Science.gov

Sample records for integrated crate interrogation

  1. Integrated multi-crate FERA readout system

    SciTech Connect

    Kistryn, S.; Bee, C.P.; Eberhardt, P.

    1997-12-31

    We discuss a moderate-size readout system based entirely on FERA compatible units. The implementation of a specially developed FERA Extender module is presented, whose main feature is the ability to distribute the system over many CAMAC crates. This provides a convenient way of splitting the FERA bus into several virtually independent sub-systems driven by individual gate signals. Tagging of the event fragments from each sub-system with an event number incremented on the arrival of each master gate, provides a convenient means of reconstructing the full event at a later stage. An example of the external supplementary FERA control logic required for a complex multi-crate and multi-gate system controlled by a single FERA Manager, is also discussed together with some remarks on the system performance.

  2. Integrated nanoscale tools for interrogating living cells

    NASA Astrophysics Data System (ADS)

    Jorgolli, Marsela

    The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed

  3. Interrogating Our Practices of Integrating Spirituality into Workplace Education

    ERIC Educational Resources Information Center

    English, Leona M.; Fenwick, Tara J.; Parsons, Jim

    2005-01-01

    Workplace education's interest in spirituality is examined, with an emphasis placed on why this interest might be increasing and what challenges it presents. This article interrogates commonplace strategies to integrate spirituality in workplace education,--providing holistic education, creating sacred spaces and mentoring--questions each approach…

  4. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  5. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    SciTech Connect

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  6. Integrated FBG sensors interrogator in silicon photonic platform using active interferometer monitoring

    NASA Astrophysics Data System (ADS)

    Marin, Y. E.; Nannipieri, T.; Di Pasquale, F.; Oton, C. J.

    2016-05-01

    We experimentally demonstrate the feasibility of Fiber Bragg Grating sensors interrogation using integrated unbalanced Mach-Zehnder Interferometers (MZI) and phase sensitive detection in silicon-on-insulator (SOI) platform. The Phase- Generated Carrier (PGC) demodulation technique is used to detect phase changes, avoiding signal fading. Signal processing allows us to extract the wavelength shift from the signal patterns, allowing accurate dynamic FBG interrogation. High resolution and low cost chips with multiple interrogators and photodetectors on board can be realized by exploiting the advantages of large scale fabrication capabilities of well-established silicon based industrial infrastructures. Simultaneous dynamic reading of a large number of FBG sensors can lead to large volume market applications of the technology in several strategic industrial fields. The performance of the proposed integrated FBG interrogator is validated by comparing with a commercial FBG readout based on a spectrometer and used as a reference.

  7. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Zongjian

    2011-09-01

    Fiber Bragg grating (FBG) is a mature sensing technology for the measurement of strain, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion. It has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. The most prominent advantages of FBG are: small size and light weight, distributed array of FBG transducers on a single fiber, and immunity to radio frequency interference. However, a major disadvantage of FBG technology is that conventional state-of-the-art FBG interrogation system is typically bulky, heavy, and costly bench top instruments that are typically assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the industrial need for a compact FBG interrogation system, this paper describes recent progress towards the development of miniature fiber Bragg grating sensor interrogator (FBG-Transceiver™) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables monolithic integration of all functionalities, both passive and active, of conventional bench top FBG sensor interrogator system, packaged in a miniaturized, low power operation, 2 cm×5 cm small form factor (SFF) package suitable for long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  8. Fragmentation and Interrogation as an Approach to Integration

    ERIC Educational Resources Information Center

    Wallick, Karl; Zaretsky, Michael

    2010-01-01

    This article tracks the generative role of research and fragmentation as a means for integrating technology and form within an architecture technology lecture class and a co-requisite design studio. The complexity of teaching building systems integration within a design studio context is achieved by removing any expectation of building design…

  9. Integrated genetic and pharmacologic interrogation of rare cancers.

    PubMed

    Hong, Andrew L; Tseng, Yuen-Yi; Cowley, Glenn S; Jonas, Oliver; Cheah, Jaime H; Kynnap, Bryan D; Doshi, Mihir B; Oh, Coyin; Meyer, Stephanie C; Church, Alanna J; Gill, Shubhroz; Bielski, Craig M; Keskula, Paula; Imamovic, Alma; Howell, Sara; Kryukov, Gregory V; Clemons, Paul A; Tsherniak, Aviad; Vazquez, Francisca; Crompton, Brian D; Shamji, Alykhan F; Rodriguez-Galindo, Carlos; Janeway, Katherine A; Roberts, Charles W M; Stegmaier, Kimberly; van Hummelen, Paul; Cima, Michael J; Langer, Robert S; Garraway, Levi A; Schreiber, Stuart L; Root, David E; Hahn, William C; Boehm, Jesse S

    2016-01-01

    Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers. PMID:27329820

  10. Integrated genetic and pharmacologic interrogation of rare cancers

    PubMed Central

    Hong, Andrew L.; Tseng, Yuen-Yi; Cowley, Glenn S.; Jonas, Oliver; Cheah, Jaime H.; Kynnap, Bryan D.; Doshi, Mihir B.; Oh, Coyin; Meyer, Stephanie C.; Church, Alanna J.; Gill, Shubhroz; Bielski, Craig M.; Keskula, Paula; Imamovic, Alma; Howell, Sara; Kryukov, Gregory V.; Clemons, Paul A.; Tsherniak, Aviad; Vazquez, Francisca; Crompton, Brian D.; Shamji, Alykhan F.; Rodriguez-Galindo, Carlos; Janeway, Katherine A.; Roberts, Charles W. M.; Stegmaier, Kimberly; van Hummelen, Paul; Cima, Michael J.; Langer, Robert S.; Garraway, Levi A.; Schreiber, Stuart L.; Root, David E.; Hahn, William C.; Boehm, Jesse S.

    2016-01-01

    Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers. PMID:27329820

  11. Design, integration, and testing of a compact FBG interrogator, based on an AWG spectrometer

    NASA Astrophysics Data System (ADS)

    Trita, Andrea; Vickers, Garrie; Mayordomo, Iker; van Thourhout, Dries; Vermeiren, Jan

    2014-05-01

    Fiber Bragg Grating or FBG sensors are gaining more and more interest in structural health monitoring of composite materials. Often, the weakest point in such a system is the ingress point of the fiber sensing chain into the composite material. For this reason we have developed a strongly miniaturized FBG interrogator unit with wireless power and data transmission, which can be incorporated in the composite structure. The interrogator is based on an arrayed waveguide grating (AWG) filter fabricated in a SOI technology, which is tailored in such a way to give large cross-talk between neighboring channels. The AWG signals are read by a linear 128 pixel InGaAs array flip-chipped on top of the Photonic Circuit (PIC). The spectrometer unit is completed with a ROIC mounted on the same substrate. The SLED and remaining electronics are integrated on a small and thin substrate and surrounded by the wireless antenna. The interrogator has an overall dimension of 100 mm diameter by max 7 mm height. The power dissipation of the electronics unit is limited to 1.5 W. The unit is capable of measuring strain values as low as 5 micro-strain.

  12. eduCRATE--a Virtual Hospital architecture.

    PubMed

    Stoicu-Tivadar, Lăcrimioara; Stoicu-Tivadar, Vasile; Berian, Dorin; Drăgan, Simona; Serban, Alexandru; Serban, Corina

    2014-01-01

    eduCRATE is a complex project proposal which aims to develop a virtual learning environment offering interactive digital content through original and integrated solutions using cloud computing, complex multimedia systems in virtual space and personalized design with avatars. Compared to existing similar products the project brings the novelty of using languages for medical guides in order to ensure a maximum of flexibility. The Virtual Hospital simulations will create interactive clinical scenarios for which students will find solutions for positive diagnosis and therapeutic management. The solution based on cloud computing and immersive multimedia is an attractive option in education because is economical and it matches the current working style of the young generation to whom it addresses. PMID:25160298

  13. Evaluation of waste crate counter

    SciTech Connect

    Wachter, J.R.; Bieri, J.M.; Shaw, S.W.

    1994-08-01

    A novel nondestructive measurement system has been developed to perform combined gamma-ray, passive neutron, and active neutron analyses of radioactive waste packaged in large crates. The system will be used to examine low level and transuranic waste at the Waste Receiving and Processing facility at Westinghouse-Hanford Corp. Prior to delivery of the system, an extensive evaluation of its performance characteristics will be conducted. The evaluation is to include an assessment of the mechanical properties of the system, gamma-ray attenuation correction algorithms, instrument response as a function of source positions, performance of the high resolution gamma-ray detector for ``hot spot`` and isotopic analyses, active and passive neutron counter response, instrument sensitivity, matrix effects, and packaging effects. This report will discuss the findings of the evaluation program, to date, and indicate future directions for the program.

  14. An enhanced 8086-based CAMAC crate controller

    SciTech Connect

    Dawson, J.W.; Bayer, J.B.; Chan, L.; Ciarlette, D.; Haberichter, W.N.; Stanek, R.W.

    1987-02-01

    An enhanced CAMAC crate controller (ECC) has been developed for data handling for Fermilab experiment E-704. The module also is currently used in an experiment to make a precise measurement of the weak vector coupling constant. The ECC incorporates hardware to do block transfers (DMA) of CAMAC modules within the crate at several times effective CAMAC rates, or it may e programmed to do individual CAMAC transfers. If desired, data may be rippled out an ECL port to fast ECL devices, or may be written in RAM for processing within the controller itself. The EEC is implemented with the CAMAC Request/Grant protocol for use with an A-2 crate controller, allowing the ECC to be used either as an auxiliary controller or crate controller. Trigger logic in the controller allows the device to respond to any of three triggers by initiating a DMA, or dedicated crates may be daisy-chained, one crate providing a trigger to the next at the conclusion of each DMA. The device is built as much as possible in High Performance CMOS logic using surface mount techniques, on two 8-layer printed circuit cards.

  15. Characterization of Oversized Crates containing Nuclear Waste

    SciTech Connect

    Berg, Randal K.; Haggard, Daniel L.; Hilliard, Jim; Mozhayev, Andrey V.

    2007-11-01

    The 212-N Building at the Hanford Site held fifteen large crates containing glove boxes and process equipment associated with the development and fabrication of mixed oxide (MOX) fuel. The gloveboxes and associated equipment originated from the 308 Building of the Hanford Site and had been placed in the crates after a process upset in the 1960s. The crates were transported to the 212-N Building and had been in storage since 1972. In an effort to reduce the hazard categorization of 212-N the crates were removed from the building and Nondestructive Assay (NDA) was performed to characterize the crate contents meeting both Safeguards and Waste Management interests. A measurement system consisting of four configurable neutron slab detectors and high purity germanium (HPGe) detectors was deployed. Since no viable information regarding the waste matrix and configuration was available it was essential to correct for attenuation with a series of transmission measurements using californium and europium sources for both neutron and gamma applications. The gamma and neutron results obtained during this measurement campaign are compared and discussed in the paper.

  16. Proton interrogation

    SciTech Connect

    Morris, Christopher L

    2008-01-01

    Energetic proton beams may provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because: they have large fission cross sections, long mean free paths and high penetration, and proton beams can be manipulated with magnetic optics. We have measured time-dependent cross sections for delayed neutrons and gamma-rays using the 800 MeV proton beam from the Los Alamos Neutron Science Center for a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Results will be presented.

  17. Design of a FASTCAMAC crate controller

    SciTech Connect

    Radway, T.; Hubbard, C.

    1997-12-31

    FASTCAMAC is an extension of the CAMAC standard providing a high speed block transfer protocol which can increase the CAMAC transfer rate to as high as 60 megabytes per second. It offers the capability of highspeed data transfers where conventional CAMAC was though to be too slow. FASTCAMAC is completely compatible with standard CAMAC. Old and new FASTCAMAC modules can be mixed in the same crate. The initial work on FASTCAMAC was supported by a USDOE STTR (Small Business Technology Transfer) grant to Jorway Corporation, LeCroy Corporation and Yale University. This paper describes a design implementation for a CAMAC crate controller which supports normal as well as FASTCAMAC operations for Level 1 and Level 2, 32 and 48 bit dataway transfer widths, and Multiple Module Transfers. The controller bus port is Fast Wide SCSI with transfer rates to 40 megabytes per second.

  18. Interlocking egg-crate type grid assembly

    SciTech Connect

    Kast, Steven J.

    1987-01-01

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  19. Interlocking egg-crate type grid assembly

    DOEpatents

    Kast, S.J.

    1985-03-15

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  20. Novel integrative genomic tool for interrogating lithium response in bipolar disorder.

    PubMed

    Hunsberger, J G; Chibane, F L; Elkahloun, A G; Henderson, R; Singh, R; Lawson, J; Cruceanu, C; Nagarajan, V; Turecki, G; Squassina, A; Medeiros, C D; Del Zompo, M; Rouleau, G A; Alda, M; Chuang, D-M

    2015-01-01

    We developed a novel integrative genomic tool called GRANITE (Genetic Regulatory Analysis of Networks Investigational Tool Environment) that can effectively analyze large complex data sets to generate interactive networks. GRANITE is an open-source tool and invaluable resource for a variety of genomic fields. Although our analysis is confined to static expression data, GRANITE has the capability of evaluating time-course data and generating interactive networks that may shed light on acute versus chronic treatment, as well as evaluating dose response and providing insight into mechanisms that underlie therapeutic versus sub-therapeutic doses or toxic doses. As a proof-of-concept study, we investigated lithium (Li) response in bipolar disorder (BD). BD is a severe mood disorder marked by cycles of mania and depression. Li is one of the most commonly prescribed and decidedly effective treatments for many patients (responders), although its mode of action is not yet fully understood, nor is it effective in every patient (non-responders). In an in vitro study, we compared vehicle versus chronic Li treatment in patient-derived lymphoblastoid cells (LCLs) (derived from either responders or non-responders) using both microRNA (miRNA) and messenger RNA gene expression profiling. We present both Li responder and non-responder network visualizations created by our GRANITE analysis in BD. We identified by network visualization that the Let-7 family is consistently downregulated by Li in both groups where this miRNA family has been implicated in neurodegeneration, cell survival and synaptic development. We discuss the potential of this analysis for investigating treatment response and even providing clinicians with a tool for predicting treatment response in their patients, as well as for providing the industry with a tool for identifying network nodes as targets for novel drug discovery. PMID:25646593

  1. Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source

    NASA Astrophysics Data System (ADS)

    Claes, Tom; Bogaerts, Wim; Bienstman, Peter

    2011-09-01

    Recently, cheap silicon-on-insulator label-free biosensors have been demonstrated that allow fast and accurate quantitative detection of biologically relevant molecules for applications in medical diagnostics and drug development. However, whereas the sensor chip can be made cheaply, an expensive tunable laser is typically required to accurately monitor spectral shifts in the sensor's transmission spectrum (wavelength interrogation). To address this issue, we integrated a very sensitive Vernier-cascade sensor with an arrayed waveguide grating spectral filter that divides the sensor's transmission spectrum in multiple wavelength channels and transmits them to spatially separated output ports, allowing wavelength interrogation with a much cheaper broadband light source. Experiments show that this sensor can monitor refractive index changes of watery solutions in real time with a detection limit (1.6 . 10-5RIU) competitive with more expensive interrogation schemes, indicating its applicability in low-cost label-free biosensing. The relaxation on the complexity of the source, moreover, offers the prospect to integrate the source and detectors to further reduce the device cost and to increase its portability.

  2. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily*

    PubMed Central

    Roth, Bryan L.; Kroeze, Wesley K.

    2015-01-01

    G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome. PMID:26100629

  3. SVX Sequence Crate Custom J1 Backplane

    SciTech Connect

    Utes, M.; /Fermilab

    1997-10-29

    The Custom J1 Backplane is a full length (21 slot) user specified custom 3U backplane to be used in the J1 position. Slot spacing is identical to that used for VME (0.8-inch), and each backplane shall fit into a standard Eurocard VME style crate. The purpose of the Custom J1 Backplane is to: (1) Provide +5 volt power to slots 1 through 21; (2) Provide -5.2 volt power to slots 1 through 21; (3) Provide five bits of geographic addressing to slots 2 through 21. Slot 2 will have all five bits pulled low; slot 21 will have the value 10100. See Appendix A; (4) Route a differential 1553 signal from a triaxial bulkhead connector to slots 2 through 11. This differential signal is bussed as a daisy chain. A 75 ohm resistor to ground shall be located near the last destination slot for each of these two signals; (5) Route a second differential 1553 signal from a triaxial bulkhead connector to slots 12 through 21. This differential signal is bussed as a daisy chain. A 75 ohm resistor to ground shall be located near the last destination slot for each of these two signals; (6) Route two NRZ signals and two Clock signals from slot 1 to each of slots 2 through 21. These are individual signals, not bussed.

  4. Large loudspeaker horns and crated Edison radios from 1929 are ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Large loudspeaker horns and crated Edison radios from 1929 are stored in a side room on the third floor. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  5. 24. INTERIOR DETAIL OF BUILDING 1607, SHOWING BOMBS AND CRATES. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR DETAIL OF BUILDING 1607, SHOWING BOMBS AND CRATES. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO

  6. 26. BOMBS IN CRATE IN BUILDING 1607. VIEW TO NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. BOMBS IN CRATE IN BUILDING 1607. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO

  7. Crates and Transform: Python Interfaces for Data Analysis

    NASA Astrophysics Data System (ADS)

    Lyn, J.; Cresitello-Dittmar, M.; Evans, I.; Evans, J. D.

    2014-05-01

    With its flexible design and ease-of-use, Crates and Transform have been incorporated into the Chandra X-Ray Center's (CXC) data visualization and fitting tools and data processing scripts to facilitate a wide variety of tasks. Chandra's fitting and modeling application, called Sherpa, uses Crates as an underlying data access module, taking advantage of its ability to interpret standard Flexible Image Transport System (FITS) files, such as Redistribution Matrix Files (RMF), Auxiliary Response Files(ARF), and both types of Pulse Height Analysis (PHA) files. The Chandra Imaging and Plotting System (ChIPS) tool utilizes the associated Transform module for visualizing data in different World Coordinate Systems (WCS). By using the CXC DataModel (DM) as a backend, Crates can perform advanced filtering and binning techniques on data. This capability, combined with its simple Application Programming Interface, make it ideal for incorporation into our data analysis scripts, aiding with operations from simple keyword manipulation to creating and writing multiple Header Definition Unit (HDU) files. Crates and Transform are available respectively as the pycrates and pytransform modules within the Chandra Interactive Analysis of Observations (CIAO) environment to assist users with their own analysis threads. In this paper, we will illustrate the capabilities of the Crates and Transform modules and how they are being used within the CXC for analysis.

  8. Hi-speed versatile serial crate controller for CAMAC

    SciTech Connect

    Horelick, D.

    1984-10-01

    A serial crate controller, primarily for use in the SLC CAMAC control system, has been designed, and has been in use for about 2 years. The design supports a party line approach, with up to 16 crates on a single twisted pair for data transfers, plus another pair for prompt L response. The bit rate is 5 megabits/s, and complete transaction times of about 10 ..mu..s are achieved for 16-bit data transfers over cables up to 1000 feet long. One of the primary objects of the design was simplicity - there are approximately 60 chips in the two-board unit.

  9. 25. INTERIOR DETAIL OF BUILDING 1607, SHOWING BOMB CRATES AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. INTERIOR DETAIL OF BUILDING 1607, SHOWING BOMB CRATES AND SCALE. VIEW TO WEST. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO

  10. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    SciTech Connect

    Ulrich, Timothy J. II; Lafleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.; Tobin, Stephen J.; Seya, Michio; Bolind, Alan M.

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  11. Nimbus 4/IRLS Balloon Interrogation Package (BIP)

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The balloon interrogation package (BIP), an integral part of the overall interrogation, recording, and location subsystems (IRLS) for the Nimbus 4 program, is described. The BIP is a self-contained, integrated transponder designed to be carried aloft by a constant altitude, superpressure balloon to an altitude of 67,000 or 78,000 feet. After launch the BIP senses high-altitude balloon overpressure and temperature, and upon receipt of an interrogated command from the IRLS aboard the Nimbus 4 satellite, the BIP enodes the data on a real-time basis into a pulse-code modulation (PCM) format and transmits this data to the satellite. A summary of the program activity to produce 30 BIP systems and to support balloon launches from Ascension Island is presented.

  12. Modeling and Interrogative Strategies.

    ERIC Educational Resources Information Center

    Denney, Douglas R.

