Science.gov

Sample records for integral x-ray monitor

  1. Compact integrated X-ray intensity and beam position monitor based on rare gas scintillation

    SciTech Connect

    Revesz, Peter; Ruff, Jacob; Dale, Darren; Krawczyk, Thomas

    2013-05-15

    We have created and tested a compact integrated X-ray beam intensity and position monitor using Ar-gas scintillation. The light generated inside the device's cavity is detected by diametrically opposed PIN diodes located above and below the beam. The intensity is derived from the sum of the top and bottom signals, while the beam position is calculated from the difference-over-sum of the two signals. The device was tested at Cornell High Energy Synchrotron Source with both 17 keV and 59 keV x-rays. For intensity monitoring, the Ar-scintillation monitor performance is comparable to standard ion chambers in terms of precision. As an X-ray beam position monitor the new device response is linear with vertical beam position over a 2 mm span with a precision of 2 {mu}m.

  2. INTEGRAL high-energy monitoring of the X-ray burster KS 1741-293

    NASA Astrophysics Data System (ADS)

    De Cesare, G.; Bazzano, A.; Martínez Núñez, S.; Stratta, G.; Tarana, A.; Del Santo, M.; Ubertini, P.

    2007-09-01

    KS 1741-293, discovered in 1989 by the X-ray camera TTM on the Kvant module of the Mir space station and identified as an X-ray burster, had not been detected in the hard X-ray band until the advent of the INTEGRAL observatory. Moreover, this source has recently been the object of scientific discussion, being also associated with a nearby extended radio source that in principle could be the supernova remnant produced by the accretion-induced collapse in the binary system. Our long-term monitoring with INTEGRAL, covering the period from 2003 February to 2005 May, confirms that KS 1741-293 is transient in the soft and hard X-ray bands. When the source is active, from a simultaneous JEM-X and IBIS data analysis, we provide a wide-band spectrum from 5 to 100 keV, which can be fitted by a two-component model: a multiple blackbody for the soft emission and a Comptonized or a cut-off power-law model for the hard component. Finally, by the detection of two X-ray bursters with JEM-X, we confirm the bursting nature of KS 1741-293, including this source in the class of hard-tailed X-ray bursters. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), the Czech Republic and Poland, and with the participation of Russia and the USA. E-mail: giovanni.decesare@iasf-roma.inaf.it ‡ INAF personnel resident at ASDC.

  3. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking

  4. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  5. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  6. Curved gratings as an integrated photon fluence monitor in x-ray transmission scattering experiments.

    PubMed

    Schneider, Michael; Günther, Christian Michael; von Korff Schmising, Clemens; Pfau, Bastian; Eisebitt, Stefan

    2016-06-13

    A concept to obtain a measure of the photon flux accepted by a solid sample in single-shot transmission experiments with extreme ultraviolet (XUV) or soft x-ray radiation is demonstrated. Shallow, continuously distorted gratings are used to diffract a constant fraction of the incident photons onto an extended area of a CCD detector. The signal can be tailored to fit the dynamic range of the detector, i.e. matching the scattered intensity of the studied structure of interest. Furthermore, composite grating designs that also allow for the measurement of the spatial photon distribution on the sample are demonstrated. The gratings are directly fabricated by focused ion-beam (FIB) lithography into a Si3N4 membrane that supports the actual sample layer. This allows for rapid fabrication of hundreds of samples, making the concept suitable for systematic studies in destructive single-shot measurements at free-electron laser (FEL) sources. We demonstrate relative photon flux measurements in magnetic scattering experiments with synchrotron and FEL radiation at 59.6 eV photon energy. PMID:27410328

  7. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  8. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  9. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  10. INTEGRAL finds renewed X-ray activity of the Neutron star X-ray transient SAX J1750.8-2900

    NASA Astrophysics Data System (ADS)

    Sanchez-Fernandez, Celia; Chenevez, Jerome; Kuulkers, Erik; Bazzano, Angela; Beckmann, Volker; Bird, Tony; Bodaghee, Arash; Del Santo, Melania; Domingo, Albert; Jonker, Peter; Kretschmar, Peter; Markwardt, Craig; Paizis, Ada; Pottschmidt, Katja; Wijnands, Rudy

    2015-09-01

    INTEGRAL Galactic bulge monitoring observations (ATel #438) on UT 13 September 2015 18:50-22:32 reveal renewed X-ray activity from the low-mass X-ray binary transient and Type I X-ray burster SAX J1750.8-2900 (IAU Circ. #6597). The last outburst from this source was reported in 2011 (ATels #3170, 3181).

  11. X-Ray Monitoring of GRBs with Lobster Eye Telescopes

    SciTech Connect

    Sveda, L.; Pina, L.; Hudec, R.; Inneman, A.; Pizzichini, G.

    2004-09-28

    We present here the soft X-ray All-Sky Monitor (ASM). It is based on the current technological capabilities, sensitive in the {approx} 0.1 - 10.0 keV range with angular resolution of {approx} 3 - 4 arcmin, and has a limiting detectable flux {approx} 10-12 erg/s/cm2 for daily scans in the mentioned energy range. The ASM will play a key role in studying transient X-ray sources like XRBs, GRBs, XRFs, X-ray novae, as well as in the study of the long term variability of X-ray sources like XRBs, AGN, or stellar X-ray flares.

  12. Wide-Field Sky Monitoring - Optical and X-rays

    NASA Astrophysics Data System (ADS)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  13. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  14. The radiation-tolerant x-ray monitor.

    PubMed

    Gott, Yu V; Stepanenko, M M

    2008-10-01

    A vacuum photoelectric detector (monitor) (VPD) designed for plasma tomography, megnetohydrodynamics monitoring, and imaging with the help of thermal x-ray radiation on the ITER facility is described. Laboratory experiments demonstrate that VPD has high sensitivity to thermal x rays and low sensitivity to hard gamma rays and neutrons. The results of tests of a prototype of this monitor on a (60)Co source of gamma rays, on nuclear reactor and its calibration using radiation from an x-ray tube, and tests of its serviceability on the T-10 facility are presented. PMID:19044585

  15. Application of X-ray imaging techniques to auroral monitoring

    NASA Astrophysics Data System (ADS)

    Rust, D. M.; Burstein, P.

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  16. Monitoring variable X-ray sources in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  17. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    SciTech Connect

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  18. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  19. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  20. Next generation x-ray all-sky monitor

    SciTech Connect

    Priedhorsky, W. C.; Peele, A. G.; Nugent, K. A.

    1997-01-10

    We set forth a conceptual design for x-ray all-sky monitor based on lobster-eye wide-field telescopes. This instrument, suitable for a small satellite, would monitor the flux of objects as faint as 2x10{sup -15} W/m{sup 2} (0.5-2.4 keV) on a daily basis with a signal-to-noise of 5. Sources would be located to 1-2 arc-minutes. Detailed simulations show that crosstalk from the cruciform lobster images would not significantly compromise performance. At this sensitivity limit, we could monitor not just x-ray binaries but fainter classes of x-ray sources. Hundreds of active galactic nuclei, coronal sources, and cataclysmic variables could be tracked on a daily basis. Large numbers of fast transients should be visible, including gamma-ray bursts and the soft x-ray breakout of nearby type II supernovae. Long-term x-ray measurements will advance our understanding of the geometries and perhaps masses of AGN, and coronal energy sources in stars.

  1. X-ray monitoring for astrophysical applications on Cubesat

    NASA Astrophysics Data System (ADS)

    Pina, L.; Hudec, R.; Inneman, A.; Cerna, D.; Jakubek, J.; Sieger, L.; Dániel, V.; Cash, W.; Mikulickova, L.; Pavlica, R.; Belas, E.; Polak, J.

    2015-05-01

    The primary objective of the project VZLUSAT-1 is the development, manufacturing, qualification and experimental verification of products and technologies in Earth orbit (IOD - In-Orbit Demonstration). This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. On board the functions and features of Radiation Hardened Composite Housing (RHCH), Solar panels based on composite substrate and Hollow Retro Reflector Array based on composite (HRRA) will be verified. To verify the properties of the developed products the satellite is equipped by Health Monitoring system (HM). HM system includes temperature, volatiles, radiation and mechanical properties sensors. The custom ADCS algorithms are being developed within the project. Given the number of IOD experiments and the necessary power the 1U CubeSat is equipped with Composite Deployable Panels (CDP) where HM panels and additional Solar panels are located. Satellite platform is assembled from commercial parts. Mission VZLUSAT-1 is planned for 6 months with launch in 2016.

  2. The radiation monitor cosmic X-ray experiment OSO-1

    NASA Technical Reports Server (NTRS)

    Randall, R. F.

    1973-01-01

    A comprehensive technical description is presented of the Radiation Monitor which is part of the GSFC cosmic X-ray experiment to be flown on the OSO-1 satellite. The theory of operation, fabrication and assembly, and cone angle determination are reported.

  3. Chandra X-Ray Observatory Camera Integrated With Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most poweful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components relatedto x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  4. Chandra X-Ray Observatory Camera Integrated With Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  5. The Combined Swift - INTEGRAL X-ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, M.; Greiner, J.

    2013-04-01

    In the local universe (z < 0.5) Active Galactic Nuclei (AGN) are best surveyed at hard X-ray energies by Swift/BAT and INTEGRAL/IBIS. These two coded mask telescopes are selecting a sizable number of AGN and they are uncovering the obscured AGN population. However, the sensitivity of surveys performed with coded mask telescopes is limited by rather large statistical and systematic errors. I will show that Swift/BAT and INTEGRAL/IBIS are so close in design that their observations can be combined. This results in a new survey: the Swift-INTEGRAL X-ray (SIX) survey that is a factor of ~2 more sensitive than the surveys of both instruments alone. I investigate the nature of the SIX selected AGN and the implications for the study of their space density and evolution. I will address also the impact of the SIX survey on recent and forthcoming hard X-ray missions with focusing optics.

  6. Optics for nano-satellite X-ray monitor

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír.; Burrows, David N.; Prieskorn, Zachary; Hudec, René

    The Schmidt lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space X-ray monitors. It is possible to assemble Schmidt lobster eye telescopes with dimensions and focal lengths acceptable for nano class satellites. In this paper, draft of nano-class space mission providing monitoring of specific sky area is presented. Preliminary optical design study for such mission is performed. Two of possible opticle designs are presented. For those designs, field of view, effective input area and other basic optical parameters are calculated. Examples of observed images are presented.

  7. SZ2 X-ray detector for GRB monitoring

    NASA Astrophysics Data System (ADS)

    Ma, Y. Q.; Wang, H. Y.; Zhang, C. M.; Xu, Y. P.; Zhang, Z. Y.

    2001-08-01

    A two-headed X-ray detector system to cove 10800 keV energy band with 40 ms time resolution had been built as main part of a GRB monitoring system on board of SZ2 spacecraft. It has being successful flight since 10th Jan 2001 SZ2 been launched. We describe in this paper the layout of the instrument including the hardware, the software, and on-board controlling.

  8. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  9. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    SciTech Connect

    Ichiyanagi, Kouhei; Sasaki, Yuji C.; Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru; Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku; Nishijima, Masaki; Inoue, Yoshihisa; Yagi, Naoto

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  10. The Integrated X-Ray Spectrum of Galactic Populations of Luminous Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, R.; Becker, C. M.; Fabbiano, G.

    1996-01-01

    We compute the composite X-ray spectrum of a population of unresolved SSS's in a spiral galaxy such as our own or M31. The sources are meant to represent the total underlying population corresponding to all sources which have bolometric luminosities in the range of 10(exp 37) - 10(exp 38) ergs/s and kT on the order of tens of eV. These include close-binary supersoft sources, symbiotic novae, and planetary nebulae, for example. In order to determine whether the associated X-ray signal would be detectable, we also 'seed' the galaxy with other types of X-ray sources, specifically low-mass X-ray binaries (LMXB's) and high-mass X-ray binaries (HMXB's). We find that the total spectrum due to SSS's, LMXB's, and HMXB's exhibits a soft peak which owes its presence to the SSS population. Preliminary indications are that this soft peak may be observable.

  11. INTEGRAL detection of a hard X-ray transient in NGC 6440

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.; Bozzo, E.; Bazzano, A.; Beckmann, V.; Bird, T.; Bodaghee, A.; Chenevez, J.; Del Santo, M.; Domingo, A.; Jonker, P.; Kretschmar, P.; Paizis, A.; Pottschmidt, K.; Markwardt, C.; Sanchez-Fernandez, C.; Wijnands, R.

    2015-02-01

    During INTEGRAL Galactic bulge monitoring (e.g., ATel #438) observations performed on UT 2015 February 17 at 12.53-16:45, IBIS/ISGRI detected renewed activity at hard X-rays from a transient within the Globular Cluster NGC 6440.

  12. Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2012-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.

  13. THE DEEP LOOK AT THE HARD X-RAY SKY: THE SWIFT-INTEGRAL X-RAY (SIX) SURVEY

    SciTech Connect

    Bottacini, Eugenio; Ajello, Marco

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only {approx}1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg{sup 2} that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V{sub max} method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  14. The Deep Look at the Hard X-Ray Sky: The Swift-INTEGRAL X-Ray (SIX) Survey

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio; Ajello, Marco; Greiner, Jochen

    2012-08-01

    The supermassive black holes at the center of active galactic nuclei (AGNs) are surrounded by obscuring matter that can block nuclear radiation. Depending on the amount of blocked radiation, the flux from the AGN can be too faint to be detected by currently flying hard X-ray (above 15 keV) missions. At these energies only ~1% of the intensity of the cosmic X-ray background (CXB) can be resolved into point-like sources that are AGNs. In this work, we address the question of undetected sources contributing to the CXB with a very sensitive and new hard X-ray survey: the Swift-INTEGRAL X-ray survey, which is obtained with the new approach of combining the Swift/BAT and INTEGRAL/IBIS X-ray observations. We merge the observations of both missions, which enhances the exposure time and reduces systematic uncertainties. As a result, we obtain a new survey over a wide sky area of 6200 deg2 that is more sensitive than the surveys of Swift/BAT or INTEGRAL/IBIS alone. Our sample comprises 113 sources: 86 AGNs (Seyfert-like and blazars), 5 galaxies, 2 clusters of galaxies, 3 Galactic sources, 3 previously detected unidentified X-ray sources, and 14 unidentified sources. The scientific outcome from the study of the sample has been properly addressed to study the evolution of AGNs at redshift below 0.4. We do not find any evolution using the 1/V max method. Our sample of faint sources is a suitable target for the new generation hard X-ray telescopes with focusing techniques.

  15. The All-Sky Swift - INTEGRAL X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    All-sky surveys at hard X-ray energies (above 15 keV) have proven to be a powerful technique in detecting Galactic and extragalactic source populations. Most of the radiation at hard X-ray energies originates in non-thermal processes. These processes take place in extreme conditions of gravitational fields, of electromagnetic field, and also in explosive events. Such extreme conditions can be found in the Milk Way in the vicinity of neutron stars, black holes, and supernovae. Also extragalactic sources are known to be hard X-ray emitters like Active Galactic Nuclei (AGNs), blazars, and Clusters of Galaxies. Currently the most sensitive flying hard X-ray detectors are the Burst Alert Telescope (BAT) on board the NASA mission Swift and the INTEGRAL Soft-Gamma Ray Imager (IBIS/ISGRI) on board the ESA mission INTEGRAL. BAT and IBIS/ISGRI are coded- mask telescopes that shed continuously light on the Galactic and the extragalactic source populations. However, coded-mask telescopes suffer from heavy systematic effects (errors) preventing them from reaching their theoretical limiting sensitivity. Furthermore, by design, they block ~50% of the incident photons causing and increase of statistical noise. As a consequence BAT and IBIS/ISGRI are not sensitive enough to detect faint objects. In addition it has been proven that the Galactic survey of these instruments is limited by systematic uncertainties. Therefore, further observations on the Galactic plane will not improve the sensitivity of the survey of BAT and IBIS/ISGRI. In this project we show that it is possible to overcome the limits of BAT and of IBIS/ISGRI by combining their observations in the 18 55 keV energy range. We call it the SIX survey that stands for Swift - INTEGRAL X-ray survey. Two major advantages are obtained by merging the observations of BAT and IBIS/ISGRI: 1) the exposure is greatly enhanced (sum of BAT and IBIS/ISGRI) and therefore the sensitivity is improved; 2) the systematic errors of both

  16. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  17. X-ray Monitoring of eta Carinae: Variations on a Theme

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2004-01-01

    We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.

  18. X-ray induced damage in DNA monitored by X-ray photoelectron spectroscopy

    SciTech Connect

    Ptasinska, Sylwia; Stypczynska, Agnieszka; Nixon, Tony; Mason, Nigel J.; Klyachko, Dimitri V.; Sanche, Leon

    2008-08-14

    In this work, the chemical changes in calf thymus DNA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The DNA samples were irradiated for over 5 h and spectra were taken repeatedly every 30 min. In this approach the X-ray beam both damages and probes the samples. In most cases, XPS spectra have complex shapes due to contributions of C, N, and O atoms bonded at several different sites. We show that from a comparative analysis of the modification in XPS line shapes of the C 1s, O 1s, N 1s, and P 2p peaks, one can gain insight into a number of reaction pathways leading to radiation damage to DNA.

  19. Future requirements for X-ray monitoring of AGN

    NASA Astrophysics Data System (ADS)

    Nandra, K.

    2000-10-01

    Observations with RXTE have lead to major advances in our knowledge of the X-ray and multi-waveband variability properties of active galactic nuclei (AGN). In large part, this has been due to the fact that it has been possible to probe long time scale (months-years) variability in a systematic way. Current and future high-throughput missions will do an excellent job defining the characteristics of the short time variations. It is important, however, to make plans for longer-term monitoring in the future, given that RXTE has shown that this is how many of the important science questions can be addressed. The author is supported by NASA ADP grant NAG5-7067 to the Universities Space Research Association.

  20. The Fermi-GBM X-ray burst monitor

    NASA Astrophysics Data System (ADS)

    Linares, M.; Fermi GBM X-ray Burst Collaboration

    2010-12-01

    We discuss the first results of the Fermi-GBM all-sky search for X-ray bursts. The very large field of view and X-ray response of the Fermi-GBM make it a unique instrument to study rare, bright and short-lived X-ray bursts. We are performing a systematic search that exploits such capabilities. We present results on long/intermediate type I X-ray bursts, an unusual kind of thermonuclear bursts from accreting neutron stars, and show how Fermi-GBM is giving for the first time robust measurements of their recurrence time.

  1. An energy and intensity monitor for X-ray absorption near-edge structure measurements

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Paterson, David; McNulty, Ian; Rau, Christoph; Brandes, Jay A.; Ingall, Ellery

    2010-07-01

    An in-line X-ray beam energy and intensity monitor has been developed for use in focussed X-ray absorption near-edge spectroscopy (XANES) measurements. The monitor uses only the X-ray intensity that would otherwise bypass our zone-plate focussing optic and relies on a measurement of photoemission current. The monitor is inexpensive, easy to align, and provides valuable feedback about the X-ray energy. Operation of the monitor is demonstrated for measurements of phosphorus XANES. The precision of the energy determination is around 0.5 eV.

  2. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  3. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  4. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  5. INTEGRAL measures the hard X-ray spectrum of the Be/X-ray binary XTE J1859+083

    NASA Astrophysics Data System (ADS)

    Malyshev, D.; Gotz, C. Ferrigno D.

    2015-04-01

    During the INTEGRAL observations performed from 2015 April 17, 19:47 to April 19, 20:01 UTC, the IBIS/ISGRI instrument detected a highly significant signal from a transient source, positionally coincident with the Be/X-ray pulsar XTE J1859+083 (ra, dec) = (284.78 ; 8.25) , which is reported to be in outburst since 2015-02-08 (ATeL #7034).

  6. Preliminary Designs for Modifications to the X-Ray Source and Beam Monitor of the Marshall Space Flight Center's X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1983-01-01

    Preliminary designs for modifications to the X-ray source and beam monitor of the MSFC X-Ray Calibration Facility to meet requirements for the calibration of the Advanced X-Ray Astrophysics Facility are considered. A rhodium plated copper target and rhodium foil filter are proposed as a source of X-rays of approximately 2.6 keV energy. Bragg scattering of the unpolarized X-ray beam from the present source through an angle of 90 deg by a single crystal placed on the axis of the guide tube is proposed as a source of approximately monoenergetic plane polarized X-rays. A sealed xenon proportional counter with a Beryllium window is proposed as a beam monitor for use between 2.5 and 8 keV to obtain improved detection efficiency.

  7. High Resolution Temporal and Spectral Monitoring of Eta Carinae's X-Ray Emission the June Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Henley, D.; Pittard, J. M.; Gull, T. R.; Davidson, K.; Swank, J. H.; Petre, R.; Ishibashi, K.

    2004-01-01

    The supermassive and luminous star Eta Carinae undergoes strong X-ray variations every 5.5 years when its 2-10 keV X-ray emission brightens rapidly with wild fluctuations before dropping by a factor of 100 to a minimum lasting 3 months. The most recent X-ray "eclipse" began in June 2003 and during this time Eta Carinae was intensely observed throughout the electromagnetic spectrum. Here we report the first results of frequent monitoring of the 2-10 keV band X-ray emission by the Rossi X-ray Timing Explorer along wit high resolution X-ray spectra obtained with the transmission gratings on the Chandra X-ray Observatory. We compare these observations to those results obtained during the previous X-ray eclipse in 1998, and interpret the variations in the X-ray brightness, in the amount of absorption, in the X-ray emission measure and in the K-shell emission lines in terms of a colliding wind binary model.

  8. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  9. X-Ray Scan Detection for Cargo Integrity

    SciTech Connect

    Valencia, Juan D.; Miller, Steven D.

    2011-04-18

    ABSTRACT The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL’s prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels. Keywords: Radiation, Scan, X-ray, Gamma, Detection, Cargo, Container, Wireless, RF

  10. Constraints on Solar Coronal Abundances from MESSENGER X-ray Solar Monitor Data

    NASA Astrophysics Data System (ADS)

    Nittler, L.; Starr, R. D.; Schlemm, C., III; McNutt, R. L.; Solomon, S. C.

    2010-12-01

    The chemical composition of the solar corona is fractionated from that of the photosphere, with elements having low first-ionization-potential (FIP <~10 eV) enriched relative to higher-FIP elements. However, the absolute normalization of coronal abundances relative to photospheric ones as well as possible time variation in coronal abundances (e.g., during flares) is a matter of longstanding controversy. Moreover, the effects of a recent downward revision in photospheric C, N, and especially O abundances on coronal composition have not yet been extensively studied. The shape of the soft X-ray spectrum emitted from the coronal plasma depends strongly on chemical composition both through emission lines and free-bound emission contributions to the continuum. The MESSENGER spacecraft, en route to orbit Mercury, includes a Si-PIN detector to monitor the solar X-ray spectrum (~1.5 to 8 keV) as part of an experiment to determine planetary surface composition via X-ray fluorescence. A pinhole and thin Be window in front of the PIN attenuate much of the flux below 2 keV, providing a high dynamic range in measuring the highly variable solar spectrum. The energy resolution of the solar monitor (~600 eV) is not sufficient to resolve individual solar lines but does allow line complexes of Ca and Fe to be distinguished from continuum during flares. In preparation for analysis of X-ray data from Mercury’s surface, we have begun a systematic effort to fit theoretical solar spectra to MESSENGER solar monitor data, using the CHIANTI 5.2 code and assuming isothermal plasma. The key fitting parameters are the plasma temperature, emission measure, and level of fractionation for low-FIP elements. Preliminary fitting of some 1400 individual spectra (300-450 s integration) from ~200 B-level and above solar flares during June-August 2010 reveals two interesting results: (1) The best fits are obtained for plasma with low-FIP elements enriched by a factor of ~2 relative to photospheric

  11. High sensitivity all sky X-ray monitor and survey with MAXI

    SciTech Connect

    Isobe, N.; Mihara, T.; Kohama, M.; Suzuki, M.; Matsuoka, M.; Ueno, S.; Tomida, H.; Yoshida, A.; Yamaoka, K.; Tsunemi, H.; Miyata, E.; Negoro, H.; Nakajima, M.; Morii, M.

    2007-07-12

    MAXI is an all sky X-ray monitor to be mounted on the Japanese Experimental Module in the International Space Station (ISS). It scans almost all over the sky every 96 minutes, in the course of the orbital motion of the ISS. MAXI is designed to have a sensitivity, significantly higher than the previous X-ray monitors, and then, to detect X-ray sources as faint as 1 mCrab in a week observation. Therefore, MAXI is expected to create a novel catalogue of not only the stable X-ray sources but also the highly variable ones in the sky, especially active galactic nuclei for the first time. If MAXI detects X-ray phenomena, alerts will be quickly made through the Internet.

  12. X-ray scan detection for cargo integrity

    NASA Astrophysics Data System (ADS)

    Valencia, Juan; Miller, Steve

    2011-04-01

    The increase of terrorism and its global impact has made the determination of the contents of cargo containers a necessity. Existing technology allows non-intrusive inspections to determine the contents of a container rapidly and accurately. However, some cargo shipments are exempt from such inspections. Hence, there is a need for a technology that enables rapid and accurate means of detecting whether such containers were non-intrusively inspected. Non-intrusive inspections are most commonly performed utilizing high powered X-ray equipment. The challenge is creating a device that can detect short duration X-ray scans while maintaining a portable, battery powered, low cost, and easy to use platform. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype, developed by PNNL, is a battery powered electronic device that continuously measures its X-ray and Gamma exposure, calculates the dose equivalent rate, and makes a determination of whether the device has been exposed to the amount of radiation experienced during an X-ray inspection. Once an inspection is detected, the device will record a timestamp of the event and relay the information to authorized personnel via a visual alert, USB connection, and/or wireless communication. The results of this research demonstrate that PNNL's prototype device can be effective at determining whether a container was scanned by X-ray equipment typically used for cargo container inspections. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device using several X-ray radiation levels.

  13. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  14. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    SciTech Connect

    Shemmer, Ohad; Stein, Matthew S.; Brandt, W. N.; Schneider, Donald P.; Paolillo, Maurizio; Kaspi, Shai; Vignali, Cristian; Lira, Paulina; Gibson, Robert R.

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  15. MOXE: An x-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    SciTech Connect

    Priedhorsky, W.; Fenimore, E.E.; Moss, C.E.; Kelley, R.L.; Holt, S.S.

    1989-01-01

    We are developing a Monitoring X-Ray Equipment (MOXE) for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. Our objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5/sigma/) in 1 day, and cover the 2-20 keV band. 30 refs., 4 figs.

  16. Optical Monitoring of Selected X-ray AGN

    NASA Astrophysics Data System (ADS)

    Phillips, V. D.; Sadun, A.; Kelly, M.; Baca, P.; Holt, J.; Galadari, A.; Nied, P.; Howard, E.; Ghosh, K.

    2001-12-01

    We present the results of microvariability studies of X-ray loud/radio quiet AGN in optical wavelengths (R band). The optical data were taken over approximately eight months at the Sommers-Bausch Observatory (U. Colorado-Boulder), and at the SARA Observatory. In addition to engaging in routine optical analysis, we investigated the extent to which these objects exhibited intra-night variability. The presence of microvariability would indicate that in addition to an accretion disk, there would also be present relativistic components such as parsec-scale jets; quiescence would indicate that long-term variability in these objects is perhaps due to accretion disk instabilities alone. The preliminary indication from our data is that there is indeed evidence of relativistic jets in this class of objects.

  17. Jupiter's X-ray and EUV auroras monitored by Chandra, XMM-Newton, and Hisaki satellite

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Kraft, R. P.; Elsner, R. F.; Branduardi-Raymont, G.; Gladstone, G. R.; Tao, C.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Tsuchiya, F.; Vogt, M. F.; Masters, A.; Hasegawa, H.; Badman, S. V.; Roediger, E.; Ezoe, Y.; Dunn, W. R.; Yoshikawa, I.; Fujimoto, M.; Murray, S. S.

    2016-03-01

    Jupiter's X-ray auroral emission in the polar cap region results from particles which have undergone strong field-aligned acceleration into the ionosphere. The origin of precipitating ions and electrons and the time variability in the X-ray emission are essential to uncover the driving mechanism for the high-energy acceleration. The magnetospheric location of the source field line where the X-ray is generated is likely affected by the solar wind variability. However, these essential characteristics are still unknown because the long-term monitoring of the X-rays and contemporaneous solar wind variability has not been carried out. In April 2014, the first long-term multiwavelength monitoring of Jupiter's X-ray and EUV auroral emissions was made by the Chandra X-ray Observatory, XMM-Newton, and Hisaki satellite. We find that the X-ray count rates are positively correlated with the solar wind velocity and insignificantly with the dynamic pressure. Based on the magnetic field mapping model, a half of the X-ray auroral region was found to be open to the interplanetary space. The other half of the X-ray auroral source region is magnetically connected with the prenoon to postdusk sector in the outermost region of the magnetosphere, where the Kelvin-Helmholtz (KH) instability, magnetopause reconnection, and quasiperiodic particle injection potentially take place. We speculate that the high-energy auroral acceleration is associated with the KH instability and/or magnetopause reconnection. This association is expected to also occur in many other space plasma environments such as Saturn and other magnetized rotators.

  18. Gray-scale transform and evaluation for digital x-ray chest images on CRT monitor

    NASA Astrophysics Data System (ADS)

    Furukawa, Isao; Suzuki, Junji; Ono, Sadayasu; Kitamura, Masayuki; Ando, Yutaka

    1997-04-01

    In this paper, an experimental evaluation of a super high definition (SHD) imaging system for digital x-ray chest images is presented. The SHD imaging system is proposed as a platform for integrating conventional image media. We are involved in the use of SHD images in the total digitizing of medical records that include chest x-rays and pathological microscopic images, both which demand the highest level of quality among the various types of medical images. SHD images use progressive scanning and have a spatial resolution of 2000 by 2000 pixels or more and a temporal resolution (frame rate) of 60 frames/sec or more. For displaying medical x-ray images on a CRT, we derived gray scale transform characteristics based on radiologists' comments during the experiment, and elucidated the relationship between that gray scale transform and the linearization transform for maintaining the linear relationship with the luminance of film on a light box (luminance linear transform). We then carried out viewing experiments based on a five-stage evaluation. Nine radiologists participated in our experiment, and the ten cases evaluated included pulmonary fibrosis, lung cancer, and pneumonia. The experimental results indicated that conventional film images and those on super high definition CRT monitors have nearly the same quality. They also show that the gray scale transform for CRT images decided according to radiologists' comments agrees with the luminance linear transform in the high luminance region. And in the low luminance region, it was found that the gray scale transform had the characteristics of level expansion to increase the number of levels that can be expressed.

  19. Integrated circuit authentication using photon-limited x-ray microscopy.

    PubMed

    Markman, Adam; Javidi, Bahram

    2016-07-15

    A counterfeit integrated circuit (IC) may contain subtle changes to its circuit configuration. These changes may be observed when imaged using an x-ray; however, the energy from the x-ray can potentially damage the IC. We have investigated a technique to authenticate ICs under photon-limited x-ray imaging. We modeled an x-ray image with lower energy by generating a photon-limited image from a real x-ray image using a weighted photon-counting method. We performed feature extraction on the image using the speeded-up robust features (SURF) algorithm. We then authenticated the IC by comparing the SURF features to a database of SURF features from authentic and counterfeit ICs. Our experimental results with real and counterfeit ICs using an x-ray microscope demonstrate that we can correctly authenticate an IC image captured using orders of magnitude lower energy x-rays. To the best of our knowledge, this Letter is the first one on using a photon-counting x-ray imaging model and relevant algorithms to authenticate ICs to prevent potential damage. PMID:27420519

  20. On-Line Mirror Surfacing Monitored by X-ray Shearing Interferometry and X-ray Scattering

    SciTech Connect

    Ziegler, E.; Peverini, L.; Kozhevnikov, I. V.; Weitkamp, T.; David, C.

    2007-01-19

    We propose a novel fabrication scheme combining a mirror surfacing tool and an on-line metrology instrument, the latter capable of controlling both figure and finish of an X-ray mirror with an accuracy matching the challenging specifications of nanofocusing reflective optics for synchrotron and FEL X-ray beams. This approach will be complementary to the present technologies. The paper reviews some recent achievements and presents pertinent examples of on-line diagnostics performed at the ESRF BM05 beamline for which X-rays prove to be a unique probe.

  1. A new fully integrated X-ray irradiator system for dosimetric research.

    PubMed

    Richter, D; Mittelstraß, D; Kreutzer, S; Pintaske, R; Dornich, K; Fuchs, M

    2016-06-01

    A fully housed X-ray irradiator was developed for use within lexsyg or Magnettech desktop equipment. The importance of hardening of the low energy photon radiation is discussed, its performance and feasibility is empirically shown and sustained by basic numerical simulations. Results of the latter for various materials are given for different X-ray source settings in order to provide estimates on the required setup for the irradiation of different geometries and materials. A Si-photodiode provides real-time monitoring of the X-ray-irradiator designed for use in dosimetric dating and other dosimetric application where irradiation of small samples or dosemeters is required. PMID:27041090

  2. Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration

    NASA Technical Reports Server (NTRS)

    Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.

    1993-01-01

    The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.

  3. Wide-Field MAXI - Wide-Field Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki

    WF-MAXI is a mission to detect and localize X-ray transients including GRBs and XRFs, X-ray binaries, and hopefully tidal disruption events and supernova shockbreakouts. We are designing WF-MAXI to be ready for the initial operational phase of the next generation GW telescopes: Adv-LIGO, VIRGO and KAGRA, which are expected to be operational in 2-4 years. It will be sensitive to soft extended emission of short GRBs. It will also succeed the current MAXI mission, which is providing alerts for outbursts of X-ray sources to the community. We chose to use flight-proven or qualified technologies developed for MAXI, ASTRO-H, and TSUBAME for a fast development of the mission. The main instrument is Soft X-ray Large-sky Cameras (SLC), pairs of criss-cross coded aperture cameras using CCD as one-dimensional fast-readout detectors covering 20% of the sky in the 0.7-12 keV band. The Hard X-ray Monitor share the same field as SLC in the hard X-ray band. We are proposing this mission for the ISS/JEM AO in this year aiming to start operations in 2018.

  4. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team

    2013-04-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  5. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Swift/BAT Team

    2011-09-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  6. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws

  7. Design Updates of the X-ray Beam Position Monitor for Beamline Front Ends

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Singh, Om; Hahne, Michael; Decker, Glenn

    2007-01-01

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front end has two x-ray beam position monitors (XBPMs) to monitor the x-ray beam position in both the vertical and horizontal directions. The XBPMs measure photoelectrons generated from the CVD-diamond-based sensory blades and deduce the beam position by comparison of the relative signals from the blades. Using the method proposed by G. Decker, which involves the introduction of a chicane into the accelerator lattice that directs unwanted x-rays away from the photosensitive XBPM blades, the photon source stability has been improved by addition of XBPMs in the storage ring global orbit feedback. In recent years, design updates for the XBPM mechanical structure and geometric configuration have been made to improve its performance. We present these design updates in this paper. Test results of the XBPM design updates are also discussed here.

  8. ALEXIS (Array of Low-Energy X-Ray Imaging Sensors): A narrow-band survey/monitor of the ultrasoft x-ray sky

    SciTech Connect

    Priedhorsky, W.C.; Bloch, J.J.; Cordova, F.; Smith, B.W.; Ulibarri, M.; Chavez, J.; Evans, E.; Seigmund, O.H.W.; Marshall, H.; Vallerga, J.

    1989-01-01

    Los Alamos and Sandia National Laboratories are building an ultrasoft X-ray monitor experiment. This experiment, called ALEXIS (Array of Low-Energy X-Ray Imaging Sensors), consists of six compact normal-incidence telescopes. ALEXIS will operate in the range 70--110 eV. The ultrasoft X-ray/EUV band is nearly uncharted territory for astrophysics. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, will complement the upcoming NASA Extreme Ultraviolet Explorer and ROSAT EUV Wide Field Camera, which are sensitive broad-band survey experiments. The program objectives of ALEXIS are to (1) demonstrate the feasibility of a wide field-of-view, normal incidence ultrasoft X-ray telescope system and (2) to determine ultrasoft X-ray backgrounds in the space environment. As a dividend, ALEXIS will pursue the following scientific objectives: (1) to map the diffuse background, with unprecedented angular resolution, in several emission-line bands, (2) to perform a narrow-band survey of point sources, (3) to search for transient phenomena in the ultrasoft X-ray band, and (4) to provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars. ALEXIS is designed to be flown on a small autonomous payload carrier (a minisat) that could be launched from any expendable launch vehicle. The experiment weighs 100 pounds, draws 40 watts, and produces 10 kbps of data. It can be flown in any low earth orbit. Onboard data storage allows operation and tracking from a single ground station at Los Alamos. 57 refs., 12 figs.

  9. High-resolution spectroscopy and high-density monitoring in X-rays of novae

    NASA Astrophysics Data System (ADS)

    Ness, J. U.

    2012-09-01

    The 21st century X-ray observatories XMM-Newton, Chandra, and Swift gave us completely new insights into the X-ray behaviour of nova outbursts. These new-generation X-ray observatories provide particularly high spectral resolution and high density in monitoring campaigns, simultaneously in X-rays and UV/optical. The entire evolution of several nova outbursts has been observed with the Swift XRT and UVOT instruments, allowing studies of the gradual shift of the peak of the SED from UV to X-rays, time scales to the onset and duration of the X-ray brightest supersoft source (SSS) phase, and pre- and post-SSS X-ray emission. In addition, XMM-Newton and Chandra observations can efficiently be scheduled, allowing deeper studies of strategically chosen evolutionary stages. Before Swift joined in 2005, Chandra and XMM-Newton blind shots in search of SSS emission unavoidably led to some underexposed observations taken before and/or after the SSS phase. More systematic Swift studies reduced this number while increasing the number of novae. Pre- and post-SSS spectra at low and high spectral resolution were successfully modelled with collisional plasma models. Pre-SSS emission arises in shocks and post-SSS emission in radiatively cooling thin ejecta. In contrast, the grating spectra taken during the SSS phase are a lot more complex than expected and have not yet been successfully modeled. Available hot white dwarf (WD) radiation transport models give only approximate reproduction of the observations, and make some critical assumptions that are only valid in isolated WDs. More grating spectra would be important to search for systematic trends between SSS spectra and system parameters. Summary of well-established discoveries with Swift, XMM-Newton, and Chandra: - About 50% of novae display faint X-ray emission before the start of the SSS phase - The start of the SSS phase is not a smooth process. High-amplitude variations during the early SSS phase were seen that disappear close

  10. Wide-range monitor for pulsed x-ray sources

    SciTech Connect

    Kaifer, R.C.; Jenkins, T.E.; Straume, T.

    1981-10-12

    A monitoring instrument based on a high-pressure ionization chamber has been developed that measures average dose rates as low as 0.1 mR/h and responds linearly to short pulses at dose rates up to 1.2 x 10/sup 10/ R/h. Its sensitivity can be remotely changed by a factor of 10/sup 4/, to enable accurate measurement of both background radiation and very high intensities such as can be expected from accelerator beam-spills. The instrument's detector-electrometer pulse response was measured using a dose-calibrated field-emission accelerator having a 30-ns pulse width.

  11. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  12. Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms

    NASA Astrophysics Data System (ADS)

    Oger, Phil M.; Daniel, I.; Simionovici, A.; Picard, A.

    2008-04-01

    X-ray spectroscopies are very powerful tools to determine the chemistry of complex dilute solutes in abiotic and biotic systems. We have assayed their suitability to monitor the chemistry of complex solutions in a live biotic system. The impact of the probe on cells was quantified for 4 different cellular organisms differing in their resistance level to environmental stresses. We show that none of the organisms tested can survive the radiation doses needed for the acquisition of meaningful spectroscopic data. Therefore, on one hand, X-ray spectroscopy cannot be applied to the monitoring of single cells, and cellular damages have to be taken into account in the interpretation of the evolution of such systems. On the other hand, due to the limited extension of X-ray induced cellular damages in the culture volume, it is possible to probe a population of live cells provided that the culture to beam probe ratio is large enough to minimize the impact of mortality on the evolution of the biological system. Our results suggest that it could be possible to probe the volume in the close vicinity of a cell without affecting its activity. Using this setup we could monitor the reduction of selenite by the X-ray sensitive bacterium, Agrobacterium tumefaciens strain C58, for 24 h. This method has a great potential to monitor the respiration of various metals, such as iron, manganese and arsenic, in situ under relevant environmental conditions by live microorganisms.

  13. iWF-MAXI: Soft X-ray Transient Monitor on the ISS

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuyuki; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Ebisawa, Ken; Yatsu, Yoichi; Arimoto, Makoto; Mihara, Tatehiro; Serino, Motoko; Tsunemi, Hiroshi; Kohmura, Takayoshi; Sakamoto, Takanori; Negoro, Hitoshi; Ueda, Yoshihiro; Tsuboi, Yohko; Yoshida, Atsumasa

    2015-08-01

    iWF-MAXI is an X-ray transient monitor mission proposed for the ISS/JEM, starting in 2018-2019.It has four main scientific goals:(1) To find and localize the X-ray counterparts of gravitational wave events, which are expected to be detected by the next generation gravitational wave detectors such as Advance LIGO and KAGRA in late 2010's.(2) To detect short soft X-ray transients such as stellar flares, nova ignitions, and supernova shock breakouts, and promptly notify the world.(3) To trigger on short high-energy transients such as gamma-ray bursts and tidal disruption events, and promptly disseminate their locations to the community.(4) To detect the onset of activities from black hole binaries, neutron star binaries, and active galactic nuclei (AGN), and issue alerts to the astronomical community of the world.Its main scientific instrument is the Soft X-ray Large Solid Angle Camera (SLC). It is sensitive in the energy range of 0.7--10 keV with a localization accuracy of 0.1 degres. It will detect short transient events like GRBs with durations from a fraction of a second to minutes that occur in its large large field of view (>10% of the entire sky) .With the orbital revolution of the ISS, iWF-MAXI scans much larger sky area in 90 minutes, and looks for slower events such as outbursts of X-ray binaries.

