Science.gov

Sample records for integral x-ray monitor

  1. Compact integrated X-ray intensity and beam position monitor based on rare gas scintillation

    SciTech Connect

    Revesz, Peter; Ruff, Jacob; Dale, Darren; Krawczyk, Thomas

    2013-05-15

    We have created and tested a compact integrated X-ray beam intensity and position monitor using Ar-gas scintillation. The light generated inside the device's cavity is detected by diametrically opposed PIN diodes located above and below the beam. The intensity is derived from the sum of the top and bottom signals, while the beam position is calculated from the difference-over-sum of the two signals. The device was tested at Cornell High Energy Synchrotron Source with both 17 keV and 59 keV x-rays. For intensity monitoring, the Ar-scintillation monitor performance is comparable to standard ion chambers in terms of precision. As an X-ray beam position monitor the new device response is linear with vertical beam position over a 2 mm span with a precision of 2 {mu}m.

  2. INTEGRAL high-energy monitoring of the X-ray burster KS 1741-293

    NASA Astrophysics Data System (ADS)

    De Cesare, G.; Bazzano, A.; Martínez Núñez, S.; Stratta, G.; Tarana, A.; Del Santo, M.; Ubertini, P.

    2007-09-01

    KS 1741-293, discovered in 1989 by the X-ray camera TTM on the Kvant module of the Mir space station and identified as an X-ray burster, had not been detected in the hard X-ray band until the advent of the INTEGRAL observatory. Moreover, this source has recently been the object of scientific discussion, being also associated with a nearby extended radio source that in principle could be the supernova remnant produced by the accretion-induced collapse in the binary system. Our long-term monitoring with INTEGRAL, covering the period from 2003 February to 2005 May, confirms that KS 1741-293 is transient in the soft and hard X-ray bands. When the source is active, from a simultaneous JEM-X and IBIS data analysis, we provide a wide-band spectrum from 5 to 100 keV, which can be fitted by a two-component model: a multiple blackbody for the soft emission and a Comptonized or a cut-off power-law model for the hard component. Finally, by the detection of two X-ray bursters with JEM-X, we confirm the bursting nature of KS 1741-293, including this source in the class of hard-tailed X-ray bursters. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), the Czech Republic and Poland, and with the participation of Russia and the USA. E-mail: giovanni.decesare@iasf-roma.inaf.it ‡ INAF personnel resident at ASDC.

  3. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking

  4. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  5. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  6. Curved gratings as an integrated photon fluence monitor in x-ray transmission scattering experiments.

    PubMed

    Schneider, Michael; Günther, Christian Michael; von Korff Schmising, Clemens; Pfau, Bastian; Eisebitt, Stefan

    2016-06-13

    A concept to obtain a measure of the photon flux accepted by a solid sample in single-shot transmission experiments with extreme ultraviolet (XUV) or soft x-ray radiation is demonstrated. Shallow, continuously distorted gratings are used to diffract a constant fraction of the incident photons onto an extended area of a CCD detector. The signal can be tailored to fit the dynamic range of the detector, i.e. matching the scattered intensity of the studied structure of interest. Furthermore, composite grating designs that also allow for the measurement of the spatial photon distribution on the sample are demonstrated. The gratings are directly fabricated by focused ion-beam (FIB) lithography into a Si3N4 membrane that supports the actual sample layer. This allows for rapid fabrication of hundreds of samples, making the concept suitable for systematic studies in destructive single-shot measurements at free-electron laser (FEL) sources. We demonstrate relative photon flux measurements in magnetic scattering experiments with synchrotron and FEL radiation at 59.6 eV photon energy. PMID:27410328

  7. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  8. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  9. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  10. INTEGRAL finds renewed X-ray activity of the Neutron star X-ray transient SAX J1750.8-2900

    NASA Astrophysics Data System (ADS)

    Sanchez-Fernandez, Celia; Chenevez, Jerome; Kuulkers, Erik; Bazzano, Angela; Beckmann, Volker; Bird, Tony; Bodaghee, Arash; Del Santo, Melania; Domingo, Albert; Jonker, Peter; Kretschmar, Peter; Markwardt, Craig; Paizis, Ada; Pottschmidt, Katja; Wijnands, Rudy

    2015-09-01

    INTEGRAL Galactic bulge monitoring observations (ATel #438) on UT 13 September 2015 18:50-22:32 reveal renewed X-ray activity from the low-mass X-ray binary transient and Type I X-ray burster SAX J1750.8-2900 (IAU Circ. #6597). The last outburst from this source was reported in 2011 (ATels #3170, 3181).

  11. X-Ray Monitoring of GRBs with Lobster Eye Telescopes

    SciTech Connect

    Sveda, L.; Pina, L.; Hudec, R.; Inneman, A.; Pizzichini, G.

    2004-09-28

    We present here the soft X-ray All-Sky Monitor (ASM). It is based on the current technological capabilities, sensitive in the {approx} 0.1 - 10.0 keV range with angular resolution of {approx} 3 - 4 arcmin, and has a limiting detectable flux {approx} 10-12 erg/s/cm2 for daily scans in the mentioned energy range. The ASM will play a key role in studying transient X-ray sources like XRBs, GRBs, XRFs, X-ray novae, as well as in the study of the long term variability of X-ray sources like XRBs, AGN, or stellar X-ray flares.

  12. Wide-Field Sky Monitoring - Optical and X-rays

    NASA Astrophysics Data System (ADS)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  13. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  14. The radiation-tolerant x-ray monitor.

    PubMed

    Gott, Yu V; Stepanenko, M M

    2008-10-01

    A vacuum photoelectric detector (monitor) (VPD) designed for plasma tomography, megnetohydrodynamics monitoring, and imaging with the help of thermal x-ray radiation on the ITER facility is described. Laboratory experiments demonstrate that VPD has high sensitivity to thermal x rays and low sensitivity to hard gamma rays and neutrons. The results of tests of a prototype of this monitor on a (60)Co source of gamma rays, on nuclear reactor and its calibration using radiation from an x-ray tube, and tests of its serviceability on the T-10 facility are presented. PMID:19044585

  15. Application of X-ray imaging techniques to auroral monitoring

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Burstein, P.

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  16. Monitoring variable X-ray sources in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  17. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    SciTech Connect

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  18. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  19. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  20. Next generation x-ray all-sky monitor

    SciTech Connect

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-10

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10{sup -15} W/m{sup 2} (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars.

  1. X-ray monitoring for astrophysical applications on Cubesat

    NASA Astrophysics Data System (ADS)

    Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; Belas, E.; Polak, J.

    2015-05-01

    The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD - In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

  2. The radiation monitor cosmic X-ray experiment OSO-1

    NASA Technical Reports Server (NTRS)

    Randall, R. F.

    1973-01-01

    A comprehensive technical description is presented of the Radiation Monitor which is part of the GSFC cosmic X-ray experiment to be flown on the OSO-1 satellite. The theory of operation, fabrication and assembly, and cone angle determination are reported.

  3. Chandra X-Ray Observatory Camera Integrated With Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most poweful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components relatedto x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  4. Chandra X-Ray Observatory Camera Integrated With Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  5. The Combined Swift - INTEGRAL X-ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, M.; Greiner, J.

    2013-04-01

    In the local universe (z < 0.5) Active Galactic Nuclei (AGN) are best surveyed at hard X-ray energies by Swift/BAT and INTEGRAL/IBIS. These two coded mask telescopes are selecting a sizable number of AGN and they are uncovering the obscured AGN population. However, the sensitivity of surveys performed with coded mask telescopes is limited by rather large statistical and systematic errors. I will show that Swift/BAT and INTEGRAL/IBIS are so close in design that their observations can be combined. This results in a new survey: the Swift-INTEGRAL X-ray (SIX) survey that is a factor of ~2 more sensitive than the surveys of both instruments alone. I investigate the nature of the SIX selected AGN and the implications for the study of their space density and evolution. I will address also the impact of the SIX survey on recent and forthcoming hard X-ray missions with focusing optics.

  6. Optics for nano-satellite X-ray monitor

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír.; Burrows, David N.; Prieskorn, Zachary; Hudec, René

    The Schmidt lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space X-ray monitors. It is possible to assemble Schmidt lobster eye telescopes with dimensions and focal lengths acceptable for nano class satellites. In this paper, draft of nano-class space mission providing monitoring of specific sky area is presented. Preliminary optical design study for such mission is performed. Two of possible opticle designs are presented. For those designs, field of view, effective input area and other basic optical parameters are calculated. Examples of observed images are presented.

  7. SZ2 X-ray detector for GRB monitoring

    NASA Astrophysics Data System (ADS)

    Ma, Y. Q.; Wang, H. Y.; Zhang, C. M.; Xu, Y. P.; Zhang, Z. Y.

    2001-08-01

    A two-headed X-ray detector system to cove 10800 keV energy band with 40 ms time resolution had been built as main part of a GRB monitoring system on board of SZ2 spacecraft. It has being successful flight since 10th Jan 2001 SZ2 been launched. We describe in this paper the layout of the instrument including the hardware, the software, and on-board controlling.

  8. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  9. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    SciTech Connect

    Ichiyanagi, Kouhei; Sasaki, Yuji C.; Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru; Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku; Nishijima, Masaki; Inoue, Yoshihisa; Yagi, Naoto

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  10. The Integrated X-Ray Spectrum of Galactic Populations of Luminous Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, R.; Becker, C. M.; Fabbiano, G.

    1996-01-01

    We compute the composite X-ray spectrum of a population of unresolved SSS's in a spiral galaxy such as our own or M31. The sources are meant to represent the total underlying population corresponding to all sources which have bolometric luminosities in the range of 10(exp 37) - 10(exp 38) ergs/s and kT on the order of tens of eV. These include close-binary supersoft sources, symbiotic novae, and planetary nebulae, for example. In order to determine whether the associated X-ray signal would be detectable, we also 'seed' the galaxy with other types of X-ray sources, specifically low-mass X-ray binaries (LMXB's) and high-mass X-ray binaries (HMXB's). We find that the total spectrum due to SSS's, LMXB's, and HMXB's exhibits a soft peak which owes its presence to the SSS population. Preliminary indications are that this soft peak may be observable.

  11. INTEGRAL detection of a hard X-ray transient in NGC 6440

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.; Bozzo, E.; Bazzano, A.; Beckmann, V.; Bird, T.; Bodaghee, A.; Chenevez, J.; Del Santo, M.; Domingo, A.; Jonker, P.; Kretschmar, P.; Paizis, A.; Pottschmidt, K.; Markwardt, C.; Sanchez-Fernandez, C.; Wijnands, R.

    2015-02-01

    During INTEGRAL Galactic bulge monitoring (e.g., ATel #438) observations performed on UT 2015 February 17 at 12.53-16:45, IBIS/ISGRI detected renewed activity at hard X-rays from a transient within the Globular Cluster NGC 6440.

  12. Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2012-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.

  13. The Deep Look at the Hard X-Ray Sky: The Swift-INTEGRAL X-Ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco; Greiner, Jochen

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only ~1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg2 that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V max method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  14. THE DEEP LOOK AT THE HARD X-RAY SKY: THE SWIFT-INTEGRAL X-RAY (SIX) SURVEY

    SciTech Connect

    Bottacini, Eugenio; Ajello, Marco

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only {approx}1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg{sup 2} that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V{sub max} method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  15. The All-Sky Swift - INTEGRAL X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    All-sky surveys at hard X-ray energies (above 15 keV) have proven to be a powerful technique in detecting Galactic and extragalactic source populations. Most of the radiation at hard X-ray energies originates in non-thermal processes. These processes take place in extreme conditions of gravitational fields, of electromagnetic field, and also in explosive events. Such extreme conditions can be found in the Milk Way in the vicinity of neutron stars, black holes, and supernovae. Also extragalactic sources are known to be hard X-ray emitters like Active Galactic Nuclei (AGNs), blazars, and Clusters of Galaxies. Currently the most sensitive flying hard X-ray detectors are the Burst Alert Telescope (BAT) on board the NASA mission Swift and the INTEGRAL Soft-Gamma Ray Imager (IBIS/ISGRI) on board the ESA mission INTEGRAL. BAT and IBIS/ISGRI are coded- mask telescopes that shed continuously light on the Galactic and the extragalactic source populations. However, coded-mask telescopes suffer from heavy systematic effects (errors) preventing them from reaching their theoretical limiting sensitivity. Furthermore, by design, they block ~50% of the incident photons causing and increase of statistical noise. As a consequence BAT and IBIS/ISGRI are not sensitive enough to detect faint objects. In addition it has been proven that the Galactic survey of these instruments is limited by systematic uncertainties. Therefore, further observations on the Galactic plane will not improve the sensitivity of the survey of BAT and IBIS/ISGRI. In this project we show that it is possible to overcome the limits of BAT and of IBIS/ISGRI by combining their observations in the 18 55 keV energy range. We call it the SIX survey that stands for Swift - INTEGRAL X-ray survey. Two major advantages are obtained by merging the observations of BAT and IBIS/ISGRI: 1) the exposure is greatly enhanced (sum of BAT and IBIS/ISGRI) and therefore the sensitivity is improved; 2) the systematic errors of both

  16. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  17. X-ray Monitoring of eta Carinae: Variations on a Theme

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2004-01-01

    We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.

  18. X-ray induced damage in DNA monitored by X-ray photoelectron spectroscopy

    SciTech Connect

    Ptasinska, Sylwia; Stypczynska, Agnieszka; Nixon, Tony; Mason, Nigel J.; Klyachko, Dimitri V.; Sanche, Leon

    2008-08-14

    In this work, the chemical changes in calf thymus DNA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The DNA samples were irradiated for over 5 h and spectra were taken repeatedly every 30 min. In this approach the X-ray beam both damages and probes the samples. In most cases, XPS spectra have complex shapes due to contributions of C, N, and O atoms bonded at several different sites. We show that from a comparative analysis of the modification in XPS line shapes of the C 1s, O 1s, N 1s, and P 2p peaks, one can gain insight into a number of reaction pathways leading to radiation damage to DNA.

  19. Future requirements for X-ray monitoring of AGN

    NASA Astrophysics Data System (ADS)

    Nandra, K.

    2000-10-01

    Observations with RXTE have lead to major advances in our knowledge of the X-ray and multi-waveband variability properties of active galactic nuclei (AGN). In large part, this has been due to the fact that it has been possible to probe long time scale (months-years) variability in a systematic way. Current and future high-throughput missions will do an excellent job defining the characteristics of the short time variations. It is important, however, to make plans for longer-term monitoring in the future, given that RXTE has shown that this is how many of the important science questions can be addressed. The author is supported by NASA ADP grant NAG5-7067 to the Universities Space Research Association.

  20. The Fermi-GBM X-ray burst monitor

    NASA Astrophysics Data System (ADS)

    Linares, M.; Fermi GBM X-ray Burst Collaboration

    2010-12-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving for the first time robust measurements of their recurrence time.

  1. An energy and intensity monitor for X-ray absorption near-edge structure measurements

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Paterson, David; McNulty, Ian; Rau, Christoph; Brandes, Jay A.; Ingall, Ellery

    2010-07-01

    An in-line X-ray beam energy and intensity monitor has been developed for use in focussed X-ray absorption near-edge spectroscopy (XANES) measurements. The monitor uses only the X-ray intensity that would otherwise bypass our zone-plate focussing optic and relies on a measurement of photoemission current. The monitor is inexpensive, easy to align, and provides valuable feedback about the X-ray energy. Operation of the monitor is demonstrated for measurements of phosphorus XANES. The precision of the energy determination is around 0.5 eV.

  2. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  3. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  4. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  5. INTEGRAL measures the hard X-ray spectrum of the Be/X-ray binary XTE J1859+083

    NASA Astrophysics Data System (ADS)

    Malyshev, D.; Gotz, C. Ferrigno D.

    2015-04-01

    During the INTEGRAL observations performed from 2015 April 17, 19:47 to April 19, 20:01 UTC, the IBIS/ISGRI instrument detected a highly significant signal from a transient source, positionally coincident with the Be/X-ray pulsar XTE J1859+083 (ra, dec) = (284.78 ; 8.25) , which is reported to be in outburst since 2015-02-08 (ATeL #7034).

  6. Preliminary Designs for Modifications to the X-Ray Source and Beam Monitor of the Marshall Space Flight Center's X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1983-01-01

    Preliminary designs for modifications to the X-ray source and beam monitor of the MSFC X-Ray Calibration Facility to meet requirements for the calibration of the Advanced X-Ray Astrophysics Facility are considered. A rhodium plated copper target and rhodium foil filter are proposed as a source of X-rays of approximately 2.6 keV energy. Bragg scattering of the unpolarized X-ray beam from the present source through an angle of 90 deg by a single crystal placed on the axis of the guide tube is proposed as a source of approximately monoenergetic plane polarized X-rays. A sealed xenon proportional counter with a Beryllium window is proposed as a beam monitor for use between 2.5 and 8 keV to obtain improved detection efficiency.

  7. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  8. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  9. X-Ray Scan Detection for Cargo Integrity

    SciTech Connect

    Valencia, Juan D.; Miller, Steven D.

    2011-04-18

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF

  10. Constraints on Solar Coronal Abundances from MESSENGER X-ray Solar Monitor Data

    NASA Astrophysics Data System (ADS)

    Nittler, L.; Starr, R. D.; Schlemm, C., III; McNutt, R. L.; Solomon, S. C.

    2010-12-01

    The chemical composition of the solar corona is fractionated from that of the photosphere, with elements having low first-ionization-potential (FIP <~10 eV) enriched relative to higher-FIP elements. However, the absolute normalization of coronal abundances relative to photospheric ones as well as possible time variation in coronal abundances (e.g., during flares) is a matter of longstanding controversy. Moreover, the effects of a recent downward revision in photospheric C, N, and especially O abundances on coronal composition have not yet been extensively studied. The shape of the soft X-ray spectrum emitted from the coronal plasma depends strongly on chemical composition both through emission lines and free-bound emission contributions to the continuum. The MESSENGER spacecraft, en route to orbit Mercury, includes a Si-PIN detector to monitor the solar X-ray spectrum (~1.5 to 8 keV) as part of an experiment to determine planetary surface composition via X-ray fluorescence. A pinhole and thin Be window in front of the PIN attenuate much of the flux below 2 keV, providing a high dynamic range in measuring the highly variable solar spectrum. The energy resolution of the solar monitor (~600 eV) is not sufficient to resolve individual solar lines but does allow line complexes of Ca and Fe to be distinguished from continuum during flares. In preparation for analysis of X-ray data from Mercury’s surface, we have begun a systematic effort to fit theoretical solar spectra to MESSENGER solar monitor data, using the CHIANTI 5.2 code and assuming isothermal plasma. The key fitting parameters are the plasma temperature, emission measure, and level of fractionation for low-FIP elements. Preliminary fitting of some 1400 individual spectra (300-450 s integration) from ~200 B-level and above solar flares during June-August 2010 reveals two interesting results: (1) The best fits are obtained for plasma with low-FIP elements enriched by a factor of ~2 relative to photospheric

  11. High sensitivity all sky X-ray monitor and survey with MAXI

    SciTech Connect

    Isobe, N.; Mihara, T.; Kohama, M.; Suzuki, M.; Matsuoka, M.; Ueno, S.; Tomida, H.; Yoshida, A.; Yamaoka, K.; Tsunemi, H.; Miyata, E.; Negoro, H.; Nakajima, M.; Morii, M.