    Three studies to determine the effects of adult models on interrogative strategies of children (ages 6-11) are reviewed. Two issues are analyzed: (1) the comparative effectiveness of various types of modeling procedures for changing rule-governed behaviors, and (2) the interaction between observational learning and the developmental level of the…

  13. SVX Sequence Crate Custom J2/J3 Backplane

    SciTech Connect

    Utes, M.; /Fermilab

    1997-10-23

    The Custom J2/J3 Backplane is a full length (21 slot) user specified custom 3U backplane to be used in both the J2 and J3 positions. Slot spacing is identical to that used for VME (0.8-inch), and each backplane shall fit into a standard Eurocard VME style crate. The purpose of the Custom J2/J3 Backplane is to send and receive control and clock signals from the SVX chips via 3M pleated foil cables (Slots 2-21), and in slot 1, accept a cable connector and route its signal through to a signal distribution board.

  14. Waste Crate and Container Imaging Using the Vehicle and Cargo Inspection System. Innovative Technology Summary Report

    SciTech Connect

    2000-07-01

    The Vehicle and Cargo Inspection System (VACIS) is a highly penetrating gamma ray imaging system that provides a means to non-invasively image crate contents prior to crate disassembly. The VACIS unit uses a 1.6 Curie collimated source (Cesium-137) aimed at a linear detector to create an image as the unit passes by the crate. In the demonstrated mobile unit, the source and detector were mounted on a boom truck. As the crate passed between the source and detector, a near real-time composite image of the contents was constructed from the linear image of the VACIS unit's on board computer and recorded on disk.

  15. Groundwater Visualisation System (GVS): A software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation

    NASA Astrophysics Data System (ADS)

    Cox, Malcolm E.; James, Allan; Hawke, Amy; Raiber, Matthias

    2013-05-01

    Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine

  16. The dynamic nature of interrogation.

    PubMed

    Kelly, Christopher E; Miller, Jeaneé C; Redlich, Allison D

    2016-06-01

    Building on a substantial body of literature examining interrogation methods employed by police investigators and their relationship to suspect behaviors, we analyzed a sample of audio and video interrogation recordings of individuals suspected of serious violent crimes. Existing survey research has focused on the tactics reportedly used, at what rate, and under what conditions; observational studies detail which methods are actually employed. With a few notable exceptions, these foundational studies were static examinations of interrogation methods that documented the absence or presence of various approaches. In the present study, we cast interrogation as a dynamic phenomenon and code the recordings in 5-min intervals to examine how interrogation methods and suspect cooperation change over time. Employing the interrogation taxonomy framework, particularly 4 discrete domains-rapport and relationship building, emotion provocation, presentation of evidence, and confrontation/competition-we found that the emphasis of the domains varied across interrogations and were significantly different when suspects confessed versus when they denied involvement. In regression models, suspect cooperation was positively influenced by the rapport and relationship building domain, though it was negatively impacted by presentation of evidence and confrontation/competition. Moreover, we found that the negative effects of confrontation/competition on suspect cooperation lasted for up to 15 min. The implications of the findings for practice and future research include the benefits of a rapport-based approach, the deleterious effects of accusatorial methods, and the importance of studying when, not just if, certain interrogation techniques are employed. (PsycINFO Database Record PMID:26651622

  17. Interrogating personhood and dementia

    PubMed Central

    Higgs, Paul; Gilleard, Chris

    2016-01-01

    ABSTRACT Objectives: To interrogate the concept of personhood and its application to care practices for people with dementia. Method: We outline the work of Tom Kitwood on personhood and relate this to conceptualisations of personhood in metaphysics and in moral philosophy. Results: The philosophical concept of personhood has a long history. The metaphysical tradition examines the necessary and sufficient qualities that make up personhood such as agency, consciousness, identity, rationality and second-order reflexivity. Alternative viewpoints treat personhood as a matter of degree rather than as a superordinate category. Within moral philosophy personhood is treated as a moral status applicable to some or to all human beings. Conclusion: In the light of the multiple meanings attached to the term in both metaphysics and moral philosophy, personhood is a relatively unhelpful concept to act as the foundation for developing models and standards of care for people with dementia. Care, we suggest, should concentrate less on ambiguous and somewhat abstract terms such as personhood and focus instead on supporting people's existing capabilities, while minimising the harmful consequences of their incapacities. PMID:26708149

  18. Interrogating an insect society

    PubMed Central

    Gadagkar, Raghavendra

    2009-01-01

    Insect societies such as those of ants, bees, and wasps consist of 1 or a small number of fertile queens and a large number of sterile or nearly sterile workers. While the queens engage in laying eggs, workers perform all other tasks such as nest building, acquisition and processing of food, and brood care. How do such societies function in a coordinated and efficient manner? What are the rules that individuals follow? How are these rules made and enforced? These questions are of obvious interest to us as fellow social animals but how do we interrogate an insect society and seek answers to these questions? In this article I will describe my research that was designed to seek answers from an insect society to a series of questions of obvious interest to us. I have chosen the Indian paper wasp Ropalidia marginata for this purpose, a species that is abundantly distributed in peninsular India and serves as an excellent model system. An important feature of this species is that queens and workers are morphologically identical and physiologically nearly so. How then does an individual become a queen? How does the queen suppress worker reproduction? How does the queen regulate the nonreproductive activities of the workers? What is the function of aggression shown by different individuals? How and when is the queen's heir decided? I will show how such questions can indeed be investigated and will emphasize the need for a whole range of different techniques of observation and experimentation. PMID:19487678

  19. Active Interrogation for Spent Fuel

    SciTech Connect

    Swinhoe, Martyn Thomas; Dougan, Arden

    2015-11-05

    The DDA instrument for nuclear safeguards is a fast, non-destructive assay, active neutron interrogation technique using an external 14 MeV DT neutron generator for characterization and verification of spent nuclear fuel assemblies.

  20. Interrogation Methods and Terror Networks

    NASA Astrophysics Data System (ADS)

    Baccara, Mariagiovanna; Bar-Isaac, Heski

    We examine how the structure of terror networks varies with legal limits on interrogation and the ability of authorities to extract information from detainees. We assume that terrorist networks are designed to respond optimally to a tradeoff caused by information exchange: Diffusing information widely leads to greater internal efficiency, but it leaves the organization more vulnerable to law enforcement. The extent of this vulnerability depends on the law enforcement authority’s resources, strategy and interrogation methods. Recognizing that the structure of a terrorist network responds to the policies of law enforcement authorities allows us to begin to explore the most effective policies from the authorities’ point of view.

  1. Higher preweaning mortality in free farrowing pens compared with farrowing crates in three commercial pig farms.

    PubMed

    Hales, J; Moustsen, V A; Nielsen, M B F; Hansen, C F

    2014-01-01

    If loose-housed farrowing systems are to be an alternative to traditional farrowing crates, it is important that they can deliver the same production results as can be achieved in farrowing crates under commercial conditions. The aim of this study was to compare preweaning mortality in farrowing crates and free farrowing pens (FF-pens) within herds that had both systems. The study was conducted over 2 years in three commercial Danish herds that had FF-pens as well as traditional farrowing crates in their farrowing unit. Piglet mortality was analysed in two periods: before litter equalisation and after litter equalisation. Linear models were used to analyse effects of housing (crate or pen), herd (Herd A, B or C), parity (parities 1, 2, 3 to 4 or 5 to 8) as well as the effect of number of total born piglets on mortality before litter equalisation, and the effect of equalised litter size on piglet mortality after litter equalisation. All corresponding interactions were included in the models. Before litter equalisation piglet mortality was higher (P<0.001) in pens (13.7%) than in crates (11.8%). Similarly, piglet mortality after litter equalisation was higher in pens than in crates in all three herds, but the difference between pens and crates were dissimilar (P<0.05) in the different herds. In addition, piglet mortality, both before (P<0.001) and after litter equalisation (P<0.001), grew with increasing parity of the sows. Mortality before litter equalisation moreover increased with increasing number of total born piglets per litter (P<0.001), and mortality after equalisation increased when equalised litter size increased (P<0.001). No significant interactions were detected between housing and parity or housing and litter size for any of the analysed variables. In conclusion, there is knowledge how to design pens for free farrowing; but this study showed a higher preweaning mortality in the FF-pen. Nonetheless a noteworthy proportion of the sows in the FF

  2. Interrogating the Aged Striatum: Robust Survival of Grafted Dopamine Neurons in Aging Rats Produces Inferior Behavioral Recovery and Evidence of Impaired Integration

    PubMed Central

    Collier, Timothy J.; O’Malley, Jennifer; Rademacher, David J.; Stancati, Jennifer A.; Sisson, Kellie A.; Sortwell, Caryl E.; Paumier, Katrina L.; Gebremedhin, Kibrom G.; Steece-Collier, Kathy

    2015-01-01

    Advanced age is the primary risk factor for Parkinson disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3 mo), middle-aged (15 mo), and aged (22 mo) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging. PMID:25771169

  3. Long-term non-invasive interrogation of human dorsal root ganglion neuronal cultures on an integrated microfluidic multielectrode array platform.

    PubMed

    Enright, H A; Felix, S H; Fischer, N O; Mukerjee, E V; Soscia, D; Mcnerney, M; Kulp, K; Zhang, J; Page, G; Miller, P; Ghetti, A; Wheeler, E K; Pannu, S

    2016-09-21

    Scientific studies in drug development and toxicology rely heavily on animal models, which often inaccurately predict the true response for human exposure. This may lead to unanticipated adverse effects or misidentified risks that result in, for example, drug candidate elimination. The utilization of human cells and tissues for in vitro physiological platforms has become a growing area of interest to bridge this gap and to more accurately predict human responses to drugs and toxins. The effects of new drugs and toxins on the peripheral nervous system are often investigated with neurons isolated from dorsal root ganglia (DRG), typically with one-time measurement techniques such as patch clamping. Here, we report the use of our multi-electrode array (MEA) platform for long-term noninvasive assessment of human DRG cell health and function. In this study, we acquired simultaneous optical and electrophysiological measurements from primary human DRG neurons upon chemical stimulation repeatedly through day in vitro (DIV) 23. Distinct chemical signatures were noted for the cellular responses evoked by each chemical stimulus. Additionally, the cell viability and function of the human DRG neurons were consistent through DIV 23. To the best of our knowledge, this is the first report on long-term measurements of the cell health and function of human DRG neurons on a MEA platform. Future generations will include higher electrode numbers in customized arrangements as well as integration with different tissue types on a single device. This platform will provide a valuable testing tool for both rodent and human cells, enabling a more comprehensive risk assessment for drug candidates and toxicants. PMID:27351032

  4. Determination of piglet location in farrowing crates based on depth and digital images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding and properly managing behavioral responses of prewean piglets to the farrowing environment can improve well-being and pre-weaning performance of the piglets. This paper aims to quantify piglet location in the farrowing crate as affected by the lactating sow’s lying posture. Each farrow...

  5. Will VAMS Reinforce the Walls of the Egg-Crate School?

    ERIC Educational Resources Information Center

    Johnson, Susan Moore

    2015-01-01

    Throughout the United States there is an increasing trend toward using value-added methods (VAMs) for high-stakes decisions. When policymakers use VAMs to identify, reward, and dismiss teachers, they may perpetuate the egg-crate model of schooling and undermine efforts to build instructional capacity schoolwide. At any time, in any school, some…

  6. Active interrogation using energetic protons

    SciTech Connect

    Morris, Christopher L; Chung, Kiwhan; Greene, Steven J; Hogan, Gary E; Makela, Mark; Mariam, Fesseha; Milner, Edward C; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  7. AWG Filter for Wavelength Interrogator

    NASA Technical Reports Server (NTRS)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  8. Variation in Miami Cuban Spanish Interrogative Intonation

    ERIC Educational Resources Information Center

    Alvord, Scott M.

    2010-01-01

    The interrogative intonation of Cubans and Cuban Americans living in Miami is investigated. Two different intonation patterns are used in this variety of Spanish to convey absolute interrogative meaning: one with a falling final contour, as has been observed in Cuban Spanish, and one with a rising final contour, as is used in American English and…

  9. 8 CFR 343b.3 - Interrogation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Interrogation. 343b.3 Section 343b.3 Aliens and Nationality DEPARTMENT OF HOMELAND SECURITY NATIONALITY REGULATIONS SPECIAL CERTIFICATE OF NATURALIZATION FOR RECOGNITION BY A FOREIGN STATE § 343b.3 Interrogation. When Form N-565 presents a prima...

  10. Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material

    SciTech Connect

    Robert C. Runkle; David L. Chichester; Scott J. Thompson

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  11. Personnel Dose Assessment during Active Interrogation

    SciTech Connect

    Miller, Thomas Martin; Akkurt, Hatice; Patton, Bruce W

    2010-01-01

    A leading candidate in the detection of special nuclear material (SNM) is active interrogation (AI). Unlike passive interrogation, AI uses a source to enhance or create a detectable signal from SNM (usually fission), particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. During the development of AI sources, significant effort is put into determining the source strength required to detect SNM in specific scenarios. Usually during this process, but not always, an evaluation of personnel dose is also completed. In this instance personnel dose could involve any of the following: (1) personnel performing the AI; (2) unknown stowaways who are inside the object being interrogated; or (3) in clandestine interrogations, personnel who are known to be inside the object being interrogated but are unaware of the interrogation. In most instances, dose to anyone found smuggling SNM will be a secondary issue. However, for the organizations performing the AI, legal if not moral considerations should make dose to the personnel performing the AI, unknown stowaways, or innocent bystanders in clandestine interrogations a serious concern.

  12. 32 CFR 637.21 - Recording interviews and interrogations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel...

  13. 32 CFR 637.21 - Recording interviews and interrogations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel...

  14. 32 CFR 637.21 - Recording interviews and interrogations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel...

  15. 32 CFR 637.21 - Recording interviews and interrogations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel...

  16. 32 CFR 637.21 - Recording interviews and interrogations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel...

  17. The effect of feed withdrawal and crating density in transit on metabolism and meat quality of broilers at slaughter weight.

    PubMed

    Delezie, E; Swennen, Q; Buyse, J; Decuypere, E

    2007-07-01

    Commercial broilers are exposed to a number of stressors prior to slaughter, including feed deprivation, crating density (high vs. low), and transportation. Hence, the individual and additive or overruling effects of these stressors on welfare and energy metabolism were examined. Live weight gain, rectal temperature, physiological responses, and meat quality of broilers were determined. The fasting of broilers before being transported resulted in a decrease of triglycerides, uric acid, and triiodothyronine concentrations, indicating a negative energy balance. Feed withdrawal was also associated with a reduction in body weight, and highest body weight losses were observed after being fasted for 13 h. For some parameters there was a combined effect of feed withdrawal and crating density, whereas for others the crating density overruled the effect of previous feed withdrawal: broilers that had no access to feed before being transported had higher thyroxine and lower lactate concentrations (only at high crating density) compared with their fed counterparts before the transport process, indicating the combined effect of both actions. The distinction due to the feeding pattern could no longer be observed for the plasma uric acid, nonesterified fatty acids, triglycerides, and triiodothyronine concentrations because it was overruled by the transport effect, especially if broilers were transported at high crating density. Plasma corticosterone concentrations increased as a consequence of the procedure of transportation and peaked if broilers were crated at high density. In our study, no significant effect of preslaughter stressors on meat quality, plasma creatine kinase activity, or lipid peroxidation levels were noticed. It can be concluded that transportation at high stocking densities should be avoided to reduce economic losses and stress to broilers. Plasma hormone as well as metabolites, rectal temperature, and heat shock protein 70 mRNA all indicated the high stress

  18. Crates: High-Level I/O Interface for Scripting Languages

    NASA Astrophysics Data System (ADS)

    Cresitello-Dittmar, M.; Burke, D.; Doe, S.; Evans, I.; Evans, J.; Germain, G.; Lyn, J.

    2007-10-01

    Crates is a new software package being developed by the Chandra X-Ray Center (CXC) to provide a high level I/O interface for use within various scripting environments. It consists of a set of classes and methods which allow a user to easily access and manipulate general data files as well as specialized classes for specific data products (PHA Type I & II, RMF, ARF, etc.). CRATES also provides convenient access to metadata information, such as WCS transforms and DM subspace information which may be associated with a table column or image. The core library is written in C++ and utilizes the CXC DataModel (DM) library, which provides I/O support for the Chandra Data Analysis software, and is designed to be extensible to multiple scripting environments. We provide a set of Python wrappers and functionality from within the SLang environment via PySL. The interface has a common look and feel with the CIAO application packages Sherpa, a general purpose fitting and modeling application, and ChIPS, the Chandra Imaging and Plotting System.

  19. CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources

    SciTech Connect

    Healey, Stephen E.; Romani, Roger W.; Taylor, Gregory B.; Sadler, Elaine M.; Ricci, Roberto; Murphy, Tara; Ulvestad, James S.; Winn, Joshua N.; /MIT

    2007-02-20

    We have assembled an 8.4 GHz survey of bright, flat-spectrum ({alpha} > -0.5) radio sources with nearly uniform extragalactic (|b| > 10{sup o}) coverage for sources brighter than S{sub 4.8 GHz} = 65 mJy. The catalog is assembled from existing observations (especially CLASS and the Wright et al. PMN-CA survey), augmented by reprocessing of archival VLA and ATCA data and by new observations to fill in coverage gaps. We refer to this program as CRATES, the Combined Radio All-sky Targeted Eight GHz Survey. The resulting catalog provides precise positions, sub-arcsecond structures, and spectral indices for some 11,000 sources. We describe the morphology and spectral index distribution of the sample and comment on the survey's power to select several classes of interesting sources, especially high energy blazars. Comparison of CRATES with other high-frequency surveys also provides unique opportunities for identification of high-power radio sources.

  20. Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-10-01

    In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

  1. L'Interrogation Indirecte (Indirect Interrogation). Montreal Working Papers in Linguistics, Vol. 4.

    ERIC Educational Resources Information Center

    Nieger, Monique; Paradis, Monique

    This study is divided into two sections: the first examines Standard French indirect interrogation, noting several distinct verb classes which are discussed in terms of permutations of WH-words, reduction, multiple WH-words, cleavage, semantic compatibility, and the "que-" completive; the second part focuses on indirect interrogation and relatives…

  2. Active interrogation of highly enriched uranium

    SciTech Connect

    Moss, C. E.; Hollas, C. L.; Myers, W. L.

    2004-01-01

    Active interrogation techniques provide reliable detection of highly enriched uranium (HEU) even when passive detection is difficult. We use 50-Hz pulsed beams of bremsstrahlung photons from a 10-MeV linac or 14-MeV neutrons from a neutron generator for interrogation, thus activating the HEU. Detection of neutrons between pulses is a positive indicator of the presence of fissionable material. We detect the neutrons with three neutron detector designs based on {sup 3}He tubes. This report shows examples of the responses in these three detectors, for unshielded and shielded kilogram quantities of HEU, in containers as large as cargo containers.

  3. Radiation Detection for Active Interrogation of HEU

    SciTech Connect

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  4. Breaking Professional Boundaries: What the MacCrate Report on Lawyering Skills and Values Means for TPC Programs

    ERIC Educational Resources Information Center

    Todd, Jeff

    2008-01-01

    In 1992, the American Bar Association released the MacCrate Report, which listed the ten skills and four professional values that all attorneys need and critiqued law schools and state bars for not doing enough to teach and encourage the development of these skills and values. In response, law schools have significantly increased the skills-based…

  5. Interrogating Racism in Qualitative Research Methodology. Counterpoints.

    ERIC Educational Resources Information Center

    Lopez, Gerardo R., Ed.; Parker, Laurence, Ed.

    This book explores the link between critical race theory and qualitative research methodology, interrogating how race connects and conflicts with other areas of difference and is never entirely absent from the research process. After an introduction, "Critical Race Theory in Education: Theory, Praxis, and Recommendations" (Sylvia R. Lazos Vargas),…

  6. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only

  7. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  8. Programmable DNA Nanosystem for Molecular Interrogation

    PubMed Central

    Mathur, Divita; Henderson, Eric R.

    2016-01-01

    We describe a self-assembling DNA-based nanosystem for interrogating molecular interactions. The nanosystem contains a rigid supporting dumbbell-shaped frame, a cylindrical central core, and a mobile ring that is coaxial with the core. Motion of the ring is influenced by several control elements whose force-generating capability is based on the transition of single-stranded DNA to double-stranded DNA. These forces can be directed to act in opposition to adhesive forces between the ring and the frame thereby providing a mechanism for molecular detection and interrogation at the ring-frame interface. As proof of principle we use this system to evaluate base stacking adhesion and demonstrate detection of a soluble nucleic acid viral genome mimic. PMID:27270162

  9. Programmable DNA Nanosystem for Molecular Interrogation

    NASA Astrophysics Data System (ADS)

    Mathur, Divita; Henderson, Eric R.