  14. Monitoring the Next X-Ray Nova Outburst from Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding compact objects and accretion processes by making comparative studies of Cen X-4 (an X-ray burster) and A0620-00 (black hole binary). These systems are recurrent X-ray novae with similar periods, distances, and companion stars. In quiescent states of accretion, their diverging spectral energy distributions are interpreted as observational support for both the ADAF model and the reality of event horizons surrounding black holes. The next X-ray nova episode for Cen X-4 may occur soon, and it may be very bright (several Crab). Since so much is known about this binary system, there is a unique opportunity to monitor the timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude.

  15. Monitoring the Next X-Ray Nova Outburst from Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding compact objects and accretion processes by making comparative studies of Cen X-4 (an X-ray burster) and A0620-00 (black hole binary). These systems are recurrent X-ray novae with similar periods, distances, and companion stars. In quiescent states of accretion, their diverging spectral energy distributions are interpreted as observational support for both the ADAF model and the reality of event horizons surrounding black holes. The next X-ray nova episode for Cen X-4 may occur soon. Since it is likely to be very bright (several Crab), and since so much is known about this binary system, there is a unique opportunity to monitor the timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude.

  16. Integration of flat panel X-ray detector for high resolution diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Yun, Min-Seok; Kim, Yoon-Suk; Oh, Kyung-Min; Shin, Jung-Wook; Nam, Kyung-Tae; Nam, Sang-Hee

    2011-05-01

    In these days, flat panel X-ray image detectors have shown their potential for replacing traditional screen-film systems. To detect the X-ray photon energy, there are two main methods known as a direct method and an indirect method. The X-rays are converted immediately into electrical signal with the direct method. The indirect method has two conversion steps: the scintillator absorbs the X-rays and converts them to visible light. And then the visible light is converted to electrical signal (e.g. by photodiodes). In this work, the flat panel digital X-ray image detector based on direct method with a high atomic number material was designed and evaluated. The high atomic number material for X-ray conversion is deposited by a rubbing method with about 300 μm. The rubbing method is similar to the screen printing method. It consists of two elements: the screen and the squeegee. The method uses a proper stiff bar stretched tightly over a frame made of wood or metal. Proper tension is essential for proper laminated structure. The detector prototype has 139 μm pixel pitch, total 1280×1536 pixels and 86% fill factor. Twelve readout ICs are installed on digital X-ray detector and simultaneously operated to reach short readout time. The electronics integrated: the preamplifier to amplify generated signal, the Analog to Digital converter and the source of bias voltage (1 V/μm). The system board and interface use an NI-camera program. Finally, we achieved images from this flat panel X-ray image detector.

  17. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines.

    PubMed

    Kummer, K; Fondacaro, A; Yakhou-Harris, F; Sessi, V; Pobedinskas, P; Janssens, S D; Haenen, K; Williams, O A; Hees, J; Brookes, N B

    2013-03-01

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range. PMID:23556850

  18. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    SciTech Connect

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Brookes, N. B.; Pobedinskas, P.; Janssens, S. D.; Haenen, K.; Williams, O. A.; Hees, J.

    2013-03-15

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  19. JIM: a joint integrated module of glass x-ray optics for astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Winter, Anita; Rohé, Christian; Eder, Josef; Burwitz, Vadim; Hartner, Gisela D.; Menz, Benedikt; Civitani, Marta; Basso, Stefano; Buratti, Enrico

    2015-09-01

    For several years, the Max-Planck-Institute for extraterrestrial Physics in Germany (MPE) and the Astronomical Observatory of Brera in Italy (INAF-OAB) have been studying the slumping technology for the manufacturing of segmented glass X-ray optics for astronomy. Despite some differences in their specific approaches, the synergy of the two institutes has always been good, focusing on the common goal of developing a technology able to meet the outstanding requirements for future X-ray telescopes: i.e. large collecting areas, low mass and good angular resolution. This synergy has in the last year resulted in an active collaboration for the production of a Joint Integrated Module (JIM) that puts together the expertise of the two research groups. In particular, the indirect slumping approach of MPE has been employed for the manufacturing of X-ray mirror segments that have been integrated into a kind of X-ray Optical Unit following the approach developed at INAF-OAB. The module has then been tested in X-ray at the MPE PANTER facility, in Neuried. The several steps and the results of this joint activity are reviewed and discussed in this paper.

  20. Fabrication, characterization and integration of carbon nanotube cathodes for field emission X-ray source

    NASA Astrophysics Data System (ADS)

    Calderon-Colon, Xiomara

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. Our laboratory pioneer in the development of CNT based field emission X-ray source technology, which has the potential to fundamentally change how X-ray radiation is generated and utilized. Applications of the CNT field emission X-ray source technology in a wide range of applications including biomedical imaging, radiation therapy, and homeland security are being actively pursued. However, problems with the performance of the CNT cathodes for X-ray generation including short lifetime at high current density, instability under high voltage, poor emission uniformity, and cathode-to-cathode inconsistency are still major obstacles for device applications. The goal of this thesis work is the development and optimization of an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The CNT cathode fabrication process consist in a combination of photolithography and electrophoretic deposition (EPD) method where parameters such as SU-8 photoresist thickness, deposition time, and deposition voltage were varied to fabricate CNT cathodes with the required properties for X-ray generation. Also the development of CNT alcohol-based suspensions in context of the EPD method requirements with excellent long term stability has been accomplished. The CNT cathodes fabricated by EPD have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. Also these CNT cathodes compared to others reported previously show significant improved field emission properties with small cathode-to-cathode variation. The integration, characterization, and evaluation of these CNT cathodes into a micro focus field emission X-ray source has been achieved with excellent X-ray source characteristics and performance including X-ray flux and stability at the

  1. Physics-based modeling of X-ray CT measurements with energy-integrating detectors

    NASA Astrophysics Data System (ADS)

    Long, Yong; Gao, Hewei; Wu, Mingye; Pack, Jed D.; Xu, Hao; Tao, Kun; Fitzgerald, Paul F.; De Man, Bruno

    2014-03-01

    Computer simulation tools for X-ray CT are important for research efforts in developing reconstructionmethods, designing new CT architectures, and improving X-ray source and detector technologies. In this paper, we propose a physics-based modeling method for X-ray CT measurements with energy-integrating detectors. It accurately accounts for the dependence characteristics on energy, depth and spatial location of the X-ray detection process, which is either ignored or over simplified in most existing CT simulation methods. Compared with methods based on Monte Carlo simulations, it is computationally much more efficient due to the use of a look-up table for optical collection efficiency. To model the CT measurments, the proposed model considers five separate effects: energy- and location-dependent absorption of the incident X-rays, conversion of the absorbed X-rays into the optical photons emitted by the scintillator, location-dependent collection of the emitted optical photons, quantumefficiency of converting fromoptical photons to electrons, and electronic noise. We evaluated the proposed method by comparing the noise levels in the reconstructed images from measured data and simulations of a GE LightSpeed VCT system. Using the results of a 20 cm water phantom and a 35 cm polyethylene (PE) disk at various X-ray tube voltages (kVp) and currents (mA), we demonstrated that the proposed method produces realistic CT simulations. The difference in noise standard deviation between measurements and simulations is approximately 2% for the water phantom and 10% for the PE phantom.

  2. INTEGRATED SYSTEM SIMULATION IN X-RAY RADIOGRAPHY

    SciTech Connect

    T. KWAN; ET AL

    2001-01-01

    An integrated simulation capability is being developed to examine the fidelity of a dynamic radiographic system. This capability consists of a suite of simulation codes which individually model electromagnetic and particle transport phenomena and are chained together to model an entire radiographic event. Our study showed that the electron beam spot size at the converter target plays the key role in determining material edge locations. The angular spectrum is a relatively insensitive factor in radiographic fidelity. We also found that the full energy spectrum of the imaging photons must be modeled to obtain an accurate analysis of material densities.

  3. Integrated modeling for parametric evaluation of smart x-ray optics

    NASA Astrophysics Data System (ADS)

    Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta

    2014-08-01

    This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.

  4. Three transient X-ray sources during the INTEGRAL revolution 1710

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Bazzano, A.; Bird, A. J.; Charles, Phil; Chenevez, J.; Ubertini, P.

    2016-08-01

    During recent INTEGRAL observations of the Musca and Norma regions (revolutions 1710) performed between 2016-08-05 16:00:36 UTC and 2016-08-07 21:02:14 UTC a renewed activity from the following transient X-ray sources has been detected.

  5. High resolution X-ray spectroscopy of SN 1987 A: monitoring with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Aschenbach, B.; Hasinger, G.

    2010-06-01

    Context. The ongoing propagation of the supernova blast wave of SN 1987 A through its inner circumstellar ring has caused a drastic increase in X-ray luminosity in the past few years, which has allowed detailed high resolution X-ray spectroscopy to be performed with the Reflection Grating Spectrometer. Aims: We report the results of our XMM-Newton monitoring of SN 1987 A, which may be used to follow the detailed evolution of the arising supernova remnant. Methods: The fluxes and broadening of the numerous emission lines measured in the dispersed spectra provide information about the evolution of the X-ray emitting plasma and its dynamics. These were analyzed in combination with the EPIC-pn spectra, which allow a precise determination of the higher temperature plasma. We modeled individual emission lines and fitted plasma emission models. Results: For observations between 2003 and 2007 in particular, we detect significant evolution in the plasma parameters and a deceleration of the radial velocity in the lower temperature plasma regions. We detected (at 3σ-level) an iron K feature in the coadded EPIC-pn spectra. Conclusions: By comparing with Chandra grating observations in 2004, we observe a clear temporal coherence of the spectral evolution and the sudden deceleration of the expansion velocity detectable in X-ray images ~6100 days after the explosion.

  6. Peculiar nature of hard X-ray eclipse in SS433 from INTEGRAL observations

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.; Sunyaev, R. A.; Postnov, K. A.; Antokhina, E. A.; Molkov, S. V.

    2009-07-01

    The analysis of hard X-ray INTEGRAL observations (2003-2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind-wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20-100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio q = mx/mv ~= 0.25-0.5. The absolute minimum of joint orbital and precessional χ2 residuals is reached at q ~= 0.3. The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star fv = 0.268Msolar as derived from Hillwig & Gies data, the obtained value of q ~= 0.3 yields the masses of the components mx ~= 5.3Msolar, mv ~= 17.7Msolar, confirming the black hole nature of the compact object in SS433.

  7. Monitoring the latest stages of a transient neutron star X-ray binary

    NASA Astrophysics Data System (ADS)

    Campana, Sergio

    2012-10-01

    Neutron star transient low mass X-ray binaries (TLMXB) are among the brightest sources in the X-ray sky. Their outbursts are well known and studied. Despite this, their return to quiescence has been studied only in a handful of cases. This return is quite fast making even more difficult. Recently we monitor in high detail the return to quiescence of the archetypal TLMXB Aql X-1 thanks to XMM-Newton observations. We probed for the first time the cooling of the neutron star after a (short) outburst, finding a very short cooling time ( 3d). Thanks to an approved Swift XRT program for monitoring every day for 5 ks (for 30 d) the latest stages of a TLMXB, we are aiming assessing the spectral properties of a transient LMXB close to the quiescent level.

  8. The MOXE X-ray all-sky monitor for Spectrum-X-Gamma

    SciTech Connect

    In`t Zand, J.J.M.; Priedhorsky, W.C.; Moss, C.E.

    1994-08-01

    MOXE is an X-ray all-sky monitor to be flown on the Russian Spectrum-X-Gamma satellite, to be launched in a few years. It will monitor several hundred X-ray sources on a daily basis, and will be the first instrument to monitor most of the X-ray sky most of the time. MOXE will alert users of more sensitive instruments on Russia`s giant high energy astrophysics observatory and of other instruments to transient activity. MOXE consists of an array of 6 X-ray pinhole cameras, sensitive from 3 to 25 keV, which views 4{pi} steradians (except for a 20{degree} {times} 80{degree} patch which includes the Sun). The pinhole apertures of 0.625 {times} 2.556 cm{sup 2} imply an angular resolution of 2{degree}.4 {times} 9{degree}.7 (on-axis). The MOXE hardware program includes an engineering model, now delivered, and a flight model. The flight instrument will mass approximately 118 kg and draw 38 Watts. For a non-focusing all-sky instrument that is limited by sky background, the limiting sensitivity is a function only of detector area. MOXE, with 6,000 cm{sup 2} of detector area, will, for a 24 hrs exposure, have a sensitivity of approximately 2 mCrab. MOXE distinguishes itself with respect to other all-sky monitors in its high duty cycle, thus being particularly sensitive to transient phenomena with time scales between minutes and hours.

  9. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  10. Instrumentation for a next-generation x-ray all-sky monitor

    NASA Astrophysics Data System (ADS)

    Peele, A. G.

    1999-12-01

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors-long-term all-sky archive and watchdog alert to new events-will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  11. X-ray Weekly Monitoring of the Galactic Center Sgr A* with Suzaku

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Nobukawa, Masayoshi; Hayashi, Takayuki; Iizuka, Ryo; Saitoh, Takayuki; Murakami, Hiroshi

    A small gas cloud, G2, is on an orbit almost straight into the supermassive blackhole Sgr A* by spring 2014. This event gives us a rare opportunity to test the mass feeding onto the blackhole by a gas. To catch a possible rise of the mass accretion from the cloud, we have been performing the bi-week monitoring of Sgr A* in autumn and spring in the 2013 fiscal year. The key feature of Suzaku is the high-sensitivity wide-band X-ray spectroscopy all in one observatory. It is characterized by a large effective area combined with low background and good energy resolution, in particular a good line spread function in the low-energy range. Since the desired flare events associated with the G2 approach is a transient event, the large effective area is critical and powerful tools to hunt them. The first monitoring in 2013 autumn was successfully made. The X-rays from Sgr A* and its nearby emission were clearly resolved from the bright transient source AX J1745.6-2901. No very large flare from Sgr A*was found during the monitoring. We also may report the X-ray properties of two serendipitous sources, the neutron star binary AX J1745.6-2901 and a magnetar SGR J1745-29.

  12. Late-Time X-Ray, UV, and Optical Monitoring of Supernova 1979C

    NASA Astrophysics Data System (ADS)

    Immler, Stefan; Fesen, Robert A.; Van Dyk, Schuyler D.; Weiler, Kurt W.; Petre, Robert; Lewin, Walter H. G.; Pooley, David; Pietsch, Wolfgang; Aschenbach, Bernd; Hammell, Molly C.; Rudie, Gwen C.

    2005-10-01

    We present results from observations of supernova (SN) 1979C with the Newton X-Ray Multi-Mirror (XMM-Newton) mission in X-rays and in UV, archival X-ray, and Hubble Space Telescope (HST) data, and follow-up ground-based optical imaging. The XMM-Newton MOS spectrum shows the best-fit two-temperature thermal plasma emission characteristics of both the forward (kThigh=4.1+76-2.4 keV) and reverse shock (kTlow=0.79+0.24-0.17 keV) with no intrinsic absorption. The long-term X-ray light curve, constructed from all X-ray data available, reveals that SN 1979C is still radiating at a flux level similar to that detected by ROSAT in 1995, showing no sign of a decline over the last 6 years, some 16-23 yr after its outburst. The high inferred X-ray luminosity (L0.3-2=8×1038 ergs s-1) is caused by the interaction of the SN shock with dense circumstellar matter, likely deposited by a strong stellar wind from the progenitor with a high mass-loss rate of M˙~1.5×10-4 Msolar yr-1 (vw/10 km s-1). The X-ray data support a strongly decelerated shock and show a mass-loss rate history that is consistent with a constant progenitor mass-loss rate and wind velocity over the past >~16,000 yr in the stellar evolution of the progenitor. We find a best-fit circumstellar medium (CSM) density profile of ρCSM~r-s with index s<~1.7 and high CSM densities (>~104 cm-3) out to large radii from the site of the explosion (r>~4×1017 cm). Using XMM-Newton Optical Monitor data, we further detect a pointlike optical/UV source consistent with the position of SN 1979C, with B-, U-, and UVW1-band luminosities of 5, 7, and 9×1036 ergs s-1, respectively. The young stellar cluster in the vicinity of the SN, as imaged by the HST and follow-up ground-based optical imaging, can only provide a fraction of the total observed flux, so that a significant contribution to the output likely arises from the strong interaction of SN 1979C with dense CSM.

  13. Counting x-ray line detector with monolithically integrated readout circuits

    NASA Astrophysics Data System (ADS)

    Lohse, T.; Krüger, P.; Heuer, H.; Oppermann, M.; Torlee, H.; Meyendorf, N.

    2013-05-01

    The developed direct converting X-ray line detectors offer a number of advantages in comparison to other X-ray sensor concepts. Direct converting X-ray detectors are based on absorption of X-rays in semiconductor material, which leads to a generation of charge carriers. By applying high bias voltage charge carriers can be separated and with this the arising current pulse can be assessed by suitable readout integrated circuits (ICs) subsequently. The X-ray absorber itself is implemented as a diode based on GaAs to use it in the reverse direction. It exhibits low dark currents and can therefore be used at room temperatures. The GaAs absorber has a structured top electrode designed on variable bonding and high breakdown voltages. The implemented GaAs absorber exhibits a pixel size of 100 μm while the readout IC features fast dead-time-free readout, energy discrimination by two individually adjustable thresholds with 20 bit deep counters and radiation-hard design on chip level. These properties guarantee the application as fast and thus sensitive line detector for imaging processes. Another advantage of the imaging line detector is the cascadability of several sensor modules with 1024 pixels each. This property ensures that the 102.4 mm long sensor modules can be concatenated virtually with arbitrary length gaplessly. The readout ICs hitting radiation dose can be further minimized by implementing constructive steps to ensure longer lifetime of the sensor module. Furthermore, first results using the introduced sensor module for solid state X-ray detection are discussed.

  14. INTEGRAL study of temporal properties of bright flares in Supergiant Fast X-ray Transients

    NASA Astrophysics Data System (ADS)

    Sidoli, L.; Paizis, A.; Postnov, K.

    2016-04-01

    We have characterized the typical temporal behaviour of the bright X-ray flares detected from the three Supergiant Fast X-ray Transients (SFXTs) showing the most extreme transient behaviour (XTE J1739-302, IGR J17544-2619, SAX J1818.6-1703). We focus here on the cumulative distributions of the waiting-time (time interval between two consecutive X-ray flares), and the duration of the hard X-ray activity (duration of the brightest phase of an SFXT outburst), as observed by INTEGRAL/IBIS in the energy band 17-50 keV. Adopting the cumulative distribution of waiting-times, it is possible to identify the typical time-scale that clearly separates different outbursts, each composed by several single flares at ˜ks time-scale. This allowed us to measure the duration of the brightest phase of the outbursts from these three targets, finding that they show heavy-tailed cumulative distributions. We observe a correlation between the total energy emitted during SFXT outbursts and the time interval covered by the outbursts (defined as the elapsed time between the first and the last flare belonging to the same outburst as observed by INTEGRAL). We show that temporal properties of flares and outbursts of the sources, which share common properties regardless different orbital parameters, can be interpreted in the model of magnetized stellar winds with fractal structure from the OB-supergiant stars.

  15. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.

    2012-09-01

    PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.

  16. Observation of a black-hole X-ray nova in outburst with INTEGRAL

    NASA Astrophysics Data System (ADS)

    Goldoni, P.; Goldwurm, A.; Laurent, P.; Lebrun, F.; Cordier, B.

    2001-09-01

    We simulate the observation of a bright Nova Musca-like X-ray nova during outburst with INTEGRAL, the next ESA γ-ray space observatory. We will show how performances of the INTEGRAL instruments allow deep study of X-ray novae and will evaluate the scientific output that INTEGRAL will provide on this class of transient gamma-ray sources, which are now believed to contain black holes in low mass binary systems. The variable high-energy feature around 511 keV observed from X-ray Nova Musca in 1991 by the SIGMA telescope would be detected by INTEGRAL at very high significance level. INTEGRAL data will permit to set important constraints on the models and allow to distinguish between electron-positron or nuclear de-excitation origin of the line. Characteristic spectral and timing features detected by INTEGRAL instruments over a very large energy band will also provide clues to understand physics of accretion in these black holes binaries and in particular to distinguish between thermal and non-thermal origin of radiation and to assess the role of bulk motion comptonization.

  17. Monitoring the Next X-Ray Nova Outburst from Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding accretion processes by making comparisons of Cen X-4 (an eruptive neutron-star system) and X-ray novae from black holes with similar binary periods and companion stars. These studies have been limited to quiescent states, where divergent broadband spectra seem to support the reality of event horizons around black holes. The next outburst of Cen X-4 may occur soon, and it may reach several Crab. Given its proximity and well-studied binary constituents, Cen X-4 outbursts provide a rare opportunity to measure X-ray timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude. A monitoring program would also support comparisons of neutron-star and black-hole transients in states of active accretion.

  18. Monitoring the Next X-Ray Nova Outburst F Rom Centaurus X-4

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald

    We have gained insights regarding accretion processes by making comparisons of Cen X-4 (an eruptive neutron-star system) and X-ray novae from black holes with similar binary periods and companion stars. These studies have been limited to quiescent states, where divergent broadband spectra seem to support the reality of event horizons around black holes. The next outburst of Cen X-4 may occur soon, and it may reach several Crab. Given its proximity and well-studied binary constituents, Cen X-4 outbursts provide a rare opportunity to measure X-ray timing and spectral properties as the accretion rate onto a nonmagnetic neutron star changes by 3 orders of magnitude. A monitoring program would also support comparisons of neutron-star and black-hole transients in states of active accretion.

  19. Design of a New Collimation System to Prevent Interference between X-ray Machines and Radiation Portal Monitors

    SciTech Connect

    Guzzardo, Tyler; Livesay, Jake

    2012-01-01

    Researchers at Oak Ridge National Laboratory (ORNL) developed a new collimation system that allows radiation portal monitors (RPMs) installed near x-ray machines to operate with a negligible false-positive alarm rate. RPMs are usually installed as far as possible from x-ray machines because false alarms are triggered by escaping x-rays; however, constraints at the installation site sometimes make it necessary that RPMs be installed near x-ray machines. Such RPMs are often plagued by high alarm rates resulting from the simultaneous operation of the RPMs and x-ray machines. Limitations on pedestrian flow, x-ray machine orientation, and RPM location often preclude a simple solution for lowering the alarm rate. Adding additional collimation to the x-ray machines to stop the x-rays at the source can reduce the alarm rate without interfering with site operations or adversely affecting the minimum detectable quantity of material (MDQ). A collimation design has been verified by measurements conducted at a RPM installation site and is applicable to all new and existing RPM installations near x-ray machines.

  20. The integral dose in panoramic intraoral x-ray tube radiography

    SciTech Connect

    Hayami, A.; Fujishita, M.; Sumida, A.; Kanke, M.; Fujiki, T.; Uemura, S.; Fuchihata, H.

    1983-07-01

    A Monte Carlo computer program was developed to estimate the integral dose to the head and thyroid for panoramic intraoral x-ray tube radiography. The advantage of this computer simulation is that it is able to avoid many of the difficulties associated with low-energy and low-dose x-ray dosimetry. The calculations were made for maxillary and mandibular projections separately, using 10 kv. increments between 40 and 60 kv. The results obtained were presented in terms of the integral dose per milliampere second. Typical integral doses for a routine examination of the head are 2.1 mJ. and 8.5 microJ for the thyroid during mandibular radiography and 1.7 microJ for the thyroid during radiography of the maxilla using 55 kv. and 0.5 mAs.

  1. An integrated approach for prescribing fewer chest x-rays in the ICU

    PubMed Central

    2011-01-01

    Chest x-rays (CXRs) are the main imaging tool in intensive care units (ICUs). CXRs also are associated with concerns inherent to their use, considering both healthcare organization and patient perspectives. In recent years, several studies have focussed on the feasibility of lowering the number of bedside CXRs performed in the ICU. Such a decrease may result from two independent and complementary processes: a raw reduction of CXRs due to the elimination of unnecessary investigations, and replacement of the CXR by an alternative technique. The goal of this review is to outline emblematic examples corresponding to these two processes. The first part of the review concerns the accumulation of evidence-based data for abandoning daily routine CXRs in mechanically ventilated patients and adopting an on-demand prescription strategy. The second part of the review addresses the use of alternative techniques to CXRs. This part begins with the presentation of ultrasonography or capnography combined with epigastric auscultation for ensuring the correct position of enteral feeding tubes. Ultrasonography is then also presented as an alternative to CXR for diagnosing and monitoring pneumothoraces, as well as a valuable post-procedural technique after central venous catheter insertion. The combination of the emblematic examples presented in this review supports an integrated global approach for decreasing the number of CXRs ordered in the ICU. PMID:21906323

  2. New active galactic nuclei among the INTEGRAL and SWIFT X-ray sources

    NASA Astrophysics Data System (ADS)

    Burenin, R. A.; Mescheryakov, A. V.; Revnivtsev, M. G.; Sazonov, S. Yu.; Bikmaev, I. F.; Pavlinsky, M. N.; Sunyaev, R. A.

    2008-06-01

    We present the results of our optical identifications of a set of X-ray sources from the INTEGRAL and SWIFT all-sky surveys. The optical data have been obtained with the 1.5-m Russian-Turkish Telescope (RTT-150). Nine X-ray sources have been identified with active galactic nuclei (AGNs). Two of them are located in the nearby spiral galaxies MCG-01-05-047 and NGC 973 seen almost edge-on. One source, IGR J16562-3301, is probably a BL Lac object (blazar). The remaining AGNs are observed as the starlike nuclei of spiral galaxies whose spectra exhibit broad emission lines. The relation between the hard X-ray (17-60 keV) luminosity and the [O III] 5007 line luminosity, log L x/ L [O III] ≈ 2.1, holds good for most of the AGNs detected in hard X rays. However, the luminosities of some AGNs deviate from this relation. The fraction of such objects can reach ˜20%. In particular, the [O III] line flux is lower for two nearby edge-on spiral galaxies. This can be explained by the effect of absorption in the galactic disks.

  3. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  4. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  5. MVN: x-ray monitor of the sky on Russian segment of ISS

    NASA Astrophysics Data System (ADS)

    Revnivtsev, M.; Semena, N.; Akimov, V.; Levin, V.; Serbinov, D.; Rotin, A.; Kuznetsova, M.; Molkov, S.; Buntov, M.; Tambov, V.; Lapshov, I.; Gurova, E.; Simonenkov, D.; Tkachenko, A.; Pavlinsky, M.; Markov, A.; Konoshenko, V.; Sibirtsev, D.

    2012-09-01

    MVN (Monitor Vsego Neba) - new small X-ray astronomical experiment, which will be mounted on Russian segment of International Space Station. The main scientific goal for the instrument is the precise measurement of cosmic X-ray background in energy range 6-70 keV, which is important for theories of black hole evolution in the Universe. The ultimate aim of the experiment is to reach the accuracy of the CXB measurements, which will allow us to measure the large scale anisotropy of the Cosmic X-ray Background caused by inhomogeneities of the matter distribution in the local Universe. The MVN instrument is a simple collimated spectrometer, equipped with 4 CdTe pixellated detectors. The field of view of the instrument will be scanning the zenith of the ISS. The accuracy of the instrumental background subtraction, which is the main obstacle for the proposed task, will be provided by a cover, which will periodically block the aperture of detectors. According to our estimates, with not unfavourable radiation environment on orbit of ISS during period of operation of MVN we will be able to measure the CXB surface brightness at different sky directions with accuracy better than 1% after 2 years of the experiment. The planned dates of the experiment is 2013-2016.

  6. INTEGRAL/JEM-X detection of type-I X-ray bursts from IGR J17488-2018

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Falanga, M.; Ferrigno, C.

    2015-02-01

    During the on-going INTEGRAL target of opportunity (ToO) observation of the X-ray transient IGR J17488-2018 (Atel #7098, #7106) located in the Globular Cluster NGC 6440, the two JEM-X telescopes detected so far 7 type-I X-ray bursts from the source.

  7. FIVE NEW INTEGRAL UNIDENTIFIED HARD X-RAY SOURCES UNCOVERED BY CHANDRA

    SciTech Connect

    Fiocchi, M.; Bazzano, A.; Ubertini, P.; Capitanio, F.

    2010-09-10

    The IBIS imager on board INTEGRAL, with a sensitivity better than a milliCrab in deep observations and a point-source location accuracy on the order of few arcminutes, has thus far localized 723 hard X-ray sources in the 17-100 keV energy band, of which about 1/3 are still unclassified. The aim of this paper is to provide subarcsecond localizations of the unidentified sources, necessary to pinpoint the optical and/or infrared (IR) counterpart of those objects whose nature is so far unknown. Cross-correlation between the new IBIS sources published in the fourth INTEGRAL/IBIS Survey catalog and the Chandra/ACIS data archive resulted in a sample of five previously unidentified objects. We present here the results of Chandra X-ray Observatory observations of these five hard X-ray sources discovered by the INTEGRAL satellite. We associated IGR J10447-6027 with IR source 2MASS J10445192-6025115, IGR J16377-6423 with the cluster CIZA J1638.2-6420, IGR J14193-6048 with the pulsar with nebula PSR J1420-6048, and IGR J12562+2554 with the quasar SDSS J125610.42+260103.5. We suggest that the counterpart of IGR J12288+0052 may be an active galactic nucleus/quasi-stellar object type 2 at a confidence level of 90%.

  8. INTEGRAL Galactic bulge monitoring program

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.; Belloni, T.; Chenevez, J.; Ibarra, A.; Munoz-Darias, T.; Bazzano, A.; Cadolle Bel, M.; De Cesare, G.; Diaz Trigo, M.; Jourdain, E.; Lubinski, P.; Natalucci, L.; Ness, J. U.; Parmar, A.; Pollock, A. M. T.; Rodriguez, J.; Roques, J. P.; Sanchez-Fernandez; C.; Ubertini, P.; Winkler, C.

    2010-12-01

    The central region of our Galaxy, the Galactic bulge, is a rich host of variable high-energy X-ray and gamma-ray point sources. These sources include bright and relatively faint X-ray transients, X-ray bursters, persistent neutron star and black-hole candidate binaries, high-mass X-ray binaries, etc.. We have a program to monitor the Galactic bulge region regularly and frequently with the gamma-ray observatory INTEGRAL, whenever it is observable. As a service to the scientific community the high-energy light curves of sources present, as well as the images of the region are made available through the WWW at http://integral.esac.esa.int/BULGE/ as soon as possible after the observations have been performed. We show the ongoing results of this exciting program.

  9. An X-ray monitor for measurement of a titanium tritide target thickness.

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 microns has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  10. An X-ray monitor for measurement of a titanium tritide target thickness

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Steinberg, R.

    1972-01-01

    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.

  11. Residual Gas X-ray Beam Position Monitor Development for PETRA III

    SciTech Connect

    Ilinski, P.; Hahn, U.; Schulte-Schrepping, H.; Degenhardt, M.

    2007-01-19

    The development effort is driven by the need for a new type of x-ray beam position monitor (XBPM), which will detect the centre of gravity of the undulator beam. XBPMs based on the ionization of a residual gas are considered being the candidate for this future ''white'' undulator beam XBPMs. A number of residual gas XBPM prototypes for the PETRA III storage ring were developed and tested. Tests were performed at DESY and the ESRF, resolution of beam position up to 5 {mu}m is reported. The further development of the RGXBPMs will be focused on improvements of resolution, readout speed and reliability.

  12. Evaluation of polymeric standard reference materials for monitoring the performance of X-ray photoelectron spectrometers

    NASA Astrophysics Data System (ADS)

    Strohmeier, Brian R.

    1991-04-01

    The use of standard reference materials is a common practice in X-ray photoelectron spectroscopy (XPS or ESCA). Recently, several polymeric standard reference materials have become available for monitoring various performance aspects of ESCA spectrometers. These reference materials include polyethylene (PE), polyethylene glycol (PEG), polytetrafluoroethylene (PTFE) and dimethyl silicon (DMS). The advantages and disadvantages encountered when using these materials as standards were investigated in this study. Results indicated that PEG, PTFE and DMS are useful standards for checking or determining relative elemental sensitivity factors for C, O, F and/or Si. These three materials can also be used for monitoring the linearity and stability of the instrumental binding energy scale. However, in general, metallic standards such as gold, silver and/or copper are superior to the polymeric standards for this purpose, because their photoelectron lines cover a wider binding energy range and their respective peak positions are much better known. Although PE exhibits a fairly narrow C1s line that can be used to monitor variations in the instrumental energy resolution, the FWHM observed for the C1s line is much broader that the FWHM values obtained from the appropriate lines of sputtered-cleaned metals. Results also indicated that the use of PTFE as a standard reference material must be done with caution, because PTFE readily degrades with time under X-ray exposure.

  13. Broad band X-ray telescope (BBXRT) displacement monitor system (DMS) testing and calibration

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.; Northcutt, William

    1989-01-01

    NASA's shuttle-borne Broad Band X-Ray Telescope (BBXRT) consists of two glancing incidence imaging mirror assemblies mounted on an optical bench which is bolted to the primary structure of the instrument. The X-ray detectors are located in the focal plane of the mirror assemblies approximately 3.5 meters away. It is desirable to monitor the relative alignment of these components throughout ground testing, and to determine the magnitude of launch or thermally induced perturbations to the alignment during flight. The Displacement Monitor System (DMS) was designed to accomplish this task. This paper describes the design of the DMS, the development and optimization of the DMS calibration facility, and the characterization of the system. The characterization of the DMS includes environmental qualification, displacement vs output calibration over the operating temperature range, a detailed error analysis, and the generation of a calibration polynomial which utilizes DMS detector output and thermocouple data to optimize system performance. The DMS accuracy exceeded the requirements of a 15 arc second limit of error, and passed the stringent environmental tests. As such, the DMS is one of the first flight qualified displacement monitor systems with this accuracy to be flown in space.

  14. An Integrated X-Ray/Optical Tomography System for Pre-clinical Radiation Research

    PubMed Central

    Eslami, S.; Yang, Y.; Wong, J.; Patterson, M. S.; Iordachita, I.

    2013-01-01

    The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target’s Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation system. This system can be used to study radiation effects in small animals under the conebeam computed tomography (CBCT) imaging guidance by adding the bioluminescence imaging (BLI) system as a standalone system which can also be docked onto the SARRP. The proposed system integrates two robotic rotating stages and an x-ray source rated at maximum 130 kVp and having a small variable focal spot. A high performance and low noise CCD camera mounted in a light-tight housing along with an optical filter assembly is used for multi-wavelength BL tomography. A three-mirror arrangement is implemented to eliminate the need of rotating the CCD camera for acquiring multiple views. The mirror system is attached to a motorized stage to capture images in angles between 0–90° (for the standalone system). Camera and CBCT calibration are accomplished. PMID:25745539

  15. Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.

    1994-01-01

    By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.

  16. In application specific integrated circuit and data acquisition system for digital X-ray imaging

    NASA Astrophysics Data System (ADS)

    Beuville, E.; Cederström, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-02-01

    We have developed an Application Specific Integrated Circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications.

  17. A Novel Integrating Solid State Detector With Segmentation For Scanning Transmission Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Jacobsen, Chris; Degeronimo, Gianluigi; Rehak, Pavel; Holl, Peter; Strueder, Lothar

    2003-03-01

    Scanning transmission x-ray microscopy (STXM) with soft x-rays has unique detector requirements, which are not readily met by commercially available detectors. For implementation of dark-field and phase contrast imaging modes a segmented detector is needed with the high signal to noise ratio of a counting detector and a high detective quantum efficiency. Since the market for STXM is very small, the development of specialized detector systems relies on the collaboration with detector specialists at research facilities. We report on the successful development of a segmented silicon detector for STXM, which has been carried out in collaboration between the x-ray microscopy research group at SUNY Stony Brook, the instrumentation division at Brookhaven National Laboratory and silicon x-ray detector specialists in Germany. This project illustrates the effectiveness of such arrangements and justifies the support of future efforts in developing dedicated detectors for synchrotron radiation experiments bringing together detector experts and experimenters. The developed detector features eight separate circular segments matched to the STXM geometry. Fast charge integrating electronics have been developed to match the short pixel dwell times in a synchrotron based scanning microscope (in the ms range for the NSLS). The noise level of 5 photons RMS per integration per channel (at 520 eV photon energy) and a 1500 photon capacity (corresponding to the well depth in a CCD detector) is well matched to the characteristics of the experiment. Combining the detector signals in an appropriate way, different imaging modes (i.e. bright field, dark field or phase contrast) can be selected. We discuss recent developments on simultaneous quantitative phase and amplitude contrast imaging using this segmented detector in conjunction with a Fourier filter reconstruction technique.

  18. The INTEGRAL/IBIS AGN catalogue - I. X-ray absorption properties versus optical classification

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Masetti, N.; Panessa, F.; Stephen, J. B.; Ubertini, P.

    2012-11-01

    In this work we present the most comprehensive INTEGRAL active galactic nucleus (AGN) sample. It lists 272 AGN for which we have secure optical identifications, precise optical spectroscopy and measured redshift values plus X-ray spectral information, i.e. 2-10 and 20-100 keV fluxes plus column density. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48 per cent) of the sample is absorbed, while the fraction of Compton-thick AGN is small (˜7 per cent). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80 and 17 per cent. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. A few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 X-ray bright optically normal galaxies, 5 type 2 QSOs and 11 low-ionization nuclear emission regions. In terms of optical classification, our sample contains 57 per cent of type 1 and 43 per cent of type 2 AGN; this subdivision is similar to that found in X-rays if unabsorbed versus absorbed objects are considered, suggesting that the match between optical and X-ray classifications is overall good. Only a small percentage of sources (12 per cent) does not fulfil the expectation of the unified theory as we find 22 type 1 AGN which are absorbed and 10 type 2 AGN which are unabsorbed. Studying in depth these outliers we found that most of the absorbed type 1 AGN have X-ray spectra characterized by either complex or warm/ionized absorption more likely due to ionized gas located in an accretion disc wind or in the biconical structure associated with the central nucleus, therefore

  19. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramkrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  20. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  1. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    SciTech Connect

    Baaklini, G.Y.; Bhatt, R.T.

    1991-08-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models. 14 refs.

  2. Renewed Activity from the X-Ray Transient SAXJ 1810.8-2609 with Integral

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Natalucci, L.; Chenevez, J.; Bazzano, A.; Tarana, A.; Ubertini, P.; Brandt, S.; Beckmann, V.; Federici, M.; Galis, R.; Hudec, R.

    2009-03-01

    We report on the results of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the neutron star low-mass X-ray binary SAX J1810.8-2609 during its latest active phase in 2007 August. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6 ×1036 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5 × 10-12 M sun yr-1 suggest that SAX J1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of kT e~ 23-30 keV and an optical depth of τ~ 1.2-1.5, independent of the luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with the absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (≈3.5 crab in 3-25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a L Edd ≈ 3.8 × 1038 erg s-1. The observed recurrence time of ~ 1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (α~ 73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X >= 0.4. INTEGRAL is an ESA project with Instruments and Science Data Center funded by ESA member states, especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain; Czech Republic and Poland; and with the participation of Russia and USA.

  3. A Hard X-Ray View of Scorpius X-1 with INTEGRAL: Nonthermal Emission?

    NASA Astrophysics Data System (ADS)

    Di Salvo, T.; Goldoni, P.; Stella, L.; van der Klis, M.; Bazzano, A.; Burderi, L.; Farinelli, R.; Frontera, F.; Israel, G. L.; Méndez, M.; Mirabel, I. F.; Robba, N. R.; Sizun, P.; Ubertini, P.; Lewin, W. H. G.

    2006-10-01

    We present here simultaneous INTEGRAL/RXTE observations of Sco X-1 and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of magnitude. These results present close analogies to the behavior of GX 17+2, one of the so-called Sco-like Z sources. Finally, the hard power law in the spectrum of Sco X-1 does not show any evidence of a high-energy cutoff up to 100-200 keV, strongly suggesting a nonthermal origin of this component.

  4. Integration of X-ray micro tomography and fluorescence for applications on natural building stones

    NASA Astrophysics Data System (ADS)

    Dewanckele, J.; Cnudde, V.; Boone, M.; Van Loo, D.; De Witte, Y.; Pieters, K.; Vlassenbroeck, J.; Dierick, M.; Masschaele, B.; Van Hoorebeke, L.; Jacobs, P.

    2009-09-01

    X-ray computed tomography (CT) is an excellent, non-destructive analysis tool for characterising many different materials. In geosciences, 3D visualisation is becoming of prime importance in characterising internal structures of various rock types. It enables new approaches in petrophysical research of rock components, including pore and mineral distribution. Although CT provides a lot of information, this technique is limited concerning information on chemical element distribution. X-ray fluorescence (XRF) on the other hand is an excellent technique to obtain the missing information on chemical properties. At the recently established "Centre for X-ray Tomography" of Ghent University (UGCT) a micro- and nanoCT scanner has been constructed. It is expected that by combination of high-resolution CT and XRF it will be possible to characterise the spatial mineral and element distribution. The combination of both techniques has been applied on natural building stones, in order to get a better insight into some geological parameters (porosity, pore structure, mineral distribution, colour, grain orientation, etc.). Afterwards, the integration of the Morpho+ software tool provides us a 3D quantification of the resulting data.