    2007-07-12

    MAXI is an all sky X-ray monitor to be mounted on the Japanese Experimental Module in the International Space Station (ISS). It scans almost all over the sky every 96 minutes, in the course of the orbital motion of the ISS. MAXI is designed to have a sensitivity, significantly higher than the previous X-ray monitors, and then, to detect X-ray sources as faint as 1 mCrab in a week observation. Therefore, MAXI is expected to create a novel catalogue of not only the stable X-ray sources but also the highly variable ones in the sky, especially active galactic nuclei for the first time. If MAXI detects X-ray phenomena, alerts will be quickly made through the Internet.

  12. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  13. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  14. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    SciTech Connect

    Shemmer, Ohad; Stein, Matthew S.; Brandt, W. N.; Schneider, Donald P.; Paolillo, Maurizio; Kaspi, Shai; Vignali, Cristian; Lira, Paulina; Gibson, Robert R.

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  15. MOXE: An x-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    SciTech Connect

    Priedhorsky, W.; Fenimore, E.E.; Moss, C.E.; Kelley, R.L.; Holt, S.S.

    1989-01-01

    We are developing a Monitoring X-Ray Equipment (MOXE) for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. Our objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5/sigma/) in 1 day, and cover the 2-20 keV band. 30 refs., 4 figs.

  16. Optical Monitoring of Selected X-ray AGN

    NASA Astrophysics Data System (ADS)

    Phillips, V. D.; Sadun, A.; Kelly, M.; Baca, P.; Holt, J.; Galadari, A.; Nied, P.; Howard, E.; Ghosh, K.

    2001-12-01

    We present the results of microvariability studies of X-ray loud/radio quiet AGN in optical wavelengths (R band). The optical data were taken over approximately eight months at the Sommers-Bausch Observatory (U. Colorado-Boulder), and at the SARA Observatory. In addition to engaging in routine optical analysis, we investigated the extent to which these objects exhibited intra-night variability. The presence of microvariability would indicate that in addition to an accretion disk, there would also be present relativistic components such as parsec-scale jets; quiescence would indicate that long-term variability in these objects is perhaps due to accretion disk instabilities alone. The preliminary indication from our data is that there is indeed evidence of relativistic jets in this class of objects.

  17. Jupiter's X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Kraft, R. P.; Elsner, R. F.; Branduardi-Raymont, G.; Gladstone, G. R.; Tao, C.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Vogt, M. F.; Masters, A.; Hasegawa, H.; Badman, S. V.; Roediger, E.; Ezoe, Y.; Dunn, W. R.; Yoshikawa, I.; Fujimoto, M.; Murray, S. S.

    2016-03-01

    Jupiter's X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high-energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long-term multiwavelength monitoring of Jupiter's X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high-energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.

  18. Gray-scale transform and evaluation for digital x-ray chest images on CRT monitor

    NASA Astrophysics Data System (ADS)

    Furukawa, Isao; Suzuki, Junji; Ono, Sadayasu; Kitamura, Masayuki; Ando, Yutaka

    1997-04-01

    In this paper, an experimental evaluation of a super high definition (SHD) imaging system for digital x-ray chest images is presented. The SHD imaging system is proposed as a platform for integrating conventional image media. We are involved in the use of SHD images in the total digitizing of medical records that include chest x-rays and pathological microscopic images, both which demand the highest level of quality among the various types of medical images. SHD images use progressive scanning and have a spatial resolution of 2000 by 2000 pixels or more and a temporal resolution (frame rate) of 60 frames/sec or more. For displaying medical x-ray images on a CRT, we derived gray scale transform characteristics based on radiologists' comments during the experiment, and elucidated the relationship between that gray scale transform and the linearization transform for maintaining the linear relationship with the luminance of film on a light box (luminance linear transform). We then carried out viewing experiments based on a five-stage evaluation. Nine radiologists participated in our experiment, and the ten cases evaluated included pulmonary fibrosis, lung cancer, and pneumonia. The experimental results indicated that conventional film images and those on super high definition CRT monitors have nearly the same quality. They also show that the gray scale transform for CRT images decided according to radiologists' comments agrees with the luminance linear transform in the high luminance region. And in the low luminance region, it was found that the gray scale transform had the characteristics of level expansion to increase the number of levels that can be expressed.

  19. Integrated circuit authentication using photon-limited x-ray microscopy.

    PubMed

    Markman, Adam; Javidi, Bahram

    2016-07-15

    A counterfeit integrated circuit (IC) may contain subtle changes to its circuit configuration. These changes may be observed when imaged using an x-ray; however, the energy from the x-ray can potentially damage the IC. We have investigated a technique to authenticate ICs under photon-limited x-ray imaging. We modeled an x-ray image with lower energy by generating a photon-limited image from a real x-ray image using a weighted photon-counting method. We performed feature extraction on the image using the speeded-up robust features (SURF) algorithm. We then authenticated the IC by comparing the SURF features to a database of SURF features from authentic and counterfeit ICs. Our experimental results with real and counterfeit ICs using an x-ray microscope demonstrate that we can correctly authenticate an IC image captured using orders of magnitude lower energy x-rays. To the best of our knowledge, this Letter is the first one on using a photon-counting x-ray imaging model and relevant algorithms to authenticate ICs to prevent potential damage. PMID:27420519

  20. On-Line Mirror Surfacing Monitored by X-ray Shearing Interferometry and X-ray Scattering

    SciTech Connect

    Ziegler, E.; Peverini, L.; Kozhevnikov, I. V.; Weitkamp, T.; David, C.

    2007-01-19

    We propose a novel fabrication scheme combining a mirror surfacing tool and an on-line metrology instrument, the latter capable of controlling both figure and finish of an X-ray mirror with an accuracy matching the challenging specifications of nanofocusing reflective optics for synchrotron and FEL X-ray beams. This approach will be complementary to the present technologies. The paper reviews some recent achievements and presents pertinent examples of on-line diagnostics performed at the ESRF BM05 beamline for which X-rays prove to be a unique probe.

  1. A new fully integrated X-ray irradiator system for dosimetric research.

    PubMed

    Richter, D; Mittelstraß, D; Kreutzer, S; Pintaske, R; Dornich, K; Fuchs, M

    2016-06-01

    A fully housed X-ray irradiator was developed for use within lexsyg or Magnettech desktop equipment. The importance of hardening of the low energy photon radiation is discussed, its performance and feasibility is empirically shown and sustained by basic numerical simulations. Results of the latter for various materials are given for different X-ray source settings in order to provide estimates on the required setup for the irradiation of different geometries and materials. A Si-photodiode provides real-time monitoring of the X-ray-irradiator designed for use in dosimetric dating and other dosimetric application where irradiation of small samples or dosemeters is required. PMID:27041090

  2. Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration

    NASA Technical Reports Server (NTRS)

    Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.

    1993-01-01

    The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.

  3. Wide-Field MAXI - Wide-Field Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki

    WF-MAXI is a mission to detect and localize X-ray transients including GRBs and XRFs, X-ray binaries, and hopefully tidal disruption events and supernova shockbreakouts. We are designing WF-MAXI to be ready for the initial operational phase of the next generation GW telescopes: Adv-LIGO, VIRGO and KAGRA, which are expected to be operational in 2-4 years. It will be sensitive to soft extended emission of short GRBs. It will also succeed the current MAXI mission, which is providing alerts for outbursts of X-ray sources to the community. We chose to use flight-proven or qualified technologies developed for MAXI, ASTRO-H, and TSUBAME for a fast development of the mission. The main instrument is Soft X-ray Large-sky Cameras (SLC), pairs of criss-cross coded aperture cameras using CCD as one-dimensional fast-readout detectors covering 20% of the sky in the 0.7-12 keV band. The Hard X-ray Monitor share the same field as SLC in the hard X-ray band. We are proposing this mission for the ISS/JEM AO in this year aiming to start operations in 2018.

  4. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team

    2013-04-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  5. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Swift/BAT Team

    2011-09-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  6. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws

  7. Design Updates of the X-ray Beam Position Monitor for Beamline Front Ends

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Singh, Om; Hahne, Michael; Decker, Glenn

    2007-01-01

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front end has two x-ray beam position monitors (XBPMs) to monitor the x-ray beam position in both the vertical and horizontal directions. The XBPMs measure photoelectrons generated from the CVD-diamond-based sensory blades and deduce the beam position by comparison of the relative signals from the blades. Using the method proposed by G. Decker, which involves the introduction of a chicane into the accelerator lattice that directs unwanted x-rays away from the photosensitive XBPM blades, the photon source stability has been improved by addition of XBPMs in the storage ring global orbit feedback. In recent years, design updates for the XBPM mechanical structure and geometric configuration have been made to improve its performance. We present these design updates in this paper. Test results of the XBPM design updates are also discussed here.

  8. ALEXIS (Array of Low-Energy X-Ray Imaging Sensors): A narrow-band survey/monitor of the ultrasoft x-ray sky

    SciTech Connect

    Priedhorsky, W.C.; Bloch, J.J.; Cordova, F.; Smith, B.W.; Ulibarri, M.; Chavez, J.; Evans, E.; Seigmund, O.H.W.; Marshall, H.; Vallerga, J.

    1989-01-01

    Los Alamos and Sandia National Laboratories are building an ultrasoft X-ray monitor experiment. This experiment, called ALEXIS (Array of Low-Energy X-Ray Imaging Sensors), consists of six compact normal-incidence telescopes. ALEXIS will operate in the range 70--110 eV. The ultrasoft X-ray/EUV band is nearly uncharted territory for astrophysics. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, will complement the upcoming NASA Extreme Ultraviolet Explorer and ROSAT EUV Wide Field Camera, which are sensitive broad-band survey experiments. The program objectives of ALEXIS are to (1) demonstrate the feasibility of a wide field-of-view, normal incidence ultrasoft X-ray telescope system and (2) to determine ultrasoft X-ray backgrounds in the space environment. As a dividend, ALEXIS will pursue the following scientific objectives: (1) to map the diffuse background, with unprecedented angular resolution, in several emission-line bands, (2) to perform a narrow-band survey of point sources, (3) to search for transient phenomena in the ultrasoft X-ray band, and (4) to provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars. ALEXIS is designed to be flown on a small autonomous payload carrier (a minisat) that could be launched from any expendable launch vehicle. The experiment weighs 100 pounds, draws 40 watts, and produces 10 kbps of data. It can be flown in any low earth orbit. Onboard data storage allows operation and tracking from a single ground station at Los Alamos. 57 refs., 12 figs.

  9. High-resolution spectroscopy and high-density monitoring in X-rays of novae

    NASA Astrophysics Data System (ADS)

    Ness, J. U.

    2012-09-01

    The 21st century X-ray observatories XMM-Newton, Chandra, and Swift gave us completely new insights into the X-ray behaviour of nova outbursts. These new-generation X-ray observatories provide particularly high spectral resolution and high density in monitoring campaigns, simultaneously in X-rays and UV/optical. The entire evolution of several nova outbursts has been observed with the Swift XRT and UVOT instruments, allowing studies of the gradual shift of the peak of the SED from UV to X-rays, time scales to the onset and duration of the X-ray brightest supersoft source (SSS) phase, and pre- and post-SSS X-ray emission. In addition, XMM-Newton and Chandra observations can efficiently be scheduled, allowing deeper studies of strategically chosen evolutionary stages. Before Swift joined in 2005, Chandra and XMM-Newton blind shots in search of SSS emission unavoidably led to some underexposed observations taken before and/or after the SSS phase. More systematic Swift studies reduced this number while increasing the number of novae. Pre- and post-SSS spectra at low and high spectral resolution were successfully modelled with collisional plasma models. Pre-SSS emission arises in shocks and post-SSS emission in radiatively cooling thin ejecta. In contrast, the grating spectra taken during the SSS phase are a lot more complex than expected and have not yet been successfully modeled. Available hot white dwarf (WD) radiation transport models give only approximate reproduction of the observations, and make some critical assumptions that are only valid in isolated WDs. More grating spectra would be important to search for systematic trends between SSS spectra and system parameters. Summary of well-established discoveries with Swift, XMM-Newton, and Chandra: - About 50% of novae display faint X-ray emission before the start of the SSS phase - The start of the SSS phase is not a smooth process. High-amplitude variations during the early SSS phase were seen that disappear close

  10. Wide-range monitor for pulsed x-ray sources

    SciTech Connect

    Kaifer, R.C.; Jenkins, T.E.; Straume, T.

    1981-10-12

    A monitoring instrument based on a high-pressure ionization chamber has been developed that measures average dose rates as low as 0.1 mR/h and responds linearly to short pulses at dose rates up to 1.2 x 10/sup 10/ R/h. Its sensitivity can be remotely changed by a factor of 10/sup 4/, to enable accurate measurement of both background radiation and very high intensities such as can be expected from accelerator beam-spills. The instrument's detector-electrometer pulse response was measured using a dose-calibrated field-emission accelerator having a 30-ns pulse width.

  11. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  12. Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms

    NASA Astrophysics Data System (ADS)

    Oger, Phil M.; Daniel, I.; Simionovici, A.; Picard, A.

    2008-04-01

    X-ray spectroscopies are very powerful tools to determine the chemistry of complex dilute solutes in abiotic and biotic systems. We have assayed their suitability to monitor the chemistry of complex solutions in a live biotic system. The impact of the probe on cells was quantified for 4 different cellular organisms differing in their resistance level to environmental stresses. We show that none of the organisms tested can survive the radiation doses needed for the acquisition of meaningful spectroscopic data. Therefore, on one hand, X-ray spectroscopy cannot be applied to the monitoring of single cells, and cellular damages have to be taken into account in the interpretation of the evolution of such systems. On the other hand, due to the limited extension of X-ray induced cellular damages in the culture volume, it is possible to probe a population of live cells provided that the culture to beam probe ratio is large enough to minimize the impact of mortality on the evolution of the biological system. Our results suggest that it could be possible to probe the volume in the close vicinity of a cell without affecting its activity. Using this setup we could monitor the reduction of selenite by the X-ray sensitive bacterium, Agrobacterium tumefaciens strain C58, for 24 h. This method has a great potential to monitor the respiration of various metals, such as iron, manganese and arsenic, in situ under relevant environmental conditions by live microorganisms.

  13. iWF-MAXI: Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Ebisawa, Ken; Yatsu, Yoichi; Arimoto, Makoto; Mihara, Tatehiro; Serino, Motoko; Tsunemi, Hiroshi; Kohmura, Takayoshi; Sakamoto, Takanori; Negoro, Hitoshi; Ueda, Yoshihiro; Tsuboi, Yohko; Yoshida, Atsumasa

    2015-08-01

    iWF-MAXI is an X-ray transient monitor mission proposed for the ISS/JEM, starting in 2018-2019.It has four main scientific goals:(1) To find and localize the X-ray counterparts of gravitational wave events, which are expected to be detected by the next generation gravitational wave detectors such as Advance LIGO and KAGRA in late 2010's.(2) To detect short soft X-ray transients such as stellar flares, nova ignitions, and supernova shock breakouts, and promptly notify the world.(3) To trigger on short high-energy transients such as gamma-ray bursts and tidal disruption events, and promptly disseminate their locations to the community.(4) To detect the onset of activities from black hole binaries, neutron star binaries, and active galactic nuclei (AGN), and issue alerts to the astronomical community of the world.Its main scientific instrument is the Soft X-ray Large Solid Angle Camera (SLC). It is sensitive in the energy range of 0.7--10 keV with a localization accuracy of 0.1 degres. It will detect short transient events like GRBs with durations from a fraction of a second to minutes that occur in its large large field of view (>10% of the entire sky) .With the orbital revolution of the ISS, iWF-MAXI scans much larger sky area in 90 minutes, and looks for slower events such as outbursts of X-ray binaries.

  14. Monitoring the Next X-Ray Nova Outburst from Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding compact objects and accretion processes by making comparative studies of Cen X-4 (an X-ray burster) and A0620-00 (black hole binary). These systems are recurrent X-ray novae with similar periods, distances, and companion stars. In quiescent states of accretion, their diverging spectral energy distributions are interpreted as observational support for both the ADAF model and the reality of event horizons surrounding black holes. The next X-ray nova episode for Cen X-4 may occur soon, and it may be very bright (several Crab). Since so much is known about this binary system, there is a unique opportunity to monitor the timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude.

  15. Monitoring the Next X-Ray Nova Outburst from Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding compact objects and accretion processes by making comparative studies of Cen X-4 (an X-ray burster) and A0620-00 (black hole binary). These systems are recurrent X-ray novae with similar periods, distances, and companion stars. In quiescent states of accretion, their diverging spectral energy distributions are interpreted as observational support for both the ADAF model and the reality of event horizons surrounding black holes. The next X-ray nova episode for Cen X-4 may occur soon. Since it is likely to be very bright (several Crab), and since so much is known about this binary system, there is a unique opportunity to monitor the timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude.

  16. Integration of flat panel X-ray detector for high resolution diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Yun, Min-Seok; Kim, Yoon-Suk; Oh, Kyung-Min; Shin, Jung-Wook; Nam, Kyung-Tae; Nam, Sang-Hee

    2011-05-01

    In these days, flat panel X-ray image detectors have shown their potential for replacing traditional screen-film systems. To detect the X-ray photon energy, there are two main methods known as a direct method and an indirect method. The X-rays are converted immediately into electrical signal with the direct method. The indirect method has two conversion steps: the scintillator absorbs the X-rays and converts them to visible light. And then the visible light is converted to electrical signal (e.g. by photodiodes). In this work, the flat panel digital X-ray image detector based on direct method with a high atomic number material was designed and evaluated. The high atomic number material for X-ray conversion is deposited by a rubbing method with about 300 μm. The rubbing method is similar to the screen printing method. It consists of two elements: the screen and the squeegee. The method uses a proper stiff bar stretched tightly over a frame made of wood or metal. Proper tension is essential for proper laminated structure. The detector prototype has 139 μm pixel pitch, total 1280×1536 pixels and 86% fill factor. Twelve readout ICs are installed on digital X-ray detector and simultaneously operated to reach short readout time. The electronics integrated: the preamplifier to amplify generated signal, the Analog to Digital converter and the source of bias voltage (1 V/μm). The system board and interface use an NI-camera program. Finally, we achieved images from this flat panel X-ray image detector.

  17. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines.