    2016-06-01

    We describe a self-assembling DNA-based nanosystem for interrogating molecular interactions. The nanosystem contains a rigid supporting dumbbell-shaped frame, a cylindrical central core, and a mobile ring that is coaxial with the core. Motion of the ring is influenced by several control elements whose force-generating capability is based on the transition of single-stranded DNA to double-stranded DNA. These forces can be directed to act in opposition to adhesive forces between the ring and the frame thereby providing a mechanism for molecular detection and interrogation at the ring-frame interface. As proof of principle we use this system to evaluate base stacking adhesion and demonstrate detection of a soluble nucleic acid viral genome mimic.

  10. Wirelessly Interrogated Position or Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.

  11. Wirelessly Interrogated Wear or Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  12. FBG interrogation method based on wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Zhao, Jianlin; Jiang, Biqiang; Rauf, Abdul; Wang, Donghui; Yang, Dexing

    2013-06-01

    Wavelength-swept laser technique is an active demodulation method which integrates laser source and detecting circuit together to achieve compact size. The method also has the advantages such as large demodulation range, high accuracy, and comparatively high speed. In this paper, we present a FBG interrogation method based on wavelength-swept Laser, in which an erbium-doped fiber is used as gain medium and connected by a WDM to form a ring cavity, a fiber FP tunable filter is inserted in the loop for choosing the laser frequency and a gas absorption cell is adopted as a frequency reference. The laser wavelength is swept by driving the FP filter. If the laser wavelength matches with that of FBG sensors, there will be some strong reflection peak signals. Detecting such signals with the transmittance signal after the gas absorption cell synchronously and analyzing them, the center wavelengths of the FBG sensors are calculated out at last. Here, we discuss the data processing method based on the frequency reference, and experimentally study the swept laser characteristics. Finally, we adopt this interrogator to demodulate FBG stress sensors. The results show that, the demodulation range almost covers C+L band, the resolution and accuracy can reach about 1pm or less and 5pm respectively. So it is very suitable for most FBG measurements.

  13. Firmware development and testing of the ATLAS IBL Back Of Crate card

    NASA Astrophysics Data System (ADS)

    Stramaglia, M. E.

    2015-02-01

    ATLAS is one of the four big LHC experiments and recently its Pixel Detector was upgraded with a new innermost 4th layer: the Insertable B-Layer (IBL) . The upgrade will result in better tracking efficiency, improved precision of measurements and, in the future, compensation for radiation damage of the Pixel-Detector. Newly developed front-end electronics and the higher than originally planned LHC luminosity required a complete re-design of the Off Detector Electronics consisting of the Back Of Crate card (BOC) and the Read Out Driver (ROD) . The main purposes of the BOC card are the distribution of the LHC clock to all Pixel Detector components as well as interfacing the detector and the higher level readout optically. The data-path to the detector runs a 40 MHz bi phase mark (BPM) encoded stream. The 160 MHz 8b10b encoded data path from the detector is phase and word aligned in the firmware and then forwarded to the ROD after decoding. The ROD will send out the processed data that is then forwarded to the higher level readout by the BOC card. An overview of the newly developed firmware will be presented together with the results from production tests and the system test at CERN . Focus is put on the partial reconfiguration and results of the fine delay measurements.

  14. Interrogations, confessions, and adolescent offenders' perceptions of the legal system.

    PubMed

    Arndorfer, Andrea; Malloy, Lindsay C; Cauffman, Elizabeth

    2015-10-01

    The potential consequences of interrogations and false confessions have been discussed primarily in terms of the risk for wrongful conviction, especially among adolescents and other vulnerable populations. However, it is possible that such experiences influence adolescents' perceptions of the legal system more generally. In the present study, we examined whether incarcerated male juvenile offenders' (n = 193) perceptions of police and the courts were related to their confession and interrogation experiences. High-pressure interrogation experiences and self-reported false confessions to police were associated with more negative perceptions of police. However, self-reported true confessions were not significantly associated with youths' perceptions of the police. Neither interrogation nor confession experiences (true or false) were related to youths' perceptions of the courts. Results provide additional support for policy reform of interrogation practices with young suspects. A more developmentally appropriate approach to criminal interrogations with youth may simultaneously improve police-youth relations and protect vulnerable suspects in the interrogation room. PMID:26011040

  15. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  16. Sow postural changes, responsiveness to piglet screams, and their impact on piglet mortality in pens and crates.

    PubMed

    Melišová, M; Illmann, G; Chaloupková, H; Bozděchová, B

    2014-07-01

    Free farrowing pens (pens) improve the welfare of sows but may increase sow activity and negatively influence piglet production. The aim of this study was to assess the effect of pens and crates on sow postural changes, piglet trapping, sow responses to piglet screams, piglet mortality, and piglet BW gain. It was predicted that provision of greater space (in pens) would increase not only the frequency of sow postural changes and the probability of trappisng but also sow responses to the screams of piglets; thus, the outcome would be no differences in fatal piglet crushing or overall mortality between the housing systems. Sows were randomly moved to either a farrowing pen (n = 20) or farrowing crate (n = 18). Sow behavior was recorded and analyzed for 72 h from the birth of the first piglet (BFP). Sow postural changes included rolling from a ventral to lateral position and vice versa and going from standing to sitting, standing to lying, and sitting to lying. Occurrences of piglet trapping and sow responsiveness to real crushing situations were analyzed. Sow responsiveness was assessed in response to audio playbacks (PB) of piglet screams on d 3 postpartum (48 to 72 h after BFP; PB crush calls) and real piglet crushing during the first 72 h after BFP (real crush calls). Piglet BW gain was estimated 24 h after BFP, piglet BW was recorded at weaning, and piglet crushing and piglet mortality were recorded during the 72 h after BFP. Data were analyzed using PROC MIXED and PROC GENMOD of SAS. Sows in pens showed more postural changes (P = 0.04) and tended to have greater incidences of piglet trapping (P = 0.07) than those in crates. Sow response to PB crush calls was greater in pens (P = 0.04) but did not differ for real crush calls between pens and crates (P = 0.62). There was no effect on the probability of piglet crushing (P = 0.38) and mortality (P = 0.41) during the 72 h after BFP nor in piglet mortality at weaning (P = 0.81) between pens and crates. Piglet BW gain

  17. Neonatal piglet traits of importance for survival in crates and indoor pens.

    PubMed

    Pedersen, L J; Berg, P; Jørgensen, G; Andersen, I L

    2011-04-01

    The primary aim of the present study was to investigate whether the same piglet traits contributed to the same causes of neonatal piglet mortality in crates (CT) and pens (PN). Gilts originating from 2 distinct genetic groups that differed in breeding value for piglet survival rate at d 5 (SR5) were used. These were distributed to farrow in either PN or CT as follows: high-SR5 and CT (n = 30); low-SR5 and CT (n = 27); high-SR5 and PN (n = 22); and low-SR5 and PN (n = 24). Data on individual piglets were collected at birth, including interbirth interval; birth order; birth weight; rectal temperature at birth, 2 h after birth, and 24 h after birth; cordal plasma lactate; and latency to first suckle. Based on autopsy, causes of mortality were divided into stillborn, bitten to death, starvation, crushed, disease, and other causes. Potential risk factors of dying were estimated using a GLM with a logit link function. No significant effect (NS) of housing was observed on the odds of a piglet being stillborn (F(1,73) = 0.1, NS), being crushed (F(1,53) = 1.4, NS), or dying of starvation (F(1,53) = 0.3, NS). No significant differences were observed between the 2 genetic groups for any category of mortality. Piglet traits for pre- and postnatal survival were the same for CT and PN. The odds of being stillborn were increased in piglets born late in the birth order (F(1,1061) = 33.5, P < 0.0001), after a long interbirth interval (F(1,1061) = 19.2, P < 0.0001), and with a lighter birth weight (F(1,1061) = 9.2, P = 0.003). The lighter the birth weight of the piglets, the greater were the odds of being crushed (F(1,1050) = 18, P < 0.0001) and dying of starvation (F(1,1050) = 19, P < 0.0001). The lower the rectal temperature 2 h after birth, the greater were the odds of being crushed (F(1,1050) = 4.6, P = 0.03), starving (F(1,1050) = 16.6, P < 0.0001), or dying of diseases (F(1,1050) = 4.9, P = 0.03). Increased cordal plasma lactate increased the odds of dying from starvation (F(1

  18. Narcotics detection using fast-neutron interrogation

    SciTech Connect

    Micklich, B.J.; Fink, C.L.

    1995-12-31

    Fast-neutron interrogation techniques are being investigated for detection of narcotics in luggage and cargo containers. This paper discusses two different fast-neutron techniques. The first uses a pulsed accelerator or sealed-tube source to produce monoenergetic fast neutrons. Gamma rays characteristic of carbon and oxygen are detected and the elemental densities determined. Spatial localization is accomplished by either time of flight or collimators. This technique is suitable for examination of large containers because of the good penetration of the fast neutrons and the low attenuation of the high-energy gamma rays. The second technique uses an accelerator to produce nanosecond pulsed beams of deuterons that strike a target to produce a pulsed beam of neutrons with a continuum of energies. Elemental distributions are obtained by measuring the neutron spectrum after the source neutrons pass through the items being interrogated. Spatial variation of elemental densities is obtained by tomographic reconstruction of projection data obtained for three to five angles and relatively low (2 cm) resolution. This technique is best suited for examination of luggage or small containers with average neutron transmissions greater than about 0.01. Analytic and Monte-Carlo models are being used to investigate the operational characteristics and limitations of both techniques.

  19. Group housing for lactating sows with electronically controlled crates: 1. Reproductive traits, body condition, and feed intake.

    PubMed

    Bohnenkamp, A-L; Traulsen, I; Meyer, C; Müller, K; Krieter, J

    2013-07-01

    The aim was to compare a group housing system (GROUP) and a conventional single housing (SINGLE) for lactating sows with regard to the performance of sows and piglets. Data of 132 cross-breed sows were collected in 11 batches with 6 sows in GROUP and SINGLE in each batch. The GROUP had single pens (4.7 m(2)) with electronically controlled crates and a shared running area (13 m(2)). The sows in GROUP were retained in the crates 3 d prepartum until 1 d postpartum. Piglets were able to leave the single pens on d 5 postpartum. Recorded traits per litter included the number of piglets born alive and weaned, piglet losses, and individual BW at birth and weaning. In addition, body condition and back fat thickness before and after lactation (26 d) and the daily feed intake of the sows were measured. Gilts and sows were analyzed separately. The reproductive traits did not differ significantly (P > 0.05) between the farrowing systems with exception of the weaning weights (GROUP = 7.6 ± 0.12 kg vs. SINGLE = 8.1 ± 0.12 kg; P < 0.05). Group housed and SINGLE sows had 14.4 ± 0.47 and 14.6 ± 0.45 piglets born alive, respectively. In both housing systems, sows weaned 11.4 piglets (SEM = 0.14 and 0.13 for GROUP and SINGLE), respectively. Most piglet losses (72%) occurred during the first 3 d postpartum. At this point in time, piglets in GROUP and SINGLE were housed in single pens. In the single pens, GROUP sows could leave the farrowing crate whereas SINGLE sows were fixed in crates during the whole lactation. In total, piglet losses were not significantly different during lactation between GROUP and SINGLE treatments (2.2 ± 0.05 and 2.4 ± 0.05 piglets per litter, respectively). Sows housed in GROUP had a significantly lower (P < 0.05) BCS (2.2 ± 0.05) after lactation compared with SINGLE sows (BCS = 2.4 ± 0.05). This development could not be verified using the back fat thickness value at weaning (GROUP = 14.4 ± 0.25 mm vs. SINGLE = 14.6 ± 0.23 mm). Daily feed intake was

  20. Laser interrogation of latent vehicle registration number

    SciTech Connect

    Russo, R.E. |; Pelkey, G.E.; Grant, P.; Whipple, R.E.; Andresen, B.D.

    1994-09-01

    A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

  1. Single transmission line interrogated multiple channel data acquisition system

    DOEpatents

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  2. The aversiveness of carbon dioxide stunning in pigs and a comparison of the CO(2) stunner crate vs. the V-restrainer.

    PubMed

    Jongman; Barnett; Hemsworth

    2000-03-22

    Using aversion learning techniques, the relative aversiveness of CO(2) to pigs in comparison to a shock with an electric prodder, and the aversiveness of a CO(2)-stunner crate in comparison to the aversiveness of a V-belt restrainer used for electric stunning were examined. The results showed that 90% CO(2) was considerably less aversive than an electric shock with a prodder. However, during exposure to 90% CO(2) all pigs lost conscious, which may have affected their memory of the procedure. The pigs remained conscious after exposure to 60% CO(2) and again showed virtually no aversion towards the stunner crate, while an electric shock with a prodder appeared highly aversive. The aversion to the V-restrainer belt and the CO(2) crate were similar. PMID:10719190

  3. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.

    1988-04-12

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

  4. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, William B.; McNeilly, David R.

    1988-01-01

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

  5. Repetitive Interrogation of 2-Level Quantum Systems

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.

    2010-01-01

    Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.

  6. Pulsed photoneutron interrogation: The GNT demonstration system

    SciTech Connect

    Jones, J.L.; Harker, Y.D.; Yoon, W.Y.; Hoggan, J.M.; McManus, G.J.

    1994-10-01

    The Idaho National Engineering Laboratory (INEL) has developed and tested an active photon interrogation technique to support the Department of Energy`s (DOE) Office of National Security and Nonproliferation (NN) mission related to verification technologies development. The INEL concept, referred to as the Gamma-Neutron Threshold (GNT) technology, uses a transportable, field-deployable, selective-energy (2 to 10 MeV), pulsed, electron accelerator to produce energetic X-rays having a bremsstrahlung spectrum. The energetic X-rays induce neutrons in many proliferation-limited items via direct photoneutron/photofission interactions. The time-dependent neutron response, as a function of the electron beam energy, is measured with a tripod-mounted, detector assembly and a portable data acquisition system. The portable detector assembly has been specifically designed to operate in very intense, pulsed X-ray environments. The GNT technique measures both the prompt and delayed neutron emission after each accelerator pulse. This report fully describes each component of this system and presents various signature results based on these emissions.

  7. Determination of optical probe interrogation field of near-infrared reflectance: phantom and Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Bahadur, Ali N.; Giller, Cole A.; Kashyap, Dheerendra; Liu, Hanli

    2007-08-01

    An optical probe used to localize human brain tissues in vivo has been reported previously. It was able to sense the underlying tissue structure with an optical interrogation field, termed as "look ahead distance" (LAD). A new side-firing probe has been designed with its optical window along its side. We have defined the optical interrogation field of the new side probe as "look aside distance" (LASD). The purpose of this study is to understand the dependence of the LAD and LASD on the optical properties of tissue, the light source intensity, and the integration time of the detector, using experimental and computational methods. The results show that a decrease in light intensity does decrease the LAD and LASD and that an increase in integration time of detection may not necessarily improve the depths of LAD and LASD. Furthermore, Monte Carlo simulation results suggest that the LAD/LASD decreases with an increase in reduced scattering coefficient to a point, after which the LAD/LASD remains constant. We expect that an optical interrogation field of a tip or side probe is approximately 1-2 mm in white matter and 2-3.5 mm in gray matter. These conclusions will help us optimally manipulate the parameter settings during surgery and determine the spatial resolution of the probe.

  8. Guidelines to indirectly measure and enhance detection efficiency of stationary PIT tag interrogation systems in streams

    USGS Publications Warehouse

    Connolly, Patrick J.

    2010-01-01

    With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.

  9. High-resolution spectrally-resolved fiber optic sensor interrogation system based on a standard DWDM laser module.

    PubMed

    Njegovec, Matej; Donlagic, Denis

    2010-11-01

    This paper presents a spectrally-resolved integration system suitable for the reading of Bragg grating, all-fiber Fabry-Perot, and similar spectrally-resolved fiber-optic sensors. This system is based on a standard telecommunication dense wavelength division multiplexing transmission module that contains a distributed feedback laser diode and a wavelength locker. Besides the transmission module, only a few additional opto-electronic components were needed to build an experimental interrogation system that demonstrated over a 2 nm wide wavelength interrogation range, and a 1 pm wavelength resolution. When the system was combined with a typical Bragg grating sensor, a strain resolution of 1 με and temperature resolution of 0.1 °C were demonstrated experimentally. The proposed interrogation system relies entirely on Telecordia standard compliant photonic components and can thus be straightforwardly qualified for use within the range of demanding applications. PMID:21164765

  10. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome.

    PubMed

    Jinkerson, Robert E; Jonikas, Martin C

    2015-05-01

    The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations. PMID:25704665

  11. Design concept for the microwave interrogation structure in PARCS

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Klipstein, W. M.; Heavner, T. P.; Jefferts, S. R.

    2002-01-01

    In this paper we will describe key aspects of the conceptual design of the microwave interrogation structure in the laser-cooled cesium frequency standard that is part of the Primary Atomic Reference Clock in Space (PARCS) experiment.

  12. High performance FBG interrogation technology with scan fiber laser

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Ma, Youchun; Yang, Minwei

    2010-11-01

    A Fiber Bragg gratings (FBG) Interrogation scheme with scan fiber laser was demonstrated. The ring cavity scan fiber laser was investigated and the scan fiber laser module was made and test, the 200Hz scan frequency, ~0.02nm line width, more than 40nm scan range and more than 1 mW output power were obtained. A 12 channels, 20 FBGs per channel FBG interrogator was made with this laser module and the high speed signal process circuit base on FPGA. The centroid finding method which has advantage on interrogation speed and accurate was taken for finding the peak of the return FBG spectrum. The FBG interrogator was test and less than 3pm standard deviation with 200Hz scan frequency were obtained.

  13. The role of abusive states of being in interrogation.

    PubMed

    Putnam, Frank W

    2013-01-01

    Interrogation, the questioning of persons detained by police, military, or intelligence organizations, is designed to extract information that a subject may resist disclosing. Interrogation techniques are frequently predicated on inducing mental states of despair, dread, dependency, and debility that weaken an individual's resistance. Descriptions of techniques from 2 Central Intelligence Agency training manuals are illustrated by examples from interviews of and writings by Murat Kurnaz, who was held at Guantánamo Bay Detention Camp for 5 years. Interrogation techniques are designed to create a destabilizing sense of shock; undermine an individual's grasp on reality; and provoke internal psychological division, self-conflict, and confusion. The long-term effects of interrogation often include posttraumatic stress disorder as well as states of anxiety, depression, and depersonalization. PMID:23406220

  14. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system for use in aerospace and automotive health monitoring systems

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Panahi, Allan; Lopatin, Craig

    2007-09-01

    Fiber Bragg grating sensors (FBGs) have gained rapid acceptance in aerospace and automotive structural health monitoring applications for the measurement of strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky and heavy bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense) microchip technology. The hybrid InOSense microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  15. SNM detection by active muon interrogation

    SciTech Connect

    Jason, Andrew J; Miyadera, Haruo; Turchi, Peter J

    2010-01-01

    Muons are charged particles with mass between the electron and proton and can be produced indirectly through pion decay by interaction of a charged-particle beam with a target. There are several distinct features of the muon interaction with matter attractive as a probe for detection of SNM at moderate ranges. These include muon penetration of virtually any amount of material without significant nuclear interaction until stopped by ionization loss in a short distance. When stopped, high-energy penetrating x-rays (in the range of 6 MeV for uranium,) unique to isotopic composition are emitted in the capture process. The subsequent interaction with the nucleus produces additional radiation useful in assessing SNM presence. A focused muon beam can be transported through the atmosphere, at a range limited mainly by beam-size growth through scattering. A muonbeam intensity of > 10{sup 9} /second is required for efficient interrogation and, as in any other technique, dose limits are to be respected. To produce sufficient muons a high-energy (threshold {approx}140 MeV) high-intensity (<1 mA) proton or electron beam is needed implying the use of a linear accelerator to bombard a refractory target. The muon yield is fractionally small, with large angle and energy dispersion, so that efficient collection is necessary in all dimensions of phase space. To accomplish this Los Alamos has proposed a magnetic collection system followed by a unique linear accelerator that provides the requisite phase-space bunching and allows an energy sweep to successively stop muons throughout a large structure such as a sea-going vessel. A possible maritime application would entail fitting the high-gradient accelerators on a large ship with a helicopter-borne detection system. We will describe our experimental results for muon effects and particle collection along with our current design and program for a muon detection system.