  5. X-ray pulsars/Doppler integrated navigation for Mars final approach

    NASA Astrophysics Data System (ADS)

    Cui, Pingyuan; Wang, Shuo; Gao, Ai; Yu, Zhengshi

    2016-05-01

    The performance of the navigation system during the Mars final approach phase determines the initial accuracy of Mars entry phase, which is critical for a pin-point landing. An X-ray pulsars/Doppler integrated navigation strategy is proposed to improve the estimation accuracy of the spacecraft's entry state, as well as to enhance the autonomy, real-time and reliability. The navigation system uses the X-ray pulsar measurements and Doppler velocity measurements which are complementary to each other. The performance degradation in velocity estimation at the end of the final approach phase for X-ray pulsar based navigation can thus be eliminated. The nonlinearity of the system and the performance of Extended Kalman Filter are analyzed in this paper. Furthermore, in order to optimize the navigation scheme, a principle for navigation beacons selection based on the Fisher information matrix is used. Finally, a navigation scenario based on the 2012 encounter at Mars of Mars Science Laboratory spacecraft is considered to demonstrate the feasibility and accuracy of the proposed scheme. Simulation results also indicate that the proposed navigation scheme has reference value for the design of the future Mars explorations.

  6. Integration of cardiac and respiratory motion into MRI roadmaps fused with x-ray

    PubMed Central

    Faranesh, Anthony Z.; Kellman, Peter; Ratnayaka, Kanishka; Lederman, Robert J.

    2013-01-01

    Purpose: Volumetric roadmaps overlaid on live x-ray fluoroscopy may be used to enhance image guidance during interventional procedures. These roadmaps are often static and do not reflect cardiac or respiratory motion. In this work, the authors present a method for integrating cardiac and respiratory motion into magnetic resonance imaging (MRI)-derived roadmaps to fuse with live x-ray fluoroscopy images, and this method was tested in large animals. Methods: Real-time MR images were used to capture cardiac and respiratory motion. Nonrigid registration was used to calculate motion fields to deform a reference end-expiration, end-diastolic image to different cardiac and respiratory phases. These motion fields were fit to separate affine motion models for the aorta and proximal right coronary artery. Under x-ray fluoroscopy, an image-based navigator and ECG signal were used as inputs to deform the roadmap for live overlay. The in vivo accuracy of motion correction was measured in four swine as the ventilator tidal volume was varied. Results: Motion correction reduced the root-mean-square error between the roadmaps and manually drawn centerlines, even under high tidal volume conditions. For the aorta, the error was reduced from 2.4 ± 1.5 mm to 2.2 ± 1.5 mm (p < 0.05). For the proximal right coronary artery, the error was reduced from 8.8 ± 16.2 mm to 4.3 ± 5.2 mm (p < 0.001). Using real-time MRI and an affine motion model it is feasible to incorporate physiological cardiac and respiratory motion into MRI-derived roadmaps to provide enhanced image guidance for interventional procedures. Conclusions: A method has been presented for creating dynamic 3D roadmaps that incorporate cardiac and respiratory motion. These roadmaps can be overlaid on live X-ray fluoroscopy to enhance image guidance for cardiac interventions. PMID:23464334

  7. X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image

    NASA Astrophysics Data System (ADS)

    Davis, G. R.; Elliott, J. C.

    1997-02-01

    Most X-ray microtomography scanners work on the same principle as third-generation medical CT scanners, that is, the same point in each projection is measured by the same detector element. This leads to ring artefacts in the reconstructed image if the X-ray sensitivities of the individual detector elements, after any analytical correction, are not all identical. We have developed an X-ray microtomography scanner which uses the time-delay integration method of imaging with a CCD detector to average the characteristics of all the detector elements in each linear projection together. This has the added advantage of allowing specimens which are larger than the detector and X-ray field to be scanned. The device also uses a novel mechanical stage to "average out" inhomogeneities in the X-ray field. The results show that ring artefacts in microtomographic images are eliminated using this technique.

  8. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald

    2012-09-01

    PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.

  9. LOBSTER-ISS: an imaging x-ray all-sky monitor for the International Space Station

    NASA Astrophysics Data System (ADS)

    Fraser, George W.; Brunton, Adam N.; Bannister, Nigel P.; Pearson, James F.; Ward, Martin; Stevenson, Tim J.; Watson, D. J.; Warwick, Bob; Whitehead, S.; O'Brian, Paul; White, Nicholas; Jahoda, Keith; Black, Kevin; Hunter, Stanley D.; Deines-Jones, Phil; Priedhorsky, William C.; Brumby, Steven P.; Borozdin, Konstantin N.; Vestrand, T.; Fabian, A. C.; Nugent, Keith A.; Peele, Andrew G.; Irving, Thomas H.; Price, Steve; Eckersley, Steve; Renouf, Ian; Smith, Mark; Parmar, Arvind N.; McHardy, I. M.; Uttley, P.; Lawrence, A.

    2002-01-01

    We describe the design of Lobster-ISS, an X-ray imaging all-sky monitor (ASM) to be flown as an attached payload on the International Space Station. Lobster-ISS is the subject of an ESA Phase-A study which will begin in December 2001. With an instantaneous field of view 162 x 22.5 degrees, Lobster-ISS will map almost the complete sky every 90 minute ISS orbit, generating a confusion-limited catalogue of ~250,000 sources every 2 months. Lobster-ISS will use focusing microchannel plate optics and imaging gas proportional micro-well detectors; work is currently underway to improve the MCP optics and to develop proportional counter windows with enhanced transmission and negligible rates of gas leakage, thus improving instrument throughput and reducing mass. Lobster-ISS provides an order of magnitude improvement in the sensitivity of X-ray ASMs, and will, for the first time, provide continuous monitoring of the sky in the soft X-ray region (0.1-3.5 keV). Lobster-ISS provides long term monitoring of all classes of variable X-ray source, and an essential alert facility, with rapid detection of transient X-ray sources such as Gamma-Ray Burst afterglows being relayed to contemporary pointed X-ray observatories. The mission, with a nominal lifetime of 3 years, is scheduled for launch on the Shuttle c.2009.

  10. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  11. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  12. Elemental Abundances in the Solar Corona as Measured by the X-ray Solar Monitor Onboard Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Narendranath, S.; Sreekumar, P.; Alha, L.; Sankarasubramanian, K.; Huovelin, J.; Athiray, P. S.

    2014-05-01

    The X-ray Solar Monitor (XSM) on the Indian lunar mission Chandrayaan-1 was flown to complement lunar elemental abundance studies by the X-ray fluorescence experiment C1XS. XSM measured the ≈ 1.8 - 20 keV solar X-ray spectrum during its nine months of operation in lunar orbit. The soft X-ray spectra can be used to estimate absolute coronal abundances using intensities of emission-line complexes and the plasma temperature derived from the continuum. The best estimates are obtained from the brightest flare observed by XSM: a C2.8-class flare. The well-known first-ionization potential (FIP) effect is observed; abundances are enhanced for the low-FIP elements Fe, Ca, and Si, while the intermediate-FIP element S shows values close to the photospheric abundance. The derived coronal abundances show a quasi-mass-dependent pattern of fractionation.

  13. Status of the Swift/BAT Hard X-ray Transient Monitor

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Barthelmy, S. D.; Cummings, J. R.; Markwardt, C. B.; Skinner, G.; Tueller, J.; Swift/BAT Team

    2008-03-01

    The Hard X-ray Transient Monitor of the Burst Alert Telescope (BAT) on the Swift satellite has been running as a public resource since October 2006. It tracks the 15-50 keV light curves of more than 500 galactic and extra-galactic sources on time scales from a few minutes to a day. Of the sources monitored, 65 are detectable in a day's observations or are periodic, and another 49 have had one or more outbursts (to above 30 mcrab) during the Swift mission, 18 of which have been announced as an Astronomer's Telegram. Light curves are automatically updated each time that new BAT data becomes available ( 10 times daily). The daily exposure for a typical source is 9000 seconds, with a 1-sigma sensitivity of 7 mCrab. In addition to monitoring known sources, the Transient Monitor is capable of making new discoveries, including SWIFT J1756.9-2508, the eighth known transient accretion-powered millisecond pulsar. A summary of results and observing statistics will be presented, along with recent improvements to the monitoring program including more rapid identification of new sources and accumulation of light curves on time scales of longer than a day, which will make the monitor more sensitive to weak sources with slow variability.

  14. X-ray differential phase-contrast tomographic reconstruction with a phase line integral retrieval filter

    NASA Astrophysics Data System (ADS)

    Fu, Jian; Hu, Xinhua; Li, Chen

    2015-04-01

    We report an alternative reconstruction technique for x-ray differential phase-contrast computed tomography (DPC-CT). This approach is based on a new phase line integral projection retrieval filter, which is rooted in the derivative property of the Fourier transform and counteracts the differential nature of the DPC-CT projections. It first retrieves the phase line integral from the DPC-CT projections. Then the standard filtered back-projection (FBP) algorithms popular in x-ray absorption-contrast CT are directly applied to the retrieved phase line integrals to reconstruct the DPC-CT images. Compared with the conventional DPC-CT reconstruction algorithms, the proposed method removes the Hilbert imaginary filter and allows for the direct use of absorption-contrast FBP algorithms. Consequently, FBP-oriented image processing techniques and reconstruction acceleration softwares that have already been successfully used in absorption-contrast CT can be directly adopted to improve the DPC-CT image quality and speed up the reconstruction.

  15. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  16. INTEGRAL Observations of the Be/X-ray binary EX0 2030+375 During Outburst

    NASA Technical Reports Server (NTRS)

    Arranz, A. Camero; Wilson, C. A.; Connell, P.; Nunez, S. Martinez; Blay, P.; Beckmann, V.; Reglero, V.

    2005-01-01

    We present a type-I outburst of the high-mass X-ray binary EX0 2030+375, detected during INTEGRAL'S Performance and Verification phase in December 2002 (on-source time about 10(exp 6) seconds). In addition, six more outbursts have been observed during INTEGRAL'S Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798 plus or minus 0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7 x 10 (exp 36) erg per second, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT(sub BB) approximately 8 keV) and either with a power law model with Gamma=2.04 plus or minus 0.11 keV or a Comptonized component (spherical geometry, kT(sub e).=30 keV, tau = 2.64, kT(sub w)=1.5 keV).

  17. SWIFT X-RAY TELESCOPE MONITORING OF FERMI-LAT GAMMA-RAY SOURCES OF INTEREST

    SciTech Connect

    Stroh, Michael C.; Falcone, Abe D.

    2013-08-15

    We describe a long-term Swift monitoring program of Fermi gamma-ray sources, particularly the 23 gamma-ray ''sources of interest''.We present a systematic analysis of the Swift X-Ray Telescope light curves and hardness ratios of these sources, and we calculate excess variability. We present data for the time interval of 2004 December 22 through 2012 August 31. We describe the analysis methods used to produce these data products, and we discuss the availability of these data in an online repository, which continues to grow from more data on these sources and from a growing list of additional sources. This database should be of use to the broad astronomical community for long-term studies of the variability of these objects and for inclusion in multiwavelength studies.

  18. The December 2015 optical outburst of OJ 287: X-ray and UV time-domain monitor by Swift

    NASA Astrophysics Data System (ADS)

    Ciprini, S.; Perri, M.; Verrecchia, F.; Valtonen, M.

    2015-12-01

    The Swift satellite is monitoring from 2015 Nov. 28 the BL Lac object OJ 287 (z=0.306). Our Swift X-ray and UV time-domain monitor program has been proposed and granted in response to a predicted, and then observed, phase of increased optical activity from OJ 287 (see, ATel#8372 and ATel#8378).

  19. Commercial CMOS image sensors as X-ray imagers and particle beam monitors

    NASA Astrophysics Data System (ADS)

    Castoldi, A.; Guazzoni, C.; Maffessanti, S.; Montemurro, G. V.; Carraresi, L.

    2015-01-01

    CMOS image sensors are widely used in several applications such as mobile handsets webcams and digital cameras among others. Furthermore they are available across a wide range of resolutions with excellent spectral and chromatic responses. In order to fulfill the need of cheap systems as beam monitors and high resolution image sensors for scientific applications we exploited the possibility of using commercial CMOS image sensors as X-rays and proton detectors. Two different sensors have been mounted and tested. An Aptina MT9v034, featuring 752 × 480 pixels, 6μm × 6μm pixel size has been mounted and successfully tested as bi-dimensional beam profile monitor, able to take pictures of the incoming proton bunches at the DeFEL beamline (1-6 MeV pulsed proton beam) of the LaBeC of INFN in Florence. The naked sensor is able to successfully detect the interactions of the single protons. The sensor point-spread-function (PSF) has been qualified with 1MeV protons and is equal to one pixel (6 mm) r.m.s. in both directions. A second sensor MT9M032, featuring 1472 × 1096 pixels, 2.2 × 2.2 μm pixel size has been mounted on a dedicated board as high-resolution imager to be used in X-ray imaging experiments with table-top generators. In order to ease and simplify the data transfer and the image acquisition the system is controlled by a dedicated micro-processor board (DM3730 1GHz SoC ARM Cortex-A8) on which a modified LINUX kernel has been implemented. The paper presents the architecture of the sensor systems and the results of the experimental measurements.

  20. X-ray CT monitoring of iceball growth and thermal distribution during cryosurgery

    NASA Astrophysics Data System (ADS)

    Sandison, George A.; Loye, M. Patricia; Rewcastle, John C.; Hahn, Leszek J.; Saliken, John C.; McKinnon, J. Gregory; Donnelly, Bryan J.

    1998-11-01

    X-ray CT is able to image the internal architecture of frozen tissue. Phantoms of distilled water, a saline-gelatin mixture, lard and a calf liver-gelatin suspension cooled by a plastic tube acting as a long liquid nitrogen cryoprobe were used to study the relationship between Hounsfield unit (HU) values and temperature. There is a signature change in HU value from unfrozen to completely frozen tissue. No discernible relation exists between temperature in a completely frozen tissue and its HU value for the temperature range achieved with commercial cryoprobes. However, such a relation does exist in the typically narrow region of phase change and it is this change in HU value that is the parameter of concern for quantitative monitoring of the freezing process. Calibration of temperature against change in HU value allows a limited set of isotherms to be generated in the phase change region for direct monitoring of iceball growth. The phase change temperature range, mid-phase change temperature and the absolute value of HU change from completely frozen to unfrozen tissue are shown to be sensitive to the medium. Modelling of the temperature distribution within the region of completely frozen phantom using the infinite cylinder solution to the Fourier heat equation allows the temperature history of the phantom to be predicted. A set of isotherms, generated using a combination of thermal modelling and calibrated HU values demonstrates the feasibility of routine x-ray CT assisted cryotherapy. Isotherm overlay will be a major aid to the cryosurgeon who adopts a fixed target temperature as the temperature below which there is a certainty of ablation of the diseased tissue.

  1. Integrating 2-D position sensitive X-ray detectors with low-density alkali halide storage targets

    NASA Astrophysics Data System (ADS)

    Haubold, H.-G.; Hoheisel, W.; Hiller, P.

    1986-05-01

    For the use in scattering experiments with synchrotron radiation, integrating position sensitive X-ray detectors are discussed. These detectors store the photon number equivalent charge (PNEC) in low-density alkali halide targets. Performance tests are given for a detector which uses a Gd 2O 2S fluorescence screen for X-ray detection and the low-density KCl storage target of a television SEC vidicon tube for photon integration. Rather than directly by X-rays, this target is charged by 6 keV electrons from the image intensifier section of the vidicon. Its excellent storage capability allows measurements of extremely high-contrast, high-flux X-ray patterns with the same accuracy as achieved with any single photon detection system if the discussed readout techniques are applied.

  2. The multicolour optical monitoring of the High Mass X-ray Binary CI Cam/XTE J0421+560

    NASA Astrophysics Data System (ADS)

    Konstsntinova, T.; Larionov, V.; Kopatskaya, E.; Larionova, E.; Efimova, N.

    2014-07-01

    We analyse the photometric behaviour of the high-mass X-ray binary system CI Cam/XTE J0421+560. Our observations cover the time interval 1999-2014. The source was monitored with 70-cm AZT-8 (CrAO, Ukraine) and 0.4-m LX-200 (St.Petersburg, Russia) telescopes. During the monitoring period, CI Cam displayed two significant increases of brightness in the optical photometric bands. The first one follows the X-ray outburst that occurred in 1998 March. The second one started in 2013 and lasts until January - February of 2014.

  3. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Späth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  4. Suzaku monitoring of hard X-ray emission from η Carinae over a single binary orbital cycle

    SciTech Connect

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system η Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ∼ 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ∼3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the γ-ray source detected in this field. The helium-like Fe Kα line complex at ∼6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with τ ∼ 10{sup 11} cm{sup –3} s{sup –1}. The NEI plasma increases in importance toward periastron.

  5. Discovery of X-Ray Pulsations from the INTEGRAL Source IGR J11014-6103

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Tomsick, J. A.; Gotthelf, E. V.; Camilo, F.; Ng, C.-Y.; Bodaghee, A.; Rodriguez, J.; Chaty, S.; Rahoui, F.

    2014-11-01

    We report the discovery of PSR J1101-6101, a 62.8 ms pulsar in IGR J11014-6103, a hard X-ray source with a jet and a cometary tail that strongly suggests it is moving away from the center of the supernova remnant (SNR) MSH 11-61A at v > 1000 km s-1. Two XMM-Newton observations were obtained with the EPIC pn in small window mode, resulting in the measurement of its spin-down luminosity \\dot{E}=1.36× 1036 erg s-1, characteristic age τ c = 116 kyr, and surface magnetic field strength Bs = 7.4 × 1011 G. In comparison to τ c , the 10-30 kyr age estimated for MSH 11-61A suggests that the pulsar was born in the SNR with initial period in the range 54 <= P 0 <= 60 ms. PSR J1101-6101 is the least energetic of the 15 rotation-powered pulsars detected by INTEGRAL, and has a high efficiency of hard X-ray radiation and jet power. We examine the shape of the cometary nebula in a Chandra image, which is roughly consistent with a bow shock at the velocity inferred from the SNR age and the pulsar's \\dot{E}. However, its structure differs in detail from the classic bow shock, and we explore possible reasons for this.

  6. Optimization of the x-ray monitoring angle for creating a correlation model between internal and external respiratory signals

    SciTech Connect

    Akimoto, Mami; Nakamura, Mitsuhiro; Mukumoto, Nobutaka; Yamada, Masahiro; Ueki, Nami; Matsuo, Yukinori; Sawada, Akira; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2012-10-15

    Purpose: To perform dynamic tumor tracking irradiation with the Vero4DRT (MHI-TM2000), a correlation model [four dimensional (4D) model] between the displacement of infrared markers on the abdominal wall and the three-dimensional position of a tumor indicated by a minimum of three implanted gold markers is required. However, the gold markers cannot be detected successfully on fluoroscopic images under the following situations: (1) overlapping of the gold markers; and (2) a low intensity ratio of the gold marker to its surroundings. In the present study, the authors proposed a method to readily determine the optimal x-ray monitoring angle for creating a 4D model utilizing computed tomography (CT) images. Methods: The Vero4DRT mounting two orthogonal kV x-ray imaging subsystems can separately rotate the gantry along an O-shaped guide-lane and the O-ring along its vertical axis. The optimal x-ray monitoring angle was determined on CT images by minimizing the root-sum-square of water equivalent path lengths (WEPLs) on the orthogonal lines passing all of the gold markers while rotating the O-ring and the gantry. The x-ray monitoring angles at which the distances between the gold markers were within 5 mm at the isocenter level were excluded to prevent false detection of the gold markers in consideration of respiratory motions. First, the relationship between the WEPLs (unit: mm) and the intensity ratios of the gold markers was examined to assess the validity of our proposed method. Second, our proposed method was applied to the 4D-CT images at the end-expiration phase for 11 lung cancer patients who had four to five gold markers. To prove the necessity of the x-ray monitoring angle optimization, the intensity ratios of the least visible markers (minimum intensity ratios) that were estimated from the WEPLs were compared under the following conditions: the optimal x-ray monitoring angle and the angles used for setup verification. Additionally, the intra- and

  7. Sensitive X-ray and Radio Monitoring of the Sgr A*/G2 Encounter

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl; Baganoff, F. K.; Ponti, G.; Heinke, C. O.; Yusef-Zadeh, F.; Roberts, D. A.; Cotton, W. D.; Gillessen, S.; Genzel, R.; Markoff, S.; Nowak, M.; Neilsen, J.; Schulz, N. S.; Rea, N.

    2014-01-01

    The recent discovery of a dense, cold cloud (dubbed "G2") approaching Sgr A* offers an opportunity to test models of black hole accretion and its associated feedback. G2's orbit is eccentric and the cloud shows signs of tidal disruption by the black hole. High-energy emission from the Sgr A*/G2 encounter may rise toward pericenter (mid-to-late 2013, or early 2014) and continue over the next several years as the material circularizes. This encounter is also likely to enhance Sgr A*'s flare activity across the electromagnetic spectrum. We present preliminary results from our 2013 joint Chandra/XMM/VLA monitoring campaigns. Our programs aim to study the radiation properties of Sgr A* as G2 breaks up and feeds the accretion flow, to constrain the rates and emission mechanisms of faint X-ray flares, and to detect G2 itself as it is shocked and heated. We discuss the constraints these data place on theoretical models for the Sgr A*/G2 encounter and outline plans for continued monitoring with Chandra, XMM, HST, and VLA in 2014.

  8. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Ford, P. G.; Bautz, M. W.; O'Dell, S. L.

    2013-04-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. The CCDs are vulnerable to radiation damage, particularly by soft protons in the Earth's radiation belts and from solar storms. The primary effect of this damage is to increase the charge-transfer inefficiency (CTI) of the 8 front-illuminated CCDs and decrease scientific performance. Soon after launch, the Chandra team implemented procedures to protect ACIS and remove the detector from the telescope focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. As Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. We report on the status of this flight software patch and explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  9. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  10. LOCALIZING INTEGRAL SOURCES WITH CHANDRA: X-RAY AND MULTI-WAVELENGTH IDENTIFICATIONS AND ENERGY SPECTRA

    SciTech Connect

    Tomsick, John A.; Bodaghee, Arash; Chaty, Sylvain; Rodriguez, Jerome; Halpern, Jules; Kalemci, Emrah; Oezbey Arabaci, Mehtap

    2012-08-01

    We report on Chandra observations of 18 hard X-ray (>20 keV) sources discovered with the INTEGRAL satellite near the Galactic plane. For 14 of the INTEGRAL sources, we have uncovered one or two potential Chandra counterparts per source. These provide soft X-ray (0.3-10 keV) spectra and subarcsecond localizations, which we use to identify counterparts at other wavelengths, providing information about the nature of each source. Despite the fact that all of the sources are within 5 Degree-Sign of the plane, four of the IGR sources are active galactic nuclei (AGNs; IGR J01545+6437, IGR J15391-5307, IGR J15415-5029, and IGR J21565+5948) and four others are likely AGNs (IGR J03103+5706, IGR J09189-4418, IGR J16413-4046, and IGR J16560-4958) based on each of them having a strong IR excess and/or extended optical or near-IR emission. We compare the X-ray and near-IR fluxes of this group of sources to those of AGNs selected by their 2-10 keV emission in previous studies and find that these IGR AGNs are in the range of typical values. There is evidence in favor of four of the sources being Galactic (IGR J12489-6243, IGR J15293-5609, IGR J16173-5023, and IGR J16206-5253), but only IGR J15293-5609 is confirmed as a Galactic source as it has a unique Chandra counterpart and a parallax measurement from previous optical observations that puts its distance at 1.56 {+-} 0.12 kpc. The 0.3-10 keV luminosity for this source is (1.4{sup +1.0}{sub -0.4}) Multiplication-Sign 10{sup 32} erg s{sup -1}, and its optical/IR spectral energy distribution is well described by a blackbody with a temperature of 4200-7000 K and a radius of 12.0-16.4 R{sub Sun }. These values suggest that IGR J15293-5609 is a symbiotic binary with an early K-type giant and a white dwarf accretor. We also obtained likely Chandra identifications for IGR J13402-6428 and IGR J15368-5102, but follow-up observations are required to constrain their source types.

  11. The Athena X-ray Integral Field Unit (X-IFU)

    NASA Astrophysics Data System (ADS)

    Barret, Didier; den Herder, Jan-Willem; Piro, Luigi

    2015-09-01

    The X-ray Integral Field Unit (X-IFU) for Athena is based on Transition Edge Sensors (TES). In its baseline configuration, it is made of a monolithic array of 3840 single size TES cooled at ~100 mK, thus providing a spectral resolution of 2.5 eV over a field of view of 5' equivalent diameter. In this paper, I will recall the top-level instrument performance requirements and associated science drivers. The baseline instrument design will be presented before reporting on the on-going instrument activities (e.g. the TES array optimization exercise), that are preparatory to the phase A study and to the demonstration model development. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Finland, Germany, United Kingdom, Poland, Spain, Switzerland together with the United States and Japan.

  12. Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Förster, E.

    2014-09-01

    The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.

  13. Polarimetry in the Hard X-Ray Domain with INTEGRAL SPI

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Roques, J. P.; Clark, D. J.; Jourdain, E.

    2013-06-01

    We present recent improvements in polarization analysis with the INTEGRAL SPI data. The SPI detector plane consists of 19 independent Ge crystals and can operate as a polarimeter. The anisotropy characteristics of Compton diffusions can provide information on the polarization parameters of the incident flux. By including the physics of the polarized Compton process in the instrument simulation, we are able to determine the instrument response for a linearly polarized emission at any position angle. We compare the observed data with the simulation sets by a minimum χ2 technique to determine the polarization parameters of the source (angle and fraction). We have tested our analysis procedure with Crab Nebula observations and find a position angle similar to those previously reported in the literature, with a comfortable significance. Since the instrument response depends on the incident angle, each exposure in the SPI data requires its own set of simulations, calculated for 18 polarization angles (from 0° to 170° in steps of 10°) and unpolarized emission. The analysis of a large number of observations for a given source, required to obtain statistically significant results, represents a large amount of computing time, but it is the only way to access this complementary information in the hard X-ray regime. Indeed, major scientific advances are expected from such studies since the observational results will help to discriminate between the different models proposed for the high energy emission of compact objects like X-ray binaries and active galactic nuclei or gamma-ray bursts. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with participation of Russia and USA.

  14. Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2011-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

  15. First attempt of at-cavity cryogenic X-ray detection in a CEBAF cryomodule for field emission monitoring

    SciTech Connect

    Geng, Rongli; Daly, Edward; Drury, Michael; Palczewski, Ari

    2015-09-01

    We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carried out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.

  16. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. PMID:27163527

  17. Unveiling the nature of INTEGRAL objects through optical spectroscopy. VIII. Identification of 44 newly detected hard X-ray sources

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Parisi, P.; Palazzi, E.; Jiménez-Bailón, E.; Chavushyan, V.; Bassani, L.; Bazzano, A.; Bird, A. J.; Dean, A. J.; Charles, P. A.; Galaz, G.; Landi, R.; Malizia, A.; Mason, E.; McBride, V. A.; Minniti, D.; Morelli, L.; Schiavone, F.; Stephen, J. B.; Ubertini, P.

    2010-09-01

    Hard X-ray surveys performed by the INTEGRAL satellite have discovered a conspicuous fraction (up to 30%) of unidentified objects among the detected sources. Here we continue our program of identification of these objects by (i) selecting probable optical candidates by means of positional cross-correlation of the INTEGRAL detections with soft X-ray, radio, and/or optical archives and (ii) performing optical spectroscopy on them. As a result, we pinpointed and identified, or more accurately characterized, 44 definite or likely counterparts of INTEGRAL sources. Among them, 32 are active galactic nuclei (AGNs; 18 with broad emission lines, 13 with narrow emission lines only, and one X-ray bright, optically normal galaxy) with redshift 0.019 < z < 0.6058, 6 cataclysmic variables (CVs), 5 high-mass X-ray binaries (2 of which in the Small Magellanic Cloud), and 1 low-mass X-ray binary. This was achieved by using 7 telescopes of various sizes and archival data from two online spectroscopic surveys. The main physical parameters of these hard X-ray sources were also determined using the multiwavelength information available in the literature. In general, AGNs are the most abundant population among hard X-ray objects, and our results confirm the tendency of finding AGNs more frequently than any other type of hard X-ray emitting object among unidentified INTEGRAL sources when optical spectroscopy is used as an identification tool. Moreover, the deeper sensitivity of the more recent INTEGRAL surveys enables one to begin detecting hard X-ray emission above 20 keV from sources such as LINER-type AGNs and non-magnetic CVs. Based on observations collected at the following observatories: Cerro Tololo Interamerican Observatory (Chile); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); ESO (La Silla, Chile) under programme 083.D-0110(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of

  18. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    SciTech Connect

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons; Boye, Pit; Schroer, Christian G.; Glatzel, Pieter; Borca, Camelia N.; Beckmann, Felix

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data

  19. Results of ongoing Swift/XRT monitoring of the low mass X-ray binary IGR J17091-3624

    NASA Astrophysics Data System (ADS)

    Ballhausen, Ralf; Grinberg, Victoria; Wilms, Joern; Fuerst, Felix; Eikmann, Wiebke; Bozzo, Enrico; Cadolle Bel, Marion; Egron, Elise; Favre, Thierry; Ferrigno, Carlo; Krauss, Felicia; Kreykenbohm, Ingo; Nowak, Michael A.; Pottschmidt, Katja; Rodriguez, Jerome; Bachetti, Matteo

    2016-03-01

    The low mass X-ray binary IGR J17091-3624 has been reported to be in outburst by Miller et al. (ATel #8742) on 2016 February 26. Subsequent observations by Swift/XRT and INTEGRAL revealed the transient to be in the hard/low state (Grinberg et al., ATel #8761).

  20. THE LOCAL ENVIRONMENT OF ULTRALUMINOUS X-RAY SOURCES VIEWED BY XMM-NEWTON's OPTICAL MONITOR

    SciTech Connect

    Berghea, C. T.; Dudik, R. P.; Tincher, J.; Winter, L. M. E-mail: rachel.dudik@usno.navy.mil

    2013-10-20

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 ultraluminous X-ray sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition, the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for SFRs located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense superclusters, but some of these SFRs are massive enough to contain such clusters. Only three ULXs have no associated SFRs younger than ∼50 Myr. The age and mass estimates for clusters were used to test runaway scenarios. The data are, in general, compatible with stellar-mass binaries accreting at super-Eddington rates and ejected by natal kicks. We also tested the hypothesis that ULXs are sub-Eddington accreting intermediate mass black holes ejected by three-body interactions; however, this is not supported well by the data.

  1. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060

  2. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    SciTech Connect

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-04-15

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  3. Polarimetry in the hard X-ray domain with INTEGRAL SPI

    SciTech Connect

    Chauvin, M.; Roques, J. P.; Jourdain, E.; Clark, D. J.

    2013-06-01

    We present recent improvements in polarization analysis with the INTEGRAL SPI data. The SPI detector plane consists of 19 independent Ge crystals and can operate as a polarimeter. The anisotropy characteristics of Compton diffusions can provide information on the polarization parameters of the incident flux. By including the physics of the polarized Compton process in the instrument simulation, we are able to determine the instrument response for a linearly polarized emission at any position angle. We compare the observed data with the simulation sets by a minimum χ{sup 2} technique to determine the polarization parameters of the source (angle and fraction). We have tested our analysis procedure with Crab Nebula observations and find a position angle similar to those previously reported in the literature, with a comfortable significance. Since the instrument response depends on the incident angle, each exposure in the SPI data requires its own set of simulations, calculated for 18 polarization angles (from 0° to 170° in steps of 10°) and unpolarized emission. The analysis of a large number of observations for a given source, required to obtain statistically significant results, represents a large amount of computing time, but it is the only way to access this complementary information in the hard X-ray regime. Indeed, major scientific advances are expected from such studies since the observational results will help to discriminate between the different models proposed for the high energy emission of compact objects like X-ray binaries and active galactic nuclei or gamma-ray bursts.

  4. DISCOVERY OF X-RAY PULSATIONS FROM THE INTEGRAL SOURCE IGR J11014–6103

    SciTech Connect

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Tomsick, J. A.; Ng, C.-Y.; Bodaghee, A.; Rodriguez, J.; Chaty, S.

    2014-11-10

    We report the discovery of PSR J1101–6101, a 62.8 ms pulsar in IGR J11014–6103, a hard X-ray source with a jet and a cometary tail that strongly suggests it is moving away from the center of the supernova remnant (SNR) MSH 11–61A at v > 1000 km s{sup –1}. Two XMM-Newton observations were obtained with the EPIC pn in small window mode, resulting in the measurement of its spin-down luminosity E-dot =1.36×10{sup 36} erg s{sup –1}, characteristic age τ {sub c} = 116 kyr, and surface magnetic field strength B{sub s} = 7.4 × 10{sup 11} G. In comparison to τ {sub c}, the 10-30 kyr age estimated for MSH 11–61A suggests that the pulsar was born in the SNR with initial period in the range 54 ≤ P {sub 0} ≤ 60 ms. PSR J1101–6101 is the least energetic of the 15 rotation-powered pulsars detected by INTEGRAL, and has a high efficiency of hard X-ray radiation and jet power. We examine the shape of the cometary nebula in a Chandra image, which is roughly consistent with a bow shock at the velocity inferred from the SNR age and the pulsar's E-dot . However, its structure differs in detail from the classic bow shock, and we explore possible reasons for this.

  5. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Thornton, Michael G. (Inventor); Clark, III, Benton C. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  6. Photodiode-Based X-Ray Beam-Position Monitor With High Spatial-Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, P.S.; Siddons, D. P.

    2009-05-25

    We developed a photodiode-based monochromatic X-ray beam-position monitor (X-BPM) with high spatial resolution for the project beamlines of the NSLS-II. A ring array of 32 Si PIN-junction photodiodes were designed for use as a position sensor, and a low-noise HERMES4 ASIC chip was integrated into the electronic readout system. A series of precision measurements to characterize electrically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise is sufficiently below tolerance levels. Following up modeling of detector's performance, including geometrical optimization using a Gaussian beam, we fabricated and assembled a first prototype. In this paper, we describe the development of this new state-of-the-art X-ray BPM along the beamline, in particular, downstream from the monochromator.

  7. 16 yr of RXTE monitoring of five anomalous X-ray pulsars

    SciTech Connect

    Dib, Rim; Kaspi, Victoria M. E-mail: vkaspi@physics.mcgill.ca

    2014-03-20

    We present a summary of the long-term evolution of various properties of the five non-transient anomalous X-ray pulsars (AXPs) 1E 1841–045, RXS J170849.0–400910, 1E 2259+586, 4U 0142+61, and 1E 1048.1–5937, regularly monitored with RXTE from 1996 to 2012. We focus on three properties of these sources: the evolution of the timing, pulsed flux, and pulse profile. We report several new timing anomalies and radiative events, including a putative anti-glitch seen in 1E 2259+586 in 2009, and a second epoch of very large spin-down rate fluctuations in 1E 1048.1–5937 following a large flux outburst. We compile the properties of the 11 glitches and 4 glitch candidates observed from these 5 AXPs between 1996 and 2012. Overall, these monitoring observations reveal several apparent patterns in the behavior of this sample of AXPs: large radiative changes in AXPs (including long-lived flux enhancements, short bursts, and pulse profile changes) are rare, occurring typically only every few years per source; large radiative changes are almost always accompanied by some form of timing anomaly, usually a spin-up glitch; only 20%-30% of timing anomalies are accompanied by any form of radiative change. We find that AXP radiative behavior at the times of radiatively loud glitches is sufficiently similar to suggest common physical origins. The similarity in glitch properties when comparing radiatively loud and radiatively silent glitches in AXPs suggests a common physical origin in the stellar interior. Finally, the overall similarity of AXP and radio pulsar glitches suggests a common physical origin for both phenomena.

  8. Structural modeling of proteins by integrating small-angle x-ray scattering data

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Peng, Jun-Hui; Zhang, Zhi-Yong

    2015-12-01

    Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an “integrative structural biology” approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and low-resolution experimental data using computer simulations. Small-angle x-ray scattering (SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB910203 and 2011CB911104), the National Natural Science Foundation of China (Grant No. 31270760), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB08030102), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113402120013).

  9. Integrated X-Ray Reflectivity Measurements for Elliptically Curved PET Crystals

    SciTech Connect

    Haugh, M J; Ross, P W; Regan, P W; Magoon, J; Shoup, M J; Barrios, M A; Emig, J A; Fournier, K B

    2012-04-26

    Spectroscopy provides valuable information about the temperature and density of a compressed pellet in a plasma. Elliptically curved pentaerythritol (PET) crystals are used as components for spectrometers. Their elliptical geometry gives several advantages related to spectral energy range, source focus, and spectral image compression.[1] The crystal curvature increases the spectrometer throughput but at the cost of a loss in resolution. Four different crystals are used in a spectrometer at the National Ignition Facility (NIF) target chamber at Lawrence Livermore National Laboratory (LLNL). Figure 1 shows the arrangement of the elliptical PET crystals in the snout of a NIF target diagnostic shown in Figure 2. The spectrum from the crystals is captured by four image plates located behind the crystals. A typical mandrel, the darkened section, upon which the PET crystal is glued, is shown in Figure 3, which also shows the complete ellipse. There are four elliptical segment types, each having the same major axis but a different minor axis. The crystals are 150 mm long in the diffraction direction and 25.4 mm high. Two crystals of each type were calibrated. The throughput for each spectrometer is determined by the integrated reflectivity of the PET crystal.[1] The goal of this effort was to measure the reflectivity curve of the PET curved crystal at several energies and determine the integrated reflectivity and the curve width as a function of the X-ray spectral energy and location on the ellipse where the beam strikes.

  10. Integration of X-ray microanalysis and morphometry of biological material

    SciTech Connect

    de Bruijn, W.C.

    1985-01-01

    The authors investigated how to extract both morphometrical and X-ray elemental information from scanning electron microscopical (SEM) or scanning transmission electron microscopical (STEM)-images and how to integrate these two information streams either on line or off-line after storage. Cytochemical reaction products in cell organelles in ultrathin sections are the biological structures of interest. A new program has been proposed and described, which permits determination of both the area and the mean net-intensity value of chemical elements, inhomogeneously distributed over heteromorph organelles. The value of this integration method is demonstrated by three examples of increasing complexity, starting with two elements which are more or less homogeneously distributed over one lysosome, the establishing of a platinum discontinuity in an acidophilic granule and finally the localization of two chemical elements inhomogeneously distributed over a rather heteromorph phagolysosome. In two examples Chelex ion exchange beads, maximally loaded with the element also present in the structure of interest, are co-embedded with the tissue as internal standards. In such cases the absolute elemental concentration in the structures analysed can be established.

  11. Fully 3D-Integrated Pixel Detectors for X-Rays

    SciTech Connect

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; Grybos, Pawel; Holm, Scott; Lipton, Ronald; Maj, Piotr; Patti, Robert; Siddons, David Peter; Szczygiel, Robert; Yarema, Raymond

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  12. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time1

    PubMed Central

    Daurer, Benedikt J.; Hantke, Max F.; Nettelblad, Carl; Maia, Filipe R. N. C.

    2016-01-01

    Advances in X-ray detectors and increases in the brightness of X-ray sources combined with more efficient sample delivery techniques have brought about tremendous increases in the speed of data collection in diffraction experiments. Using X-ray free-electron lasers such as the Linac Coherent Light Source (LCLS), more than 100 diffraction patterns can be collected in a second. These high data rates are invaluable for flash X-ray imaging (FXI), where aerosolized samples are exposed to the X-ray beam and the resulting diffraction patterns are used to reconstruct a three-dimensional image of the sample. Such experiments require immediate feedback on the quality of the data collected to adjust or validate experimental parameters, such as aerosol injector settings, beamline geometry or sample composition. The scarcity of available beamtime at the laser facilities makes any delay extremely costly. This paper presents Hummingbird, an open-source scalable Python-based software tool for real-time analysis of diffraction data with the purpose of giving users immediate feedback during their experiments. Hummingbird provides a fast, flexible and easy-to-use framework. It has already proven to be of great value in numerous FXI experiments at the LCLS. PMID:27275147

  13. SWIFT MONITORING OF CYGNUS X-2: INVESTIGATING THE NEAR-ULTRAVIOLET-X-RAY CONNECTION

    SciTech Connect

    Rykoff, E. S.; Cackett, E. M.; Miller, J. M.

    2010-08-20

    The neutron star X-ray binary (NSXRB) Cyg X-2 was observed by the Swift satellite 51 times over a 4 month period in 2008 with the X-ray Telescope (XRT), UV/optical telescope, and Burst Alert Telescope (BAT) instruments. During this campaign, we observed Cyg X-2 in all three branches of the Z track (horizontal, normal, and flaring branches). We find that the NUV emission is uncorrelated with the soft X-ray flux detected with the XRT and is anticorrelated with the BAT X-ray flux and the hard X-ray color. The observed anticorrelation is inconsistent with simple models of reprocessing as the source of the NUV emission. The anticorrelation may be a consequence of the high inclination angle of Cyg X-2, where NUV emission is preferentially scattered by a corona that expands as the disk is radiatively heated. Alternatively, if the accretion disk thickens as Cyg X-2 goes down the normal branch toward the flaring branch, this may be able to explain the observed anticorrelation. In these models, the NUV emission may not be a good proxy for m-dot in the system. We also discuss the implications of using Swift/XRT to perform spectral modeling of the continuum emission of NSXRBs.