    PubMed

    Kummer, K; Fondacaro, A; Yakhou-Harris, F; Sessi, V; Pobedinskas, P; Janssens, S D; Haenen, K; Williams, O A; Hees, J; Brookes, N B

    2013-03-01

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range. PMID:23556850

  18. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    SciTech Connect

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Brookes, N. B.; Pobedinskas, P.; Janssens, S. D.; Haenen, K.; Williams, O. A.; Hees, J.

    2013-03-15

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  19. JIM: a joint integrated module of glass x-ray optics for astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Winter, Anita; Rohé, Christian; Eder, Josef; Burwitz, Vadim; Hartner, Gisela D.; Menz, Benedikt; Civitani, Marta; Basso, Stefano; Buratti, Enrico

    2015-09-01

    For several years, the Max-Planck-Institute for extraterrestrial Physics in Germany (MPE) and the Astronomical Observatory of Brera in Italy (INAF-OAB) have been studying the slumping technology for the manufacturing of segmented glass X-ray optics for astronomy. Despite some differences in their specific approaches, the synergy of the two institutes has always been good, focusing on the common goal of developing a technology able to meet the outstanding requirements for future X-ray telescopes: i.e. large collecting areas, low mass and good angular resolution. This synergy has in the last year resulted in an active collaboration for the production of a Joint Integrated Module (JIM) that puts together the expertise of the two research groups. In particular, the indirect slumping approach of MPE has been employed for the manufacturing of X-ray mirror segments that have been integrated into a kind of X-ray Optical Unit following the approach developed at INAF-OAB. The module has then been tested in X-ray at the MPE PANTER facility, in Neuried. The several steps and the results of this joint activity are reviewed and discussed in this paper.

  20. Fabrication, characterization and integration of carbon nanotube cathodes for field emission X-ray source

    NASA Astrophysics Data System (ADS)

    Calderon-Colon, Xiomara

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. Our laboratory pioneer in the development of CNT based field emission X-ray source technology, which has the potential to fundamentally change how X-ray radiation is generated and utilized. Applications of the CNT field emission X-ray source technology in a wide range of applications including biomedical imaging, radiation therapy, and homeland security are being actively pursued. However, problems with the performance of the CNT cathodes for X-ray generation including short lifetime at high current density, instability under high voltage, poor emission uniformity, and cathode-to-cathode inconsistency are still major obstacles for device applications. The goal of this thesis work is the development and optimization of an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The CNT cathode fabrication process consist in a combination of photolithography and electrophoretic deposition (EPD) method where parameters such as SU-8 photoresist thickness, deposition time, and deposition voltage were varied to fabricate CNT cathodes with the required properties for X-ray generation. Also the development of CNT alcohol-based suspensions in context of the EPD method requirements with excellent long term stability has been accomplished. The CNT cathodes fabricated by EPD have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. Also these CNT cathodes compared to others reported previously show significant improved field emission properties with small cathode-to-cathode variation. The integration, characterization, and evaluation of these CNT cathodes into a micro focus field emission X-ray source has been achieved with excellent X-ray source characteristics and performance including X-ray flux and stability at the

  1. Physics-based modeling of X-ray CT measurements with energy-integrating detectors

    NASA Astrophysics Data System (ADS)

    Long, Yong; Gao, Hewei; Wu, Mingye; Pack, Jed D.; Xu, Hao; Tao, Kun; Fitzgerald, Paul F.; De Man, Bruno

    2014-03-01

    Computer simulation tools for X-ray CT are important for research efforts in developing reconstructionmethods, designing new CT architectures, and improving X-ray source and detector technologies. In this paper, we propose a physics-based modeling method for X-ray CT measurements with energy-integrating detectors. It accurately accounts for the dependence characteristics on energy, depth and spatial location of the X-ray detection process, which is either ignored or over simplified in most existing CT simulation methods. Compared with methods based on Monte Carlo simulations, it is computationally much more efficient due to the use of a look-up table for optical collection efficiency. To model the CT measurments, the proposed model considers five separate effects: energy- and location-dependent absorption of the incident X-rays, conversion of the absorbed X-rays into the optical photons emitted by the scintillator, location-dependent collection of the emitted optical photons, quantumefficiency of converting fromoptical photons to electrons, and electronic noise. We evaluated the proposed method by comparing the noise levels in the reconstructed images from measured data and simulations of a GE LightSpeed VCT system. Using the results of a 20 cm water phantom and a 35 cm polyethylene (PE) disk at various X-ray tube voltages (kVp) and currents (mA), we demonstrated that the proposed method produces realistic CT simulations. The difference in noise standard deviation between measurements and simulations is approximately 2% for the water phantom and 10% for the PE phantom.

  2. INTEGRATED SYSTEM SIMULATION IN X-RAY RADIOGRAPHY

    SciTech Connect

    T. KWAN; ET AL

    2001-01-01

    An integrated simulation capability is being developed to examine the fidelity of a dynamic radiographic system. This capability consists of a suite of simulation codes which individually model electromagnetic and particle transport phenomena and are chained together to model an entire radiographic event. Our study showed that the electron beam spot size at the converter target plays the key role in determining material edge locations. The angular spectrum is a relatively insensitive factor in radiographic fidelity. We also found that the full energy spectrum of the imaging photons must be modeled to obtain an accurate analysis of material densities.

  3. Integrated modeling for parametric evaluation of smart x-ray optics

    NASA Astrophysics Data System (ADS)

    Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta

    2014-08-01

    This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.

  4. Three transient X-ray sources during the INTEGRAL revolution 1710

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Bazzano, A.; Bird, A. J.; Charles, Phil; Chenevez, J.; Ubertini, P.

    2016-08-01

    During recent INTEGRAL observations of the Musca and Norma regions (revolutions 1710) performed between 2016-08-05 16:00:36 UTC and 2016-08-07 21:02:14 UTC a renewed activity from the following transient X-ray sources has been detected.

  5. High resolution X-ray spectroscopy of SN 1987 A: monitoring with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Aschenbach, B.; Hasinger, G.

    2010-06-01

    Context. The ongoing propagation of the supernova blast wave of SN 1987 A through its inner circumstellar ring has caused a drastic increase in X-ray luminosity in the past few years, which has allowed detailed high resolution X-ray spectroscopy to be performed with the Reflection Grating Spectrometer. Aims: We report the results of our XMM-Newton monitoring of SN 1987 A, which may be used to follow the detailed evolution of the arising supernova remnant. Methods: The fluxes and broadening of the numerous emission lines measured in the dispersed spectra provide information about the evolution of the X-ray emitting plasma and its dynamics. These were analyzed in combination with the EPIC-pn spectra, which allow a precise determination of the higher temperature plasma. We modeled individual emission lines and fitted plasma emission models. Results: For observations between 2003 and 2007 in particular, we detect significant evolution in the plasma parameters and a deceleration of the radial velocity in the lower temperature plasma regions. We detected (at 3σ-level) an iron K feature in the coadded EPIC-pn spectra. Conclusions: By comparing with Chandra grating observations in 2004, we observe a clear temporal coherence of the spectral evolution and the sudden deceleration of the expansion velocity detectable in X-ray images ~6100 days after the explosion.

  6. Peculiar nature of hard X-ray eclipse in SS433 from INTEGRAL observations

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.; Sunyaev, R. A.; Postnov, K. A.; Antokhina, E. A.; Molkov, S. V.

    2009-07-01

    The analysis of hard X-ray INTEGRAL observations (2003-2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind-wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20-100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio q = mx/mv ~= 0.25-0.5. The absolute minimum of joint orbital and precessional χ2 residuals is reached at q ~= 0.3. The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star fv = 0.268Msolar as derived from Hillwig & Gies data, the obtained value of q ~= 0.3 yields the masses of the components mx ~= 5.3Msolar, mv ~= 17.7Msolar, confirming the black hole nature of the compact object in SS433.

  7. Monitoring the latest stages of a transient neutron star X-ray binary

    NASA Astrophysics Data System (ADS)

    Campana, Sergio

    2012-10-01

    Neutron star transient low mass X-ray binaries (TLMXB) are among the brightest sources in the X-ray sky. Their outbursts are well known and studied. Despite this, their return to quiescence has been studied only in a handful of cases. This return is quite fast making even more difficult. Recently we monitor in high detail the return to quiescence of the archetypal TLMXB Aql X-1 thanks to XMM-Newton observations. We probed for the first time the cooling of the neutron star after a (short) outburst, finding a very short cooling time ( 3d). Thanks to an approved Swift XRT program for monitoring every day for 5 ks (for 30 d) the latest stages of a TLMXB, we are aiming assessing the spectral properties of a transient LMXB close to the quiescent level.

  8. Instrumentation for a next-generation x-ray all-sky monitor

    NASA Astrophysics Data System (ADS)

    Peele, A. G.

    1999-12-01

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors-long-term all-sky archive and watchdog alert to new events-will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  9. The MOXE X-ray all-sky monitor for Spectrum-X-Gamma

    SciTech Connect

    In`t Zand, J.J.M.; Priedhorsky, W.C.; Moss, C.E.

    1994-08-01

    MOXE is an X-ray all-sky monitor to be flown on the Russian Spectrum-X-Gamma satellite, to be launched in a few years. It will monitor several hundred X-ray sources on a daily basis, and will be the first instrument to monitor most of the X-ray sky most of the time. MOXE will alert users of more sensitive instruments on Russia`s giant high energy astrophysics observatory and of other instruments to transient activity. MOXE consists of an array of 6 X-ray pinhole cameras, sensitive from 3 to 25 keV, which views 4{pi} steradians (except for a 20{degree} {times} 80{degree} patch which includes the Sun). The pinhole apertures of 0.625 {times} 2.556 cm{sup 2} imply an angular resolution of 2{degree}.4 {times} 9{degree}.7 (on-axis). The MOXE hardware program includes an engineering model, now delivered, and a flight model. The flight instrument will mass approximately 118 kg and draw 38 Watts. For a non-focusing all-sky instrument that is limited by sky background, the limiting sensitivity is a function only of detector area. MOXE, with 6,000 cm{sup 2} of detector area, will, for a 24 hrs exposure, have a sensitivity of approximately 2 mCrab. MOXE distinguishes itself with respect to other all-sky monitors in its high duty cycle, thus being particularly sensitive to transient phenomena with time scales between minutes and hours.

  10. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  11. X-ray Weekly Monitoring of the Galactic Center Sgr A* with Suzaku

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Nobukawa, Masayoshi; Hayashi, Takayuki; Iizuka, Ryo; Saitoh, Takayuki; Murakami, Hiroshi

    A small gas cloud, G2, is on an orbit almost straight into the supermassive blackhole Sgr A* by spring 2014. This event gives us a rare opportunity to test the mass feeding onto the blackhole by a gas. To catch a possible rise of the mass accretion from the cloud, we have been performing the bi-week monitoring of Sgr A* in autumn and spring in the 2013 fiscal year. The key feature of Suzaku is the high-sensitivity wide-band X-ray spectroscopy all in one observatory. It is characterized by a large effective area combined with low background and good energy resolution, in particular a good line spread function in the low-energy range. Since the desired flare events associated with the G2 approach is a transient event, the large effective area is critical and powerful tools to hunt them. The first monitoring in 2013 autumn was successfully made. The X-rays from Sgr A* and its nearby emission were clearly resolved from the bright transient source AX J1745.6-2901. No very large flare from Sgr A*was found during the monitoring. We also may report the X-ray properties of two serendipitous sources, the neutron star binary AX J1745.6-2901 and a magnetar SGR J1745-29.

  12. Late-Time X-Ray, UV, and Optical Monitoring of Supernova 1979C

    NASA Astrophysics Data System (ADS)

    Immler, Stefan; Fesen, Robert A.; Van Dyk, Schuyler D.; Weiler, Kurt W.; Petre, Robert; Lewin, Walter H. G.; Pooley, David; Pietsch, Wolfgang; Aschenbach, Bernd; Hammell, Molly C.; Rudie, Gwen C.

    2005-10-01

    We present results from observations of supernova (SN) 1979C with the Newton X-Ray Multi-Mirror (XMM-Newton) mission in X-rays and in UV, archival X-ray, and Hubble Space Telescope (HST) data, and follow-up ground-based optical imaging. The XMM-Newton MOS spectrum shows the best-fit two-temperature thermal plasma emission characteristics of both the forward (kThigh=4.1+76-2.4 keV) and reverse shock (kTlow=0.79+0.24-0.17 keV) with no intrinsic absorption. The long-term X-ray light curve, constructed from all X-ray data available, reveals that SN 1979C is still radiating at a flux level similar to that detected by ROSAT in 1995, showing no sign of a decline over the last 6 years, some 16-23 yr after its outburst. The high inferred X-ray luminosity (L0.3-2=8×1038 ergs s-1) is caused by the interaction of the SN shock with dense circumstellar matter, likely deposited by a strong stellar wind from the progenitor with a high mass-loss rate of M˙~1.5×10-4 Msolar yr-1 (vw/10 km s-1). The X-ray data support a strongly decelerated shock and show a mass-loss rate history that is consistent with a constant progenitor mass-loss rate and wind velocity over the past >~16,000 yr in the stellar evolution of the progenitor. We find a best-fit circumstellar medium (CSM) density profile of ρCSM~r-s with index s<~1.7 and high CSM densities (>~104 cm-3) out to large radii from the site of the explosion (r>~4×1017 cm). Using XMM-Newton Optical Monitor data, we further detect a pointlike optical/UV source consistent with the position of SN 1979C, with B-, U-, and UVW1-band luminosities of 5, 7, and 9×1036 ergs s-1, respectively. The young stellar cluster in the vicinity of the SN, as imaged by the HST and follow-up ground-based optical imaging, can only provide a fraction of the total observed flux, so that a significant contribution to the output likely arises from the strong interaction of SN 1979C with dense CSM.

  13. Counting x-ray line detector with monolithically integrated readout circuits

    NASA Astrophysics Data System (ADS)

    Lohse, T.; Krüger, P.; Heuer, H.; Oppermann, M.; Torlee, H.; Meyendorf, N.

    2013-05-01

    The developed direct converting X-ray line detectors offer a number of advantages in comparison to other X-ray sensor concepts. Direct converting X-ray detectors are based on absorption of X-rays in semiconductor material, which leads to a generation of charge carriers. By applying high bias voltage charge carriers can be separated and with this the arising current pulse can be assessed by suitable readout integrated circuits (ICs) subsequently. The X-ray absorber itself is implemented as a diode based on GaAs to use it in the reverse direction. It exhibits low dark currents and can therefore be used at room temperatures. The GaAs absorber has a structured top electrode designed on variable bonding and high breakdown voltages. The implemented GaAs absorber exhibits a pixel size of 100 μm while the readout IC features fast dead-time-free readout, energy discrimination by two individually adjustable thresholds with 20 bit deep counters and radiation-hard design on chip level. These properties guarantee the application as fast and thus sensitive line detector for imaging processes. Another advantage of the imaging line detector is the cascadability of several sensor modules with 1024 pixels each. This property ensures that the 102.4 mm long sensor modules can be concatenated virtually with arbitrary length gaplessly. The readout ICs hitting radiation dose can be further minimized by implementing constructive steps to ensure longer lifetime of the sensor module. Furthermore, first results using the introduced sensor module for solid state X-ray detection are discussed.

  14. INTEGRAL study of temporal properties of bright flares in Supergiant Fast X-ray Transients

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Paizis, A.; Postnov, K.

    2016-04-01

    We have characterized the typical temporal behaviour of the bright X-ray flares detected from the three Supergiant Fast X-ray Transients (SFXTs) showing the most extreme transient behaviour (XTE J1739-302, IGR J17544-2619, SAX J1818.6-1703). We focus here on the cumulative distributions of the waiting-time (time interval between two consecutive X-ray flares), and the duration of the hard X-ray activity (duration of the brightest phase of an SFXT outburst), as observed by INTEGRAL/IBIS in the energy band 17-50 keV. Adopting the cumulative distribution of waiting-times, it is possible to identify the typical time-scale that clearly separates different outbursts, each composed by several single flares at ˜ks time-scale. This allowed us to measure the duration of the brightest phase of the outbursts from these three targets, finding that they show heavy-tailed cumulative distributions. We observe a correlation between the total energy emitted during SFXT outbursts and the time interval covered by the outbursts (defined as the elapsed time between the first and the last flare belonging to the same outburst as observed by INTEGRAL). We show that temporal properties of flares and outbursts of the sources, which share common properties regardless different orbital parameters, can be interpreted in the model of magnetized stellar winds with fractal structure from the OB-supergiant stars.

  15. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.

    2012-09-01

    PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.

  16. Observation of a black-hole X-ray nova in outburst with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Goldoni, P.; Goldwurm, A.; Laurent, P.; Lebrun, F.; Cordier, B.

    2001-09-01

    We simulate the observation of a bright Nova Musca-like X-ray nova during outburst with INTEGRAL, the next ESA γ-ray space observatory. We will show how performances of the INTEGRAL instruments allow deep study of X-ray novae and will evaluate the scientific output that INTEGRAL will provide on this class of transient gamma-ray sources, which are now believed to contain black holes in low mass binary systems. The variable high-energy feature around 511 keV observed from X-ray Nova Musca in 1991 by the SIGMA telescope would be detected by INTEGRAL at very high significance level. INTEGRAL data will permit to set important constraints on the models and allow to distinguish between electron-positron or nuclear de-excitation origin of the line. Characteristic spectral and timing features detected by INTEGRAL instruments over a very large energy band will also provide clues to understand physics of accretion in these black holes binaries and in particular to distinguish between thermal and non-thermal origin of radiation and to assess the role of bulk motion comptonization.

  17. Monitoring the Next X-Ray Nova Outburst from Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding accretion processes by making comparisons of Cen X-4 (an eruptive neutron-star system) and X-ray novae from black holes with similar binary periods and companion stars. These studies have been limited to quiescent states, where divergent broadband spectra seem to support the reality of event horizons around black holes. The next outburst of Cen X-4 may occur soon, and it may reach several Crab. Given its proximity and well-studied binary constituents, Cen X-4 outbursts provide a rare opportunity to measure X-ray timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude. A monitoring program would also support comparisons of neutron-star and black-hole transients in states of active accretion.

  18. Monitoring the Next X-Ray Nova Outburst F Rom Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding accretion processes by making comparisons of Cen X-4 (an eruptive neutron-star system) and X-ray novae from black holes with similar binary periods and companion stars. These studies have been limited to quiescent states, where divergent broadband spectra seem to support the reality of event horizons around black holes. The next outburst of Cen X-4 may occur soon, and it may reach several Crab. Given its proximity and well-studied binary constituents, Cen X-4 outbursts provide a rare opportunity to measure X-ray timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude. A monitoring program would also support comparisons of neutron-star and black-hole transients in states of active accretion.