  16. Novel applications of fast neutron interrogation methods

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    1994-12-01

    The development of non-intrusive inspection methods for contraband consisting primarily of carbon, nitrogen, oxygen, and hydrogen requires the use of fast neutrons. While most elements can be sufficiently well detected by the thermal neutron capture process, some important ones, e.g., carbon and in particular oxygen, cannot be detected by this process. Fortunately, fast neutrons, with energies above the threshold for inelastic scattering, stimulate relatively strong and specific gamma ray lines from these elements. The main lines are: 6.13 for O, 4.43 for C, and 5.11, 2.31 and 1.64 MeV for N. Accelerator-generated neutrons in the energy range of 7 to 15 MeV are being considered as interrogating radiations in a variety of non-intrusive inspection systems for contraband, from explosives to drugs and from coal to smuggled, dutiable goods. In some applications, mostly for inspection of small items such as luggage, the decision process involves a rudimentary imaging, akin to emission tomography, to obtain the localized concentration of various elements. This technique is called FNA — Fast Neutron Analysis. While this approach offers improvements over the TNA (Thermal Neutron Analysis), it is not applicable to large objects such as shipping containers and trucks. For these challenging applications, a collimated beam of neutrons is rastered along the height of the moving object. In addition, the neutrons are generated in very narrow nanosecond pulses. The point of their interaction inside the object is determined by the time of flight (TOF) method, that is measuring the time elapsed from the neutron generation to the time of detection of the stimulated gamma rays. This technique, called PFNA (Pulsed Fast Neutron Analysis), thus directly provides the elemental, and by inference, the chemical composition of the material at every volume element (voxel) of the object. The various neutron-based techniques are briefly described below.

  17. Interrogation of an object for dimensional and topographical information

    DOEpatents

    McMakin, Doug L [Richland, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Richland, WA; Sheen, David M [Richland, WA

    2003-01-14

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.

  18. Interrogation of an object for dimensional and topographical information

    DOEpatents

    McMakin, Douglas L.; Severtsen, Ronald H.; Hall, Thomas E.; Sheen, David M.; Kennedy, Mike O.

    2004-03-09

    Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.

  19. A utilitarian argument against torture interrogation of terrorists.

    PubMed

    Arrigo, Jean Maria

    2004-07-01

    Following the September 2001 terrorist attacks on the United States, much support for torture interrogation of terrorists has emerged in the public forum, largely based on the "ticking bomb" scenario. Although deontological and virtue ethics provide incisive arguments against torture, they do not speak directly to scientists and government officials responsible for national security in a utilitarian framework. Drawing from criminology, organizational theory, social psychology, the historical record, and my interviews with military professionals, I assess the potential of an official U.S. program of torture interrogation from a practical perspective. The central element of program design is a sound causal model relating input to output. I explore three principal models of how torture interrogation leads to truth: the animal instinct model, the cognitive failure model, and the data processing model. These models show why torture interrogation fails overall as a counterterrorist tactic. They also expose the processes that lead from a precision torture interrogation program to breakdowns in key institutions-health care, biomedical research, police, judiciary, and military. The breakdowns evolve from institutional dynamics that are independent of the original moral rationale. The counterargument, of course, is that in a society destroyed by terrorism there will be nothing to repair. That is why the actual causal mechanism of torture interrogation in curtailing terrorism must be elucidated by utilitarians rather than presumed PMID:15362710

  20. Interrogations, confessions, and guilty pleas among serious adolescent offenders.

    PubMed

    Malloy, Lindsay C; Shulman, Elizabeth P; Cauffman, Elizabeth

    2014-04-01

    In the present study, we examined (a) the prevalence and characteristics of youths' true and false admissions (confessions and guilty pleas), (b) youths' interrogation experiences with police and lawyers, and (c) whether youths' interrogation experiences serve as situational risk factors for true and false admissions. We interviewed 193 14- to 17-year-old males (M = 16.4) incarcerated for serious crimes. Over 1/3 of the sample (35.2%) claimed to have made a false admission to legal authorities (17.1% false confession; 18.1% false guilty plea), and 2/3 claimed to have made a true admission (28.5% true confession; 37.3% true guilty plea). The majority of youth said that they had experienced high-pressure interrogations (e.g., threats), especially with police officers. Youth who mentioned experiencing "police refusals" (e.g., of a break to rest) were more likely to report having made both true and false confessions to police, whereas only false confessions were associated with claims of long interrogations (>2 hr) and being questioned in the presence of a friend. The number of self-reported high-pressure lawyer tactics was associated with false, but not true, guilty pleas. Results suggest the importance of conducting specialized trainings for those who interrogate youth, recording interrogations, placing limits on lengthy and manipulative techniques, and exploring alternative procedures for questioning juvenile suspects. PMID:24127891

  1. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    PubMed

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. PMID:26972838

  2. Active interrogation of highly enriched uranium

    NASA Astrophysics Data System (ADS)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  3. Development of fast FBG interrogator with wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuya; Shinoda, Yukitaka

    2015-05-01

    The objective of this research is the construction of a structural health monitoring system that uses fiber Bragg grating (FBG) to determine the health of structures. We develop fast FBG interrogator for real-time measurement of the reflected wavelength of a multipoint FBG to monitor the broadband vibration of a structure. This FBG interrogator, which combines a wavelength-swept laser and a real-time measurement system is capable of measuring wavelength within a standard deviation of 2×10-3 nm or less. We have demonstrated that the FBG interrogator is able to measure vibration that has a resonance frequency of 440 Hz at intervals of 0.1 ms with a multipoint FBG.

  4. Micro-size optical fibre strain interrogation system

    NASA Astrophysics Data System (ADS)

    Mrad, Nezih; Xiao, Gaozhi; Guo, Honglei

    2008-03-01

    Within several countries, the military is undergoing significant economic pressure to extend the use of its air fleet beyond its established design life. The availability of low weight, small size, reliable and cost-effective technologies to detect and monitor incipient damage and to alert prior to catastrophic failures is critical to sustain operational effectiveness. To enable the implementation of distributed and highly multiplexed optical fiber sensors networks to aerospace platforms, the data acquisition (interrogation) system has to meet small size and low weight requirements. This paper reports on our current development of micro-sized Echelle Diffractive Gratings (EDG) based interrogation system for strain monitoring of serially multiplexed fibre Bragg grating sensors. The operation principle of the interrogator and its suitability for strain measurements is demonstrated. Static load measurements obtained using this system are compared to those acquired using a optical multi-wavelength meter and are found to have strong correlation.

  5. Subthreshold neutron interrogator for detection of radioactive materials

    DOEpatents

    Evans, Michael L.; Menlove, Howard O.; Baker, Michael P.

    1980-01-01

    A device for detecting fissionable material such as uranium in low concentrations by interrogating with photoneutrons at energy levels below 500 keV, and typically about 26 keV. Induced fast neutrons having energies above 500 keV by the interrogated fissionable material are detected by a liquid scintillator or recoil proportional counter which is sensitive to the induced fast neutrons. Since the induced fast neutrons are proportional to the concentration of fissionable material, detection of induced fast neutrons indicate concentration of the fissionable material.

  6. Interrogative suggestibility, confabulation, and acquiescence in people with mild learning disabilities (mental handicap): implications for reliability during police interrogations.

    PubMed

    Clare, I C; Gudjonsson, G H

    1993-09-01

    In order to assess a criminal suspect's ability to make a reliable statement, performance on three measures--interrogative suggestibility, confabulation and acquiescence--may be used. This paper presents preliminary data on these measures for people with mild learning disabilities (Full Scale IQ [FSIQ]: 57-75). It was found that they were more suggestible than their average ability counterparts (FSIQ: 83-111) because they were much more susceptible to 'leading questions'. They also confabulated more and were more acquiescent. Overall, the data emphasized their potential vulnerability to giving erroneous testimony during interrogations. PMID:8251959

  7. Learning about Posterior Probability: Do Diagrams and Elaborative Interrogation Help?

    ERIC Educational Resources Information Center

    Clinton, Virginia; Alibali, Martha W.; Nathan, Mitchell J.

    2016-01-01

    To learn from a text, students must make meaningful connections among related ideas in that text. This study examined the effectiveness of two methods of improving connections--elaborative interrogation and diagrams--in written lessons about posterior probability. Undergraduate students (N = 198) read a lesson in one of three questioning…

  8. Interview and Interrogation Training using a Computer-Simulated Subject.

    ERIC Educational Resources Information Center

    Olsen, Dale E.

    Interactive, multimedia software involving a simulated subject has been created to help trainees develop interview and interrogation techniques using personal computers, because practice interviews are not always realistic and are too expensive. New and experienced law enforcement agents, among others, need such extensive training in techniques…

  9. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    PubMed Central

    Halpern, Abraham L; Halpern, John H; Doherty, Sean B

    2008-01-01

    After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very aggressive techniques determined to be torture by many nations and organizations throughout the world. This paper explains why psychiatrists and psychologists involved in coercive interrogations violate the Geneva Conventions and the laws of the United States. Whether done with ignorance of professional ethical obligations or not, these psychiatrists and psychologists have crossed an ethical barrier that may best be averted from re-occurring by teaching medical students and residents in all medical specialties about the ethics principles stemming from the 1946–1947 Nuremberg trials and the Geneva Conventions, together with the Ethics Codes of the World Medical Association and the American Medical Association; and, with regard to psychiatric residents and psychological trainees, by the teaching about The Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry and the Ethical Principles of Psychologists and Code of Conduct, respectively. In this way, all physicians and psychologists will clearly understand that they have an absolute moral obligation to "First, do no harm" to the human beings they professionally encounter. PMID:18817568

  10. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. Patterns of usage also…

  11. Teacher Epistemology and Collective Narratives: Interrogating Teaching and Diversity

    ERIC Educational Resources Information Center

    Adler, Susan Matoba

    2011-01-01

    This action research study interrogates how one teacher educator analyzed her pedagogy and engaged her students in writing narratives about working with children, families, and co-workers who are racially and ethnically different from themselves. Data were collected from a special topic graduate course entitled, Epistemology, Diversity and…

  12. Microwave interrogation cavity for the rubidium space cold atom clock

    NASA Astrophysics Data System (ADS)

    Wei, Ren; Yuan-Ci, Gao; Tang, Li; De-Sheng, Lü; Liang, Liu

    2016-06-01

    The performance of space cold atom clocks (SCACs) should be improved thanks to the microgravity environment in space. The microwave interrogation cavity is a key element in a SCAC. In this paper, we develop a microwave interrogation cavity especially for the rubidium SCAC. The interrogation cavity has two microwave interaction zones with a single feed-in source, which is located at the center of the cavity for symmetric coupling excitation and to ensure that the two interaction zones are in phase. The interrogation cavity has a measured resonance frequency of 6.835056471 GHz with a loaded quality factor of nearly 4200, which shows good agreement with simulation results. We measure the Rabi frequency of the clock transition of the rubidium atom in each microwave interaction zone, and subsequently demonstrate that the distributions of the magnetic field in the two interaction zones are the same and meet all requirements of the rubidium SCAC. Project supported by the National Natural Science Foundation of China (Grant No. 11034008), the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ09094304), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

  13. "Enhanced" interrogation of detainees: do psychologists and psychiatrists participate?

    PubMed

    Halpern, Abraham L; Halpern, John H; Doherty, Sean B

    2008-01-01

    After revelations of participation by psychiatrists and psychologists in interrogation of prisoners at Guantánamo Bay and Central Intelligence Agency secret detention centers, the American Psychiatric Association and the American Psychological Association adopted Position Statements absolutely prohibiting their members from participating in torture under any and all circumstances, and, to a limited degree, forbidding involvement in interrogations. Some interrogations utilize very aggressive techniques determined to be torture by many nations and organizations throughout the world. This paper explains why psychiatrists and psychologists involved in coercive interrogations violate the Geneva Conventions and the laws of the United States. Whether done with ignorance of professional ethical obligations or not, these psychiatrists and psychologists have crossed an ethical barrier that may best be averted from re-occurring by teaching medical students and residents in all medical specialties about the ethics principles stemming from the 1946-1947 Nuremberg trials and the Geneva Conventions, together with the Ethics Codes of the World Medical Association and the American Medical Association; and, with regard to psychiatric residents and psychological trainees, by the teaching about The Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry and the Ethical Principles of Psychologists and Code of Conduct, respectively. In this way, all physicians and psychologists will clearly understand that they have an absolute moral obligation to "First, do no harm" to the human beings they professionally encounter. PMID:18817568

  14. Ask Systems: Interrogative Access to Multiple Ways of Thinking

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2011-01-01

    The purpose of this paper is to familiarize instructional designers and researchers with a useful design and research paradigm known as "Ask Systems." Ask Systems are interrogative interfaces to information and learning environments that model conversations with a skilled, reflective practitioner (Schon, The reflective practitioner, "1983") or…

  15. Some Remarks on Interrogative and Relative Pronouns in English

    ERIC Educational Resources Information Center

    Lewandowska, Barbara

    1973-01-01

    An analysis is made of three "wh" words -- what, which, and who -- which are most frequently used as interrogative and relative pronouns in English. An attempt is made to find some formal syntactic markers distinguishing these two uses and consequently to postulate distinct feature matrices for them. (Available from: See FL 508 214.) (Author/RM)

  16. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    SciTech Connect

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  17. 29 CFR 18.611 - Mode and order of interrogation and presentation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Mode and order of interrogation and presentation. 18.611... of interrogation and presentation. (a) Control by judge. The judge shall exercise reasonable control... interrogation and presentation effective for the ascertainment of the truth, (2) Avoid needless consumption...

  18. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  19. Fissile material measurements using the differential die-away self interrogation technique

    SciTech Connect

    Schear, Melissa A; Menlove, Howard O; Tobin, Stephen J; Evans, Louise G; Lee, S Y

    2010-01-01

    Currently, there is substantial research effort focused on quantifying plutonium (Pu) mass in spent fuel using non-destructive assay (NDA) techniques. Of the several techniques being investigated for this purpose, Differential Die-Away Self-Interrogation (DDSI) is a recently proposed, neutron-based NDA technique capable of quantifying the total fissile content in an assembly. Unlike the conventional Differential Die-Away (DDA) technique, DOSI does not require an external neutron source for sample interrogation, but rather, uses the spontaneous fission neutrons originating from {sup 244}Cm within the spent fuel for self-interrogation. The essence of the technique lies in the time separation between the detection of spontaneous fission neutrons from {sup 244}Cm and the detection of induced fission neutrons at a later time. The DDSI detector design imposes this time separation by optimizing the die-away times ({tau}) of the detector and sample interrogation regions to obtain an early and late neutron distribution respectively. The ratio of the count rates in the late gate to the early gate for singles, doubles, and triples is directly proportional to the fissile content present in the sample, which has already been demonstrated for simplified fuel cases using the Monte Carlo N-Particle eXtended (MCNPX) code. The current work applies the DDSI concept to more complex samples, specifically spent Pressurized Water Reactor (PWR) assemblies with varying isotopics resulting from a range of initial enrichment, bumup, and cooling time. We assess the feasibility of using the late gate to early gate ratio as a reliable indicator of overall fissile mass for a range of assemblies by defining a {sup 239}Pu effective mass which indicates the mass of {sup 239}Pu that would yield the same DDSI signal as the combined mass of major fissile isotopes present in the sample. This work is important for assessing the individual capability of the DDSI instrument in quantifying fissile mass in

  20. Active Neutron Interrogation to Detect Shielded Fissionable Material

    SciTech Connect

    D. L. Chichester; E. H. Seabury

    2009-05-01

    Portable electronic neutron generators (ENGs) may be used to interrogate suspicious items to detect, characterize, and quantify the presence fissionable material based upon the measurement of prompt and/or delayed emissions of neutrons and/or photons resulting from fission. The small size (<0.2 m3), light weight (<12 kg), and low power consumption (<50 W) of modern ENGs makes them ideally suited for use in field situations, incorporated into systems carried by 2-3 individuals under rugged conditions. At Idaho National Laboratory we are investigating techniques and portable equipment for performing active neutron interrogation of moderate sized objects less than ~2-4 m3 to detect shielded fissionable material. Our research in this area relies upon the use of pulsed deuterium-tritium ENGs and the measurement of die-away prompt fission neutrons and other neutron signatures in-between neutron pulses from the ENG and after the ENG is turned off.

  1. OFDR with double interrogation for dynamic quasi-distributed sensing.

    PubMed

    Am, Adva Bar; Arbel, Dror; Eyal, Avishay

    2014-02-10

    A method for phase sensitive quasi-distributed vibration and acoustical sensing is presented. The method is based on double optical frequency domain reflectometry interrogation of a sensing fiber with an array of discrete weak reflectors. Two replicas of the interrogation signal are launched into the sensing fiber. The time delay between the replicas is equal to the roundtrip time between two consecutive reflectors. Each peak in the spectrum of the returning signal is made from a coherent addition of the reflections of two consecutive reflectors. Its magnitude is highly sensitive to the optical phase in the fiber segment between the reflectors. The system was used to detect and locate the fall of a paperclip from height of 40 cm onto a sandbox where a 15 cm segment of the fiber was buried. In a different experiment the system successfully detected and located minute vibrations at 440 Hz that were induced by touching the fiber with a tuning fork. PMID:24663522

  2. Illicit substance detection using fast-neutron interrogation systems

    SciTech Connect

    Yule, T.J.; Micklich, B.J.; Fink, C.L.; Smith, D.L.

    1994-06-01

    Fast-neutron interrogation techniques are of interest for detecting illicit substances such as explosives and drugs because of their ability to identify light elements such as carbon, nitrogen, and oxygen, which are the primary constituents of these materials. Two particular techniques, Fast-Neutron Transmission Spectroscopy and Pulsed Fast-Neutron Analysis, are discussed. Examples of modeling studies are provided which illustrate the applications of these two techniques.

  3. Layered shielding design for an active neutron interrogation system

    NASA Astrophysics Data System (ADS)

    Whetstone, Zachary D.; Kearfott, Kimberlee J.

    2016-08-01

    The use of source and detector shields in active neutron interrogation can improve detector signal. In simulations, a shielded detector with a source rotated π/3 rad relative to the opening decreased neutron flux roughly three orders of magnitude. Several realistic source and detector shield configurations were simulated. A layered design reduced neutron and secondary photon flux in the detector by approximately one order of magnitude for a deuterium-tritium source. The shield arrangement can be adapted for a portable, modular design.

  4. Distributed audio recording using OFDR with double interrogation

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2014-05-01

    We introduce a phase sensitive, dynamic and long range fiber-optic sensing system with fully distributed audio recording capabilities. The proposed system implements a recently developed OFDR design, which is based on double interrogation of a sensing fiber with equally-spaced discrete reflectors. In this paper, the ability of each sensing segment to operate as an independent, purely optical audio recorder with little cross-talk artifacts is demonstrated.

  5. The Pulsed Interrogation Neutron and Gamma (PING) inspection system

    SciTech Connect

    Schultz, F.J.; Hensley, D.C.; Coffey, D.E.; Chapman, J.A.; Caylor, B.A.; Bailey, R.D. ); Vourvopoulos, G. ); Kehayias, J. . USDA Human Nutrition Research Center on Aging at Tufts Univ.)

    1991-01-01

    Explosives and chemical warfare (CW) agents possess elements and characteristic elemental ratios not commonly found in significant quantities in other items. These elements include nitrogen, oxygen, fluorine, phosphorus, sulfur, and chlorine. The research described herein discusses the results to date of the development of a pulsed-neutron interrogation and gamma ({gamma})-ray system for detecting concealed explosives and for discriminating munitions containing CW agents and conventional explosives. Preliminary experimental data has suggested that distinct classes of chemical agents could also be distinguished, for example, nerve agents and mustard gases. Based on there results, the system is currently being designed for the detection of explosives concealed, for example, in airline luggage. Nuclear and x-ray technologies possess unique characteristics to quickly and reliably search for explosives. Both oxygen and nitrogen, present in sufficient concentrations, when detected, uniquely determine the presence of explosives. Carbon would be a third element that is common in all explosives, although it does not correlate uniquely with all known explosives. A system which identifies and quantifies all three elements would provide more reliable information about the interrogated material. We have previously demonstrated that the technique described in this paper can identify certain elements through fast- and slow-neutron interrogation and subsequent prompt- and delayed-{gamma}-ray detection. The identification of CW agent elements such as chlorine, phosphorus, sulfur, and fluorine, is also accomplished through the detection of characteristic capture {gamma}-rays. The Pulsed Interrogation Neutron and Gamma (PING) inspection system is based upon technology developed over twelve years for the determination of fissile mass quantities in radioactive waste, for the determination of sulfur in coal, and for in-vivo body composition measurements.