  14. INTEGRAL detects a new outburst from the millisecond X-ray pulsar IGR J17511-3057

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Kuulkers, E.; Bazzano, A.; Beckmann, V.; Bird, T.; Bodaghee, A.; Chenevez, J.; Del Santo, M.; Domingo, A.; Jonker, P.; Kretschmar, P.; Markwardt, C.; Paizis, A.; Pottschmidt, K.; Sanchez-Fernandez, C.; Wijnands, R.; Ferrigno, C.; Tuerler, M.

    2015-03-01

    During the observations performed in the direction of the Galactic Bulge on 2015 March 23 from 02:49 to 07:26 (UTC), the instruments on-board INTEGRAL detected a new outburst from the millisecond X-ray pulsar IGR J17511-3057 (ATel #2196, #2197; Papitto et al., 2010, MNRAS, 407, 2575).

  15. Swift-XRT six-year monitoring of the ultraluminous X-ray source M33 X-8

    NASA Astrophysics Data System (ADS)

    La Parola, V.; D'Aí, A.; Cusumano, G.; Mineo, T.

    2015-08-01

    Context. The long-term evolution of ultraluminous X-ray sources (ULX) with their spectral and luminosity variations in time give important clues on the nature of ULX and on the accretion process that powers them. Aims: We report here the results of a Swift-XRT six-year monitoring campaign of the closest example of a persistent ULX, M33 X-8, that extends the monitoring of this source in the soft X-rays to 16 years. The luminosity of this source is a few 1039 erg s-1, marking the faint end of the ULX luminosity function. Methods: We analyzed the set of 15 observations collected during the Swift monitoring. We searched for differences in the spectral parameters at different observing epochs, adopting several models commonly used to fit the X-ray spectra of ULX. Results: The source exhibits flux variations of about 30%. No significant spectral variations are observed during the monitoring. The average 0.5-10 keV spectrum can be well described by a thermal model, either in the form of a slim disk, or as a combination of a Comptonized corona and a standard accretion disk.

  16. THE X-RAY FLARING PROPERTIES OF Sgr A* DURING SIX YEARS OF MONITORING WITH SWIFT

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Reynolds, M. T.; Kennea, J.; Gehrels, N.; Wijnands, R.

    2013-06-01

    Starting in 2006, Swift has been targeting a region of {approx_equal} 21' Multiplication-Sign 21' around Sagittarius A* (Sgr A*) with the onboard X-Ray Telescope. The short, quasi-daily observations offer a unique view of the long-term X-ray behavior of the supermassive black hole. We report on the data obtained between 2006 February and 2011 October, which encompasses 715 observations with a total accumulated exposure time of {approx_equal}0.8 Ms. A total of six X-ray flares were detected with Swift, which all had an average 2-10 keV luminosity of L{sub X} {approx_equal} (1 - 3) Multiplication-Sign 10{sup 35} erg s{sup -1} (assuming a distance of 8 kpc). This more than doubles the number of such bright X-ray flares observed from Sgr A*. One of the Swift-detected flares may have been softer than the other five, which would indicate that flares of similar intensity can have different spectral properties. The Swift campaign allows us to constrain the occurrence rate of bright (L{sub X} {approx}> 10{sup 35} erg s{sup -1}) X-ray flares to be {approx_equal}0.1-0.2 day{sup -1}, which is in line with previous estimates. This analysis of the occurrence rate and properties of the X-ray flares seen with Swift offers an important calibration point to assess whether the flaring behavior of Sgr A* changes as a result of its interaction with the gas cloud that is projected to make a close passage in 2013.

  17. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework

    NASA Astrophysics Data System (ADS)

    Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A.; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A. J.; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E.; Halasz, Ivan; Friščić, Tomislav

    2015-03-01

    Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.

  18. Soft X-ray irradiance measured by the Solar Aspect Monitor on the Solar Dynamic Observatory Extreme ultraviolet Variability Experiment

    NASA Astrophysics Data System (ADS)

    Lin, C. Y.; Bailey, S. M.; Jones, A.; Woodraska, D.; Caspi, A.; Woods, T. N.; Eparvier, F. G.; Wieman, S. R.; Didkovsky, L. V.

    2016-04-01

    The Solar Aspect Monitor (SAM) is a pinhole camera on the Extreme ultraviolet Variability Experiment (EVE) aboard the Solar Dynamics Observatory. SAM projects the solar disk onto the CCD through a metallic filter designed to allow only solar photons shortward of 7 nm to pass. Contamination from energetic particles and out-of-band irradiance is, however, significant in the SAM observations. We present a technique for isolating the 0.01-7 nm integrated irradiance from the SAM signal to produce the first results of broadband irradiance for the time period from May 2010 to May 2014. The results of this analysis agree with a similar data product from EVE's EUV SpectroPhotometer to within 25%. We compare our results with measurements from the Student Nitric Oxide Explorer Solar X-ray Photometer and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics Solar EUV Experiment at similar levels of solar activity. We show that the full-disk SAM broadband results compared well to the other measurements of the 0.01-7 nm irradiance. We also explore SAM's capability toward resolving spatial contribution from regions of solar disk in irradiance and demonstrate this feature with a case study of several strong flares that erupted from active regions on 11 March 2011.

  19. Hard-X-ray spectra of active galactic nuclei in the INTEGRAL complete sample

    NASA Astrophysics Data System (ADS)

    Molina, M.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bird, A. J.; Bazzano, A.; Ubertini, P.

    2013-08-01

    In this paper, we present the hard-X-ray spectral analysis of a complete sample of active galactic nuclei (AGNs) detected by INTEGRAL/IBIS. In conjunction with IBIS spectra, we make use of Swift/BAT data, with the aim of cross-calibrating the two instruments, studying source variability and constraining some important spectral parameters. We find that flux variability is present in at least 14 per cent of the sample, while spectral variability is found only in one object. There is general good agreement between BAT and IBIS spectra, despite a systematic mismatch of about 22 per cent in normalization. When fitted with a simple power-law model, type 1 and type 2 sources appear to have very similar average photon indices, suggesting that they are powered by the same mechanism. As expected, we also find that a simple power law does not always describe the data sufficiently well, thus indicating a certain degree of spectral complexity, which can be ascribed to features like a high energy cut-off and/or a reflection component. Fixing the reflection to be 0, 1 or 2, we find that our sample covers quite a large range in photon indices as well as cut-off energies; however, the spread is due only to a small number of objects, while the majority of the AGNs lie within well-defined boundaries of photon index (1 ≤ Γ ≤ 2) and cut-off energy (30 ≤ Ecut ≤ 300 keV).

  20. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  1. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  2. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    SciTech Connect

    Wilson-Hodge, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-07-12

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  3. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    PubMed

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  4. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction

    PubMed Central

    Aina, Adeyinka; Gupta, Manish; Boukari, Yamina; Morris, Andrew; Billa, Nashiru; Doughty, Stephen

    2015-01-01

    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture. PMID:27013917

  5. A compact and portable X-ray beam position monitor using Medipix3

    NASA Astrophysics Data System (ADS)

    Rico-Alvarez, O.; Kachatkou, A.; Marchal, J.; Willis, B.; Sawhney, K.; Tartoni, N.; van Silfhout, R. G.

    2014-12-01

    The present work reports on the design and implementation of a novel portable X-ray beam diagnostics (XBPM) device. The device is transparent to the X-ray beam and provides real-time measurements of beam position, intensity, and size. The measurement principle is based on a pinhole camera which records scattered radiation from a Kapton foil which is placed in the beam path. The use of hybrid detectors (Medipix3) that feature a virtually noiseless readout system with capability of single photon detection and energy resolving power enables the diagnostics with a better resolution and higher sensitivity compared to the use of traditional indirect X-ray detection schemes. We describe the detailed system design, which consists of a vacuum compatible focal plane sensor array, a sensor conditioning and readout board and a heterogeneous data processing unit, which also acts as a network server that handles network communications with clients. The readout protocol for the Medipix3 sensor is implemented using field programmable gate array (FPGA) logic resulting in a versatile and scalable system that is capable of performing advanced functions such as data compression techniques and feature extraction. For the system performance measurements, we equipped the instrument with a single Medipix3 die, bump bonded to a Si sensor, rather than four for which it was designed. Without data compression, it is capable of acquiring magnified images and profiles of synchrotron X-ray beams at a transfer rate through Ethernet of 27 frames/s for one Medipix3 die.

  6. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  7. The hard X-ray continuum of Cen a observed with INTEGRAL SPI

    SciTech Connect

    Burke, Mark J.; Jourdain, Elisabeth; Roques, Jean-Pierre; Evans, Daniel A.

    2014-05-20

    We revisit the average hard X-ray spectrum from the active galactic nucleus (AGN) of Centaurus A (Cen A) using 10 yr worth of observations with INTEGRAL SPI. This source has the highest flux observed from any AGNs in the SPI bandpass (23 keV-8 MeV). The 10 year light curve of Cen A is presented, and hardness ratios confirm that the spectral shape changes very little despite the luminosity varying by a factor of a few. Primarily, we establish the presence of a reflection component in the average spectrum by demonstrating an excess between 20 and 60 keV, from extending the spectral shape observed at low energy to the SPI regime. The excess in Chandra HETGS and INTEGRAL SPI data is well described by reflection of the dominant power-law spectrum from a neutral, optically thick atmosphere. We find that the reprocessed emission contributes 20%-25% of the 23-100 keV flux. The existence of a cutoff at tens to hundreds of kiloelectron volts remains controversial. Using simulated spectra, we demonstrate that a high energy cutoff reproduces the observed spectral properties of Cen A more readily than a simple power law. However, we also show that such a cutoff is probably underestimated when neglecting (even modest) reflection, and for Cen A would be at energies >700 keV, with a confidence of >95%. This is atypically high for thermal Comptonizing plasmas observed in AGNs, and we propose that we are in fact modeling the more gradual change in spectral shape expected of synchrotron self-Compton spectra.

  8. X-ray simulation for structural integrity for aerospace components - A case study

    NASA Astrophysics Data System (ADS)

    Singh, Surendra; Gray, Joseph

    2016-02-01

    The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of

  9. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  10. An intense state of hard X-ray emission of Cyg X-1 observed by INTEGRAL coincident with TeV measurements

    NASA Astrophysics Data System (ADS)

    Malzac, J.; Lubiński, P.; Zdziarski, A. A.; Cadolle Bel, M.; Türler, M.; Laurent, P.

    2008-12-01

    Aims: We present INTEGRAL light curves and spectra of the black-hole binary Cyg X-1 during a bright event that occurred in 2006 September, and which was simultaneous with a detection at 0.15-1 TeV energies by the MAGIC telescope. Methods: We analyse the hard X-ray emission from 18 to 700 keV with the INTEGRAL data taken on 2006 September 24-26 by the IBIS and SPI instruments. These data are supplemented with RXTE All Sky Monitor data at lower energy. We present the light curves and fit the high energy spectrum with various spectral models. Results: Despite variations in the flux by a factor of ~2 in the 20-700 keV energy band, the shape of the energy spectrum remained remarkably stable. It is very well represented by an e-folded power law with the photon index of Γ ≃ 1.4 and a high energy cut-off at Ec ≃ 130-140 keV. The spectrum is also well described by thermal Comptonisation including a moderate reflection component, with a solid angle of the reflector of ~ 0.4 × 2π. The temperature of the hot Comptonising electrons is kTe ~ 70 keV and their Thomson optical depth is τ ~ 2.5. These spectral properties are typical of those observed in the low/hard state. This shows that Cyg X-1 may stay in the low hard state at least up to the flux level of 2 Crab, which corresponds to ~2-3% of the Eddington luminosity. It is the first time a persistent high-mass black-hole binary is observed at a few percent of the Eddington luminosity with a stable low/hard state spectrum over a period of a few days. Such a bright hard state has so far been observed only during the rising phase of transient low-mass black-hole binaries. The TeV detection coincides with the peak of a small X-ray flare just after a very fast rise in hard X-ray flux. In contrast, the source remained undetected by MAGIC at the peak of a larger X-ray flare occurring one day later and corresponding to the maximum of the X-ray luminosity of the whole outburst. We do not find any obvious correlation between the

  11. SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347

    SciTech Connect

    La Parola, V.; Cusumano, G.; Segreto, A.; D'Aì, A.; Masetti, N.; D'Elia, V.

    2013-09-20

    IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of P {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.

  12. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  13. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    SciTech Connect

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-18

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  14. Hard X-Ray Emissions from Cassiopeia A Observed by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhuo

    2016-07-01

    Cassiopeia A (Cas A), as the nearby young remnant of a core-collapse supernova, is the best candidate for astrophysical studies in supernova explosion and its environment. We studied the hard X-ray emission from Cas A using the 10 year data of INTEGRAL observations, and first detected non-thermal continuum emission from the source up to 220 keV. The 44Ti line emission at 68 and 78 keV is confirmed by our observations with a mean flux of ∼(2.2 ± 0.4) × 10‑5 ph cm‑2 s‑1, corresponding to a 44Ti yield in Cas A of (1.3 ± 0.4) × 10‑4 M ⊙. The continuum emission from 3 to 500 keV can be fit with a thermal bremsstrahlung of kT ∼ 0.79 ± 0.08 keV plus a power-law model of Γ ∼ 3.13 ± 0.03. The non-thermal emission from Cas A is well fit by a power-law model without a cutoff up to 220 keV. This radiation characteristic is inconsistent with diffusive shock acceleration models with a remnant shock velocity of only 5000 km s‑1. The central compact object in Cas A cannot significantly contribute to the emission above 80 keV. Some possible physical origins of the non-thermal emission above 80 keV from the remnant shock are discussed. We deduce that the asymmetrical supernova explosion scenario of Cas A is a promising scenario for the production of high-energy synchrotron radiation photons, where a portion of the ejecta with a velocity of ∼0.1c and opening angle of ∼10° can account for the 100 keV emission, as is consistent with the “jet” observed in Cas A.

  15. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Jiři

    2014-02-01

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  16. Hard X-Ray Emissions from Cassiopeia A Observed by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Zhuo

    2016-07-01

    Cassiopeia A (Cas A), as the nearby young remnant of a core-collapse supernova, is the best candidate for astrophysical studies in supernova explosion and its environment. We studied the hard X-ray emission from Cas A using the 10 year data of INTEGRAL observations, and first detected non-thermal continuum emission from the source up to 220 keV. The 44Ti line emission at 68 and 78 keV is confirmed by our observations with a mean flux of ˜(2.2 ± 0.4) × 10‑5 ph cm‑2 s‑1, corresponding to a 44Ti yield in Cas A of (1.3 ± 0.4) × 10‑4 M ⊙. The continuum emission from 3 to 500 keV can be fit with a thermal bremsstrahlung of kT ˜ 0.79 ± 0.08 keV plus a power-law model of Γ ˜ 3.13 ± 0.03. The non-thermal emission from Cas A is well fit by a power-law model without a cutoff up to 220 keV. This radiation characteristic is inconsistent with diffusive shock acceleration models with a remnant shock velocity of only 5000 km s‑1. The central compact object in Cas A cannot significantly contribute to the emission above 80 keV. Some possible physical origins of the non-thermal emission above 80 keV from the remnant shock are discussed. We deduce that the asymmetrical supernova explosion scenario of Cas A is a promising scenario for the production of high-energy synchrotron radiation photons, where a portion of the ejecta with a velocity of ˜0.1c and opening angle of ˜10° can account for the 100 keV emission, as is consistent with the “jet” observed in Cas A.

  17. Time integrated x-ray measurments of the very energetic electron end loss profile in TMX-U

    SciTech Connect

    Osher, J.E.; Fabyan, J.

    1984-09-14

    The time-integrated 2-D profile of the thick-target bremsstrahlung produced by energetic end loss electrons has been measured during ECRH operation of TMX-U. Sheets of x-ray film and/or arrays of thermoluminescent dosimeters were placed on the outside of the end tank end wall to measure the relative spatial x-ray profile, with locally added filters of Pb to determine the effective mean x-ray energy. The purpose of this simple survey diagnostic was to allow deduction of the gross features of the ECRH region. The electron source functions needed to fit the x-ray data were modeled for various anchor cell radial distributions mapped along magnetic field lines to the elliptical plasma potential control plates or the Al end walls. The data are generally consistent with (1) major ECR heating in the central 25-cm-diam core, (2) a mean ECRH electron loss energy of 420 keV, and (3) an ECRH coupling efficiency to these hot electrons of greater than or equal to 10%.

  18. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    NASA Astrophysics Data System (ADS)

    Manova, D.; Bergmann, A.; Mändl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-01

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton® windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  19. Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

    SciTech Connect

    Manova, D.; Bergmann, A.; Maendl, S.; Neumann, H.; Rauschenbach, B.

    2012-11-15

    Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton{sup Registered-Sign} windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup.

  20. Earth Occultation Monitoring of the Hard X-ray/Low-Energy Gamma Ray Sky with GBM

    NASA Astrophysics Data System (ADS)

    Cherry, Michael L.; Camero-Arranz, A.; Case, G. L.; Chaplin, V.; Finger, M. H.; Jenke, P. A.; Rodi, J. C.; Wilson-Hodge, C. A.; GBM Earth Occultation Team

    2012-01-01

    By utilizing the Earth occultation technique (EOT), the Gamma-Ray Burst Monitor (GBM) instrument aboard Fermi has been used to make nearly continuous full-sky observations in the 8-1000 keV energy range. The GBM EOT analysis program currently monitors an input catalog containing 235 sources. We will present the GBM catalog of sources observed in the first 3 years of the EOT monitoring program, with special emphasis on the high energy (>100 keV) and time-variable sources, in particular the Crab, Cyg X-1, and A0535+26. We will also describe the initial results of an all-sky imaging analysis of the EOT data, with comparisons to the Swift, INTEGRAL, and Fermi LAT catalogs. This work is supported by the NASA Fermi Guest Investigator program, NASA/Louisiana Board of Regents, and Spanish Ministerio de Ciencia de Innovacion.

  1. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  2. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  3. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    PubMed

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment. PMID:2828276

  4. The Fermi-GBM X-Ray Burst Monitor: Thermonuclear Bursts from 4U 0614+09

    NASA Astrophysics Data System (ADS)

    Linares, M.; Connaughton, V.; Jenke, P.; van der Horst, A. J.; Camero-Arranz, A.; Kouveliotou, C.; Chakrabarty, D.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Finger, M.; Paciesas, W. S.; Preece, R.; von Kienlin, A.; Wilson-Hodge, C. A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 ± 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  5. THE FERMI-GBM X-RAY BURST MONITOR: THERMONUCLEAR BURSTS FROM 4U 0614+09

    SciTech Connect

    Linares, M.; Chakrabarty, D.; Connaughton, V.; Bhat, P. N.; Briggs, M. S.; Preece, R.; Jenke, P.; Kouveliotou, C.; Wilson-Hodge, C. A.; Camero-Arranz, A.; Finger, M.; Paciesas, W. S.; Beklen, E.; Von Kienlin, A.

    2012-12-01

    Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the NS interior. During the first year of a systematic all-sky search for X-ray bursts using the Gamma-ray Burst Monitor aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09 when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12 {+-} 3 days (68% confidence interval) between 2010 March and 2011 March, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 days (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias toward detecting only the longest and most energetic bursts from slowly accreting NSs.

  6. Implementing PET-guided biopsy: integrating functional imaging data with digital x-ray mammography cameras

    NASA Astrophysics Data System (ADS)

    Weinberg, Irving N.; Zawarzin, Valera; Pani, Roberto; Williams, Rodney C.; Freimanis, Rita L.; Lesko, Nadia M.; Levine, E. A.; Perrier, N.; Berg, Wendie A.; Adler, Lee P.

    2001-05-01

    Purpose: Phantom trials using the PET data for localization of hot spots have demonstrated positional accuracies in the millimeter range. We wanted to perform biopsy based on information from both anatomic and functional imaging modalities, however we had a communication challenge. Despite the digital nature of DSM stereotactic X-ray mammography devices, and the large number of such devices in Radiology Departments (approximately 1600 in the US alone), we are not aware of any methods of connecting stereo units to other computers in the Radiology department. Methods: We implemented a local network between an external IBM PC (running Linux) and the Lorad Stereotactic Digital Spot Mammography PC (running DOS). The application used IP protocol on the parallel port, and could be run in the background on the LORAD PC without disrupting important clinical activities such as image acquisition or archiving. With this software application, users of the external PC could pull x-ray images on demand form the Load DSM computer. Results: X-ray images took about a minute to ship to the external PC for analysis or forwarding to other computers on the University's network. Using image fusion techniques we were able to designate locations of functional imaging features as the additional targets on the anatomic x-rays. These pseudo-features could then potentially be used to guide biopsy using the stereotactic gun stage on the Lorad camera. New Work to be Presented: A method of transferring and processing stereotactic x-ray mammography images to a functional PET workstation for implementing image-guided biopsy.

  7. THREE YEARS OF FERMI GBM EARTH OCCULTATION MONITORING: OBSERVATIONS OF HARD X-RAY/SOFT GAMMA-RAY SOURCES

    SciTech Connect

    Wilson-Hodge, Colleen A.; Jenke, Peter; Case, Gary L.; Cherry, Michael L.; Rodi, James; Camero-Arranz, Ascension; Chaplin, Vandiver; Bhat, Narayan; Briggs, Michael S.; Connaughton, Valerie; Preece, Robert; Beklen, Elif; Finger, Mark; Paciesas, William S.; Greiner, Jochen; Meegan, Charles A.; Von Kienlin, Andreas; Kippen, R. Marc

    2012-08-01

    The Gamma-ray Burst Monitor (GBM) on board Fermi has been providing continuous data to the astronomical community since 2008 August 12. In this paper, we present the results of the analysis of the first three years of these continuous data using the Earth occultation technique to monitor a catalog of 209 sources. From this catalog, we detect 99 sources, including 40 low-mass X-ray binary/neutron star systems, 31 high-mass X-ray binary/neutron star systems, 12 black hole binaries, 12 active galaxies, and 2 other sources, plus the Crab Nebula, and the Sun. Nine of these sources are detected in the 100-300 keV band, including seven black hole binaries, the active galaxy Cen A, and the Crab. The Crab and Cyg X-1 are also detected in the 300-500 keV band. GBM provides complementary data to other sky-monitors below 100 keV and is the only all-sky monitor above 100 keV. Up-to-date light curves for all of the catalog sources can be found online.

  8. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  9. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  10. Monitoring the long outburst of the very-faint X-ray transient XMMU J174716.1-281048

    NASA Astrophysics Data System (ADS)

    Del Santo, Melania; Romano, Patrizia; Sidoli, Lara

    2012-05-01

    XMMU J174716.1-281048 is a burster, very faint X-ray transient (VFXT), located at 0.9 degree off the Galactic Centre. It has been classified as the first "quasi-persistent" VFXT (Del Santo et al. 2007, A&A, 468, L17) showing a prolonged accretion episode of many years (ATel #1078). In order to monitor this peculiar long outburst, we thus observe the source once per year. A new ToO with Swift/XRT has been performed on 2012-05-06 16:44:24 UT to 18:26:56 UT (2ks net exposure).

  11. AMiBA: Scaling Relations Between the Integrated Compton-y and X-ray-derived Temperature, Mass, and Luminosity

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Wei Locutus; Wu, Jiun-Huei Proty; Ho, Paul T. P.; Koch, Patrick M.; Liao, Yu-Wei; Lin, Kai-Yang; Liu, Guo-Chin; Molnar, Sandor M.; Nishioka, Hiroaki; Umetsu, Keiichi; Wang, Fu-Cheng; Altamirano, Pablo; Birkinshaw, Mark; Chang, Chia-Hao; Chang, Shu-Hao; Chang, Su-Wei; Chen, Ming-Tang; Chiueh, Tzihong; Han, Chih-Chiang; Huang, Yau-De; Hwang, Yuh-Jing; Jiang, Homin; Kesteven, Michael; Kubo, Derek; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Raffin, Philippe; Wei, Tashun; Wilson, Warwick

    2010-06-01

    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich effect properties of clusters of galaxies, using data taken during 2007 by the Y. T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y 2500 to the X-ray-derived gas temperature T e, total mass M 2500, and bolometric luminosity LX within r 2500. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y 2500-LX relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.

  12. WIDE ANGLE X-RAY SKY MONITORING FOR CORROBORATING NON-ELECTROMAGNETIC COSMIC TRANSIENTS

    SciTech Connect

    Guetta, Dafne; Eichler, David E-mail: eichler@bgumail.bgu.ac.i

    2010-03-20

    Gravitational waves (GWs) can be emitted from coalescing neutron star (NS) and black hole-neutron star binaries, which are thought to be the sources of short hard gamma-ray bursts (SHBs). The gamma-ray fireballs seem to be beamed into a small solid angle and therefore only a fraction of detectable GW events are expected to be observationally coincident with SHBs. Similarly, ultrahigh energy neutrino signals associated with gamma-ray bursts could fail to be corroborated by prompt gamma-ray emission if the latter is beamed into a narrower cone than the neutrinos. Alternative ways to corroborate non-electromagnetic signals from coalescing NSs are therefore all the more desirable. It is noted here that the extended X-ray tails (XRTs) of SHBs are similar to X-ray flashes (XRFs), and that both can be attributed to an off-axis line of sight and thus span a larger solid angle than the hard emission. It is proposed that a higher fraction of detectable GW events may be coincident with XRF/XRT than with hard gamma-rays, thereby enhancing the possibility of detecting it as a GW or neutrino source. Scattered gamma-rays, which may subtend a much larger solid angle than the primary gamma-ray jet, are also candidates for corroborating non-electromagnetic signals.

  13. Undulator beamline optimization with integrated chicanes for X-ray free-electron-laser facilities.

    PubMed

    Prat, Eduard; Calvi, Marco; Ganter, Romain; Reiche, Sven; Schietinger, Thomas; Schmidt, Thomas

    2016-07-01

    An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses. PMID:27359133

  14. Investigation on Coding Method of Dental X-ray Image for Integrated Hospital Information System

    NASA Astrophysics Data System (ADS)

    Seki, Takashi; Hamamoto, Kazuhiko

    Recently, medical information system in dental field goes into digital system. In the system, X-ray image can be taken in digital modality and input to the system directly. Consequently, it is easy to combine the image data with alpha-numerical data which are stored in the conventional medical information system. It is useful to manipulate alpha-numerical data and image data simultaneously. The purpose of this research is to develop a new coding method for dental X-ray image. The method enables to reduce a disk space to store the images and transmit the images through Internet or LAN lightly. I attempt to apply multi-resolution analysis (wavelet transform) to accomplish the purpose. Proposed method achieves low bit-rate compared with conventional method.

  15. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  16. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  17. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  18. AGN in the Swift/BAT and INTEGRAL Hard X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Beckmann, Volker; Tueller, Jack; Baumgartner, Wayne; Markwardt, Craig; Mushotzky, Richard; Skinner, Gerry

    2008-01-01

    Two hard X-ray surveys are in progress at this time. They provide a unique new window on compact objects and black holes. I will discuss how these two surveys complement each other and the potential for improved coordination that could yield significant near term results in both sensitivity and time coverage. I will pay particular attention to the discovery of faint sources including new results from the 36 month survey from Swift/Burst Alert Telescope (BAT).

  19. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    SciTech Connect

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-12-15

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS{sub PC}{>=}NPS{sub EI} and hence DQE{sub PC}{<=}DQE{sub EI}. The necessary and sufficient condition for

  20. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., “white”) difference in their NPS exists such that NPSPC≥NPSEI and hence DQEPC≤DQEEI. The necessary and sufficient condition for equality is that the PSF is a

  1. SID case studies utilizing a VLF solar x-ray flare monitoring network

    NASA Astrophysics Data System (ADS)

    Danielides, Michael; Spanier, Felix; Manninen, Jyrki; Skripachev, Vladimir

    Intense ultraviolet and x-ray radiation originating from solar flares are sources for sudden ionospheric disturbances (SID), which are enhancing the VLF radio propagation and are phenomena of the ionospheric D and E regions. Since summer 2012 the InFlaMo project is operating novel low cost SDR receivers as the main German participation to the International Space Weather Initiative (ISWI) in Germany, Finland, Russia and South Africa. The first objective of this paper is the presentation of the InFlaMo project and its novelty. The second aim is presenting case-studies, which are combining observations made together with other ionospheric sounders as well as with global navigation satellite system (GNSS) data showing trans-ionospheric radio-link disturbances accompanying the SID. Especially, disturbances of the trans-ionospheric radio-link are phenomena of the F region. Finally, the involved vertical ionospheric coupling effects are discussed within the presented case studies.

  2. Monitoring of Ultraluminous X-ray sources in the Antennae Galaxies

    NASA Astrophysics Data System (ADS)

    Feng, Hua

    2006-10-01

    Spectral state transitions are a key signature of black hole binaries (BHBs) and reflect the properties of the accretion flow and the central compact object. They have been systematically studied in Galactic BHBs and found to follow well-defined patterns. Ultraluminous X-ray sources (ULXs) are either intermediate-mass black holes or a special class of stellar-mass black holes, and should follow a set pattern of spectral evolution which is essentially associated with their natures. We propose 6 XMM observations of the Antennae galaxies (NGC 4038/4039) with an exposure of 20 ksec each and at intervals of weeks to months to see if state transitions of ULXs have the same, or different, pattern as Galactic BHBs.

  3. Combined use of videoendoscopy and X-ray imaging for improved monitoring of stenting application

    NASA Astrophysics Data System (ADS)

    Cysewska-Sobusiak, A. R.; Sowier, A.; Skrzywanek, P.

    2005-09-01

    The subject of this paper concerns advanced techniques of procedures and imaging used in minimally invasive surgery and in non-operable cases of the alimentary tract tumor therapy. Examples of videoendoscopy and X-ray imaging used for the application of stents (prostheses) and catheters allowing for the performance of diagnostic and endo-therapeutic procedures are described. The possibility was indicated to elaborate a new method of proceeding in tumor therapy in the patients for whom the methods used so far were ineffective. In the paper examples of combined imaging the application of metallic stents and plastic catheters allowing for the performance of diagnostic and therapeutic procedures are presented. The cases shown refer to tumor located in the esophagus and in the bile and pancreatic ducts.

  4. Synchrotron radiation x-ray beam profile monitor using chemical vapor deposition diamond film

    SciTech Connect

    Kudo, Togo; Takahashi, Sunao; Nariyama, Nobuteru; Hirono, Toko; Tachibana, Takeshi; Kitamura, Hideo

    2006-12-15

    Photoluminescence (PL) of a Si-doped polycrystalline diamond film fabricated using the chemical vapor deposition technique was employed to measure the profile of a synchrotron radiation pink x-ray beam emitted from an in-vacuum hybrid undulator at the SPring-8 facility. The spectrum of the section of the diamond film penetrated by the emitted visible red light exhibited a peak at 739 nm and a wideband structure extending from 550 to 700 nm. The PL intensity increased with the absorbed dose of the incident beam in the diamond within a dynamic range of 10{sup 3}. A two-dimensional distribution of the PL intensity revealed the undulator beam profile.

  5. The crystallization of hectorite clays as monitored by small angle X-ray scattering and NMR

    SciTech Connect

    Carrado, K. A.; Xu, L.; Seifert, S.; Gregory, D.; Song, K.; Botto, R. E.

    1999-12-13

    The authors have probed the 48-hr crystallization of a magnesium silicate clay called hectorite. Small angle X-ray scattering (SAXS) at the Advanced Photon Source using aliquots ex situ has revealed that data is consistent with ex situ XRD, TGA, AFM, and IR data in that all these techniques see clay crystallite beginning to form in the first few hours of reaction. Tetraethylammonium (TEA) ions are used to aid crystallization and become incorporated as the exchange cations within the interlayers. {sup 13}C NMR shows that 80% of the final TEA loading is accomplished in the first 10 hrs. {sup 29}Si NMR displays a visible clay silicate peak after just 1 hr. In addition, the first in situ study of clay crystallization of any kind was performed by in situ SAXS. Results are consistent with the ex situ data as well as showing the sensitivity of SAXS to sol gel reactions occurring on the order of minutes.

  6. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  7. Integrated X-ray and charged particle active pixel CMOS sensor arrays using an epitaxial silicon sensitive region

    SciTech Connect

    Kleinfelder, Stuart; Bichsel, Hans; Bieser, Fred; Matis, Howard S.; Rai, Gulshan; Retiere, Fabrice; Weiman, Howard; Yamamoto, Eugene

    2002-07-01

    Integrated CMOS Active Pixel Sensor (APS) arrays have been fabricated and tested using X-ray and electron sources. The 128 by 128 pixel arrays, designed in a standard 0.25 micron process, use a {approx}10 micron epitaxial silicon layer as a deep detection region. The epitaxial layer has a much greater thickness than the surface features used by standard CMOS APS, leading to stronger signals and potentially better signal-to-noise ratio (SNR). On the other hand, minority carriers confined within the epitaxial region may diffuse to neighboring pixels, blur images and reduce peak signal intensity. But for low-rate, sparse-event images, centroid analysis of this diffusion may be used to increase position resolution. Careful trade-offs involving pixel size and sense-node area verses capacitance must be made to optimize overall performance. The prototype sensor arrays, therefore, include a range of different pixel designs, including different APS circuits and a range of different epitaxial layer contact structures. The fabricated arrays were tested with 1.5 GeV electrons and Fe-55 X-ray sources, yielding a measured noise of 13 electrons RMS and an SNR for single Fe-55 X-rays of greater than 38.

  8. Development of laser cladding system with process monitoring by x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terada, Takaya; Yamada, Tomonori; Nishimura, Akihiko

    2014-02-01

    We have been developing a new laser cladding system to repair the damages of parts in aging plants. It consists of some devices which are a laser torch, composite-type optical fiber, QCW fiber laser and etc. All devices are installed in a mobile rack, so we can carry it to plants, laboratories or anywhere we want to use. We should irradiate the work with the best accuracy of laser beam and filler wire in laser cladding. A composite-type optical fiberscope is useful. This fiberscope was composed of a center fiber for beam delivery surrounded by 20000 fibers for visible image delivery. Thus it always keeps target on center of gun-sight. We succeeded to make a line laser cladding on an inside wall of 1-inch tube by our system. Before this success, we solved two serious problems which are the contamination of optics and the deformation of droplet. Observing laser cladding process by X-ray imaging with Spring-8 synchrotron radiation, we found that the molten pool depth was formed to be under a hundred micrometers for 10 milliseconds. A Quasi-CW fiber laser with 1 kW was employed for a heat source to generate the shallow molten pool. The X-ray shadowgraph clarified that a molten droplet was formed at the edge of a wire up to a millimeter size. It grew up if the wire didn't contact with the tube wall in initial state. Here we succeeded to measure the thermo-electromotive force voltage between a wire and a tube metal to confirm whether both came in contact. We propose to apply the laser cladding technology to the maintenance of aging industrial plants and nuclear facilities.

  9. In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction.

    PubMed

    Halasz, Ivan; Kimber, Simon A J; Beldon, Patrick J; Belenguer, Ana M; Adams, Frank; Honkimäki, Veijo; Nightingale, Richard C; Dinnebier, Robert E; Friščić, Tomislav

    2013-09-01

    We describe the only currently available protocol for in situ, real-time monitoring of mechanochemical reactions and intermediates by X-ray powder diffraction. Although mechanochemical reactions (inducing transformations by mechanical forces such as grinding and milling) are normally performed in commercially available milling assemblies, such equipment does not permit direct reaction monitoring. We now describe the design and in-house modification of milling equipment that allows the reaction jars of the operating mill to be placed in the path of a high-energy (∼90 keV) synchrotron X-ray beam while the reaction is taking place. Resulting data are analyzed using conventional software, such as TOPAS. Reaction intermediates and products are identified using the Cambridge Structural Database or Inorganic Crystal Structure Database. Reactions are analyzed by fitting the time-resolved diffractograms using structureless Pawley refinement for crystalline phases that are not fully structurally characterized (such as porous frameworks with disordered guests), or the Rietveld method for solids with fully determined crystal structures (metal oxides, coordination polymers). PMID:23949378

  10. In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  11. Integrating X-ray fluorescence and infrared imaging microspectroscopies for comprehensive characterization of an acetaminophen model pharmaceutical.

    PubMed

    Patterson, Brian M; Havrilla, George J

    2006-05-01

    The integration of full spectral images using the complementary microspectroscopic imaging techniques X-ray fluorescence and Fourier transform infrared is demonstrated. This effort surpasses previous work in that a single chemometric software package is used to elicit chemical information from the integrated spectroscopic images. Integrating these two complementary spectroscopic methods provides both elemental and molecular spatial distribution within a specimen. The critical aspect in this work is using full spectral maps from each pixel within the image and subsequent processing with chemometric tools to provide integrated chemical information. This integration enables a powerful approach to more comprehensive materials characterization. Issues addressed include sample registration and beam penetration depth and how each affects post-processing. An inorganic salt and an acetaminophen pharmaceutical model mixture demonstrate the power of integrating these techniques with chemometric software. PMID:16756696

  12. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  13. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    SciTech Connect

    Stafford, David

    2009-01-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  14. Monitoring the Health and Safety of the ACIS Instrument On-Board the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Virani, Shanil N.; Ford, Peter G.; DePasquale, Joseph M.; Plucinsky, Paul P.

    2002-12-01

    The Chandra X-ray Observatory (CXO), NASA's latest "Great Observatory", was launched on July 23, 1999 and reached its final orbit on August 7, 1999. The CXO is in a highly elliptical orbit, approximately 140,000 km × 10,000 km, and has a period of approximately 63.5 hours (≍2.65 days). Communication with the CXO nominally consists of 1-hour contacts spaced 8-hours apart. Thus, once a communication link has been established, it is very important that the health and safety status of the scientific instruments as well as the Observatory itself be determined as quickly as possible. In this paper, we focus exclusively on the automated health and safety monitoring scripts developed for the Advanced CCD Imaging Spectrometer (ACIS) during those 1-hour contacts. ACIS is one of the two focal plane instruments on-board the CXO. We present an overview of the real-time ACIS Engineering Data Web Page and the alert schemes developed for monitoring the instrument status during each communication contact. A suite of HTML and PERL scripts monitors the instrument hardware house-keeping electronics (i.e., voltages and currents) and temperatures during each contact. If a particular instrument component is performing either above or below pre- established operating parameters, a sequence of email and alert pages are spawned to the Science Operations Team of the Chandra X-ray Observatory Center so that the anomaly can be quickly investigated and corrective actions taken if necessary. We also briefly discuss the tools used to monitor the real-time science telemetry reported by the ACIS flight software. The authors acknowledge support for this research from NASA contract NAS8-39073.

  15. Rossi X-Ray Timing Explorer All-Sky Monitor Detection of the Orbital Period of Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Vanderlinde, Keith W.; Levine, Alan M.; Rappaport, Saul A.

    2003-06-01

    The orbital period of Scorpius X-1 has been accepted as 0.787313 days since its discovery in archival optical photometric data by Gottlieb, Wright, & Liller. This period has apparently been confirmed multiple times in the years since in both photometric and spectroscopic optical observations, although to date only marginal evidence has been reported for modulation of the X-ray intensity at that period. We have used data taken with the All Sky Monitor on board the Rossi X-Ray Timing Explorer over the past 6 years to search for such a modulation. A major difficulty in detecting the orbit in X-ray data is presented by the flaring behavior in this source, wherein the (1.5-12 keV) X-ray intensity can change by up to a factor of 2 within a fraction of a day. These flares contribute nearly white noise to Fourier transforms of the intensity time series and thereby tend to obscure weak modulations, i.e., of a few percent or less. We present herein a technique for substantially reducing the effects of the flaring behavior while, at the same time, retaining much of any periodic orbital modulation, provided only that the two temporal behaviors exhibit different spectral signatures. Through such a search, we have found evidence for orbital modulation at the ~1% level with a period of 0.78893 days. This period is equal within our accuracy to a period (0.78901 days) that differs by 1 cycle yr-1 from the accepted value and that was also detected by Gottlieb et al. at a strength nearly as great as that of the 0.787313 day periodicity. We note that many of the reported optical observations of Sco X-1 have been made within 1 or 2 months of early June, when Sco X-1 transits the meridian at midnight. All periodicity searches based only on such observations would have been subject to the same 1 cycle yr-1 alias that affected the search of Gottlieb and coworkers. These considerations lead us to suggest that the actual period may in fact be 0.78901 days and that further observations will

  16. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    SciTech Connect

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant; Filipyev, Ilya; Zygmanski, Piotr; Shrestha, Suman; Karellas, Andrew; Hesser, Jürgen; Sajo, Erno

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60–150 kVp. Methods: Experiments were designed to optimize the detector’s x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. The authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup −0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60–150 kVp, corresponding to about 0.09 nA–0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells’ beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.

  17. THE INTEGRAL SOURCE IGR J16328-4726: A HIGH-MASS X-RAY BINARY FROM THE BEPPOSAX ERA

    SciTech Connect

    Fiocchi, M.; Bazzano, A.; Natalucci, L.; Persi, P.; Piro, L.; Ubertini, P.; Bird, A. J.; Drave, S. P.

    2013-01-01

    We report on temporal and spectral analysis of the INTEGRAL fast transient candidate IGR J16328-4726 observed with BeppoSAX in 1998 and more recently with INTEGRAL. The MECS X-ray data show a frequent microactivity typical of the intermediate state of supergiant fast X-ray transients and a weak flare with a duration of {approx}4.6 ks. The X-ray emission in the 1.5-10 keV energy range is well described through the different time intervals by an absorbed power-law model. Comparing spectra from the lower emission level up to the peak of the flare, we note that while the power-law photon index was constant ({approx}2), the absorption column density varied by a factor of up to {approx}6-7, reaching a value of {approx}2 Multiplication-Sign 10{sup 23} cm{sup -2} at the peak of the flare. Analysis of the long-term INTEGRAL/IBIS light curve confirms and refines the proposed {approx}10.07 day period, and the derived ephemeris places the BeppoSAX observations away from periastron. Using the near- and the mid-IR available observations, we constructed a spectral infrared distribution for the counterpart of IGR J16328-4726, allowing us to identify its counterpart as a high-mass OB type star and to classify this source as a firm HMXB. Following the standard clumpy wind theory, we estimated the mass and the radius of the clump responsible for the flare. The obtained values of M {sub cl} {approx_equal} 4 Multiplication-Sign 10{sup 22}g and R{sub cl} {approx_equal} 4.4 Multiplication-Sign 10{sup 6} km are in agreement with expected values from theoretical predictions.