  19. Design of a New Collimation System to Prevent Interference between X-ray Machines and Radiation Portal Monitors

    SciTech Connect

    Guzzardo, Tyler; Livesay, Jake

    2012-01-01

    Researchers at Oak Ridge National Laboratory (ORNL) developed a new collimation system that allows radiation portal monitors (RPMs) installed near x-ray machines to operate with a negligible false-positive alarm rate. RPMs are usually installed as far as possible from x-ray machines because false alarms are triggered by escaping x-rays; however, constraints at the installation site sometimes make it necessary that RPMs be installed near x-ray machines. Such RPMs are often plagued by high alarm rates resulting from the simultaneous operation of the RPMs and x-ray machines. Limitations on pedestrian flow, x-ray machine orientation, and RPM location often preclude a simple solution for lowering the alarm rate. Adding additional collimation to the x-ray machines to stop the x-rays at the source can reduce the alarm rate without interfering with site operations or adversely affecting the minimum detectable quantity of material (MDQ). A collimation design has been verified by measurements conducted at a RPM installation site and is applicable to all new and existing RPM installations near x-ray machines.

  20. The integral dose in panoramic intraoral x-ray tube radiography

    SciTech Connect

    Hayami, A.; Fujishita, M.; Sumida, A.; Kanke, M.; Fujiki, T.; Uemura, S.; Fuchihata, H.

    1983-07-01

    A Monte Carlo computer program was developed to estimate the integral dose to the head and thyroid for panoramic intraoral x-ray tube radiography. The advantage of this computer simulation is that it is able to avoid many of the difficulties associated with low-energy and low-dose x-ray dosimetry. The calculations were made for maxillary and mandibular projections separately, using 10 kv. increments between 40 and 60 kv. The results obtained were presented in terms of the integral dose per milliampere second. Typical integral doses for a routine examination of the head are 2.1 mJ. and 8.5 microJ for the thyroid during mandibular radiography and 1.7 microJ for the thyroid during radiography of the maxilla using 55 kv. and 0.5 mAs.

  1. An integrated approach for prescribing fewer chest x-rays in the ICU

    PubMed Central

    2011-01-01

    Chest x-rays (CXRs) are the main imaging tool in intensive care units (ICUs). CXRs also are associated with concerns inherent to their use, considering both healthcare organization and patient perspectives. In recent years, several studies have focussed on the feasibility of lowering the number of bedside CXRs performed in the ICU. Such a decrease may result from two independent and complementary processes: a raw reduction of CXRs due to the elimination of unnecessary investigations, and replacement of the CXR by an alternative technique. The goal of this review is to outline emblematic examples corresponding to these two processes. The first part of the review concerns the accumulation of evidence-based data for abandoning daily routine CXRs in mechanically ventilated patients and adopting an on-demand prescription strategy. The second part of the review addresses the use of alternative techniques to CXRs. This part begins with the presentation of ultrasonography or capnography combined with epigastric auscultation for ensuring the correct position of enteral feeding tubes. Ultrasonography is then also presented as an alternative to CXR for diagnosing and monitoring pneumothoraces, as well as a valuable post-procedural technique after central venous catheter insertion. The combination of the emblematic examples presented in this review supports an integrated global approach for decreasing the number of CXRs ordered in the ICU. PMID:21906323

  2. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  3. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  4. New active galactic nuclei among the INTEGRAL and SWIFT X-ray sources

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Mescheryakov, A. V.; Revnivtsev, M. G.; Sazonov, S. Yu.; Bikmaev, I. F.; Pavlinsky, M. N.; Sunyaev, R. A.

    2008-06-01

    We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17-60 keV) luminosity and the [O III] 5007 line luminosity, log L x/ L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ˜20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.

  5. MVN: x-ray monitor of the sky on Russian segment of ISS

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Semena, N.; Akimov, V.; Levin, V.; Serbinov, D.; Rotin, A.; Kuznetsova, M.; Molkov, S.; Buntov, M.; Tambov, V.; Lapshov, I.; Gurova, E.; Simonenkov, D.; Tkachenko, A.; Pavlinsky, M.; Markov, A.; Konoshenko, V.; Sibirtsev, D.

    2012-09-01

    MVN (Monitor Vsego Neba) - new small X-ray astronomical experiment, which will be mounted on Russian segment of International Space Station. The main scientific goal for the instrument is the precise measurement of cosmic X-ray background in energy range 6-70 keV, which is important for theories of black hole evolution in the Universe. The ultimate aim of the experiment is to reach the accuracy of the CXB measurements, which will allow us to measure the large scale anisotropy of the Cosmic X-ray Background caused by inhomogeneities of the matter distribution in the local Universe. The MVN instrument is a simple collimated spectrometer, equipped with 4 CdTe pixellated detectors. The field of view of the instrument will be scanning the zenith of the ISS. The accuracy of the instrumental background subtraction, which is the main obstacle for the proposed task, will be provided by a cover, which will periodically block the aperture of detectors. According to our estimates, with not unfavourable radiation environment on orbit of ISS during period of operation of MVN we will be able to measure the CXB surface brightness at different sky directions with accuracy better than 1% after 2 years of the experiment. The planned dates of the experiment is 2013-2016.

  6. INTEGRAL/JEM-X detection of type-I X-ray bursts from IGR J17488-2018

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Falanga, M.; Ferrigno, C.

    2015-02-01

    During the on-going INTEGRAL target of opportunity (ToO) observation of the X-ray transient IGR J17488-2018 (Atel #7098, #7106) located in the Globular Cluster NGC 6440, the two JEM-X telescopes detected so far 7 type-I X-ray bursts from the source.

  7. FIVE NEW INTEGRAL UNIDENTIFIED HARD X-RAY SOURCES UNCOVERED BY CHANDRA

    SciTech Connect

    Fiocchi, M.; Bazzano, A.; Ubertini, P.; Capitanio, F.

    2010-09-10

    The IBIS imager on board INTEGRAL, with a sensitivity better than a milliCrab in deep observations and a point-source location accuracy on the order of few arcminutes, has thus far localized 723 hard X-ray sources in the 17-100 keV energy band, of which about 1/3 are still unclassified. The aim of this paper is to provide subarcsecond localizations of the unidentified sources, necessary to pinpoint the optical and/or infrared (IR) counterpart of those objects whose nature is so far unknown. Cross-correlation between the new IBIS sources published in the fourth INTEGRAL/IBIS Survey catalog and the Chandra/ACIS data archive resulted in a sample of five previously unidentified objects. We present here the results of Chandra X-ray Observatory observations of these five hard X-ray sources discovered by the INTEGRAL satellite. We associated IGR J10447-6027 with IR source 2MASS J10445192-6025115, IGR J16377-6423 with the cluster CIZA J1638.2-6420, IGR J14193-6048 with the pulsar with nebula PSR J1420-6048, and IGR J12562+2554 with the quasar SDSS J125610.42+260103.5. We suggest that the counterpart of IGR J12288+0052 may be an active galactic nucleus/quasi-stellar object type 2 at a confidence level of 90%.

  8. INTEGRAL Galactic bulge monitoring program

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.; Belloni, T.; Chenevez, J.; Ibarra, A.; Munoz-Darias, T.; Bazzano, A.; Cadolle Bel, M.; De Cesare, G.; Diaz Trigo, M.; Jourdain, E.; Lubinski, P.; Natalucci, L.; Ness, J. U.; Parmar, A.; Pollock, A. M. T.; Rodriguez, J.; Roques, J. P.; Sanchez-Fernandez; C.; Ubertini, P.; Winkler, C.

    2010-12-01

    The central region of our Galaxy, the Galactic bulge, is a rich host of variable high-energy X-ray and gamma-ray point sources. These sources include bright and relatively faint X-ray transients, X-ray bursters, persistent neutron star and black-hole candidate binaries, high-mass X-ray binaries, etc.. We have a program to monitor the Galactic bulge region regularly and frequently with the gamma-ray observatory INTEGRAL, whenever it is observable. As a service to the scientific community the high-energy light curves of sources present, as well as the images of the region are made available through the WWW at http://integral.esac.esa.int/BULGE/ as soon as possible after the observations have been performed. We show the ongoing results of this exciting program.

  9. An X-ray monitor for measurement of a titanium tritide target thickness.

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 microns has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  10. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  11. Residual Gas X-ray Beam Position Monitor Development for PETRA III

    SciTech Connect

    Ilinski, P.; Hahn, U.; Schulte-Schrepping, H.; Degenhardt, M.

    2007-01-19

    The development effort is driven by the need for a new type of x-ray beam position monitor (XBPM), which will detect the centre of gravity of the undulator beam. XBPMs based on the ionization of a residual gas are considered being the candidate for this future ''white'' undulator beam XBPMs. A number of residual gas XBPM prototypes for the PETRA III storage ring were developed and tested. Tests were performed at DESY and the ESRF, resolution of beam position up to 5 {mu}m is reported. The further development of the RGXBPMs will be focused on improvements of resolution, readout speed and reliability.

  12. Broad band X-ray telescope (BBXRT) displacement monitor system (DMS) testing and calibration

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.; Northcutt, William

    1989-01-01

    NASA's shuttle-borne Broad Band X-Ray Telescope (BBXRT) consists of two glancing incidence imaging mirror assemblies mounted on an optical bench which is bolted to the primary structure of the instrument. The X-ray detectors are located in the focal plane of the mirror assemblies approximately 3.5 meters away. It is desirable to monitor the relative alignment of these components throughout ground testing, and to determine the magnitude of launch or thermally induced perturbations to the alignment during flight. The Displacement Monitor System (DMS) was designed to accomplish this task. This paper describes the design of the DMS, the development and optimization of the DMS calibration facility, and the characterization of the system. The characterization of the DMS includes environmental qualification, displacement vs output calibration over the operating temperature range, a detailed error analysis, and the generation of a calibration polynomial which utilizes DMS detector output and thermocouple data to optimize system performance. The DMS accuracy exceeded the requirements of a 15 arc second limit of error, and passed the stringent environmental tests. As such, the DMS is one of the first flight qualified displacement monitor systems with this accuracy to be flown in space.

  13. Evaluation of polymeric standard reference materials for monitoring the performance of X-ray photoelectron spectrometers

    NASA Astrophysics Data System (ADS)

    Strohmeier, Brian R.

    1991-04-01

    The use of standard reference materials is a common practice in X-ray photoelectron spectroscopy (XPS or ESCA). Recently, several polymeric standard reference materials have become available for monitoring various performance aspects of ESCA spectrometers. These reference materials include polyethylene (PE), polyethylene glycol (PEG), polytetrafluoroethylene (PTFE) and dimethyl silicon (DMS). The advantages and disadvantages encountered when using these materials as standards were investigated in this study. Results indicated that PEG, PTFE and DMS are useful standards for checking or determining relative elemental sensitivity factors for C, O, F and/or Si. These three materials can also be used for monitoring the linearity and stability of the instrumental binding energy scale. However, in general, metallic standards such as gold, silver and/or copper are superior to the polymeric standards for this purpose, because their photoelectron lines cover a wider binding energy range and their respective peak positions are much better known. Although PE exhibits a fairly narrow C1s line that can be used to monitor variations in the instrumental energy resolution, the FWHM observed for the C1s line is much broader that the FWHM values obtained from the appropriate lines of sputtered-cleaned metals. Results also indicated that the use of PTFE as a standard reference material must be done with caution, because PTFE readily degrades with time under X-ray exposure.

  14. An Integrated X-Ray/Optical Tomography System for Pre-clinical Radiation Research

    PubMed Central

    Eslami, S.; Yang, Y.; Wong, J.; Patterson, M. S.; Iordachita, I.

    2013-01-01

    The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target’s Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation system. This system can be used to study radiation effects in small animals under the conebeam computed tomography (CBCT) imaging guidance by adding the bioluminescence imaging (BLI) system as a standalone system which can also be docked onto the SARRP. The proposed system integrates two robotic rotating stages and an x-ray source rated at maximum 130 kVp and having a small variable focal spot. A high performance and low noise CCD camera mounted in a light-tight housing along with an optical filter assembly is used for multi-wavelength BL tomography. A three-mirror arrangement is implemented to eliminate the need of rotating the CCD camera for acquiring multiple views. The mirror system is attached to a motorized stage to capture images in angles between 0–90° (for the standalone system). Camera and CBCT calibration are accomplished. PMID:25745539

  15. Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.

    1994-01-01

    By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.

  16. In application specific integrated circuit and data acquisition system for digital X-ray imaging

    NASA Astrophysics Data System (ADS)

    Beuville, E.; Cederström, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-02-01

    We have developed an Application Specific Integrated Circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications.

  17. A Novel Integrating Solid State Detector With Segmentation For Scanning Transmission Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Jacobsen, Chris; Degeronimo, Gianluigi; Rehak, Pavel; Holl, Peter; Strueder, Lothar

    2003-03-01

    Scanning transmission x-ray microscopy (STXM) with soft x-rays has unique detector requirements, which are not readily met by commercially available detectors. For implementation of dark-field and phase contrast imaging modes a segmented detector is needed with the high signal to noise ratio of a counting detector and a high detective quantum efficiency. Since the market for STXM is very small, the development of specialized detector systems relies on the collaboration with detector specialists at research facilities. We report on the successful development of a segmented silicon detector for STXM, which has been carried out in collaboration between the x-ray microscopy research group at SUNY Stony Brook, the instrumentation division at Brookhaven National Laboratory and silicon x-ray detector specialists in Germany. This project illustrates the effectiveness of such arrangements and justifies the support of future efforts in developing dedicated detectors for synchrotron radiation experiments bringing together detector experts and experimenters. The developed detector features eight separate circular segments matched to the STXM geometry. Fast charge integrating electronics have been developed to match the short pixel dwell times in a synchrotron based scanning microscope (in the ms range for the NSLS). The noise level of 5 photons RMS per integration per channel (at 520 eV photon energy) and a 1500 photon capacity (corresponding to the well depth in a CCD detector) is well matched to the characteristics of the experiment. Combining the detector signals in an appropriate way, different imaging modes (i.e. bright field, dark field or phase contrast) can be selected. We discuss recent developments on simultaneous quantitative phase and amplitude contrast imaging using this segmented detector in conjunction with a Fourier filter reconstruction technique.

  18. The INTEGRAL/IBIS AGN catalogue - I. X-ray absorption properties versus optical classification

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Masetti, N.; Panessa, F.; Stephen, J. B.; Ubertini, P.

    2012-11-01

    In this work we present the most comprehensive INTEGRAL active galactic nucleus (AGN) sample. It lists 272 AGN for which we have secure optical identifications, precise optical spectroscopy and measured redshift values plus X-ray spectral information, i.e. 2-10 and 20-100 keV fluxes plus column density. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48 per cent) of the sample is absorbed, while the fraction of Compton-thick AGN is small (˜7 per cent). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80 and 17 per cent. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. A few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 X-ray bright optically normal galaxies, 5 type 2 QSOs and 11 low-ionization nuclear emission regions. In terms of optical classification, our sample contains 57 per cent of type 1 and 43 per cent of type 2 AGN; this subdivision is similar to that found in X-rays if unabsorbed versus absorbed objects are considered, suggesting that the match between optical and X-ray classifications is overall good. Only a small percentage of sources (12 per cent) does not fulfil the expectation of the unified theory as we find 22 type 1 AGN which are absorbed and 10 type 2 AGN which are unabsorbed. Studying in depth these outliers we found that most of the absorbed type 1 AGN have X-ray spectra characterized by either complex or warm/ionized absorption more likely due to ionized gas located in an accretion disc wind or in the biconical structure associated with the central nucleus, therefore

  19. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramkrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  20. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    SciTech Connect

    Baaklini, G.Y.; Bhatt, R.T.

    1991-08-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models. 14 refs.

  1. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  2. Renewed Activity from the X-Ray Transient SAXJ 1810.8-2609 with Integral

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Natalucci, L.; Chenevez, J.; Bazzano, A.; Tarana, A.; Ubertini, P.; Brandt, S.; Beckmann, V.; Federici, M.; Galis, R.; Hudec, R.

    2009-03-01

    We report on the results of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the neutron star low-mass X-ray binary SAX J1810.8-2609 during its latest active phase in 2007 August. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6 ×1036 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5 × 10-12 M sun yr-1 suggest that SAX J1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of kT e~ 23-30 keV and an optical depth of τ~ 1.2-1.5, independent of the luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with the absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (≈3.5 crab in 3-25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a L Edd ≈ 3.8 × 1038 erg s-1. The observed recurrence time of ~ 1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (α~ 73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X >= 0.4. INTEGRAL is an ESA project with Instruments and Science Data Center funded by ESA member states, especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain; Czech Republic and Poland; and with the participation of Russia and USA.

  3. Integration of X-ray micro tomography and fluorescence for applications on natural building stones

    NASA Astrophysics Data System (ADS)

    Dewanckele, J.; Cnudde, V.; Boone, M.; Van Loo, D.; De Witte, Y.; Pieters, K.; Vlassenbroeck, J.; Dierick, M.; Masschaele, B.; Van Hoorebeke, L.; Jacobs, P.

    2009-09-01

    X-ray computed tomography (CT) is an excellent, non-destructive analysis tool for characterising many different materials. In geosciences, 3D visualisation is becoming of prime importance in characterising internal structures of various rock types. It enables new approaches in petrophysical research of rock components, including pore and mineral distribution. Although CT provides a lot of information, this technique is limited concerning information on chemical element distribution. X-ray fluorescence (XRF) on the other hand is an excellent technique to obtain the missing information on chemical properties. At the recently established "Centre for X-ray Tomography" of Ghent University (UGCT) a micro- and nanoCT scanner has been constructed. It is expected that by combination of high-resolution CT and XRF it will be possible to characterise the spatial mineral and element distribution. The combination of both techniques has been applied on natural building stones, in order to get a better insight into some geological parameters (porosity, pore structure, mineral distribution, colour, grain orientation, etc.). Afterwards, the integration of the Morpho+ software tool provides us a 3D quantification of the resulting data.

  4. A Hard X-Ray View of Scorpius X-1 with INTEGRAL: Nonthermal Emission?

    NASA Astrophysics Data System (ADS)

    Di Salvo, T.; Goldoni, P.; Stella, L.; van der Klis, M.; Bazzano, A.; Burderi, L.; Farinelli, R.; Frontera, F.; Israel, G. L.; Méndez, M.; Mirabel, I. F.; Robba, N. R.; Sizun, P.; Ubertini, P.; Lewin, W. H. G.

    2006-10-01

    We present here simultaneous INTEGRAL/RXTE observations of Sco X-1 and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of magnitude. These results present close analogies to the behavior of GX 17+2, one of the so-called Sco-like Z sources. Finally, the hard power law in the spectrum of Sco X-1 does not show any evidence of a high-energy cutoff up to 100-200 keV, strongly suggesting a nonthermal origin of this component.