  6. The Pulsed Interrogation Neutron and Gamma (PING) inspection system

    SciTech Connect

    Schultz, F.J.; Hensley, D.C.; Coffey, D.E.; Chapman, J.A.; Caylor, B.A.; Bailey, R.D.; Vourvopoulos, G.; Kehayias, J.

    1991-12-31

    Explosives and chemical warfare (CW) agents possess elements and characteristic elemental ratios not commonly found in significant quantities in other items. These elements include nitrogen, oxygen, fluorine, phosphorus, sulfur, and chlorine. The research described herein discusses the results to date of the development of a pulsed-neutron interrogation and gamma ({gamma})-ray system for detecting concealed explosives and for discriminating munitions containing CW agents and conventional explosives. Preliminary experimental data has suggested that distinct classes of chemical agents could also be distinguished, for example, nerve agents and mustard gases. Based on there results, the system is currently being designed for the detection of explosives concealed, for example, in airline luggage. Nuclear and x-ray technologies possess unique characteristics to quickly and reliably search for explosives. Both oxygen and nitrogen, present in sufficient concentrations, when detected, uniquely determine the presence of explosives. Carbon would be a third element that is common in all explosives, although it does not correlate uniquely with all known explosives. A system which identifies and quantifies all three elements would provide more reliable information about the interrogated material. We have previously demonstrated that the technique described in this paper can identify certain elements through fast- and slow-neutron interrogation and subsequent prompt- and delayed-{gamma}-ray detection. The identification of CW agent elements such as chlorine, phosphorus, sulfur, and fluorine, is also accomplished through the detection of characteristic capture {gamma}-rays. The Pulsed Interrogation Neutron and Gamma (PING) inspection system is based upon technology developed over twelve years for the determination of fissile mass quantities in radioactive waste, for the determination of sulfur in coal, and for in-vivo body composition measurements.

  7. Time dependent measurements of induced fission for SNM interrogation

    NASA Astrophysics Data System (ADS)

    Beck, A.; Israelashvili, I.; Wengrowicz, U.; Caspi, E. N.; Yaar, I.; Osovizki, A.; Ocherashvili, A.; Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.; Roesgen, E.

    2013-08-01

    Gammas from induced fissions were measured and separated into prompt and delayed particles. To this end, a dedicated detector was realized, based on a plastic scintillator, a wavelength shifter fiber and a silicon photomultiplier (SiPM). Results are presented from the interrogation of Special Nuclear Materials (SNM), employing a pulsed neutron generator in the PUNITA graphite moderator incorporating the above detector assembly. The detector response is presented, as well as the sensitivities for prompt and delayed processes within the same experimental setup.

  8. Fissile mass estimation by pulsed neutron source interrogation

    NASA Astrophysics Data System (ADS)

    Israelashvili, I.; Dubi, C.; Ettedgui, H.; Ocherashvili, A.; Pedersen, B.; Beck, A.; Roesgen, E.; Crochmore, J. M.; Ridnik, T.; Yaar, I.

    2015-06-01

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  9. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Chichester, D. L.; Seabury, E. H.

    2009-03-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  10. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  11. Polarization multiplexed interrogation technique for FBG sensor array

    NASA Astrophysics Data System (ADS)

    Sikdar, Debabrata; Tiwari, Vinita; Soni, Anupam; Jaiswal, Ritesh; Bhanot, Surekha

    2015-09-01

    This paper proposes a polarization multiplexed interrogation technique for fiber Bragg grating (FBG) sensor array. The novelty of the proposed model is its ability to reduce interference and cross talk, thus allowing larger number of FBG sensors to be interrogated in an array. The calibration technique has been illustrated in this work for the FBG sensor array, where data from each sensor are linearly polarized and multiplexed before co-propagation, to find out the tapping points that enable identification of each sensor data uniquely. Simulation has been carried out for odd number and even number of sensors in an array. Even with interfering input, this proposed scheme can interrogate and distinctively identify each sensor data using appropriate tuning of polarization-splitter, polarization-rotator, and polarization-attenuator at the detector end during the calibration process. The significance of the proposed method is its compact size, which makes this calibration system ready to be deployed in real-time sensing applications and data acquisition from the FBG sensor array.

  12. Monte Carlo Simulation for LINAC Standoff Interrogation of Nuclear Material

    SciTech Connect

    Clarke, Shaun D; Flaska, Marek; Miller, Thomas Martin; Protopopescu, Vladimir A; Pozzi, Sara A

    2007-06-01

    The development of new techniques for the interrogation of shielded nuclear materials relies on the use of Monte Carlo codes to accurately simulate the entire system, including the interrogation source, the fissile target and the detection environment. The objective of this modeling effort is to develop analysis tools and methods-based on a relevant scenario-which may be applied to the design of future systems for active interrogation at a standoff. For the specific scenario considered here, the analysis will focus on providing the information needed to determine the type and optimum position of the detectors. This report describes the results of simulations for a detection system employing gamma rays to interrogate fissile and nonfissile targets. The simulations were performed using specialized versions of the codes MCNPX and MCNP-PoliMi. Both prompt neutron and gamma ray and delayed neutron fluxes have been mapped in three dimensions. The time dependence of the prompt neutrons in the system has also been characterized For this particular scenario, the flux maps generated with the Monte Carlo model indicate that the detectors should be placed approximately 50 cm behind the exit of the accelerator, 40 cm away from the vehicle, and 150 cm above the ground. This position minimizes the number of neutrons coming from the accelerator structure and also receives the maximum flux of prompt neutrons coming from the source. The lead shielding around the accelerator minimizes the gamma-ray background from the accelerator in this area. The number of delayed neutrons emitted from the target is approximately seven orders of magnitude less than the prompt neutrons emitted from the system. Therefore, in order to possibly detect the delayed neutrons, the detectors should be active only after all prompt neutrons have scattered out of the system. Preliminary results have shown this time to be greater than 5 ?s after the accelerator pulse. This type of system is illustrative of a

  13. Coupling Sensing Hardware with Data Interrogation Software for Structural Health Monitoring

    DOE PAGESBeta

    Farrar, Charles R.; Allen, David W.; Park, Gyuhae; Ball, Steven; Masquelier, Michael P.

    2006-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discussmore » each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.« less

  14. Coupling sensing hardware with data interrogation software for structural health monitoring.

    SciTech Connect

    Farrar, C. R.; Allen, D. W.; Ball, S.; Masquelier, Michael P.; Park, G. H.

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). The authors approach is to address the SIAM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data Compression, and (4) Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discuss each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring (DIAMOND 11) with a modular wireless sensing and processing platform that is being jointly developed with Motorola Labs. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.

  15. Interrogating discourse: the application of Foucault's methodological discussion to specific inquiry.

    PubMed

    Fadyl, Joanna K; Nicholls, David A; McPherson, Kathryn M

    2013-09-01

    Discourse analysis following the work of Michel Foucault has become a valuable methodology in the critical analysis of a broad range of topics relating to health. However, it can be a daunting task, in that there seems to be both a huge number of possible approaches to carrying out this type of project, and an abundance of different, often conflicting, opinions about what counts as 'Foucauldian'. This article takes the position that methodological design should be informed by ongoing discussion and applied as appropriate to a particular area of inquiry. The discussion given offers an interpretation and application of Foucault's methodological principles, integrating a reading of Foucault with applications of his work by other authors, showing how this is then applied to interrogate the practice of vocational rehabilitation. It is intended as a contribution to methodological discussion in this area, offering an interpretation of various methodological elements described by Foucault, alongside specific application of these aspects. PMID:23117590

  16. High-throughput spectral system for interrogation of dermally-implanted luminescent sensors.

    PubMed

    Long, Ruiqi; McShane, Mike

    2012-01-01

    Ratiometric luminescent microparticle sensors have been developed for sensing biochemical targets such as glucose in interstitial fluid, enabling use of dermal implants for on-demand monitoring. For these sensor systems to be deployed in vivo, a matched optoelectronic system for interrogation of dermally-implanted sensors was previously designed, constructed, and evaluated experimentally. During evaluation experiments, it revealed that the system efficiency was compromised by losses due to fiber connections of a commercial spectrometer. In this work, a high-throughput spectral system was presented to solve the photon loss problem. This system was designed, constructed, and tested. The throughput was around hundred time more than the previous system we used, and it was cost-effective, as well. It enables use of an integrated system for excitation, collection and measurement of luminescent emission, and will be used as a tool for in vivo studies with animal models or human subjects. PMID:23366396

  17. System design considerations for fast-neutron interrogation systems

    SciTech Connect

    Micklich, B.J.; Curry, B.P.; Fink, C.L.; Smith, D.L.; Yule, T.J.

    1993-10-01

    Nonintrusive interrogation techniques that employ fast neutrons are of interest because of their sensitivity to light elements such as carbon, nitrogen, and oxygen. The primary requirement of a fast-neutron inspection system is to determine the value of atomic densities, or their ratios, over a volumetric grid superimposed on the object being interrogated. There are a wide variety of fast-neutron techniques that can provide this information. The differences between the various nuclear systems can be considered in light of the trade-offs relative to the performance requirements for each system`s components. Given a set of performance criteria, the operational requirements of the proposed nuclear systems may also differ. For instance, resolution standards will drive scanning times and tomographic requirements, both of which vary for the different approaches. We are modelling a number of the fast-neutron interrogation techniques currently under consideration, to include Fast Neutron Transmission Spectroscopy (FNTS), Pulsed Fast Neutron Analysis (PFNA), and its variant, 14-MeV Associated Particle Imaging (API). The goals of this effort are to determine the component requirements for each technique, identify trade-offs that system performance standards impose upon those component requirements, and assess the relative advantages and disadvantages of the different approaches. In determining the component requirements, we will consider how they are driven by system performance standards, such as image resolution, scanning time, and statistical uncertainty. In considering the trade-offs between system components, we concentrate primarily on those which are common to all approaches, for example: source characteristics versus detector array requirements. We will then use the analysis to propose some figures-of-merit that enable performance comparisons between the various fast-neutron systems under consideration. The status of this ongoing effort is presented.

  18. Remotely Interrogated Passive Polarizing Dosimeter (RIPPeD).

    SciTech Connect

    Kemme, Shanalyn A.; Buller, Daniel L.; Dirk, Shawn M.; Boye, Robert R.; Samora, Sally; Washburn, Cody M.; Wheeler, David Roger

    2008-09-01

    Conductive polymers have become an extremely useful class of materials for many optical applications. We have developed an electrochemical growth method for depositing highly conductive ({approx}100 S/cm) polypyrrole. Additionally, we have adapted advanced fabrication methods for use with the polypyrrole resulting in gratings with submicron features. This conductive polymer micro-wire grid provides an optical polarizer with unique properties. When the polymer is exposed to ionizing radiation, its conductivity is affected and the polarization properties of the device, specifically the extinction ratio, change in a corresponding manner. This change in polarization properties can be determined by optically interrogating the device, possibly from a remote location. The result is a passive radiation-sensitive sensor with very low optical visibility. The ability to interrogate the device from a safe standoff distance provides a device useful in potentially dangerous environments. Also, the passive nature of the device make it applicable in applications where external power is not available. We will review the polymer deposition, fabrication methods and device design and modeling. The characterization of the polymer's sensitivity to ionizing radiation and optical testing of infrared polarizers before and after irradiation will also be presented. These experimental results will highlight the usefulness of the conductive infrared polarizer to many security and monitoring applications.

  19. Interrogating scarcity: how to think about 'resource-scarce settings'.

    PubMed

    Schrecker, Ted

    2013-07-01

    The idea of resource scarcity permeates health ethics and health policy analysis in various contexts. However, health ethics inquiry seldom asks-as it should-why some settings are 'resource-scarce' and others not. In this article I describe interrogating scarcity as a strategy for inquiry into questions of resource allocation within a single political jurisdiction and, in particular, as an approach to the issue of global health justice in an interconnected world. I demonstrate its relevance to the situation of low- and middle-income countries (LMICs) with brief descriptions of four elements of contemporary globalization: trade agreements; the worldwide financial marketplace and capital flight; structural adjustment; imperial geopolitics and foreign policy. This demonstration involves not only health care, but also social determinants of health. Finally, I argue that interrogating scarcity provides the basis for a new, critical approach to health policy at the interface of ethics and the social sciences, with specific reference to market fundamentalism as the value system underlying contemporary globalization. PMID:22899597

  20. An implantable pressure sensing system with electromechanical interrogation scheme.

    PubMed

    Kim, Albert; Powell, C R; Ziaie, Babak

    2014-07-01

    In this paper, we report on the development of an implantable pressure sensing system that is powered by mechanical vibrations in the audible acoustic frequency range. This technique significantly enhances interrogation range, alleviates the misalignment issues commonly encountered with inductive powering, and simplifies the external receiver circuitry. The interrogation scheme consists of two phases: a mechanical vibration phase and an electrical radiation phase. During the first phase, a piezoelectric cantilever acts as an acoustic receiver and charges a capacitor by converting sound vibration harmonics occurring at its resonant frequency into electrical power. In the subsequent electrical phase, when the cantilever is not vibrating, the stored electric charge is discharged across an LC tank whose inductor is pressure sensitive; hence, when the LC tank oscillates at its natural resonant frequency, it radiates a high-frequency signal that is detectable using an external receiver and its frequency corresponds to the measured pressure. The pressure sensitive inductor consists of a planar coil (single loop of wire) with a ferrite core whose distance to the coil varies with applied pressure. A prototype of the implantable pressure sensor is fabricated and tested, both in vitro and in vivo (swine bladder). A pressure sensitivity of 1 kHz/cm H2O is achieved with minimal misalignment sensitivity (26% drop at 90° misalignment between the implanted device and acoustic source; 60% drop at 90° misalignment between the implanted device and RF receiver coil). PMID:24800754

  1. Ion-induced gammas for photofission interrogation of HEU.

    SciTech Connect

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); Antolak, Arlyn J.; Morse, Daniel H.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM)

    2006-03-01

    High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

  2. Simulation Of A Photofission-Based Cargo Interrogation System

    SciTech Connect

    King, Michael; Gozani, Tsahi; Stevenson, John; Shaw, Timothy

    2011-06-01

    A comprehensive model has been developed to characterize and optimize the detection of Bremsstrahlung x-ray induced fission signatures from nuclear materials hidden in cargo containers. An effective active interrogation system should not only induce a large number of fission events but also efficiently detect their signatures. The proposed scanning system utilizes a 9-MV commercially available linear accelerator and the detection of strong fission signals i.e. delayed gamma rays and prompt neutrons. Because the scanning system is complex and the cargo containers are large and often highly attenuating, the simulation method segments the model into several physical steps, representing each change of radiation particle. Each approximation is carried-out separately, resulting in a major reduction in computational time and a significant improvement in tally statistics. The model investigates the effect on the fission rate and detection rate by various cargo types, densities and distributions. Hydrogenous and metallic cargos, homogeneous and heterogeneous, as well as various locations of the nuclear material inside the cargo container were studied. We will show that for the photofission-based interrogation system simulation, the final results are not only in good agreement with a full, single-step simulation but also with experimental results, further validating the full-system simulation.

  3. Special nuclear material detection using pulsed neutron interrogation

    NASA Astrophysics Data System (ADS)

    Ruddy, Frank H.; Seidel, John G.; Flammang, Robert W.

    2007-04-01

    Pulsed neutron interrogation methods for detection of Special Nuclear Materials are being developed. Fast prompt neutrons from thermal neutron-induced fissions are detected in the time intervals following 100-μs neutron bursts from a pulsed D-T neutron generator operating at 1000 pulses per second. Silicon Carbide semiconductor neutron detectors are used to detect fission neutrons in the 30-840 μs time intervals following each 14-MeV D-T neutron pulse. Optimization of the neutron detectors has led to dramatic reduction of detector background and improvement of the signal-to-noise ratio for Special Nuclear Material detection. Detection of Special Nuclear Materials in the presence of lead, cadmium and plywood shielding has been demonstrated. Generally, the introduction of shielding leads to short thermal neutron die-away times of 100-200 μs or less. The pulsed neutron interrogation method developed allows detection of the neutron signal even when the die-away time is less than 100 μs.

  4. 48 CFR 252.237-7010 - Prohibition on interrogation of detainees by contractor personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... personnel or DoD contractor personnel being held for law enforcement purposes. Interrogation of detainees... obtaining reliable information to satisfy foreign intelligence collection requirements. (b)...

  5. Police interviewing and interrogation of juvenile suspects: a descriptive examination of actual cases.

    PubMed

    Cleary, Hayley M D

    2014-06-01

    Although empirical attention to police interrogation has gained traction in recent years, comparatively few studies have examined interrogation of juvenile suspects, and virtually none have examined actual interrogations. Despite a growing literature on youths' interrogation-related capacities, we still know very little about what actually transpires when police question youth. The present study examines electronically recorded police interviews with juveniles to describe the characteristics, processes, and outcomes that occur in actual juvenile interrogations, including interview duration, individuals present, and confessions. Fifty-seven electronic recordings from 17 police departments were analyzed using observational research software. The median juvenile interrogation lasted 46 min, though the range was extensive (6 min to nearly 5 hr). Youth frequently submitted to questioning without a parent or advocate present, and disruptions to the interview process were common. Interrogation outcomes varied and included full confessions, partially incriminating admissions, and denials of guilt. Results from this study provide context for interrogation research using other methods and suggest that youth may frequently consent to interrogation in the absence of important legal protections. PMID:24377911

  6. Design and characterisation of a pulsed neutron interrogation facility.

    PubMed

    Favalli, A; Pedersen, B

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and (3)He proportional counter measurements. PMID:17496298

  7. Adaptive dynamic FBG interrogation utilising erbium-doped fibre

    NASA Astrophysics Data System (ADS)

    John, R. N.; Read, I.; MacPherson, W. N.

    2013-04-01

    A dynamic fibre Bragg grating interrogation scheme is investigated using two-wave mixing in erbium-doped fibre, capable of adapting to quasistatic strain and temperature drifts. An interference pattern set up in the erbium-doped fibre creates, due to the photorefractive effect, a dynamic grating capable of wavelength demodulating the FBG signal. The presence of a dynamic grating was verified and then dynamic strain signals from a fibre stretcher were measured. The adaptive nature of the technique was successfully demonstrated by heating the FBG while it underwent dynamic straining leading to detection unlike an alternative arrayed waveguide grating system which simultaneously failed detection. Two gratings were then wavelength division multiplexed with the signal grating receiving approximately 30dB greater signal showing that there was little cross talk in the system.

  8. Simultaneous interrogation of interferometric and Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Brady, G.; Kalli, K.; Webb, D. J.; Jackson, D. A.; Reekie, L.; Archambault, J. L.

    1995-06-01

    We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of \\similar 0.05 mu 3 / \\radical Hz \\end-radical at 20 Hz, while the interferometric phase resolution is better than 1mrad/ \\radical Hz \\end-radical at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.

  9. Laser interrogation of surface agents (LISA) for chemical agent reconnaissance

    NASA Astrophysics Data System (ADS)

    Higdon, N. S.; Chyba, Thomas H.; Richter, Dale A.; Ponsardin, Patrick L.; Armstrong, Wayne T.; Lobb, C. T.; Kelly, Brian T.; Babnick, Robert D.; Sedlacek, Arthur J., III

    2002-06-01

    Laser Interrogation of Surface Agents (LISA) is a new technique which exploits Raman scattering to provide standoff detection and identification of surface-deposited chemical agents. ITT Industries, Advanced Engineering and Sciences Division is developing the LISA technology under a cost-sharing arrangement with the US Army Soldier and Biological Chemical Command for incorporation on the Army's future reconnaissance vehicles. A field-engineered prototype LISA-Recon system is being designed to demonstrate on-the- move measurements of chemical contaminants. In this article, we will describe the LISA technique, data form proof-of- concept measurements, the LISA-Recon design, and some of the future realizations envisioned for military sensing applications.

  10. Time-Dependent Delayed Signatures from Energetic Photon Interrogations

    SciTech Connect

    Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon

    2007-08-01

    Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.

  11. Time-Dependent Delayed Signatures from Energetic Photon Interrogations

    SciTech Connect

    Daren R. Norman; James L. Jones; Brandon W. Blackburn; Kevin J. Haskell; James T. Johnson; Scott M. Watson; Alan W. Hunt; Randy Spaulding; Frank Harmon

    2007-08-01

    Pulsed photonuclear interrogation environments generated by 8–24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in the pulsed photonuclear assessment (PPA) environments. These developments demonstrate that pulsed, high-energy, photon- inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods.

