    SciTech Connect

    Ahn, Byung Moo; Johnson, G. W.

    1998-03-15

    The disentangling process is the key to Feynman's operational calculus for noncommuting operators. The main result of his heuristic calculations deals with disentangling an exponential factor. We use the Wiener and Feynman integrals to make this disentangling (or time-ordering) mathematically rigorous in the case where the analytic functions from earlier work are replaced by Fourier transforms of complex-valued measures.

  7. Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms

    SciTech Connect

    Bauke, Heiko; Keitel, Christoph H.

    2009-08-13

    The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.

  8. The Effects of Integrated Transformational Leadership on Achievement

    ERIC Educational Resources Information Center

    Boberg, John Eric; Bourgeois, Steven J.

    2016-01-01

    Purpose: Greater understanding about how variables mediate the relationship between leadership and achievement is essential to the success of reform efforts that hold leaders accountable for student learning. The purpose of this paper is to test a model of integrated transformational leadership including three important school mediators.…

  9. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  10. Health monitoring techniques using integrated sensors

    NASA Astrophysics Data System (ADS)

    Pfleiderer, Klaus; Stoessel, Rainer; Busse, Gerhard

    2003-08-01

    Advanced high performance materials and components such as CFRP, GFRP and Smart Structures require improved testing techniques. The first part of our contribution deals with nonlinear vibrometry as a defect selective non-destructive testing method. This method uses higher harmonics (which are generated only at defects) to locate the defect by scanning across the surface of the sample with a laser interferometer. For input coupling of the elastic wave both an external (like ultrasound welding converters) or internal (integrated piezo actuators) excitation source can be used. The external detection tools are a microphone or a scanning laser vibrometer. With this technique, we characterized Smart Structures made of aerospace materials and composites with embedded piezoelectric actuators. The next part is about health monitoring techniques and diagnostics where integrated elements are used for excitation and detection. Thus, we monitored the transfer function over a large frequency spectrum and especially its changes caused e.g. by defects. Changes in the properties of structures by fatigue, impacts, and thermoplasticity have been successfully observed. Also the changes in reinforced plastics under tensile stress have been monitored. The results were correlated with destructive measurements. For health monitoring we also present the impedance analysis of embedded piezo ceramic sensors. A defect causes changes in the modal response of the hole structure and that effect can be detected using the phase angle of the electric impedance of the piezo element. Additionally some types of defects cause a non-linear behavior of the structure which was verified by extracting higher harmonics as a reaction to sinusoidal single frequency excitation.

  11. Implementing quantum Fourier transform with integrated photonic devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2014-03-01

    Many quantum algorithms that exhibit exponential speedup over their classical counterparts employ the quantum Fourier transform, which is used to solve interesting problems such as prime factorization. Meanwhile, nonclassical interference of single photons achieved on integrated platforms holds the promise of achieving large-scale quantum computation with multiport devices. An optical multiport device can be built to realize any quantum circuit as a sequence of unitary operations performed by beam splitters and phase shifters on path-encoded qudits. In this talk, I will present a recursive scheme for implementing quantum Fourier transform with a multimode interference photonic integrated circuit. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

  12. An analysis of spectral transformation techniques on graphs

    NASA Astrophysics Data System (ADS)

    Djurović, Igor; Sejdić, Ervin; Bulatović, Nikola; Simeunović, Marko

    2015-05-01

    Emerging methods for the spectral analysis of graphs are analyzed in this paper, as graphs are currently used to study interactions in many fields from neuroscience to social networks. There are two main approaches related to the spectral transformation of graphs. The first approach is based on the Laplacian matrix. The graph Fourier transform is defined as an expansion of a graph signal in terms of eigenfunctions of the graph Laplacian. The calculated eigenvalues carry the notion of frequency of graph signals. The second approach is based on the graph weighted adjacency matrix, as it expands the graph signal into a basis of eigenvectors of the adjacency matrix instead of the graph Laplacian. Here, the notion of frequency is then obtained from the eigenvalues of the adjacency matrix or its Jordan decomposition. In this paper, advantages and drawbacks of both approaches are examined. Potential challenges and improvements to graph spectral processing methods are considered as well as the generalization of graph processing techniques in the spectral domain. Its generalization to the time-frequency domain and other potential extensions of classical signal processing concepts to graph datasets are also considered. Lastly, it is given an overview of the compressive sensing on graphs concepts.

  13. Integrated polyoma genomes in inducible permissive transformed cells.

    PubMed Central

    Chartrand, P; Gusew-Chartrand, N; Bourgaux, P

    1981-01-01

    Using the approach described by Botchan, Topp, and Sambrook (Cell 9:269-287, 1976), we analyzed the organization of the integrated viral sequences in five clonal isolates from the same permissive, inducible cell line (Cyp line) transformed by the tsP155 mutant of polyoma virus. In all five clones, viral sequences were found that could be assigned to a common integration site, as they were joined to the cellular DNA in the same fashion in every instance. However, the sequences comprised between these points differed markedly from clone to clone, as if cell propagation had been accompanied by amplification or recombination or both within the viral insertion. When the clones were compared, no correlation could be found between the abundance, or the organization, of the integrated viral sequences and the amount, or the nature, of the free viral DNA molecules produced during induction. Altogether, our findings suggest that specific events, occurring during either the excision or the subsequent replication of the integrated viral sequences, are responsible for the predominant production of nondefective viral DNA molecules by permissive transformed cells, such as Cyp cells. Images PMID:6268808

  14. General technique for the integration of MIC/MMIC'S with waveguides

    NASA Technical Reports Server (NTRS)

    Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)

    1987-01-01

    A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.

  15. Non-parametric transformation for data correlation and integration: From theory to practice

    SciTech Connect

    Datta-Gupta, A.; Xue, Guoping; Lee, Sang Heon

    1997-08-01

    The purpose of this paper is two-fold. First, we introduce the use of non-parametric transformations for correlating petrophysical data during reservoir characterization. Such transformations are completely data driven and do not require a priori functional relationship between response and predictor variables which is the case with traditional multiple regression. The transformations are very general, computationally efficient and can easily handle mixed data types for example, continuous variables such as porosity, permeability and categorical variables such as rock type, lithofacies. The power of the non-parametric transformation techniques for data correlation has been illustrated through synthetic and field examples. Second, we utilize these transformations to propose a two-stage approach for data integration during heterogeneity characterization. The principal advantages of our approach over traditional cokriging or cosimulation methods are: (1) it does not require a linear relationship between primary and secondary data, (2) it exploits the secondary information to its fullest potential by maximizing the correlation between the primary and secondary data, (3) it can be easily applied to cases where several types of secondary or soft data are involved, and (4) it significantly reduces variance function calculations and thus, greatly facilitates non-Gaussian cosimulation. We demonstrate the data integration procedure using synthetic and field examples. The field example involves estimation of pore-footage distribution using well data and multiple seismic attributes.

  16. Improved technique for one-way transformation of information

    DOEpatents

    Cooper, J.A.

    1987-05-11

    Method and apparatus are provided for one-way transformation of data according to multiplication and/or exponentiation modulo a prime number. An implementation of the invention permits the one way residue transformation, useful in encryption and similar applications, to be implemented by n-bit computers substantially with no increase in difficulty or complexity over a natural transformation thereby, using a modulus which is a power of two. 9 figs.

  17. Computer-Aided Diagnosis System for Alzheimer's Disease Using Different Discrete Transform Techniques.

    PubMed

    Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M

    2016-05-01

    The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. PMID:26371347

  18. Feasibility investigation of integrated optics Fourier transform devices. [holographic subtraction for multichannel data preprocessing

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Vahey, D. W.; Wood, V. E.; Kenan, R. P.; Hartman, N. F.

    1977-01-01

    The possibility of producing an integrated optics data processing device based upon Fourier transformations or other parallel processing techniques, and the ways in which such techniques may be used to upgrade the performance of present and projected NASA systems were investigated. Activities toward this goal include; (1) production of near-diffraction-limited geodesic lenses in glass waveguides; (2) development of grinding and polishing techniques for the production of geodesic lenses in LiNbO3 waveguides; (3) development of a characterization technique for waveguide lenses; and (4) development of a theory for corrected aspheric geodesic lenses. A holographic subtraction system was devised which should be capable of rapid on-board preprocessing of a large number of parallel data channels. The principle involved is validated in three demonstrations.

  19. Blind data hiding technique using the Fresnelet transform.

    PubMed

    Muhammad, Nazeer; Bibi, Nargis; Mahmood, Zahid; Kim, Dai-Gyoung

    2015-01-01

    A new blind data hiding scheme is proposed in which data is decomposed using the Fresnelet transform. The inverse Fresnelet transform is performed on decomposed subbands by choosing different key parameters, and the coded pattern of the information data is obtained. This coded pattern is embedded into particular subbands of the cover image using the wavelets. The proposed method has good imperceptibility and large capacity of the information embedded data. Using the Fresnelet transform with a family of wavelet transforms makes the scheme more efficient in terms of extracted accuracy of hidden information. Moreover, the hidden data can be recovered without access to the original cover data. The proposed method is used to resolve privacy and security issues raised with respect to emerging internet applications for the effective handling of confidential data. PMID:26753119

  20. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  1. Imaging the transformation of hot strip steel using magnetic techniques

    NASA Astrophysics Data System (ADS)

    Sharif, E.; Bell, Cathy; Morris, Peter F.; Peyton, A. J.

    2001-07-01

    In the production of steel strip, the temperature distribution and cooling rates along the mill run-out table have a significant effect on the steel microstructure and hence on final material properties, e.g., yield strength, tensile strength, and ductility. Noncontacting optical temperature sensors are typically used to implement feedback control of cooling, but water spray and surface emissivity irregularities can adversely affect these sensors. Ideally, the control of cooling path should account for the progress of dynamic transformation at required points rather than the strip temperature alone. There are several reports describing the use of magnetic sensors to monitor transformation. These sensors exploit the change in the electromagnetic properties as the steel progresses through transformation, for example the austenitic phase is paramagnetic and the ferritic phase is ferromagnetic below the Curie point. Previous work has concentrated on the operation and design of individual transformation sensors. This paper now describes the use of an array of electromagnetic sensors to image the progression of transformation along a sample steel block on a pilot scale industrial mill. The paper will describe the underlying physical principles, the design of the system, and present images showing the progress of transformation along one surface of the sample.

  2. Experimental Evaluation of Integral Transformations for Engineering Drawings Vectorization

    NASA Astrophysics Data System (ADS)

    Vaský, Jozef; Gramblička, Matúš

    2014-12-01

    The concept of digital manufacturing supposes application of digital technologies in the whole product life cycle. Direct digital manufacturing includes such information technology processes, where products are directly manufactured from 3D CAD model. In digital manufacturing, engineering drawing is replaced by CAD product model. In the contemporary practice, lots of engineering paper-based drawings are still archived. They could be digitalized by scanner and stored to one of the raster graphics format and after that vectorized for interactive editing in the specific software system for technical drawing or for archiving in some of the standard vector graphics file format. The vector format is suitable for 3D model generating, too.The article deals with using of selected integral transformations (Fourier, Hough) in the phase of digitalized raster engineering drawings vectorization.

  3. Project management techniques for highly integrated programs

    NASA Technical Reports Server (NTRS)

    Stewart, J. F.; Bauer, C. A.

    1983-01-01

    The management and control of a representative, highly integrated high-technology project, in the X-29A aircraft flight test project is addressed. The X-29A research aircraft required the development and integration of eight distinct technologies in one aircraft. The project management system developed for the X-29A flight test program focuses on the dynamic interactions and the the intercommunication among components of the system. The insights gained from the new conceptual framework permitted subordination of departments to more functional units of decisionmaking, information processing, and communication networks. These processes were used to develop a project management system for the X-29A around the information flows that minimized the effects inherent in sampled-data systems and exploited the closed-loop multivariable nature of highly integrated projects.

  4. Auxiliary functions for molecular integrals with Slater-type orbitals. II. Gauss transform methods

    NASA Astrophysics Data System (ADS)

    Ema, I.; López, R.; Fernández, J. J.; Ramírez, G.; Rico, J. F.

    The Gauss transform of Slater-type orbitals is used to express several types of molecular integrals involving these functions in terms of simple auxiliary functions. After reviewing this transform and the way it can be combined with the shift operator technique, a master formula for overlap integrals is derived and used to obtain multipolar moments associated to fragments of two-center distributions and overlaps of derivatives of Slater functions. Moreover, it is proved that integrals involving two-center distributions and irregular harmonics placed at arbitrary points (which determine the electrostatic potential, field and field gradient, as well as higher order derivatives of the potential) can be expressed in terms of auxiliary functions of the same type as those appearing in the overlap. The recurrence relations and series expansions of these functions are thoroughly studied, and algorithms for their calculation are presented. The usefulness and efficiency of this procedure are tested by developing two independent codes: one for the derivatives of the overlap integrals with respect to the centers of the functions, and another for derivatives of the potential (electrostatic field, field gradient, and so forth) at arbitrary points.0

  5. Preliminary Component Integration Using Rapid Prototyping Techniques

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Salvail, Pat; Gordon, Gail (Technical Monitor)

    2001-01-01

    Rapid prototyping is a very important tool that should be used by both design and manufacturing disciplines during the development of elements for the aerospace industry. It helps prevent lack of adequate communication between design and manufacturing engineers (which could lead to costly errors) through mutual consideration of functional models generated from drawings. Rapid prototyping techniques are used to test hardware for design and material compatibility at Marshall Space Flight Center.

  6. Applications of Conformal Computing techniques to problems in computational physics: the Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Raynolds, James E.; Mullin, Lenore R.

    2005-07-01

    The techniques of Conformal Computing are introduced with an application to the Fast Fourier Transform. Conformal Computing is a design methodology, based on a rigorous mathematical foundation, which provides a systematic approach to the most efficient organization of all levels of the software and hardware design hierarchy from high-level software constructs all the way down to the design of the integrated circuits. We show that using these general design principles, without any specialized optimization, leads to portable, scalable, code that is competitive with other well-tuned machine specific routines. Further improvements are straightforward within our formalism by taking into account specific hardware details (e.g., cache loops) in a portable parametric way. We also argue that the present theory constitutes a uniform way of reasoning about physics and the data structures that define physics on computers.

  7. Distance functions in dynamic integration of data mining techniques

    NASA Astrophysics Data System (ADS)

    Puuronen, Seppo J.; Tsymbal, Alexey; Terziyan, Vagan

    2000-04-01

    One of the most important directions in the improvement of data mining and knowledge discovery is the integration of multiple data mining techniques. An integration method needs to be able either to evaluate and select the most appropriate data mining technique or to combine two or more techniques efficiently. A recent integration method for the dynamic integration of multiple data mining techniques is based on the assumption that each of the data mining techniques is the best one inside a certain subarea of the whole domain area. This method uses an instance-based learning approach to collect information about the competence areas of the mining techniques and applies a distance function to determine how close a new instance is to each instance of the training set. The nearest instance or instances are used to predict the performance of the data mining techniques. Because the quality of the integration depends heavily on the suitability of the used distance function, our goal is to analyze the characteristics of different distance functions. In this paper we investigate several distance functions as the very commonly used Euclidean distance function, the Heterogeneous Euclidean- Overlap Metric (HEOM), and the Heterogeneous Value Difference Metric (HVDM), among others. We analyze the effects of the use of different distance functions to the accuracy achieved by dynamic integration when the parameters describing datasets vary. We include also results of our experiments with different datasets which include both nominal and continuous attributes.

  8. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  9. Receiver autonomous integrity monitoring (RAIM) - Techniques, performance and potential

    NASA Technical Reports Server (NTRS)

    Farrell, James L.; Van Graas, Frank

    1991-01-01

    The goal of receiver autonomous integrity monitoring (RAIM) for the Global Positioning System (GPS) is to provide a sufficient level of navigation integrity for all phases of flight based on the signals transmitted by the GPS satellites only. Integrity requirements for airborne use of GPS are reviewed. This is followed by the description of a baseline fault detection algorithm which is shown to be capable of satisfying tentative integrity requirements. The related issue of testing the fault detection algorithm is also briefly addressed. Preliminary performance results for the baseline fault detection algorithm are presented, along with the potential of RAIM techniques for achieving GPS integrity.

  10. An Operator Method for Evaluating Laplace Transforms

    ERIC Educational Resources Information Center

    Lanoue, B. G.; Yurekli, O.

    2005-01-01

    This note discusses a simple operator technique based on the differentiation and shifting properties of the Laplace transform to find Laplace transforms for various elementary functions. The method is simpler than known integration techniques to evaluate Laplace transforms.

  11. Transforming Student Health Services through Purpose-Driven Assessment Techniques

    ERIC Educational Resources Information Center

    Knoll, Dorothy; Meiers, Chris; Honeck, Sara

    2006-01-01

    The University of Kansas Medical Center did a comprehensive review of the services provided in the Student Health Center (SHC). Using purpose-driven assessment techniques, areas needing improvement were identified. The results of the survey were presented to students and, with student support, student health fees were increased to fund desired…

  12. Ultrasonic technique for inspection of GPHS capsule girth weld integrity

    SciTech Connect

    Placr, Arnost

    1993-05-01

    An innovative nondestructive examination (NDE) technique for the inspection of integrity of General Purpose Heat Source (GPHS) capsule girth welds (Figure 1) was developed employing a Lamb (plate) wave as the mode of the sound propagation. Reliability of the Lamb wave technique was tested on GPHS capsules using plutonium pallet simulators. All ten capsules, which were previously rejected, passed ultrasonic (UT) inspection using the Lamb wave technique.

  13. Novel integration technique for silicon/III-V hybrid laser.

    PubMed

    Dong, Po; Hu, Ting-Chen; Liow, Tsung-Yang; Chen, Young-Kai; Xie, Chongjin; Luo, Xianshu; Lo, Guo-Qiang; Kopf, Rose; Tate, Alaric

    2014-11-01

    Integrated semiconductor lasers on silicon are one of the most crucial devices to enable low-cost silicon photonic integrated circuits for high-bandwidth optic communications and interconnects. While optical amplifiers and lasers are typically realized in III-V waveguide structures, it is beneficial to have an integration approach which allows flexible and efficient coupling of light between III-V gain media and silicon waveguides. In this paper, we propose and demonstrate a novel fabrication technique and associated transition structure to realize integrated lasers without the constraints of other critical processing parameters such as the starting silicon layer thicknesses. This technique employs epitaxial growth of silicon in a pre-defined trench with taper structures. We fabricate and demonstrate a long-cavity hybrid laser with a narrow linewidth of 130 kHz and an output power of 1.5 mW using the proposed technique. PMID:25401832

  14. Modern Integral Equation Techniques for Quantum Reactive Scattering Theory.

    NASA Astrophysics Data System (ADS)

    Auerbach, Scott Michael

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D + H_2 to H _2/DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H + H_2 state resolved integral cross sections sigma_{v^' j^ ',vj}(E) for the transitions (v = 0, j = 0) to (v^' = 1,j^ ' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence. To facilitate quantum calculations on more complex reactive systems, we develop a new method to compute the energy Green's function with absorbing boundary conditions (ABC), for use in calculating the cumulative reaction probability. The method is an iterative technique to compute the inverse of a non-Hermitian matrix which is based on Fourier transforming time dependent dynamics, and which requires very little core memory. The Hamiltonian is evaluated in a sinc-function based discrete variable representation (DVR) which we argue may often be superior to the fast Fourier transform method for reactive scattering. We apply the resulting power series Green's function to the benchmark collinear H + H_2 system over the energy range 3.37 to 1.27 eV. The convergence of the power series is stable at all energies, and is accelerated by the use of a stronger absorbing potential. The practicality of computing the ABC-DVR Green's function in a polynomial of the Hamiltonian is

  15. Incipient fault diagnosis of power transformers using optical spectro-photometric technique

    NASA Astrophysics Data System (ADS)

    Hussain, K.; Karmakar, Subrata

    2015-06-01

    Power transformers are the vital equipment in the network of power generation, transmission and distribution. Mineral oil in oil-filled transformers plays very important role as far as electrical insulation for the winding and cooling of the transformer is concerned. As transformers are always under the influence of electrical and thermal stresses, incipient faults like partial discharge, sparking and arcing take place. As a result, mineral oil deteriorates there by premature failure of the transformer occurs causing huge losses in terms of revenue and assets. Therefore, the transformer health condition has to be monitored continuously. The Dissolved Gas Analysis (DGA) is being extensively used for this purpose, but it has some drawbacks like it needs carrier gas, regular instrument calibration, etc. To overcome these drawbacks, Ultraviolet (UV) -Visible and Fourier Transform Infrared (FTIR) Spectro-photometric techniques are used as diagnostic tools for investigating the degraded transformer oil affected by electrical, mechanical and thermal stresses. The technique has several advantages over the conventional DGA technique.