  5. X-ray pulsars/Doppler integrated navigation for Mars final approach

    NASA Astrophysics Data System (ADS)

    Cui, Pingyuan; Wang, Shuo; Gao, Ai; Yu, Zhengshi

    2016-05-01

    The performance of the navigation system during the Mars final approach phase determines the initial accuracy of Mars entry phase, which is critical for a pin-point landing. An X-ray pulsars/Doppler integrated navigation strategy is proposed to improve the estimation accuracy of the spacecraft's entry state, as well as to enhance the autonomy, real-time and reliability. The navigation system uses the X-ray pulsar measurements and Doppler velocity measurements which are complementary to each other. The performance degradation in velocity estimation at the end of the final approach phase for X-ray pulsar based navigation can thus be eliminated. The nonlinearity of the system and the performance of Extended Kalman Filter are analyzed in this paper. Furthermore, in order to optimize the navigation scheme, a principle for navigation beacons selection based on the Fisher information matrix is used. Finally, a navigation scenario based on the 2012 encounter at Mars of Mars Science Laboratory spacecraft is considered to demonstrate the feasibility and accuracy of the proposed scheme. Simulation results also indicate that the proposed navigation scheme has reference value for the design of the future Mars explorations.

  6. Integration of cardiac and respiratory motion into MRI roadmaps fused with x-ray

    PubMed Central

    Faranesh, Anthony Z.; Kellman, Peter; Ratnayaka, Kanishka; Lederman, Robert J.

    2013-01-01

    Purpose: Volumetric roadmaps overlaid on live x-ray fluoroscopy may be used to enhance image guidance during interventional procedures. These roadmaps are often static and do not reflect cardiac or respiratory motion. In this work, the authors present a method for integrating cardiac and respiratory motion into magnetic resonance imaging (MRI)-derived roadmaps to fuse with live x-ray fluoroscopy images, and this method was tested in large animals. Methods: Real-time MR images were used to capture cardiac and respiratory motion. Nonrigid registration was used to calculate motion fields to deform a reference end-expiration, end-diastolic image to different cardiac and respiratory phases. These motion fields were fit to separate affine motion models for the aorta and proximal right coronary artery. Under x-ray fluoroscopy, an image-based navigator and ECG signal were used as inputs to deform the roadmap for live overlay. The in vivo accuracy of motion correction was measured in four swine as the ventilator tidal volume was varied. Results: Motion correction reduced the root-mean-square error between the roadmaps and manually drawn centerlines, even under high tidal volume conditions. For the aorta, the error was reduced from 2.4 ± 1.5 mm to 2.2 ± 1.5 mm (p < 0.05). For the proximal right coronary artery, the error was reduced from 8.8 ± 16.2 mm to 4.3 ± 5.2 mm (p < 0.001). Using real-time MRI and an affine motion model it is feasible to incorporate physiological cardiac and respiratory motion into MRI-derived roadmaps to provide enhanced image guidance for interventional procedures. Conclusions: A method has been presented for creating dynamic 3D roadmaps that incorporate cardiac and respiratory motion. These roadmaps can be overlaid on live X-ray fluoroscopy to enhance image guidance for cardiac interventions. PMID:23464334

  7. X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image

    NASA Astrophysics Data System (ADS)

    Davis, G. R.; Elliott, J. C.

    1997-02-01

    Most X-ray microtomography scanners work on the same principle as third-generation medical CT scanners, that is, the same point in each projection is measured by the same detector element. This leads to ring artefacts in the reconstructed image if the X-ray sensitivities of the individual detector elements, after any analytical correction, are not all identical. We have developed an X-ray microtomography scanner which uses the time-delay integration method of imaging with a CCD detector to average the characteristics of all the detector elements in each linear projection together. This has the added advantage of allowing specimens which are larger than the detector and X-ray field to be scanned. The device also uses a novel mechanical stage to "average out" inhomogeneities in the X-ray field. The results show that ring artefacts in microtomographic images are eliminated using this technique.

  8. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald

    2012-09-01

    PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.

  9. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  10. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  11. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  12. Elemental Abundances in the Solar Corona as Measured by the X-ray Solar Monitor Onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Narendranath, S.; Sreekumar, P.; Alha, L.; Sankarasubramanian, K.; Huovelin, J.; Athiray, P. S.

    2014-05-01

    The X-ray Solar Monitor (XSM) on the Indian lunar mission Chandrayaan-1 was flown to complement lunar elemental abundance studies by the X-ray fluorescence experiment C1XS. XSM measured the ≈ 1.8 - 20 keV solar X-ray spectrum during its nine months of operation in lunar orbit. The soft X-ray spectra can be used to estimate absolute coronal abundances using intensities of emission-line complexes and the plasma temperature derived from the continuum. The best estimates are obtained from the brightest flare observed by XSM: a C2.8-class flare. The well-known first-ionization potential (FIP) effect is observed; abundances are enhanced for the low-FIP elements Fe, Ca, and Si, while the intermediate-FIP element S shows values close to the photospheric abundance. The derived coronal abundances show a quasi-mass-dependent pattern of fractionation.

  13. Status of the Swift/BAT Hard X-ray Transient Monitor

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Barthelmy, S. D.; Cummings, J. R.; Markwardt, C. B.; Skinner, G.; Tueller, J.; Swift/BAT Team

    2008-03-01

    The Hard X-ray Transient Monitor of the Burst Alert Telescope (BAT) on the Swift satellite has been running as a public resource since October 2006. It tracks the 15-50 keV light curves of more than 500 galactic and extra-galactic sources on time scales from a few minutes to a day. Of the sources monitored, 65 are detectable in a day's observations or are periodic, and another 49 have had one or more outbursts (to above 30 mcrab) during the Swift mission, 18 of which have been announced as an Astronomer's Telegram. Light curves are automatically updated each time that new BAT data becomes available ( 10 times daily). The daily exposure for a typical source is 9000 seconds, with a 1-sigma sensitivity of 7 mCrab. In addition to monitoring known sources, the Transient Monitor is capable of making new discoveries, including SWIFT J1756.9-2508, the eighth known transient accretion-powered millisecond pulsar. A summary of results and observing statistics will be presented, along with recent improvements to the monitoring program including more rapid identification of new sources and accumulation of light curves on time scales of longer than a day, which will make the monitor more sensitive to weak sources with slow variability.

  14. X-ray differential phase-contrast tomographic reconstruction with a phase line integral retrieval filter

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Hu, Xinhua; Li, Chen

    2015-04-01

    We report an alternative reconstruction technique for x-ray differential phase-contrast computed tomography (DPC-CT). This approach is based on a new phase line integral projection retrieval filter, which is rooted in the derivative property of the Fourier transform and counteracts the differential nature of the DPC-CT projections. It first retrieves the phase line integral from the DPC-CT projections. Then the standard filtered back-projection (FBP) algorithms popular in x-ray absorption-contrast CT are directly applied to the retrieved phase line integrals to reconstruct the DPC-CT images. Compared with the conventional DPC-CT reconstruction algorithms, the proposed method removes the Hilbert imaginary filter and allows for the direct use of absorption-contrast FBP algorithms. Consequently, FBP-oriented image processing techniques and reconstruction acceleration softwares that have already been successfully used in absorption-contrast CT can be directly adopted to improve the DPC-CT image quality and speed up the reconstruction.

  15. INTEGRAL Observations of the Be/X-ray binary EX0 2030+375 During Outburst

    NASA Technical Reports Server (NTRS)

    Arranz, A. Camero; Wilson, C. A.; Connell, P.; Nunez, S. Martinez; Blay, P.; Beckmann, V.; Reglero, V.

    2005-01-01

    We present a type-I outburst of the high-mass X-ray binary EX0 2030+375, detected during INTEGRAL'S Performance and Verification phase in December 2002 (on-source time about 10(exp 6) seconds). In addition, six more outbursts have been observed during INTEGRAL'S Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798 plus or minus 0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7 x 10 (exp 36) erg per second, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT(sub BB) approximately 8 keV) and either with a power law model with Gamma=2.04 plus or minus 0.11 keV or a Comptonized component (spherical geometry, kT(sub e).=30 keV, tau = 2.64, kT(sub w)=1.5 keV).

  16. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  17. SWIFT X-RAY TELESCOPE MONITORING OF FERMI-LAT GAMMA-RAY SOURCES OF INTEREST

    SciTech Connect

    Stroh, Michael C.; Falcone, Abe D.

    2013-08-15

    We describe a long-term Swift monitoring program of Fermi gamma-ray sources, particularly the 23 gamma-ray ''sources of interest''.We present a systematic analysis of the Swift X-Ray Telescope light curves and hardness ratios of these sources, and we calculate excess variability. We present data for the time interval of 2004 December 22 through 2012 August 31. We describe the analysis methods used to produce these data products, and we discuss the availability of these data in an online repository, which continues to grow from more data on these sources and from a growing list of additional sources. This database should be of use to the broad astronomical community for long-term studies of the variability of these objects and for inclusion in multiwavelength studies.

  18. The December 2015 optical outburst of OJ 287: X-ray and UV time-domain monitor by Swift

    NASA Astrophysics Data System (ADS)

    Ciprini, S.; Perri, M.; Verrecchia, F.; Valtonen, M.

    2015-12-01

    The Swift satellite is monitoring from 2015 Nov. 28 the BL Lac object OJ 287 (z=0.306). Our Swift X-ray and UV time-domain monitor program has been proposed and granted in response to a predicted, and then observed, phase of increased optical activity from OJ 287 (see, ATel#8372 and ATel#8378).

  19. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    NASA Astrophysics Data System (ADS)

    Sandison, George A.; Loye, M. Patricia; Rewcastle, John C.; Hahn, Leszek J.; Saliken, John C.; McKinnon, J. Gregory; Donnelly, Bryan J.

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue.

  20. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    NASA Astrophysics Data System (ADS)

    Castoldi, A.; Guazzoni, C.; Maffessanti, S.; Montemurro, G. V.; Carraresi, L.

    2015-01-01

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1-6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements.

  1. Integrating 2-D position sensitive X-ray detectors with low-density alkali halide storage targets

    NASA Astrophysics Data System (ADS)

    Haubold, H.-G.; Hoheisel, W.; Hiller, P.

    1986-05-01

    For the use in scattering experiments with synchrotron radiation, integrating position sensitive X-ray detectors are discussed. These detectors store the photon number equivalent charge (PNEC) in low-density alkali halide targets. Performance tests are given for a detector which uses a Gd 2O 2S fluorescence screen for X-ray detection and the low-density KCl storage target of a television SEC vidicon tube for photon integration. Rather than directly by X-rays, this target is charged by 6 keV electrons from the image intensifier section of the vidicon. Its excellent storage capability allows measurements of extremely high-contrast, high-flux X-ray patterns with the same accuracy as achieved with any single photon detection system if the discussed readout techniques are applied.

  2. The multicolour optical monitoring of the High Mass X-ray Binary CI Cam/XTE J0421+560

    NASA Astrophysics Data System (ADS)

    Konstsntinova, T.; Larionov, V.; Kopatskaya, E.; Larionova, E.; Efimova, N.

    2014-07-01

    We analyse the photometric behaviour of the high-mass X-ray binary system CI Cam/XTE J0421+560. Our observations cover the time interval 1999-2014. The source was monitored with 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes. During the monitoring period, CI Cam displayed two significant increases of brightness in the optical photometric bands. The first one follows the X-ray outburst that occurred in 1998 March. The second one started in 2013 and lasts until January - February of 2014.

  3. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  4. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  5. Discovery of X-Ray Pulsations from the INTEGRAL Source IGR J11014-6103

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Tomsick, J. A.; Gotthelf, E. V.; Camilo, F.; Ng, C.-Y.; Bodaghee, A.; Rodriguez, J.; Chaty, S.; Rahoui, F.

    2014-11-01

    We report the discovery of PSR J1101-6101, a 62.8 ms pulsar in IGR J11014-6103, a hard X-ray source with a jet and a cometary tail that strongly suggests it is moving away from the center of the supernova remnant (SNR) MSH 11-61A at v > 1000 km s-1. Two XMM-Newton observations were obtained with the EPIC pn in small window mode, resulting in the measurement of its spin-down luminosity \\dot{E}=1.36× 1036 erg s-1, characteristic age τ c = 116 kyr, and surface magnetic field strength Bs = 7.4 × 1011 G. In comparison to τ c , the 10-30 kyr age estimated for MSH 11-61A suggests that the pulsar was born in the SNR with initial period in the range 54 <= P 0 <= 60 ms. PSR J1101-6101 is the least energetic of the 15 rotation-powered pulsars detected by INTEGRAL, and has a high efficiency of hard X-ray radiation and jet power. We examine the shape of the cometary nebula in a Chandra image, which is roughly consistent with a bow shock at the velocity inferred from the SNR age and the pulsar's \\dot{E}. However, its structure differs in detail from the classic bow shock, and we explore possible reasons for this.

  6. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals

    SciTech Connect

    Akimoto, Mami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Yamada, Masahiro; Ueki, Nami; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2012-10-15

    Purpose: To perform dynamic tumor tracking irradiation with the Vero4DRT (MHI-TM2000), a correlation model [four dimensional (4D) model] between the displacement of infrared markers on the abdominal wall and the three-dimensional position of a tumor indicated by a minimum of three implanted gold markers is required. However, the gold markers cannot be detected successfully on fluoroscopic images under the following situations: (1) overlapping of the gold markers; and (2) a low intensity ratio of the gold marker to its surroundings. In the present study, the authors proposed a method to readily determine the optimal x-ray monitoring angle for creating a 4D model utilizing computed tomography (CT) images. Methods: The Vero4DRT mounting two orthogonal kV x-ray imaging subsystems can separately rotate the gantry along an O-shaped guide-lane and the O-ring along its vertical axis. The optimal x-ray monitoring angle was determined on CT images by minimizing the root-sum-square of water equivalent path lengths (WEPLs) on the orthogonal lines passing all of the gold markers while rotating the O-ring and the gantry. The x-ray monitoring angles at which the distances between the gold markers were within 5 mm at the isocenter level were excluded to prevent false detection of the gold markers in consideration of respiratory motions. First, the relationship between the WEPLs (unit: mm) and the intensity ratios of the gold markers was examined to assess the validity of our proposed method. Second, our proposed method was applied to the 4D-CT images at the end-expiration phase for 11 lung cancer patients who had four to five gold markers. To prove the necessity of the x-ray monitoring angle optimization, the intensity ratios of the least visible markers (minimum intensity ratios) that were estimated from the WEPLs were compared under the following conditions: the optimal x-ray monitoring angle and the angles used for setup verification. Additionally, the intra- and

  7. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Ford, P. G.; Bautz, M. W.; O'Dell, S. L.

    2013-04-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. The CCDs are vulnerable to radiation damage, particularly by soft protons in the Earth's radiation belts and from solar storms. The primary effect of this damage is to increase the charge-transfer inefficiency (CTI) of the 8 front-illuminated CCDs and decrease scientific performance. Soon after launch, the Chandra team implemented procedures to protect ACIS and remove the detector from the telescope focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. As Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. We report on the status of this flight software patch and explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  8. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  9. Sensitive X-ray and Radio Monitoring of the Sgr A*/G2 Encounter

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl; Baganoff, F. K.; Ponti, G.; Heinke, C. O.; Yusef-Zadeh, F.; Roberts, D. A.; Cotton, W. D.; Gillessen, S.; Genzel, R.; Markoff, S.; Nowak, M.; Neilsen, J.; Schulz, N. S.; Rea, N.

    2014-01-01

    The recent discovery of a dense, cold cloud (dubbed "G2") approaching Sgr A* offers an opportunity to test models of black hole accretion and its associated feedback. G2's orbit is eccentric and the cloud shows signs of tidal disruption by the black hole. High-energy emission from the Sgr A*/G2 encounter may rise toward pericenter (mid-to-late 2013, or early 2014) and continue over the next several years as the material circularizes. This encounter is also likely to enhance Sgr A*'s flare activity across the electromagnetic spectrum. We present preliminary results from our 2013 joint Chandra/XMM/VLA monitoring campaigns. Our programs aim to study the radiation properties of Sgr A* as G2 breaks up and feeds the accretion flow, to constrain the rates and emission mechanisms of faint X-ray flares, and to detect G2 itself as it is shocked and heated. We discuss the constraints these data place on theoretical models for the Sgr A*/G2 encounter and outline plans for continued monitoring with Chandra, XMM, HST, and VLA in 2014.

  10. LOCALIZING INTEGRAL SOURCES WITH CHANDRA: X-RAY AND MULTI-WAVELENGTH IDENTIFICATIONS AND ENERGY SPECTRA

    SciTech Connect

    Tomsick, John A.; Bodaghee, Arash; Chaty, Sylvain; Rodriguez, Jerome; Halpern, Jules; Kalemci, Emrah; Oezbey Arabaci, Mehtap

    2012-08-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and subarcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 Degree-Sign of the plane, four of the IGR sources are active galactic nuclei (AGNs; IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGNs (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGNs selected by their 2-10 keV emission in previous studies and find that these IGR AGNs are in the range of typical values. There is evidence in favor of four of the sources being Galactic (IGR J12489-6243, IGR J15293-5609, IGR J16173-5023, and IGR J16206-5253), but only IGR J15293-5609 is confirmed as a Galactic source as it has a unique Chandra counterpart and a parallax measurement from previous optical observations that puts its distance at 1.56 {+-} 0.12 kpc. The 0.3-10 keV luminosity for this source is (1.4{sup +1.0}{sub -0.4}) Multiplication-Sign 10{sup 32} erg s{sup -1}, and its optical/IR spectral energy distribution is well described by a blackbody with a temperature of 4200-7000 K and a radius of 12.0-16.4 R{sub Sun }. These values suggest that IGR J15293-5609 is a symbiotic binary with an early K-type giant and a white dwarf accretor. We also obtained likely Chandra identifications for IGR J13402-6428 and IGR J15368-5102, but follow-up observations are required to constrain their source types.

  11. Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Förster, E.

    2014-09-01

    The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.

  12. The Athena X-ray Integral Field Unit (X-IFU)

    NASA Astrophysics Data System (ADS)

    Barret, Didier; den Herder, Jan-Willem; Piro, Luigi

    2015-09-01

    The X-ray Integral Field Unit (X-IFU) for Athena is based on Transition Edge Sensors (TES). In its baseline configuration, it is made of a monolithic array of 3840 single size TES cooled at ~100 mK, thus providing a spectral resolution of 2.5 eV over a field of view of 5' equivalent diameter. In this paper, I will recall the top-level instrument performance requirements and associated science drivers. The baseline instrument design will be presented before reporting on the on-going instrument activities (e.g. the TES array optimization exercise), that are preparatory to the phase A study and to the demonstration model development. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Finland, Germany, United Kingdom, Poland, Spain, Switzerland together with the United States and Japan.

  13. Polarimetry in the Hard X-Ray Domain with INTEGRAL SPI

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Roques, J. P.; Clark, D. J.; Jourdain, E.