  12. Optimization of coil design for near uniform interrogating field generation

    NASA Astrophysics Data System (ADS)

    Su, Z.; Efremov, A.; Safdarnejad, M.; Tamburrino, A.; Udpa, L.; Udpa, S. S.

    2015-03-01

    The detection of a crack under fastener heads (CUF) in a multi-layered aircraft structure remains a challenge in non-destructive evaluation (NDE). An EC-GMR system using a linear eddy current (EC) coil with giant magnetoresistive (GMR) sensors located on the axis of symmetry is proposed for detecting discontinuities in conducting materials. The signal received from sensors is greatly influenced by the interrogating field. This paper describes a detailed parametric study, using a finite element model predicted signals in conjunction with a multi-parameter optimization problem for coil design. The sensor performance is assessed using quantitative measures based on Probability of detection (POD) with respect to different crack geometries.

  13. An Optical Fiber Displacement Sensor Using RF Interrogation Technique

    PubMed Central

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-01-01

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than −36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated. PMID:26927098

  14. Scoping studies - photon and low energy neutron interrogation

    SciTech Connect

    Becker, G.; Harker, Y.; Jones, J.; Harmon, F.

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  15. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    PubMed

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-01-01

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated. PMID:26927098

  16. Database Applications to Integrate Beam Line Optics Changes with the Engineering Databases

    SciTech Connect

    Chan, A.; Bellomo, P.; Crane, G.R.; Emma, P.; Grunhaus, E.; Luchini, K.; MacGregor, I.A.; Marsh, D.S.; Pope, R.; Prickett, P.; Rago, C.; Ratcliffe, K.; Shab, T.; /SLAC

    2007-07-06

    The LCLS project databases provide key nomenclature information while integrating many engineering and physics processes in the building of an accelerator. Starting with the elements existing in the beam line optics files, the engineers add non-beam-line elements, and controls engineers assign ''Formal Device Names'' to these elements. Inventory, power supplies, racks, crates and cable plants are databases that are being integrated into the project database. This approach replaces individual spreadsheets and/or integrates standalone existing institutional databases.

  17. Thermal neutron imaging in an active interrogation environment

    SciTech Connect

    Vanier,P.E.; Forman, L., and Norman, D.R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of xcitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutronemitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  18. Interrogating Transcriptional Regulatory Sequences in Tol2-Mediated Xenopus Transgenics

    PubMed Central

    Loots, Gabriela G.; Bergmann, Anne; Hum, Nicholas R.; Oldenburg, Catherine E.; Wills, Andrea E.; Hu, Na; Ovcharenko, Ivan; Harland, Richard M.

    2013-01-01

    Identifying gene regulatory elements and their target genes in vertebrates remains a significant challenge. It is now recognized that transcriptional regulatory sequences are critical in orchestrating dynamic controls of tissue-specific gene expression during vertebrate development and in adult tissues, and that these elements can be positioned at great distances in relation to the promoters of the genes they control. While significant progress has been made in mapping DNA binding regions by combining chromatin immunoprecipitation and next generation sequencing, functional validation remains a limiting step in improving our ability to correlate in silico predictions with biological function. We recently developed a computational method that synergistically combines genome-wide gene-expression profiling, vertebrate genome comparisons, and transcription factor binding-site analysis to predict tissue-specific enhancers in the human genome. We applied this method to 270 genes highly expressed in skeletal muscle and predicted 190 putative cis-regulatory modules. Furthermore, we optimized Tol2 transgenic constructs in Xenopus laevis to interrogate 20 of these elements for their ability to function as skeletal muscle-specific transcriptional enhancers during embryonic development. We found 45% of these elements expressed only in the fast muscle fibers that are oriented in highly organized chevrons in the Xenopus laevis tadpole. Transcription factor binding site analysis identified >2 Mef2/MyoD sites within ∼200 bp regions in 6 of the validated enhancers, and systematic mutagenesis of these sites revealed that they are critical for the enhancer function. The data described herein introduces a new reporter system suitable for interrogating tissue-specific cis-regulatory elements which allows monitoring of enhancer activity in real time, throughout early stages of embryonic development, in Xenopus. PMID:23874664

  19. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    NASA Astrophysics Data System (ADS)

    Ludewigt, B. A.; Antolak, A. J.; Henestroza, E.; Kwan, J. W.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.

    2009-03-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,γ)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,γ)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 μs long pulses, and a 1% duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  20. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    SciTech Connect

    Ludewigt, Bernhard A.; Antolak, A.J.; Henestroza, E.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Kwan, J.W.

    2008-08-01

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the 11B(p,gamma)12C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the 11B(p,gamma)12C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB6 tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 mu s long pulses, and a 1percent duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  1. Coaxial Mono-Energetic Gamma Generator for Active Interrogation

    SciTech Connect

    Ludewigt, B. A.; Henestroza, E.; Kwan, J. W.; Leitner, M.; Leung, K.-N.; Waldron, W.; Wilde, S.; Antolak, A. J.

    2009-03-10

    Compact mono-energetic photon sources are sought for active interrogation systems to detect shielded special nuclear materials in, for example, cargo containers, trucks and other vehicles. A prototype gamma interrogation source has been designed and built that utilizes the {sup 11}B(p,{gamma}){sup 12}C reaction to produce 12 MeV gamma-rays which are near the peak of the photofission cross section. In particular, the {sup 11}B(p,{gamma}){sup 12}C resonance at 163 kV allows the production of gammas at low proton acceleration voltages, thus keeping the design of a gamma generator comparatively small and simple. A coaxial design has been adopted with a toroidal-shaped plasma chamber surrounding a cylindrical gamma production target. The plasma discharge is driven by a 2 MHz rf-power supply (capable up to 50 kW) using a circular rf-antenna. Permanent magnets embedded in the walls of the plasma chamber generate a multi-cusp field that confines the plasma and allows higher plasma densities and lower gas pressures. About 100 proton beamlets are extracted through a slotted plasma electrode towards the target at the center of the device that is at a negative 180 kV. The target consists of LaB{sub 6} tiles that are brazed to a water-cooled cylindrical structure. The generator is designed to operate at 500 Hz with 20 {mu}s long pulses, and a 1% duty factor by pulsing the ion source rf-power. A first-generation coaxial gamma source has been built for low duty factor experiments and testing.

  2. Thermal Neutron Imaging in an Active Interrogation Environment

    SciTech Connect

    Vanier, Peter E.; Forman, Leon; Norman, Daren R.

    2009-03-10

    We have developed a thermal-neutron coded-aperture imager that reveals the locations of hydrogenous materials from which thermal neutrons are being emitted. This imaging detector can be combined with an accelerator to form an active interrogation system in which fast neutrons are produced in a heavy metal target by means of excitation by high energy photons. The photo-induced neutrons can be either prompt or delayed, depending on whether neutron-emitting fission products are generated. Provided that there are hydrogenous materials close to the target, some of the photo-induced neutrons slow down and emerge from the surface at thermal energies. These neutrons can be used to create images that show the location and shape of the thermalizing materials. Analysis of the temporal response of the neutron flux provides information about delayed neutrons from induced fission if there are fissionable materials in the target. The combination of imaging and time-of-flight discrimination helps to improve the signal-to-background ratio. It is also possible to interrogate the target with neutrons, for example using a D-T generator. In this case, an image can be obtained from hydrogenous material in a target without the presence of heavy metal. In addition, if fissionable material is present in the target, probing with fast neutrons can stimulate delayed neutrons from fission, and the imager can detect and locate the object of interest, using appropriate time gating. Operation of this sensitive detection equipment in the vicinity of an accelerator presents a number of challenges, because the accelerator emits electromagnetic interference as well as stray ionizing radiation, which can mask the signals of interest.

  3. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  4. And I Want to Thank You Barbie: Barbie as a Site for Cultural Interrogation.

    ERIC Educational Resources Information Center

    Mitchell, Claudia; Reid-Walsh, Jacqueline

    1995-01-01

    Barbie is presented as the perfect cultural site for interrogating margins, borders, and contradictions in females' lives. This article illuminates such issues by interrogating the "cumulative cultural text of Barbie." Texts criticized are: Barbie collector cards; "Barbie" and "Barbie Fashion" comic books; "Barbie, The Magazine for Girls"; and the…

  5. 29 CFR 18.614 - Calling and interrogation of witnesses by judge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Calling and interrogation of witnesses by judge. 18.614... HEARINGS BEFORE THE OFFICE OF ADMINISTRATIVE LAW JUDGES Rules of Evidence Witnesses § 18.614 Calling and interrogation of witnesses by judge. (a) Calling by the judge. The judge may, on the judge's own motion or...

  6. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  7. Using Elaborative Interrogation Enhanced Worked Examples to Improve Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Pease, Rebecca Simpson

    2012-01-01

    Elaborative interrogation, which prompts students to answer why-questions placed strategically within informational text, has been shown to increase learning comprehension through reading. In this study, elaborative interrogation why-questions requested readers to explain why paraphrased statements taken from a reading were "true."…

  8. Tunable microring based on-chip interrogator for wavelength-modulated optical sensors

    NASA Astrophysics Data System (ADS)

    Shen, Ao; Qiu, Chen; Yang, Longzhi; Dai, Tingge; Li, Yubo; Yu, Hui; Hao, Yinlei; Jiang, Xiaoqing; Yang, Jianyi

    2015-04-01

    An interrogation system for wavelength-modulated optical sensors based on tunable microring filter has been proposed and demonstrated both theoretically and experimentally. The wavelength shift of the sensors can be readout from the shift of the peak optical output of the system by scanning the resonant wavelength of the microring filter. We fabricate the interrogator on the silicon-on-insulator platform and a fiber Bragg grating sensor (FBG) is precisely interrogated. The Lorentz spectrum of the microring filter can de-flatten the output spectrum of the FBG and improve the interrogating resolution efficiently. Such a technique potentially provides a compact (only 50×50 μm2), low-cost, and high-performance (1 pm resolution) approach for the interrogation of the wavelength-modulated sensor and distributed sensor arrays.

  9. Are the American Psychological Association’s Detainee Interrogation Policies Ethical and Effective?

    PubMed Central

    Pope, Kenneth S.

    2011-01-01

    After 9–11, the United States began interrogating detainees at settings such as Abu Ghraib, Bagram, and Guantanamo. The American Psychological Association (APA) supported psychologists’ involvement in interrogations, adopted formal policies, and made an array of public assurances. This article’s purpose is to highlight key APA decisions, policies, procedures, documents, and public statements in urgent need of rethinking and to suggest questions that may be useful in a serious assessment, such as, “However well intended, were APA’s interrogation policies ethically sound?”; “Were they valid, realistic, and able to achieve their purpose?”; “Were other approaches available that would address interrogation issues more directly, comprehensively, and actively, that were more ethically and scientifically based, and that would have had a greater likelihood of success?”; and “Should APA continue to endorse its post-9–11 detainee interrogation policies?” PMID:22096660

  10. Lies and coercion: why psychiatrists should not participate in police and intelligence interrogations.

    PubMed

    Janofsky, Jeffrey S

    2006-01-01

    Police interrogators routinely use deceptive techniques to obtain confessions from criminal suspects. The United States Executive Branch has attempted to justify coercive interrogation techniques in which physical or mental pain and suffering may be used during intelligence interrogations of persons labeled unlawful combatants. It may be appropriate for law enforcement, military, or intelligence personnel who are not physicians to use such techniques. However, forensic psychiatry ethical practice requires honesty, striving for objectivity, and respect for persons. Deceptive and coercive interrogation techniques violate these moral values. When a psychiatrist directly uses, works with others who use, or trains others to use deceptive or coercive techniques to obtain information in police, military, or intelligence interrogations, the psychiatrist breaches basic principles of ethics. PMID:17185476

  11. Chemical Mutagens, Transposons, and Transgenes to Interrogate Gene Function in Drosophila melanogaster

    PubMed Central

    Venken, Koen J.T.; Bellen, Hugo J.

    2014-01-01

    The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters. PMID:24583113

  12. Multi-isotopic transuranic waste interrogation using delayed neutron nondestructive assay and iterative quadratic programming techniques

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Wei

    1997-11-01

    Nuclear safeguards for Special Nuclear Materials is to protect the nuclear materials against malevolent use and to insure their peaceful usage. The nondestructive assay technique (NDA) offers an efficient and proliferation resistance method for nuclear safeguards technology. NDA techniques were investigated for multi-isotopic transuranic waste interrogation. This work was originally intended for the Integral Fast Reactor (IFR) under development at Argonne National Laboratory. One major feature of the IFR is its integral fuel cycle based on a pyrometallurgical process. More than 99% of transuranics produced in the fuel are returned to the makeup fuel and burned in the reactor. With the long-lived actinides removed from the waste stream, the waste produced will decay sufficiently in 300 years dropping below the cancer risk level of natural uranium ore and easing the perceived waste management problem. The feasibility of using nondestructive assay techniques for the IFR fuel cycle waste interrogation were studied. A special DNNDA experimental device was designed and analysis techniques were developed. The DNNDA technique uses the delayed neutrons emitted after the activation of a 14 MeV neutron source as the characteristic signature for each fissionable isotope. A tantalum/polyethylene filter was employed to enhance the discrimination between the fissile and the fissionable isotopes. Spontaneous fissions from 240Pu were also measured to assist the mass assay. A nonlinear overdetermined system was established based on the DNNDA measurements. An Iterative Quadratic Programming (IQP) method was applied to perform the estimates. The IQP method has several advantages over the linear least squares and Kalman filter methods, it has the flexibility of adding additional constraints, it has superlinear global convergence and it can be utilized for nonlinear problems. The results show that using the IQP method with the DNNDA technique is quite promising for multi-isotopic assay

  13. Signal predictions for a proposed fast neutron interrogation method

    SciTech Connect

    Sale, K.E.

    1992-12-01

    We have applied the Monte Carlo radiation transport code COG) to assess the utility of a proposed explosives detection scheme based on neutron emission. In this scheme a pulsed neutron beam is generated by an approximately seven MeV deuteron beam incident on a thick Be target. A scintillation detector operating in the current mode measures the neutrons transmitted through the object as a function of time. The flight time of unscattered neutrons from the source to the detector is simply related to the neutron energy. This information along with neutron cross section excitation functions is used to infer the densities of H, C, N and O in the volume sampled. The code we have chosen to use enables us to create very detailed and realistic models of the geometrical configuration of the system, the neutron source and of the detector response. By calculating the signals that will be observed for several configurations and compositions of interrogated object we can investigate and begin to understand how a system that could actually be fielded will perform. Using this modeling capability many early on with substantial savings in time and cost and with improvements in performance. We will present our signal predictions for simple single element test cases and for explosive compositions. From these studies it is dear that the interpretation of the signals from such an explosives identification system will pose a substantial challenge.

  14. Neutron Interrogation System For Underwater Threat Detection And Identification

    SciTech Connect

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-10

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  15. Time-Dependent Delayed Signatures From Energetic Photon Interrogations

    SciTech Connect

    D. R. Norman; J. L. Jones; B. W. Blackburn; S. M. Watson; K. J. Haskell

    2006-08-01

    A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors.

  16. Ultrasonic beamforming system for interrogating multiple implantable sensors.

    PubMed

    Dongjin Seo; Hao-Yen Tang; Carmena, Jose M; Rabaey, Jan M; Alon, Elad; Boser, Bernhard E; Maharbiz, Michel M

    2015-08-01

    In this paper, we present an ultrasonic beamforming system capable of interrogating individual implantable sensors via backscatter in a distributed, ultrasound-based recording platform known as Neural Dust [1]. A custom ASIC drives a 7 × 2 PZT transducer array with 3 cycles of 32V square wave with a specific programmable time delay to focus the beam at the 800mm neural dust mote placed 50mm away. The measured acoustic-to-electrical conversion efficiency of the receive mote in water is 0.12% and the overall system delivers 26.3% of the power from the 1.8V power supply to the transducer drive output, consumes 0.75μJ in each transmit phase, and has a 0.5% change in the backscatter per volt applied to the input of the backscatter circuit. Further miniaturization of both the transmit array and the receive mote can pave the way for a wearable, chronic sensing and neuromodulation system. PMID:26736842

  17. Performance of a Compact Gamma Tube Interrogation Source

    SciTech Connect

    King, Michael J.; Antolak, Arlyn J.; Morse, Dan H.; Raber, Thomas N.; Leung, Ka-Ngo; Doyle, Barney L.

    2009-03-10

    Active interrogation with high-energy monoenergetic gammas can induce photofission signals in fissile materials while minimizing absorbed radiation dose and background from surrounding materials. A first-generation axial-type gamma generator has been developed that utilizes the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction at a 163 keV resonance to produce monoenergetic 12-MeV gamma-rays. The gamma tube employs a water-cooled cylindrical radio frequency (if) induction ion source capable of producing a proton current density of up to 100 mA/cm{sup 2}. The extracted proton beam bombards a lanthanum hexaboride (LaB{sub 6}) target at energies up to 200 keV. The 12-MeV gamma intensity was measured as a function of proton energy, beam current, and angle. Photofission-induced neutrons from depleted uranium (DU) were measured and compared to MCNPX calculations. After extended operation, the high power density of the proton beam was observed to cause damage to the LaB{sub 6} target and the gamma tube improvements currently being made to mitigate this damage are discussed.

  18. Pulsed neutron interrogation for detection of concealed special nuclear materials

    NASA Astrophysics Data System (ADS)

    Ruddy, Frank; Seidel, John; Flammang, Robert; Petrović, Bojan; Dulloo, Abdul; Congedo, Thomas

    2006-05-01

    A new neutron interrogation technique for detection of concealed Special Nuclear Material (SNM) is described. This technique is a combination of timing techniques from pulsed prompt gamma neutron activation analysis with silicon carbide (SiC) semiconductor fast neutron detector technology. SiC detectors are a new class of radiation detectors that are ultra-fast and capable of processing high count rates. SiC detectors can operate during and within nanoseconds of the end of an intense neutron pulse, providing the ability to detect the prompt neutron emissions from fission events produced by the neutrons in concealed SNM on a much faster pulsing time scale than has been achieved by other techniques. Neutron-induced fission neutrons in 235U have been observed in the time intervals between pulses of 14-MeV neutrons from a deuterium-tritium electronic neutron generator. Initial measurements have emphasized the detection of SNM using thermal-neutron induced fission. Neutron pulsing and time-sequenced neutron counts were carried out on a hundreds of microseconds time scale, enabling the observation of prompt fission neutrons induced by the die-away of thermal neutrons following the 14-MeV pulse. A discussion of pulsed prompt-neutron measurements and of SiC detectors as well as initial measurement results will be presented.

  19. An optogenetic system for interrogating the temporal dynamics of Akt

    PubMed Central

    Katsura, Yoshihiro; Kubota, Hiroyuki; Kunida, Katsuyuki; Kanno, Akira; Kuroda, Shinya; Ozawa, Takeaki

    2015-01-01

    The dynamic activity of the serine/threonine kinase Akt is crucial for the regulation of diverse cellular functions, but the precise spatiotemporal control of its activity remains a critical issue. Herein, we present a photo-activatable Akt (PA-Akt) system based on a light-inducible protein interaction module of Arabidopsis thaliana cryptochrome2 (CRY2) and CIB1. Akt fused to CRY2phr, which is a minimal light sensitive domain of CRY2 (CRY2-Akt), is reversibly activated by light illumination in several minutes within a physiological dynamic range and specifically regulates downstream molecules and inducible biological functions. We have generated a computational model of CRY2-Akt activation that allows us to use PA-Akt to control the activity quantitatively. The system provides evidence that the temporal patterns of Akt activity are crucial for generating one of the downstream functions of the Akt-FoxO pathway; the expression of a key gene involved in muscle atrophy (Atrogin-1). The use of an optical module with computational modeling represents a general framework for interrogating the temporal dynamics of biomolecules by predictive manipulation of optogenetic modules. PMID:26423353

  20. FTIR-based airborne spectral imagery for target interrogation

    NASA Astrophysics Data System (ADS)

    Smithson, Tracy L.; St. Germain, Daniel; Nadeau, Denis

    2007-09-01

    DRDC Valcartier is continuing to developed infrared spectral imagery systems for a variety of military applications. Recently a hybrid airborne spectral imager / broadband imager system has been developed for ground target interrogation (AIRIS). This system employs a Fourier Transform Interferometer system coupled to two 8x8 element detector arrays to create spectral imagery in the region from 2.0 to 12 microns (830 to 5000 cm -1) at a spectral resolution of up to 1 cm -1. In addition, coupled to this sensor are three broadband imagers operating in the visible, mid-wave and long-wave infrared regions. AIRIS uses an on-board tracking capability to: dwell on a target, select multiple targets sequentially, or build a mosaic description of the environment around a specified target point. Currently AIRIS is being modified to include real-time spectral imagery calibration and application processing. In this paper the flexibility of the AIRIS system will be described, its concept of operation discussed and examples of measurements will be shown.