  16. Integrated geophysical techniques for high resolution archaeological studies

    NASA Astrophysics Data System (ADS)

    Pipan, M.; Forte, E.; Finetti, I.

    2003-04-01

    We exploit the integration of linear multi-fold Ground Penetrating Radar (GPR) techniques, magnetic gradiometry, resistivity measurements and seismic tomography for the high-resolution non-invasive study of archaeological sites. Tests of the proposed integrated procedure are shown from archaeological sites in Italy and Egypt. We perform in particular the integrated subsurface reconstruction of an Iron Age tumulus, the study of high contrast ruins in alluvial sediments, the identification of low contrast remains in a desert area. Multi-fold GPR datasets are processed using pre-stack wave equation based imaging, which effectively tackles the rapid lateral velocity variations that normally characterize archaeological sites. Further image enhancement is achieved by means of proprietary Wavelet Transform based algorithms to compute the instantaneous attributes of the radar trace. The subsurface models are further verified by means of comparison with numerical simulations by FDTD modelling algorithms. Test excavations finally validate all the results. The multi-fold datasets allow image enhancement and characterization of material properties not attainable by conventional GPR methods. In particular, the comparison of conventional and multi-fold data from the desert area gives evidence of the image enhancement attainable in hostile soil conditions. Velocity fields obtained from pre-stack velocity analysis provides further information on material properties. The subsurface model is further constrained by the results of seismic, resistivity and magnetic surveys. Joint interpretation of high resolution multi-fold GPR data, after pre-stack processing and imaging, and seismic tomography allows to constrain the subsurface model and classify the targets of potential archaeological interest in the case of the Iron Age Tumulus. Details of the inner structure are evidenced by the integrated interpretation of seismic and GPR data. In particular, location of the burial chamber and of

  17. The Impact of Technology Integration through a Transformative Approach

    ERIC Educational Resources Information Center

    Cubillos, Jo Ann

    2013-01-01

    The integration of technology into classroom instruction in K-12 schools remains problematic. The problems associated with this integration are troubling, as technology integration may change a teacher's pedagogy toward more innovative approaches that increase student achievement. The purpose of this study was to document teachers' experiences as…

  18. Eigenfunctions and eigenoperators of cyclic integral transforms with application to Gaussian beam propagation

    NASA Astrophysics Data System (ADS)

    McCallum, Matthew S.

    An integral transform which reproduces a transformable input function after a finite number N of successive applications is known as a cyclic transform. Of course, such a transform will reproduce an arbitrary transformable input after N applications, but it also admits eigenfunction inputs which will be reproduced after a single application of the transform. These transforms and their eigenfunctions appear in various applications, and the systematic determination of eigenfunctions of cyclic integral transforms has been a problem of interest to mathematicians since at least the early twentieth century. In this work we review the various approaches to this problem, providing generalizations of published expressions from previous approaches. We then develop a new formalism, differential eigenoperators, that reduces the eigenfunction problem for a cyclic transform to an eigenfunction problem for a corresponding ordinary differential equation. In this way we are able to relate eigenfunctions of integral equations to boundary-value problems, which are typically easier to analyze. We give extensive examples and discussion via the specific case of the Fourier transform. We also relate this approach to two formalisms that have been of interest to the mathematical physics community---hyperdifferential operators and linear canonical transforms. We show how this new approach reproduces known results of Fourier optics regarding free-space diffractive propagation of Gaussian beams in both one and two dimensions. Finally we discuss the group-theoretical aspects of the formalism and describe an isomorphism between roots of the identity transform and complex roots of unity. In the appendix we derive several technical results related to integrability and transformability of solutions in the Fourier transform case, and we prove two theorems---one of them new---on polynomial roots. We conclude that the formalism offers a new and equally valuable perspective on an interesting

  19. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques.

    PubMed

    Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  20. Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques

    PubMed Central

    2015-01-01

    It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634

  1. Bäcklund transformations for Darboux integrable differential systems: Examples and applications

    NASA Astrophysics Data System (ADS)

    Anderson, Ian M.; Fels, Mark E.

    2016-04-01

    In this article we demonstrate a new symmetry based method for constructing Bäcklund transformations by finding explicit Bäcklund transformations between Darboux integrable systems. This results in a number of new examples of Bäcklund transformations which are quite different in character than those typically found in the literature. The relation between the intermediate integrals for Darboux integrable systems and the differential invariants of the Vessiot group is also illustrated. We then show that a well known class of Bäcklund transformations between a Darboux integrable Monge-Ampère system and the wave equation always arises by this method. The results of this paper build upon the presentation of Darboux integrable systems as quotients of differential systems by symmetry groups.

  2. Derivative information recovery by a selective integration technique

    NASA Technical Reports Server (NTRS)

    Johnson, M. A.

    1974-01-01

    A nonlinear stationary homogeneous digital filter DIRSIT (derivative information recovery by a selective integration technique) is investigated. The spectrum of a quasi-linear discrete describing function (DDF) to DIRSIT is obtained by a digital measuring scheme. A finite impulse response (FIR) approximation to the quasi-linearization is then obtained. Finally, DIRSIT is compared with its quasi-linear approximation and with a standard digital differentiating technique. Results indicate the effects of DIRSIT on a wide variety of practical signals.

  3. Multiscale Transient Signal Detection: Localizing Transients in Geodetic Data Through Wavelet Transforms and Sparse Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Riel, B.; Simons, M.; Agram, P.

    2012-12-01

    Transients are a class of deformation signals on the Earth's surface that can be described as non-periodic accumulation of strain in the crust. Over seismically and volcanically active regions, these signals are often challenging to detect due to noise and other modes of deformation. Geodetic datasets that provide precise measurements of surface displacement over wide areas are ideal for exploiting both the spatial and temporal coherence of transient signals. We present an extension to the Multiscale InSAR Time Series (MInTS) approach for analyzing geodetic data by combining the localization benefits of wavelet transforms (localizing signals in space) with sparse optimization techniques (localizing signals in time). Our time parameterization approach allows us to reduce geodetic time series to sparse, compressible signals with very few non-zero coefficients corresponding to transient events. We first demonstrate the temporal transient detection by analyzing GPS data over the Long Valley caldera in California and along the San Andreas fault near Parkfield, CA. For Long Valley, we are able to resolve the documented 2002-2003 uplift event with greater temporal precision. Similarly for Parkfield, we model the postseismic deformation by specific integrated basis splines characterized by timescales that are largely consistent with postseismic relaxation times. We then apply our method to ERS and Envisat InSAR datasets consisting of over 200 interferograms for Long Valley and over 100 interferograms for Parkfield. The wavelet transforms reduce the impact of spatially correlated atmospheric noise common in InSAR data since the wavelet coefficients themselves are essentially uncorrelated. The spatial density and extended temporal coverage of the InSAR data allows us to effectively localize ground deformation events in both space and time with greater precision than has been previously accomplished.

  4. Nondestructive Technique Survey for Assessing Integrity of Composite Firing Vessel

    SciTech Connect

    Tran, A.

    2000-08-01

    The repeated use and limited lifetime of a composite tiring vessel compel a need to survey techniques for monitoring the structural integrity of the vessel in order to determine when it should be retired. Various nondestructive techniques were researched and evaluated based on their applicability to the vessel. The methods were visual inspection, liquid penetrant testing, magnetic particle testing, surface mounted strain gauges, thermal inspection, acoustic emission, ultrasonic testing, radiography, eddy current testing, and embedded fiber optic sensors. It was determined that embedded fiber optic sensor is the most promising technique due to their ability to be embedded within layers of composites and their immunity to electromagnetic interference.

  5. Integrative Teaching Techniques and Improvement of German Speaking Learning Skills

    ERIC Educational Resources Information Center

    Litualy, Samuel Jusuf

    2016-01-01

    This research ist a Quasi-Experimental research which only applied to one group without comparison group. It aims to prove whether the implementation of integrative teaching technique has influenced the speaking skill of the students in German Education Study Program of FKIP, Pattimura University. The research was held in the German Education…

  6. Simulator verification techniques study. Integrated simulator self test system concepts

    NASA Technical Reports Server (NTRS)

    Montoya, G.; Wenglinski, T. H.

    1974-01-01

    Software and hardware requirements for implementing hardware self tests are presented in support of the development of training and procedures development simulators for the space shuttle program. Self test techniques for simulation hardware and the validation of simulation performance are stipulated. The requirements of an integrated simulator self system are analyzed. Readiness tests, fault isolation tests, and incipient fault detection tests are covered.

  7. An efficient coordinate transformation technique for unsteady, transonic aerodynamic analysis of low aspect-ratio wings

    NASA Technical Reports Server (NTRS)

    Guruswamy, G. P.; Goorjian, P. M.

    1984-01-01

    An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.

  8. 76 FR 17145 - Agency Information Collection Activities: Business Transformation-Automated Integrated Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: Business Transformation--Automated Integrated Operating Environment (IOE), New Information Collection; Comment Request... Operating Environment (IOE); OMB Control No. 1615-NEW. SUMMARY: USCIS is developing an automated...

  9. 76 FR 63941 - Agency Information Collection Activities: Business Transformation-Automated Integrated Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... SECURITY Citizenship and Immigration Services Agency Information Collection Activities: Business Transformation--Automated Integrated Operating Environment (IOE), New Information Collection; Comment Request..., 2011, USCIS published a 60-day notice in the Federal Register at 76 FR 1745, seeking comment on...

  10. Implementation of an Integrated, Portable Transformer Condition Monitoring Instrument in the Classroom and On-Site

    ERIC Educational Resources Information Center

    Chatterjee, B.; Dey, D.; Chakravorti, S.

    2010-01-01

    The development of integrated, portable, transformer condition monitoring (TCM) equipment for classroom demonstrations as well as for student exercises conducted in the field is discussed. Demonstrations include experimentation with real-world transformers to illustrate concepts such as polarization and depolarization current through oil-paper…

  11. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  12. Lessons from the Desert: Integrating Managerial Expertise and Learning for Organizational Transformation

    ERIC Educational Resources Information Center

    Roth, George

    2004-01-01

    Reflection upon a field study of a corporate transformation provides insights into the application and integration of organizational learning theory and frameworks with local, corporate knowledge. In the corporate transformation studied this local knowledge came from consumer psychology, marketing campaigns and the use of media. When these ideas…

  13. A novel technique for an integrated optical wavelength demultiplexer

    NASA Astrophysics Data System (ADS)

    Lotfy Rabeh, M.; Mohanna, M.; Hosny, Tarek; Gabr, Mohamed I.

    2015-12-01

    In this paper we propose a new technique for optical wavelength demultiplexing (DEMUX) relaying on two phenomena: Goos-Haenchen (GH) shift and continuous refraction at a graded-index medium interface. In the first case, two light beams are totally reflected at a plane interface separating two dielectric lossless media. The reflected beams suffer different lateral shifts (GH shifts) depending on the wavelength; thus accomplishing the required spatial beam separation. In the second case, the two light beams have different "turning points" inside the graded index medium; hence, the "back-refracted" beams are spatially separated. In this paper, we optimized the conditions of operation of such demultiplexing technique. This makes possible the integration of such technique in "planar integrated-optics" structures which can be used reliably in optical fiber communication networks.

  14. Optical cryptographic system employing multiple reference-based joint transform correlation technique

    NASA Astrophysics Data System (ADS)

    Islam, Mohammed Nazrul; Karim, Mohammad Ataul; Alam, Mohammad Showkat; Asari, K. Vijayan

    2011-06-01

    An optical joint transform correlation-based cryptographic system is a used to feed multiple phase-shifted encryption keys into four parallel channels along with a to-be-encrypted signal in the form of an image. The resulting joint power spectra (JPS) signals are phase-shifted and then combined to yield a modified JPS signal. Inverse Fourier transformation of the modified JPS signal yields the secured encrypted image. For decryption purpose, the received encrypted signal is first Fourier transformed and multiplied by the encryption key used in encryption. The derived signal is then inverse Fourier transformed to generate the output signal. The proposed system offers a nonlinear encryption without the involvement of any complex mathematical operation on the encryption key otherwise required in similar encryption techniques and is invariant to noise. Computer simulation results are presented to show the effectiveness of the proposed scheme with binary, as well as gray images in both noise-free and noisy environment.

  15. Diagnostic techniques and apparatus for detecting faults in perfluorocarbon liquid immersed transformers

    SciTech Connect

    Mizuno, K.; Ogawa, A.; Ooe, E.; Mori, E.

    1996-04-01

    This paper deals with techniques and an apparatus designed to diagnosis transformer faults by detecting C{sub 2}F{sub 4}, C{sub 2}F{sub 6} and C{sub 3}F{sub 6} gases contained in perfluorocarbon (PFC) liquid. The authors first established fault diagnostic techniques that employ gas patterns, gas composition ratios and fault diagnostic diagram and flow chart, based on the C{sub 2}F{sub 4}, C{sub 2}F{sub 6} and C{sub 3}F{sub 6} gases generated by overheating, partial discharges and arc discharges. Then, the authors verified the possibility of diagnosing internal faults in PFC liquid-immersed transformers when internal fault simulation tests on transformer model are conducted. The C{sub 2}F{sub 4} and C{sub 3}F{sub 6} gases generated there are detected with the gas diagnostic apparatus equipped with a gas sensor.

  16. The use of hybrid integrated circuit techniques in biotelemetry applications

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.

    1977-01-01

    A review is presented of some features of hybrid integrated circuits that make their use advantageous in miniature biotelemetry applications. The various techniques for fabricating resistors, capacitors and interconnections by both thin film and thick film technology are discussed. The use of chip capacitors, resistors, and especially standard IC chips on substrates with fired-on interconnection patterns is emphasized. The review is designed primarily to acquaint biotelemetry users and designers with an overview of this fabrication technique so that they can better communicate their needs with an understanding of its limitations and advantages to facilities specializing in hybrid construction.

  17. Integrated optics in an electrically scanned imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, James B. (Inventor); Ocallaghan, Fred G. (Inventor)

    1982-01-01

    An efficient, lightweight and stable, Fourier transform spectrometer was developed. The mechanical slide mechanism needed to create a path difference was eliminated by the use of retro-reflecting mirrors in a monolithic interferometer assembly in which the mirrors are not at 90 degrees to the propagation vector of the radiation, but rather at a small angle. The resulting plane wave fronts create a double-sided inteferogram of the source irradiance distribution which is detected by a charge-coupled device image sensor array. The position of each CCD pixel in the array is an indication of the path difference between the two retro-reflecting mirrors in the monolithic optical structure. The Fourier transform of the signals generated by the image sensor provide the spectral irradiance distribution of the source. For imaging, the interferometer assembly scans the source of irradiation by moving the entire instrument, such as would occur if it was fixedly mounted to a moving platform, i.e., a spacecraft. During scanning, the entrace slot to the monolithic optical structure sends different pixels to corresponding interferograms detected by adjacent columns of pixels of the image sensor.

  18. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  19. Integrating the Scholarship on Women: Transforming the Curriculum.

    ERIC Educational Resources Information Center

    Coulter, Sara; Hedges, Elaine

    Townson State University's 3-year project integrated new scholarship on women into the curriculum, with emphasis on introductory survey courses in eight disciplines: art, biology, business, education, English, history, psychology, and sociology. About 70 faculty met in workshops for five semesters to (1) read and discuss new scholarship on women;…

  20. Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics

    NASA Astrophysics Data System (ADS)

    Yang, Zhiguo; Wang, Li-Lian; Rong, Zhijian; Wang, Bo; Zhang, Baile

    2016-04-01

    In this paper, we present an efficient spectral-element method (SEM) for solving general two-dimensional Helmholtz equations in anisotropic media, with particular applications in accurate simulation of polygonal invisibility cloaks, concentrators and circular rotators arisen from the field of transformation electromagnetics (TE). In practice, we adopt a transparent boundary condition (TBC) characterized by the Dirichlet-to-Neumann (DtN) map to reduce wave propagation in an unbounded domain to a bounded domain. We then introduce a semi-analytic technique to integrate the global TBC with local curvilinear elements seamlessly, which is accomplished by using a novel elemental mapping and analytic formulas for evaluating global Fourier coefficients on spectral-element grids exactly. From the perspective of TE, an invisibility cloak is devised by a singular coordinate transformation of Maxwell's equations that leads to anisotropic materials coating the cloaked region to render any object inside invisible to observers outside. An important issue resides in the imposition of appropriate conditions at the outer boundary of the cloaked region, i.e., cloaking boundary conditions (CBCs), in order to achieve perfect invisibility. Following the spirit of [48], we propose new CBCs for polygonal invisibility cloaks from the essential "pole" conditions related to singular transformations. This allows for the decoupling of the governing equations of inside and outside the cloaked regions. With this efficient spectral-element solver at our disposal, we can study the interesting phenomena when some defects and lossy or dispersive media are placed in the cloaking layer of an ideal polygonal cloak.

  1. Digital I and C system upgrade integration technique

    SciTech Connect

    Huang, H. W.; Shih, C.; Wang, J. R.; Huang, K. C.

    2012-07-01

    This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digital Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events. A

  2. Integral dose: Comparison between four techniques for prostate radiotherapy

    PubMed Central

    Ślosarek, Krzysztof; Osewski, Wojciech; Grządziel, Aleksandra; Radwan, Michał; Dolla, Łukasz; Szlag, Marta; Stąpór-Fudzińska, Małgorzata

    2014-01-01

    Aim Comparisons of integral dose delivered to the treatment planning volume and to the whole patient body during stereotactic, helical and intensity modulated radiotherapy of prostate. Background Multifield techniques produce large volumes of low dose inside the patient body. Delivered dose could be the result of the cytotoxic injuries of the cells even away from the treatment field. We calculated the total dose absorbed in the patient body for four radiotherapy techniques to investigate whether some methods have a potential to reduce the exposure to the patient. Materials and methods We analyzed CyberKnife plans for 10 patients with localized prostate cancer. Five alternative plans for each patient were calculated with the VMAT, IMRT and TomoTherapy techniques. Alternative dose distributions were calculated to achieve the same coverage for PTV. Integral Dose formula was used to calculate the total dose delivered to the PTV and whole patient body. Results Analysis showed that the same amount of dose was deposited to the treated volume despite different methods of treatment delivery. The mean values of total dose delivered to the whole patient body differed significantly for each treatment technique. The highest integral dose in the patient's body was at the TomoTherapy and CyberKnife treatment session. VMAT was characterized by the lowest integral dose deposited in the patient body. Conclusions The highest total dose absorbed in normal tissue was observed with the use of a robotic radiosurgery system and TomoTherapy. These results demonstrate that the exposure of healthy tissue is a dosimetric factor which differentiates the dose delivery methods. PMID:25859398

  3. Time Delay Integration: A Wide-Field Survey Technique

    NASA Astrophysics Data System (ADS)

    Lapointe, Robert; Hill, E.; Leimer, L.; McMillian, K.; Miller, A.; Prindle, A.