    2013-06-01

    We present recent improvements in polarization analysis with the INTEGRAL SPI data. The SPI detector plane consists of 19 independent Ge crystals and can operate as a polarimeter. The anisotropy characteristics of Compton diffusions can provide information on the polarization parameters of the incident flux. By including the physics of the polarized Compton process in the instrument simulation, we are able to determine the instrument response for a linearly polarized emission at any position angle. We compare the observed data with the simulation sets by a minimum χ2 technique to determine the polarization parameters of the source (angle and fraction). We have tested our analysis procedure with Crab Nebula observations and find a position angle similar to those previously reported in the literature, with a comfortable significance. Since the instrument response depends on the incident angle, each exposure in the SPI data requires its own set of simulations, calculated for 18 polarization angles (from 0° to 170° in steps of 10°) and unpolarized emission. The analysis of a large number of observations for a given source, required to obtain statistically significant results, represents a large amount of computing time, but it is the only way to access this complementary information in the hard X-ray regime. Indeed, major scientific advances are expected from such studies since the observational results will help to discriminate between the different models proposed for the high energy emission of compact objects like X-ray binaries and active galactic nuclei or gamma-ray bursts. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with participation of Russia and USA.

  14. First attempt of at-cavity cryogenic X-ray detection in a CEBAF cryomodule for field emission monitoring

    SciTech Connect

    Geng, Rongli; Daly, Edward; Drury, Michael; Palczewski, Ari

    2015-09-01

    We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carried out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.

  15. Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2011-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

  16. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. PMID:27163527

  17. Unveiling the nature of INTEGRAL objects through optical spectroscopy. VIII. Identification of 44 newly detected hard X-ray sources

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Parisi, P.; Palazzi, E.; Jiménez-Bailón, E.; Chavushyan, V.; Bassani, L.; Bazzano, A.; Bird, A. J.; Dean, A. J.; Charles, P. A.; Galaz, G.; Landi, R.; Malizia, A.; Mason, E.; McBride, V. A.; Minniti, D.; Morelli, L.; Schiavone, F.; Stephen, J. B.; Ubertini, P.

    2010-09-01

    Hard X-ray surveys performed by the INTEGRAL satellite have discovered a conspicuous fraction (up to 30%) of unidentified objects among the detected sources. Here we continue our program of identification of these objects by (i) selecting probable optical candidates by means of positional cross-correlation of the INTEGRAL detections with soft X-ray, radio, and/or optical archives and (ii) performing optical spectroscopy on them. As a result, we pinpointed and identified, or more accurately characterized, 44 definite or likely counterparts of INTEGRAL sources. Among them, 32 are active galactic nuclei (AGNs; 18 with broad emission lines, 13 with narrow emission lines only, and one X-ray bright, optically normal galaxy) with redshift 0.019 < z < 0.6058, 6 cataclysmic variables (CVs), 5 high-mass X-ray binaries (2 of which in the Small Magellanic Cloud), and 1 low-mass X-ray binary. This was achieved by using 7 telescopes of various sizes and archival data from two online spectroscopic surveys. The main physical parameters of these hard X-ray sources were also determined using the multiwavelength information available in the literature. In general, AGNs are the most abundant population among hard X-ray objects, and our results confirm the tendency of finding AGNs more frequently than any other type of hard X-ray emitting object among unidentified INTEGRAL sources when optical spectroscopy is used as an identification tool. Moreover, the deeper sensitivity of the more recent INTEGRAL surveys enables one to begin detecting hard X-ray emission above 20 keV from sources such as LINER-type AGNs and non-magnetic CVs. Based on observations collected at the following observatories: Cerro Tololo Interamerican Observatory (Chile); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); ESO (La Silla, Chile) under programme 083.D-0110(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of

  18. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    SciTech Connect

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons; Boye, Pit; Schroer, Christian G.; Glatzel, Pieter; Borca, Camelia N.; Beckmann, Felix

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data

  19. Results of ongoing Swift/XRT monitoring of the low mass X-ray binary IGR J17091-3624

    NASA Astrophysics Data System (ADS)

    Ballhausen, Ralf; Grinberg, Victoria; Wilms, Joern; Fuerst, Felix; Eikmann, Wiebke; Bozzo, Enrico; Cadolle Bel, Marion; Egron, Elise; Favre, Thierry; Ferrigno, Carlo; Krauss, Felicia; Kreykenbohm, Ingo; Nowak, Michael A.; Pottschmidt, Katja; Rodriguez, Jerome; Bachetti, Matteo

    2016-03-01

    The low mass X-ray binary IGR J17091-3624 has been reported to be in outburst by Miller et al. (ATel #8742) on 2016 February 26. Subsequent observations by Swift/XRT and INTEGRAL revealed the transient to be in the hard/low state (Grinberg et al., ATel #8761).

  20. THE LOCAL ENVIRONMENT OF ULTRALUMINOUS X-RAY SOURCES VIEWED BY XMM-NEWTON's OPTICAL MONITOR

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Tincher, J.; Winter, L. M. E-mail: rachel.dudik@usno.navy.mil

    2013-10-20

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 ultraluminous X-ray sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition, the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for SFRs located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense superclusters, but some of these SFRs are massive enough to contain such clusters. Only three ULXs have no associated SFRs younger than ∼50 Myr. The age and mass estimates for clusters were used to test runaway scenarios. The data are, in general, compatible with stellar-mass binaries accreting at super-Eddington rates and ejected by natal kicks. We also tested the hypothesis that ULXs are sub-Eddington accreting intermediate mass black holes ejected by three-body interactions; however, this is not supported well by the data.

  1. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060

  2. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    SciTech Connect

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-04-15

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  3. DISCOVERY OF X-RAY PULSATIONS FROM THE INTEGRAL SOURCE IGR J11014–6103

    SciTech Connect

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Tomsick, J. A.; Ng, C.-Y.; Bodaghee, A.; Rodriguez, J.; Chaty, S.

    2014-11-10

    We report the discovery of PSR J1101–6101, a 62.8 ms pulsar in IGR J11014–6103, a hard X-ray source with a jet and a cometary tail that strongly suggests it is moving away from the center of the supernova remnant (SNR) MSH 11–61A at v > 1000 km s{sup –1}. Two XMM-Newton observations were obtained with the EPIC pn in small window mode, resulting in the measurement of its spin-down luminosity E-dot =1.36×10{sup 36} erg s{sup –1}, characteristic age τ {sub c} = 116 kyr, and surface magnetic field strength B{sub s} = 7.4 × 10{sup 11} G. In comparison to τ {sub c}, the 10-30 kyr age estimated for MSH 11–61A suggests that the pulsar was born in the SNR with initial period in the range 54 ≤ P {sub 0} ≤ 60 ms. PSR J1101–6101 is the least energetic of the 15 rotation-powered pulsars detected by INTEGRAL, and has a high efficiency of hard X-ray radiation and jet power. We examine the shape of the cometary nebula in a Chandra image, which is roughly consistent with a bow shock at the velocity inferred from the SNR age and the pulsar's E-dot . However, its structure differs in detail from the classic bow shock, and we explore possible reasons for this.

  4. Polarimetry in the hard X-ray domain with INTEGRAL SPI

    SciTech Connect

    Chauvin, M.; Roques, J. P.; Jourdain, E.; Clark, D. J.

    2013-06-01

    We present recent improvements in polarization analysis with the INTEGRAL SPI data. The SPI detector plane consists of 19 independent Ge crystals and can operate as a polarimeter. The anisotropy characteristics of Compton diffusions can provide information on the polarization parameters of the incident flux. By including the physics of the polarized Compton process in the instrument simulation, we are able to determine the instrument response for a linearly polarized emission at any position angle. We compare the observed data with the simulation sets by a minimum χ{sup 2} technique to determine the polarization parameters of the source (angle and fraction). We have tested our analysis procedure with Crab Nebula observations and find a position angle similar to those previously reported in the literature, with a comfortable significance. Since the instrument response depends on the incident angle, each exposure in the SPI data requires its own set of simulations, calculated for 18 polarization angles (from 0° to 170° in steps of 10°) and unpolarized emission. The analysis of a large number of observations for a given source, required to obtain statistically significant results, represents a large amount of computing time, but it is the only way to access this complementary information in the hard X-ray regime. Indeed, major scientific advances are expected from such studies since the observational results will help to discriminate between the different models proposed for the high energy emission of compact objects like X-ray binaries and active galactic nuclei or gamma-ray bursts.

  5. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Thornton, Michael G. (Inventor); Clark, III, Benton C. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  6. Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, P.S.; Siddons, D. P.

    2009-05-25

    We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

  7. 16 yr of RXTE monitoring of five anomalous X-ray pulsars

    SciTech Connect

    Dib, Rim; Kaspi, Victoria M. E-mail: vkaspi@physics.mcgill.ca

    2014-03-20

    We present a summary of the long-term evolution of various properties of the five non-transient anomalous X-ray pulsars (AXPs) 1E 1841–045, RXS J170849.0–400910, 1E 2259+586, 4U 0142+61, and 1E 1048.1–5937, regularly monitored with RXTE from 1996 to 2012. We focus on three properties of these sources: the evolution of the timing, pulsed flux, and pulse profile. We report several new timing anomalies and radiative events, including a putative anti-glitch seen in 1E 2259+586 in 2009, and a second epoch of very large spin-down rate fluctuations in 1E 1048.1–5937 following a large flux outburst. We compile the properties of the 11 glitches and 4 glitch candidates observed from these 5 AXPs between 1996 and 2012. Overall, these monitoring observations reveal several apparent patterns in the behavior of this sample of AXPs: large radiative changes in AXPs (including long-lived flux enhancements, short bursts, and pulse profile changes) are rare, occurring typically only every few years per source; large radiative changes are almost always accompanied by some form of timing anomaly, usually a spin-up glitch; only 20%-30% of timing anomalies are accompanied by any form of radiative change. We find that AXP radiative behavior at the times of radiatively loud glitches is sufficiently similar to suggest common physical origins. The similarity in glitch properties when comparing radiatively loud and radiatively silent glitches in AXPs suggests a common physical origin in the stellar interior. Finally, the overall similarity of AXP and radio pulsar glitches suggests a common physical origin for both phenomena.

  8. Integration of X-ray microanalysis and morphometry of biological material

    SciTech Connect

    de Bruijn, W.C.

    1985-01-01

    The authors investigated how to extract both morphometrical and X-ray elemental information from scanning electron microscopical (SEM) or scanning transmission electron microscopical (STEM)-images and how to integrate these two information streams either on line or off-line after storage. Cytochemical reaction products in cell organelles in ultrathin sections are the biological structures of interest. A new program has been proposed and described, which permits determination of both the area and the mean net-intensity value of chemical elements, inhomogeneously distributed over heteromorph organelles. The value of this integration method is demonstrated by three examples of increasing complexity, starting with two elements which are more or less homogeneously distributed over one lysosome, the establishing of a platinum discontinuity in an acidophilic granule and finally the localization of two chemical elements inhomogeneously distributed over a rather heteromorph phagolysosome. In two examples Chelex ion exchange beads, maximally loaded with the element also present in the structure of interest, are co-embedded with the tissue as internal standards. In such cases the absolute elemental concentration in the structures analysed can be established.

  9. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  10. Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET Crystals

    SciTech Connect

    Haugh, M J; Ross, P W; Regan, P W; Magoon, J; Shoup, M J; Barrios, M A; Emig, J A; Fournier, K B

    2012-04-26

    Spectroscopy provides valuable information about the temperature and density of a compressed pellet in a plasma. Elliptically curved pentaerythritol (PET) crystals are used as components for spectrometers. Their elliptical geometry gives several advantages related to spectral energy range, source focus, and spectral image compression.[1] The crystal curvature increases the spectrometer throughput but at the cost of a loss in resolution. Four different crystals are used in a spectrometer at the National Ignition Facility (NIF) target chamber at Lawrence Livermore National Laboratory (LLNL). Figure 1 shows the arrangement of the elliptical PET crystals in the snout of a NIF target diagnostic shown in Figure 2. The spectrum from the crystals is captured by four image plates located behind the crystals. A typical mandrel, the darkened section, upon which the PET crystal is glued, is shown in Figure 3, which also shows the complete ellipse. There are four elliptical segment types, each having the same major axis but a different minor axis. The crystals are 150 mm long in the diffraction direction and 25.4 mm high. Two crystals of each type were calibrated. The throughput for each spectrometer is determined by the integrated reflectivity of the PET crystal.[1] The goal of this effort was to measure the reflectivity curve of the PET curved crystal at several energies and determine the integrated reflectivity and the curve width as a function of the X-ray spectral energy and location on the ellipse where the beam strikes.

  11. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  12. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time1

    PubMed Central

    Daurer, Benedikt J.; Hantke, Max F.; Nettelblad, Carl; Maia, Filipe R. N. C.

    2016-01-01

    Advances in X-ray detectors and increases in the brightness of X-ray sources combined with more efficient sample delivery techniques have brought about tremendous increases in the speed of data collection in diffraction experiments. Using X-ray free-electron lasers such as the Linac Coherent Light Source (LCLS), more than 100 diffraction patterns can be collected in a second. These high data rates are invaluable for flash X-ray imaging (FXI), where aerosolized samples are exposed to the X-ray beam and the resulting diffraction patterns are used to reconstruct a three-dimensional image of the sample. Such experiments require immediate feedback on the quality of the data collected to adjust or validate experimental parameters, such as aerosol injector settings, beamline geometry or sample composition. The scarcity of available beamtime at the laser facilities makes any delay extremely costly. This paper presents Hummingbird, an open-source scalable Python-based software tool for real-time analysis of diffraction data with the purpose of giving users immediate feedback during their experiments. Hummingbird provides a fast, flexible and easy-to-use framework. It has already proven to be of great value in numerous FXI experiments at the LCLS. PMID:27275147

  13. SWIFT MONITORING OF CYGNUS X-2: INVESTIGATING THE NEAR-ULTRAVIOLET-X-RAY CONNECTION

    SciTech Connect

    Rykoff, E. S.; Cackett, E. M.; Miller, J. M.

    2010-08-20

    The neutron star X-ray binary (NSXRB) Cyg X-2 was observed by the Swift satellite 51 times over a 4 month period in 2008 with the X-ray Telescope (XRT), UV/optical telescope, and Burst Alert Telescope (BAT) instruments. During this campaign, we observed Cyg X-2 in all three branches of the Z track (horizontal, normal, and flaring branches). We find that the NUV emission is uncorrelated with the soft X-ray flux detected with the XRT and is anticorrelated with the BAT X-ray flux and the hard X-ray color. The observed anticorrelation is inconsistent with simple models of reprocessing as the source of the NUV emission. The anticorrelation may be a consequence of the high inclination angle of Cyg X-2, where NUV emission is preferentially scattered by a corona that expands as the disk is radiatively heated. Alternatively, if the accretion disk thickens as Cyg X-2 goes down the normal branch toward the flaring branch, this may be able to explain the observed anticorrelation. In these models, the NUV emission may not be a good proxy for m-dot in the system. We also discuss the implications of using Swift/XRT to perform spectral modeling of the continuum emission of NSXRBs.

  14. INTEGRAL detects a new outburst from the millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Kuulkers, E.; Bazzano, A.; Beckmann, V.; Bird, T.; Bodaghee, A.; Chenevez, J.; Del Santo, M.; Domingo, A.; Jonker, P.; Kretschmar, P.; Markwardt, C.; Paizis, A.; Pottschmidt, K.; Sanchez-Fernandez, C.; Wijnands, R.; Ferrigno, C.; Tuerler, M.

    2015-03-01

    During the observations performed in the direction of the Galactic Bulge on 2015 March 23 from 02:49 to 07:26 (UTC), the instruments on-board INTEGRAL detected a new outburst from the millisecond X-ray pulsar IGR J17511-3057 (ATel #2196, #2197; Papitto et al., 2010, MNRAS, 407, 2575).

  15. Swift-XRT six-year monitoring of the ultraluminous X-ray source M33 X-8

    NASA Astrophysics Data System (ADS)

    La Parola, V.; D'Aí, A.; Cusumano, G.; Mineo, T.

    2015-08-01

    Context. The long-term evolution of ultraluminous X-ray sources (ULX) with their spectral and luminosity variations in time give important clues on the nature of ULX and on the accretion process that powers them. Aims: We report here the results of a Swift-XRT six-year monitoring campaign of the closest example of a persistent ULX, M33 X-8, that extends the monitoring of this source in the soft X-rays to 16 years. The luminosity of this source is a few 1039 erg s-1, marking the faint end of the ULX luminosity function. Methods: We analyzed the set of 15 observations collected during the Swift monitoring. We searched for differences in the spectral parameters at different observing epochs, adopting several models commonly used to fit the X-ray spectra of ULX. Results: The source exhibits flux variations of about 30%. No significant spectral variations are observed during the monitoring. The average 0.5-10 keV spectrum can be well described by a thermal model, either in the form of a slim disk, or as a combination of a Comptonized corona and a standard accretion disk.

  16. THE X-RAY FLARING PROPERTIES OF Sgr A* DURING SIX YEARS OF MONITORING WITH SWIFT

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Reynolds, M. T.; Kennea, J.; Gehrels, N.; Wijnands, R.

    2013-06-01

    Starting in 2006, Swift has been targeting a region of {approx_equal} 21' Multiplication-Sign 21' around Sagittarius A* (Sgr A*) with the onboard X-Ray Telescope. The short, quasi-daily observations offer a unique view of the long-term X-ray behavior of the supermassive black hole. We report on the data obtained between 2006 February and 2011 October, which encompasses 715 observations with a total accumulated exposure time of {approx_equal}0.8 Ms. A total of six X-ray flares were detected with Swift, which all had an average 2-10 keV luminosity of L{sub X} {approx_equal} (1 - 3) Multiplication-Sign 10{sup 35} erg s{sup -1} (assuming a distance of 8 kpc). This more than doubles the number of such bright X-ray flares observed from Sgr A*. One of the Swift-detected flares may have been softer than the other five, which would indicate that flares of similar intensity can have different spectral properties. The Swift campaign allows us to constrain the occurrence rate of bright (L{sub X} {approx}> 10{sup 35} erg s{sup -1}) X-ray flares to be {approx_equal}0.1-0.2 day{sup -1}, which is in line with previous estimates. This analysis of the occurrence rate and properties of the X-ray flares seen with Swift offers an important calibration point to assess whether the flaring behavior of Sgr A* changes as a result of its interaction with the gas cloud that is projected to make a close passage in 2013.

  17. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework

    NASA Astrophysics Data System (ADS)

    Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A.; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A. J.; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E.; Halasz, Ivan; Friščić, Tomislav

    2015-03-01

    Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.

  18. Soft X-ray irradiance measured by the Solar Aspect Monitor on the Solar Dynamic Observatory Extreme ultraviolet Variability Experiment

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Bailey, S. M.; Jones, A.; Woodraska, D.; Caspi, A.; Woods, T. N.; Eparvier, F. G.; Wieman, S. R.; Didkovsky, L. V.