  1. Implementation of interrogation systems for fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Varghese P, Benjamin; Kumar R, Dinesh; Raju, Mittu; Madhusoodanan, K. N.

    2013-09-01

    The development of two simple methods for wavelength-optical intensity modulation techniques for fiber Bragg grating (FBG) sensors is presented. The performance is evaluated by measuring the strain and temperature. The first method consists of a narrow band source, an optical circulator, an FBG, and a power meter. The source and Bragg reflected signal from the FBG need to be matched to get linear results with good power levels. The source spectral power levels are very critical in this study. The power reflected from a matched reference FBG is fed into the measuring FBG in the second method. Since the FBGs are matched, the entire power is reflected back initially. During the measurement, the change in the measurand causes the reflected power from the sensing FBG to vary. A costly high resolution spectrum analyzer is required only during the characterization of the FBG and source. The performances of two interrogators are compared by measuring the strain and temperature. In the second method, the strain measurements can be made insensitive to the temperature variation by selecting a source with a flat spectrum at the measurement range. Highlights of these methods are the portability, cost effectiveness and better resolution.

  2. Neutron Interrogation System For Underwater Threat Detection And Identification

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.

  3. Multiplicity Analysis during Photon Interrogation of Fissionable Material

    SciTech Connect

    Clarke, Shaun D; Pozzi, Sara A; Padovani, Enrico; Downar, Thomas J

    2007-01-01

    Simulation of multiplicity distributions with the Monte Carlo method is difficult because each history is treated individually. In order to accurately model the multiplicity distribution, the intensity and time width of the interrogation pulse must be incorporated into the calculation. This behavior dictates how many photons arrive at the target essentially simultaneously. In order to model the pulse width correctly, a Monte Carlo code system consisting of modified versions of the codes MCNPX and MCNP-PoliMi has been developed in conjunction with a post-processing algorithm to operate on the MCNP-PoliMi output file. The purpose of this subroutine is to assemble the interactions into groups corresponding to the number of interactions which would occur during a given pulse. The resulting multiplicity distributions appear more realistic and capture the higher-order multiplets which are a product of multiple reactions occurring during a single accelerator pulse. Plans are underway to gather relevant experimental data to verify and validate the methodology developed and presented here. This capability will enable the simulation of a large number of materials and detector geometries. Analysis of this information will determine the feasibility of using multiplicity distributions as an identification tool for special nuclear material.

  4. Measuring the performance of two stationary interrogation systems for detecting downstream and upstream movement of PIT-tagged salmonids

    USGS Publications Warehouse

    Connolly, P.J.; Jezorek, I.G.; Martens, K.D.; Prentice, E.F.

    2008-01-01

    We tested the performance of two stationary interrogation systems designed for detecting the movement of fish with passive integrated transponder (PIT) tags. These systems allowed us to determine the direction of fish movement with high detection efficiency and high precision in a dynamic stream environment. We describe an indirect method for deriving an estimate for detection efficiency and the associated variance that does not rely on a known number of fish passing the system. By using six antennas arranged in a longitudinal series of three arrays, we attained detection efficiencies for downstream- and upstream-moving fish exceeding 96% during high-flow periods and approached 100% during low-flow periods for the two interrogation systems we tested. Because these systems did not rely on structural components, such as bridges or culverts, they were readily adaptable to remote, natural stream sites. Because of built-in redundancy, these systems were able to perform even with a loss of one or more antennas owing to dislodgement or electrical failure. However, the reduction in redundancy resulted in decreased efficiency and precision and the potential loss of ability to determine the direction of fish movement. What we learned about these systems should be applicable to a wide variety of other antenna configurations and to other types of PIT tags and transceivers.

  5. GWAS Central: a comprehensive resource for the comparison and interrogation of genome-wide association studies.

    PubMed

    Beck, Tim; Hastings, Robert K; Gollapudi, Sirisha; Free, Robert C; Brookes, Anthony J

    2014-07-01

    To facilitate broad and convenient integrative visualization of and access to GWAS data, we have created the GWAS Central resource (http://www.gwascentral.org). This database seeks to provide a comprehensive collection of summary-level genetic association data, structured both for maximal utility and for safe open access (i.e., non-directional signals to fully preclude research subject identification). The resource emphasizes on advanced tools that allow comparison and discovery of relevant data sets from the perspective of genes, genome regions, phenotypes or traits. Tested markers and relevant genomic features can be visually interrogated across up to 16 multiple association data sets in a single view, starting at a chromosome-wide view and increasing in resolution down to individual bases. In addition, users can privately upload and view their own data as temporary files. Search and display utility is further enhanced by exploiting phenotype ontology annotations to allow genetic variants associated with phenotypes and traits of interest to be precisely identified, across all studies. Data submissions are accepted from individual researchers, groups and consortia, whereas we also actively gather data sets from various public sources. As a result, the resource now provides over 67 million P-values for over 1600 studies, making it the world's largest openly accessible online collection of summary-level GWAS association information. PMID:24301061

  6. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery.

    PubMed

    Campa, Michael J; Moody, M Anthony; Zhang, Ruijun; Liao, Hua-Xin; Gottlin, Elizabeth B; Patz, Edward F

    2016-02-01

    Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation. PMID:26739486

  7. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    PubMed Central

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  8. DOSE PROFILE MODELING OF IDAHO NATIONAL LABORATORY’S ACTIVE NEUTRON INTERROGATION TEST FACILITY

    SciTech Connect

    D. L. Chichester; E. H. Seabury; J. M. Zabriskie; J. Wharton; A. J. Caffrey

    2009-06-01

    A new research and development laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for DT fusion (14.1 MeV) neutron generators (2 x 108 neutrons per second), DD fusion (2.5 MeV) neutron generators (up to 2 x 106 neutrons per second), and 252Cf spontaneous fission neutron sources (6.7 x 107 neutrons per second, 30 micrograms). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8 m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for 252Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield wall and entrance maze and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults.

  9. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Martin, M.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2015-07-01

    Understanding the rate of heat generation in a Li-ion cell is critical for safety and performance of Li-ion cells and systems. Cell performance, cycle life, and system safety all depend on temperature distribution in the cell, which, in turn, depends on heat generation rate within the cell and on heat removal rate at the cell surface. Despite the existence of a number of theoretical models to predict heat generation rate, there is not much literature on experimental measurement at high C-rates. This paper reports measurement of heat generation rate from a Li-ion cell at high discharge rates, up to 9.6C, using measurements of cell temperature and surface heat flux. As opposed to calorimetry-based approaches, this method can be applied in situ to yield measurements of heat generation rate in laboratory or field use provided that at least one a priori test is performed to measure the temperature gradient within a cell in the same ambient condition. This method is based on simultaneous determination of heat stored and heat lost from the cell through heat flux and temperature measurements. A novel method is established for measurement of the internal temperature of the cell. Heat generation measurements are shown to agree with well-established theoretical models. The effect of actively cooling the cell is briefly discussed.

  10. Optimized performance for neutron interrogation to detect SNM

    SciTech Connect

    Slaughter, D R; Asztalos, S J; Biltoft, P J; Church, J A; Descalle, M; Hall, J M; Luu, T C; Manatt, D R; Mauger, G J; Norman, E B; Petersen, D C; Pruet, J A; Prussin, S G

    2007-02-14

    A program of simulations and validating experiments was utilized to evaluate a concept for neutron interrogation of commercial cargo containers that would reliably detect special nuclear material (SNM). The goals were to develop an interrogation system capable of detecting a 5 kg solid sphere of high-enriched uranium (HEU) even when deeply embedded in commercial cargo. Performance goals included a minimum detection probability, P{sub d} {ge} 95%, a maximum occurrence of false positive indications, P{sub fA} {le} 0.001, and maximum scan duration of t {le} 1 min. The conditions necessary to meet these goals were demonstrated in experimental measurements even when the SNM is deeply buried in any commercial cargo, and are projected to be met successfully in the most challenging cases of steel or hydrocarbons at areal density {rho}L {le} 150 g/cm{sup 2}. Optimal performance was obtained with a collimated ({Delta}{Theta} = {+-} 15{sup o}) neutron beam at energy E{sub n} = 7 MeV produced by the D(d,n) reaction with the deuteron energy E{sub d} = 4 MeV. Two fission product signatures are utilized to uniquely identify SNM, including delayed neutrons detected in a large array of polyethylene moderated 3He proportional counters and high energy {beta}-delayed fission product {gamma}-radiation detected in a large array of 61 x 61 x 25 cm{sup 3} plastic scintillators. The latter detectors are nearly blind to normal terrestrial background radiation by setting an energy threshold on the detection at E{sub min} {ge} 3 MeV. Detection goals were attained with a low beam current (I{sub d} = 15-65 {micro}A) source up to {rho}L = 75 g/cm{sup 2} utilizing long irradiations, T = 30 sec, and long counting times, t = 30-100 sec. Projecting to a higher beam current, I{sub d} {ge} 600 {micro}A and larger detector array the detection and false alarm goals would be attained even with intervening cargo overburden as large as {rho}L {le} 150 g/cm{sup 2}. The latter cargo thickness corresponds to

  11. High-energy photon interrogation for nonproliferation applications

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Blackburn, B. W.; Watson, S. M.; Norman, D. R.; Hunt, A. W.

    2007-08-01

    There is an immediate need for technologies that can successfully address homeland security challenges related to the inspection of commercial rail, air and maritime-cargo container inspections for nuclear and radiological devices. The pulsed photonuclear assessment (PPA) technology, developed through collaboration between Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL) and the Idaho Accelerator Center (IAC) has demonstrated the ability to detect shielded/unshielded nuclear material primarily through the analysis of delayed neutrons and gamma-rays produced via photonuclear reactions. Because of current food irradiation limitations, however, most active photon (i.e. bremsstrahlung) interrogation studies have been performed with electron beam energies at or below 10 MeV. While this energy limit currently applies to cargo inspections, the World Health Organization has indicated that higher energy electron beam operations could be considered for future operations. Clinical applications using photon energies well in excess of 10 MeV are already well established. Notwithstanding the current limitation of 10 MeV, there is a definite advantage in using higher photon energies for cargo inspections. At higher energies, several phenomena contribute to increased sensitivity in regards to detecting shielded nuclear material. Two of the most important are: (1) increased ability for source photons to penetrate shielding; and (2) enhanced signature production via increased (γ,n) and (γ,f) cross-sections in materials such as 235U and 239Pu directly leading to faster inspection throughput. Experimental assessments have been conducted for various electron beam energies from 8 to 25 MeV. Increases of up to three orders of magnitude in delayed signatures have been measured over these energy ranges. Through the continued investigation into PPA-based inspection applications using photon energies greater than 10 MeV, higher detection sensitivities with potentially

  12. Identifying Robust and Sensitive Frequency Bands for Interrogating Neural Oscillations

    PubMed Central

    Shackman, Alexander J.; McMenamin, Brenton W.; Maxwell, Jeffrey S.; Greischar, Lawrence L.; Davidson, Richard J.

    2010-01-01

    Recent years have seen an explosion of interest in using neural oscillations to characterize the mechanisms supporting cognition and emotion. Oftentimes, oscillatory activity is indexed by mean power density in predefined frequency bands. Some investigators use broad bands originally defined by prominent surface features of the spectrum. Others rely on narrower bands originally defined by spectral factor analysis (SFA). Presently, the robustness and sensitivity of these competing band definitions remains unclear. Here, a Monte Carlo-based SFA strategy was used to decompose the tonic (“resting” or “spontaneous”) electroencephalogram (EEG) into five bands: delta (1–5Hz), alpha-low (6–9Hz), alpha-high (10–11Hz), beta (12–19Hz), and gamma (>21Hz). This pattern was consistent across SFA methods, artifact correction/rejection procedures, scalp regions, and samples. Subsequent analyses revealed that SFA failed to deliver enhanced sensitivity; narrow alpha sub-bands proved no more sensitive than the classical broadband to individual differences in temperament or mean differences in task-induced activation. Other analyses suggested that residual ocular and muscular artifact was the dominant source of activity during quiescence in the delta and gamma bands. This was observed following threshold-based artifact rejection or independent component analysis (ICA)-based artifact correction, indicating that such procedures do not necessarily confer adequate protection. Collectively, these findings highlight the limitations of several commonly used EEG procedures and underscore the necessity of routinely performing exploratory data analyses, particularly data visualization, prior to hypothesis testing. They also suggest the potential benefits of using techniques other than SFA for interrogating high-dimensional EEG datasets in the frequency or time-frequency (event-related spectral perturbation, event-related synchronization / desynchronization) domains. PMID

  13. Caged compounds for multichromic optical interrogation of neural systems

    PubMed Central

    Amatrudo, Joseph M.; Olson, Jeremy P.; Agarwal, Hitesh K.; Ellis-Davies, Graham C.R.

    2014-01-01

    Caged compounds have widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration, photolysis releases the caged compound in a very rapid and spatially defined way. Since caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3, but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments (e.g. CNB1, DMNB, MNI and CDNI). We show that recently developed caging chromophores (RuBi and DEAC450) that are photolyzed with blue light (ca. 430–480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block non-linear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the “monochrome era”, in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single synapse precision. PMID:25471355

  14. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    SciTech Connect

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  15. A multi-parameter optical fiber sensor with interrogation and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Zhan, Yage; Wu, Hua; Yang, Qinyu; Pei, Jincheng; Yang, Xichun

    2009-11-01

    A multi-parameter and multi-function, but low-cost, optical fiber grating sensor with self-interrogation and self-discrimination capabilities is presented theoretically and experimentally. The sensor bases on three fiber Bragg gratings (FBG) and one fiber long period grating (LPG). Strain, vibration, pressure, ordinary temperature (-10 to 100 °C) and high temperature (100-800 °C) can be measured by the sensor. When high temperature (100-800 °C) is measured, the LPG is used as a high temperture sensor head and FBG 1 is used as an interrogation element. Alternatively, when one of the other four measurands is measured, FBG 1 (or FBG 2) is used as a sensor head and LPG is used as an interrogation element. When two of the other four measurands are measured simultaneously, FBG 1 and FBG 2 are used as sensor heads and LPG is used as a shared interrogation element. FBG 3 is used as a reference element to eliminate the errors resulted from light source fluctuation and the cross-sensitivity between measurand and environmental temperature. The measurands can be interrogated according to the signals of the photodiodes (PDs), which are related to the relative wavelength shift of the LPG and the FBGs. Experimental results agree well with theoretical analyses. The interrogation scheme is immune to light source fluctuation and the cross-sensitivity between measurands and enviromental temperature, and also the dynamic range is large.

  16. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

    2009-08-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  17. Methods for Characterization of Batteries Using Acoustic Interrogation

    NASA Astrophysics Data System (ADS)

    Bhadra, Shoham

    Batteries are a ubiquitous form of electrochemical energy storage, but thus far the methods for measuring the mechanical properties of batteries and their component materials in operando have lagged far behind the methods for measuring the corresponding electrical properties. In this thesis, I demonstrate methods for determining the changes in materials properties of an electrochemical energy storage cell both ex situ and in operando.. I begin by establishing the impact of micro-scale morphology changes on the macro-scale dynamic mechanical response in commercial alkaline AA cells. Using a bounce test, the coefficient of restitution (COR) of the cell is shown to increase non-linearly as a function of state of charge (SOC). I show that the reason for the increase in the COR stems from the spatially-dependent oxidation of the Zn anode, with an initial increase corresponding to the formation of a percolation pathway of ZnO-clad Zn particles spanning the radius of the anode. The subsequent saturation of the COR is shown to result from the ultimate solidification and desiccation of the Zn anode. Building from this, I present a generalized in operando solution for materials characterization in batteries using ultrasonic interrogation. The materials properties of battery components change during charge and discharge, resulting in a change in the sound speed of the materials. By attaching transducers to a battery during cycling and sending ultrasonic pulses through each cell I observe the changes in the time of flight (ToF) of the pulses, both in reflection and transmission. I show that the changes in ToF correspond to both SOC and state of health (SOH) in a variety of battery chemistries and geometries, and detail a corresponding acoustic conservation law model framework. Finally, I perform these electrochemical acoustic time of flight (EAToF) experiments on commercial alkaline AA cells. By correlating the results with energy dispersive x-ray diffraction (EDXRD) data and

  18. Design and development of a low power, low cost, portable fiber Bragg grating (FBG) sensor interrogation system

    NASA Astrophysics Data System (ADS)

    Cai, Zhaohui; Phua, Jiliang; Hao, Jianzhong; Dong, Bo; Wang, Xian; Meng, Yu Song; Chiam, Tat Meng

    2012-01-01

    In this paper, the design and development of a low power, low cost and portable FBG Interrogation System is presented. The FBG interrogator consists of a spectral analyzer module, a photo detection module, and an electronic processing module. By using volume holographic phase grating as the continuous dispersion spectral element, our interrogator can achieve a maximum scanning frequency as high as 5 KHz for a single channel with a total power requirement of 25 W.

  19. Design and development of a low power, low cost, portable fiber Bragg grating (FBG) sensor interrogation system

    NASA Astrophysics Data System (ADS)

    Cai, Zhaohui; Phua, Jiliang; Hao, Jianzhong; Dong, Bo; Wang, Xian; Meng, Yu Song; Chiam, Tat Meng

    2011-11-01

    In this paper, the design and development of a low power, low cost and portable FBG Interrogation System is presented. The FBG interrogator consists of a spectral analyzer module, a photo detection module, and an electronic processing module. By using volume holographic phase grating as the continuous dispersion spectral element, our interrogator can achieve a maximum scanning frequency as high as 5 KHz for a single channel with a total power requirement of 25 W.

  20. Dose profile modeling of Idaho National Laboratory's active neutron interrogation laboratory.

    PubMed

    Chichester, D L; Seabury, E H; Zabriskie, J M; Wharton, J; Caffrey, A J

    2009-06-01

    A new laboratory has been commissioned at Idaho National Laboratory for performing active neutron interrogation research and development. The facility is designed to provide radiation shielding for deuterium-tritium (DT) fusion (14.1 MeV) neutron generators (2 x 10(8) n/s), deuterium-deuterium (DD) fusion (2.5 MeV) neutron generators (1 x 10(7) n/s), and (252)Cf spontaneous fission neutron sources (6.96 x 10(7) n/s, 30 microg). Shielding at the laboratory is comprised of modular concrete shield blocks 0.76 m thick with tongue-in-groove features to prevent radiation streaming, arranged into one small and one large test vault. The larger vault is designed to allow operation of the DT generator and has walls 3.8m tall, an entrance maze, and a fully integrated electrical interlock system; the smaller test vault is designed for (252)Cf and DD neutron sources and has walls 1.9 m tall and a simple entrance maze. Both analytical calculations and numerical simulations were used in the design process for the building to assess the performance of the shielding walls and to ensure external dose rates are within required facility limits. Dose rate contour plots have been generated for the facility to visualize the effectiveness of the shield walls and entrance mazes and to illustrate the spatial profile of the radiation dose field above the facility and the effects of skyshine around the vaults. PMID:19217792

  1. Split Hopkinson bar measurement using high-speed full-spectrum fiber Bragg grating interrogation.

    PubMed

    Seng, Frederick; Hackney, Drew; Goode, Tyler; Shumway, LeGrand; Hammond, Alec; Shoemaker, George; Pankow, Mark; Peters, Kara; Schultz, Stephen

    2016-09-01

    The development and validation of a high-speed, full-spectrum measurement technique is described for fiber Bragg grating (FBG) sensors. A FBG is surface-mounted to a split-Hopkinson tensile bar specimen to induce high strain rates. The high strain gradients and large strains that indicate material failure are analyzed under high strain rates up to 500  s-1. The FBG is interrogated using a high-speed full-spectrum solid-state interrogator with a repetition rate of 100 kHz. The captured deformed spectra are analyzed for strain gradients using a default interior point algorithm in combination with the modified transfer matrix approach. This paper shows that by using high-speed full-spectrum interrogation of an FBG and the modified transfer matrix method, highly localized strain gradients and discontinuities can be measured without a direct line of sight. PMID:27607299

  2. Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio (Inventor); Simons, Rainee N (Inventor)

    2007-01-01

    A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.