  18. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  19. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGESBeta

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  20. Catching Conical Intersections in the Act; Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    NASA Astrophysics Data System (ADS)

    Bennett, Kochise; Kowalewski, Markus; Dorfman, Konstantin; Mukamel, Shaul

    Conical intersections (CIs) dominate the pathways and outcomes of virtually all photochemical molecular processes. Despite extensive experimental and theoretical effort, CIs have not been directly observed yet and the experimental evidence is inferred from fast reaction rates and vibrational signatures. We show that short X-ray pulses can directly detect the passage through a CI with the adequate temporal and spectral sensitivity. The non-adiabatic coupling that exists in the region of a CI redistributes electronic population but also generates electronic coherence. This coherent oscillation can then be detected via a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse. This technique, dubbed Transient Redistribution of Ultrafast Electronic Coherences (TRUECARS) is reminiscent of Coherent Anti-Stokes Raman Spectroscopy (CARS) in that a coherent oscillation is set in motion and then monitored, but differs in that the dynamics is electronic (CARS generally observes nuclear dynamics) and the coherence is generated internally by passage through a region of non-adiabatic coupling rather than by an externally applied laser. Support provided by U.S. Department of Energy through Award No. DE-FG02-04ER15571, the National Science Foundation (Grant No CHE-1361516), and the Alexander von Humboldt foundation through the Feodor Lynen program.

  1. Direct hot slumping and accurate integration process to manufacture prototypal x-ray optical units made of glass

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.

    2013-09-01

    X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of

  2. Fluorescence-type Monochromatic X-ray Beam-position Monitor with High-spatial Resolution for the NSLS-II Beamlines

    SciTech Connect

    Yoon, Phil S.; Siddons, D. Peter

    2010-06-23

    We developed a fluorescence-type monochromatic X-ray beam-position monitor (X-BPM) with high-spatial resolution for end-station experiments at the initial project beamlines of the NSLS-II. We designed a ring array of multi-segmented Si PIN-junction photodiodes to use as a position sensor. Further, we integrated a low-noise charge-preamplification HERMES4 ASIC chip into an electronic readout system for photon-counting application. A series of precision measurements to characterize electronically the Si-photodiode sensor and the ASIC chip demonstrated that the inherent noise from the detector system is sufficiently low to meet our stringent requirements. Using a Gaussian beam, we parametrically modeled the optimum working distance to ensure the detector's best performance. Based upon the results from the parametric modeling, prototypes of the next versions of the X-BPM are being developed. In this paper, we describe the methodology for developing the new compact monochromatic X-ray BPM, including its instrumentation, detector modeling, and future plan.

  3. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography.

    PubMed

    Boone, Marijn A; Nielsen, Peter; De Kock, Tim; Boone, Matthieu N; Quaghebeur, Mieke; Cnudde, Veerle

    2014-01-01

    Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material. PMID:24392942

  4. Monitoring the Chandra X-ray Observatory via the Wireless Internet

    NASA Astrophysics Data System (ADS)

    Spitzbart, B. D.; Wolk, S. J.; Cameron, R. A.

    The Chandra X-ray Observatory, launched in July 1999, continues to provide unprecedented high energy astrophysical discoveries with efficiency and reliability. From time to time, though, urgent operational decisions must be made by engineers, instrument teams, and scientists, often on short notice and at odd hours. There are several real-time, mostly Internet-based data resources available to aid in the decision-making discussions when a crisis arises. Chandra's Science Operations Team (SOT) has been experimenting with emerging Wireless Application Protocol (WAP) technologies to create yet another pathway for data flow. Our WAP Internet pages provide anytime, anywhere access to critical spacecraft information through cellular phones or other WAP-enabled devices. There are, of course, many challenges in attempting to present useful, meaningful content on a 5 × 12 character screen over limited bandwidth in a way that is user-friendly and beneficial. This paper will discuss our experience with this developing and promising new medium, design strategies, and future enhancements.

  5. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

    PubMed

    Gessner, Oliver; Gühr, Markus

    2016-01-19

    The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and

  6. Reading a radiologist's mind: monitoring rising and falling interest levels while scanning chest x-rays

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2010-02-01

    Radiological images constitute a special class of images that are captured (or computed) specifically for the purpose of diagnosing patients. However, because these are not "natural" images, radiologists must be trained to interpret them through a process called "perceptual learning". However, because perceptual learning is implicit, experienced radiologists may sometimes find it difficult to explicitly (i.e. verbally) train less experienced colleagues. As a result, current methods of training can take years before a new radiologist is fully competent to independently interpret medical images. We hypothesize that eye tracking technology (coupled with multimedia technology) can be used to accelerate the process of perceptual training, through a Hebbian learning process. This would be accomplished by providing a radiologist-in-training with real-time feedback as he/she is fixating on important regions of an image. Of course this requires that the training system have information about what regions of an image are important - information that could presumably be solicited from experienced radiologists. However, our previous work has suggested that experienced radiologists are not always aware of those regions of an image that attract their attention, but are not clinically significant - information that is very important to a radiologist in training. This paper discusses a study in which local entropy computations were done on scan path data, and were found to provide a quantitative measure of the moment-by-moment interest level of radiologists as they scanned chest x-rays. The results also showed a striking contrast between the moment-by-moment deployment of attention between experienced radiologists and radiologists in training.

  7. In Operando Monitoring of the Pore Dynamics in Ordered Mesoporous Electrode Materials by Small Angle X-ray Scattering.

    PubMed

    Park, Gwi Ok; Yoon, Jeongbae; Park, Eunjun; Park, Su Bin; Kim, Hyunchul; Kim, Kyoung Ho; Jin, Xing; Shin, Tae Joo; Kim, Hansu; Yoon, Won-Sub; Kim, Ji Man

    2015-05-26

    To monitor dynamic volume changes of electrode materials during electrochemical lithium storage and removal process is of utmost importance for developing high performance lithium storage materials. We herein report an in operando probing of mesoscopic structural changes in ordered mesoporous electrode materials during cycling with synchrotron-based small angel X-ray scattering (SAXS) technique. In operando SAXS studies combined with electrochemical and other physical characterizations straightforwardly show how porous electrode materials underwent volume changes during the whole process of charge and discharge, with respect to their own reaction mechanism with lithium. This comprehensive information on the pore dynamics as well as volume changes of the electrode materials will not only be critical in further understanding of lithium ion storage reaction mechanism of materials, but also enable the innovative design of high performance nanostructured materials for next generation batteries. PMID:25869353

  8. The Crab Pulsar Observed by RXTE: Monitoring the X-Ray to Radio Delay for 16 Years

    NASA Technical Reports Server (NTRS)

    Rots, Arnold; Jahoda, Keith

    2012-01-01

    In 2004 we published the results of monitoring the Crab Pulsar by RXTE. At that time we determined that the primary pulse of the pulsar at X-ray energies precedes its radio counterpart by about 0.01 period in phase or approximately 330 micro seconds. However, we could not establish unambiguously whether the delay is in phase or due to a difference in pathlength. At this time we have twice the time baseline we had in 2004 and we present the same analysis, but now over a period of 16 years, which will represent almost the full mission and the best that will be available from RXTE. The full dataset shows that the phase delay has been decreasing faster than the pulse frequency over the 16 year baseline and that there are variations in the delay on a variety of timescales.

  9. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    PubMed

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  10. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  11. A New Deep, Hard X-ray Survey of M31: Monitoring Black Hole and Neutron Star Accretion States in the X-ray Binary Population of Our Nearest Neighbor

    NASA Astrophysics Data System (ADS)

    Wik, Daniel R.; Hornschemeier, Ann E.; Yukita, Mihoko; Ptak, Andrew; Lehmer, Bret; Maccarone, Thomas J.; Antoniou, Vallia; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Venters, Tonia M.; Williams, Benjamin F.; Eracleous, Michael; Plucinsky, Paul P.; Pooley, David A.

    2016-01-01

    X-ray binaries (XRBs) trace old and new stellar populations in galaxies, and thus star formation history and star formation rate. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the hard emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. The launch of NuSTAR, the first focusing hard X-ray observatory, has allowed us to resolve the brightest XRBs (down to LX ~ few times 1038 erg/s) in galaxies like NGC 253, M83, and M82 up to 4 Mpc away. To reach much lower X-ray luminosities that are more typical of XRBs in the Milky Way (LX <~ 1037 erg/s), we have observed M31 in 3 NuSTAR fields, up to 5 visits apiece for more than 1 Ms total exposure, mostly within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey. Our monitoring campaign reveals over 40 accreting black holes and neutron stars -- distinguished from each other by their spectral shape in the hard band -- some of which undergo state changes over the month-long timescales captured by our legacy survey to date. We also discuss implications for this updated understanding of XRB populations on early-Universe measurements in, e.g., the 7 Ms Chandra Deep Field survey.

  12. All-sky x-ray & gamma-ray monitor (AXGAM)

    SciTech Connect

    Tuemer, T.O.; O`Neill, T.J.; Hurley, K.

    1996-12-31

    A wide field-of-view, arcsecond imaging, high energy resolution x-ray and low energy gamma ray detector is proposed for a future space mission. It is specifically designed to detect and find counterparts at other wavelengths for Gamma Ray Bursts (GRBs). Detection of GRBs require wide field-of-view ({pi} to 2 {pi} field-of-view) and high sensitivity. This will be achieved by using high quantum efficiency CdZnTe pixel detectors, low energy threshold (few keV) to observe larger flux levels that may be possible at lower energies and large effective area (625 to 1,000 cd) per coded aperture imaging module. Counterpart searches can only be done with ultra high angular resolution (10 to 30 arcsecond FWHM) which gives 1 to 5 arcsecond position determination especially for strong GRBs. A few arcsecond resolution error box is expected to contain only one counterpart observed at another wavelength. This will be achieved by using ultra high spatial resolution pixel detectors (50 x 50 to 100 X 100 micron) and a similar resolution coded aperture to achieve the required angular resolution. AXGAM also has two other important advantages over similar detectors: (1) excellent low energy response (> 1 keV) and (2) high energy resolution (<6% @ 5.9 keV, <3% @ 14 keV, <4% @ 122 keV). The low energy range may provide important new information on their cause and the high energy resolution is expected to help in the observation and identification of emission and absorption lines in the GRB spectrum. The effective energy range is planned to be 2 to 200 keV which is exceptionally wide for such a detector. AXGAM will be built in the form of a {open_quotes}Bucky Ball{close_quotes} using a coded aperture mask in a semi geodesic dome arrangement placed over a two-dimensional, high resolution CdZnTe pixel detector array using newly developed p-i-n detector technology. The p-i-n structure decreases the electron and hole trapping effect and increases energy resolution significantly.

  13. Relative accuracy testing of an X-ray fluorescence-based mercury monitor at coal-fired boilers.

    PubMed

    Hay, K James; Johnsen, Bruce E; Ginochio, Paul R; Cooper, John A

    2006-05-01

    The relative accuracy (RA) of a newly developed mercury continuous emissions monitor, based on X-ray fluorescence, was determined by comparing analysis results at coal-fired plants with two certified reference methods (American Society for Testing and Materials [ASTM] Method D6784-02 and U.S. Environment Protection Agency [EPA] Method 29). During the first determination, the monitor had an RA of 25% compared with ASTM Method D6784-02 (Ontario Hydro Method). However, the Ontario Hydro Method performed poorly, because the mercury concentrations were near the detection limit of the reference method. The mercury in this exhaust stream was primarily elemental. The second test was performed at a U.S. Army boiler against EPA Reference Method 29. Mercury and arsenic were spiked because of expected low mercury concentrations. The monitor had an RA of 16% for arsenic and 17% for mercury, meeting RA requirements of EPA Performance Specification 12a. The results suggest that the sampling stream contained significant percentages of both elemental and oxidized mercury. The monitor was successful at measuring total mercury in particulate and vapor forms. PMID:16739803

  14. High-contrast X-ray radiography using hybrid semiconductor pixel detectors with 1 mm thick Si sensor as a tool for monitoring liquids in natural building stones

    NASA Astrophysics Data System (ADS)

    Krejci, F.; Slavikova, M.; Zemlicka, J.; Jakubek, J.; Kotlik, P.

    2014-07-01

    For the preservation of buildings and other cultural heritage, the application of various conservation products such as consolidants or water repellents is often used. X-ray radiography utilizing semiconductor particle-counting detectors stands out as a promising tool in research of consolidants inside natural building stones. However, a clear visualization of consolidation products is often accomplished by doping with a contrast agent, which presents a limitation. This approach causes a higher attenuation for X-rays, but also alters the penetration ability of the original consolidation product. In this contribution, we focus on the application of Medipix type detectors newly equipped with a 1 mm thick Si sensor. This thicker sensor has enhanced detection efficiency leading to extraordinary sensitivity for monitoring consolidants and liquids in natural building stones even without any contrast agent. Consequently, methods for the direct monitoring of organosilicon consolidants and dynamic visualization of the water uptake in the Opuka stone using high-contrast X-ray radiography are demonstrated. The presented work demonstrates a significant improvement in the monitoring sensitivity of X-ray radiography in stone consolidation studies and also shows advantages of this detector configuration for X-ray radiography in general.

  15. Results from the Ariel-5 all-sky X-ray monitor

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    A summary of results obtained from the first year of Ariel-5 all-sky monitor operation is presented. Transient source observations, as well as the results of long term studies of Sco X-1, Cyg X-3, and Cyg X-1 are described. By example, the included results are indicative of the temporal effects to which the all-sky monitor remains sensitive as it begins its second year of observation.

  16. Suitability of laser stimulated TLD arrays as patient dose monitors in high dose x-ray imaging.

    PubMed

    Geise, R A; Schueler, B A; Lien, W; Jones, S C

    1997-10-01

    Skin entrance doses of patients undergoing interventional x-ray procedures are capable of causing skin damage and should be monitored routinely. Single TLD chips are not suitable because the location of maximum skin exposure cannot be predicted. Most photographic films are too sensitive at diagnostic x-ray energies for dosimetry, exhibit temporal changes in response, and require special packaging by the user. We have investigated the suitability of laser heated MgB4O7 TLDs in a polyimide binder in the range of 0.2-20 Gy. These are available in radioluscent arrays up to 30 x 30 cm for direct measurement of patient skin dose. Dose response was compared with a calibrated ion chamber dosimeter. Exposures were made at 60, 90, and 120 kVp, at low (fluoroscopy) and high (DSA) dose rates, and at different beam incidence angles. Longitudinal reproducibility and response to temperature changes during exposure were also checked. The dose response is linear below approximately 6 Gy where the slope starts to increase 2% per Gy. Errors were less than +/- 2% over a 0-80 degrees range of beam incidence angles; less than +/- 3% for both dose rate variations and kVp differences between 70 and 120 kVp. The response was unaffected by temperature changes between 20 and 37 degrees C. Reproducibility is current +/- 7%. MgB4O7 TLD arrays are suitable for patient dosimetry in high dose fluoroscopy procedures if appropriate calibrations are used. Uncertainty in skin dose measurement is less than 10%, which is substantially better than film dosimetry. PMID:9350720

  17. New x-ray pink-beam profile monitor system for the SPring-8 beamline front-end.

    PubMed

    Takahashi, Sunao; Kudo, Togo; Sano, Mutsumi; Watanabe, Atsuo; Tajiri, Hiroo

    2016-08-01

    A new beam profile monitoring system for the small X-ray beam exiting from the SPring-8 front-end was developed and tested at BL13XU. This system is intended as a screen monitor and also as a position monitor even at beam currents of 100 mA by using photoluminescence of a chemical vapor deposition-grown diamond film. To cope with the challenge that the spatial distribution of the photoluminescence in the vertical direction is too flat to detect the beam centroid within a limited narrow aperture, a filter was installed that absorbs the fundamental harmonic concentrated in the beam center, which resulted in "de-flattening" of the vertical distribution. For the measurement, the filter crossed the photon beam vertically at high speed to withstand the intense heat flux of the undulator pink-beam. A transient thermal analysis, which can simulate the movement of the irradiation position with time, was conducted to determine the appropriate configuration and the required moving speed of the filter to avoid accidental melting. In a demonstration experiment, the vertically separated beam profile could be successfully observed for a 0.8 × 0.8 mm(2) beam shaped by an XY slit and with a fundamental energy of 18.48 keV. The vertical beam centroid could be detected with a resolution of less than 0.1 mm. PMID:27587104

  18. X-ray dose estimation from cathode ray tube monitors by Monte Carlo calculation.

    PubMed

    Khaledi, Navid; Arbabi, Azim; Dabaghi, Moloud

    2015-04-01

    Cathode Ray Tube (CRT) monitors are associated with the possible emission of bremsstrahlung radiation produced by electrons striking the monitor screen. Because of the low dose rate, accurate dosimetry is difficult. In this study, the dose equivalent (DE) and effective dose (ED) to an operator working in front of the monitor have been calculated using the Monte Carlo (MC) method by employing the MCNP code. The mean energy of photons reaching the operator was above 17 keV. The phantom ED was 454 μSv y (348 nSv h), which was reduced to 16 μSv y (12 nSv h) after adding a conventional leaded glass sheet. The ambient dose equivalent (ADE) and personal dose equivalent (PDE) for the head, neck, and thorax of the phantom were also calculated. The uncertainty of calculated ED, ADE, and PDE ranged from 3.3% to 10.7% and 4.2% to 14.6% without and with the leaded glass, respectively. PMID:25706133

  19. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  20. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  1. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  2. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  3. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  4. RESULTS FROM LONG-TERM OPTICAL MONITORING OF THE SOFT X-RAY TRANSIENT SAX J1810.8-2609

    SciTech Connect

    Zhu Ling; Di Stefano, Rosanne; Wyrzykowski, Lukasz

    2012-12-20

    In this paper, we report the long-term optical observation of the faint soft X-ray transient SAX J1810.8-2609 from the Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA). We have focused on the 2007 outburst, and also cross-correlated its optical light curves and quasi-simultaneous X-ray observations from RXTE/Swift. Both the optical and X-ray light curves of the 2007 outburst show multi-peak features. Quasi-simultaneous optical/X-ray luminosity shows that both the X-ray reprocessing and viscously thermal emission can explain the observed optical flux. There is a slight X-ray delay of 0.6 {+-} 0.3 days during the first peak, while the X-ray emission lags the optical emission by {approx}2 days during the rebrightening stage, which suggests that X-ray reprocessing emission contributes significantly to the optical flux in the first peak, but the viscously heated disk origin dominates it during rebrightening. This implies variation of the physical environment of the outer disk, with even the source remaining in a low/hard state during the entire outburst. The {approx}2 day X-ray lag indicates a small accretion disk in the system, and its optical counterpart was not detected by OGLE and MOA during quiescence, which constrained it to be fainter than M{sub I} = 7.5 mag. There is a suspected short-time optical flare detected at MJD = 52583.5 with no detected X-ray counterpart; this single flux increase implies a magnetic loop reconnection in the outer disk, as proposed by Zurita et al. The observations cover all stages of the outburst; however, due to the low sensitivity of RXTE/ASM, we cannot conclude whether it is an optical precursor at the initial rise of the outburst.

  5. {sup 44}Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X

    SciTech Connect

    Renaud, M.; Terrier, R.; Lebrun, F.; Trap, G.; Decourchelle, A.

    2009-05-11

    Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: {sup 44}Ti{gamma}-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.

  6. PKS 1510-089: Fifteen years of X-ray Monitoring

    NASA Astrophysics Data System (ADS)

    Smith, Evan; Perlman, Eric S.; Holder, Jamie

    2016-04-01

    The blazar PKS 1510-089 is one of the best-monitored of all blazars, due to near-continuous monitoring by the RXTE and SWIFT satellites at weekly or better intervals. The RXTE data, in particular, provide a well-sampled (~twice per week for 10 months per year) 3-color (2-4 keV, 4-7 keV and 7-10 keV) light curve spanning from 1996 to 2011. SWIFT data both overlap with the RXTE data stream and extend it up through the present day. The resulting light-curve gives us an excellent tool to correlate with Fermi observations. Both Fermi and SWIFT have observed the source from 2008 to 2015. We will present an analysis of the light curve, including a search for orphan flares (i.e., flares observed in only a single band), one of which was detected in early 2009 in PKS 1510-089 by Marscher et al. (2010). Cross-correlation of multi-wavelength light curves and studies of orphan flares could provide insight into leptonic and hadronic blazar emission models.

  7. Synchrotron radiation X-ray fluorescence analysis of trace elements in Nerium oleander for pollution monitoring

    NASA Astrophysics Data System (ADS)

    de Jesus, E. F. O.; Simabuco, S. M.; dos Anjos, M. J.; Lopes, R. T.

    2000-07-01

    This works describes the use of synchrotron radiation fluorescence analysis as a technique for monitoring trace elements in bio-indicators for environmental pollution control. The analyses were performed on leaves of Nerium oleander collected in streets with different levels of traffic flow in Rio de Janeiro, Brazil, with one sample from a rural zone. The leaves were collected from adult trees in December and April. The measurement was made with a white beam of synchrotron radiation calibrated with thin samples from MicroMatter. The results indicate that some metals such as Ti, V, Fe and Zn have major content in samples that were collected in places with a high traffic flow, even in the leaves that have been washed. The levels of Mn, Co, Cu and Ni did not show significant differences between the samples. The Pb level also did not vary significantly. This was expected because in Brazil gasoline without Pb has been used for many years. The results seem to indicate that the leaves from Nerium oleander absorb metals from the atmosphere and may be used as an environmental indicator.

  8. Swift/XRT monitoring of the long outburst of the Very Faint X-ray Transient XMMU J174716.1-281048

    NASA Astrophysics Data System (ADS)

    Del Santo, Melania; Romano, Patrizia; Sidoli, Lara

    2011-07-01

    The Very Faint X-ray Transient (VFXT) XMMU J174716.1-281048, discovered in 2003 by XMM-Newton (ATel #147; Sidoli et al., 2006, A&A 456, 287), has been unveiled by INTEGRAL as type I X-ray burster (ATel #970; #972; Del Santo et al., 2007, A&A 468, L17) lying in the Galactic Centre region (ATel #1207). XMMU J174716.1-281048 is the first VFXT classified as ``quasi persistent", due to the fact that it appears to have been continuously active since its discovery (Del Santo et al., 2007; ATel #1078).

  9. Quantitative analysis on orientation of human bone integrated with midpalatal implant by micro X-ray diffractometer

    NASA Astrophysics Data System (ADS)

    Murata, Masaru; Akazawa, Toshiyuki; Yuasa, Toshihiro; Okayama, Miki; Tazaki, Junichi; Hanawa, Takao; Arisue, Makoto; Mizoguchi, Itaru

    2012-12-01

    A midpalatal implant system has been used as the unmoved anchorage for teeth movement. An 18-year-old male patient presented with reversed occlusion and was diagnosed as malocclusion. A pure titanium fixture (lengths: 4 mm, diameter: 3.3 mm, Orthosystem®, Institute Straumann, Switzerland) was implanted into the palatal bone of the patient as the orthodontic anchorage. The implant anchorage was connected with the upper left and right first molars, and had been used for 3 years. After dynamic treatments, the titanium fixture connected with bone was removed surgically, fixed in formalin solution, and embedded in resin. Specimens were cut along the frontal section of face and the direction of longitudinal axis of the implant, stained, and observed histologically. The titanium fixture was integrated directly with compact bone showing cortical bone-like structure such as lamella and osteon. In addition, to qualitatively characterize the implant-supported human bone, the crystallinity and orientation of hydroxyapatite (HAp) phase were evaluated by the microbeam X-ray diffraction analysis. Preferential alignment of c-axis of HAp crystals was represented by the relative intensity ratio of (0 0 2)-face diffraction peak to (3 1 0)-face one. The values decreased monotonously along the direction of the lateral stress from the site near the implant thread to the distant site in all horizontal lines of the map. These results indicated that the X-ray images for the intensity of c-face in HAp revealed functionally graded distribution of cortical bone quality. The micro-scale measurements of HAp structure could be a useful method for evaluating the mechanical stress distribution in human hard tissues.

  10. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kammler, Hendrik K.; Beaucage, Gregory; Kohls, Douglas J.; Agashe, Nikhil; Ilavsky, Jan

    2005-03-01

    Ultra-small-angle x-ray scattering can provide information about primary particles and aggregates from a single scattering experiment. This technique is applied in situ to flame aerosol reactors for monitoring simultaneously the primary particle and aggregate growth dynamics of oxide nanoparticles in a flame. This was enabled through the use of a third generation synchrotron source (Advanced Photon Source, Argonne IL, USA) using specialized scattering instrumentation at the UNICAT facility which is capable of simultaneously measuring nanoscales to microscales (1nmto1μm). More specifically, the evolution of primary-particle diameter, mass-fractal dimension, geometric standard deviation, silica volume fraction, number concentration, radius of gyration of the aggregate, and number of primary particles per aggregate are measured along the flame axis for two different premixed flames. All these particle characteristics were derived from a single and nonintrusive measurement technique. Flame temperature profiles were measured in the presence of particles by in situ Fourier transform infrared spectroscopy and thermophoretic sampling was used to visualize particle growth with height above the burner as well as in the radial direction.

  11. Characterization of Ni-cermet degradation phenomena I. Long term resistivity monitoring, image processing and X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ananyev, M. V.; Bronin, D. I.; Osinkin, D. A.; Eremin, V. A.; Steinberger-Wilckens, R.; de Haart, L. G. J.; Mertens, J.

    2015-07-01

    The present paper is devoted to Ni-cermet degradation phenomena and places emphasis on experimental approaches and data handling. The resistivity of Ni-YSZ cermet (nickel and 8 mol.% yttria stabilized zirconia) anode substrates was monitored during 3000 h at 700 and 800 °C in a gas mixture of 80 vol.% water vapor and 20 vol.% hydrogen. The experimentally evaluated dependence of resistivity of the Ni-YSZ substrates can be well described by exponential decay functions. Post test analysis by image processing and XRF (X-ray fluorescence) analysis for characterization of the microstructure and elemental composition were carried out for virgin samples and after 300, 1000 and 3000 h of exposure time. The 3D-microstructure was reconstructed using an original spheres packing algorithm. Two processes leading to the Ni-YSZ degradation were observed: Ni-phase particle coarsening and volatilization. The effect of these processes on resistivity and such microstructure parameters as porosity, Ni-phase fraction, Ni and YSZ phases particle size distributions, triple phase boundary length, and tortuosity factor are considered in this paper.

  12. Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering

    PubMed Central

    Chatani, Eri; Inoue, Rintaro; Imamura, Hiroshi; Sugiyama, Masaaki; Kato, Minoru; Yamamoto, Masahide; Nishida, Koji; Kanaya, Toshiji

    2015-01-01

    The nucleation event of amyloid fibrils is one of the most crucial processes that dictate the timing and rate of the pathology of diseases; however, information regarding how protein molecules associate to produce fibril nuclei is currently limited. In order to explore this issue in more detail, we performed time-resolved small angle X-ray scattering (SAXS) measurements on insulin fibrillation, in combination with additional multidirectional analyses of thioflavin T fluorescence, FTIR spectroscopy, light scattering, and light transmittance, during the fibrillation process of bovine insulin. SAXS monitoring revealed that insulin molecules associated into rod-like prefibrillar aggregates in the very early stage of the reaction. After the formation of these early aggregates, they appeared to further coalesce mutually to form larger clusters, and the SAXS profiles subsequently showed the further time evolution of conformational development towards mature amyloid fibrils. Distinct types of structural units in terms of shape in a nano-scale order, cross-β content, and thioflavin T fluorescence intensity were observed in a manner that was dependent on the fibrillation pathways. These results suggest the presence of diverse substructures that characterize various fibrillation pathways, and eventually, manifest polymorphisms in mature amyloid fibrils. PMID:26503463

  13. Early aggregation preceding the nucleation of insulin amyloid fibrils as monitored by small angle X-ray scattering.

    PubMed

    Chatani, Eri; Inoue, Rintaro; Imamura, Hiroshi; Sugiyama, Masaaki; Kato, Minoru; Yamamoto, Masahide; Nishida, Koji; Kanaya, Toshiji

    2015-01-01

    The nucleation event of amyloid fibrils is one of the most crucial processes that dictate the timing and rate of the pathology of diseases; however, information regarding how protein molecules associate to produce fibril nuclei is currently limited. In order to explore this issue in more detail, we performed time-resolved small angle X-ray scattering (SAXS) measurements on insulin fibrillation, in combination with additional multidirectional analyses of thioflavin T fluorescence, FTIR spectroscopy, light scattering, and light transmittance, during the fibrillation process of bovine insulin. SAXS monitoring revealed that insulin molecules associated into rod-like prefibrillar aggregates in the very early stage of the reaction. After the formation of these early aggregates, they appeared to further coalesce mutually to form larger clusters, and the SAXS profiles subsequently showed the further time evolution of conformational development towards mature amyloid fibrils. Distinct types of structural units in terms of shape in a nano-scale order, cross-β content, and thioflavin T fluorescence intensity were observed in a manner that was dependent on the fibrillation pathways. These results suggest the presence of diverse substructures that characterize various fibrillation pathways, and eventually, manifest polymorphisms in mature amyloid fibrils. PMID:26503463

  14. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  15. X ray attenuation measurements for high-temperature materials characterization and in-situ monitoring of damage accumulation. Ph.D. Thesis - Cleveland State Univ., 1991

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1992-01-01

    The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.

  16. VizieR Online Data Catalog: Swift-INTEGRAL X-ray (SIX) survey (Bottacini+, 2012)

    NASA Astrophysics Data System (ADS)

    Bottacini, E.; Ajello, M.; Greiner, J.

    2013-01-01

    To obtain the SIX survey, we first perform independent surveys of BAT and IBIS/ISGRI in the 18-55keV energy range. Then, by combining the observations of the two instruments, we increase (sum) the exposure time. In turn the sensitivity of the SIX survey is enhanced. We compute the survey over a sky area of 6200deg2 that covers the region of the north ecliptic pole (NEP) extending to the contiguous Coma region. For the analysis presented here, we used all the available data for BAT taken from 2005 March to 2010 March. We have used all public available data from INTEGRAL pointings as well as private data (PI: M. Ajello; proposal ID: 05K001) over seven years from the beginning of the mission (2002) to INTEGRAL revolution 829 (2009). (1 data file).

  17. Tenma - Japan's X-ray satellite

    NASA Astrophysics Data System (ADS)

    Simpson, C.

    1984-06-01

    Japan's second X-ray satellite, designated 'Tenma', has temporal and spectral sensitivity superior to that of its predecessor, Hakucho. It is a spin-stabilized satellite whose attitude maneuvers are performed through the activation of a magnetic torquing coil, by means of which a typical, 20-deg transfer occupies several orbits. Tenma carries as its instrument set scintillation proportional counters for spectral and temporal studies, an X-ray focusing collector for the study of very soft X-ray sources, a transient source monitor for wide-field sky monitoring, and a radiation belt monitor/gamma-ray burst detector for monitoring the non-X-ray background.

  18. Discovery of two new Fast X-ray Transients with INTEGRAL: IGR J03346+4414 and IGR J20344+3913

    NASA Astrophysics Data System (ADS)

    Sguera, V.; Sidoli, L.; Paizis, A.; Bird, A. J.

    2016-09-01

    We report on the discovery of two Fast X-ray Transients (FXTs) from analysis of archival INTEGRAL data. Both are characterized by a remarkable hard X-ray activity above 20 keV, in term of duration (˜ 15 and 30 minutes, respectively), peak-flux (˜ 10-9 erg cm-2 s-1) and dynamic range (˜ 2400 and 1360, respectively). Swift/XRT follow-up observations failed to detect any quiescent or low level soft X-ray emission from either of the two FXTs, providing an upper limit of the order of a few times 10-12 erg cm-2 s-1. The main spectral and temporal IBIS/ISGRI characteristics are presented and discussed with the aim of infering possible hints on their nature.

  19. SWIFT X-RAY AND ULTRAVIOLET MONITORING OF THE CLASSICAL NOVA V458 VUL (NOVA VUL 2007)

    SciTech Connect

    Ness, J.-U.; Drake, J. J.; Beardmore, A. P.; Evans, P. A.; Osborne, J. P.; Page, K. L.; Boyd, D.; Bode, M. F.; Brady, S.; Gaensicke, B. T.; Steeghs, D.; Kitamoto, S.; Takei, D.; Knigge, C.; Miller, I.; Rodriguez-Gil, P.; Schwarz, G.; Staels, B.; Tsujimoto, M.; Wesson, R.

    2009-05-15

    We describe the highly variable X-ray and UV emission of V458 Vul (Nova Vul 2007), observed by Swift between 1 and 422 days after outburst. Initially bright only in the UV, V458 Vul became a variable hard X-ray source due to optically thin thermal emission at kT = 0.64 keV with an X-ray band unabsorbed luminosity of 2.3 x 10{sup 34} erg s{sup -1} during days 71-140. The X-ray spectrum at this time requires a low Fe abundance (0.2{sup +0.3} {sub -0.1} solar), consistent with a Suzaku measurement around the same time. On day 315 we find a new X-ray spectral component which can be described by a blackbody with temperature of kT = 23{sup +9} {sub -5} eV, while the previous hard X-ray component has declined by a factor of 3.8. The spectrum of this soft X-ray component resembles those typically seen in the class of supersoft sources (SSS) which suggests that the nova ejecta were starting to clear and/or that the white dwarf photosphere is shrinking to the point at which its thermal emission reaches into the X-ray band. We find a high degree of variability in the soft component with a flare rising by an order of magnitude in count rate in 0.2 days. In the following observations on days 342.4-383.6, the soft component was not seen, only to emerge again on day 397. The hard component continued to evolve, and we found an anticorrelation between the hard X-ray emission and the UV emission, yielding a Spearman rank probability of 97%. After day 397, the hard component was still present, was variable, and continued to fade at an extremely slow rate but could not be analyzed owing to pile-up contamination from the bright SSS component.

  20. Are X-rays the key to integrated computational materials engineering?

    SciTech Connect

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolution to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.

  1. Are X-rays the key to integrated computational materials engineering?

    DOE PAGESBeta

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  2. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    NASA Astrophysics Data System (ADS)

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-07-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed.

  3. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging.

    PubMed

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M L; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  4. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    PubMed Central

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  5. Catching Conical Intersections in the Act: Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Bennett, Kochise; Dorfman, Konstantin E.; Mukamel, Shaul

    2015-11-01

    Conical intersections (CIs) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort, CIs have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. We show that short x-ray (rather than optical) pulses can directly detect the passage through a CI with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond or attosecond x-ray pulse to detect the electronic coherences (rather than populations) that are generated as the system passes through the CI.

  6. Integration of Small Angle X-Ray Scattering Data Into Structural Modeling of Proteins And Their Assemblies

    SciTech Connect

    Forster, F.; Webb, B.; Krukenberg, K.A.; Tsuruta, H.; Agard, D.A.; Sali, A.

    2009-05-18

    A major challenge in structural biology is to determine the configuration of domains and proteins in multidomain proteins and assemblies, respectively. All available data should be considered to maximize the accuracy and precision of these models. Small-angle X-ray scattering (SAXS) efficiently provides low-resolution experimental data about the shapes of proteins and their assemblies. Thus, we integrated SAXS profiles into our software for modeling proteins and their assemblies by satisfaction of spatial restraints. Specifically, we modeled the quaternary structures of multidomain proteins with structurally defined rigid domains as well as quaternary structures of binary complexes of structurally defined rigid proteins. In addition to SAXS profiles and the component structures, we used stereochemical restraints and an atomic distance-dependent statistical potential. The scoring function is optimized by a biased Monte Carlo protocol, including quasi-Newton and simulated annealing schemes. The final prediction corresponds to the best scoring solution in the largest cluster of many independently calculated solutions. To quantify how well the quaternary structures are determined based on their SAXS profiles, we used a benchmark of 12 simulated examples as well as an experimental SAXS profile of the homotetramer D-xylose isomerase. Optimization of the SAXS-dependent scoring function generally results in accurate models if sufficiently precise approximations for the constituent rigid bodies are available; otherwise, the best scoring models can have significant errors. Thus, SAXS profiles can play a useful role in the structural characterization of proteins and assemblies if they are combined with additional data and used judiciously. Our integration of a SAXS profile into modeling by satisfaction of spatial restraints will facilitate further integration of different kinds of data for structure determination of proteins and their assemblies.

  7. Unveiling the nature of INTEGRAL objects through optical spectroscopy. IX. Twenty two more identifications, and a glance into the far hard X-ray Universe

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Parisi, P.; Jiménez-Bailón, E.; Palazzi, E.; Chavushyan, V.; Bassani, L.; Bazzano, A.; Bird, A. J.; Dean, A. J.; Galaz, G.; Landi, R.; Malizia, A.; Minniti, D.; Morelli, L.; Schiavone, F.; Stephen, J. B.; Ubertini, P.

    2012-02-01

    Since its launch in October 2002, the INTEGRAL satellite has revolutionized our knowledge of the hard X-ray sky thanks to its unprecedented imaging capabilities and source detection positional accuracy above 20 keV. Nevertheless, many of the newly-detected sources in the INTEGRAL sky surveys are of unknown nature. The combined use of available information at longer wavelengths (mainly soft X-rays and radio) and of optical spectroscopy on the putative counterparts of these new hard X-ray objects allows us to pinpoint their exact nature. Continuing our long-standing program that has been running since 2004, and using 6 different telescopes of various sizes together with data from an online spectroscopic survey, here we report the classification through optical spectroscopy of 22 more unidentified or poorly studied high-energy sources detected with the IBIS instrument onboard INTEGRAL. We found that 16 of them are active galactic nuclei (AGNs), while the remaining 6 objects are within our Galaxy. Among the identified extragalactic sources, the large majority (14) is made up of type 1 AGNs (i.e. with broad emission lines); of these, 6 lie at redshift larger than 0.5 and one (IGR J12319-0749) has z = 3.12, which makes it the second farthest object detected in the INTEGRAL surveys up to now. The remaining AGNs are of type 2 (that is, with narrow emission lines only), and one of the two cases is confirmed as a pair of interacting Seyfert 2 galaxies. The Galactic objects are identified as two cataclysmic variables, one high-mass X-ray binary, one symbiotic binary and two chromospherically active stars, possibly of RS CVn type. The main physical parameters of these hard X-ray sources were also determined using the multiwavelength information available in the literature. We thus still find that AGNs are the most abundant population among hard X-ray objects identified through optical spectroscopy. Moreover, we note that the higher sensitivity of the more recent INTEGRAL

  8. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Souris, Jeffrey S.; Cheng, Shih-Hsun; Pelizzari, Charles; Chen, Nai-Tzu; La Riviere, Patrick; Chen, Chin-Tu; Lo, Leu-Wei

    2014-11-01

    Europium-doped yttrium oxide (Y2O3:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y2O3:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y2O3:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ.

  9. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy

    PubMed Central

    Souris, Jeffrey S.; Cheng, Shih-Hsun; Pelizzari, Charles; Chen, Nai-Tzu; La Riviere, Patrick; Chen, Chin-Tu; Lo, Leu-Wei

    2014-01-01

    Europium-doped yttrium oxide (Y2O3:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y2O3:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y2O3:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ. PMID:25425747

  10. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy.

    PubMed

    Souris, Jeffrey S; Cheng, Shih-Hsun; Pelizzari, Charles; Chen, Nai-Tzu; La Riviere, Patrick; Chen, Chin-Tu; Lo, Leu-Wei

    2014-11-17

    Europium-doped yttrium oxide (Y2O3:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y2O3:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y2O3:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ. PMID:25425747

  11. Radioluminescence characterization of in situ x-ray nanodosimeters: Potential real-time monitors and modulators of external beam radiation therapy

    SciTech Connect

    Souris, Jeffrey S.; La Riviere, Patrick; Chen, Chin-Tu; Cheng, Shih-Hsun; Chen, Nai-Tzu; Lo, Leu-Wei; Pelizzari, Charles

    2014-11-17

    Europium-doped yttrium oxide (Y{sub 2}O{sub 3}:Eu) has garnered considerable interest recently for its use as a highly efficient, red phosphor in a variety of lighting applications that include fluorescent lamps, plasma, and field emission display panels, light emitting diodes (LEDs), and lasers. In the present work, we describe the development of Y{sub 2}O{sub 3}:Eu nanoparticles for a very different application: in situ, in vivo x-ray dosimetry. Spectroscopic analyses of these nanoparticles during x-ray irradiation reveal surprisingly bright and stable radioluminescence at near-infrared wavelengths, with markedly linear response to changes in x-ray flux and energy. Monte Carlo modeling of incident flux and broadband, wide-field imaging of mouse phantoms bearing both Y{sub 2}O{sub 3}:Eu nanoparticles and calibrated LEDs of similar spectral emission demonstrated significant transmission of radioluminescence, in agreement with spectroscopic studies; with approximately 15 visible photons being generated for every x-ray photon incident. Unlike the dosimeters currently employed in clinical practice, these nanodosimeters can sample both dose and dose rate rapidly enough as to provide real-time feedback for x-ray based external beam radiotherapy (EBRT). The technique's use of remote sensing and absence of supporting structures enable perturbation-free dosing of the targeted region and complete sampling from any direction. With the conjugation of pathology-targeting ligands onto their surfaces, these nanodosimeters offer a potential paradigm shift in the real-time monitoring and modulation of delivered dose in the EBRT of cancer in situ.