    2009-05-01

    The Advanced Placement Physics class of Orange Lutheran High School has conducted a survey-imaging pro-ject using a Time Delay Integration (TDI) technique. TDI enables very wide-field images to be collected in the form of long strips of the sky. A series of five consecutive nights were captured, calibrated and compared to re-veal possible transient phenomena such as supernovae, asteroids, and other events that have a noticeable change over 24-hour intervals.

  4. Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Lee, Byung-Geun; Sheridan, John T

    2015-06-15

    We present a method of securing multispectral 3D photon-counted integral imaging (PCII) using classical Hartley Transform (HT) based encryption by employing optical interferometry. This method has the simultaneous advantages of minimizing complexity by eliminating the need for holography recording and addresses the phase sensitivity problem encountered when using digital cameras. These together with single-channel multispectral 3D data compactness, the inherent properties of the classical photon counting detection model, i.e. sparse sensing and the capability for nonlinear transformation, permits better authentication of the retrieved 3D scene at various depth cues. Furthermore, the proposed technique works for both spatially and temporally incoherent illumination. To validate the proposed technique simulations were carried out for both the 2D and 3D cases. Experimental data is processed and the results support the feasibility of the encryption method. PMID:26193568

  5. Analytically reduced form of multicenter integrals from Gaussian transforms. [in atomic and molecular physics

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The four-dimensional Fourier-Feynman transformations previously used in analytically reducing the general class of integrals containing multicenter products of 1s hydrogenic orbitals, Coulomb or Yukawa potentials, and plane waves, are replaced by the one-dimensional Gaussian transformation. This reduces the previously required double-diagonalization of the quadratic form of the multicenter integrals to only one diagonalization, yielding a simpler reduced form of the integral. The present work also extends the result to include all s states and pairs of states with l not equal to zero summed over the m quantum number.

  6. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  7. Harnessing modified manganin technique to study processes of explosive transformation in pyrotechnic compositions

    NASA Astrophysics Data System (ADS)

    Batalov, Sergei

    2005-07-01

    The paper reviews results of the experimental study of explosive transformation in pyrotechnic compositions with modified manganin technique. In particular, experimental data on pressure profiles recorded with tiny manganin sensors are cited to characterize the effect of parameters of the loading pulse, dispersion and density on peculiarities of explosive transformation in studied pyrotechnic pieces under shock-wave initiation. In the paper are shown the experimental pressure profiles, characteristic for processes of explosive transformation of extended delay. The experimental results prove the effect of density variation of the specimens under study on the process of the explosive transformation. It is felt that for given range of pressures of the incoming shock wave the difference of the explosive transformation history, at equal parameters of loading pulse, is caused also by different dispersion of the initial powder and final porosity of studied specimens. The experimental results provide support for possibility of use of tiny manganin and constantan sensors in studying processes of explosive transformation of pyrotechnic compositions under initiation by divergent shock waves of large curve front and slumping pressure profile.

  8. Integrative Approach for a Transformative Freshman-Level STEM Curriculum

    PubMed Central

    Curran, Kathleen L.; Olsen, Paul E.; Nwogbaga, Agashi P.; Stotts, Stephanie

    2016-01-01

    In 2014 Wesley College adopted a unified undergraduate program of evidence-based high-impact teaching practices. Through foundation and federal and state grant support, the college completely revised its academic core curriculum and strengthened its academic support structures by including a comprehensive early alert system for at-risk students. In this core, science, technology, engineering, and mathematics (STEM) faculty developed fresh manifestations of integrated concept-based introductory courses and revised upper-division STEM courses around student-centered learning. STEM majors can participate in specifically designed paid undergraduate research experiences in directed research elective courses. Such a college-wide multi-tiered approach results in institutional cultural change. PMID:27064213

  9. Darboux Transformation for the Vector Sine-Gordon Equation and Integrable Equations on a Sphere

    NASA Astrophysics Data System (ADS)

    Mikhailov, Alexander V.; Papamikos, Georgios; Wang, Jing Ping

    2016-07-01

    We propose a method for construction of Darboux transformations, which is a new development of the dressing method for Lax operators invariant under a reduction group. We apply the method to the vector sine-Gordon equation and derive its Bäcklund transformations. We show that there is a new Lax operator canonically associated with our Darboux transformation resulting an evolutionary differential-difference system on a sphere. The latter is a generalised symmetry for the chain of Bäcklund transformations. Using the re-factorisation approach and the Bianchi permutability of the Darboux transformations, we derive new vector Yang-Baxter map and integrable discrete vector sine-Gordon equation on a sphere.

  10. Stability of numerical integration techniques for transient rotor dynamics

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1977-01-01

    A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.

  11. Cost-Optimal Design of a 3-Phase Core Type Transformer by Gradient Search Technique

    NASA Astrophysics Data System (ADS)

    Basak, R.; Das, A.; Sensarma, A. K.; Sanyal, A. N.

    2014-04-01

    3-phase core type transformers are extensively used as power and distribution transformers in power system and their cost is a sizable proportion of the total system cost. Therefore they should be designed cost-optimally. The design methodology for reaching cost-optimality has been discussed in details by authors like Ramamoorty. It has also been discussed in brief in some of the text-books of electrical design. The paper gives a method for optimizing design, in presence of constraints specified by the customer and the regulatory authorities, through gradient search technique. The starting point has been chosen within the allowable parameter space the steepest decent path has been followed for convergence. The step length has been judiciously chosen and the program has been maneuvered to avoid local minimal points. The method appears to be best as its convergence is quickest amongst different optimizing techniques.

  12. Transformation of full 4 × 4 Mueller matrices: a quantitative technique for biomedical diagnosis

    NASA Astrophysics Data System (ADS)

    He, Honghui; Chang, Jintao; He, Chao; Ma, Hui

    2016-03-01

    Polarization images contain abundant microstructural information of samples. Recently, as a comprehensive description of the structural and optical properties of complex media, the Mueller matrix imaging has been widely applied to biomedical studies, especially cancer detections. In previous works, we proposed a technique to transform the backscattering 3 × 3 Mueller matrices into a group of quantitative parameters with clear relationships to specific microstructures. In this paper, we extend this transformation method to full 4 × 4 Mueller matrices of both the back and forward scattering directions. Using the experimental results of phantoms and Monte Carlo simulation based on the sphere-cylinder birefringence model, we fit the Mueller matrix elements to trigonometric curves in polar coordinates and obtain a new set of transformation parameters, which can be expressed as analytical functions of 16 Mueller matrix elements. Both the experimental and simulated results demonstrate that the transformation parameters have simple relationships to the characteristic microstructural properties, including the densities and orientations of fibrous structures, the sizes of the scatterers, and the depolarization power of the samples. We also apply the transformation parameters of full 4 × 4 Mueller matrices to human liver cancerous tissues. Preliminary imaging results show that the parameters can quantitatively reflect the formation of fibrous birefringent tissues accompanying the cancerous processes. The findings presented in this study can be useful for in vivo or in vitro polarization imaging of tissues for diagnostic applications.

  13. Simple technique of Fourier-transform holographic microscope with compensation of phase aberration

    NASA Astrophysics Data System (ADS)

    Grishin, Oleg V.; Fedosov, Ivan V.; Tuchin, Valery V.

    2016-04-01

    In this paper, we present a novel simple technique of Fourier-transform holographic microscopy (FTHM). Simplicity of the scheme, possibility to use a small image sensor and provide compensation of aberration, enable one to construct inexpensive holographic microscopes. We experimentally compare FTHM with in-line holographic microscopy. In this paper, we present experimental scheme of FTHM, description of used algorithms and experimental results for an amplitude test object and biological samples (blood smears).

  14. Joint transform correlator based on CIELAB model with encoding technique for color pattern recognition

    NASA Astrophysics Data System (ADS)

    Lin, Tiengsheng; Chen, Chulung; Liu, Chengyu; Chen, Yuming

    2010-10-01

    The CIELAB standard color vision model instead of the traditional RGB color model is utilized for polychromatic pattern recognition. The image encoding technique is introduced. The joint transform correlator is set to be the optical configuration. To achieve the distortion invariance in discrimination processes, we have used the minimum average correlation energy approach to yield sharp correlation peak. From the numerical results, it is found that the recognition ability based on CIELAB color specification system is accepted.

  15. Fast X-ray microdiffraction techniques for studying irreversible transformations in materials

    PubMed Central

    Kelly, Stephen T.; Trenkle, Jonathan C.; Koerner, Lucas J.; Barron, Sara C.; Walker, Nöel; Pouliquen, Philippe O.; Tate, Mark W.; Gruner, Sol M.; Dufresne, Eric M.; Weihs, Timothy P.; Hufnagel, Todd C.

    2011-01-01

    A pair of techniques have been developed for performing time-resolved X-ray microdiffraction on irreversible phase transformations. In one technique capillary optics are used to focus a high-flux broad-spectrum X-ray beam to a 60 µm spot size and a fast pixel array detector is used to achieve temporal resolution of 55 µs. In the second technique the X-rays are focused with Kirkpatrick–Baez mirrors to achieve a spatial resolution better than 10 µm and a fast shutter is used to provide temporal resolution better than 20 µs while recording the diffraction pattern on a (relatively slow) X-ray CCD camera. Example data from experiments are presented where these techniques are used to study self-propagating high-temperature synthesis reactions in metal laminate foils. PMID:21525656

  16. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  17. Helicity is the only integral invariant of volume-preserving transformations.

    PubMed

    Enciso, Alberto; Peralta-Salas, Daniel; de Lizaur, Francisco Torres

    2016-02-23

    We prove that any regular integral invariant of volume-preserving transformations is equivalent to the helicity. Specifically, given a functional I defined on exact divergence-free vector fields of class C(1) on a compact 3-manifold that is associated with a well-behaved integral kernel, we prove that I is invariant under arbitrary volume-preserving diffeomorphisms if and only if it is a function of the helicity. PMID:26864201

  18. Helicity is the only integral invariant of volume-preserving transformations

    PubMed Central

    Enciso, Alberto; Peralta-Salas, Daniel; de Lizaur, Francisco Torres

    2016-01-01

    We prove that any regular integral invariant of volume-preserving transformations is equivalent to the helicity. Specifically, given a functional ℐ defined on exact divergence-free vector fields of class C1 on a compact 3-manifold that is associated with a well-behaved integral kernel, we prove that ℐ is invariant under arbitrary volume-preserving diffeomorphisms if and only if it is a function of the helicity. PMID:26864201

  19. Slit Function Measurement of An Imaging Spectrograph Using Fourier Transform Techniques

    NASA Technical Reports Server (NTRS)

    Park, Hongwoo; Swimyard, Bruce; Jakobsen, Peter; Moseley, Harvey; Greenhouse, Matthew

    2004-01-01

    Knowledge of a spectrograph slit function is necessary to interpret the unresolved lines in an observed spectrum. A theoretical slit function can be calculated from the sizes of the entrance slit, the detector aperture when it functions as an exit slit, the dispersion characteristic of the disperser, and the point spread function of the spectrograph. A measured slit function is preferred to the theoretical one for the correct interpretation of the spectral data. In a scanning spectrometer with a single exit slit, the slit function is easily measured. In a fixed grating/or disperser spectrograph, illuminating the entrance slit with a near monochromatic light from a pre-monochrmator or a tunable laser and varying the wavelength of the incident light can measure the slit function. Even though the latter technique had been used successfully for the slit function measurements, it had been very laborious and it would be prohibitive to an imaging spectrograph or a multi-object spectrograph that has a large field of view. We explore an alternative technique that is manageable for the measurements. In the proposed technique, the imaging spectrograph is used as a detector of a Fourier transform spectrometer. This method can be applied not only to an IR spectrograph but also has a potential to a visible/UV spectrograph including a wedge filter spectrograph. This technique will require a blackbody source of known temperature and a bolometer to characterize the interferometer part of the Fourier Transform spectrometer. This pa?er will describe the alternative slit function measurement technique using a Fourier transform spectrometer.

  20. Integration or transformation? Looking in the future of Information and Communication Technology in education in Vietnam.

    PubMed

    Peeraer, Jef; Van Petegem, Peter

    2015-02-01

    Over the last two decades, crucial factors for Information and Communication Technology (ICT) in education have improved significantly in Vietnam. Nevertheless, it is clear that, as in other countries, no educational revolution is taking place. We argue that there is a need for a broad dialogue on the future of ICT in education in Vietnam as discussion of ideas about future possibilities can be instrumental in rationalizing and generating educational change. We explore how a group of key players representing the public and private sector as well as development partners in the field look at the future of ICT in education in the country. Following the Delphi method, these key players assessed in different survey rounds the current situation of ICT in education, identified a series of targets and were asked to assess these targets in respect of their importance. The key players reached a consensus that the purpose of technology integration is to achieve learning goals and enhance learning. However, there is more controversy on targets that could potentially transform education practice in Vietnam. We discuss the value of the Delphi technique and argue for increased participation of all involved stakeholders in policy development on ICT in education. PMID:25305806

  1. Integrated Surveying Techniques for Sensitive Areas: San Felice Sul Panaro

    NASA Astrophysics Data System (ADS)

    Ballarin, M.; Buttolo, V.; Guerra, F.; Vernier, P.

    2013-07-01

    The last few years have marked an exponential growth in the use of electronic and computing technologies that opened new possibilities and new scenarios in the Geomatic field. This evolution of tools and methods has led to new ways of approaching survey. For what concerns architecture, the new tools for survey acquisition and 3D modelling allow the representation of an object through a digital model, combining the visual potentials of images, normally used for documentation, with the precision of a metric survey. This research focuses on the application of these new technologies and methodologies on sensitive areas, such as portions of the cities affected by earthquakes. In this field the survey is intended to provide a useful support for other structural analysis, in conservation as well as for restoration studies. However, survey in architecture is still a very complex operation both from a methodological and a practical point of view: it requires a critical interpretation of the artefacts and a deep knowledge of the existing techniques and technologies, which often are very different but need to be integrated within a single general framework. This paper describes the first results of the survey conducted on the church of San Geminiano in San Felice sul Panaro (Modena). Here, different tools and methods were used, in order to create a new system that integrates the most recent and cutting-edge technologies in the Geomatic field. The methodologies used were laser scanning, UAV photogrammetry and topography for the definition of the reference system. The present work will focus on the data acquisition and processing whit these techniques and their integration.

  2. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    SciTech Connect

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.; Coleman, Andre M.; Ward, Duane L.; Droppo, James G.; Meyer, Philip D.; Dorow, Kevin E.; Taira, Randal Y.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed. The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and

  3. Integrated testlets and the immediate feedback assessment technique

    NASA Astrophysics Data System (ADS)

    Slepkov, Aaron D.

    2013-10-01

    We describe how an answer-until-correct multiple-choice (MC) response format allows for the construction of fully multiple-choice examinations designed to operate much as a hybrid between standard MC and constructed-response (CR) testing. With this tool—the immediate feedback assessment technique (IF-AT)—students gain complete knowledge of the correct answer for each question during the examination and can use such information for solving subsequent test items. This feature allows for the creation of a new type of context-dependent item set: the "integrated testlet." In an integrated testlet, certain items are purposefully inter-dependent and are thus presented in a particular order. Such integrated testlets represent a proxy of typical CR questions, but with a straightforward and uniform marking scheme that also allows for granting partial credit for proximal knowledge. As proof-of-principle, we present a case study of an IF-AT-scored midterm and final examination for an introductory physics course and discuss specific testlets possessing varying degrees of integration. In total, the polychotomously scored items are found to allow for excellent discrimination, with a mean item-total correlation measure for the combined 45 items of the two examinations of r¯'=0.41±0.13 (mean ± standard deviation) and a final examination test reliability of α = 0.82 (n = 25 items). Furthermore, partial credit is shown to be allocated in a discriminating and valid manner in these examinations. As has been found in other disciplines, the reaction of undergraduate physics students to the IF-AT is highly positive, further motivating its expanded use in formal classroom assessments.

  4. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  5. A system for multi-locus chromosomal integration and transformation-free selection marker rescue

    PubMed Central

    Siddiqui, Michael S.; Choksi, Atri; Smolke, Christina D.

    2014-01-01

    Yeast integrating plasmids (YIPs) are a versatile tool for stable integration in Saccharomyces cerevisiae. However, current YIP systems necessitate time- and labor-intensive methods for cloning and selection marker rescue. Here we describe the design, construction, and validation of a new YIP system capable of accelerating the stable integration of multiple expression constructs into different loci in the yeast S. cerevisiae. These “directed pop-out” plasmids enable a simple, two-step integration protocol that results in a scarless integration alongside a complete rescue of the selection marker. These plasmids combine three key features: a dedicated “YIPout” fragment directs a recombination event that rescues the selection marker while avoiding undesired excision of the target DNA sequence, a multi-fragment modular DNA assembly system simplifies cloning, and a new set of counterselectable markers enables serial integration followed by a transformation-free marker rescue event. We constructed and tested directed pop-out YIPs for integration of fluorescent reporter genes into four yeast loci. We validated our new YIP design by integrating three reporter genes into three different loci with transformation-free rescue of selection markers. These new YIP designs will facilitate the construction of yeast strains that express complex heterologous metabolic pathways. PMID:25226817

  6. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  7. Innovative use of the integrative review to evaluate evidence of technology transformation in healthcare.

    PubMed

    Phillips, Andrew B; Merrill, Jacqueline A

    2015-12-01

    Healthcare is in a period significant transformational activity through the accelerated adoption of healthcare technologies, new reimbursement systems that emphasize shared savings and care coordination, and the common place use of mobile technologies by patients, providers, and others. The complexity of healthcare creates barriers to transformational activity and has the potential to inhibit the desired paths toward change envisioned by policymakers. Methods for understanding how change is occurring within this complex environment are important to the evaluation of delivery system reform and the role of technology in healthcare transformation. This study examines the use on an integrative review methodology to evaluate the healthcare literature for evidence of technology transformation in healthcare. The methodology integrates the evaluation of a broad set of literature with an established evaluative framework to develop a more complete understanding of a particular topic. We applied this methodology and the framework of punctuated equilibrium (PEq) to the analysis of the healthcare literature from 2004 to 2012 for evidence of technology transformation, a time during which technology was at the forefront of healthcare policy. The analysis demonstrated that the established PEq framework applied to the literature showed considerable potential for evaluating the progress of policies that encourage healthcare transformation. Significant inhibitors to change were identified through the integrative review and categorized into ten themes that describe the resistant structure of healthcare delivery: variations in the environment; market complexity; regulations; flawed risks and rewards; change theories; barriers; ethical considerations; competition and sustainability; environmental elements, and internal elements. We hypothesize that the resistant nature of the healthcare system described by this study creates barriers to the direct consumer involvement and engagement

  8. An integrated sensing technique for smart monitoring of water pipelines

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  9. Classification of the quantum two-dimensional superintegrable systems with quadratic integrals and the Staeckel transforms

    SciTech Connect

    Daskaloyannis, C. Tanoudis, Y.