    2016-04-01

    The Solar Aspect Monitor (SAM) is a pinhole camera on the Extreme ultraviolet Variability Experiment (EVE) aboard the Solar Dynamics Observatory. SAM projects the solar disk onto the CCD through a metallic filter designed to allow only solar photons shortward of 7 nm to pass. Contamination from energetic particles and out-of-band irradiance is, however, significant in the SAM observations. We present a technique for isolating the 0.01-7 nm integrated irradiance from the SAM signal to produce the first results of broadband irradiance for the time period from May 2010 to May 2014. The results of this analysis agree with a similar data product from EVE's EUV SpectroPhotometer to within 25%. We compare our results with measurements from the Student Nitric Oxide Explorer Solar X-ray Photometer and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics Solar EUV Experiment at similar levels of solar activity. We show that the full-disk SAM broadband results compared well to the other measurements of the 0.01-7 nm irradiance. We also explore SAM's capability toward resolving spatial contribution from regions of solar disk in irradiance and demonstrate this feature with a case study of several strong flares that erupted from active regions on 11 March 2011.

  19. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  20. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  1. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  2. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    SciTech Connect

    Wilson-Hodge, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-07-12

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  3. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  4. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction

    PubMed Central

    Aina, Adeyinka; Gupta, Manish; Boukari, Yamina; Morris, Andrew; Billa, Nashiru; Doughty, Stephen

    2015-01-01

    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture. PMID:27013917

  5. A compact and portable X-ray beam position monitor using Medipix3

    NASA Astrophysics Data System (ADS)

    Rico-Alvarez, O.; Kachatkou, A.; Marchal, J.; Willis, B.; Sawhney, K.; Tartoni, N.; van Silfhout, R. G.

    2014-12-01

    The present work reports on the design and implementation of a novel portable X-ray beam diagnostics (XBPM) device. The device is transparent to the X-ray beam and provides real-time measurements of beam position, intensity, and size. The measurement principle is based on a pinhole camera which records scattered radiation from a Kapton foil which is placed in the beam path. The use of hybrid detectors (Medipix3) that feature a virtually noiseless readout system with capability of single photon detection and energy resolving power enables the diagnostics with a better resolution and higher sensitivity compared to the use of traditional indirect X-ray detection schemes. We describe the detailed system design, which consists of a vacuum compatible focal plane sensor array, a sensor conditioning and readout board and a heterogeneous data processing unit, which also acts as a network server that handles network communications with clients. The readout protocol for the Medipix3 sensor is implemented using field programmable gate array (FPGA) logic resulting in a versatile and scalable system that is capable of performing advanced functions such as data compression techniques and feature extraction. For the system performance measurements, we equipped the instrument with a single Medipix3 die, bump bonded to a Si sensor, rather than four for which it was designed. Without data compression, it is capable of acquiring magnified images and profiles of synchrotron X-ray beams at a transfer rate through Ethernet of 27 frames/s for one Medipix3 die.

  6. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  7. X-ray simulation for structural integrity for aerospace components - A case study

    NASA Astrophysics Data System (ADS)

    Singh, Surendra; Gray, Joseph

    2016-02-01

    The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of

  8. The hard X-ray continuum of Cen a observed with INTEGRAL SPI

    SciTech Connect

    Burke, Mark J.; Jourdain, Elisabeth; Roques, Jean-Pierre; Evans, Daniel A.

    2014-05-20

    We revisit the average hard X-ray spectrum from the active galactic nucleus (AGN) of Centaurus A (Cen A) using 10 yr worth of observations with INTEGRAL SPI. This source has the highest flux observed from any AGNs in the SPI bandpass (23 keV-8 MeV). The 10 year light curve of Cen A is presented, and hardness ratios confirm that the spectral shape changes very little despite the luminosity varying by a factor of a few. Primarily, we establish the presence of a reflection component in the average spectrum by demonstrating an excess between 20 and 60 keV, from extending the spectral shape observed at low energy to the SPI regime. The excess in Chandra HETGS and INTEGRAL SPI data is well described by reflection of the dominant power-law spectrum from a neutral, optically thick atmosphere. We find that the reprocessed emission contributes 20%-25% of the 23-100 keV flux. The existence of a cutoff at tens to hundreds of kiloelectron volts remains controversial. Using simulated spectra, we demonstrate that a high energy cutoff reproduces the observed spectral properties of Cen A more readily than a simple power law. However, we also show that such a cutoff is probably underestimated when neglecting (even modest) reflection, and for Cen A would be at energies >700 keV, with a confidence of >95%. This is atypically high for thermal Comptonizing plasmas observed in AGNs, and we propose that we are in fact modeling the more gradual change in spectral shape expected of synchrotron self-Compton spectra.

  9. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  10. An intense state of hard X-ray emission of Cyg X-1 observed by INTEGRAL coincident with TeV measurements

    NASA Astrophysics Data System (ADS)

    Malzac, J.; Lubiński, P.; Zdziarski, A. A.; Cadolle Bel, M.; Türler, M.; Laurent, P.

    2008-12-01

    Aims: We present INTEGRAL light curves and spectra of the black-hole binary Cyg X-1 during a bright event that occurred in 2006 September, and which was simultaneous with a detection at 0.15-1 TeV energies by the MAGIC telescope. Methods: We analyse the hard X-ray emission from 18 to 700 keV with the INTEGRAL data taken on 2006 September 24-26 by the IBIS and SPI instruments. These data are supplemented with RXTE All Sky Monitor data at lower energy. We present the light curves and fit the high energy spectrum with various spectral models. Results: Despite variations in the flux by a factor of ~2 in the 20-700 keV energy band, the shape of the energy spectrum remained remarkably stable. It is very well represented by an e-folded power law with the photon index of Γ ≃ 1.4 and a high energy cut-off at Ec ≃ 130-140 keV. The spectrum is also well described by thermal Comptonisation including a moderate reflection component, with a solid angle of the reflector of ~ 0.4 × 2π. The temperature of the hot Comptonising electrons is kTe ~ 70 keV and their Thomson optical depth is τ ~ 2.5. These spectral properties are typical of those observed in the low/hard state. This shows that Cyg X-1 may stay in the low hard state at least up to the flux level of 2 Crab, which corresponds to ~2-3% of the Eddington luminosity. It is the first time a persistent high-mass black-hole binary is observed at a few percent of the Eddington luminosity with a stable low/hard state spectrum over a period of a few days. Such a bright hard state has so far been observed only during the rising phase of transient low-mass black-hole binaries. The TeV detection coincides with the peak of a small X-ray flare just after a very fast rise in hard X-ray flux. In contrast, the source remained undetected by MAGIC at the peak of a larger X-ray flare occurring one day later and corresponding to the maximum of the X-ray luminosity of the whole outburst. We do not find any obvious correlation between the

  11. SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347

    SciTech Connect

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.; Masetti, N.; D'Elia, V.

    2013-09-20

    IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of P {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.

  12. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  13. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-01

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  14. Hard X-Ray Emissions from Cassiopeia A Observed by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhuo

    2016-07-01

    Cassiopeia A (Cas A), as the nearby young remnant of a core-collapse supernova, is the best candidate for astrophysical studies in supernova explosion and its environment. We studied the hard X-ray emission from Cas A using the 10 year data of INTEGRAL observations, and first detected non-thermal continuum emission from the source up to 220 keV. The 44Ti line emission at 68 and 78 keV is confirmed by our observations with a mean flux of ˜(2.2 ± 0.4) × 10‑5 ph cm‑2 s‑1, corresponding to a 44Ti yield in Cas A of (1.3 ± 0.4) × 10‑4 M ⊙. The continuum emission from 3 to 500 keV can be fit with a thermal bremsstrahlung of kT ˜ 0.79 ± 0.08 keV plus a power-law model of Γ ˜ 3.13 ± 0.03. The non-thermal emission from Cas A is well fit by a power-law model without a cutoff up to 220 keV. This radiation characteristic is inconsistent with diffusive shock acceleration models with a remnant shock velocity of only 5000 km s‑1. The central compact object in Cas A cannot significantly contribute to the emission above 80 keV. Some possible physical origins of the non-thermal emission above 80 keV from the remnant shock are discussed. We deduce that the asymmetrical supernova explosion scenario of Cas A is a promising scenario for the production of high-energy synchrotron radiation photons, where a portion of the ejecta with a velocity of ˜0.1c and opening angle of ˜10° can account for the 100 keV emission, as is consistent with the “jet” observed in Cas A.

  15. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    SciTech Connect

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-18

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  16. Hard X-Ray Emissions from Cassiopeia A Observed by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhuo

    2016-07-01

    Cassiopeia A (Cas A), as the nearby young remnant of a core-collapse supernova, is the best candidate for astrophysical studies in supernova explosion and its environment. We studied the hard X-ray emission from Cas A using the 10 year data of INTEGRAL observations, and first detected non-thermal continuum emission from the source up to 220 keV. The 44Ti line emission at 68 and 78 keV is confirmed by our observations with a mean flux of ∼(2.2 ± 0.4) × 10‑5 ph cm‑2 s‑1, corresponding to a 44Ti yield in Cas A of (1.3 ± 0.4) × 10‑4 M ⊙. The continuum emission from 3 to 500 keV can be fit with a thermal bremsstrahlung of kT ∼ 0.79 ± 0.08 keV plus a power-law model of Γ ∼ 3.13 ± 0.03. The non-thermal emission from Cas A is well fit by a power-law model without a cutoff up to 220 keV. This radiation characteristic is inconsistent with diffusive shock acceleration models with a remnant shock velocity of only 5000 km s‑1. The central compact object in Cas A cannot significantly contribute to the emission above 80 keV. Some possible physical origins of the non-thermal emission above 80 keV from the remnant shock are discussed. We deduce that the asymmetrical supernova explosion scenario of Cas A is a promising scenario for the production of high-energy synchrotron radiation photons, where a portion of the ejecta with a velocity of ∼0.1c and opening angle of ∼10° can account for the 100 keV emission, as is consistent with the “jet” observed in Cas A.

  17. Time integrated x-ray measurments of the very energetic electron end loss profile in TMX-U

    SciTech Connect

    Osher, J.E.; Fabyan, J.

    1984-09-14

    The time-integrated 2-D profile of the thick-target bremsstrahlung produced by energetic end loss electrons has been measured during ECRH operation of TMX-U. Sheets of x-ray film and/or arrays of thermoluminescent dosimeters were placed on the outside of the end tank end wall to measure the relative spatial x-ray profile, with locally added filters of Pb to determine the effective mean x-ray energy. The purpose of this simple survey diagnostic was to allow deduction of the gross features of the ECRH region. The electron source functions needed to fit the x-ray data were modeled for various anchor cell radial distributions mapped along magnetic field lines to the elliptical plasma potential control plates or the Al end walls. The data are generally consistent with (1) major ECR heating in the central 25-cm-diam core, (2) a mean ECRH electron loss energy of 420 keV, and (3) an ECRH coupling efficiency to these hot electrons of greater than or equal to 10%.

  18. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    SciTech Connect

    Manova, D.; Bergmann, A.; Maendl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-15

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton{sup Registered-Sign} windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  19. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    NASA Astrophysics Data System (ADS)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  20. Earth Occultation Monitoring of the Hard X-ray/Low-Energy Gamma Ray Sky with GBM

    NASA Astrophysics Data System (ADS)

    Cherry, Michael L.; Camero-Arranz, A.; Case, G. L.; Chaplin, V.; Finger, M. H.; Jenke, P. A.; Rodi, J. C.; Wilson-Hodge, C. A.; GBM Earth Occultation Team

    2012-01-01

    By utilizing the Earth occultation technique (EOT), the Gamma-Ray Burst Monitor (GBM) instrument aboard Fermi has been used to make nearly continuous full-sky observations in the 8-1000 keV energy range. The GBM EOT analysis program currently monitors an input catalog containing 235 sources. We will present the GBM catalog of sources observed in the first 3 years of the EOT monitoring program, with special emphasis on the high energy (>100 keV) and time-variable sources, in particular the Crab, Cyg X-1, and A0535+26. We will also describe the initial results of an all-sky imaging analysis of the EOT data, with comparisons to the Swift, INTEGRAL, and Fermi LAT catalogs. This work is supported by the NASA Fermi Guest Investigator program, NASA/Louisiana Board of Regents, and Spanish Ministerio de Ciencia de Innovacion.

  1. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  2. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  3. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    PubMed

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment. PMID:2828276

  4. The Fermi-GBM X-Ray Burst Monitor: Thermonuclear Bursts from 4U 0614+09

    NASA Astrophysics Data System (ADS)

    Linares, M.; Connaughton, V.; Jenke, P.; van der Horst, A. J.; Camero-Arranz, A.; Kouveliotou, C.; Chakrabarty, D.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Finger, M.; Paciesas, W. S.; Preece, R.; von Kienlin, A.; Wilson-Hodge, C. A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  5. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  6. Implementing PET-guided biopsy: integrating functional imaging data with digital x-ray mammography cameras

    NASA Astrophysics Data System (ADS)

    Weinberg, Irving N.; Zawarzin, Valera; Pani, Roberto; Williams, Rodney C.; Freimanis, Rita L.; Lesko, Nadia M.; Levine, E. A.; Perrier, N.; Berg, Wendie A.; Adler, Lee P.

    2001-05-01

    Purpose: Phantom trials using the PET data for localization of hot spots have demonstrated positional accuracies in the millimeter range. We wanted to perform biopsy based on information from both anatomic and functional imaging modalities, however we had a communication challenge. Despite the digital nature of DSM stereotactic X-ray mammography devices, and the large number of such devices in Radiology Departments (approximately 1600 in the US alone), we are not aware of any methods of connecting stereo units to other computers in the Radiology department. Methods: We implemented a local network between an external IBM PC (running Linux) and the Lorad Stereotactic Digital Spot Mammography PC (running DOS). The application used IP protocol on the parallel port, and could be run in the background on the LORAD PC without disrupting important clinical activities such as image acquisition or archiving. With this software application, users of the external PC could pull x-ray images on demand form the Load DSM computer. Results: X-ray images took about a minute to ship to the external PC for analysis or forwarding to other computers on the University's network. Using image fusion techniques we were able to designate locations of functional imaging features as the additional targets on the anatomic x-rays. These pseudo-features could then potentially be used to guide biopsy using the stereotactic gun stage on the Lorad camera. New Work to be Presented: A method of transferring and processing stereotactic x-ray mammography images to a functional PET workstation for implementing image-guided biopsy.

  7. THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES

    SciTech Connect

    Wilson-Hodge, Colleen A.; Jenke, Peter; Case, Gary L.; Cherry, Michael L.; Rodi, James; Camero-Arranz, Ascension; Chaplin, Vandiver; Bhat, Narayan; Briggs, Michael S.; Connaughton, Valerie; Preece, Robert; Beklen, Elif; Finger, Mark; Paciesas, William S.; Greiner, Jochen; Meegan, Charles A.; Von Kienlin, Andreas; Kippen, R. Marc

    2012-08-01

    The Gamma-ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper, we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, and 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found online.

  8. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  9. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  10. Monitoring the long outburst of the very-faint X-ray transient XMMU J174716.1-281048

    NASA Astrophysics Data System (ADS)

    Del Santo, Melania; Romano, Patrizia; Sidoli, Lara

    2012-05-01

    XMMU J174716.1-281048 is a burster, very faint X-ray transient (VFXT), located at 0.9 degree off the Galactic Centre. It has been classified as the first "quasi-persistent" VFXT (Del Santo et al. 2007, A&A, 468, L17) showing a prolonged accretion episode of many years (ATel #1078). In order to monitor this peculiar long outburst, we thus observe the source once per year. A new ToO with Swift/XRT has been performed on 2012-05-06 16:44:24 UT to 18:26:56 UT (2ks net exposure).

  11. AMiBA: Scaling Relations Between the Integrated Compton-y and X-ray-derived Temperature, Mass, and Luminosity

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Wei Locutus; Wu, Jiun-Huei Proty; Ho, Paul T. P.; Koch, Patrick M.; Liao, Yu-Wei; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Altamirano, Pablo; Birkinshaw, Mark; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Chiueh, Tzihong; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2010-06-01

    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich effect properties of clusters of galaxies, using data taken during 2007 by the Y. T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y 2500 to the X-ray-derived gas temperature T e, total mass M 2500, and bolometric luminosity LX within r 2500. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y 2500-LX relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.

  12. WIDE ANGLE X-RAY SKY MONITORING FOR CORROBORATING NON-ELECTROMAGNETIC COSMIC TRANSIENTS

    SciTech Connect

    Guetta, Dafne; Eichler, David E-mail: eichler@bgumail.bgu.ac.i

    2010-03-20

    Gravitational waves (GWs) can be emitted from coalescing neutron star (NS) and black hole-neutron star binaries, which are thought to be the sources of short hard gamma-ray bursts (SHBs). The gamma-ray fireballs seem to be beamed into a small solid angle and therefore only a fraction of detectable GW events are expected to be observationally coincident with SHBs. Similarly, ultrahigh energy neutrino signals associated with gamma-ray bursts could fail to be corroborated by prompt gamma-ray emission if the latter is beamed into a narrower cone than the neutrinos. Alternative ways to corroborate non-electromagnetic signals from coalescing NSs are therefore all the more desirable. It is noted here that the extended X-ray tails (XRTs) of SHBs are similar to X-ray flashes (XRFs), and that both can be attributed to an off-axis line of sight and thus span a larger solid angle than the hard emission. It is proposed that a higher fraction of detectable GW events may be coincident with XRF/XRT than with hard gamma-rays, thereby enhancing the possibility of detecting it as a GW or neutrino source. Scattered gamma-rays, which may subtend a much larger solid angle than the primary gamma-ray jet, are also candidates for corroborating non-electromagnetic signals.

  13. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  14. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  15. Undulator beamline optimization with integrated chicanes for X-ray free-electron-laser facilities.

    PubMed

    Prat, Eduard; Calvi, Marco; Ganter, Romain; Reiche, Sven; Schietinger, Thomas; Schmidt, Thomas

    2016-07-01

    An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses. PMID:27359133

  16. Investigation on Coding Method of Dental X-ray Image for Integrated Hospital Information System

    NASA Astrophysics Data System (ADS)

    Seki, Takashi; Hamamoto, Kazuhiko

    Recently, medical information system in dental field goes into digital system. In the system, X-ray image can be taken in digital modality and input to the system directly. Consequently, it is easy to combine the image data with alpha-numerical data which are stored in the conventional medical information system. It is useful to manipulate alpha-numerical data and image data simultaneously. The purpose of this research is to develop a new coding method for dental X-ray image. The method enables to reduce a disk space to store the images and transmit the images through Internet or LAN lightly. I attempt to apply multi-resolution analysis (wavelet transform) to accomplish the purpose. Proposed method achieves low bit-rate compared with conventional method.