  12. X-ray beam design for multi-energy imaging with charge-integrating detector: A simulation study

    NASA Astrophysics Data System (ADS)

    Baek, Cheol-Ha; Kim, Daehong

    2015-11-01

    Multi-energy X-ray imaging systems have been widely used for clinical examinations. In order to enhance the imaging quality of these X-ray systems, a dual-energy system that can obtain specific information has been developed in order to discriminate different materials. Although the dual-energy system shows reliable performance for clinical applications, it is necessary to improve the method in order to minimize radiation dose, reduce projection error, and increase image contrast. The purpose of this study is to develop a triple energy technique that can discriminate three materials for the purpose of enhancing imaging quality and patient safety. The X-ray system tube voltage was varied from 40 to 90 kV, and filters (that can generate three X-ray energies) were installed, consisting of pure elemental materials in foil form (including Al, Cu, I, Ba, Ce, Gd, Er, and W). The X-ray beam was evaluated with respect to mean energy ratio, contrast variation ratio, and exposure efficiency. In order to estimate the performance of the suggested technique, Monte Carlo was conducted, and the results were compared to the photon-counting method. As a result, the density maps of iodine, aluminum, and polymethyl methacrylate (PMMA) using the X-ray beam were more accurate in comparison to that obtained with the photon-counting method. According to the results, the suggested triple energy technique can improve the accuracy of the determination of thickness of density. Moreover, the X-ray beam could reduce unnecessary patient dose.

  13. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  14. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  15. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  16. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  17. Extremity x-ray

    MedlinePlus

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Other conditions for which the test may ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Update Date 10/22/2014 Updated ...

  18. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  19. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  20. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  1. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  2. Bragg x-ray survey spectrometer for ITER

    SciTech Connect

    Varshney, S. K.; Jakhar, S.; Barnsley, R.; O'Mullane, M. G.

    2012-10-15

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  3. Development of a soft-X ray detector for energy resolved 2D imaging by means of a Gas Pixel Detector with highly integrated microelectronics

    SciTech Connect

    Pacella, D.; Pizzicaroli, G.; Romano, A.; Gabellieri, L.; Bellazzini, R.; Brez, A.

    2008-03-12

    Soft-X ray 2-D imaging on ITER is not considered yet. We propose a new approach, based on a gas detector with a gas electron multiplier (GEM) as amplifying structure and with a two-dimensional readout fully integrated with the front end electronics, through an ASIC developed on purpose. The concept has been already tested by means of a prototype, with 128 pixels, carried out in Frascati in collaboration with INFN-Pisa and tested on FTU in 2001 and NSTX in 2002-2004. Thanks to the photon counting mode, it provides 2-D imaging with high time resolution (sub millisecond), high sensitivity and signal to noise ratio. Its capability of energy discrimination allows the acquisition of pictures in X-ray energy bands or to perform a spectral scan in the full energy interval. We propose the realisation of such kind a detector with a readout microchip (ASIC) equipped with 105600 hexagonal pixels arranged at 70 {mu}m pitch in a 300x352 honeycomb matrix, corresponding to an active area of 2.1x2.1 cm{sup 2}, with a pixel density of 240 pixels/ mm{sup 2}. Each pixel is connected to a charge sensitive amplifier followed by a discriminator of pulse amplitude and counter. The chip integrates more than 16.5 million transistors and it is subdivided in 64 identical clusters, to be read independently each other. An important part of the work will be also the design of the whole detector to fulfil all the constraints and requirements as plasma diagnostic in a tokamak machine. Since the detector has high and controllable intrinsic gain, it works well even at very low photon energy, ranging from 0.2 keV to 10 keV (X-VUV region). This range appears therefore particularly suitable for ITER to monitor the outer part of the plasma. In particular pedestal physics, edge modes, localization and effects of additional heating, boundary plasma control etc. The capability of this proposed detector to work in this energy range is further valuable because solid state detectors are not favorite at low

  4. Monitoring of Pentoxifylline Thermal Behavior by Novel Simultaneous Laboratory Small and Wide X-Ray Scattering (SWAXS) and Differential Scanning Calorimetry (DSC).

    PubMed

    Hodzic, Aden; Kriechbaum, Manfred; Schrank, Simone; Reiter, Franz

    2016-01-01

    The thermal and structural evolutions associated to active pharmaceutical ingredient (API) purity are monitored using a laboratory instrument (S3-MicroCaliX) allowing simultaneous time-resolved X-ray scattering at both wide and small angles (SWAXS) as a function of temperature. This is performed simultaneously with differential scanning calorimetric (DSC) that is carried out in the same apparatus at scanning rate of 2 K/min on the same sample in the range from 20° to 200°C. We have studied simultaneous thermal and structural properties of pentoxifylline, as an active pharmaceutical ingredient (API), for its purity quality control. We have found a satisfying API purity, due to obtained melting temperature and enthalpy values, which are in a well agreement with literature. We have also found that the combination of these techniques allows the thermal monitoring of scanning rates of 2 K/min, continuously without the need for static thermal equilibration, particularly for X-ray spectra. Hence, DSC and SWAXS allowing better identification of the structural thermal events recorded by following of the phase transitions simultaneously. This interpretation is much better possible when X-ray scattering at small and wide angles is coupled with DSC from the same sample. Hence, as a laboratory tool, the method presents a reproducible thermal and crystallographic API purity quality control of non-complex samples, as crucial information for pharmaceutical technology. PMID:27467972

  5. Monitoring of Pentoxifylline Thermal Behavior by Novel Simultaneous Laboratory Small and Wide X-Ray Scattering (SWAXS) and Differential Scanning Calorimetry (DSC)

    PubMed Central

    Hodzic, Aden; Kriechbaum, Manfred; Schrank, Simone; Reiter, Franz

    2016-01-01

    The thermal and structural evolutions associated to active pharmaceutical ingredient (API) purity are monitored using a laboratory instrument (S3-MicroCaliX) allowing simultaneous time-resolved X-ray scattering at both wide and small angles (SWAXS) as a function of temperature. This is performed simultaneously with differential scanning calorimetric (DSC) that is carried out in the same apparatus at scanning rate of 2 K/min on the same sample in the range from 20° to 200°C. We have studied simultaneous thermal and structural properties of pentoxifylline, as an active pharmaceutical ingredient (API), for its purity quality control. We have found a satisfying API purity, due to obtained melting temperature and enthalpy values, which are in a well agreement with literature. We have also found that the combination of these techniques allows the thermal monitoring of scanning rates of 2 K/min, continuously without the need for static thermal equilibration, particularly for X-ray spectra. Hence, DSC and SWAXS allowing better identification of the structural thermal events recorded by following of the phase transitions simultaneously. This interpretation is much better possible when X-ray scattering at small and wide angles is coupled with DSC from the same sample. Hence, as a laboratory tool, the method presents a reproducible thermal and crystallographic API purity quality control of non-complex samples, as crucial information for pharmaceutical technology. PMID:27467972

  6. LONG-TERM X-RAY MONITORING OF LS I +61{sup 0}303: ANALYSIS OF SPECTRAL VARIABILITY AND FLARES

    SciTech Connect

    Li Jian; Zhang Shu; Chen Yupeng; Wang Jianmin; Torres, Diego F.; Hadasch, Daniela; Rea, Nanda; Ray, Paul S.; Kretschmar, Peter

    2011-06-01

    We report on the full analysis of a Rossi X-ray Timing Explorer Proportional Counter Array monitoring of the {gamma}-ray binary system LS I +61{sup 0}303. The data set covers 42 contiguous cycles of the system orbital motion. Analyzing this X-ray monitoring data set, the largest to date for this source, we report on the variability of the orbital profile and the spectral distribution, and provide strong evidence for an anti-correlation between flux and spectral index (the higher the flux, the harder the spectral index). Furthermore, we present the analysis of two newly discovered kilosecond-timescale flares, which present significant variability also on shorter timescales and tend to occur at orbital phases between 0.6 and 0.9. However, a detailed timing analysis of the flares does not show any coherent or quasi-coherent (QPO) structure in their power spectra. We also investigated the possible appearance of the radio super-orbital modulation at X-ray energies, but we could not unambiguously detect such modulation in the system flux history nor in the evolution of its orbital modulation fraction.

  7. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    SciTech Connect

    Bixler, J.V.; Craig, W.; Decker, T.; Aarts, H.; Boggende, T. den; Brinkman, A.C.; Burkert, W.; Brauninger, H.; Branduardi-Raymont, G.; Dubbeldam, L.

    1994-07-12

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  8. Studies of Transient X-Ray Sources with the Ariel 5 All-Sky Monitor. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.

    1977-01-01

    The All-Sky Monitor, an imaging X-ray detector launched aboard the Ariel 5 satellite, was used to obtain detailed light curves of three new sources. Additional data essential to the determination of the characteristic luminosities, rates of occurrence (and possible recurrence), and spatial distribution of these objects was also obtained. The observations are consistent with a roughly uniform galactic disk population consisting of at least two source sub-classes, with the second group (Type 2) at least an order of magnitude less luminous and correspondingly more frequent than the first (Type 1). While both subtypes are probably unrelated to the classical optical novae (or supernovae), they are most readily interpreted within the standard mass exchange X-ray binary model, with outbursts triggered by Roche-lobe overflow (Type 1) or enhancements in the stellar wind density of the companion (Type 2), respectively.

  9. X-ray monitoring of the radio and γ-ray loud Narrow-Line Seyfert 1 Galaxy PKS2004-447

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Kadler, M.; Wilms, J.; Schulz, R.; Müller, C.; Ojha, R.; Ros, E.; Mannheim, K.; Elsässer, D.

    2013-12-01

    We present preliminary results of the X-ray analysis of XMM-Newton and Swift observations as part of a multi-wavelength monitoring campaign in 2012 of the radio-loud narrow line Seyfert 1 galaxy PKS 2004-447. The source was recently detected in γ-rays by Fermi/LAT among only four other galaxies of that type. The 0:5 - 10 keV X-ray spectrum is well-described by a simple absorbed powerlaw (Γ ˜ 1.6). The source brightness exhibits variability on timescales of months to years with indications for spectral variability, which follows a "bluer-when-brighter" behaviour, similar to blazars.

  10. Einstein Observatory SSS and MPC observations of the complex X-ray spectra of Seyfert galaxies. [Solid State Spectrometer and Monitor Proportional Counter

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.

    1991-01-01

    The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.

  11. THE INTEGRATED DIFFUSE X-RAY EMISSION OF THE CARINA NEBULA COMPARED TO OTHER MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Chu, You-Hua; Gruendl, Robert A.; Oey, M. S.; Pittard, Julian M.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) has shown that the Carina Nebula displays bright, spatially-complex soft diffuse X-ray emission. Here, we 'sum up' the CCCP diffuse emission work by comparing the global morphology and spectrum of Carina's diffuse X-ray emission to other famous sites of massive star formation with pronounced diffuse X-ray emission: M17, NGC 3576, NGC 3603, and 30 Doradus. All spectral models require at least two diffuse thermal plasma components to achieve adequate spectral fits, a softer component with kT = 0.2-0.6 keV and a harder component with kT = 0.5-0.9 keV. In several cases these hot plasmas appear to be in a state of non-equilibrium ionization that may indicate recent and current strong shocks. A cavity north of the embedded giant H II region NGC 3576 is the only region studied here that exhibits hard diffuse X-ray emission; this emission appears to be nonthermal and is likely due to a recent cavity supernova, as evidenced by a previously-known pulsar and a newly-discovered pulsar wind nebula also seen in this cavity. All of these targets exhibit X-ray emission lines that are not well modeled by variable-abundance thermal plasmas and that might be attributed to charge exchange at the shock between the hot, tenuous, X-ray-emitting plasma and cold, dense molecular material; this is likely evidence for dust destruction at the many hot/cold interfaces that characterize massive star-forming regions.

  12. Characterization of the interfacial geomechanics in gas shales via integrated Raman spectroscopy, nanoindentation and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Abedi, S.; Grossman, J. C.; Ulm, F.

    2012-12-01

    The geomechanical characterization of gas shales at the microscale is currently enabled by the use of grid-based nanoindentation techniques. However, the inability to probe the chemical and mineral heterogeneity of gas shales limits the identification of the geomechanical properties of individual components and phases within the probed region. The development of an integrated multiphysics approach that combines geomechanical and chemical information is crucial for the characterization of interfaces between phases, leading to the identification of regions with low yield strain. Here we present a comprehensive investigation where a spatially aligned coupled multiphysics analysis of gas shales is used to identify relevant the geomechanics of mineral and organic phases and their interfaces. This method uses grid-based nanondentation to extract the geomechanical information. Raman spectroscopy is used to identify the majority of inorganic components (calcite, quartz, anatase, pyrite, clay) as well as to characterize the diversity and maturity in the organic component (kerogen). Energy dispersive X-ray is used in combination with Raman to identify clay. With the use of clustering analysis statistical tools a correlation analysis over the full range of data (geomechanics and chemical data), we identify several mineral phases, and we clearly associate the mechanical properties (defined in terms of hardness, modulus and yield strain) with each phase. With this innovative multiphysics analysis we were able to identify interfacial phases between inorganic phases, with distinct hardness and yield strain. We find that regions between calcite-rich or quartz rich phases and clay-rich phases showed a lower than of that of the corresponding boundary phases. Hence this approach provides a viable method for the identification of the "weakest links" in gas shales with the highest probability of fracture.

  13. Integration of the Two-Dimensional Power Spectral Density into Specifications for the X-ray Domain -- Problems and Opportunities

    SciTech Connect

    McKinney, Wayne R.; Howells, M. R.; Yashchuk, V. V.

    2008-09-30

    An implementation of the two-dimensional statistical scattering theory of Church and Takacs for the prediction of scattering from x-ray mirrors is presented with a graphical user interface. The process of this development has clarified several problems which are of significant interest to the synchrotron community. These problems have been addressed to some extent, for example, for large astronomical telescopes, and at the National Ignition Facility for normal incidence optics, but not in the synchrotron community for grazing incidence optics. Since it is based on the Power Spectral Density (PSD) to provide a description of the deviations from ideal shape of the surface, accurate prediction of the scattering requires an accurate estimation of the PSD. Specifically, the spatial frequency range of measurement must be the correct one for the geometry of use of the optic--including grazing incidence and coherence effects, and the modifications to the PSD of the Optical Transfer Functions (OTF) of the measuring instruments must be removed. A solution for removal of OTF effects has been presented previously, the Binary Pseudo-Random Grating. Typically, the frequency range of a single instrument does not cover the range of interest, requiring the stitching together of PSD estimations. This combination generates its own set of difficulties in two dimensions. Fitting smooth functions to two dimensional PSDs, particularly in the case of spatial non-isotropy of the surface, which is often the case for optics in synchrotron beam lines, can be difficult. The convenient, and physically accurate fractal for one dimension does not readily transfer to two dimensions. Finally, a completely statistical description of scattering must be integrated with a deterministic low spatial frequency component in order to completely model the intensity near the image. An outline for approaching these problems, and our proposed experimental program is given.

  14. SHORT-TIMESCALE MONITORING OF THE X-RAY, UV, AND BROAD DOUBLE-PEAK EMISSION LINE OF THE NUCLEUS OF NGC 1097

    SciTech Connect

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk; Eracleous, Michael; Peterson, Bradley M.; Baldwin, Jack A.; Nemmen, Rodrigo S.; Winge, Cláudia

    2015-02-10

    Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previous campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.

  15. Short-timescale Monitoring of the X-Ray, UV, and Broad Double-peak Emission Line of the Nucleus of NGC 1097

    NASA Astrophysics Data System (ADS)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk; Eracleous, Michael; Peterson, Bradley M.; Baldwin, Jack A.; Nemmen, Rodrigo S.; Winge, Cláudia

    2015-02-01

    Recent studies have suggested that the short-timescale (lsim 7 days) variability of the broad (~10,000 km s-1) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previous campaigns and showing only limited (~20%) variability. The X-ray variations were small, only ~13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.

  16. Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy

    PubMed Central

    Hua, Weijie; Oesterling, Sven; Biggs, Jason D.; Zhang, Yu; Ando, Hideo; de Vivie-Riedle, Regina; Fingerhut, Benjamin P.; Mukamel, Shaul

    2015-01-01

    Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns). We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs) passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry. PMID:26798832

  17. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  18. Lobster-Eye X-Ray Astronomy

    SciTech Connect

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2010-07-15

    We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

  19. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program

    PubMed Central

    Kim, Yeun Yoon; Shin, Hyun Joo; Kim, Myung-Joon; Lee, Mi-Jung

    2016-01-01

    PURPOSE We aimed to evaluate the use of a dose monitoring program for calculating and comparing the diagnostic radiation doses in pediatric patients with neuroblastoma. METHODS We retrospectively reviewed diagnostic and therapeutic imaging studies performed on pediatric patients with neuroblastoma from 2003 to 2014. We calculated the mean effective dose per exam for X-ray, conventional computed tomography (CT), and CT of positron emission tomography/computed tomography (PET/CT) from the data collected using a dose monitoring program (DoseTrack group) since October 2012. Using the data, we estimated the cumulative dose per person and the relative dose from each modality in all patients (Total group). The effective dose from PET was manually calculated for all patients. RESULTS We included 63 patients with a mean age of 3.2±3.5 years; 28 had a history of radiation therapy, with a mean irradiated dose of 31.9±23.2 Gy. The mean effective dose per exam was 0.04±0.19 mSv for X-ray, 1.09±1.11 mSv for CT, and 8.35±7.45 mSv for CT of PET/CT in 31 patients of the Dose-Track group. The mean estimated cumulative dose per patient in the Total group was 3.43±2.86 mSv from X-ray (8.5%), 7.66±6.09 mSv from CT (19.1%), 18.35±13.52 mSv from CT of PET/CT (45.7%), and 10.71±10.05 mSv from PET (26.7%). CONCLUSION CT of PET/CT contributed nearly half of the total cumulative dose in pediatric patients with neuroblastoma. The radiation dose from X-ray was not negligible because of the large number of X-ray images. A dose monitoring program can be useful for calculating radiation doses in patients with cancer. PMID:27306659

  20. INTEGRAL and XMM-Newton observations of IGR J16418-4532: evidence of accretion regime transitions in a supergiant fast X-ray transient

    NASA Astrophysics Data System (ADS)

    Drave, S. P.; Bird, A. J.; Sidoli, L.; Sguera, V.; McBride, V. A.; Hill, A. B.; Bazzano, A.; Goossens, M. E.

    2013-07-01

    We report on combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J16418-4532. The observations targeted the X-ray eclipse region of IGR J16418-4532's orbit with continuous INTEGRAL observations across ˜25 per cent of orbital phase and two quasi-simultaneous XMM-Newton observations of length 20 and 14 ks, occurring during and just after the eclipse, respectively. An enhanced INTEGRAL emission history is provided with 19 previously unreported outbursts identified in the archival 18-60 keV data set. The XMM-Newton eclipse observation showed prominent Fe emission and a flux of 2.8 × 10-13 erg cm-2 s-1 (0.5-10 keV). Through the comparison of the detected eclipse and post-eclipse flux, the supergiant mass-loss rate through the stellar wind was determined as Ṁw = 2.3-3.8 × 10-7 M⊙ yr-1. The post-eclipse XMM-Newton observation showed a dynamic flux evolution with signatures of the X-ray pulsation, a period of flaring activity, structured nH variations and the first ever detection of an X-ray intensity dip, or `off-state', in a pulsating SFXT. Consideration is given to the origin of the X-ray dip, and we conclude that the most applicable of the current theories of X-ray dip generation is that of a transition between Compton-cooling-dominated and radiative-cooling-dominated subsonic accretion regimes within the `quasi-spherical' model of wind accretion. Under this interpretation, which requires additional confirmation, the neutron star in IGR J16418-4532 possesses a magnetic field of ˜1014 G, providing tentative observational evidence of a highly magnetized neutron star in a SFXT for the first time. The implications of these results on the nature of IGR J16418-4532 itself and the wider SFXT class are discussed.

  1. Comprehensive Monitoring of Gamma-Ray Bright Blazars. I. Statistical Study of Optical, X-Ray, and Gamma-Ray Spectral Slopes

    NASA Astrophysics Data System (ADS)

    Williamson, Karen E.; Jorstad, Svetlana G.; Marscher, Alan P.; Larionov, Valeri M.; Smith, Paul S.; Agudo, Iván; Arkharov, Arkady A.; Blinov, Dmitry A.; Casadio, Carolina; Efimova, Natalia V.; Gómez, José L.; Hagen-Thorn, Vladimir A.; Joshi, Manasvita; Konstantinova, Tatiana S.; Kopatskaya, Evgenia N.; Larionova, Elena G.; Larionova, Liudmilla V.; Malmrose, Michael P.; McHardy, Ian M.; Molina, Sol N.; Morozova, Daria A.; Schmidt, Gary D.; Taylor, Brian W.; Troitsky, Ivan S.

    2014-07-01

    We present γ-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 γ-ray bright blazars over 4 years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their γ-ray behavior. We derive γ-ray, X-ray, and optical spectral indices, αγ, α X , and α o , respectively (F νvpropνα), and construct spectral energy distributions during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (1) significantly steeper γ-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (2) a small difference of α X within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (3) a highly peaked distribution of X-ray spectral slopes of FSRQs at ~ -0.60, but a very broad distribution of α X of BL Lacs during active states; (4) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of α o of BL Lacs between states; and (5) a positive correlation between optical and γ-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.

  2. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  3. X-ray fluorescence holography.

    PubMed

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. PMID:22318258

  4. The 100-month Swift catalogue of supergiant fast X-ray transients. I. BAT on-board and transient monitor flares

    NASA Astrophysics Data System (ADS)

    Romano, P.; Krimm, H. A.; Palmer, D. M.; Ducci, L.; Esposito, P.; Vercellone, S.; Evans, P. A.; Guidorzi, C.; Mangano, V.; Kennea, J. A.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.

    2014-02-01

    Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are defined by their hard X-ray flaring behaviour. During these flares they reach peak luminosities of 1036-1037 erg s-1 for a few hours (in the hard X-ray), which are much shorter timescales than those characterizing Be/X-ray binaries. Aims: We investigate the characteristics of bright flares (detections in excess of 5σ) for a sample of SFXTs and their relation to the orbital phase. Methods: We have retrieved all Swift/BAT Transient Monitor light curves and collected all detections in excess of 5σ from both daily- and orbital-averaged light curves in the time range of 2005 February 12 to 2013 May 31 (MJD 53 413-56 443). We also considered all on-board detections as recorded in the same time span and selected those in excess of 5σ and within 4 arcmin of each source in our sample. Results: We present a catalogue of over a thousand BAT flares from 11 SFXTs, down to 15-150 keV fluxes of ~6 × 10-10 erg cm-2 s-1 (daily timescale) and ~1.5 × 10-9 erg cm-2 s-1 (orbital timescale, averaging ~800 s); the great majority of these flares are unpublished. The catalogue spans 100 months. This population is characterized by short (a few hundred seconds) and relatively bright (in excess of 100 mCrab, 15-50 keV) events. In the hard X-ray, these flares last generally much less than a day. Clustering of hard X-ray flares can be used to indirectly measure the length of an outburst, even when the low-level emission is not detected. We construct the distributions of flares, of their significance (in terms of σ), and of their flux as a function of orbital phase to infer the properties of these binary systems. In particular, we observe a trend of clustering of flares at some phases as Porb increases, which is consistent with a progression from tight circular or mildly eccentric orbits at short periods to wider and more eccentric orbits at longer orbital periods. Finally, we estimate the

  5. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  6. Gas gain operations with single photon resolution using an integrating ionization chamber in small-angle X-ray scattering experiments

    NASA Astrophysics Data System (ADS)

    Menk, R. H.; Sarvestani, A.; Besch, H. J.; Walenta, A. H.; Amenitsch, H.; Bernstorff, S.

    2000-01-01

    In this work a combination of an ionization chamber with one-dimensional spatial resolution and a MicroCAT structure will be presented. Initially, MicroCAT was thought of as a shielding grid (Frisch-grid) but later was used as an active electron amplification device that enables single X-ray photon resolution measurements at low fluxes even with integrating readout electronics. Moreover, the adjustable gas gain that continuously covers the entire range from pure ionization chamber mode up to high gas gains (30 000 and more) provides stable operation yielding a huge dynamic range of about 10 8 and more. First measurements on biological samples using small angle X-ray scattering techniques with synchrotron radiation will be presented.

  7. Integration of an amorphous silicon passive pixel sensor array with a lateral amorphous selenium detector for large area indirect conversion x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Yazdandoost, Mohammad Y.; Keshavarzi, Rasoul; Shin, Kyung-Wook; Hristovski, Christos; Abbaszadeh, Shiva; Chen, Feng; Majid, Shaikh Hasibul; Karim, Karim S.

    2011-03-01

    Previously, we reported on a single-pixel detector based on a lateral a-Se metal-semiconductor-metal structure, intended for indirect conversion X-ray imaging. This work is the continuous effort leading to the first prototype of an indirect conversion X-ray imaging sensor array utilizing lateral amorphous selenium. To replace a structurally-sophisticated vertical multilayer amorphous silicon photodiode, a lateral a-Se MSM photodetector is employed which can be easily integrated with an amorphous silicon thin film transistor passive pixel sensor array. In this work, both 2×2 macro-pixel and 32×32 micro-pixel arrays were fabricated and tested along with discussion of the results.

  8. Integrated Exposure Assessment Monitoring.

    ERIC Educational Resources Information Center

    Behar, Joseph V.; And Others

    1979-01-01

    Integrated Exposure Assessment Monitoring is the coordination of environmental (air, water, land, and crops) monitoring networks to collect systematically pollutant exposure data for a specific receptor, usually man. (Author/BB)

  9. INTEGRAL, XMM-Newton and ESO/NTT identification of AX J1749.1-2733: an obscured and probably distant Be/X-ray binary

    NASA Astrophysics Data System (ADS)

    Zurita Heras, J. A.; Chaty, S.

    2008-10-01

    Context: AX J1749.1-2733 is an unclassified transient X-ray source discovered during surveys by ASCA in 1993-1999. The transient behaviour and the short and bright flares of the source have led to the idea that it is part of the recently revealed subclass of supergiant fast X-ray transients. Aims: A multi-wavelength study in NIR, optical, X-rays, and hard X-rays of AX J1749.1-2733 is undertaken in order to determine its nature. Methods: Public INTEGRAL data and our target of opportunity observation with XMM-Newton were used to study the high-energy source through timing and spectral analysis. Multi-wavelength observations in optical and NIR with the ESO/NTT telescope were also performed to search for the counterpart. Results: AX J1749.1-2733 is a new high-mass X-ray binary pulsar with an orbital period of 185.5±1.1 days (or 185.5/f with f=2,3 or 4) and a spin period of 66 s, parameters typical of a Be/X-ray binary. The outbursts last 12 d. A spin-down of dot{P}=0.08 ± 0.02 s yr -1 is also observed, very likely due to the propeller effect. The most accurate X-ray position is RA (2000) =17h49m06.8s and Dec =-27°32 arcmin32.5 arcsec (uncertainty 2 arcsec). The high-energy broad-band spectrum is well-fitted with an absorbed powerlaw and a high-energy cutoff with values NH=20.1-1.3+1.5×1022 cm-2, Γ=1.0-0.3+0.1, and Ecut=21-3+5 keV. The only optical/NIR candidate counterpart within the X-ray error circle has magnitudes of R=21.9±0.1, I=20.92±0.09, J=17.42±0.03, H=16.71±0.02, and Ks=15.75±0.07, which points towards a Be star located far away (>8.5 kpc) and highly absorbed (NH˜ 1.7×1022 cm-2). The average 22-50 keV luminosity is 0.4-0.9×1036 erg s-1 during the long outbursts and 3×1036 erg s-1 during the bright flare that occurred on MJD 52891 for an assumed distance of 8.5 kpc. Based on observations made with 1) INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany

  10. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  11. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  12. X-ray - skeleton

    MedlinePlus

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  13. Extremity x-ray

    MedlinePlus

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  14. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  15. Catalysis of GTP hydrolysis by small GTPases at atomic detail by integration of X-ray crystallography, experimental, and theoretical IR spectroscopy.

    PubMed

    Rudack, Till; Jenrich, Sarah; Brucker, Sven; Vetter, Ingrid R; Gerwert, Klaus; Kötting, Carsten

    2015-10-01

    Small GTPases regulate key processes in cells. Malfunction of their GTPase reaction by mutations is involved in severe diseases. Here, we compare the GTPase reaction of the slower hydrolyzing GTPase Ran with Ras. By combination of time-resolved FTIR difference spectroscopy and QM/MM simulations we elucidate that the Mg(2+) coordination by the phosphate groups, which varies largely among the x-ray structures, is the same for Ran and Ras. A new x-ray structure of a Ran·RanBD1 complex with improved resolution confirmed this finding and revealed a general problem with the refinement of Mg(2+) in GTPases. The Mg(2+) coordination is not responsible for the much slower GTPase reaction of Ran. Instead, the location of the Tyr-39 side chain of Ran between the γ-phosphate and Gln-69 prevents the optimal positioning of the attacking water molecule by the Gln-69 relative to the γ-phosphate. This is confirmed in the RanY39A·RanBD1 crystal structure. The QM/MM simulations provide IR spectra of the catalytic center, which agree very nicely with the experimental ones. The combination of both methods can correlate spectra with structure at atomic detail. For example the FTIR difference spectra of RasA18T and RanT25A mutants show that spectral differences are mainly due to the hydrogen bond of Thr-25 to the α-phosphate in Ran. By integration of x-ray structure analysis, experimental, and theoretical IR spectroscopy the catalytic center of the x-ray structural models are further refined to sub-Å resolution, allowing an improved understanding of catalysis. PMID:26272610

  16. X-ray monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

  17. The evaluation of X-ray fluorescence (XRF) for process monitoring of slag from the plasma hearth process

    SciTech Connect

    Carney, K.P.; Smith, M.A.; Crane, P.J.

    1995-12-31

    Slag material produced by the Plasma Hearth Process (PHP) varies in chemical composition due to the heterogeneous nature of the input sample feed. X-ray fluorescence (XRF) is a spectroscopic technique which has been evaluated to perform elemental analyses on surrogate slag material for process control. The intensity of Si, Al and Fe in the slag samples was utilized to determine the appropriate matrix standard set for the determination of Ce. The precision of the XRF technique was better than 5% RSD. The limit of detection for Ce varied with sample matrix and was typically below 0.01 % by weight. The linear dynamic range for the technique was evaluated over 2 orders of magnitude. The Ce determinations performed directly on slag material by the XRF technique were similar to ICP-AES analyses. No addition waste streams were created from the analyses by the XRF technique.

  18. Monolayer sorption of neon in mesoporous silica glass as monitored by wide-angle x-ray scattering.

    PubMed

    Kilburn, Duncan; Sokol, Paul E

    2008-02-01

    We report measurements of the x-ray scattering intensity as mesoporous silica glasses are filled with neon. The intensity of the first peak in the liquidlike diffraction pattern increases nonlinearly with mass adsorbed. We outline a simple model assuming that the major coherent contribution to the first peak in the scattering function S(Q) is due to interference from nearest-neighbor scatterers. This allows us to demonstrate an approach for surface area determination which does not rely on thermodynamic models -- and is therefore complementary to existing methods. We also suggest that the overestimation of surface area by the traditional Brunauer-Emmett-Teller method may be resolved by using the capillary, and not the bulk, condensation pressure as the reference pressure p(0). Furthermore, the alternative analysis offers an insight into the atomic structure of monatomic sorption, which may be of use for further studies on materials with different surface properties. PMID:18352035

  19. Picosecond strain dynamics in Ge2Sb2Te5 monitored by time-resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Fons, Paul; Rodenbach, Peter; Mitrofanov, Kirill V.; Kolobov, Alexander V.; Tominaga, Junji; Shayduk, Roman; Giussani, Alessandro; Calarco, Raffaella; Hanke, Michael; Riechert, Henning; Simpson, Robert E.; Hase, Muneaki

    2014-09-01

    Coherent phonons (CPs) generated by laser pulses on the femtosecond scale have been proposed as a means to achieve ultrafast, nonthermal switching in phase-change materials such as Ge2Sb2Te5 (GST). Here we use ultrafast optical pump pulses to induce coherent acoustic phonons and stroboscopically measure the corresponding lattice distortions in GST using 100-ps x-ray pulses from the European Synchrotron Radiation Facility (ESRF) storage ring. A linear-chain model provides a good description of the observed changes in the diffraction signal; however, the magnitudes of the measured shifts are too large to be explained by thermal effects alone, implying the presence of excited-state effects in addition to temperature-driven expansion. The information on the movement of atoms during the excitation process can lead to greater insight into the possibilities of using CP-induced phase transitions in GST.

  20. Monitoring intermediate filament assembly by small-angle x-ray scattering reveals the molecular architecture of assembly intermediates

    PubMed Central

    Sokolova, Anna V.; Kreplak, Laurent; Wedig, Tatjana; Mücke, Norbert; Svergun, Dmitri I.; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V.

    2006-01-01

    Intermediate filaments (IFs), along with microtubules, microfilaments, and associated cross-bridging proteins, constitute the cytoskeleton of metazoan cells. While crystallographic data on the dimer representing the elementary IF “building block” have recently become available, little structural detail is known about both the mature IF architecture and its assembly pathway. Here, we have applied solution small-angle x-ray scattering to investigate the in vitro assembly of a 53-kDa human IF protein vimentin at pH 8.4 by systematically varying the ionic strength conditions, and complemented these experiments by electron microscopy and analytical ultracentrifugation. While a vimentin solution in 5 mM Tris·HCl (pH 8.4) contains predominantly tetramers, addition of 20 mM NaCl induces further lateral assembly evidenced by the shift of the sedimentation coeficient and yields a distinct octameric intermediate. Four octamers eventually associate into unit-length filaments (ULFs) that anneal longitudinally. Based on the small-angle x-ray scattering experiments supplemented by crystallographic data and additional structural constraints, 3D molecular models of the vimentin tetramer, octamer, and ULF were constructed. Within each of the three oligomers, the adjacent dimers are aligned exclusively in an approximately half-staggered antiparallel A11 mode with a distance of 3.2–3.4 nm between their axes. The ULF appears to be a dynamic and a relatively loosely packed structure with a roughly even mass distribution over its cross-section. PMID:17050693

  1. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  2. Using X-ray imaging for monitoring the development of the macropore network in a soil sample exposed to natural boundary conditions

    NASA Astrophysics Data System (ADS)

    Koestel, John

    2015-04-01

    Soil macrostructure is not static but continuously modified by climatic and biological factors. Knowledge of how a macropore network evolves in an individual soil sample is however scarce because it is difficult to collect respective time-lapse data in the field. In this study I investigated whether it is reasonable to use X-ray imaging to monitor the macropore network development in a small topsoil column (10 cm high, 6.8 cm diameter) that is periodically removed from the field, X-rayed and subsequently installed back in the field. Apart from quantifying the structural changes of the macropore network in this soil sample, I investigated whether earthworms entered the soil column and whether roots grew beyond the lower bottom of the column into the subsoil. The soil was sampled from a freshly hand-ploughed allotment near Uppsala (Sweden) in the beginning of June 2013. Rucola (eruca vesicaria) was sown on the top of the column and in its vicinity. When the soil column was for the first time removed from the field and scanned in October 2013, it contained four new earthworm burrows. Root growth into the subsoil was largely absent. Over winter, in May 2014, no further earthworm burrows had formed. Instead, the macrostructure had started to disintegrate somewhat. No crop was sown in the 2014 vegetation period and the soil sample was left unploughed. In October 2014, the column contained again new earthworm burrows. Furthermore, a dandelion had established on the soil column together with some grasses. Several roots had now connected the soil column with the subsoil. The study shows that X-ray tomography offers a promising opportunity for investigating soil structure evolution, even though it cannot be directly installed in the field.

  3. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  4. Optical and X-ray monitoring, Doppler imaging, and space motion of the young star Par 1724 in Orion

    NASA Astrophysics Data System (ADS)

    Neuhaeuser, R.; Wolk, S. J.; Torres, G.; Preibisch, Th.; Stout-Batalha, N. M.; Hatzes, A. P.; Frink, S.; Wichmann, R.; Covino, E.; Alcala, J. M.; Brandner, W.; Walter, F. M.; Sterzik, M. F.; Koehler, R.

    1998-06-01

    We present a detailed study of the young T Tauri star Par 1724, located 15 arc min north of the Trapezium cluster in Orion. Our extensive VRI photometric measurements confirm the rotational period to be 5.7 days. Repeated high-resolution spectra show variability in the radial velocity with the same period. A Doppler imaging analysis based on high-S/N high-resolution spectra yields an image showing a pronounced dark feature (spot) at relatively low latitude, which is responsible for most or all of the observed variability. Our high-resolution spectra yield a rotational velocity of v * sin i =~ 71 km s(-1) , a surface gravity of log g =~ 3, and a mean heliocentric radial velocity of ~ 23 km s(-1) , the latter being consistent with membership to the Orion association. The equivalent width of the lithium 6708 Angstroms line is variable, consistent with rotational modulation. The line is stronger when the spot is on the front side; the lithium abundance observed when the spot is on the back side is consistent with the primordial value. Many ROSAT X-ray observations show that Par 1724 is a strong and variable X-ray source. It has shown one of the most powerful X-ray flares. Our deep infrared imaging at high spatial resolution reveals no physically bound visual companions down to ~ 1 arc sec separations and a magnitude difference up to Delta R = 7 mag, and also no companion down to ~ 0.13 arc sec with Delta K = 2.5 mag. We also present the spectral energy distribution of Par 1724 and show that it does not display infrared excess. We estimate the bolometric luminosity to be ~ 49 Lsun, the spectral type to be K0, and the radius to be ~ 9 Rsun. Although Par 1724 appears to have lost all its circumstellar material, its bolometric luminosity places it very close to the stellar birth-line at an age of only ~ 2 * 10(5) years, with a mass of ~ 3 Msun. According to its present location and 3D space motion ( ~ 20 km s(-1) to the north relative to the cluster), Par 1724 may have

  5. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  6. Monitoring pH-Triggered Drug Release from Radioluminescent Nanocapsules with X-Ray Excited Optical Luminescence

    PubMed Central

    Chen, Hongyu; Moore, Thomas; Qi, Bin; Colvin, Daniel C.; Jelen, Erika K.; Hitchcock, Dale A.; He, Jian; Mefford, O. Thompson; Gore, John C.; Alexis, Frank; Anker, Jeffrey N.

    2013-01-01

    One of the greatest challenges in cancer therapy is to develop methods to deliver chemotherapy agents to tumor cells while reducing systemic toxicity to non-cancerous cells. A promising approach to localizing drug release is to employ drug-loaded nanoparticles with coatings that release the drugs only in the presence of specific triggers found in the target cells such as pH, enzymes, or light. However, many parameters affect the nanoparticle distribution and drug release rate and it is difficult to quantify drug release in situ. In this work, we show proof of principle for a “smart” radioluminescent nanocapsule with X-ray excited optical luminescence (XEOL) spectrum that changes during release of the optically absorbing chemotherapy drug, doxorubicin. XEOL provides an almost background-free luminescent signal for measuring drug release from particles irradiated by a narrow X-ray beam. We study in vitro pH triggered release rates of doxorubicin from nanocapsules coated with a pH responsive polyelectrolyte multilayer using HPLC and XEOL spectroscopy. The doxorubicin was loaded to over 5 % by weight, and released from the capsule with a time constant in vitro of ~ 36 days at pH 7.4, and 21.4 hr at pH 5.0, respectively. The Gd2O2S:Eu nanocapsules are also paramagnetic at room temperature with similar magnetic susceptibility and similarly good MRI T2 relaxivities to Gd2O3, but the sulfur increases the radioluminescence intensity and shifts the spectrum. Empty nanocapsules did not affect cell viability up to concentrations of at least 250 μ/ml. These empty nanocapsules accumulated in a mouse liver and spleen following tail vein injection, and could be observed in vivo using XEOL. The particles are synthesized with a versatile template synthesis technique which allows for control of particle size and shape. The XEOL analysis technique opens the door to non-invasive quantification of drug release as a function of nanoparticle size, shape, surface chemistry and tissue

  7. Monitoring pH-triggered drug release from radioluminescent nanocapsules with X-ray excited optical luminescence.

    PubMed

    Chen, Hongyu; Moore, Thomas; Qi, Bin; Colvin, Daniel C; Jelen, Erika K; Hitchcock, Dale A; He, Jian; Mefford, O Thompson; Gore, John C; Alexis, Frank; Anker, Jeffrey N

    2013-02-26

    One of the greatest challenges in cancer therapy is to develop methods to deliver chemotherapy agents to tumor cells while reducing systemic toxicity to noncancerous cells. A promising approach to localizing drug release is to employ drug-loaded nanoparticles with coatings that release the drugs only in the presence of specific triggers found in the target cells such as pH, enzymes, or light. However, many parameters affect the nanoparticle distribution and drug release rate, and it is difficult to quantify drug release in situ. In this work, we show proof-of-principle for a "smart" radioluminescent nanocapsule with an X-ray excited optical luminescence (XEOL) spectrum that changes during release of the optically absorbing chemotherapy drug, doxorubicin. XEOL provides an almost background-free luminescent signal for measuring drug release from particles irradiated by a narrow X-ray beam. We study in vitro pH-triggered release rates of doxorubicin from nanocapsules coated with a pH-responsive polyelectrolyte multilayer using HPLC and XEOL spectroscopy. The doxorubicin was loaded to over 5% by weight and released from the capsule with a time constant in vitro of ∼36 days at pH 7.4 and 21 h at pH 5.0, respectively. The Gd₂O₂S:Eu nanocapsules are also paramagnetic at room temperature with similar magnetic susceptibility and similarly good MRI T₂ relaxivities to Gd₂O₃, but the sulfur increases the radioluminescence intensity and shifts the spectrum. Empty nanocapsules did not affect cell viability up to concentrations of at least 250 μg/mL. These empty nanocapsules accumulated in a mouse liver and spleen following tail vein injection and could be observed in vivo using XEOL. The particles are synthesized with a versatile template synthesis technique which allows for control of particle size and shape. The XEOL analysis technique opens the door to noninvasive quantification of drug release as a function of nanoparticle size, shape, surface chemistry, and

  8. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  9. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  10. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  11. A historical fluence analysis of the radiation environment of the Chandra X-ray Observatory and implications for continued radiation monitoring

    NASA Astrophysics Data System (ADS)

    DePasquale, J. M.; Plucinsky, P. P.; Schwartz, D. A.