    2008-05-15

    The two-dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar to the classical ones multiplied by a quantum coefficient -{h_bar}{sup 2} plus a quantum deformation of order {h_bar}{sup 4} and {h_bar}{sup 6}. The systems inside the classes are transformed using Staeckel transforms in the quantum case as in the classical case. The general form of the Staeckel transform between superintegrable systems is discussed.

  10. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  11. Modern integral equation techniques for quantum reactive scattering theory

    SciTech Connect

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H{sub 2} {yields} H{sub 2}/DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H{sub 2} state resolved integral cross sections {sigma}{sub v{prime}j{prime},vj}(E) for the transitions (v = 0,j = 0) to (v{prime} = 1,j{prime} = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence.

  12. Integration of geological remote-sensing techniques in subsurface analysis

    USGS Publications Warehouse

    Taranik, James V.; Trautwein, Charles M.

    1976-01-01

    Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.

  13. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation

    PubMed Central

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi (“truffles”) with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  14. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  15. Single image orthogonal fringe technique for resolution enhancement of the Fourier transform fringe analysis method

    NASA Astrophysics Data System (ADS)

    Tavares, Paulo J.; Vaz, Mário A. P.

    2013-03-01

    Gradient range and spatial resolution in Fourier Transform Profilometry depend on the size of the filter window in reciprocal space. The proposed methods to date for the elimination of the fundamental frequency and enlargement of the filter window are either too computationally complex or depend on the possibility of using two frames, thus disabling the method's ability to cope with dynamic situations and subjecting the results to possible intensity changes between the two frame acquisitions. This article describes a simple method for using a single crossed fringe pattern to accomplish that objective, greatly improving the previously reported technique, whilst retaining its main advantages.

  16. Variable transformations and Gauss-Legendre quadrature for integrals with endpoint singularities

    NASA Astrophysics Data System (ADS)

    Sidi, Avram

    2009-09-01

    Gauss-Legendre quadrature formulas have excellent convergence properties when applied to integrals int^1_0f(x) dx with fin C^infty[0,1] . However, their performance deteriorates when the integrands f(x) are in C^infty(0,1) but are singular at x=0 and/or x=1 . One way of improving the performance of Gauss-Legendre quadrature in such cases is by combining it with a suitable variable transformation such that the transformed integrand has weaker singularities than those of f(x) . Thus, if x=psi(t) is a variable transformation that maps [0,1] onto itself, we apply Gauss-Legendre quadrature to the transformed integral int^1_{0}f(psi(t))psi'(t) dt , whose singularities at t=0 and/or t=1 are weaker than those of f(x) at x=0 and/or x=1 . In this work, we first define a new class of variable transformations we denote widetilde{mathcal{S}}_{p,q} , where p and q are two positive parameters that characterize it. We also give a simple and easily computable representative of this class. Next, by invoking some recent results by the author concerning asymptotic expansions of Gauss-Legendre quadrature approximations as the number of abscissas tends to infinity, we present a thorough study of convergence of the combined approximation procedure, with variable transformations from widetilde{mathcal{S}}_{p,q} . We show how optimal results can be obtained by adjusting the parameters p and q of the variable transformation in an appropriate fashion. We also give numerical examples that confirm the theoretical results.

  17. Ontology for Transforming Geo-Spatial Data for Discovery and Integration of Scientific Data

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Minnis, P.

    2013-12-01

    Discovery and access to geo-spatial scientific data across heterogeneous repositories and multi-discipline datasets can present challenges for scientist. We propose to build a workflow for transforming geo-spatial datasets into semantic environment by using relationships to describe the resource using OWL Web Ontology, RDF, and a proposed geo-spatial vocabulary. We will present methods for transforming traditional scientific dataset, use of a semantic repository, and querying using SPARQL to integrate and access datasets. This unique repository will enable discovery of scientific data by geospatial bound or other criteria.

  18. Optical spatial heterodyne interferometric Fourier transform technique (OSHIFT) and a resulting interferometer

    NASA Astrophysics Data System (ADS)

    Georges, James A., III

    2007-09-01

    This article reports on the novel patent pending Optical Spatial Heterodyne Interferometric Fourier Transform Technique (the OSHIFT technique), the resulting interferometer also referred to as OSHIFT, and its preliminary results. OSHIFT was borne out of the following requirements: wavefront sensitivity on the order of 1/100 waves, high-frequency wavefront spatial sampling, snapshot 100Hz operation, and the ability to deal with discontinuous wavefronts. The first two capabilities lend themselves to the use of traditional interferometric techniques; however, the last two prove difficult for standard techniques, e.g., phase shifting interferometry tends to take a time sequence of images and most interferometers require estimation of a center fringe across wavefront discontinuities. OSHIFT overcomes these challenges by employing a spatial heterodyning concept in the Fourier (image) plane of the optic-under-test. This concept, the mathematical theory, an autocorrelation view of operation, and the design with results of OSHIFT will be discussed. Also discussed will be future concepts such as a sensor that could interrogate an entire imaging system as well as a methodology to create innovative imaging systems that encode wavefront information onto the image. Certain techniques and systems described in this paper are the subject of a patent application currently pending in the United States Patent Office.

  19. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    PubMed

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies. PMID:23975012

  20. Integrated Personal Health Records: Transformative Tools for Consumer-Centric Care

    PubMed Central

    Detmer, Don; Bloomrosen, Meryl; Raymond, Brian; Tang, Paul

    2008-01-01

    Background Integrated personal health records (PHRs) offer significant potential to stimulate transformational changes in health care delivery and self-care by patients. In 2006, an invitational roundtable sponsored by Kaiser Permanente Institute, the American Medical Informatics Association, and the Agency for Healthcare Research and Quality was held to identify the transformative potential of PHRs, as well as barriers to realizing this potential and a framework for action to move them closer to the health care mainstream. This paper highlights and builds on the insights shared during the roundtable. Discussion While there is a spectrum of dominant PHR models, (standalone, tethered, integrated), the authors state that only the integrated model has true transformative potential to strengthen consumers' ability to manage their own health care. Integrated PHRs improve the quality, completeness, depth, and accessibility of health information provided by patients; enable facile communication between patients and providers; provide access to health knowledge for patients; ensure portability of medical records and other personal health information; and incorporate auto-population of content. Numerous factors impede widespread adoption of integrated PHRs: obstacles in the health care system/culture; issues of consumer confidence and trust; lack of technical standards for interoperability; lack of HIT infrastructure; the digital divide; uncertain value realization/ROI; and uncertain market demand. Recent efforts have led to progress on standards for integrated PHRs, and government agencies and private companies are offering different models to consumers, but substantial obstacles remain to be addressed. Immediate steps to advance integrated PHRs should include sharing existing knowledge and expanding knowledge about them, building on existing efforts, and continuing dialogue among public and private sector stakeholders. Summary Integrated PHRs promote active, ongoing

  1. Dilatometric technique for evaluation of the kinetics of solid-state transformation of maraging steel

    SciTech Connect

    Viswanathan, U.K.; Kutty, T.R.G.; Ganguly, C.

    1993-12-01

    Solid-state transformation kinetics of a 350 grad commercial maraging steel were investigated using a nonisothermal dilatometric technique. Two solid-state reactions -- namely, precipitation of intermetallic phases from supersaturated martensite and reversion of martensite to austenite -- were identified. Determination was made of the temperatures at which the rates of these reactions reached a maximum at different heating rates. The kinetics of the individual reactions in terms of activation energy were analyzed by simplified procedures based on the Kissinger equation. An estimated activation energy of 145 {+-} 4 kJ/mol for the precipitation of intermetallic phase was in good agreement with reported results based on the isothermal hardness measurement technique. Martensite to austenite reversion was associated with an activation energy of 224 {+-} 4 kJ/mol, which is very close to the activation energy for diffusion of substitutional elements in ferrite. Results were supplemented with microstructural analysis.

  2. Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa

    1994-01-01

    Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.

  3. Constrained tone transformation technique for separation and combination of Mandarin tone and intonation.

    PubMed

    Ni, Jinfu; Kawai, Hisashi; Hirose, Keikichi

    2006-03-01

    This paper addresses a classical but important problem: The coupling of lexical tones and sentence intonation in tonal languages, such as Chinese, focusing particularly on voice fundamental frequency (F1) contours of speech. It is important because it forms the basis of speech synthesis technology and prosody analysis. We provide a solution to the problem with a constrained tone transformation technique based on structural modeling of the F1 contours. This consists of transforming target values in pairs from norms to variants. These targets are intended to sparsely specify the prosodic contributions to the F1 contours, while the alignment of target pairs between norms and variants is based on underlying lexical tone structures. When the norms take the citation forms of lexical tones, the technique makes it possible to separate sentence intonation from observed F0 contours. When the norms take normative F0 contours, it is possible to measure intonation variations from the norms to the variants, both having identical lexical tone structures. This paper explains the underlying scientific and linguistic principles and presents an algorithm that was implemented on computers. The method's capability of separating and combining tone and intonation is evaluated through analysis and re-synthesis of several hundred observed F0 contours. PMID:16583918

  4. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.

    PubMed Central

    Mello, C C; Kramer, J M; Stinchcomb, D; Ambros, V

    1991-01-01

    We describe a dominant behavioral marker, rol-6(su-1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double-strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single-stranded oligonucleotide was co-injected with the double-stranded DNA. Images PMID:1935914

  5. Integration of Geomatic Techniques for the Urban Cavity Survey

    NASA Astrophysics Data System (ADS)

    Deidda, M.; Sanna, G.

    2013-07-01

    Cagliari, county seat of Sardinia Region (Italy), situated in the southern part of the island, is characterized by a subsoil full of cavities. The excavations in fact, which lasted more than 4000 years, had a great development due also to the special geological characteristics of the city subsoil. The underground voids, which the city is rich in, belong to different classes such as hydraulic structures (aqueducts, cisterns, wells, etc.), settlement works (tunnels, bomb shelters, tombs etc.) and various works (quarries, natural caves, etc.). This paper describes the phases of the survey of a large cavity below a high-traffic square near the Faculty of Engineering in the city of Cagliari, where the research team works. The cave, which is part of a larger complex, is important because it was used in the thirteenth century (known as the Pisan age) as a stone quarry. There are traces of this activity that have to be protected. Moreover, during the last forty years the continuous crossover of vehicles cracked the roof of the cave compromising the stability of the entire area. Consequently a plan was developed to make the whole cavity safe and usable for visits. The study of the safety of the cave has involved different professionals among which geologists, engineers, constructors. The goal of the University of Cagliari geomatic team was to solve two problems: to obtain geometrical information about the void and correctly place the cave in the context of existing maps. The survey and the products, useful for the investigation of the technicians involved, had to comply with tolerances of 3 cm in the horizontal and 5 cm in the vertical component. The approach chosen for this purpose was to integrate different geomatic techniques. The cave was surveyed using a laser scanner (Faro Photon 80) in order to obtain a 3D model of the cave from which all the geometrical information was derived, while both classic topography and GPS techniques were used to include the cave in the

  6. Renal Graft Fibrosis and Inflammation Quantification by an Automated Fourier-Transform Infrared Imaging Technique.

    PubMed

    Vuiblet, Vincent; Fere, Michael; Gobinet, Cyril; Birembaut, Philippe; Piot, Olivier; Rieu, Philippe

    2016-08-01

    Renal interstitial fibrosis and interstitial active inflammation are the main histologic features of renal allograft biopsy specimens. Fibrosis is currently assessed by semiquantitative subjective analysis, and color image analysis has been developed to improve the reliability and repeatability of this evaluation. However, these techniques fail to distinguish fibrosis from constitutive collagen or active inflammation. We developed an automatic, reproducible Fourier-transform infrared (FTIR) imaging-based technique for simultaneous quantification of fibrosis and inflammation in renal allograft biopsy specimens. We generated and validated a classification model using 49 renal biopsy specimens and subsequently tested the robustness of this classification algorithm on 166 renal grafts. Finally, we explored the clinical relevance of fibrosis quantification using FTIR imaging by comparing results with renal function at 3 months after transplantation (M3) and the variation of renal function between M3 and M12. We showed excellent robustness for fibrosis and inflammation classification, with >90% of renal biopsy specimens adequately classified by FTIR imaging. Finally, fibrosis quantification by FTIR imaging correlated with renal function at M3, and the variation in fibrosis between M3 and M12 correlated well with the variation in renal function over the same period. This study shows that FTIR-based analysis of renal graft biopsy specimens is a reproducible and reliable label-free technique for quantifying fibrosis and active inflammation. This technique seems to be more relevant than digital image analysis and promising for both research studies and routine clinical practice. PMID:26683669

  7. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    PubMed Central

    Zhao, Guoliang; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897

  8. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    ERIC Educational Resources Information Center

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  9. An integrating current transformer for fast extraction from the HIRFL-CSR main ring

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Xia; Zheng, Jian-Hua; Zhao, Tie-Cheng; Mao, Rui-Shi; Yin, Yan; Yuan, You-Jin; Yang, Jian-Cheng

    2010-01-01

    For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always an important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.

  10. Improved parallel solution techniques for the integral transport matrix method

    SciTech Connect

    Zerr, Robert J; Azmy, Yousry Y

    2010-11-23

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution by up to {approx}50% when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing case are opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block preconditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

  11. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  12. Integration of remote sensing and geophysical techniques for coastal monitoring

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Loperte, A.; Satriani, A.; Imbrenda, V.; D'Emilio, M.; Guariglia, A.

    2009-04-01

    Coastal areas are of great environmental, economic, social, cultural and recreational relevance; therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both the marine and terrestrial components (ICZM-EU initiative). We implemented an integrated study based on remote sensing and geophysical techniques for monitoring a coastal area located along the Ionian side of Basilicata region (Southern Italy). This area, between the Bradano and Basento river mouths, is mainly characterized by a narrow shore (10-30 m) of fine sandy formations and by a pine forest planted in the first decade of 50's in order to preserve the coast and the inland cultivated areas. Due to drought and fire events and saltwater intrusion phenomena, such a forest is affected by a strong decline with consequent environmental problems. Multispectral satellite data were adopted for evaluating the spatio-temporal features of coastal vegetation and the structure of forested patterns. The increase or decrease in vegetation activity was analyzed from trends estimated on a time series of NDVI (Normalized Difference Vegetation Index) maps. The fragmentation/connection levels of vegetated patterns was assessed form a set of landscape ecology metrics elaborated at different structure scales (patch, class and landscape) on satellite cover classifications. Information on shoreline changes were derived form a multi-source data set (satellite data, field-GPS surveys and Aerial Laser Scanner acquisitions) by taking also into account tidal effects. Geophysical campaigns were performed for characterizing soil features and limits of salty water infiltrations. Form vertical resistivity soundings (VES), soil resistivity maps at different a deeps (0

  13. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application. PMID:26405924

  14. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform.

    PubMed

    Lu, Shukuan; Xu, Shanshan; Liu, Runna; Hu, Hong; Wan, Mingxi

    2016-08-01

    In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods. PMID:27586732

  15. Esophageal Cancer Dose Escalation Using a Simultaneous Integrated Boost Technique

    SciTech Connect

    Welsh, James; Palmer, Matthew B.; Ajani, Jaffer A.; Liao Zhongxing; Swisher, Steven G.; Hofstetter, Wayne L.; Allen, Pamela K.; Settle, Steven H.; Gomez, Daniel; Likhacheva, Anna; Cox, James D.; Komaki, Ritsuko

    2012-01-01

    Purpose: We previously showed that 75% of radiation therapy (RT) failures in patients with unresectable esophageal cancer are in the gross tumor volume (GTV). We performed a planning study to evaluate if a simultaneous integrated boost (SIB) technique could selectively deliver a boost dose of radiation to the GTV in patients with esophageal cancer. Methods and Materials: Treatment plans were generated using four different approaches (two-dimensional conformal radiotherapy [2D-CRT] to 50.4 Gy, 2D-CRT to 64.8 Gy, intensity-modulated RT [IMRT] to 50.4 Gy, and SIB-IMRT to 64.8 Gy) and optimized for 10 patients with distal esophageal cancer. All plans were constructed to deliver the target dose in 28 fractions using heterogeneity corrections. Isodose distributions were evaluated for target coverage and normal tissue exposure. Results: The 50.4 Gy IMRT plan was associated with significant reductions in mean cardiac, pulmonary, and hepatic doses relative to the 50.4 Gy 2D-CRT plan. The 64.8 Gy SIB-IMRT plan produced a 28% increase in GTV dose and comparable normal tissue doses as the 50.4 Gy IMRT plan; compared with the 50.4 Gy 2D-CRT plan, the 64.8 Gy SIB-IMRT produced significant dose reductions to all critical structures (heart, lung, liver, and spinal cord). Conclusions: The use of SIB-IMRT allowed us to selectively increase the dose to the GTV, the area at highest risk of failure, while simultaneously reducing the dose to the normal heart, lung, and liver. Clinical implications warrant systematic evaluation.

  16. Measurements of solar magnetic fields by Fourier transform techniques. II - Saturated and blended lines

    NASA Technical Reports Server (NTRS)

    Tarbell, T. D.; Title, A. M.

    1976-01-01

    Fourier techniques have been exhaustively calibrated using Unno's (1956) results for the absorption profile of a simple Zeeman triplet. If a simple transformation is applied to the normalized line depths, then magnetic-field strengths and inclination angles can be measured very accurately from noisy saturated line profiles. Systematic errors caused by saturation effects can be estimated and reduced by varying one parameter. When a significant fraction of the line profile is unsplit and unpolarized, large errors may be made in measurements of low fields, unless the line is sufficiently weak. For a weak line, a vertical field of 1600 gauss can be measured to 10% accuracy even when 70% of the line profile is stray light. These stray-light errors are troublesome in measuring fields of gaps and pores but not sunspots. Numerical results of the error analysis are presented graphically.

  17. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  18. The use of near infrared Fourier Transform techniques in the study of surface enhanced Raman spectra

    NASA Astrophysics Data System (ADS)

    Fleischmann, M.; Sockalingum, D.; Musiani, M. M.

    Near infrared Fourier Transform Raman spectroscopy has been used to study the SERS of a number of electrode-solution interfaces. These measurements are illustrated by the following examples: the adsorption of pyridine on Ag, Cu and An surfaces; the adsorption of ferri- and ferrocyanide ions on An electrodes in two different support electrolytes; the behaviour of the corrosion inhibitors benzotriazole and 2-aminopyrimidine at Cu surfaces. Measurements of the DSERS spectra of pyridine at Ag electrodes and of normal Raman spectra of pyridine at Pt electrodes are also reported. The results are also compared with data taken by conventional methods in the visible region and the advantages of this newly developed technique are assessed.