  17. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  18. AGN in the Swift/BAT and INTEGRAL Hard X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Beckmann, Volker; Tueller, Jack; Baumgartner, Wayne; Markwardt, Craig; Mushotzky, Richard; Skinner, Gerry

    2008-01-01

    Two hard X-ray surveys are in progress at this time. They provide a unique new window on compact objects and black holes. I will discuss how these two surveys complement each other and the potential for improved coordination that could yield significant near term results in both sensitivity and time coverage. I will pay particular attention to the discovery of faint sources including new results from the 36 month survey from Swift/Burst Alert Telescope (BAT).

  19. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    SciTech Connect

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-12-15

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS{sub PC}{>=}NPS{sub EI} and hence DQE{sub PC}{<=}DQE{sub EI}. The necessary and sufficient condition for

  20. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., “white”) difference in their NPS exists such that NPSPC≥NPSEI and hence DQEPC≤DQEEI. The necessary and sufficient condition for equality is that the PSF is a

  1. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  2. Combined use of videoendoscopy and X-ray imaging for improved monitoring of stenting application

    NASA Astrophysics Data System (ADS)

    Cysewska-Sobusiak, A. R.; Sowier, A.; Skrzywanek, P.

    2005-09-01

    The subject of this paper concerns advanced techniques of procedures and imaging used in minimally invasive surgery and in non-operable cases of the alimentary tract tumor therapy. Examples of videoendoscopy and X-ray imaging used for the application of stents (prostheses) and catheters allowing for the performance of diagnostic and endo-therapeutic procedures are described. The possibility was indicated to elaborate a new method of proceeding in tumor therapy in the patients for whom the methods used so far were ineffective. In the paper examples of combined imaging the application of metallic stents and plastic catheters allowing for the performance of diagnostic and therapeutic procedures are presented. The cases shown refer to tumor located in the esophagus and in the bile and pancreatic ducts.

  3. Synchrotron radiation x-ray beam profile monitor using chemical vapor deposition diamond film

    SciTech Connect

    Kudo, Togo; Takahashi, Sunao; Nariyama, Nobuteru; Hirono, Toko; Tachibana, Takeshi; Kitamura, Hideo

    2006-12-15

    Photoluminescence (PL) of a Si-doped polycrystalline diamond film fabricated using the chemical vapor deposition technique was employed to measure the profile of a synchrotron radiation pink x-ray beam emitted from an in-vacuum hybrid undulator at the SPring-8 facility. The spectrum of the section of the diamond film penetrated by the emitted visible red light exhibited a peak at 739 nm and a wideband structure extending from 550 to 700 nm. The PL intensity increased with the absorbed dose of the incident beam in the diamond within a dynamic range of 10{sup 3}. A two-dimensional distribution of the PL intensity revealed the undulator beam profile.

  4. SID case studies utilizing a VLF solar x-ray flare monitoring network

    NASA Astrophysics Data System (ADS)

    Danielides, Michael; Spanier, Felix; Manninen, Jyrki; Skripachev, Vladimir

    Intense ultraviolet and x-ray radiation originating from solar flares are sources for sudden ionospheric disturbances (SID), which are enhancing the VLF radio propagation and are phenomena of the ionospheric D and E regions. Since summer 2012 the InFlaMo project is operating novel low cost SDR receivers as the main German participation to the International Space Weather Initiative (ISWI) in Germany, Finland, Russia and South Africa. The first objective of this paper is the presentation of the InFlaMo project and its novelty. The second aim is presenting case-studies, which are combining observations made together with other ionospheric sounders as well as with global navigation satellite system (GNSS) data showing trans-ionospheric radio-link disturbances accompanying the SID. Especially, disturbances of the trans-ionospheric radio-link are phenomena of the F region. Finally, the involved vertical ionospheric coupling effects are discussed within the presented case studies.

  5. Monitoring of Ultraluminous X-ray sources in the Antennae Galaxies

    NASA Astrophysics Data System (ADS)

    Feng, Hua

    2006-10-01

    Spectral state transitions are a key signature of black hole binaries (BHBs) and reflect the properties of the accretion flow and the central compact object. They have been systematically studied in Galactic BHBs and found to follow well-defined patterns. Ultraluminous X-ray sources (ULXs) are either intermediate-mass black holes or a special class of stellar-mass black holes, and should follow a set pattern of spectral evolution which is essentially associated with their natures. We propose 6 XMM observations of the Antennae galaxies (NGC 4038/4039) with an exposure of 20 ksec each and at intervals of weeks to months to see if state transitions of ULXs have the same, or different, pattern as Galactic BHBs.

  6. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  7. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    SciTech Connect

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  8. Development of laser cladding system with process monitoring by x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terada, Takaya; Yamada, Tomonori; Nishimura, Akihiko

    2014-02-01

    We have been developing a new laser cladding system to repair the damages of parts in aging plants. It consists of some devices which are a laser torch, composite-type optical fiber, QCW fiber laser and etc. All devices are installed in a mobile rack, so we can carry it to plants, laboratories or anywhere we want to use. We should irradiate the work with the best accuracy of laser beam and filler wire in laser cladding. A composite-type optical fiberscope is useful. This fiberscope was composed of a center fiber for beam delivery surrounded by 20000 fibers for visible image delivery. Thus it always keeps target on center of gun-sight. We succeeded to make a line laser cladding on an inside wall of 1-inch tube by our system. Before this success, we solved two serious problems which are the contamination of optics and the deformation of droplet. Observing laser cladding process by X-ray imaging with Spring-8 synchrotron radiation, we found that the molten pool depth was formed to be under a hundred micrometers for 10 milliseconds. A Quasi-CW fiber laser with 1 kW was employed for a heat source to generate the shallow molten pool. The X-ray shadowgraph clarified that a molten droplet was formed at the edge of a wire up to a millimeter size. It grew up if the wire didn't contact with the tube wall in initial state. Here we succeeded to measure the thermo-electromotive force voltage between a wire and a tube metal to confirm whether both came in contact. We propose to apply the laser cladding technology to the maintenance of aging industrial plants and nuclear facilities.

  9. In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  10. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction.

    PubMed

    Halasz, Ivan; Kimber, Simon A J; Beldon, Patrick J; Belenguer, Ana M; Adams, Frank; Honkimäki, Veijo; Nightingale, Richard C; Dinnebier, Robert E; Friščić, Tomislav

    2013-09-01

    We describe the only currently available protocol for in situ, real-time monitoring of mechanochemical reactions and intermediates by X-ray powder diffraction. Although mechanochemical reactions (inducing transformations by mechanical forces such as grinding and milling) are normally performed in commercially available milling assemblies, such equipment does not permit direct reaction monitoring. We now describe the design and in-house modification of milling equipment that allows the reaction jars of the operating mill to be placed in the path of a high-energy (∼90 keV) synchrotron X-ray beam while the reaction is taking place. Resulting data are analyzed using conventional software, such as TOPAS. Reaction intermediates and products are identified using the Cambridge Structural Database or Inorganic Crystal Structure Database. Reactions are analyzed by fitting the time-resolved diffractograms using structureless Pawley refinement for crystalline phases that are not fully structurally characterized (such as porous frameworks with disordered guests), or the Rietveld method for solids with fully determined crystal structures (metal oxides, coordination polymers). PMID:23949378

  11. Integrating X-ray fluorescence and infrared imaging microspectroscopies for comprehensive characterization of an acetaminophen model pharmaceutical.

    PubMed

    Patterson, Brian M; Havrilla, George J

    2006-05-01

    The integration of full spectral images using the complementary microspectroscopic imaging techniques X-ray fluorescence and Fourier transform infrared is demonstrated. This effort surpasses previous work in that a single chemometric software package is used to elicit chemical information from the integrated spectroscopic images. Integrating these two complementary spectroscopic methods provides both elemental and molecular spatial distribution within a specimen. The critical aspect in this work is using full spectral maps from each pixel within the image and subsequent processing with chemometric tools to provide integrated chemical information. This integration enables a powerful approach to more comprehensive materials characterization. Issues addressed include sample registration and beam penetration depth and how each affects post-processing. An inorganic salt and an acetaminophen pharmaceutical model mixture demonstrate the power of integrating these techniques with chemometric software. PMID:16756696

  12. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  13. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    SciTech Connect

    Stafford, David

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  14. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Virani, Shanil N.; Ford, Peter G.; DePasquale, Joseph M.; Plucinsky, Paul P.

    2002-12-01

    The Chandra X-ray Observatory (CXO), NASA's latest "Great Observatory", was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km × 10,000 km, and has a period of approximately 63.5 hours (≍2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of HTML and PERL scripts monitors the instrument hardware house-keeping electronics (i.e., voltages and currents) and temperatures during each contact. If a particular instrument component is performing either above or below pre- established operating parameters, a sequence of email and alert pages are spawned to the Science Operations Team of the Chandra X-ray Observatory Center so that the anomaly can be quickly investigated and corrective actions taken if necessary. We also briefly discuss the tools used to monitor the real-time science telemetry reported by the ACIS flight software. The authors acknowledge support for this research from NASA contract NAS8-39073.

  15. Rossi X-Ray Timing Explorer All-Sky Monitor Detection of the Orbital Period of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Vanderlinde, Keith W.; Levine, Alan M.; Rappaport, Saul A.

    2003-06-01

    The orbital period of Scorpius X-1 has been accepted as 0.787313 days since its discovery in archival optical photometric data by Gottlieb, Wright, & Liller. This period has apparently been confirmed multiple times in the years since in both photometric and spectroscopic optical observations, although to date only marginal evidence has been reported for modulation of the X-ray intensity at that period. We have used data taken with the All Sky Monitor on board the Rossi X-Ray Timing Explorer over the past 6 years to search for such a modulation. A major difficulty in detecting the orbit in X-ray data is presented by the flaring behavior in this source, wherein the (1.5-12 keV) X-ray intensity can change by up to a factor of 2 within a fraction of a day. These flares contribute nearly white noise to Fourier transforms of the intensity time series and thereby tend to obscure weak modulations, i.e., of a few percent or less. We present herein a technique for substantially reducing the effects of the flaring behavior while, at the same time, retaining much of any periodic orbital modulation, provided only that the two temporal behaviors exhibit different spectral signatures. Through such a search, we have found evidence for orbital modulation at the ~1% level with a period of 0.78893 days. This period is equal within our accuracy to a period (0.78901 days) that differs by 1 cycle yr-1 from the accepted value and that was also detected by Gottlieb et al. at a strength nearly as great as that of the 0.787313 day periodicity. We note that many of the reported optical observations of Sco X-1 have been made within 1 or 2 months of early June, when Sco X-1 transits the meridian at midnight. All periodicity searches based only on such observations would have been subject to the same 1 cycle yr-1 alias that affected the search of Gottlieb and coworkers. These considerations lead us to suggest that the actual period may in fact be 0.78901 days and that further observations will

  16. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    SciTech Connect

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant; Filipyev, Ilya; Zygmanski, Piotr; Shrestha, Suman; Karellas, Andrew; Hesser, Jürgen; Sajo, Erno

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60–150 kVp. Methods: Experiments were designed to optimize the detector’s x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. The authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup −0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60–150 kVp, corresponding to about 0.09 nA–0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells’ beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.

  17. THE INTEGRAL SOURCE IGR J16328-4726: A HIGH-MASS X-RAY BINARY FROM THE BEPPOSAX ERA

    SciTech Connect

    Fiocchi, M.; Bazzano, A.; Natalucci, L.; Persi, P.; Piro, L.; Ubertini, P.; Bird, A. J.; Drave, S. P.

    2013-01-01

    We report on temporal and spectral analysis of the INTEGRAL fast transient candidate IGR J16328-4726 observed with BeppoSAX in 1998 and more recently with INTEGRAL. The MECS X-ray data show a frequent microactivity typical of the intermediate state of supergiant fast X-ray transients and a weak flare with a duration of {approx}4.6 ks. The X-ray emission in the 1.5-10 keV energy range is well described through the different time intervals by an absorbed power-law model. Comparing spectra from the lower emission level up to the peak of the flare, we note that while the power-law photon index was constant ({approx}2), the absorption column density varied by a factor of up to {approx}6-7, reaching a value of {approx}2 Multiplication-Sign 10{sup 23} cm{sup -2} at the peak of the flare. Analysis of the long-term INTEGRAL/IBIS light curve confirms and refines the proposed {approx}10.07 day period, and the derived ephemeris places the BeppoSAX observations away from periastron. Using the near- and the mid-IR available observations, we constructed a spectral infrared distribution for the counterpart of IGR J16328-4726, allowing us to identify its counterpart as a high-mass OB type star and to classify this source as a firm HMXB. Following the standard clumpy wind theory, we estimated the mass and the radius of the clump responsible for the flare. The obtained values of M {sub cl} {approx_equal} 4 Multiplication-Sign 10{sup 22}g and R{sub cl} {approx_equal} 4.4 Multiplication-Sign 10{sup 6} km are in agreement with expected values from theoretical predictions.

  18. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  19. Catching Conical Intersections in the Act; Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    NASA Astrophysics Data System (ADS)

    Bennett, Kochise; Kowalewski, Markus; Dorfman, Konstantin; Mukamel, Shaul

    Conical intersections (CIs) dominate the pathways and outcomes of virtually all photochemical molecular processes. Despite extensive experimental and theoretical effort, CIs have not been directly observed yet and the experimental evidence is inferred from fast reaction rates and vibrational signatures. We show that short X-ray pulses can directly detect the passage through a CI with the adequate temporal and spectral sensitivity. The non-adiabatic coupling that exists in the region of a CI redistributes electronic population but also generates electronic coherence. This coherent oscillation can then be detected via a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse. This technique, dubbed Transient Redistribution of Ultrafast Electronic Coherences (TRUECARS) is reminiscent of Coherent Anti-Stokes Raman Spectroscopy (CARS) in that a coherent oscillation is set in motion and then monitored, but differs in that the dynamics is electronic (CARS generally observes nuclear dynamics) and the coherence is generated internally by passage through a region of non-adiabatic coupling rather than by an externally applied laser. Support provided by U.S. Department of Energy through Award No. DE-FG02-04ER15571, the National Science Foundation (Grant No CHE-1361516), and the Alexander von Humboldt foundation through the Feodor Lynen program.

  20. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGESBeta

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  1. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, Phil S.; Siddons, D. Peter

    2010-06-23

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  2. Direct hot slumping and accurate integration process to manufacture prototypal x-ray optical units made of glass

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.

    2013-09-01

    X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of

  3. Monitoring the Chandra X-ray Observatory via the Wireless Internet

    NASA Astrophysics Data System (ADS)

    Spitzbart, B. D.; Wolk, S. J.; Cameron, R. A.

    The Chandra X-ray Observatory, launched in July 1999, continues to provide unprecedented high energy astrophysical discoveries with efficiency and reliability. From time to time, though, urgent operational decisions must be made by engineers, instrument teams, and scientists, often on short notice and at odd hours. There are several real-time, mostly Internet-based data resources available to aid in the decision-making discussions when a crisis arises. Chandra's Science Operations Team (SOT) has been experimenting with emerging Wireless Application Protocol (WAP) technologies to create yet another pathway for data flow. Our WAP Internet pages provide anytime, anywhere access to critical spacecraft information through cellular phones or other WAP-enabled devices. There are, of course, many challenges in attempting to present useful, meaningful content on a 5 × 12 character screen over limited bandwidth in a way that is user-friendly and beneficial. This paper will discuss our experience with this developing and promising new medium, design strategies, and future enhancements.

  4. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography.

    PubMed

    Boone, Marijn A; Nielsen, Peter; De Kock, Tim; Boone, Matthieu N; Quaghebeur, Mieke; Cnudde, Veerle

    2014-01-01

    Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material. PMID:24392942

  5. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

    PubMed

    Gessner, Oliver; Gühr, Markus

    2016-01-19

    The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and

  6. Reading a radiologist's mind: monitoring rising and falling interest levels while scanning chest x-rays

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2010-02-01

    Radiological images constitute a special class of images that are captured (or computed) specifically for the purpose of diagnosing patients. However, because these are not "natural" images, radiologists must be trained to interpret them through a process called "perceptual learning". However, because perceptual learning is implicit, experienced radiologists may sometimes find it difficult to explicitly (i.e. verbally) train less experienced colleagues. As a result, current methods of training can take years before a new radiologist is fully competent to independently interpret medical images. We hypothesize that eye tracking technology (coupled with multimedia technology) can be used to accelerate the process of perceptual training, through a Hebbian learning process. This would be accomplished by providing a radiologist-in-training with real-time feedback as he/she is fixating on important regions of an image. Of course this requires that the training system have information about what regions of an image are important - information that could presumably be solicited from experienced radiologists. However, our previous work has suggested that experienced radiologists are not always aware of those regions of an image that attract their attention, but are not clinically significant - information that is very important to a radiologist in training. This paper discusses a study in which local entropy computations were done on scan path data, and were found to provide a quantitative measure of the moment-by-moment interest level of radiologists as they scanned chest x-rays. The results also showed a striking contrast between the moment-by-moment deployment of attention between experienced radiologists and radiologists in training.

  7. In Operando Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering.

    PubMed

    Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Su Bin; Kim, Hyunchul; Kim, Kyoung Ho; Jin, Xing; Shin, Tae Joo; Kim, Hansu; Yoon, Won-Sub; Kim, Ji Man

    2015-05-26

    To monitor dynamic volume changes of electrode materials during electrochemical lithium storage and removal process is of utmost importance for developing high performance lithium storage materials. We herein report an in operando probing of mesoscopic structural changes in ordered mesoporous electrode materials during cycling with synchrotron-based small angel X-ray scattering (SAXS) technique. In operando SAXS studies combined with electrochemical and other physical characterizations straightforwardly show how porous electrode materials underwent volume changes during the whole process of charge and discharge, with respect to their own reaction mechanism with lithium. This comprehensive information on the pore dynamics as well as volume changes of the electrode materials will not only be critical in further understanding of lithium ion storage reaction mechanism of materials, but also enable the innovative design of high performance nanostructured materials for next generation batteries. PMID:25869353

  8. The Crab Pulsar Observed by RXTE: Monitoring the X-Ray to Radio Delay for 16 Years

    NASA Technical Reports Server (NTRS)

    Rots, Arnold; Jahoda, Keith

    2012-01-01

    In 2004 we published the results of monitoring the Crab Pulsar by RXTE. At that time we determined that the primary pulse of the pulsar at X-ray energies precedes its radio counterpart by about 0.01 period in phase or approximately 330 micro seconds. However, we could not establish unambiguously whether the delay is in phase or due to a difference in pathlength. At this time we have twice the time baseline we had in 2004 and we present the same analysis, but now over a period of 16 years, which will represent almost the full mission and the best that will be available from RXTE. The full dataset shows that the phase delay has been decreasing faster than the pulse frequency over the 16 year baseline and that there are variations in the delay on a variety of timescales.

  9. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    PubMed

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  10. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153