    2006-06-01

    Now in operation for over 6 years, the Chandra X-ray Observatory (CXO) has sampled a variety of space environments. Its highly elliptical orbit, with a 63.5 hr period, regularly takes the spacecraft through the Earth's radiation belts, the magnetosphere, the magnetosheath and into the solar wind. Additionally, the CXO has weathered several severe solar storms during its time in orbit. Given the vulnerability of Chandra's Charge Coupled Devices (CCDs) to radiation damage from low energy protons, proper radiation management has been a prime concern of the Chandra team. A comprehensive approach utilizing scheduled radiation safing, in addition to both on-board autonomous radiation monitoring and manual intervention, has proved successful at managing further radiation damage. However, the future of autonomous radiation monitoring on-board the CXO faces a new challenge as the multi-layer insulation (MLI) on its radiation monitor, the Electron, Proton, Helium Instrument (EPHIN), continues to degrade, leading to elevated temperatures. Operating at higher temperatures, the data from some EPHIN channels can become noisy and unreliable for radiation monitoring. This paper explores the full implication of the loss of EPHIN to CXO radiation monitoring by evaluating the fluences the CXO experienced during 40 autonomous radiation safing events from 2000 through 2005 in various hypothetical scenarios which include the use of EPHIN in limited to no capacity as a radiation monitor. We also consider the possibility of replacing EPHIN with Chandra's High Resolution Camera (HRC) for radiation monitoring.

  12. Chandra X-ray Observatory Aimpoint and Optical Axis

    NASA Astrophysics Data System (ADS)

    Zhao, Ping

    2012-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. The Chandra telescope is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. By measuring the telescope Aimpoint and Optical Axis positions on the detectors, we can exam the stability of the telescope. These positions have been monitored continuously as one of the Chandra on-orbit calibration tasks. The results show that these positions have been drifting continuously since launch. I will present the drift of the Optical Axis and Aimpoint, their default offset, and explain their impacts to the Chandra operation and evaluates the integrity and stability of the telescope. This study is essential to ensure the optimal operation of the Chandra X-ray Observatory.

  13. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    SciTech Connect

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5/sup 0/ and 10/sup 0/ to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm/sup 2/ and the integrated energy at destruction was 2.0 J/cm/sup 2/. 82 refs., 66 figs., 10 tabs.

  14. 10 Years of RXTE Monitoring of the Anomalous X-Ray Pulsar 4U 0142+61: Long-Term Variability

    NASA Astrophysics Data System (ADS)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2007-09-01

    We report on 10 years of monitoring of the 8.7 s anomalous X-ray pulsar 4U 0142+61 using the Rossi X-Ray Timing Explorer (RXTE). This pulsar exhibited stable rotation from 2000 March until 2006 February; the rms phase residual for a spin-down model, which includes ν, ν˙, and ν̈, is 2.3%. We report a possible phase-coherent timing solution valid over a 10 yr span extending back to 1996 March. A glitch may have occurred between 1998 and 2000, but is not required by the existing timing data. The pulse profile has been evolving since 2000. In particular, the dip of emission between its two peaks got shallower between 2002 and 2006, as if the profile were evolving back to its pre-2000 morphology, following an earlier event, which possibly also included the glitch suggested by the timing data. These profile variations are seen in the 2-4 keV band, but not in 6-8 keV. We also detect a slow increase in the pulsed flux between 2002 May and 2004 December, such that it has risen by 36%+/-3% over 2.6 yr in the 2-10 keV band. The pulsed flux variability and the narrowband pulse profile changes present interesting challenges to aspects of the magnetar model.

  15. Deactivation Mechanisms of Ni-Based Tar Reforming Catalysts As Monitored by X-ray Absorption Spectroscopy

    SciTech Connect

    Yung, Matthew M.; Kuhn, John N.

    2010-12-06

    Deactivation mechanisms of alumina-supported, Ni-based catalysts for tar reforming in biomass-derived syngas were evaluated using extended X-ray absorption fine structure (EXAFS) spectroscopy. Catalysts were characterized before and after catalytic reaction cycles and regeneration procedures, which included oxidation by a mixture of steam and air, and reduction in hydrogen. Qualitative analysis of the EXAFS spectra revealed that oxidation of a portion of the Ni in the catalysts to form an oxide phase and/or a sulfide phase were likely scenarios that led to catalyst deactivation with time-on-stream and with increased reaction cycles. Deactivation through carbon deposition, phosphorus poisoning, or changes in particle size were deemed as unlikely causes. Quantitative analysis of the EXAFS spectra indicated sulfur poisoning occurred with time-on-stream, and the contaminating species could not be completely removed during the regeneration protocols. The results also verified that Ni-containing oxide phases (most likely a spinel also containing Mg and Al) formed and contributed to the deactivation. This study validates the need for developing catalyst systems that will protect Ni from sulfur poisoning and oxide formation at elevated reaction and regeneration temperatures.

  16. Advanced Techniques for In-Situ Monitoring of Phase Transformations During Welding Using Synchrotron-Based X-Ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Zhang, W; DebRoy, T

    2005-06-05

    Understanding the evolution of microstructure in welds is an important goal of welding research because of the strong correlation between weld microstructure and weld properties. To achieve this goal it is important to develop a quantitative measure of phase transformations encountered during welding in order to ultimately develop methods for predicting weld microstructures from the characteristics of the welding process. To aid in this effort, synchrotron radiation methods have been developed at Lawrence Livermore National Laboratory (LLNL) for direct observation of microstructure evolution during welding. Using intense, highly collimated synchrotron radiation, the atomic structure of the weld heat affected and fusion zones can be probed in real time. Two synchrotron-based techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, have been developed for these investigations. These techniques have now been used to investigate welding induced phase transformations in titanium alloys, low alloy steels, and stainless steel alloys. This paper will provide a brief overview of these methods and will discuss microstructural evolution during the welding of low carbon (AISI 1005) and medium carbon (AISI 1045) steels where the different levels of carbon influence the evolution of microstructures during welding.

  17. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  18. Dental x-rays

    MedlinePlus

    ... or impacted teeth The presence and extent of dental caries (cavities) Bone damage (such as from periodontitis ) Abscessed ... Dental x-rays can reveal dental cavities (tooth decay) before they ... take yearly bitewings for the early development of cavities.

  19. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  20. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  1. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, ...

  2. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  3. Bone x-ray

    MedlinePlus

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  4. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  5. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  6. Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state

    NASA Astrophysics Data System (ADS)

    Öberg, H.; Gladh, J.; Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Katayama, T.; Kaya, S.; LaRue, J.; Møgelhøj, A.; Nordlund, D.; Ogasawara, H.; Schlotter, W. F.; Sellberg, J. A.; Sorgenfrei, F.; Turner, J. J.; Wolf, M.; Wurth, W.; Öström, H.; Nilsson, A.; Nørskov, J. K.; Pettersson, L. G. M.

    2015-10-01

    We present density functional theory modeling of time-resolved optical pump/X-ray spectroscopic probe data of CO desorption from Ru(0001). The BEEF van der Waals functional predicts a weakly bound state as a precursor to desorption. The optical pump leads to a near-instantaneous (< 100 fs) increase of the electronic temperature to nearly 7000 K. The temperature evolution and energy transfer between electrons, substrate phonons and adsorbate is described by the two-temperature model and found to equilibrate on a timescale of a few picoseconds to an elevated local temperature of ~ 2000 K. Estimating the free energy based on the computed potential of mean force along the desorption path, we find an entropic barrier to desorption (and by time-reversal also to adsorption). This entropic barrier separates the chemisorbed and precursor states, and becomes significant at the elevated temperature of the experiment (~ 1.4 eV at 2000 K). Experimental pump-probe X-ray absorption/X-ray emission spectroscopy indicates population of a precursor state to desorption upon laser-excitation of the system (Dell'Angela et al., 2013). Computing spectra along the desorption path confirms the picture of a weakly bound transient state arising from ultrafast heating of the metal substrate.

  7. A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.

    2013-12-01

    Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air

  8. Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy.

    PubMed

    Sun, Yugang; Wang, Yuxin

    2011-10-12

    Galvanic replacement reaction between silver nanowires and an aqueous solution of HAuCl(4) has been successfully monitored in real time by using in situ transmission X-ray microscopy (TXM) in combination with a flow cell reactor. The in situ observations clearly show the morphological evolution of the solid silver nanowires to hollow gold nanotubes in the course of the reaction. Careful analysis of the images reveals that the galvanic replacement reaction on the silver nanowires involves multiple steps: (i) local initiation of pitting process; (ii) anisotropic etching of the silver nanowires and uniform deposition of the resulting gold atoms on the surfaces of the nanowires; and (iii) reconstruction of the nanotube walls via an Ostwald ripening process. The in situ TXM represents a promising approach for studying dynamic processes involved in the growth and chemical transformation of nanomaterials in solutions, in particular for nanostructures with dimensions larger than 50 nm. PMID:21894944

  9. Lastest Results from the X-ray Monitoring Campaign of AXP CXOU J17145.7-381031 in CTB 37B

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric V.; Halpern, Jules P.

    2016-04-01

    The 3.82 s AXP CXOU J17145.7-381031 in the supernova remnant CTB 37B has one of the largest spin-down powers for a magnetar, and it may be the youngest one as well. Magnetars with the greatest spin-down power are SGRs, and a marked increase in their spin-down torque often preceds an outburst. In this regard, AXP CXOU J17145.7-381031 is very similar to SGR/AXP 1E 1547.0-5408, the magnetar with the largest spin-down power. We will report on the latest timing and spectral results from our on-going Chandra and XMM X-ray monitoring campaign on the AXP in CTB 37B. We also present a NuSTAR observation that reveals a separate, hard spectral component similar to that found for other magnetars.

  10. Active Region Soft X-Ray Spectra and Temperature Analyses based on Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid V.; Wieman, Seth; Woods, Thomas N.; Jones, Andrew; Moore, Christopher

    2016-05-01

    Some initial results of soft x-ray spectral (0.5 to 3.0 nm) observations of active regions (AR11877 and AR11875) from a sounding rocket flight NASA 36.290 on 21 October 2013 at about 18:30 UT are reported. These observations were made by a Solar Aspect Monitor (SAM), a rocket version of the EUV Variability Experiment’s (EVE) channel, a pinhole camera modified for EVE rocket suite of instruments to include a free-standing transmission grating (200 nm period), which provided spectrally-resolved images of the solar disk. Intensity ratios for strong emission lines extracted from temporally averaged SAM spectral profiles of the ARs were compared to appropriately convolved modeled CHIANTI spectra. These ratios represent the AR’s temperature structures, which are compared to the structures derived from some other observations and temperature models.

  11. X-ray absorption fine structure combined with fluorescence spectrometry for monitoring trace amounts of lead adsorption in the environmental conditions.

    PubMed

    Izumi, Yasuo; Kiyotaki, Fumitaka; Minato, Taketoshi; Seida, Yoshimi

    2002-08-01

    The local structure of trace amounts of lead in an adsorbent matrix that contains a high concentration of iron and magnesium (Mg6Fe2(OH)16(CO3) x 3H2O) was successfully monitored by means of X-ray absorption fine structure spectroscopy combined with fluorescence spectrometry. A eutectic mixture of PbCO3 and Pb(OH)2 coagulated when Pb2+ was adsorbed from a 1.0 ppm aqueous solution, and in contrast, the major species was ion-exchanged Pb2+ in the case of adsorption from a 100 ppb aqueous solution. The difference was ascribed to the balance between the precipitation equilibrium for coagulation and the rate of the ion exchange reaction with surface hydroxyl groups. PMID:12175171

  12. Reduction of a grid moire pattern by integrating a carbon-interspaced high precision x-ray grid with a digital radiographic detector

    SciTech Connect

    Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo

    2007-11-15

    The stationary grid commonly used with a digital x-ray detector causes a moire interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moire such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moire pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moire pattern, particularly the line frequency and displacement. The frequency of the moire pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moire frequency. The frequency of the moire pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moire-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moire pattern were investigated.

  13. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Rodriguez, J.; Cadolle Bel, M.; Alfonso-Garzón, J.; Siegert, T.; Zhang, X.-L.; Grinberg, V.; Savchenko, V.; Tomsick, J. A.; Chenevez, J.; Clavel, M.; Corbel, S.; Diehl, R.; Domingo, A.; Gouiffès, C.; Greiner, J.; Krause, M. G. H.; Laurent, P.; Loh, A.; Markoff, S.; Mas-Hesse, J. M.; Miller-Jones, J. C. A.; Russell, D. M.; Wilms, J.

    2015-09-01

    After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20, 15:50 UTC to June 25, 4:05 UTC, from the optical V band up to the soft γ-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20-40 keV) within three days. The flare recurrence can be as short as ~20 min from peak to peak. A model-independent analysis shows that the >6 Crab flares have a hard spectrum. A simple 10-400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be only due to variations of a cut-off power-law component. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio. Table 1 and Fig. 4 are available in electronic form at http://www.aanda.org

  14. Miniature X-Ray Bone Densitometer

    NASA Technical Reports Server (NTRS)

    Charles, Harry K., Jr.

    1999-01-01

    The purpose of the Dual Energy X-ray Absorptiometry (DEXA) project is to design, build, and test an advanced X-ray absorptiometry scanner capable of being used to monitor the deleterious effects of weightlessness on the human musculoskeletal system during prolonged spaceflight. The instrument is based on the principles of dual energy x-ray absorptiometry and is designed not only to measure bone, muscle, and fat masses but also to generate structural information about these tissues so that the effects on mechanical integrity may be assessed using biomechanical principles. A skeletal strength assessment could be particularly important for an astronaut embarking on a remote planet where the consequences of a fragility fracture may be catastrophic. The scanner will employ multiple projection images about the long axis of the scanned subject to provide geometric properties in three dimensions, suitable for a three-dimensional structural analysis of the scanned region. The instrument will employ advanced fabrication techniques to minimize volume and mass (100 kg current target with a long-term goal of 60 kg) of the scanner as appropriate for the space environment, while maintaining the required mechanical stability for high precision measurement. The unit will have the precision required to detect changes in bone mass and geometry as small as 1% and changes in muscle mass as small as 5%. As the system evolves, advanced electronic fabrication technologies such as chip-on-board and multichip modules will be combined with commercial (off-the-shelf) parts to produce a reliable, integrated system which not only minimizes size and weight, but, because of its simplicity, is also cost effective to build and maintain. Additionally, the system is being designed to minimize power consumption. Methods of heat dissipation and mechanical stowage (for the unit when not in use) are being optimized for the space environment.

  15. Continuous-time core-level photon-stimulated desorption spectroscopy for monitoring soft x-ray-induced reactions of molecules adsorbed on a single-crystal surface

    SciTech Connect

    Chou, L.-C.; Wen, C.-R.

    2006-05-15

    Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was proposed for monitoring the soft x-ray-induced reactions of molecules adsorbed on a single-crystal surface. Monochromatic synchrotron radiation was used as a soft x-ray light source in the photon-induced reactions of CF{sub 3}Cl adsorbed on a Si(111)-7x7 surface at 30 K and also as a probe for studying the produced fluorination states of the bonding surface Si atom in the positive-ion PSD spectroscopy. The F{sup +} PSD spectrum was obtained by monitoring the F{sup +} signal as a function of incident photon energy near the Si(2p) edge (98-110 eV). Sequential F{sup +} PSD spectra were measured as a function of photon exposure at four adsorbate coverages (the first dose=0.3x10{sup 15} molecules/cm{sup 2}, the second dose=0.8x10{sup 15} molecules/cm{sup 2}, the third dose=2.2x10{sup 15} molecules/cm{sup 2}, and the fourth dose=3.2x10{sup 15} molecules/cm{sup 2}). For the first and second CF{sub 3}Cl-dosed surfaces, the sequential F{sup +} PSD spectra show the variation of their shapes with photon exposure and indicate the formation of surface SiF species. The sequential F{sup +} PSD spectra for the third and fourth CF{sub 3}Cl-dosed surfaces also show the variation of their shapes with photon exposure and depict the production of surface SiF and SiF{sub 3} species.

  16. First in-situ monitoring of CO2 delivery to the mantle followed by compression melting, using synchrotron generated X-ray diffraction.

    NASA Astrophysics Data System (ADS)

    Hammouda, Tahar; Chantel, Julien; Manthilake, Geeth; Guignard, Jérémy; Crichton, Wilson; Gaillard, Fabrice

    2014-05-01

    Melting of peridotite + CO2 upon compression has been directly monitored in situ, for the first time. We have combined high pressure experiments in the multianvil apparatus with synchrotron-generated X-ray diffraction, in order to monitor sample decarbonation upon heating, followed by melting upon compression. Experiments were performed in the model system CaO-MgO-SiO2+CO2, using dolomite and silicates contained in graphite capsules as starting material. Save Al, starting composition was aimed at reproducing peridotitic system. The sample was first compressed at room temperature, then heated. Decarbonation was observed at 2.2 GPa and 1100°C. After further heating to 1300°C, pressure was increased. Melting was observed at 2.7 GPa, while temperature was kept at 1300°C. All transformations were followed using X-ray diffraction. Starting with silicate + carbonate mixtures, we were thus able to keep CO2 fluid in the experimental sample at high P and T, up to the solidus. Concerning carbon recycling at subduction zones, it is known that CO2 is a non-wetting fluid in silicate aggregates. Therefore, any CO2 resulting from carbonate breakdown likely remains trapped at grain corners either in the subducted lithosphere or in the mantle wedge before eventually being trapped in mantle minerals as fluid inclusions, due to dynamic recrystallization. In this way, CO2 released from the slab may be spread laterally due to mantle convection. Entrainment to further depths by deep subduction or in convection cells induces CO2 introduction to depth wherein the solidus can be crossed, due to pressure increase. The solidus corresponds to the so-called carbonate ledge, beyond which carbonatitic melts are produced. Therefore, compression melting of CO2-bearing lithologies is a way to produce carbonatitic melts at depths corresponding to about 80 km. This mechanism is a viable explanation for the observed geophysical anomalies, such as those revealed by electrical conductivity

  17. X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  18. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    PubMed Central

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques. PMID:25721341

  19. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  20. Active Region Soft X-Ray Spectra as Observed Using Sounding Rocket Measurements from the Solar Aspect Monitor (SAM), - a Modified SDO/EVE Instrument

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Woods, T. N.; Jones, A. R.; Caspi, A.; Warren, H. P.

    2015-12-01

    Observations of solar active regions (ARs) in the soft x-ray spectral range (0.5 to 3.0 nm) were made on sounding rocket flight NASA 36.290 using a modified Solar Aspect Monitor (SAM), a pinhole camera on the EUV Variability Experiment (EVE) sounding rocket instrument. The suite of EVE rocket instruments is designed for under-flight calibrations of the orbital EVE on SDO. While the sounding rocket EVE instrument is for the most part a duplicate of the EVE on SDO, the SAM channel on the rocket version was modified in 2012 to include a free-standing transmission grating so that it could provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features on it, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. For solar observations, this spectral separation is on a similar scale to the spatial size of the AR on the CCD, so dispersed AR images associated with emission lines of similar wavelength tend to overlap. Furthermore, SAM shares a CCD detector with MEGS-A, a separate EVE spectrometer channel, and artifacts of the MEGS-A signal (a set of bright spectral lines) appear in the SAM images. For these reasons some processing and analysis of the solar images obtained by SAM must be performed in order to determine spectra of the observed ARs. We present a method for determining AR spectra from the SAM rocket images and report initial soft X-ray spectra for two of the major active regions (AR11877 and AR11875) observed on flight 36.290 on 21 October 2013 at about 18:30 UT. We also compare our results with concurrent measurements from other solar soft x-ray instrumentation.

  1. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  2. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2009-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

  3. Integrated structural health monitoring.

    SciTech Connect

    Farrar, C. R.

    2001-01-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the authors opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  4. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  5. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  6. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  7. X-ray

    MedlinePlus

    ... Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies ... be pregnant. Alternative Names ... CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2014: ...

  8. Spectral variation in the supergiant fast X-ray transient SAX J1818.6-1703 observed by XMM-Newton and INTEGRAL

    NASA Astrophysics Data System (ADS)

    Boon, C. M.; Bird, A. J.; Hill, A. B.; Sidoli, L.; Sguera, V.; Goossens, M. E.; Fiocchi, M.; McBride, V. A.; Drave, S. P.

    2016-03-01

    We present the results of a 30 ks XMM-Newton observation of the supergiant fast X-ray transient (SFXT) SAX J1818.6-1703 - the first in-depth soft X-ray study of this source around periastron. INTEGRAL observations shortly before and after the XMM-Newton observation show the source to be in an atypically active state. Over the course of the XMM-Newton observation, the source shows a dynamic range of ˜100 with a luminosity greater than 1 × 1035 erg s-1 for the majority of the observation. After an ˜6 ks period of low-luminosity (˜1034 erg s-1) emission, SAX J1818.6-1703 enters a phase of fast flaring activity, with flares ˜250 s long, separated by ˜2 ks. The source then enters a larger flare event of higher luminosity and ˜8 ks duration. Spectral analysis revealed evidence for a significant change in spectral shape during the observation with a photon index varying from Γ ˜ 2.5 during the initial low-luminosity emission phase, to Γ ˜ 1.9 through the fast flaring activity, and a significant change to Γ ˜ 0.3 during the main flare. The intrinsic absorbing column density throughout the observation (nH ˜ 5 × 1023 cm-2) is among the highest measured from an SFXT, and together with the XMM-Newton and INTEGRAL luminosities, consistent with the neutron star encountering an unusually dense wind environment around periastron. Although other mechanisms cannot be ruled out, we note that the onset of the brighter flares occurs at 3 × 1035erg s-1, a luminosity consistent with the threshold for the switch from a radiative-dominated to Compton cooling regime in the quasi-spherical settling accretion model.

  9. Measurement of patient imaging dose for real-time kilovoltage x-ray intrafraction tumour position monitoring in prostate patients

    NASA Astrophysics Data System (ADS)

    Crocker, James K.; Aun Ng, Jin; Keall, Paul J.; Booth, Jeremy T.

    2012-05-01

    The dose for image-based motion monitoring of prostate tumours during radiotherapy delivery has not been established. This study aimed to provide quantitative analysis and optimization of the fluoroscopic patient imaging dose during radiotherapy for IMRT and VMAT treatments using standard and hypofractionated treatment schedules. Twenty-two patients with type T1c N0/M0 prostate cancer and three implanted fiducial markers were considered. Minimum field sizes encompassing all fiducial markers plus a 7.5 mm motion margin were determined for each treatment beam, each patient and the complete cohort. Imaging doses were measured for different field sizes and depths in a phantom at 75 and 120 kV. Based on these measurements, the patient imaging doses were then estimated according to beam-on time for clinical settings. The population minimum field size was 5.3 × 6.1 cm2, yielding doses of 406 and 185 mGy over the course of an IMRT treatment for 75 kV (10 mAs) and 120 kV (1.04 mAs) imaging respectively, at 1 Hz. The imaging dose was reduced by an average of 28% and 32% by adopting patient-specific and treatment-beam-specific field sizes respectively. Standard fractionation VMAT imaging doses were 37% lower than IMRT doses over a complete treatment. Hypofractionated IMRT stereotactic body radiotherapy (SBRT) and VMAT SBRT imaging doses were 58% and 76% lower than IMRT doses respectively. The patient dose for kilovoltage intrafraction monitoring of the prostate was quantified. Tailoring imaging field sizes to specific patients yielded a significant reduction in the imaging dose, as did adoption of faster treatment modalities such as VMAT.

  10. X ray opacity in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Wise, Michael W.; Sarazin, Craig L.

    1993-01-01

    We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.

  11. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  12. Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography.

    PubMed

    Oliéric, V; Ennifar, E; Meents, A; Fleurant, M; Besnard, C; Pattison, P; Schiltz, M; Schulze-Briese, C; Dumas, P

    2007-07-01

    Radiation damage in macromolecular crystals is not suppressed even at 90 K. This is particularly true for covalent bonds involving an anomalous scatterer (such as bromine) at the 'peak wavelength'. It is shown that a series of absorption spectra recorded on a brominated RNA faithfully monitor the extent of cleavage. The continuous spectral changes during irradiation preserve an 'isosbestic point', each spectrum being a linear combination of 'zero' and 'infinite' dose spectra. This easily yields a good estimate of the partial occupancy of bromine at any intermediate dose. The considerable effect on the near-edge features in the spectra of the crystal orientation versus the beam polarization has also been examined and found to be in good agreement with a previous study. Any significant influence of the (C-Br bond/beam polarization) angle on the cleavage kinetics of bromine was also searched for, but was not detected. These results will be useful for standard SAD/MAD experiments and for the emerging 'radiation-damage-induced phasing' method exploiting both the anomalous signal of an anomalous scatterer and the 'isomorphous' signal resulting from its cleavage. PMID:17582167

  13. High-energy monitoring of NGC 4593 with XMM-Newton and NuSTAR. X-ray spectral analysis

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; De Marco, B.; De Rosa, A.; Malzac, J.; Marinucci, A.; Ponti, G.; Tortosa, A.

    2016-08-01

    We present results from a joint XMM-Newton/NuSTAR monitoring of the Seyfert 1 NGC 4593, consisting of 5 × 20 ks simultaneous observations spaced by two days, performed in January 2015. The source is variable, both in flux and spectral shape, on time-scales down to a few ks and with a clear softer-when-brighter behaviour. In agreement with past observations, we find the presence of a warm absorber well described by a two-phase ionized outflow. The source exhibits a cold, narrow and constant Fe K α line at 6.4 keV, and a broad component is also detected. The broad-band (0.3-79 keV) spectrum is well described by a primary power law with Γ ≃ 1.6 - 1.8 and an exponential cut-off varying from 90^{+ 40}_{- 20} keV to >700 keV, two distinct reflection components, and a variable soft excess correlated with the primary power law. This campaign shows that probing the variability of Seyfert 1 galaxies on different time-scales is of prime importance to investigate the high-energy emission of AGNs.

  14. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    NASA Astrophysics Data System (ADS)

    Sfarra, Stefano; Ibarra-Castanedo, Clemente; Ridolfi, Stefano; Cerichelli, Giorgio; Ambrosini, Dario; Paoletti, Domenica; Maldague, Xavier

    2014-06-01

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy—SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named "Virgin with her Child" (XIV century), whose origins are mysterious and not properly documented.

  15. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  16. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  17. Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mutz, B.; Carvalho, H. W. P.; Kleist, W.; Grunwaldt, J.-D.

    2016-05-01

    A 10 wt.-% Ni/Al2O3 catalyst with Ni particles of about 4 nm was prepared and applied in the methanation of CO2 under dynamic reaction conditions. Fast phase transformations between metallic Ni, NiO and NiCO3 were observed under changing reaction atmospheres using operando X-ray absorption spectroscopy (XAS). Removing H2 from the feed gas and, thus, simulating a H2 dropout during the methanation reaction led to oxidation of the active sites. The initial reduced state of the Ni particles could not be recovered under methanation atmosphere (H2/CO2 = 4); this was only possible with an effective reactivation step applying H2 at increased temperatures. Furthermore, the cycling of the gas atmospheres resulted in a steady deactivation of the catalyst. Operando XAS is a powerful tool to monitor these changes and the behavior of the catalyst under working conditions to improve the understanding of the catalytic processes and deactivation phenomena.

  18. CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism by time-lapse X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Geindreau, C.; Panel, J.-M.; Roscoat, S. Rolland; Charrier, P.

    2015-05-01

    Monitoring the time evolution of snow microstructure in 3-D is crucial for a better understanding of snow metamorphism. We, therefore, designed a cryogenic cell that precisely controls the experimental conditions of a sample while it is scanned by X-ray tomography. Based on a thermoelectrical regulation and a vacuum insulation, the cell operates at room temperature. It is, thus, adaptable to diverse scanners, offering advantages in terms of imaging techniques, resolution, and speed. Three-dimensional time-lapse series were obtained under equitemperature and temperature gradient conditions at a 7.8 μm precision. The typical features of each metamorphism and the anisotropic faceting behavior between the basal and prismatic planes, known to occur close to -2°C, were observed in less than 30 h. These results are consistent with the temperature fields expected from heat conduction simulations through the cell. They confirm the cell's accuracy and the interest of relatively short periods to study snow metamorphism.

  19. From the X-rays to a reliable “low cost” computational structure of caffeic acid: DFT, MP2, HF and integrated molecular dynamics-X-ray diffraction approach to condensed phases

    NASA Astrophysics Data System (ADS)

    Lombardo, Giuseppe M.; Portalone, Gustavo; Colapietro, Marcello; Rescifina, Antonio; Punzo, Francesco

    2011-05-01

    The ability of caffeic acid to act as antioxidant against hyperoxo-radicals as well as its recently found therapeutic properties in the treatment of hepatocarcinoma, still make this compound, more than 20 years later the refinement of its crystal structure, object of study. It belongs to the vast family of humic substances, which play a key role in the biodegradation processes and easily form complexes with ions widely diffused in the environment. This class of compounds is therefore interesting for potential environmental chemistry applications concerning the possible complexation of heavy metals. Our study focused on the characterization of caffeic acid as a starting necessary step, which will be followed in the future by the application of our findings on the study of the properties of caffeate anion interaction with heavy metal ions. To reach this goal, we applied a low cost approach - in terms of computational time and resources - aimed at the achievement of a high resolution, robust and trustable structure using the X-ray single crystal data, recollected with a higher resolution, as touchstone for a detailed check. A comparison between the calculations carried out with density functional theory (DFT), Hartree-Fock (HF) method and post SCF second order Møller-Plesset perturbation method (MP2), at the 6-31G ** level of the theory, molecular mechanics (MM) and molecular dynamics (MD) was performed. As a consequence we explained on one hand the possible reasons for the pitfalls of the DFT approach and on the other the benefits of using a good and robust force field developed for condensed phases, as AMBER, with MM and MD. The reliability of the latter, highlighted by the overall agreement extended up to the anisotropic displacement parameters calculated by means of MD and the ones gathered by X-ray measurements, makes it very promising for the above-mentioned goals.

  20. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  1. DGPS ground station integrity monitoring

    NASA Technical Reports Server (NTRS)

    Skidmore, Trent A.; Vangraas, Frank

    1995-01-01

    This paper summarizes the development of a unique Differential Global Positioning System (DGPS) ground station integrity monitor which can offer improved availability over conventional code-differential monitoring systems. This monitoring technique, called code/carrier integrity monitoring (CCIM), uses the highly stable integrated Doppler measurement to smooth the relatively noisy code-phase measurements. The pseudorange correction is therefore comprised of the integrated Doppler measurement plus the CCIM offset. The design and operational results of a DGPS ground station integrity monitor are reported. A robust integrity monitor is realized which is optimized for applications such as the Special Category I (SCAT-I) defined in the RTCA Minimum Aviation System Performance Standards.

  2. The symbiotic star RT Cru entered a new hard X-ray state as detected by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Sguera, V.; Bird, A. J.; Sidoli, L.

    2015-12-01

    The symbiotic star RT Cru (also known as IGR J12349-6434) was in the field of view of INTEGRAL during recent observations of the Musca region performed between 11 Dec 17:54 (UTC) and 17 Dec 20:43 (UTC).

  3. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  4. Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152

    NASA Astrophysics Data System (ADS)

    van der Horst, A. J.; Curran, P. A.; Miller-Jones, J. C. A.; Linford, J. D.; Gorosabel, J.; Russell, D. M.; de Ugarte Postigo, A.; Lundgren, A. A.; Taylor, G. B.; Maitra, D.; Guziy, S.; Belloni, T. M.; Kouveliotou, C.; Jonker, P. G.; Kamble, A.; Paragi, Z.; Homan, J.; Kuulkers, E.; Granot, J.; Altamirano, D.; Buxton, M. M.; Castro-Tirado, A.; Fender, R. P.; Garrett, M. A.; Gehrels, N.; Hartmann, D. H.; Kennea, J. A.; Krimm, H. A.; Mangano, V.; Ramirez-Ruiz, E.; Romano, P.; Wijers, R. A. M. J.; Wijnands, R.; Yang, Y. J.

    2013-12-01

    MAXI J1659-152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves have revealed that MAXI J1659-152 is the shortest period black hole candidate identified to date. Here we present the results of a large observing campaign at radio, submillimetre, near-infrared (nIR), optical and ultraviolet (UV) wavelengths. We have combined this very rich data set with the available X-ray observations to compile a broad-band picture of the evolution of this outburst. We have performed broad-band spectral modelling, demonstrating the presence of a spectral break at radio frequencies and a relationship between the radio spectrum and X-ray states. Also, we have determined physical parameters of the accretion disc and put them into context with respect to the other parameters of the binary system. Finally, we have investigated the radio-X-ray and nIR/optical/UV-X-ray correlations up to ˜3 yr after the outburst onset to examine the link between the jet and the accretion disc, and found that there is no significant jet contribution to the nIR emission when the source is in the soft or intermediate X-ray spectral state, consistent with our detection of the jet break at radio frequencies during these states.

  5. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  6. SU-E-I-10: Automatic Monitoring of Accumulated Dose Indices From DICOM RDSR to Improve Radiation Safety in X-Ray Angiography

    SciTech Connect

    Omar, A; Bujila, R; Nowik, P; Karambatsakidou, A

    2014-06-01

    Purpose: To investigate the potential benefits of automatic monitoring of accumulated patient and staff dose indicators, i.e., CAK and KAP, from DICOM Radiation Dose Structured Reports (RDSR) in x-ray angiography (XA). Methods: Recently RDSR has enabled the convenient aggregation of dose indices and technique parameters for XA procedures. The information contained in RDSR objects for three XA systems, dedicated to different types of clinical procedures, has been collected and aggregated in a database for over one year using a system developed with open-source software at the Karolinska University Hospital. Patient weight was complemented to the RDSR data via an interface with the Hospital Information System (HIS). Results: The linearly approximated trend in KAP over a time period of a year for cerebrovascular, pelvic/peripheral vascular, and cardiovascular procedures showed a decrease of 12%, 20%, and 14%, respectively. The decrease was mainly due to hardware/software upgrades and new low-dose imaging protocols, and partially due to ongoing systematic radiation safety education of the clinical staff. The CAK was in excess of 3 Gy for 15 procedures, and exceeded 5 Gy for 3 procedures. The dose indices have also shown a significant dependence on patient weight for cardiovascular and pelvic/peripheral vascular procedures; a 10 kg shift in mean patient weight can result in a dose index increase of 25%. Conclusion: Automatic monitoring of accumulated dose indices can be utilized to notify the clinical staff and medical physicists when the dose index has exceeded a predetermined action level. This allows for convenient and systematic follow-up of patients in risk of developing deterministic skin injuries. Furthermore, trend analyses of dose indices over time is a valuable resource for the identification of potential positive or negative effects (dose increase/decrease) from changes in hardware, software, and clinical work habits.

  7. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  8. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  9. Technology development for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Törmä, P. T.; Sipilä, H. J.; Koskinen, T.; Mattila, M.

    2016-05-01

    X-ray spectroscopy instruments lose part of their performance due to the lack of suitable components for soft X-ray region below 1 keV. Therefore, in the analysis of low atomic number elements including lithium, beryllium, boron and carbon instrument sensitivity is often limited. In this work we describe how the performance of the spectroscopy of soft X-rays is significantly improved when all devices integrated in the spectroscopic instrument are suitable for both soft and hard X-rays. This concept is based on utilizing ultra-thin SiN X-ray windows with proven performance not only as a detector window but also as an X-ray source window. By including a soft-X-ray-sensitive silicon drift detector with efficient surface charge collection in this concept the sensitivity and performance of the instrument is significantly increased.

  10. Searches for correlated X-ray and radio emission from X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Catura, R. C.; Lamb, P. A.; White, N. E.; Sanford, P. W.; Hoffman, J. A.; Lewin, W. H. G.; Jernigan, J. G.

    1978-01-01

    The NRAO Green Bank interferometer has been used to monitor MXB 1730-335 and MXB 1837+05 during periods when 68 X-ray bursts were detected by X-ray observations. No significant radio emission was detected from these objects, or from MXB 1820-30 and MXB 1906+00, which emitted no bursts throughout the simultaneous observations. The data place upper limits on radio emission from these objects in the 2695 and 8085 MHz bands.

  11. INTEGRAL AND SWIFT OBSERVATIONS OF THE Be X-RAY BINARY 4U 1036-56 (RX J1037.5-5647) AND ITS POSSIBLE RELATION WITH {gamma}-RAY TRANSIENTS

    SciTech Connect

    Li Jian; Zhang Shu; Chen Yupeng; Wang Jianmin; Torres, Diego F.; Papitto, Alessandro

    2012-12-10

    We present timing, spectral, and long-term temporal analysis of the high-mass X-ray binary 4U 1036-56 using INTEGRAL and Swift observations. We show that it is a weak hard X-ray source spending a major fraction of the time in quiescence and only occasionally characterized by X-ray outbursts. The outburst activity we report here lasts several days, with a dynamic range spanned by the luminosity in quiescence and in outburst as high as {approx}30. We report the detection of pulse period at 854.75 {+-} 4.39 s during an outburst, which is consistent with previous measurements. Finally, we analyze the possibility of the association of 4U 1036-56 with the unidentified transient {gamma}-ray sources AGL J1037-5708 and GRO J1036-55, as prompted by its positional correlation.

  12. Results from the first two years of the INTEGRAL Spiral Arms Monitoring Program

    NASA Astrophysics Data System (ADS)

    Bodaghee, Arash; Spetzer, Keri

    2014-08-01

    We describe the scientific objectives and main highlights from the first 2 years of an INTEGRAL "Key Program" consisting of high-cadence monitoring of the inner spiral arms of the Galaxy paired with ToO observations of new transients with XMM-Newton and Swift. The INTEGRAL Spiral Arms (ISA) program (25.6 ks per spacecraft revolution during visibility periods, for a total of 1.2 Ms per year since 2012) complements the successful Galactic Bulge (GB) program by extending the monitored region of the Galaxy to the Inner Perseus/Norma Arm tangents on one side of the GB, and the Scutum/Sagittarius Arms on the other. These fields feature a high density of obscured high-mass X-ray binaries (HMXBs), including Supergiant Fast X-ray Transients (SFXTs), as well as other hard X-ray emitting sources (e.g. microquasars, low-mass X-ray binaries, and magnetars) that INTEGRAL is well-suited to finding thanks to its large field of view and angular resolution at high energies even in crowded regions of the sky. Mosaic images and source light curves in 2 energy bands for ISGRI and JEM-X are being provided to the community permitting rapid dissemination of results (http://isa.gcsu.edu) which enable prompt follow-up of interesting events. The ISA project represents the cornerstone of our ongoing study of transient and variable hard X-ray populations in the Milky Way.

  13. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  14. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  15. X-ray properties of hard X-ray Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Bernardini, F.; Mukai, K.; Falanga, M.

    2014-07-01

    Among hard X-ray galactic sources detected by the INTEGRAL and SWIFT surveys, those identified as accreting white dwarf binaries recently boosted in number, representing ~20% of the galactic sample. The majority are identified as magnetic Cataclysmic Variables (CVs) suggesting that this subclass is an important costituent of galactic population of X-ray sources. We will present the results of an on-going follow-up programme with XMM-Newton aiming at identifying the true nature of newly discovered hard X-ray CV candidates.

  16. GRBs and Lobster Eye X-Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2013-07-01

    A large majority of GRBs exhibit X-ray emission. In addition, a dedicated separate group of GRB, the XRFs, exists which emission dominates in the X-ray spectral range. And the third group of GRB related objects (yet hypothetical) are the group of off-axis observed GRBs (orphan afterglows). These facts justify the consideration of an independent experiment for monitoring, detection and analyses of GRBs and others fast X-ray transients in X-rays. We will present and discuss such experiment based on wide-field X-ray telescopes of Lobster Eye type. We show that the wide field and fine sensitivity of Lobster Eye X-ray All-Sky Monitor make such instruments important tools in study of GRBs.

  17. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  18. Improving the accuracy of hand-held X-ray fluorescence spectrometers as a tool for monitoring brominated flame retardants in waste polymers.