  19. Estimation of petrophysical and fluid properties using integral transforms in nuclear magnetic resonance.

    PubMed

    Gruber, Fred K; Venkataramanan, Lalitha; Habashy, Tarek M; Freed, Denise E

    2013-03-01

    In the past decade, low-field NMR relaxation and diffusion measurements in grossly inhomogeneous fields have been used to characterize properties of porous media, e.g., porosity and permeability. Pulse sequences such as CPMG, inversion and saturation recovery as well as diffusion editing have been used to estimate distribution functions of relaxation times and diffusion. Linear functionals of these distribution functions have been used to predict petro-physical and fluid properties like permeability, viscosity, fluid typing, etc. This paper describes an analysis method using integral transforms to directly compute linear functionals of the distributions of relaxation times and diffusion without first computing the distributions from the measured magnetization data. Different linear functionals of the distribution function can be obtained by choosing appropriate kernels in the integral transforms. There are two significant advantages of this approach over the traditional algorithm involving inversion of the distribution function from the measured data. First, it is a direct linear transform of the data. Thus, in contrast to the traditional analysis which involves inversion of an ill-conditioned, non-linear problem, the estimates from this new method are more accurate. Second, the uncertainty in the linear functional can be obtained in a straight-forward manner as a function of the signal-to-noise ratio (SNR) in the measured data. We demonstrate the performance of this method on simulated data. PMID:23369701

  20. Transformation of Chloroplast Ribosomal RNA Genes in Chlamydomonas: Molecular and Genetic Characterization of Integration Events

    PubMed Central

    Newman, S. M.; Boynton, J. E.; Gillham, N. W.; Randolph-Anderson, B. L.; Johnson, A. M.; Harris, E. H.

    1990-01-01

    Transformation of chloroplast ribosomal RNA (rRNA) genes in Chlamydomonas has been achieved by the biolistic process using cloned chloroplast DNA fragments carrying mutations that confer antibiotic resistance. The sites of exchange employed during the integration of the donor DNA into the recipient genome have been localized using a combination of antibiotic resistance mutations in the 16S and 23S rRNA genes and restriction fragment length polymorphisms that flank these genes. Complete or nearly complete replacement of a region of the chloroplast genome in the recipient cell by the corresponding sequence from the donor plasmid was the most common integration event. Exchange events between the homologous donor and recipient sequences occurred preferentially near the vector:insert junctions. Insertion of the donor rRNA genes and flanking sequences into one inverted repeat of the recipient genome was followed by intramolecular copy correction so that both copies of the inverted repeat acquired identical sequences. Increased frequencies of rRNA gene transformants were achieved by reducing the copy number of the chloroplast genome in the recipient cells and by decreasing the heterology between donor and recipient DNA sequences flanking the selectable markers. In addition to producing bona fide chloroplast rRNA transformants, the biolistic process induced mutants resistant to low levels of streptomycin, typical of nuclear mutations in Chlamydomonas. PMID:1981764

  1. Remote and terrestrial ground monitoring techniques integration for hazard assessment in mountain areas

    NASA Astrophysics Data System (ADS)

    Chinellato, Giulia; Kenner, Robert; Iasio, Christian; Mair, Volkmar; Mosna, David; Mulas, Marco; Phillips, Marcia; Strada, Claudia; Zischg, Andreas

    2014-05-01

    In high mountain regions the choice of appropriate sites for infrastructure such as roads, railways, cable cars or hydropower dams is often very limited. In parallel, the increasing demand for supply infrastructure in the Alps induces a continuous transformation of the territory. The new role played by the precautionary monitoring in the risk governance becomes fundamental and may overcome the modeling of future events, which represented so far the predominant approach to these sort of issues. Furthermore the consequence of considering methodologies alternative to those more exclusive allow to reduce costs and increasing the frequency of measurements, updating continuously the cognitive framework of existing hazard condition in most susceptible territories. The scale factor of the observed area and the multiple purpose of such regional ordinary surveys make it convenient to adopt Radar Satellite-based systems, but they need to be integrated with terrestrial systems for validation and eventual early warning purposes. Significant progress over the past decade in Remote Sensing (RS), Proximal Sensing and integration-based sensor networks systems now provide technologies, that allow to implement monitoring systems for ordinary surveys of extensive areas or regions, which are affected by active natural processes and slope instability. The Interreg project SloMove aims to provide solutions for such challenges and focuses on using remote sensing monitoring techniques for the monitoring of mass movements in two test sites, in South Tyrol (Italy) and in Grisons Canton (Switzerland). The topics faced in this project concern mass movements and slope deformation monitoring techniques, focusing mainly on the integration of multi-temporal interferometry, new generation of terrestrial technologies for differential digital terrain model elaboration provided by laser scanner (TLS), and GNSS-based topographic surveys, which are used not only for validation purpose, but also for

  2. Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Chvartatskyi, Oleksandr; Dimakis, Aristophanes; Müller-Hoissen, Folkert

    2016-06-01

    We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey-Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima-Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.

  3. Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Chvartatskyi, Oleksandr; Dimakis, Aristophanes; Müller-Hoissen, Folkert

    2016-08-01

    We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey-Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima-Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.

  4. Integrating Literature in Mathematics: A Teaching Technique for Mathematics Teachers

    ERIC Educational Resources Information Center

    Ruiz, Elsa C.; Thornton, Jenifer Salter; Cuero, Kimberley K.

    2010-01-01

    The integration of content areas is not a new concept (Moyer, 2000). Integration is promoted by many teacher educators because of its benefits for learners of all ages and backgrounds (Burns, 2005; Douville, Pugalee, & Wallace, 2003; Pica, 2002). Literacy in general, but reading in particular, is important across the content areas. Mathematics…

  5. Performance of an HDTV codec adopting transform and motion compensation techniques

    NASA Astrophysics Data System (ADS)

    Barbero, Marzio; Cucchi, Silvio; Muratori, Mario

    1991-12-01

    Digital techniques are widely adopted to process the video signal, and nowadays there is the necessity of transmitting conventional and high-definition television signals between different studios. In the near future it could be possible to deliver a digital signal to the consumer. To allow the use of the presently available digital networks and satellites, sophisticated compression techniques have been devised to limit the bit-rate requirements and to provide a high-quality and reliable service. A hybrid predictive/transform system has been devised and implemented in the framework of the European project EU 256. The main parameters of this system are in accordance with those being recommended by ETSI and CMTT for the transmission of conventional component TV. Codecs are available for the TV and HDTV formats presently in use and can operate with a wide range of transmission rates. The optimization of the system and the evaluation of its performance have been carried out on the basis of a large number of subjective tests in accordance with the user requirements specified by the standardization bodies. The codecs have been extensively tested on-field during experimental point-to-multipoint satellite transmission of HDTV signals on the occasion of soccer matches.

  6. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  7. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    PubMed

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent

  8. Transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the genome.

    PubMed

    Oertel, Wolfgang; Wichard, Thomas; Weissgerber, Adelheid

    2015-10-01

    A method for the stable transformation of the green marine macroalga Ulva mutabilis was developed based on vector plasmids integrating into the genome. By combination of the expression signals (promoter, enhancer, and transcriptional termination sequences) of a chromosomal rbcS gene from U. mutabilis with the bleomycin resistance gene (ble) from Streptoalloteichus hindustanus, a dominant selectable marker gene was constructed for the preparation of a series of E. coli-U. mutabilis shuttle vector plasmids. Special vectors were prepared for the introduction and expression of foreign genes in Ulva, for insertional mutagenesis and gene tagging by plasmid integration into the genome, and for protein tagging by the green fluorescent protein, as well as tools for posttranscriptional gene silencing and cosmid cloning to prepare genomic gene libraries for mutant gene complementation. The vectors were successfully tested in pilot experiments, where they were efficiently introduced into Ulva gametes, zoospores or protoplasts of somatic blade cells by treatment with Ca(2+) -ions and polyethylene glycol under isotonic conditions at low ionic strength. The parthenogenetically propagated phleomycin-resistant transformants of the mutant slender (sl) and the wildtype (wt) were demonstrated to be carrying the plasmids randomly integrated into the chromosomes often as tandem repeat clusters. PMID:26986891

  9. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    PubMed

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization. PMID:25629264

  10. Integrated system for image storage, retrieval, and transmission using wavelet transform

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Yawen; Mu, Ray Y.; Yang, Shi-Qiang

    1998-12-01

    Currently, much work has been done in the area of image storage and retrieval. However, the overall performance has been far from practical. A highly integrated wavelet-based image management system is proposed in this paper. By integrating wavelet-based solutions for image compression and decompression, content-based retrieval and progressive transmission, much higher performance can be achieved. The multiresolution nature of the wavelet transform has been proven to be a powerful tool to represent images. The wavelet transform decomposes the image into a set of subimages with different resolutions. From here three solutions for key aspects of image management are reached. The content-based image retrieval (CBIR) features of our system include the color, contour, texture, sample, keyword and topic information of images. The first four features can be naturally extracted from the wavelet transform coefficients. By scoring the similarity of users' requests with images in the database, those who have higher scores are noted and the user receives feedback. Image compression and decompression. Assuming that details at high resolution and diagonal directions are less visible to the human eye, a good compression ratio can be achieved. In each subimage, the wavelet coefficients are vector quantized (VQ), using the LGB algorithm, which is improved in our approach to accelerate the process. Higher compression ratio can be achieved with DPCM and entropy coding method applied together. With YIQ representation, color images can also be effectively compressed. There is a very low load on the network bandwidth by transmitting compressed image data across the network. Progressive transmission is possible by employment of the multiresolution nature of the wavelet, which makes the system respond faster and the user-interface more friendly. The system shows a high overall performance by exploring the excellent features of wavelet, and integrating key aspects of image management. An

  11. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  12. Infrared sequence transformation technique for in situ measurement of thermal diffusivity and monitoring of thermal diffusion

    NASA Astrophysics Data System (ADS)

    Dong, Huilong; Zheng, Boyu; Chen, Feifan

    2015-11-01

    An infrared (IR) sequence transformation technique for visualization of thermal diffusion process and in situ measurement of radial thermal diffusivity is reported. It consists of heating the sample surface instantaneously by an angle-adjustable Gaussian beam and recording the temperature evolution by an IR camera. Compared to common techniques requiring the excitation beam to be fixed approximately perpendicular to the measurement surface, the proposed method allows a dynamic adjustment of the excitation incidence angle according to the actual operating space, which contributes to a fast and efficient in situ measurement approach. To achieve this, a new heat transfer model considering the elliptical distortion of the Gaussian beam caused by tilted incidence is established. Through decoupling analysis it is discovered that the area s surrounded by the maximum temperature curve rTmax (θ) grows linearly over time. The thermal diffusivity can be obtained from the growth rate at any incidence angle. Based on this s-time relation, an automatic thermal diffusivity characterization framework which involves extracting the rTmax (θ) sequence through a distance regularized level set evolution (DRLSE) formulation is proposed. For verification, samples of 304 stainless steel, titanium and zirconium are measured with the excitation incidence angles ranging from 30 ° to 60 ° , and the relative deviations from the literature values are - 6.28 % to 3.27 %, - 3.22 % to 5.79%, and - 1.61 % to 4.03% respectively. Besides, the thermal diffusion process of two typical printed circuit boards (PCBs) are monitored and analyzed visually with this technique.

  13. Standing wave integrated Fourier transform spectrometer for imaging spectrometry in the near infrared

    NASA Astrophysics Data System (ADS)

    Osowiecki, Gaël. D.; Madi, Mohammad; Shorubalko, Ivan; Philipoussis, Irène; Alberti, Edoardo; Scharf, Toralf; Herzig, Hans P.

    2015-09-01

    We show the miniaturization and parallelization of a scanning standing wave spectrometer with a long term goal of creating a compact imaging spectrometer. In our standing wave integrated Fourier transform spectrometer, light is injected with micro-lenses into several optical polymer waveguides. A piezo actuated mirror located at the waveguide end-facet can shift the interferogram to increase its sampling frequency. The spatial distribution of the standing wave intensity inside the waveguide is partially scattered out of the plane by a periodic metallic grating and recorded by a CCD camera. We present spectra acquisition for six adjacent waveguides simultaneously at a wavelength of 632.8 nm.

  14. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis.

    PubMed

    Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-08-24

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response. PMID:26368182

  15. Integrated transformations of plant biomass to valuable chemicals, biodegradable polymers and nanoporous carbons

    NASA Astrophysics Data System (ADS)

    Kuznetsov, B. N.; Chesnokov, N. V.; Taraban'ko, V. E.; Kuznetsova, S. A.; Petrov, A. V.

    2013-03-01

    Integrated transformations of wood biomass to valuable chemicals and materials are described. They include the main biomass components separation, the conversion of cellulose to glucose, levulinic acid, biodegradable polymers and lignin - to nanoporous carbons. For wood fractionation on pure cellulose and low molecular mass lignin the methods of catalytic oxidation and exploded autohydrolysis are used. The processes of acid-catalysed hydrolysis of cellulose to glucose and levulinic acid were optimized. New methods of biodegradable polymers synthesis from lactone of levulinic acid and nanoporous carbons from lignin were suggested.

  16. Time transformations and Cowell's method. [for numerical integration of satellite motion equations

    NASA Technical Reports Server (NTRS)

    Velez, C. E.; Hilinski, S.

    1978-01-01

    The precise numerical integration of Cowell's equations of satellite motion is frequently performed with an independent variable s defined by an equation of the form dt = cr to the n-th power ds, where t represents time, r the radial distance from the center of attraction, c is a constant, and n is a parameter. This has been primarily motivated by the 'uniformizing' effects of such a transformation resulting in desirable 'analytic' stepsize control for elliptical orbits. This report discusses the 'proper' choice of the parameter n defining the independent variable s for various types of orbits and perturbation models, and develops a criterion for its selection.

  17. Large-scale, white-light, transformation optics using integral imaging

    NASA Astrophysics Data System (ADS)

    Oxburgh, Stephen; White, Chris D.; Antoniou, Georgios; Orife, Ejovbokoghene; Sharpe, Tim; Courtial, Johannes

    2016-04-01

    We describe a way to realise transformation-optical devices from structures of micro-structured sheets called generalised confocal lenslet arrays. The resulting devices should work for all visible light, and they should be relatively easy and cheap to (mass-)produce on the scale of metres, but they suffer from field-of-view limitations and significant transmission loss. Furthermore, the mapping between electromagnetic space and physical space is not through stigmatic imaging, but integral imaging. As an example application of this technology, we design and simulate an architectural window that cloaks insulation material with the aim of reducing heat loss.

  18. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  19. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  20. Methane emissions from free-ranging cattle: comparison of tracer and integrated horizontal flux techniques.

    PubMed

    Griffith, David W T; Bryant, Glenn R; Hsu, David; Reisinger, Andy R

    2008-01-01

    Accurate measurements of methane (CH4) emission rates from livestock in their undisturbed natural environments are required to assess their impacts on radiative forcing (i.e., enhanced greenhouse effect) and the environment. Here we compare results from two nonintrusive techniques for the measurement of CH4 emissions from cattle. The cows were kept in an outdoor feeding strip that allowed them to follow natural behavioral patterns but contained them within a well defined space. In the first technique, nitrous oxide (N2O) was released as a tracer at the upwind edge of the feeding strip, and the downwind concentrations of N2O and CH4 were measured simultaneously using Fourier transform infrared (FTIR) spectroscopy. Average CH4 emission per cow was calculated each half-hour on three separate days from the correlation between the two gases. The second technique was the integrated horizontal flux (IHF) or 1-D mass-balance method, in which we used the measured vertical profiles of CH4 concentration and windspeed downwind of the cows to determine the total CH4 emission. Comparing the IHF results to the known release rate of N2O allowed us to test the IHF technique independently. We found agreement within 10% for all comparisons on all days. The daily CH4 emission rate averaged over all tracer and IHF measurements was 342 g CH4 head(-1) d(-1). This is within the range of previous measurements for mature lactating dairy cattle (200-430 g CH4 head(-1) d(-1)) but higher than expected for yearling cattle. The high CH4 emissions are accompanied by high CO2 emissions determined from the FTIR measurements. The bias is most likely due to the measurements being made during and after supplementary feeding of the cattle. PMID:18396544

  1. Detonation discrimination techniques using a Fourier transform infrared spectrometer system and a near-infrared focal plane array

    NASA Astrophysics Data System (ADS)

    Dills, Anthony N.; Gross, Kevin; Perram, Glen P.

    2003-09-01

    To investigate the possibility of battlespace characterization, including the ability to classify munitions type and size, experimental data has been collected remotely from ground-based sensors, processed, and analyzed for several conventional munitions. The spectral, temporal and spatial infrared signatures from bomb detonations were simultaneously recorded using a Bomem MR157 Fourier Transform Infrared Spectrometer and an Indigo Systems Alpha Near-Infrared camera. Three different high explosive materials at three different quantities each were examined in one series of field studies. The FTIR spectra were recorded at 4 cm-1 spectral resolution and 123-ms temporal resolution using both HgCdTd (500-6000 cm-1) and InSb (1800-6000 cm-1) detectors. Novel key features have been identified that will aid in discriminating various types and sizes of flashes. These features include spectral dependent projections of one event's temporal data onto another event's temporal data, time dependence of the fireball size, ratios of specific integrated bands, and spectral dependence of temporal fit constants. Using Fisher discrimination and principal component techniques these features are projected onto a line that maximizes the differences in the classes of flashes and then identify the Bayesian decision boundaries for classification.

  2. Third-order symplectic integration method with inverse time dispersion transform for long-term simulation

    NASA Astrophysics Data System (ADS)

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2016-06-01

    The symplectic integration method is popular in high-accuracy numerical simulations when discretizing temporal derivatives; however, it still suffers from time-dispersion error when the temporal interval is coarse, especially for long-term simulations and large-scale models. We employ the inverse time dispersion transform (ITDT) to the third-order symplectic integration method to reduce the time-dispersion error. First, we adopt the pseudospectral algorithm for the spatial discretization and the third-order symplectic integration method for the temporal discretization. Then, we apply the ITDT to eliminate time-dispersion error from the synthetic data. As a post-processing method, the ITDT can be easily cascaded in traditional numerical simulations. We implement the ITDT in one typical exiting third-order symplectic scheme and compare its performances with the performances of the conventional second-order scheme and the rapid expansion method. Theoretical analyses and numerical experiments show that the ITDT can significantly reduce the time-dispersion error, especially for long travel times. The implementation of the ITDT requires some additional computations on correcting the time-dispersion error, but it allows us to use the maximum temporal interval under stability conditions; thus, its final computational efficiency would be higher than that of the traditional symplectic integration method for long-term simulations. With the aid of the ITDT, we can obtain much more accurate simulation results but with a lower computational cost.

  3. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATION OF THE ELLIPTIC INTEGRAL

    NASA Technical Reports Server (NTRS)

    Wallis, D. E.

    1994-01-01

    the (irreducible) Incomplete Elliptic Integral of the 2nd Kind, the value for the tangent of one half the amplitude of the Elliptic Integral of the 2nd Kind is now known. The elliptic integral may now be computed by any desired method, and the result will be the Gauss-Kruger Transverse Mercator Projection. This result is a consequence of the fact that these steps produce a computation of real distance along the image (in the plane) of the principal meridian, and an analytic continuation of the distance at points that don't lie on the principal meridian. The elliptic-integral method used by this program is one of the "transformations of the elliptic integral" (similar to Landen's Transformation), appearing in standard handbooks of mathematical functions. Only elementary transcendental functions are utilized. The program output is the conventional (as used by the mapping agencies) cartesian coordinates, in meters, of the Transverse Mercator projection. The origin is at the intersection of the principal meridian and the equator. This FORTRAN77 program was developed on an IBM PC series computer equipped with an Intel Math Coprocessor. Double precision complex arithmetic and transcendental functions are needed to support a projection accuracy of 1 mm. Because such functions are not usually part of the FORTRAN library, the needed functions have been explicitly programmed and included in the source code. The program was developed in 1989. TRANSVERSE MERCATOR MAP PROJECTION OF THE SPHEROID USING TRANSFORMATIONS OF THE ELLIPTIC INTEGRAL is a copyrighted work with all copyright vested in NASA.

  4. Gravitational Waves from Rotating Neutron Stars and Evaluation of fast Chirp Transform Techniques

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    X-ray observations suggest that neutron stars in low mass X-ray binaries (LMXB) are rotating with frequencies from 300 - 600 Hz. These spin rates are significantly less than the break-up rates for essentially all realistic neutron star equations of state, suggesting that some process may limit the spin frequencies of accreting neutron stars to this range. If the accretion induced spin up torque is in equilibrium with gravitational radiation losses, these objects could be interesting sources of gravitational waves. I present a brief summary of current measurements of neutron star spins in LMXBs based on the observations of high-Q oscillations during thermonuclear bursts (so called 'burst oscillations'). Further measurements of neutron star spins will be important in exploring the gravitational radiation hypothesis in more detail. To this end I also present a study of fast chirp transform (FCT) techniques as described by Jenet and Prince in the context of searching for the chirping signals observed during X-ray bursts.

  5. Development of Improved Caprock Integrity and Risk Assessment Techniques

    SciTech Connect

    Bruno, Michael

    2014-09-30

    GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO₂ injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO₂ injection operating practices. Historical data from gas storage operations and CO₂ sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO₂. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO₂ sequestration operation in the North Sea, and the In Salah CO₂ sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.

  6. Techniques for optimization of queries on integrated biological resources.

    PubMed

    Lacroix, Zoé; Raschid, Louiqa; Eckman, Barbara A

    2004-06-01

    Today, scientific data are inevitably digitized, stored in a wide variety of formats, and are accessible over the Internet. Scientific discovery increasingly involves accessing multiple heterogeneous data sources, integrating the results of complex queries, and applying further analysis and visualization applications in order to collect datasets of interest. Building a scientific integration platform to support these critical tasks requires accessing and manipulating data extracted from flat files or databases, documents retrieved from the Web, as well as data that are locally materialized in warehouses or generated by software. The lack of efficiency of existing approaches can significantly affect the process with lengthy delays while accessing critical resources or with the failure of the system to report any results. Some queries take so much time to be answered that their results are returned via email, making their integration with other results a tedious task. This paper presents several issues that need to be addressed to provide seamless and efficient integration of biomolecular data. Identified challenges include: capturing and representing various domain specific computational capabilities supported by a source including sequence or text search engines and traditional query processing; developing a methodology to acquire and represent semantic knowledge and metadata about source contents, overlap in source contents, and access costs; developing cost and semantics based decision support tools to select sources and capabilities, and to generate efficient query evaluation plans. PMID:15297988

  7. Optical transformation based image encryption and data embedding techniques using MATLAB

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debalina; Ghosh, Ajay

    2015-06-01

    The proposed work describes optical transformations such as Fourier transformation and Fresnel transformation based encryption and decryption of images using random phase masks (RPMs). The encrypted images have been embedded in some secret cover files of other formats like text files, word files, audio files etc to increase the robustness in the security applications. So, if any one wants to send confidential documents, it will be difficult for the interloper to unhide the secret information. The whole work has been done in MATLAB®

  8. Integrating Positive Psychology Techniques into Rehabilitation Counselor Education

    ERIC Educational Resources Information Center

    Chapin, Martha H.; Boykin, Rebecca B.

    2010-01-01

    Positive psychology offers rehabilitation counselor educators a framework to help students evaluate their own competencies and understand the value of a strengths-based approach to rehabilitation counseling. This article reviews several positive psychology techniques and discusses recommended uses as well as their effectiveness. Positive…

  9. Flat focusing lens designs having minimized reflection based on coordinate transformation techniques.

    PubMed

    Kwon, Do-Hoon; Werner, Douglas H

    2009-05-11

    Two-dimensional far-zone focusing lenses are designed using the coordinate transformation approach that feature minimized reflections from the lens boundaries. A flat lens of trapezoidal cross section completely converts incident waves with cylindrical wavefronts into transmitted waves with planar wavefronts. A rectangular lens with reduced non-magnetic material parameters that incorporates a nonlinear coordinate transformation features a significantly reduced amount of reflections compared with the non-magnetic lens based on a linear transformation. The improved reflection performance of each new lens design is verified using a full-wave finite-element analysis and compared with previously reported transformation optical lenses. PMID:19434112

  10. Integrative genomic testing of cancer survival using semiparametric linear transformation models.

    PubMed

    Huang, Yen-Tsung; Cai, Tianxi; Kim, Eunhee

    2016-07-20

    The wide availability of multi-dimensional genomic data has spurred increasing interests in integrating multi-platform genomic data. Integrative analysis of cancer genome landscape can potentially lead to deeper understanding of the biological process of cancer. We integrate epigenetics (DNA methylation and microRNA expression) and gene expression data in tumor genome to delineate the association between different aspects of the biological processes and brain tumor survival. To model the association, we employ a flexible semiparametric linear transformation model that incorporates both the main effects of these genomic measures as well as the possible interactions among them. We develop variance component tests to examine different coordinated effects by testing various subsets of model coefficients for the genomic markers. A Monte Carlo perturbation procedure is constructed to approximate the null distribution of the proposed test statistics. We further propose omnibus testing procedures to synthesize information from fitting various parsimonious sub-models to improve power. Simulation results suggest that our proposed testing procedures maintain proper size under the null and outperform standard score tests. We further illustrate the utility of our procedure in two genomic analyses for survival of glioblastoma multiforme patients. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887583

  11. An integrated technique for the analysis of skin bite marks.

    PubMed

    Bernitz, Herman; Owen, Johanna H; van Heerden, Willie F P; Solheim, Tore

    2008-01-01

    The high number of murder, rape, and child abuse cases in South Africa has led to increased numbers of bite mark cases being heard in high courts. Objective analysis to match perpetrators to bite marks at crime scenes must be able to withstand vigorous cross-examination to be of value in conviction of perpetrators. An analysis technique is described in four stages, namely determination of the mark to be a human bite mark, pattern association analysis, metric analysis and comparison with the population data, and illustrated by a real case study. New and accepted techniques are combined to determine the likelihood ratio of guilt expressed as one of a range of conclusions described in the paper. Each stage of the analysis adds to the confirmation (or rejection) of concordance between the dental features present on the victim and the dentition of the suspect. The results illustrate identification to a high degree of certainty. PMID:18279256

  12. Process sequence optimization for digital microfluidic integration using EWOD technique

    NASA Astrophysics Data System (ADS)

    Yadav, Supriya; Joyce, Robin; Sharma, Akash Kumar; Sharma, Himani; Sharma, Niti Nipun; Varghese, Soney; Akhtar, Jamil

    2016-04-01

    Micro/nano-fluidic MEMS biosensors are the devices that detects the biomolecules. The emerging micro/nano-fluidic devices provide high throughput and high repeatability with very low response time and reduced device cost as compared to traditional devices. This article presents the experimental details for process sequence optimization of digital microfluidics (DMF) using "electrowetting-on-dielectric" (EWOD). Stress free thick film deposition of silicon dioxide using PECVD and subsequent process for EWOD techniques have been optimized in this work.

  13. Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations

    NASA Astrophysics Data System (ADS)

    Dimakis, Aristophanes; Müller-Hoissen, Folkert

    2013-02-01

    We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the D-dimensional vacuum Einstein equations with D-2 commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski-Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu-Sato) and five (single and double Myers-Perry black holes, black saturn, bicycling black rings).

  14. A new method to calculate the beam charge for an integrating current transformer

    SciTech Connect

    Wu Yuchi; Han Dan; Zhu Bin; Dong Kegong; Tan Fang; Gu Yuqiu

    2012-09-15

    The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

  15. Reconstructing Folding Energy Landscape Profiles from Nonequilibrium Pulling Curves with an Inverse Weierstrass Integral Transform

    NASA Astrophysics Data System (ADS)

    Engel, Megan C.; Ritchie, Dustin B.; Foster, Daniel A. N.; Beach, Kevin S. D.; Woodside, Michael T.

    2014-12-01

    The energy landscapes that drive structure formation in biopolymers are difficult to measure. Here we validate experimentally a novel method to reconstruct landscape profiles from single-molecule pulling curves using an inverse Weierstrass transform (IWT) of the Jarzysnki free-energy integral. The method was applied to unfolding measurements of a DNA hairpin, replicating the results found by the more-established weighted histogram (WHAM) and inverse Boltzmann methods. Applying both WHAM and IWT methods to reconstruct the folding landscape for a RNA pseudoknot having a stiff energy barrier, we found that landscape features with sharper curvature than the force probe stiffness could not be recovered with the IWT method. The IWT method is thus best for analyzing data from stiff force probes such as atomic force microscopes.

  16. Redatuming controlled-source electromagnetic data using Stratton-Chu type integral transformations

    NASA Astrophysics Data System (ADS)

    Zhdanov, Michael; Cai, Hongzhu

    2016-03-01

    We present a new method of analyzing controlled-source electromagnetic (CSEM) data based on redatuming of the observed data from the actual receivers into the virtual receivers. We use the Stratton-Chu type integral transform to calculate the EM field in the virtual receivers. The virtual receivers can be placed at any desirable position, including close to the target, which increases the sensitivity of the EM data to the target. The developed method provides an effective model-based interpolation/extrapolation tool for electromagnetic field data. This paper demonstrates that redatuming can be used for designing the optimized CSEM survey configuration. The numerical examples, for the Kevin Dome Electromagnetic Project Site, illustrate the practical effectiveness of the developed method.

  17. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  18. Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Guo, Xiu-Rong

    2016-06-01

    We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  19. Nitrogen transformations and mass balance in an integrated constructed wetland treating domestic wastewater.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán

    2014-01-01

    Nitrogen (N) transformations and removal in integrated constructed wetlands (ICWs) are often high, but the contributions of various pathways, including nitrification/denitrification, assimilation by plants and sediment storage, remain unclear. This study quantified the contributions of different N removal pathways in a typical multi-celled ICW system treating domestic wastewater. Findings showed near complete average total N retention of circa 95% at 102.3 g m⁻² yr⁻¹ during the 4-year period of operation. Variations in total N and NH4-N removal rates were associated with effluent flow volume rates and seasons. According to the mass balance estimation, assimilation by plants and sediment/soil storage accounted for approximately 23% and 20%, respectively, of the total N load removal. These were the major N removal route besides microbial transformations. Thus, the combination of plants with high biomass production offer valuable opportunities for improving ICW performance. The retrieval and use of sequestered N in the ICW sediment/soils require coherent management and provide innovative and valuable opportunities. PMID:25401313

  20. Integrating RFID technique to design mobile handheld inventory management system

    NASA Astrophysics Data System (ADS)

    Huang, Yo-Ping; Yen, Wei; Chen, Shih-Chung

    2008-04-01

    An RFID-based mobile handheld inventory management system is proposed in this paper. Differing from the manual inventory management method, the proposed system works on the personal digital assistant (PDA) with an RFID reader. The system identifies electronic tags on the properties and checks the property information in the back-end database server through a ubiquitous wireless network. The system also provides a set of functions to manage the back-end inventory database and assigns different levels of access privilege according to various user categories. In the back-end database server, to prevent improper or illegal accesses, the server not only stores the inventory database and user privilege information, but also keeps track of the user activities in the server including the login and logout time and location, the records of database accessing, and every modification of the tables. Some experimental results are presented to verify the applicability of the integrated RFID-based mobile handheld inventory management system.

  1. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  2. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    SciTech Connect

    Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

    2009-08-03

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

  3. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  4. A new algorithm for integrated image quality measurement based on wavelet transform and human visual system

    NASA Astrophysics Data System (ADS)

    Wang, Haihui

    2006-01-01

    An essential determinant of the value of digital images is their quality. Over the past years, there have been many attempts to develop models or metrics for image quality that incorporate elements of human visual sensitivity. However, there is no current standard and objective definition of spectral image quality. This paper proposes a reliable automatic method for objective image quality measurement by wavelet transform and Human visual system. This way the proposed measure differentiates between the random and signal-dependant distortion, which have different effects on human observer. Performance of the proposed quality measure is illustrated by examples involving images with different types of degradation. The technique provides a means to relate the quality of an image to the interpretation and quantification throughout the frequency range, in which the noise level is estimated for quality evaluation. The experimental results of using this method for image quality measurement exhibit good correlation to subjective visual quality assessments.

  5. ORGANIC ACID DERIVATIZATION TECHNIQUES APPLIED TO PETROLEUM HYDROCARBON TRANSFORMATIONS IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Evidence for the natural microbial remediation of subsurface fuel contamination situations should include identification and analysis of transformation or degradation products. In this way. u mass balance between fuel constituents and end products may be approached to monitor cle...

  6. Applying image transformation and classification techniques to airborne hyperspectral imagery for mapping Ashe juniper infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ashe juniper (Juniperus ashei Buchholz), in excessive coverage, reduces forage production, interferes with livestock management, and degrades watersheds and wildlife habitat in infested rangelands. The objective of this study was to apply minimum noise fraction (MNF) transformation and different cla...

  7. Robust hermetic packaging techniques for MEMS integrated microsystems.

    SciTech Connect

    Chae, Junseok; Stark, Brian H.; Kuo, Andrew; Oliver, Andrew David; Najafi, Khalil

    2005-03-01

    This work is the result of a Sandia National Laboratories LDRD funded fellowship at the University of Michigan. Although, guidance and suggestions were offered by Sandia, the work contained here is primarily the work of Brian H. Stark, and his advisor, Professor Khalil Najafi. Junseok Chae, Andrew Kuo, and their coworkers at the University of Michigan helped to record some of the data. The following is an abstract of their work. We have developed a vacuum packaging technology using a thick nickel film to seal MEMS structures at the wafer level. The package is fabricated in a three-mask process by electroplating a 40 micro-meter thick nickel film over an 8 micro-meter sacrificial photoresist that is removed prior to package sealing. Implementation of electrical feedthroughs in this process requires no planarization. The large release channel enables an 800x800 micro-meter package to be released in less than three hours. Several mechanisms, based upon localized melting and lead/tin solder bumping, for sealing the release channel have been investigated. We have also developed Pirani gauges, integrated with this package, which can be used to establish the hermeticity of the different sealing technologies. They have measured a sealing pressure of approximately 1.5 Torr. Our work differs from previous Pirani gauges in that we utilize a novel doubly anchored structure that stiffens the structural membrane while not substantially degrading performance in order to measure fine leak rates.

  8. A technique for integrating engine cycle and aircraft configuration optimization

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A.

    1994-01-01

    A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission

  9. Fiber-optic sensor integration and multiplexing techniques for smart skin applications

    SciTech Connect

    Muhs, J.D.; Allison, S.W.; Janke, C.J.; Kercel, S.; Smith, D.B.

    1991-01-01

    Integration and multiplexing techniques for smart skin applications using optical fibers has become an increasingly important topic of research in recent years. This paper reviews the initial stages of research in this area at the Oak Ridge National Laboratory (ORNL). Specifically, results from first generation fiber-optic temperature and strain sensor development efforts are given, along with a discussion of various integration and multiplexing techniques proposed for future development.

  10. Fiber-optic sensor integration and multiplexing techniques for smart skin applications

    SciTech Connect

    Muhs, J.D.; Allison, S.W.; Janke, C.J.; Kercel, S.; Smith, D.B.

    1991-12-31

    Integration and multiplexing techniques for smart skin applications using optical fibers has become an increasingly important topic of research in recent years. This paper reviews the initial stages of research in this area at the Oak Ridge National Laboratory (ORNL). Specifically, results from first generation fiber-optic temperature and strain sensor development efforts are given, along with a discussion of various integration and multiplexing techniques proposed for future development.

  11. The Effect of Cooperative Integrated Reading and Composition Technique on Students' Reading Descriptive Text Achievement

    ERIC Educational Resources Information Center

    Zainuddin

    2015-01-01

    This study was aimed at finding out the effectiveness of applying Cooperative Integrated Reading and Composition (CIRC) Technique on Students' Reading Descriptive Text Achievement. In other words, the objective of this study was to find out if there was a significant effect of applying Cooperative Integrated Reading and Composition (CIRC)…

  12. The use of artificial intelligence techniques to improve the multiple payload integration process

    NASA Technical Reports Server (NTRS)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  13. Application of the wavelet transform in seismic data processing for the development of new noise reduction techniques

    NASA Astrophysics Data System (ADS)

    Kourouniotis, Fotios P.; Kubichek, Robert F.; Boyd, Nicholas G. K., III; Majumdar, Arun K.

    1996-10-01

    New techniques for developing more efficient noise reduction schemes are presented and implemented by applying the wavelet transform (WT) to a series of stationary and non- stationary signals. Their effectiveness is illustrated with specific applications to both real and synthetic seismic data, and the superiority over Fourier transform (FT) based methods is demonstrated. These methods aim at the efficient reduction of the effects that surface waves, airwaves, and direct waves can have on the interpretation of a seismic record. We first apply the WT on each trace in a common- depth-point gather and then perform stacking in the WT domain and compute both the mean and median transforms. Then, the signal-to-noise ratio of the stacked transforms is estimated and used as a criterion to improve the quality of the transformed data, and finally the total energy in the stacked WT plane is computed and redistributed in order to boost weak events. The advantage of stacking in the WT domain is that it allows for detection of weak reflections overpowered by high amplitude surface and air waves. Additionally, it is shown that by frequency modulating a mother wavelet, further attenuation of surface waves, airwaves, and first breaks may be achieved.

  14. The conceptual basis of mathematics in cardiology III: linear systems theory and integral transforms.

    PubMed

    Bates, Jason H T; Sobel, Burton E

    2003-05-01

    This is the third in a series of four articles developed for the readers of Coronary Artery Disease. Without language ideas cannot be articulated. What may not be so immediately obvious is that they cannot be formulated either. One of the essential languages of cardiology is mathematics. Unfortunately, medical education does not emphasize, and in fact, often neglects empowering physicians to think mathematically. Reference to statistics, conditional probability, multicompartmental modeling, algebra, calculus and transforms is common but often without provision of genuine conceptual understanding. At the University of Vermont College of Medicine, Professor Bates developed a course designed to address these deficiencies. The course covered mathematical principles pertinent to clinical cardiovascular and pulmonary medicine and research. It focused on fundamental concepts to facilitate formulation and grasp of ideas.This series of four articles was developed to make the material available for a wider audience. The articles will be published sequentially in Coronary Artery Disease. Beginning with fundamental axioms and basic algebraic manipulations they address algebra, function and graph theory, real and complex numbers, calculus and differential equations, mathematical modeling, linear system theory and integral transforms and statistical theory. The principles and concepts they address provide the foundation needed for in-depth study of any of these topics. Perhaps of even more importance, they should empower cardiologists and cardiovascular researchers to utilize the language of mathematics in assessing the phenomena of immediate pertinence to diagnosis, pathophysiology and therapeutics. The presentations are interposed with queries (by Coronary Artery Disease abbreviated as CAD) simulating the nature of interactions that occurred during the course itself. Each article concludes with one or more examples illustrating application of the concepts covered to

  15. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

    PubMed

    Bae, Sunwoong; Park, Seunghye; Kim, Jung; Choi, Jong Seob; Kim, Kyung Hoon; Kwon, Donguk; Jin, EonSeon; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-16

    Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation. PMID:26584003

  16. Sensory Integration and Play Behavior: A Case Study of the Effectiveness of Occupational Therapy Using Sensory Integrative Techniques.