    PubMed

    Guzzonato, A; Puype, F; Harrad, S J

    2016-09-01

    An optimised method for Br quantification as a metric of brominated flame retardant (BFR) concentrations present in Waste Electrical and Electronic Equipment (WEEE) polymers is proposed as an alternative to the sophisticated, yet time consuming GC-MS methods currently preferred. A hand-held X-ray fluorescence (XRF) spectrometer was validated with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Customized standard materials of specific BFRs in a styrenic polymer were used to perform an external calibration for hand-held XRF ranging from 0.08 to 12 wt% of Br, and cross-checking with LA-ICP-MS having similar LODs (0.0004 wt% for LA-ICP-MS and 0.0011 wt% for XRF). The "thickness calibration" developed here for hand-held XRF and the resulting correction, was applied to 28 real samples and showed excellent (R(2) = 0.9926) accordance with measurements obtained via LA-ICP-MS. This confirms the validity of hand-held XRF as an accurate technique for the determination of Br in WEEE plastics. This is the first use of solid standards to develop a thickness-corrected quantitative XRF measurement of Br in polymers using LA-ICP-MS for method evaluation. Thermal desorption gas chromatography mass spectrometry (TD-GC-MS) was used to confirm the presence of specific BFRs in WEEE polymer samples. We propose that expressing limit values for BFRs in waste materials in terms of Br rather than BFR concentration (based on a conservative assumption about the BFR present), presents a practical solution to the need for an accurate, yet rapid and inexpensive technique capable of monitoring compliance with limit values in situ. PMID:27281541

  19. Why bother with x-ray lithography?

    NASA Astrophysics Data System (ADS)

    Smith, Henry I.; Schattenburg, Mark L.

    1992-07-01

    The manufacture of state-of-the-art integrated circuits uses UV optical projection lithography. Conventional wisdom (i.e., the trade journals) holds that this technology will take the industry to quarter-micrometer minimum features sizes and below. So, why bother with X-ray lithography? The reason is that lithography is a 'system problem', and proximity X-ray lithography is better matched to that system problem than any other technology, once the initial investment is surmounted. X-ray lithography offers the most cost-effective path to the future of ultra-large-scale integrated circuits with feature sizes of tenth micrometer and below (i.e., gigascale electronics and quantum-effect electronics).

  20. Swift X-ray follow-up observations of two INTEGRAL sources: IGRJ12470-5407 and IGRJ18532+0416

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Landi, R.; Bassani, L.; Bazzano, A.; Bird, A. J.; Gehrels; Kennea, J. A.

    2011-04-01

    We report the results of X-ray follow-up observations performed with Swift/XRT of two unidentified INTEGRAL sources, IGRJ12470-5407 and IGRJ18532+0416, listed in the 4th IBIS Survey Catalogue (Bird et al. 2010, ApJS, 186, 1). IGRJ12470-5407 This source is a very weak IBIS unidentified object with a flux < 0.3 mCrab in the 20-40 keV energy band ( Bird et al. 2010, ApJS, 186, 1). The field of this source was observed with Swift-XRT on 2011-02-17 03:33:01 and 2011-02-19 18:06:01, for a total exposure time of 4312 s. Within the 99% IBIS positional uncertainty we found only one XRT source above 3 sigma c.l., located at R.A.(J2000) = 12h 47m 50.80s and Dec.(J2000) = -54d 06m 30.80s with an uncertainty of 5 arcsec.

  1. Three-Dimensional Visualization of Bioactive Glass-Bone Integration in a Rabbit Tibia Model Using Synchrotron X-Ray Microcomputed Tomography

    PubMed Central

    Huang, Wenhai; Jia, Weitao; Rahaman, Mohamed N.; Liu, Xin; Tomsia, Antoni P.

    2011-01-01

    Synchrotron X-ray microcomputed tomography (SR microCT), with a micron resolution, was used to evaluate the osteoconduction and osteointegration by borate bioactive glass after implantation 12 weeks in a rabbit tibia model. The study focused on the biomaterial–bone interface. Results from SR microCT two-dimensional and three-dimensional (3D) reconstructions provided precise imaging of the biomaterial–bone integration and detailed microarchitecture of both the bone-like glass graft and the newly formed trabecular bone. Osteoconduction, the formation of new trabecular bone within a tibia defect, occurred only in the tibiae implanted with teicoplanin-loaded borate glass but not in those with teicoplanin-loaded CaSO4 beads, indicating the excellent biocompatibility of the glass implants. 3D reconstruction of the tibiae also showed the infiltration of vascular tissue in both the bioactive glass graft and the new trabecular bone. This study indicates that SR microCT can serve as a valuable complementary technique for imaging bone repair when using bioactive glass implants. PMID:21875330

  2. INTEGRAL SPI observations of Cygnus X-1 in the soft state: What about the jet contribution in hard X-rays?

    SciTech Connect

    Jourdain, E.; Roques, J. P.; Chauvin, M.

    2014-07-01

    During the first 7 yr of the INTEGRAL mission (2003-2009), Cyg X-1 has essentially been detected in its hard state (HS), with some incursions in intermediate HSs. This long, spectrally stable period allowed in particular the measurement of the polarization of the high-energy component that has long been observed above 200 keV in this peculiar object. This result strongly suggests that here we see the contribution of the jet, known to emit a strong synchrotron radio emission. In 2010 June, Cyg X-1 underwent a completed transition toward a soft state (SS). It gave us the unique opportunity to study in detail the corona emission in this spectral state, and to investigate in particular the behavior of the jet contribution. Indeed, during the SS, the hard X-ray emission decreases drastically, with its maximum energy shifted toward lower energy and its flux divided by a factor of ∼5-10. Interestingly, the radio emission follows a similar drop, supporting the correlation between the jet emission and the hard component, even though the flux is too low to quantify the polarization characteristics.

  3. Structure of Poly(dialkylsiloxane) Melts: Comparisons of Wide Angle X-ray Scattering, Molecular Dynamics Simulations, and Integral Equation Theory

    SciTech Connect

    Habenschuss, Anton {Tony}; Tsige, Mesfin; Curro, John G.; Grest, Gary S.; Nath, Shyamal

    2007-01-01

    Wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between the MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.

  4. Structure of Poly(dialkylsiloxane) Melts: Comparisons of Wide-Angle X-ray Scattering, Molecular Dynamics Simualations, and Integral Equation Theory

    SciTech Connect

    Habenschuss, Anton {Tony}; Tsige, Mesfin; Curro, John G.; Grest, Gary S.; Nath, Shyamal

    2007-01-01

    Wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between the MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.

  5. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Berbeco, Ross I.; Jiang, Steve B.; Sharp, Gregory C.; Chen, George T. Y.; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-01

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for

  6. Monitoring of ZnCdSe layer properties by in situ x-ray diffraction during heteroepitaxy on (001)GaAs substrates

    SciTech Connect

    Benkert, A.; Schumacher, C.; Brunner, K.; Neder, R. B.

    2007-04-16

    The authors demonstrate in situ high-resolution x-ray diffraction applied during heteroepitaxy on (001)GaAs for instant layer characterization. The current thickness, composition, strain, and relaxation dynamics of pseudomorphic layers are precisely determined from q{sub z} scans at the (113) reflection measured at a molecular beam epitaxy chamber with a conventional x-ray tube in static geometry. A simple fitting routine enables real-time in situ x-ray diffraction analysis of layers as thin as 20 nm. Critical thicknesses for dislocation formation and plastic relaxation of ZnCdSe layers versus Cd content are determined. The strong influence of substrate temperature on heteroepitaxial nucleation process, deposition rate, composition, and strain relaxation dynamics of ZnCdSe on GaAs is also studied.

  7. A European X-ray astrophysics mission

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.

    1981-01-01

    Five instruments (Bragg Spectrometer, Large Area Proportional and Scintillation Counter Detectors, Wide Field X-ray Cameras and a Gamma-Ray Burst Monitor) are discussed and estimates of their performance are given. Their scientific aims are summarized and sample observing programmes are discussed.

  8. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  9. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  10. Hard X-ray emission from X-ray bursters.

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Liang, E.

    1996-11-01

    Hard X-ray emission from compact objects has been considered a spectral signature of black hole candidates. However, SIGMA and BATSE recently detected transient emission in the energy range 30-200keV from several X-ray bursters (XRBs) believed to contain weakly magnetized neutron stars. At least seven XRBs (including Aquila X-1 and 4U 1608-52) are currently known to produce erratic hard X-ray outbursts with typical durations of several weeks. These results lead us to reconsider theoretical models of high-energy emission from compact objects, and in particular thermal Comptonization models vs. non-thermal models of particle energization and X-ray emission from weakly magnetized neutron stars. We summarize here recent results for magnetic field reconnection models of non-thermal particle acceleration and high-energy emission of accretion disks. For intermediate soft X-ray luminosities below the Eddington limit, non-thermal hard X-ray emission is predicted to have a (broken) power-law spectrum with intensity anticorrelated with the soft X-ray luminosity. Recent GINGA/BATSE data for the XRB 4U 1608-52 are in agreement with the mechanism of emission proposed here: transient hard X-ray emission consistent with a broken power-law spectrum was detected for a sub-Eddington soft X-ray luminosity.

  11. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  12. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  13. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  14. X-ray optics of gold nanoparticles.

    PubMed

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp. PMID:25402878

  15. X-Ray Optics on a Chip: Guiding X Rays in Curved Channels

    NASA Astrophysics Data System (ADS)

    Salditt, T.; Hoffmann, S.; Vassholz, M.; Haber, J.; Osterhoff, M.; Hilhorst, J.

    2015-11-01

    We study the propagation of hard x rays in single curved x-ray waveguide channels and observe waveguide effects down to surprisingly small radii of curvature R ≃10 mm and a large contour length s ≃5 mm , deflecting beams up to 30°. At these high angles, about 2 orders of magnitude above the critical angle of total reflection θc, most radiation modes are lost by "leaking" into the cladding, while certain "survivor" modes persist. This may open up a new form of integrated x-ray optics "on a chip," requiring curvatures mostly well below the extreme values studied here, e.g., to split and to delay x-ray pulses.

  16. X-Ray Optics on a Chip: Guiding X Rays in Curved Channels.

    PubMed

    Salditt, T; Hoffmann, S; Vassholz, M; Haber, J; Osterhoff, M; Hilhorst, J

    2015-11-13

    We study the propagation of hard x rays in single curved x-ray waveguide channels and observe waveguide effects down to surprisingly small radii of curvature R≃10  mm and a large contour length s≃5  mm, deflecting beams up to 30°. At these high angles, about 2 orders of magnitude above the critical angle of total reflection θ(c), most radiation modes are lost by "leaking" into the cladding, while certain "survivor" modes persist. This may open up a new form of integrated x-ray optics "on a chip," requiring curvatures mostly well below the extreme values studied here, e.g., to split and to delay x-ray pulses. PMID:26613440

  17. High power distributed x-ray source

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Neculaes, Bogdan; Inzinna, Lou; Caiafa, Antonio; Reynolds, Joe; Zou, Yun; Zhang, Xi; Gunturi, Satish; Cao, Yang; Waters, Bill; Wagner, Dave; De Man, Bruno; McDevitt, Dan; Roffers, Rick; Lounsberry, Brian; Pelc, Norbert J.

    2010-04-01

    This paper summarizes the development of a distributed x-ray source with up to 60kW demonstrated instantaneous power. Component integration and test results are shown for the dispenser cathode electron gun, fast switching controls, high voltage stand-off insulator, brazed anode, and vacuum system. The current multisource prototype has been operated for over 100 hours without failure, and additional testing is needed to discover the limiting component. Example focal spot measurements and x-ray radiographs are included. Lastly, future development opportunities are highlighted.

  18. Plasma flash x-ray generator (PFXG-02)

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Germer, Rudolf K.; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Usuki, Tatsumi; Sato, Koetsu; Obara, Haruo; Zuguchi, Masayuki; Ichimaru, Toshio; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 50 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod iron target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of iron ions and electrons, forms by target evaporating. At a charging voltage of 50 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 800 ns, and the time-integrated x-ray intensity had a value of about 10 μC/kg at 1.0 m from x-ray source with a charging voltage of 50 kV. The plasma x-rays were diffused after passing through two lead slits.

  19. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  20. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  1. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  2. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  3. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  4. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  5. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  6. Integrated approaches of x-ray absorption spectroscopic and electron microscopic techniques on zinc speciation and characterization in a final sewage sludge product.

    PubMed

    Kim, Bojeong; Levard, Clément; Murayama, Mitsuhiro; Brown, Gordon E; Hochella, Michael F

    2014-05-01

    Integration of complementary techniques can be powerful for the investigation of metal speciation and characterization in complex and heterogeneous environmental samples, such as sewage sludge products. In the present study, we combined analytical transmission electron microscopy (TEM)-based techniques with X-ray absorption spectroscopy (XAS) to identify and characterize nanocrystalline zinc sulfide (ZnS), considered to be the dominant Zn-containing phase in the final stage of sewage sludge material of a full-scale municipal wastewater treatment plant. We also developed sample preparation procedures to preserve the organic and sulfur-rich nature of sewage sludge matrices for microscopic and spectroscopic analyses. Analytical TEM results indicate individual ZnS nanocrystals to be in the size range of 2.5 to 7.5 nm in diameter, forming aggregates of a few hundred nanometers. Observed lattice spacings match sphalerite. The ratio of S to Zn for the ZnS nanocrystals is estimated to be 1.4, suggesting that S is present in excess. The XAS results on the Zn speciation in the bulk sludge material also support the TEM observation that approximately 80% of the total Zn has the local structure of a 3-nm ZnS nanoparticle reference material. Because sewage sludge is frequently used as a soil amendment on agricultural lands, future studies that investigate the oxidative dissolution rate of ZnS nanoparticles as a function of size and aggregation state and the change of Zn speciation during post sludge-processing and soil residency are warranted to help determine the bioavailability of sludge-born Zn in the soil environment. PMID:25602819

  7. Mobile, scanning x-ray source for mine detection using backscattered x-rays

    SciTech Connect

    Shope, S.; Lockwood, G.; Bishop, L.; Selph, M.; Jojola, J.; Wavrik, R.; Turman, B.; Wehlburg, J.

    1997-04-01

    A continuously operating, scanning x-ray machine is being developed for landmine detection using backscattered x-rays. The source operates at 130 kV and 650 mA. The x-rays are formed by electrons striking a high Z target. Target shape is an approximate 5 cm wide by 210 cm long racetrack. The electron beam is scanned across this target with electromagnets. There are 105, 1-cm by 1-cm collimators in each leg of the racetrack for a total of 210 collimators. The source is moved in the forward direction(the direction perpendicular to the 210-cm dimension) at 3 mi/h. The forward velocity and collimator spacing are such that a grid of collimated x-rays are projected at normal incidence to the soil. The spacing between the collimators and the ground results in a 2-cm by 2-cm x-ray pixel on the ground. A unique detector arrangement of collimated and uncollimated detectors allows surface features to be recognized and removed, leaving an image of a buried landmine. Another detector monitors the uncollimated x-ray output and is used to normalize the source output. The mine detector is being prepared for an Advanced Technology Demonstration (ATD). The ATD is scheduled for midyear of 1998. The results of the source performance in pre ATD tests will be presented.

  8. Synchrotron Small-Angle X-Ray Scattering Investigation on Integral Membrane Protein Light-Harvesting Complex LH2 from Photosynthetic Bacterium Rhodopseudomonas Acidophila

    NASA Astrophysics Data System (ADS)

    Du, Lu-Chao; Weng, Yu-Xiang; Hong, Xin-Guo; Xian, Ding-Chang; Kobayashi, Katsumi

    2006-07-01

    Structures of membrane protein in solution are different from that in crystal phase. We present the primary results of small angle x-ray scattering (SAXS) resolved topological structures of a light harvesting antenna membrane protein complex LH2 from photosynthetic bacteria Rhodopseudomonas acidophila in detergent solution for the first time. Our results show that the elliptical shape of the LH2 complex in solution clearly deviates from its circular structure in crystal phase determined by x-ray diffraction. This result provides an insight into the structure and function interplay in LH2.

  9. Numerical Modeling of X-ray Photoionization Experiments Driven by Z-Pinch X-rays

    NASA Astrophysics Data System (ADS)

    Shupe, N. C.; Cohen, D. H.; MacFarlane, J. J.

    2004-12-01

    We have performed an initial round of experiments at the Z-Machine at Sandia National Laboratory in an attempt to create and characterize an X-ray photoionized plasma that is analogous to those found in X-ray binaries and AGNs. The ultimate goal is to benchmark X-ray spectral modeling codes that are used to analyze Chandra and XMM data from accretion powered astrophysical objects. The initial experiments involved neon and the primary measurement made was time-integrated, back-lit X-ray absorption spectroscopy of the photoionized neon. We present numerical modeling of this experiment, including non-LTE radiation hydrodynamics and spectral synthesis results, that are in good agreement with the data. We also present scaling studies for future experiments, including sythesized time-resolved X-ray emission spectra that correspond to the high-resolution spectral data being produced by the current generation of X-ray telescopes. The authors acknowledge the support of Research Corporation grant CC5489.

  10. X-ray beam pointer

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1980-01-01

    Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alinement and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alinement time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

  11. Plug Would Collimate X Rays

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.; Adams, James F.

    1989-01-01

    Device creates narrow, well-defined beam for radiographic measurements of thickness. Cylindrical plug collimates and aligns X rays with respect to through holes in parts. Helps in determination of wall thickness by radiography. Lead absorbs X rays that do not pass axially through central hole. Lead/vinyl seals prevent off-axis rays from passing along periphery of plug.

  12. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations.

    PubMed

    Arlt, Tobias; Schröder, Daniel; Krewer, Ulrike; Manke, Ingo

    2014-10-28

    A novel combination of in operando X-ray tomography and model-based analysis of zinc air batteries is introduced. Using this approach the correlation between the three-dimensional morphological properties of the electrode - on the one hand - and the electrochemical properties of the battery - on the other hand is revealed. In detail, chemical dissolution of zinc particles and the electrode volume were investigated non-destructively during battery operation by X-ray tomography (applying a spatial resolution of 9 μm), while simulation yielded cell potentials of each electrode and allows for the prediction of long-term operation behavior. Furthermore, the analysis of individual zinc particles revealed an electrochemical dissolution process that can be explained using an adapted shrinking-core model. PMID:25220061

  13. X-Ray-Diffraction Tests Of Irradiated Electronic Devices: II

    NASA Technical Reports Server (NTRS)

    Shaw, David C.; Lowry, Lynn E.; Barnes, Charles E.

    1993-01-01

    Report describes research on use of x-ray diffraction to measure stresses in metal conductors of complementary metal oxide/semiconductor (CMOS) integrated circuits exposed to ionizing radiation. Expanding upon report summarized in "X-Ray-Diffraction Tests Of Irradiated Electronic Devices: I" (NPO-18803), presenting data further suggesting relationship between electrical performances of circuits and stresses and strains in metal conductors.

  14. Comparison of X-ray techniques and energies

    NASA Astrophysics Data System (ADS)

    Moore, John F.; Harris, Lowell D.

    1988-12-01

    Examples are given of objects scanned with a variety of X-ray techniques: digital radiography, laminography, backscatter imaging, and computed tomography. Several comparisons are made where an assembly or composite material is scanned at several energies or resolutions. An image made using an isotope source and photon counting is compared to an image using integrated signals from an X-ray source.

  15. In-situ Monitoring the Inhibiting Effect of Polyphophinocarboxylic Acid on CaCO3 Scale Formation by Synchrotron X-ray Diffraction

    SciTech Connect

    Chen, T.; Neville, A; Sorbie, K; Zhong, Z

    2009-01-01

    The formation of calcium carbonate mineral scale is a persistent and expensive problem in oil and gas production. The aim of this paper is to further the understanding of scale formation and inhibition by in-situ probing of crystal growth by synchrotron radiation wide angle X-ray scattering (WAXS) in the absence and presence of polyphosphinocarboxylic acid (PPCA) scale inhibitor. This technique offers an exciting prospect for the study of scaling.

  16. The mouse splenocyte assay, an in vivo/in vitro system for biological monitoring: studies with X-rays, fission neutrons and bleomycin.

    PubMed

    Darroudi, F; Farooqi, Z; Benova, D; Natarajan, A T

    1992-12-01

    A modified mouse splenocyte culture system was standardized after testing different mitogens (i.e., phytohemagglutinin (PHA), concanavalin A (Con A)). The mitotic index was determined for comparison between different mitogens. Following selection of appropriate mitogen (PHA 16, Flow), a series of experiments were conducted to evaluate the application of a cytokinesis-block for scoring micronuclei and assays for chromosomal aberrations produced by treatment in G0 and G2 for the purposes of biological dosimetry following in vivo and/or in vitro exposure to X-rays, fission neutrons and bleomycin. In the X-irradiation studies, the frequencies of micronuclei and chromosomal aberrations (i.e., dicentrics and rings) increased in a dose-dependent manner. These data could be fitted to a linear-quadratic model. No difference was observed between irradiation in vivo and in vitro, suggesting that measurement of dicentrics and micronuclei in vitro after X-irradiation can be used as an in vivo dosimeter. Following in vivo irradiation with 1 MeV fission neutrons and in vitro culturing of mouse splenocytes, linear dose-response curves were obtained for induction of micronuclei and chromosomal aberrations. The lethal effects of neutrons were shown to be significantly greater than for a similar dose of X-rays. The relative biological effectiveness (RBE) was 6-8 in a dose range of 0.25-3 Gy for radiation-induced asymmetrical exchanges (dicentrics and rings), and about 8 for micronuclei in a dose range of 0.25-2 Gy. Furthermore, the induction of chromosomal aberrations by bleomycin was investigated in mouse G0 splenocytes (in vitro) and compared with X-ray data. Following bleomycin treatment (2 h) a similar pattern of dose-response curve was obtained as with X-rays. In this context a bleomycin rad equivalent of 20 micrograms/ml = 0.50 Gy was estimated. PMID:1281269

  17. Early results from the X-ray astronomy satellite Tenma

    SciTech Connect

    Tanaka, Y.

    1984-01-01

    The observational capabilities of the Japanese Tenma X-ray satellite are described. Tenma has an array of gas scintillation proportional counters, an X-ray focusing collector, a transient source monitor, a radiation belt monitor and a gamma ray burst detector. Observations are made over the aggregate range 0.1-100 keV. Data have been taken on the X ray pulsars Vela X-1, Cen X-3, Her X-1, 1627-67 and 1538-52. A slowing of the spin-down of Vela X-1 has been noted, as was a change in the Cen X-3 period and a decrease in the period of 1538-52. The spectral curve of Vela X-1 is provided to show the Fe line ionized by X rays. Finally, 20 X ray bursts have been recorded from the sources 1636-53, 1608-52 and 1735-44. 5 references.

  18. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  19. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  20. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  1. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  2. Results of the swift monitoring campaign of the X-ray binary 4U 1957+11: constraints on binary parameters

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M.; Reynolds, Mark T.; Reis, Rubens; Nowak, Mike

    2014-10-10

    We present new results of uniform spectral analysis of Swift/XRT observations of the X-ray binary system 4U 1957+11. This includes 26 observations of the source made between MJD 54282-55890 (2007 July 01-2011 November 25). All 26 spectra are predominantly thermal and can be modeled well with emission from an accretion disk around a black hole. We analyze all 26 spectra jointly using traditional χ{sup 2} fitting as well as Markov Chain Monte Carlo simulations. The results from both methods agree, and constrain model parameters like inclination, column density, and black hole spin. These results indicate that the X-ray emitting inner accretion disk is inclined to our line of sight by 77.6{sub −2.2}{sup +1.5} deg. Additionally, the other constraints we obtain on parameters such as the column density and black hole spin are consistent with previous X-ray observations. Distances less than 5 kpc are unlikely and not only ruled out based on our analysis but also from other independent observations. Based on model-derived bolometric luminosities, we require the source distance to be >10 kpc if the black hole's mass is >10 M {sub ☉}. If the hole's mass is <10 M {sub ☉}, then the distance could be in the range of 5-10 kpc.

  3. Results of the Swift Monitoring Campaign of the X-Ray Binary 4U 1957+11: Constraints on Binary Parameters

    NASA Astrophysics Data System (ADS)

    Maitra, Dipankar; Miller, Jon M.; Reynolds, Mark T.; Reis, Rubens; Nowak, Mike

    2014-10-01

    We present new results of uniform spectral analysis of Swift/XRT observations of the X-ray binary system 4U 1957+11. This includes 26 observations of the source made between MJD 54282-55890 (2007 July 01-2011 November 25). All 26 spectra are predominantly thermal and can be modeled well with emission from an accretion disk around a black hole. We analyze all 26 spectra jointly using traditional χ2 fitting as well as Markov Chain Monte Carlo simulations. The results from both methods agree, and constrain model parameters like inclination, column density, and black hole spin. These results indicate that the X-ray emitting inner accretion disk is inclined to our line of sight by 77.6+1.5-2.2 deg. Additionally, the other constraints we obtain on parameters such as the column density and black hole spin are consistent with previous X-ray observations. Distances less than 5 kpc are unlikely and not only ruled out based on our analysis but also from other independent observations. Based on model-derived bolometric luminosities, we require the source distance to be >10 kpc if the black hole's mass is >10 M ⊙. If the hole's mass is <10 M ⊙, then the distance could be in the range of 5-10 kpc.

  4. X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Vahedi, Shahrzad; Okada, Go; Morrell, Brian; Muzar, Edward; Koughia, Cyril; Edgar, Andy; Varoy, Chris; Belev, George; Wysokinski, Tomasz; Chapman, Dean; Kasap, Safa

    2012-10-01

    Fluorophosphate and fluoroaluminate glasses doped with trivalent samarium were evaluated as sensors of x-ray radiation for microbeam radiation therapy at the Canadian Light Source using the conversion of trivalent Sm3+ to the divalent form Sm2+. Both types of glasses show similar conversion rates and may be used as a linear sensor up to ˜150 Gy and as a nonlinear sensor up to ˜2400 Gy, where saturation is reached. Experiments with a multi-slit collimator show high spatial resolution of the conversion pattern; the pattern was acquired by a confocal fluorescence microscopy technique. The effects of previous x-ray exposure may be erased by annealing at temperatures exceeding the glass transition temperature Tg while annealing at TA < Tg enhances the Sm conversion. This enhancement is explained by a thermally stimulated relaxation of host glass ionic matrix surrounding x-ray induced Sm2+ ions. In addition, some of the Sm3+-doped glasses were codoped with Eu2+-ions but the results show that there is no marked improvement in the conversion efficiency by the introduction of Eu2+.

  5. Detecting electronic coherence by multidimensional broadband stimulated x-ray Raman signals

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin E.; Bennett, Kochise; Mukamel, Shaul

    2015-08-01

    Nonstationary molecular states which contain electronic coherences can be impulsively created and manipulated by using recently developed ultrashort optical and x-ray pulses via photoexcitation, photoionization, and Auger processes. We propose several stimulated-Raman detection schemes that can monitor the subsequent phase-sensitive electronic and nuclear dynamics. Three detection protocols of an x-ray broadband probe are compared: frequency-dispersed transmission, integrated photon number change, and total pulse energy change. In addition, each can be either linear or quadratic in the x-ray probe intensity. These various signals offer different gating windows into the molecular response, which is described by correlation functions of electronic polarizabilities. Off-resonant and resonant signals are compared.

  6. Development of a Fast X-ray Shutter System. Final Technical Report

    SciTech Connect

    Wilfried Schildkamp

    2000-02-28

    The objective of the project was to develop a fast shutter mechanism to allow separation of a single pulse of x-rays out of the given time structure of the APS. Technological challenges in developing this device range from engineering of ultra high strength alloys, mechanical shape development for optimal strength, coupling such materials to motorized shafts, magnetic suspension of high velocity rotors in combination with phase pick up and excursion monitoring, resonance control and jitter-free electronics. The pulse selector was delivered, integrated into the x-ray diffraction environment and tested. The researchers developed an acoustic delay line as protection against air inrushes and associated failure of the rotor and thin diamond windows for maximum x-ray transparency. Design goals were reached or exceeded and practical experience with the device began in March 2000.

  7. Integrity monitoring of IGS products

    NASA Technical Reports Server (NTRS)

    Zumberge, James F.; Plag, H. -P.

    2005-01-01

    The IGS has successfully produced precise GPS and GLONASS transmitter parameters, coordinates of IGS tracking stations, Earth rotation parameters, and atmospheric parameters. In this paper we discuss the concepts of integrity monitoring, system monitoring, and performance assessment, all in the context of IGS products. We report on a recent survey of IGS product users, and propose an integrity strategy for the IGS.

  8. Long-term X-ray variability of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Lin, Lupin Chun-Che; Hu, Chin-Ping; Kong, Albert K. H.; Yen, David Chien-Chang; Takata, Jumpei; Chou, Yi

    2015-12-01

    Long-term X-ray modulations on time-scales from tens to hundreds of days have been widely studied for X-ray binaries located in the Milky Way and the Magellanic Clouds. For other nearby galaxies, only the most luminous X-ray sources can be monitored with dedicated observations. We here present the first systematic study of long-term X-ray variability of four ultraluminous X-ray sources (ESO 243-49 HLX-1, Holmberg IX X-1, M81 X-6, and NGC 5408 X-1) monitored with Swift. By using various dynamic techniques to analyse their light curves, we find several interesting low-frequency quasi-periodicities. Although the periodic signals may not represent any stable orbital modulations, these detections reveal that such long-term regular patterns may be related to superorbital periods and structure of the accretion discs. In particular, we show that the outburst recurrence time of ESO 243-49 HLX-1 varies over time and suggest that it may not be the orbital period. Instead, it may be due to some kinds of precession, and the true binary period is expected to be much shorter.

  9. X-Ray Microdiffraction at Megabar Pressures

    NASA Astrophysics Data System (ADS)

    Mao, H.

    2003-12-01

    High-pressure x-ray diffraction (XRD) provides unique, important sources of structural information of minerals in the Earth's deep interior, but encounters major limitations. The restriction to forward diffraction geometry (2θ less than 90° ) severely limits the accuracy. With the 50-5 μ m size x-ray beam typically used to probe samples at 30-200 GPa, the number of crystals covered by the x-ray beam is often too few for good polycrystalline XRD, but too numerous for single-crystal XRD. Single-crystal XRD method with monochromatic x-ray source and 2-d detector works satisfactorily for crystal size larger than 20 μ m, but when the crystal is significantly less than 5 μ m, the sample signals are often overwhelmed by the background. Energy dispersive XRD with polychromatic x-radiation has been used successfully to determine unit-cell parameters of smaller single crystals, but the intensity information is unusable for structural refinement because this method requires rotation of the small crystal relative to the small x-ray beam. Recent integration of panoramic diamond anvil cell1 (PDAC) with synchrotron x-ray microdiffraction2 (XRMD) method has finally overcome these limitations and can potentially revolutionize the high-pressure XRD field. This XRMD method focuses polychromatic x-radiation to submicrometer size to resolve very small single crystals, and collects Laue spots with a 2-d CCD detector. The PDAC allows complete forward, 90° , and back scatterings, while the background signal is minimized by directing the incident x-ray beam through single-crystal diamonds (i.e., avoiding the beryllium seats and gasket). The incident beam can be changed to monochromatic, tuned through the full energy (wavelength) range, and focused to the identical submicrometer spot for d-spacing determination of each Laue spot. All polychromatic Laue spots are collected simultaneously from the same x-ray sampled volume, thus reliable for structure determination. The development

  10. INTEGRAL long-term monitoring results on persistently bright NS LMXBs

    NASA Astrophysics Data System (ADS)

    Savolainen, P.; Hannikainen, D. C.; Paizis, A.; Farinelli, R.; Kuulkers, E.; Vilhu, O.

    2010-07-01

    We present long-term spectral and timing results from an INTEGRAL monitoring program of persistently bright neutron star Low-Mass X-ray Binaries, i.e. the three bright Atoll sources GX 3+1, GX 9+1 and GX 9+9, and the Z sources GX 5-1, GX 17+2, GX 340+0 and GX 349+2. From the available observing periods between 2003 and 2009, each lasting ~2 months, we have selected a few sample periods for each source, and analyzed all JEM-X and IBIS/ISGRI data with offsets <4 degrees. We seek an explanation for the dichotomy between the hard X-ray tails or lack thereof in the (otherwise very similar) X-ray spectra of Z sources and bright Atolls, respectively.

  11. New insights into the quasi-periodic X-ray burster GS 0836-429

    NASA Astrophysics Data System (ADS)

    Aranzana, E.; Sánchez-Fernández, C.; Kuulkers, E.

    2016-02-01

    GS 0836-429 is a neutron star X-ray transient that displays Type-I X-ray bursts. In 2003 and 2004 it experienced two outbursts in X-rays. We present here an analysis of the system's bursting properties during these outbursts. We studied the evolution of the 2003-2004 outbursts in soft X-rays using RXTE (2.5-12 keV; ASM) and in hard X-rays with INTEGRAL (17-80 keV, IBIS/ISGRI). Using data from the JEM-X monitor onboard INTEGRAL, we studied the bursting properties of the source. We detected 61 Type-I X-ray bursts during the 2004 outburst and confirm that the source displayed a quasi-periodic burst recurrence time of about 2.3 h. We improve the characterisation of the fuel composition, as well as the description of the typical burst durations and fluences. We estimate the average value of α to be 49 ± 3, which describes the ratio of the gravitational energy released between bursts to the nuclear energy released in an X-ray burst. Both this value and the observed burst profiles indicate a regime of a mixed He/H runaway triggered by unstable helium ignition. In addition, we report the detection of four series of double bursts, with burst recurrence times of ≤20 min. The secondary bursts are always shorter and less energetic than the primary and typical bursts from the source. The measured recurrence time in double bursts is too short to allow the accretion of enough fresh material, which is needed to trigger a Type-I X-ray burst. This suggests the presence of leftover, unburned material from the preceding burst, which gets ignited on a time scale of minutes. The energies and time scales of the secondary bursts suggest a lower fraction of hydrogen compared to that estimated for the primary bursts. The persistent emission was roughly constant during the period when the Type I X-ray bursts were detected. We derive an average accretion rate during our observations of ṁ ~ 8% ṁEdd. The spectrum of the persistent emission during these observations can be fit with a non

  12. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  13. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  14. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  15. Swift/XRT monitoring of the long outburst of the Very Faint X-ray Transient XMMU J174716.1-281048

    NASA Astrophysics Data System (ADS)

    Del Santo, Melania; Romano, Patrizia; Sidoli, Lara

    2010-05-01

    The Very Faint X-ray Transient (VFXT) XMMU J174716.1-281048, discovered in 2003 by XMM-Newton (ATel #147 and Sidoli et al., 2006, A&A 456, 287), is a type I burster (ATel #970; #972; Del Santo et al., 2007, A&A 468, L17) lying in the Galactic Centre region (ATel #1207). XMMU J174716.1-281048 is the first source classified as ``quasi persistent" VFXT, because it is in outburst since 2003 (Del Santo et al., 2007, A&A 468, L17; ATel #1078).

  16. Synchrotron X-ray Imaging via Ultra-small-angle Scattering: Principles of Quantitative Analysis and Application in Studyingbone Integration to Synthetic Grafting Materials

    SciTech Connect

    Morelhao, S.; Coelho, P; Honnicke, M

    2010-01-01

    Optimized experimental conditions for extracting accurate information at subpixel length scales from analyzer-based X-ray imaging were obtained and applied to investigate bone regeneration by means of synthetic {beta}-TCP grafting materials in a rat calvaria model. The results showed a 30% growth in the particulate size due to bone ongrowth/ingrowth within the critical size defect over a 1-month healing period.

  17. Performance verification and system integration tests of the pulse shape processor for the soft x-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa

    2014-07-01

    The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.

  18. CHANDRA OBSERVATIONS OF FIVE INTEGRAL SOURCES: NEW X-RAY POSITIONS FOR IGR J16393-4643 AND IGR J17091-3624

    SciTech Connect

    Bodaghee, A.; Tomsick, J. A.; Rahoui, F.; Rodriguez, J.

    2012-06-01

    The Chandra High Resolution Camera observed the fields of five hard X-ray sources in order to help us obtain X-ray coordinates with subarcsecond precision. These observations provide the most accurate X-ray positions known for IGR J16393-4643 and IGR J17091-3624. The obscured X-ray pulsar IGR J16393-4643 lies at R.A. (J2000) = 16{sup h}39{sup m}05.{sup s}47, and decl. = -46 Degree-Sign 42'13.''0 (error radius of 0.''6 at 90% confidence). This position is incompatible with the previously proposed counterpart 2MASS J16390535-4642137, and it points instead to a new counterpart candidate that is possibly blended with the Two Micron All Sky Survey star. The black hole candidate IGR J17091-3624 was observed during its 2011 outburst providing coordinates of R.A. = 17{sup h}09{sup m}07.{sup s}59, and decl. = -36 Degree-Sign 24'25.''4. This position is compatible with those of the proposed optical/IR and radio counterparts, solidifying the source's status as a microquasar. Three targets, IGR J14043-6148, IGR J16358-4726, and IGR J17597-2201, were not detected. We obtained 3{sigma} upper limits of, respectively, 1.7, 1.8, and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} on their 2-10 keV fluxes.

  19. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  20. X-ray induced photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Xiang, Liangzhong; Han, Bin; Carpenter, Colin; Pratx, Guillem; Kuang, Yu; Xing, Lei

    2013-03-01

    X-ray induced photoacoustic tomography, also called X-ray acoustic computer tomography (XACT) is investigated in this paper. Short pulsed (μs-range) X-ray beams from a medical linear accelerator were used to generate ultrasound. The ultrasound signals were collected with an ultrasound transducer (500 KHz central frequency) positioned around an object. The transducer, driven by a computer-controlled step motor to scan around the object, detected the resulting acoustic signals in the imaging plane at each scanning position. A pulse preamplifier, with a bandwidth of 20 KHz-2 MHz at -3 dB, and switchable gains of 40 and 60 dB, received the signals from the transducer and delivered the amplified signals to a secondary amplifier. The secondary amplifier had bandwidth of 20 KHz-30 MHz at -3 dB, and a gain range of 10-60 dB. Signals were recorded and averaged 128 times by an oscilloscope. A sampling rate of 100 MHz was used to record 2500 data points at each view angle. One set of data incorporated 200 positions as the receiver moved 360°. The x-ray generated acoustic image was then reconstructed with the filtered back projection algorithm. The twodimensional XACT images of the lead rod embedded in chicken breast tissue were found to be in good agreement with the shape of the object. This new modality may be useful for a number of applications, such as providing the location of a fiducial, or monitoring x-ray dose distribution during radiation therapy.

  1. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  2. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  3. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  4. Picosecond x-ray science.

    SciTech Connect

    Landahl, E.; Reis, D.; Wang, J.; Young, L.

    2006-01-01

    The report discusses the exciting times for short pulse X-rays and the current users of the technology in the United States. Tracking nuclear motions with X-rays transcends scientific disciplines and includes Biology, Materials Science, Condensed Matter and Chemistry. 1 picosecond accesses many phenomena previously hidden at 100ps. Synchrotron advantage over laser plasma and LCLS is that it's easily tunable. There is a large and diverse user community of this technology that is growing rapidly. A working group is being formed to implement 'fast track' Phases 1 and 2 which includes tunable, polarized, monochromatic, focused X-rays; variable pulse length (1 to 100ps) and 1 kHz, 10{sup 9} X-rays/s with 1% bandwidth. ERL would be a major advance for ultrafast time-resolved studies.

  5. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  6. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  7. X-Ray Exam: Hip

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  8. X-Ray Exam: Foot

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  9. X-Ray Exam: Ankle

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  10. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  11. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  12. X-Ray Exam: Wrist

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  13. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  14. Young Supernova explosions in the X-rays and hard X-rays

    NASA Astrophysics Data System (ADS)

    Margutti, Raffaella

    2016-04-01

    X-ray observations are providing critical insights into Supernova explosions and the nature of their progenitors. In this talk I will highlight some recent results from our dedicated programs at high-energies that allowed us to (1) uncover the weakest engine-driven SNe and understand their link to Gamma-Ray Bursts; (2) monitor the high-energy emission from shock energy deposition into the stellar envelope as early as a few days after the onset of core-collapse; (3) put the most stringent constraints to the progenitors of Type Ia SNe by using the deepest X-ray observations ever obtained. (4) Reveal the ejection of a massive stellar envelope timed with the collapse of a stripped star. These observations represent the first solid detection of a young extragalactic stripped-envelope SN out to high-energy X-rays of ˜40 keV

  15. X-ray fluorescence (XRF) set-up with a low power X-ray tube.

    PubMed

    Gupta, Sheenu; Deep, Kanan; Jain, Lalita; Ansari, M A; Mittal, Vijay Kumar; Mittal, Raj

    2010-10-01

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found approximately (1-100)ppm for K and L excitations and approximately (200-700)ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken. PMID:20570160

  16. Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients

    NASA Astrophysics Data System (ADS)

    Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.

    2014-08-01

    HMXBs. The duty cycles measured with XRT are found to be comparable with those reported previously by BAT and INTEGRAL, when the higher limiting sensitivities of these instruments are taken into account and sufficiently long observational campaigns are available. By making use of these new results and those we reported previously, we prove that no clear correlation exists between the duty cycles of the SFXTs and their orbital periods. Conclusions: The unique sensitivity and scheduling flexibility of Swift/XRT allowed us to carry out an efficient long-term monitoring of the SFXTs, following their activity across more than 4 orders of magnitude in X-ray luminosity. While it is not possible to exclude that particular distributions of the clump and wind parameters may produce double-peaked differential distributions in the X-ray luminosities of the SFXTs, the lack of a clear correlation between the duty cycles and orbital periods of these sources make it difficult to interpret their peculiar variability by only using arguments related to the properties of supergiant star winds. Our findings favour the idea that a correct interpretation of the SFXT phenomenology requires a mechanism to strongly reduce the mass accretion rate onto the compact object during most of its orbit around the companion, as proposed in a number of theoretical works. Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A55

  17. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  18. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  19. Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel Silva; Filho, Mário Tomazello; Zucchi, Orghêda Luíza Araújo Domingues; Filho, Virgílio Franco do Nascimento

    2006-11-01

    This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, São Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.

  20. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...