    ERIC Educational Resources Information Center

    Schaaf, Roseann C.; And Others

    1987-01-01

    This case study describes a developmentally delayed 4-year-old and examines behavioral changes that occurred in occupational therapy using sensory integration (SI) techniques. The use of play observation to measure change following SI treatment is discussed, and the relevance of qualitative methodologies to collecting data on play is demonstrated.…

  17. The Kinetic Drawing System: A Review and Integration of the Kinetic Family and School Drawing Techniques.

    ERIC Educational Resources Information Center

    Knoff, Howard M.; Prout, H. Thompson

    1985-01-01

    Presents the Kinetic Drawing System as a logical integration of the Kinetic Family Drawing and Kinetic School Drawing techniques. Reviews the literature of these two projective techniques and provides a rationale and process toward their combination into a single approach. (LLL)

  18. Ultra-fast dynamic compression technique to study kinetics of phase transformations in Bismuth

    SciTech Connect

    Smith, R F; Kane, J O; Eggert, J H; Saculla, M D; Jankowski, A F; Bastea, M; Hicks, D G; Collins, G W

    2007-12-28

    Pre-heated Bi was ramp compressed within 30 ns to a peak stress of {approx}11 GPa to explore structural phase transformation kinetics under dynamic loading conditions. Under these ultra-fast compression time-scales the equilibrium Bi I-II phase boundary is overpressurized by {Delta}P {approx} 0.8 GPa. {Delta}P is observed to increase logarithmically with strain rate, {var_epsilon}, above 10{sup 6} s{sup -1}. Estimates from a kinetics model predict that the Bi I phase is fully transformed within 3 ns.

  19. A non-intrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater

    NASA Astrophysics Data System (ADS)

    Ferrari, Simone; Grazia Badas, Maria; Querzoli, Giorgio

    2016-03-01

    To design longshore breakwaters, the evaluation of the wave motion transformations over the structures and of the energy they are able to absorb, dissipate and reflect is necessary. To characterize features and transformations of monochromatic wave trains above a breakwater, both submerged and emerged, we have designed and developed a non-intrusive and continuous-in-space technique, based on Image Analysis, and carried out an experimental campaign, in a laboratory flume equipped with a wave-maker, in order to test it. The investigation area was lighted with a light sheet and images were recorded by a video-camera. The working fluid was seeded with non buoyant particles to make it bright and clearly distinct from dark background and breakwater. The technique, that is based on a robust algorithm to identify the free surface, has showed to properly work also in prohibitive situations for traditional resistive probes (e.g., very shallow waters and/or breaking waves) and to be able to measure the free surface all over the investigation field in a non-intrusive way. Two kind of analysis were mainly performed, a statistical and a spectral one. The peculiarities of the measurement technique allowed to describe the whole wave transformation and to supply useful information for design purposes.

  20. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the

  1. Some results on the integral transforms and applications to differential equations

    SciTech Connect

    Eltayeb, Hassan; Kilicman, Adem

    2010-11-11

    In this paper we give some remark about the relationship between Sumudu and Laplace transforms, further; for the comparison purpose, we apply both transforms to solve partial differential equations to see the differences and similarities.

  2. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

    EPA Science Inventory

    Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

  3. Leading Education Reform Initiatives: How SWIFT (Schoolwide Integrated Framework for Transformation) Coordinates and Enhances Impact. Issue Brief #2

    ERIC Educational Resources Information Center

    Kingston, Mary; Richards, Curtis; Blank, Rolf; Stonemeier, Jennifer; Trader, Barbara; East, Bill

    2014-01-01

    In this Issue Brief we discuss the impact that the Schoolwide Integrated Framework for Transformation (SWIFT) has on improving the outcomes of several current federal, state, district, and school education reform initiatives. Federal initiatives include Race to the Top, School Improvement Grants, and Campaign for Grade-Level Reading; Common Core…

  4. Transforming Healthcare Delivery: Integrating Dynamic Simulation Modelling and Big Data in Health Economics and Outcomes Research.

    PubMed

    Marshall, Deborah A; Burgos-Liz, Lina; Pasupathy, Kalyan S; Padula, William V; IJzerman, Maarten J; Wong, Peter K; Higashi, Mitchell K; Engbers, Jordan; Wiebe, Samuel; Crown, William; Osgood, Nathaniel D

    2016-02-01

    In the era of the Information Age and personalized medicine, healthcare delivery systems need to be efficient and patient-centred. The health system must be responsive to individual patient choices and preferences about their care, while considering the system consequences. While dynamic simulation modelling (DSM) and big data share characteristics, they present distinct and complementary value in healthcare. Big data and DSM are synergistic-big data offer support to enhance the application of dynamic models, but DSM also can greatly enhance the value conferred by big data. Big data can inform patient-centred care with its high velocity, volume, and variety (the three Vs) over traditional data analytics; however, big data are not sufficient to extract meaningful insights to inform approaches to improve healthcare delivery. DSM can serve as a natural bridge between the wealth of evidence offered by big data and informed decision making as a means of faster, deeper, more consistent learning from that evidence. We discuss the synergies between big data and DSM, practical considerations and challenges, and how integrating big data and DSM can be useful to decision makers to address complex, systemic health economics and outcomes questions and to transform healthcare delivery. PMID:26497003

  5. Integration of Scale Invariant Generator Technique and S-A Technique for Characterizing 2-D Patterns for Information Retrieve

    NASA Astrophysics Data System (ADS)

    Cao, L.; Cheng, Q.

    2004-12-01

    The scale invariant generator technique (SIG) and spectrum-area analysis technique (S-A) were developed independently relevant to the concept of the generalized scale invariance (GSI). The former was developed for characterizing the parameters involved in the GSI for characterizing and simulating multifractal measures whereas the latter was for identifying scaling breaks for decomposition of superimposed multifractal measures caused by multiple geophysical processes. A natural integration of these two techniques may yield a new technique to serve two purposes, on the one hand, that can enrich the power of S-A by increasing the interpretability of decomposed patterns in some applications of S-A and, on the other hand, that can provide a mean to test the uniqueness of multifractality of measures which is essential for application of SIG technique in more complicated environment. The implementation of the proposed technique has been done as a Dynamic Link Library (DLL) in Visual C++. The program can be friendly used for method validation and application in different fields.

  6. FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities

    SciTech Connect

    Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. ); Haaland, D.M. )

    1990-01-01

    Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

  7. Morphological and lithological transformation records of the Lake Czechowskie basin on the basis of paleogeography and GIS techniques analysis

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Błaszkiewicz, M.; Tyszkowski, S.; Kordowski, J.

    2014-12-01

    The analyses of the annually laminated lacustrine sediments are particularly important in the studies of global climate change. They provide information about the ecosystem response to environmental and climate changes. The condition for the laminated sedimentation with the annual resolution is a calm sedimentation environment where there is no mixing and thus there are anaerobic conditions in the benthic zone. Below a certain depth there is no wave induced mixing and temperature is constant, which causes water stagnation. In shallower areas such conditions are favoured by the morphology of the lake basin and the long presence of ice cover (bradymictic). The combination of these environmental features predispose to the deposition of laminated sediments. Lake Czechowskie is located within the limit of the Scandinavian Ice Sheet during the Last Glaciation in the Central European Lowland (northern Poland - 53°52"N 18°14"E) in a deep kettle-hole type. Taking into account the thickness of the lacustrine sediments, the maximum depth of the basin exceeds 70 m. Detailed surveying as well as geological drilling using the GIS techniques made it possible to reconstruct the morphology of the basin of Lake Czechowskie and its adjacent areas before the biogenic sedimentation started in Allerød. At that time water level was 2 m higher than in the modern times. Following climate changes initiated the natural processes of the lake basin transformation. The analysis of the morphology of the lake basin is the basis for modelling the sedimentation conditions considering, inter alia, the wind direction and wind velocity, fluctuations of the water levels and the degree of filling the basin with the deposits in different periods of the Late Glacial and Holocene. It allows specifying the variability and sedimentation rate within the basin. The analysis shows the spatial variation of the erosion and accumulation zones, and enables to determine the zones of calm sedimentation revealing

  8. Robust Volume Assessment of Brain Tissues for 3-Dimensional Fourier Transformation MRI via a Novel Multispectral Technique

    PubMed Central

    Chai, Jyh-Wen; Chen, Clayton C.; Wu, Yi-Ying; Chen, Hung-Chieh; Tsai, Yi-Hsin; Chen, Hsian-Min; Lan, Tsuo-Hung; Ouyang, Yen-Chieh; Lee, San-Kan

    2015-01-01

    A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising in cross

  9. Comparison of different transformation methods for Aspergillus giganteus.

    PubMed

    Meyer, Vera; Mueller, Dirk; Strowig, Till; Stahl, Ulf

    2003-08-01

    Four different transformation methods were tested and compared in an attempt to facilitate the genetic transformation of Aspergillus giganteus, the producer of an antifungal protein (AFP). The fungus was transformed to hygromycin B resistance, using the hph gene of Escherichia coli by protoplast transformation, electroporation, biolistic transformation, and Agrobacterium tumefaciens-mediated transformation. Electroporation and biolistic transformation were found to be inappropriate for transforming A. giganteus, due to a low transformation yield. The conventional transformation technique based on protoplasts yielded up to 55 transformants in 10(8) protoplasts/microg DNA and was enhanced to 140-fold by A. tumefaciens-mediated transfer of its T-DNA. Here, the germination time prior to cocultivation and the fungus:bacterium ratio were found to alter the transformation efficiency. Southern blot analysis revealed that the A. giganteus transformants contained a randomly integrated single T-DNA copy, whereas multiple integration events were frequent in transformants obtained by the protoplast method. PMID:12756496

  10. Fourier transform image processing techniques for grid-based phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Tahir, Sajjad; Bashir, Sajid; Petruccelli, Jonathan C.; MacDonald, C. A.

    2014-09-01

    A recently developed technique for phase imaging using table top sources is to use multiple fine-pitch gratings. However, the strict manufacturing tolerences and precise alignment required have limited the widespread adoption of grating-based techniques. In this work, we employ a technique recently demonstrated by Bennett et al.1 that ultilizes a single grid of much coarser pitch. Phase is extracted using Fourier processing on a single raw image taken using a focused mammography grid. The effects on the final image of varying grid, object, and detector distances, window widths, and of a variety of windowing functions, used to separate the harmonics, were investigated.

  11. Fourier transform infrared spectrometry: a versatile technique for real world samples.

    PubMed

    Rintoul, L; Panayiotou, H; Kokot, S; George, G; Cash, G; Frost, R; Bui, T; Fredericks, P

    1998-04-01

    The versatility of FTIR spectrometry was explored by considering a variety of samples drawn from industrial applications, materials science and biomedical research. These samples included polymeric insulators, bauxite ore, clay, human hair and human skin. A range of sampling techniques suitable for these samples is discussed, in particular FTIR microscopy, FTIR emission spectroscopy, attenuated total reflectance and photoacoustic FTIR spectrometry. The power of modern data processing techniques, particularly multivariate analysis, to extract useful information from spectral data is also illustrated. PMID:9684399

  12. Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform.

    PubMed

    Sima, Chaotan; Gates, J C; Rogers, H L; Mennea, P L; Holmes, C; Zervas, M N; Smith, P G R

    2013-03-01

    The monolithically integrated all-optical single-sideband (SSB) filter based on photonic Hilbert transform and planar Bragg gratings is proposed and experimentally demonstrated. An SSB suppression of 12 dB at 6 GHz and sideband switching are achieved via thermal tuning. An X-coupler, photonic Hilbert transformer, flat top reflector, and a micro heater are incorporated in a single silicon-on-silica substrate. The device can be thermally tuned by the micro heater on top of the channel waveguide. The device is fabricated using a combination of direct UV grating writing technology and photolithography. PMID:23455279

  13. Measurements of solar magnetic fields by Fourier transform techniques. I - Unsaturated lines

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Tarbell, T. D.

    1975-01-01

    If the basic profile shapes of the normal Zeeman triplet do not have zeros in their Fourier transform, the magnetic field splitting can be determined independent of the profile shape. When the ratio of the splitting of the components is greater than the intrinsic FWHM of the component profiles, the magnetic splitting can be determined with significantly greater accuracy than the measurement accuracy of the original profile. For Gaussian shaped components and a ratio of magnetic splitting to FWHM of 1.5, the noise reduction factor is 25.

  14. Fourier transform techniques for measuring absorption of transient species in optical limiting materials

    NASA Astrophysics Data System (ADS)

    Han, Yanong; Sonnenberg, Wendi; Short, Kurt W.; Spangler, Lee H.

    1999-10-01

    We have developed methods of measuring absorption of transient species utilizing stepped-scan Fourier transform interferometry that allows a combination of broad spectral coverage (10,000 - 15,000 cm-1 per spectrum), good spectral resolution, and up to ns temporal resolution with possibilities of extension to the ps domain. Nanosecond, psec or fsec laser systems, tunable from UV to IR can be used as the pump source to prepare the transient species. The absorption of that species is measured with broadband, incoherent light and can be simultaneously time and frequency resolved.

  15. Technique for gray-scale visual light and infrared image fusion based on non-subsampled shearlet transform

    NASA Astrophysics Data System (ADS)

    Kong, Weiwei

    2014-03-01

    A novel image fusion technique based on NSST (non-subsampled shearlet transform) is presented, aiming at resolving the fusion problem of spatially gray-scale visual light and infrared images. NSST, as a new member of MGA (multi-scale geometric analysis) tools, possesses not only flexible direction features and optimal shift-invariance, but much better fusion performance and lower computational costs compared with several current popular MGA tools such as NSCT (non-subsampled contourlet transform). We specifically propose new rules for the fusion of low and high frequency sub-band coefficients of source images in the second step of the NSST-based image fusion algorithm. First, the source images are decomposed into different scales and directions using NSST. Then, the model of region average energy (RAE) is proposed and adopted to fuse the low frequency sub-band coefficients of the gray-scale visual light and infrared images. Third, the model of local directional contrast (LDC) is given and utilized to fuse the corresponding high frequency sub-band coefficients. Finally, the final fused image is obtained by using inverse NSST to all fused sub-images. In order to verify the effectiveness of the proposed technique, several current popular ones are compared over three different publicly available image sets using four evaluation metrics, and the experimental results demonstrate that the proposed technique performs better in both subjective and objective qualities.

  16. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    NASA Astrophysics Data System (ADS)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Sutton, L. F.; Scherillo, A.; Bognetti, L.; Bini, A.; Barzagli, E.; Schooneveld, E.; Andreani, C.

    2013-09-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics.

  17. Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits

    NASA Astrophysics Data System (ADS)

    Lee, J.-B.; English, J.; Ahn, C.-H.; Allen, M. G.

    1997-06-01

    Various micromachining techniques exist to realize integrated microelectromechanical systems (MEMS), which include sensors, signal processing and/or driving circuits, and/or actuators in one small die. Post-processing techniques performed on foundry-fabricated circuits (e.g., MOSIS) are attractive since such an approach eliminates the need for an in-house integrated circuit fabrication line to produce integrated MEMS. A method based on the combination of metallic (e.g., electroplating) micromachining techniques with multichip module deposited (MCM-D) processes is a possible candidate to realize vertically-stacked integrated MEMS using the post-processing of integrated circuits (post-IC) approach. In order to realize such devices, planarization of the surface of foundry-fabricated circuit chips or wafers is often required. In such planarization layers, mechanical and chemical stability, as well as adhesion between the circuit-containing substrate and the micromachined devices, should be addressed. A PI/BCB/PI sandwich interlayer system, which utilizes both advantages of DuPont polyimide PI 2611 and Dow benzocyclobutene (BCB) Cyclotene 3022 series, was developed as a planarization interlayer for vertically integrated MEMS. The PI/BCB/PI interlayer system shows an over 95% degree of planarization (DOP) as well as passes the Method 107G Thermal Shock from the military standard MIL-STD-202F. A 0960-1317/7/2/002/img7 interlayer system was also developed as an alternative to the PI/BCB/PI system.

  18. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.

    PubMed

    Amin, Hafeez Ullah; Malik, Aamir Saeed; Ahmad, Rana Fayyaz; Badruddin, Nasreen; Kamel, Nidal; Hussain, Muhammad; Chooi, Weng-Tink

    2015-03-01

    This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate. PMID:25649845

  19. Integrated velocity field from ground and satellite geodetic techniques: application to Arenal volcano

    NASA Astrophysics Data System (ADS)

    Muller, Cyril; del Potro, Rodrigo; Biggs, Juliet; Gottsmann, Joachim; Ebmeier, Susanna K.; Guillaume, Sébastien; Cattin, Paul-Henri; Van der Laat, Rodolfo

    2015-02-01

    Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.

  20. Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals

    NASA Astrophysics Data System (ADS)

    Figueras, Jordi-Lluís; Tucker, Warwick; Villadelprat, Jordi

    We develop techniques for the verification of the Chebyshev property of Abelian integrals. These techniques are a combination of theoretical results, analysis of asymptotic behavior of Wronskians, and rigorous computations based on interval arithmetic. We apply this approach to tackle a conjecture formulated by Dumortier and Roussarie in [F. Dumortier, R. Roussarie, Birth of canard cycles, Discrete Contin. Dyn. Syst. 2 (2009) 723-781], which we are able to prove for q≤2.

  1. Interpretation of pile-oscillation measurements by the integral data assimilation technique

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Archier, P.; Gruel, A.; Leconte, P.; Bernard, D.

    2011-02-01

    The Integral Data Assimilation (IDA) was designed to deduce values of infinite dilute neutron cross-sections from specific integral measurements. Performances of the IDA procedure are demonstrated with pile-oscillation measurements carried out on 155Gd in the pool type reactor MINERVE (CEA Cadarache, France). At low neutron energies, the Integral Data Assimilation is based on the Neutron Resonance Shape Analysis technique routinely used in neutron spectroscopy measurements. As a result of the IDA analysis, a value of (61 900±1500) b has been obtained for the 155Gd thermal capture cross-section at ( Eth=25.3 meV).

  2. Nucleases Encoded by Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter jejuni

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...

  3. Radiological image compression using error-free irreversible two-dimensional direct-cosine-transform coding techniques.

    PubMed

    Huang, H K; Lo, S C; Ho, B K; Lou, S L

    1987-05-01

    Some error-free and irreversible two-dimensional direct-cosine-transform (2D-DCT) coding, image-compression techniques applied to radiological images are discussed in this paper. Run-length coding and Huffman coding are described, and examples are given for error-free image compression. In the case of irreversible 2D-DCT coding, the block-quantization technique and the full-frame bit-allocation (FFBA) technique are described. Error-free image compression can achieve a compression ratio from 2:1 to 3:1, whereas the irreversible 2D-DCT coding compression technique can, in general, achieve a much higher acceptable compression ratio. The currently available block-quantization hardware may lead to visible block artifacts at certain compression ratios, but FFBA may be employed with the same or higher compression ratios without generating such artifacts. An even higher compression ratio can be achieved if the image is compressed by using first FFBA and then Huffman coding. The disadvantages of FFBA are that it is sensitive to sharp edges and no hardware is available. This paper also describes the design of the FFBA technique. PMID:3598750

  4. Automated ambient desorption-ionization platform for surface imaging integrated with a commercial Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Pól, Jaroslav; Vidová, Veronika; Kruppa, Gary; Kobliha, Václav; Novák, Petr; Lemr, Karel; Kotiaho, Tapio; Kostiainen, Risto; Havlícek, Vladimír; Volný, Michael

    2009-10-15

    A fully automated atmospheric pressure ionization platform has been built and coupled with a commercial high-resolution Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) instrument. The outstanding performance of this instrument allowed screening on the basis of exact masses in imaging mode. The main novel aspect was in the integration of the atmospheric pressure ionization imaging into the current software for matrix-assisted laser desorption ionization (MALDI) imaging, which allows the user of this commercial dual-source mass spectrometer to perform MALDI-MS and different ambient MS imaging from the same user interface and to utilize the same software tools. Desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) were chosen to test the ambient surface imaging capabilities of this new ionization platform. Results of DESI imaging experiments performed on brain tissue sections are in agreement with previous MS imaging reports obtained by DESI imaging, but due to the high resolution and mass accuracy of the FTICR instrument it was possible to resolve several ions at the same nominal mass in the DESI-MS spectra of brain tissue. These isobaric interferences at low resolution are due to the overlap of ions from different lipid classes with different biological relevance. It was demonstrated that with the use of high-resolution MS fast imaging screening of lipids can be achieved without any preseparation steps. DAPPI, which is a relatively new and less developed ambient ionization technique compared to DESI, was used in imaging mode for the first time ever. It showed promise in imaging of phytocompounds from plant leaves, and selective ionization of a sterol lipid was achieved by DAPPI from a brain tissue sample. PMID:19761221

  5. High security and robust optical image encryption approach based on computer-generated integral imaging pickup and iterative back-projection techniques

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Cho, Sung Jin; Kim, Seok Tae

    2014-04-01

    In this paper, a novel optical image encryption algorithm by combining the use of computer-generated integral imaging (CGII) pickup technique and iterative back-projection (IBP) technique is proposed. In this scheme, a color image to be encrypted which is firstly segregated into three channels: red, green, and blue. Each of these three channels is independently captured by using a virtual pinhole array and be computationally transformed as a sub-image array. Then, each of these three sub-image arrays are scrambled by the Fibonacci transformation (FT) algorithm, respectively. These three scrambled sub-image arrays are encrypted by the hybrid cellular automata (HCA), respectively. Ultimately, these three encrypted images are combined to produce the colored encrypted image. In the reconstruction process, because the computational integral imaging reconstruction (CIIR) is a pixel-overlapping reconstruction technique, the interference of the adjacent pixels will decrease the quality of the reconstructed image. To address this problem, we introduce an image super-resolution reconstruction technique, the image can be computationally reconstructed by the IBP technique. Some numerical simulations are made to test the validity and the capability of the proposed image encryption algorithm.

  6. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  7. Techniques for computing the discrete Fourier transform using the quadratic residue Fermat number systems

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.

    1986-01-01

    The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  8. An inversion formula for the spherical transform in S2 for a special family of circles of integration

    NASA Astrophysics Data System (ADS)

    Salman, Yehonatan

    2016-03-01

    In this article, an inversion formula is obtained for the spherical transform which integrates functions, defined on the unit sphere S2, on circles. The inversion formula is for the case where the circles of integration are obtained by intersections of S2 with hyperplanes passing through a common point overline{a} strictly inside S2. In particular, this yields inversion formulas for two well-known special cases. The first inversion formula is for the special case where the family of circles of integration consists of great circles; this formula is obtained by taking overline{a} = 0. The second inversion formula is for the special case where the circles of integration pass through a common point p on S2; this formula is obtained by taking the limit overline{a}→ p.

  9. Interconnect modeling using integrated time-domain and frequency-domain techniques

    SciTech Connect

    You, Hong; Yeh, Chune-Sin; Gadepally, B.

    1995-12-31

    This paper presents an integrated time- and-frequency-domain technique for characterization and modeling of parasitic effects associated with interconnects. This technique enables direct measurements of critical transient as well as frequency responses of interconnects; accurate and efficient SPICE model extraction for coupled lines; and cross-domain verification of the measured data as well as the extracted models. To illustrate its application this technique is applied to characterize and extract the equivalent circuit model of the I/O bus on a real-world printed circuit board.

  10. Key words: Sound Diffraction; Lined Duct; Integral Transform; Wiener-Hopf Technique; Expansion Coefficients; Pole Removal Technique

    NASA Astrophysics Data System (ADS)

    Caglar, Bulent; Afsin, Beytullah; Eren, Erdal; Tabak, Ahmet; Cirak, Cagri; Cubuk, Osman

    2010-11-01

    The intercalation of dimethyl sulphoxide (DMSO), pyridine (Py), ethanolamine (Ea), and Nmethyl formamide (NMF) molecules into the kaolinite interlayers led to an appreciable decrease of 3697 cm-1 of the hydroxyl band. The appearance of the peaks at 3662, 3541, and 3504 cm-1 proved that the DMSO species are intercalated between the kaolinite layers through forming H-bonds with internal-surface hydroxyl groups. The intensities of the 942 and 796 cm-1 bending peaks arising from inner-surface hydroxyls decreased and new vibrational features appeared due to the intercalation of the guest species. The d001 value of pure kaolinite was found at 7.18 A° , and the d001 values were seen at 11.26, 11.62, 10.77, and 10.67 °A for kaolinite-dimethyl sulphoxide (K-DMSO), kaolinite-pyridine (K-Py), kaolinite-ethanolamine (K-EA), and kaolinite-N-methyl formamide (K-NMF) composites, respectively. The endothermic differential thermal analysis (DTA) peaks at a temperature of 108 - 334 ◦C reflected the changes in the physicochemical properties of the intercalated species. The thermal stability increase followed the order of K-Py

  11. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    SciTech Connect

    Chen, Ke

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  12. Techniques for measurement of dipole endfields with a rigid integrating coil

    SciTech Connect

    Glass, H.D.

    1993-07-01

    The endfield is often one of the most critical regions in conventional accelerator magnets. While the magnetic field structure of dipole ends can be complicated, it can be well described by a few parameters which include the effective magnetic length, L{sub eff}, and the integrated harmonics. Both of these parameters can be measured using a rigid coil which measures {integral} Bdl in the endfield region as a function of insertion depth z and transverse displacement x. We employ a data analysis technique which uses these measurements to remove body field contributions to the end field integral, resulting in the effective integrated endfield shape. A least squares polynomial fit is then used to estimate the harmonic coefficients up to decapole. We also present the technique for measuring L{sub eff} as a function of magnet current. These measurement techniques were successfully used in a study to finalize the design of the endpacks for the Fermilab Main Injector Dipole. The techniques are sufficiently general to be useful for other applications, such as the testing of the SSC Medium Energy Booster endpacks.

  13. Integrating Fundamental Principles Underlying Somatic Practices into the Dance Technique Class

    ERIC Educational Resources Information Center

    Brodie, Julie; Lobel, Elin

    2004-01-01

    Integrating somatic practices into the dance technique class by bringing awareness to the bodily processes of breathing, sensing, connecting, and initiating can help students reconnect the mind with the body within the context of the classroom environment. Dance educators do not always have the resources to implement separate somatics courses…

  14. Adaptive learning of Multi-Sensor Integration techniques with genetic algorithms

    SciTech Connect

    Baker, J.E.

    1994-06-01

    This research focuses on automating the time-consuming process of developing and optimizing multi-sensor integration techniques. Our approach is currently based on adaptively learning how to exploit low-level image detail. Although this system is specifically designed to be both sensor and application domain independent, an empirical validation with actual multi-modal sensor data is presented.

  15. Fast Discrete Fourier Transform Computations Using the Reduced Adder Graph Technique

    NASA Astrophysics Data System (ADS)

    Meyer-Bäse, Uwe; Natarajan, Hariharan; Dempster, Andrew G.

    2007-12-01

    It has recently been shown that thse[InlineEquation not available: see fulltext.]-dimensional reduced adder graph (RAG-[InlineEquation not available: see fulltext.]) technique is beneficial for many DSP applications such as for FIR and IIR filters, where multipliers can be grouped in multiplier blocks. This paper highlights the importance of DFT and FFT as DSP objects and also explores how the RAG-[InlineEquation not available: see fulltext.] technique can be applied to these algorithms. This RAG-[InlineEquation not available: see fulltext.] DFT will be shown to be of low complexity and possess an attractively regular VLSI data flow when implemented with the Rader DFT algorithm or the Bluestein chirp-[InlineEquation not available: see fulltext.] algorithm. ASIC synthesis data are provided and demonstrate the low complexity and high speed of the design when compared to other alternatives.

  16. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  17. Technology and geomorphology: Are improvements in data collection techniques transforming geomorphic science?

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2016-10-01

    In recent years technological developments have revolutionized our ability to collect data in geomorphology. Enhanced data collection not only enables us to provide deeper answers to a wider range of fundamental questions about the Earth's surface, but also encourages us to pose new questions. This paper considers in more detail the relationships between science, technology and the development of geomorphological tools and techniques, reviews the spectrum of tools and techniques now available to geomorphologists, and critically assesses what impact 'new technologies' are having on geomorphology. It focuses on the role of technology in biogeomorphology and weathering research, and how it is advancing theoretical, empirical and applied dimensions of these growing sub-fields of geomorphology. Five areas of important technological development are reviewed: remote sensing, dating, geophysical techniques, field and laboratory based analysis and sensing of physical and chemical characteristics, and field and laboratory based analysis of biological properties. There is good evidence that, taken together, technological developments are revolutionizing geomorphology through opening the doors to better cross-scalar investigations, blurring the boundaries between laboratory, field and computer model, and facilitating cross-disciplinary and democratized research.

  18. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  19. An efficient watermarking technique for satellite images using discrete cosine transform

    NASA Astrophysics Data System (ADS)

    AL-Mansoori, Saeed

    2012-10-01

    Due to the significant progress in science and technology, the digital world became an interesting topic for many studies. "Data Security" is one of the main concepts related to the digital world especially in the field of remote sensing. Therefore, to deal with this matter the "Watermarking" concept was introduced. The idea of digital image watermarking is to embed the information within a signal (i.e. image, video, etc.), which cannot be easily extracted by a third party. This will generate a copyright protection and authentication for the owner(s). Emirates Institution for Advanced Science and Technology (EIAST) as an owner provides satellite images captured by DubaiSat-1 satellite to customers. The aim of this study is to implement a robust algorithm to hide EIAST logo within any delivered image in order to increase the data security and protect the ownership of DubaiSat-1 images. In addition, it is necessary to provide a high quality images to the end-user; nevertheless, adding any information (logo) to these images will affect its quality. Therefore, the model will be designed to keep the observable difference between the watermarked and original image at minimum. Moreover, the watermark should be difficult to remove or alter without the degradation of the host image. This study will be based on Discrete Cosine Transform (DCT) to provide an excellent and highly robust protection in cases such as noise addition, cropping, rotation and JPEG compression attacks.

  20. PI film property analysis in the application of infrared image transform technique

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Zhang, Li; Li, Zhuo

    2013-09-01

    Modern infrared focal plane arrays (IR FPA) with high dynamic range, and multiband versions are being deployed in fielded systems. It needs to develop advanced scene projection technology to operate both in laboratory testing for hardware-in-the-loop simulation and validation of fielded units immediately prior to mission use. One of the fiber array visible to infrared imaging transducer is introduced. Different from the fiber bundle, the fiber array is etched on the substrate material. The property of transducer is determined by the substrate material. Polyimide (PI) film has the property of high dynamic range for temperature resistant, electric insulating, radiation resistant, good thermosetting and thermomechanical effect. The heat diffusion property of PI film is analyzed by experimental study. For experimental study, samples of with sputtered graphite on surface and different thickness of PI film were made. Using the visible light irradiate on the film and a high speed infrared camera capture the temperature information. The time of raising temperature process and the max temperature were recorded. The different energy of visible light was tried for the max temperature for samples. The result show the PI film can be achieved to 600K and has high thermal efficiency. And the surface film with good absorptivity is also important for heat transforming. PI film can be used as one of the material in the Infrared imaging transducer for high dynamic range and multiband radiation.

  1. Tomography of homogenized laser-induced plasma by Radon transform technique

    NASA Astrophysics Data System (ADS)

    Eschlböck-Fuchs, S.; Demidov, A.; Gornushkin, I. B.; Schmid, T.; Rössler, R.; Huber, N.; Panne, U.; Pedarnig, J. D.

    2016-09-01

    Tomography of a laser-induced plasma in air is performed by inverse Radon transform of angle-resolved plasma images. Plasmas were induced by single laser pulses (SP), double pulses (DP) in collinear geometry, and by a combination of single laser pulses with pulsed arc discharges (SP-AD). Images of plasmas on metallurgical steel slags were taken at delay times suitable for calibration-free laser-induced breakdown spectroscopy (CF-LIBS). Delays ranged from few microseconds for SP and DP up to tens of microseconds for SP-AD excitation. The white-light and the spectrally resolved emissivity ε(x,y,z) was reconstructed for the three plasma excitation schemes. The electron number density Ne(x,y,z) and plasma temperature Te(x,y,z) were determined from Mg and Mn emission lines in reconstructed spectra employing the Saha-Boltzmann plot method. The SP plasma revealed strongly inhomogeneous emissivity and plasma temperature. Re-excitation of plasma by a second laser pulse (DP) and by an arc discharge (SP-AD) homogenized the plasma and reduced the spatial variation of ε and Te. The homogenization of a plasma is a promising approach to increase the accuracy of calibration-free LIBS analysis of complex materials.

  2. DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi

    NASA Astrophysics Data System (ADS)

    Loske, Achim M.; Campos-Guillén, Juan; Fernández, Francisco; Pastrana, Xóchitl; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel

    Delivery of DNA into bacteria and fungi is essential in medicine and biotechnology to produce metabolites, enzymes, antibiotics and proteins. So far, protocols to genetically transform bacteria and fungi are inefficient and have low reproducibility.

  3. Writing trace identification using ultraviolet Fourier-transform imaging spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Lyu, Hang; Liao, Ningfang; Wu, Wenmin; Li, Yasheng; Cao, Bin

    2015-08-01

    Conventional identification methods of writing traces commonly utilize imaging or spectroscopic techniques which work in visible to near infrared range or short-wave infrared range. Yet they cannot be applied in identifying the erased writing traces. In this study, we perform a research in identification of erased writing traces applying an ultraviolet Fouriertransform imaging spectrometer. Experiments of classifying the reflected ultraviolet spectra of erasable pens are made. The resulting hyperspectral images demonstrate that the erased writing traces on printing paper can be clearly identified by this ultraviolet imaging spectrometer.

  4. Application of the Coupled Finite Element-Combined Field Integral Equation Technique (FEICFIE) to the Radiation Problem

    NASA Technical Reports Server (NTRS)

    Jamnejad, V.; Cwik, T.; Zuffada, C.

    1994-01-01

    A coupled finite element-combined field integral equation technique was originally developed for solving scattering problems involving inhomogeneous objects of arbitrary shape and large dimensions in wavelength.

  5. Design techniques for modular integrated utility systems. [energy production and conversion efficiency

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1977-01-01

    Features basic to the integrated utility system, such as solid waste incineration, heat recovery and usage, and water recycling/treatment, are compared in terms of cost, fuel conservation, and efficiency to conventional utility systems in the same mean-climatic area of Washington, D. C. The larger of the two apartment complexes selected for the test showed the more favorable results in the three areas of comparison. Restrictions concerning the sole use of currently available technology are hypothetically removed to consider the introduction and possible advantages of certain advanced techniques in an integrated utility system; recommendations are made and costs are estimated for each type of system.

  6. Fourier transform infrared spectroscopy: a technique for rapid, quantitative analysis of biogeochemical properties from Lake El gygytgyn

    NASA Astrophysics Data System (ADS)

    Rosen, P.; Vogel, H.; Cunningham, L.; Persson, P.; Melles, M.

    2009-12-01

    Here we present Fourier transform infrared spectroscopy (FTIRS) as a fast and cost efficient analytical tool for quantitative estimations of biogenic silica (BSi), total nitrogen (TN), total organic carbon (TOC), and total inorganic carbon (TIC) in lacustrine sediment. Simultaneous inference of these components is possible because IR-spectra in the MIR-region contain a wide variety of information on minerogenic and organic substances. The technique requires only small amounts (0.01g dry weight) of sample material and negligible sample pre-treatments. In this study the FTIRS technique is applied to sediment successions from the ICDP deep drilling site Lake El gygytgyn, NE Siberia. FTIRS calibrations for BSi, TN, TOC, and TIC yielded good statistical performances and emphasize the potential of the technique for high-resolution investigations of long sediment successions. This is particularly crucial since the sediment successions recovered during the winter/spring 2009 ICDP campaign are c. 320 m long, reach back 3.6 million years and provide the longest continental climate record in the Arctic. The results from Lake El gygytgyn indicate that FTIRS is a useful analytical alternative for quantitative inference of BSi, TN, TOC, and TIC and might therefore also be interesting for other ICDP lake drilling projects where long sediment successions are recovered and need to be analyzed.

  7. Super-resolution technique for CW lidar using Fourier transform reordering and Richardson-Lucy deconvolution.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D

    2014-12-15

    An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose. PMID:25503046

  8. Integrated Deployment Model: A Comprehensive Approach to Transforming the Energy Economy

    SciTech Connect

    Werner, M.

    2010-11-01

    This paper describes the Integrated Deployment model to accelerate market adoption of alternative energy solutions to power homes, businesses, and vehicles through a comprehensive and aggressive approach.

  9. Estimation of convective rain volumes utilizing the are-time-integral technique

    NASA Technical Reports Server (NTRS)

    Johnson, L. Ronald; Smith, Paul L.

    1990-01-01

    Interest in the possibility of developing useful estimates of convective rainfall with Area-Time Integral (ATI) methods is increasing. The basis of the ATI technique is the observed strong correlation between rainfall volumes and ATI values. This means that rainfall can be estimated by just determining the ATI values, if previous knowledge of the relationship to rain volume is available to calibrate the technique. Examples are provided of the application of the ATI approach to gage, radar, and satellite measurements. For radar data, the degree of transferability in time and among geographical areas is examined. Recent results on transferability of the satellite ATI calculations are presented.

  10. Outlier and target detection in aerial hyperspectral imagery: a comparison of traditional and percentage occupancy hit or miss transform techniques

    NASA Astrophysics Data System (ADS)

    Young, Andrew; Marshall, Stephen; Gray, Alison

    2016-05-01

    The use of aerial hyperspectral imagery for the purpose of remote sensing is a rapidly growing research area. Currently, targets are generally detected by looking for distinct spectral features of the objects under surveillance. For example, a camouflaged vehicle, deliberately designed to blend into background trees and grass in the visible spectrum, can be revealed using spectral features in the near-infrared spectrum. This work aims to develop improved target detection methods, using a two-stage approach, firstly by development of a physics-based atmospheric correction algorithm to convert radiance into re ectance hyperspectral image data and secondly by use of improved outlier detection techniques. In this paper the use of the Percentage Occupancy Hit or Miss Transform is explored to provide an automated method for target detection in aerial hyperspectral imagery.