  3. INL Active Interrogation Testing In Support of the GNEP Safeguards Campaign

    SciTech Connect

    David L. Chichester

    2008-04-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. Work at Idaho National Laboratory (INL) in the area of active interrogation, using neutron and photon sources, has been under way for many years to develop methods for detecting and quantifying nuclear material for national and homeland security research areas. This research knowledge base is now being extended to address nuclear safeguards and process monitoring issues related to the Global Nuclear Energy Partnership (GNEP). As a first step in this area preliminary scoping studies have been performed to investigate the usefulness of using active neutron interrogation, with a low-power electronic neutron generator, to assay Department of Transportation 6M shipping drums containing uranium oxide fuel rodlets from INL’s zero power physics reactor. Using the paired-counting technique during the die-away time period of interrogation, a lower detection limit of approximately 4.2 grams of enriched uranium (40% 235U) was calculated for a 40 minute measurement using a field portable 2.5 MeV neutron source and an array of 16 moderated helium-3 neutron tubes. Future work in this area, including the use of a more powerful neutron source and a better tailored detector array, would likely improve this limit to a much lower level. Further development work at INL will explore the applicability of active interrogation in association with the nuclear safeguards and process monitoring needs of the advanced GNEP facilities under consideration. This work, which will include both analyses and field demonstrations, will be performed in collaboration with colleagues at INL and elsewhere that have expertise in nuclear fuel reprocessing as well as active interrogation and its use for nuclear material analyses.

  4. An Illusory Interiority: Interrogating the Discourse/s of Inclusion

    ERIC Educational Resources Information Center

    Graham, Linda J.; Slee, Roger

    2008-01-01

    It is generally accepted that the notion of inclusion derived or evolved from the practices of mainstreaming or integrating students with disabilities into regular schools. Halting the practice of segregating children with disabilities was a progressive social movement. The value of this achievement is not in dispute. However, our charter as…

  5. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  6. Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques.

    PubMed

    Ricchiuti, Amelia Lavinia; Barrera, David; Sales, Salvador; Thevenaz, Luc; Capmany, José

    2013-11-18

    A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes. PMID:24514329

  7. Compact, low-cost, and high-resolution interrogation unit for optical sensors

    SciTech Connect

    Kiesel, Peter; Schmidt, Oliver; Mohta, Setu; Johnson, Noble; Malzer, Stefan

    2006-11-13

    Compact wavelength detectors that resolve wavelength changes in the subpicometer range over a broad spectral range are presented. A photodiode array or position sensor device is coated with a linear variable filter that converts the wavelength of the incident light into a spatial intensity distribution. The centroid of the spatial distribution is determined by a differential readout of the two elements of the photodiode array or the position sensor device. The device can interrogate any optical sensor that produces a wavelength shift in response to a stimulus. The potential of this device was tested by interrogating fiber-Bragg-grating sensors.

  8. Electrodermal responsivity to interrogation questions and its relation to self-reported emotional disturbance.

    PubMed

    Gudjonsson, G H

    1982-01-01

    The relationship between skin resistance responses (SRRs) and self-reported emotional disturbance was studied in 24 males and 24 females. SRRs to seven interrogation questions were recorded and subjects were requested to rate on visual analogue scales how disturbing they had found each question. The mean within subject correlations were significant for both groups, suggesting that electrodermal responses to interrogation questions are significantly related to the extent to which the subjects find such questions disturbing. A particular question may elicit disturbance for a number of reasons including embarrassment, conflict over how to answer the question, and fear of the consequences of possible detection. PMID:7126718

  9. Accelerator requirements for fast-neutron interrogation of luggage and cargo

    SciTech Connect

    Micklich, B.J.; Fink, C.L.; Yule, T.J.

    1995-05-01

    Several different fast-neutron based techniques are being studied for the detection of contraband substances in luggage and cargo containers. The present work discusses the accelerator requirements for fast-neutron transmission spectroscopy (FNTS), pulsed fast-neutron analysis (PFNA), and 14-MeV neutron interrogation. These requirements are based on the results of Monte-Carlo simulations of neutron or gamma detection rates. Accelerator requirements are driven by count-rate considerations, spatial resolution and acceptable uncertainties in elemental compositions. The authors have limited their analyses to luggage inspection with FNTS and to cargo inspection with PFNA or 14-MeV neutron interrogation.

  10. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOEpatents

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  11. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOEpatents

    Schultz, F.J.; Caldwell, J.T.

    1993-04-06

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  12. Spectral Doppler interrogation of the patent foramen ovale-a window to left heart hemodynamics.

    PubMed

    Fadel, Bahaa M; Husain, Aysha; Bakarman, Hatem; Dahdouh, Ziad; Salvo, Giovanni Di; Mohty, Dania

    2015-02-01

    Spectral Doppler interrogation of flow across a patent foramen ovale (PFO) allows recording of the instantaneous pressure gradient between left and right atrium (RA). The assessment of RA pressure using the size and collapsibility of the inferior vena cava would thus allow estimation of left atrial (LA) pressure. In this article, we illustrate the value of spectral Doppler interrogation of flow across the PFO by transthoracic echocardiography as a novel and simple tool for the assessment of LA pressure and left cardiac hemodynamics in addition to the conventional noninvasive parameters. PMID:25130954

  13. Combined steam-ultrasound treatment of 2 seconds achieves significant high aerobic count and Enterobacteriaceae reduction on naturally contaminated food boxes, crates, conveyor belts, and meat knives.

    PubMed

    Musavian, Hanieh S; Butt, Tariq M; Larsen, Annette Baltzer; Krebs, Niels

    2015-02-01

    Food contact surfaces require rigorous sanitation procedures for decontamination, although these methods very often fail to efficiently clean and disinfect surfaces that are visibly contaminated with food residues and possible biofilms. In this study, the results of a short treatment (1 to 2 s) of combined steam (95°C) and ultrasound (SonoSteam) of industrial fish and meat transportation boxes and live-chicken transportation crates naturally contaminated with food and fecal residues were investigated. Aerobic counts of 5.0 to 6.0 log CFU/24 cm(2) and an Enterobacteriaceae spp. level of 2.0 CFU/24 cm(2) were found on the surfaces prior to the treatment. After 1 s of treatment, the aerobic counts were significantly (P < 0.0001) reduced, and within 2 s, reductions below the detection limit (<10 CFU) were reached. Enterobacteriaceae spp. were reduced to a level below the detection limit with only 1 s of treatment. Two seconds of steam-ultrasound treatment was also applied on two different types of plastic modular conveyor belts with hinge pins and one type of flat flexible rubber belt, all visibly contaminated with food residues. The aerobic counts of 3.0 to 5.0 CFU/50 cm(2) were significantly (P < 0.05) reduced, while Enterobacteriaceae spp. were reduced to a level below the detection limit. Industrial meat knives were contaminated with aerobic counts of 6.0 log CFU/5 cm(2) on the handle and 5.2 log CFU/14 cm(2) on the steel. The level of Enterobacteriaceae spp. contamination was approximately 2.5 log CFU on the handle and steel. Two seconds of steam-ultrasound treatment reduced the aerobic counts and Enterobacteriaceae spp. to levels below the detection limit on both handle and steel. This study shows that the steam-ultrasound treatment may be an effective replacement for disinfection processes and that it can be used for continuous disinfection at fast process lines. However, the treatment may not be able to replace efficient cleaning processes used to remove high

  14. Can You Believe It? 12-Month-Olds Use Word Order to Distinguish between Declaratives and Polar Interrogatives

    ERIC Educational Resources Information Center

    Geffen, Susan; Mintz, Toben H.

    2015-01-01

    Word order is a core mechanism for conveying syntactic structure, yet interrogatives usually disrupt canonical word orders. For example, in English, polar interrogatives typically invert the subject and auxiliary verb and insert an utterance-initial "do" if no auxiliary is present. These word order patterns result from differences in the…

  15. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  16. A Syntactic Bias in Scope Ambiguity Resolution in the Processing of English-French Cardinality Interrogatives: Evidence for Informational Encapsulation

    ERIC Educational Resources Information Center

    Dekydtspotter, Laurent; Outcalt, Samantha D.

    2005-01-01

    This article presents a reading-time study of scope resolution in the interpretation of ambiguous cardinality interrogatives in English-French and in English and French native sentence processing. Participants were presented with a context, a self-paced segment-by-segment presentation of a cardinality interrogative, and a numerical answer that…

  17. 48 CFR 237.173 - Prohibition on interrogation of detainees by contractor personnel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Prohibition on interrogation of detainees by contractor personnel. 237.173 Section 237.173 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF...

  18. 48 CFR 237.173 - Prohibition on interrogation of detainees by contractor personnel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Prohibition on interrogation of detainees by contractor personnel. 237.173 Section 237.173 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF...

  19. 48 CFR 237.173 - Prohibition on interrogation of detainees by contractor personnel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Prohibition on interrogation of detainees by contractor personnel. 237.173 Section 237.173 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF...

  20. 48 CFR 237.173 - Prohibition on interrogation of detainees by contractor personnel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Prohibition on interrogation of detainees by contractor personnel. 237.173 Section 237.173 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF...

  1. The Impact of Caregivers' Interrogative Styles in English and Japanese on Early Bilingual Development

    ERIC Educational Resources Information Center

    Nakamura, Janice; Quay, Suzanne

    2012-01-01

    This study examines the relationship between caregivers' conversational styles in One-Person-One-Language (OPOL) settings and early bilingual development. In particular, it attempts to demonstrate that interrogative styles may have an impact on bilingual children's responsiveness in two language contexts. It is based on longitudinal data of a…

  2. An Evaluation of "Miranda" Rights and Interrogation in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Salseda, Lindsay M.; Dixon, Dennis R.; Fass, Tracy; Miora, Deborah; Leark, Robert A.

    2011-01-01

    The primary deficits present in autism spectrum disorders (ASD) may lead to increased susceptibility to involvement in the criminal justice system. The same deficits may also cause individuals with ASD to be more vulnerable to interrogation techniques and other aspects of the legal system. Due to the increased level of vulnerability as well as…

  3. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    PubMed

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement. PMID:26480367

  4. Asking for Action or Information? Crosslinguistic Comparison of Interrogative Functions in Early Child Cantonese and Mandarin

    ERIC Educational Resources Information Center

    Li, Hui; Wong, Eileen Chin Mei; Tse, Shek Kam; Leung, Shing On; Ye, Qianling

    2015-01-01

    Request for information (RfI) is believed to be the universally dominant function of young children's questioning, whereas request for action (RfA) has been reported to be the leading interrogative form used in early child Cantonese. The possibility of crosslinguistic variability prompts further research and comparison with additional languages.…

  5. Correlation between Question Intonation and Focus of Interrogation--Evidence from French Dislocated Questions.

    ERIC Educational Resources Information Center

    Shen, Xiao-nan

    This study explores the relationship between question intonation patterns in French using dislocated questions and question-focus (Q- focus). A dislocated question is defined as an interrogative sentence whose sequence is interrupted by the topicalization of a constituent at the left ("Toi, tu viens?"), at the right (Tu viens, toi?"), or in the…

  6. Interrogation of Patient Smartphone Activity Tracker to Assist Arrhythmia Management.

    PubMed

    Rudner, Joshua; McDougall, Carol; Sailam, Vivek; Smith, Monika; Sacchetti, Alfred

    2016-09-01

    A 42-year-old man presented to the emergency department (ED) with newly diagnosed atrial fibrillation of unknown duration. Interrogation of the patient's wrist-worn activity tracker and smartphone application identified the onset of the arrhythmia as within the previous 3 hours, permitting electrocardioversion and discharge of the patient from the ED. PMID:27045694

  7. Investigation of Active Interrogation Techniques to Detect Special Nuclear Material in Maritime Environments

    SciTech Connect

    Miller, Thomas Martin; Patton, Bruce W

    2010-01-01

    The detection and interdiction of special nuclear material (SNM) is still a high-priority focus area for many organizations around the world. One method that is commonly considered a leading candidate in the detection of SNM is active interrogation (AI). AI is different from its close relative, passive interrogation, in that an active source is used to enhance or create a detectable signal (usually fission) from SNM, particularly in shielded scenarios or scenarios where the SNM has a low activity. The use of AI thus makes the detection of SNM easier or, in some scenarios, even enables previously impossible detection. In this work the signal from prompt neutrons and photons as well as delayed neutrons and photons will be combined, as is typically done in AI. In previous work AI has been evaluated experimentally and computationally. However, for the purposes of this work, past scenarios are considered lightly shielded and tightly coupled spatially. At most, the previous work interrogated the contents of one standard cargo container (2.44 x 2.60 x 6.10 m) and the source and detector were both within a few meters of the object being interrogated. A few examples of this type of previous work can be found in references 1 and 2. Obviously, more heavily shielded AI scenarios will require larger source intensities, larger detector surface areas (larger detectors or more detectors), greater detector efficiencies, longer count times, or some combination of these.

  8. Interrogating Institutionalized Establishments: Urban-Rural Inequalities in China's Higher Education

    ERIC Educational Resources Information Center

    Li, Mei; Yang, Rui

    2013-01-01

    China's urban-rural disparities are a fundamental source of China's overall educational inequalities. This article addresses the issue with data collected through interviews with members at various Chinese higher education institutions. It interrogates China's current policies together with the socio-political institutional…

  9. Scripting, Ritualising and Performing Leadership: Interrogating Recent Policy Developments in Australia

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya; Savage, Julia

    2013-01-01

    In this article, we argue that leadership of schools is a form of performance that has become ritualised and routinised through the official scripting of policy texts that mandate how leadership of schools should occur. Our interrogation of recent policy scripts in Australia reveals that there is limited scope for leadership in schools to occur as…

  10. CEL_INTERROGATOR: A FREE AND OPEN SOURCE PACKAGE FOR AFFYMETRIX CEL FILE PARSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEL_Interrogator Package is a suite of programs designed to extract the average probe intensity and other information for each probe sequence from an Affymetrix GeneChip CEL file and unite them with their human-readable Affymetrix consensus sequence names. The resulting text file is suitable for di...

  11. Examining Adolescents' and Their Parents' Conceptual and Practical Knowledge of Police Interrogation: A Family Dyad Approach

    ERIC Educational Resources Information Center

    Woolard, Jennifer L.; Cleary, Hayley M. D.; Harvell, Samantha A. S.; Chen, Rusan

    2008-01-01

    This study examines whether parents have the prerequisite knowledge about police interrogation that would allow them to compensate for youths' knowledge deficits, protect their interests, and buffer against their vulnerability to coercion. A racially diverse urban/suburban convenience sample of 77 11- to 13-year-olds, 46 14- to 15-year-olds, and…

  12. Double Jeopardy in the Interrogation Room for Youths with Mental Illness

    ERIC Educational Resources Information Center

    Redlich, Allison D.

    2007-01-01

    Comments on the article by J. Owen-Kostelnik, N. D. Reppucci, and J. R. Meyer (see record 2006-05893-002) which reviewed the issues surrounding the police interrogation of minors. This commentary expands on the review by addressing the mental health status of youths who come into contact with police. It stems from two immutable facts: (a) The…

  13. Reading Resistance: The Record of Tsunesaburo Makiguchi's Interrogation by Wartime Japan's "Thought Police"

    ERIC Educational Resources Information Center

    Ito, Takao

    2009-01-01

    This article examines the record of Tsunesaburo Makiguchi's interrogation as a thought criminal following his arrest in July, 1943. By comparing and contrasting his responses and statements against the official government positions, I hope to clarify the nature of his critique of the wartime fascist regime. Makiguchi himself was an educator, and…

  14. Interrogative Suggestibility among Adolescent Boys and Its Relationship with Intelligence, Memory, and Cognitive Set.

    ERIC Educational Resources Information Center

    Singh, Krishna K.; Gudjonsson, Gisli H.

    1992-01-01

    Investigated hypotheses generated by Gudjonsson and Clark model of interrogative suggestibility. Adolescent boys (n=40) completed Gudjonsson Suggestibility Scale and measures of intellectual skills, memory, field-dependence, hostility, and attitudes toward persons in authority. Suggestibility correlated negatively with intelligence quotient and…

  15. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    PubMed

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested. PMID:26766702

  16. A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme

    PubMed Central

    Barrera, David; Sales, Salvador

    2013-01-01

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282

  17. Questioning Masculinities: Interrogating Boys' Capacities for Self-Problematization in Schools

    ERIC Educational Resources Information Center

    Kehler, Michael; Martino, Wayne

    2007-01-01

    In drawing on selected interviews with adolescent boys from both Australia and North America, we present an analysis of boys' own capacities for interrogating gender normalisation in their school lives. We set this analysis against a critique of the public media debates about boys' education, which continue to be fuelled by a moral panic about the…

  18. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. PMID:25783780

  19. Numerical modelling of interrogation systems for optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Oswald, Daniel; Richardson, Steven; Wild, Graham

    2011-12-01

    There are a number of interrogation methods that can be used in optical Fibre Bragg Grating (FBG) sensing system. For very high frequency signals interrogating the sensor signal from an FBG is limited to two intensiometric methods, edge filter detection and power detection. In edge filter detection, a broadband light source illuminates an FBG, the reflected spectrum is then passed through a spectral filter. In power detection, a narrowband light source with a wavelength corresponding to the 3dB point of the FBG is filtered by the FBG itself. Both methods convert the spectral shift of the FBG into intensity signals. These two categories each have a number of variations, all with different performance characteristics. In this work we present a numerical model for all of these interrogation systems. The numerical model is based on previous analytical modelling, which could only be utilised for perfect Gaussian profiles. However, interrogation systems can make use of non Gaussian shaped filters, or sources. The numerical modelling enables the different variations to be compared using identical component performance, showing the relative strengths and weakness of the systems in terms of useful parameters, including, signal-to-noise ratio, sensitivity, and dynamic resolution. The two different detection methods can also be compared side-by-side using the same FBG. Since the model is numerical, it enables real spectral data to be used for the various components (FBG, light source, filters). This has the added advantage of increasing the accuracy and usefulness of the model, over previous analytical work.

  20. Police training in interviewing and interrogation methods: A comparison of techniques used with adult and juvenile suspects.

    PubMed

    Cleary, Hayley M D; Warner, Todd C

    2016-06-01

    Despite empirical progress in documenting and classifying various interrogation techniques, very little is known about how police are trained in interrogation methods, how frequently they use various techniques, and whether they employ techniques differentially with adult versus juvenile suspects. This study reports the nature and extent of formal (e.g., Reid Technique, PEACE, HUMINT) and informal interrogation training as well as self-reported technique usage in a diverse national sample (N = 340) of experienced American police officers. Officers were trained in a variety of different techniques ranging from comparatively benign pre-interrogation strategies (e.g., building rapport, observing body language or speech patterns) to more psychologically coercive techniques (e.g., blaming the victim, discouraging denials). Over half the sample reported being trained to use psychologically coercive techniques with both adults and juveniles. The majority (91%) receive informal, "on the job" interrogation training. Technique usage patterns indicate a spectrum of psychological intensity where information-gathering approaches were used most frequently and high-pressure tactics less frequently. Reid-trained officers (56%) were significantly more likely than officers without Reid training to use pre-interrogation and manipulation techniques. Across all analyses and techniques, usage patterns were identical for adult and juvenile suspects, suggesting that police interrogate youth in the same manner as adults. Overall, results suggest that training in specific interrogation methods is strongly associated with usage. Findings underscore the need for more law enforcement interrogation training in general, especially with juvenile suspects, and highlight the value of training as an avenue for reducing interrogation-induced miscarriages of justice. (PsycINFO Database Record PMID:26651619

  1. Ultra Small Integrated Optical Fiber Sensing System

    PubMed Central

    Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert

    2012-01-01

    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  2. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes.

    PubMed

    Saunders, Colleen J; Jalali Sefid Dashti, Mahjoubeh; Gamieldien, Junaid

    2016-01-01

    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes (COL11A2, ELN, ITGB3, LOX) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge, and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies. PMID:26804977

  3. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes

    PubMed Central

    Saunders, Colleen J.; Jalali Sefid Dashti, Mahjoubeh; Gamieldien, Junaid

    2016-01-01

    Tendinopathy is a multifactorial syndrome characterised by tendon pain and thickening, and impaired performance during activity. Candidate gene association studies have identified genetic factors that contribute to intrinsic risk of developing tendinopathy upon exposure to extrinsic factors. Bioinformatics approaches that data-mine existing knowledge for biological relationships may assist with the identification of candidate genes. The aim of this study was to data-mine functional annotation of human genes and identify candidate genes by ontology-seeded queries capturing the features of tendinopathy. Our BioOntological Relationship Graph database (BORG) integrates multiple sources of genomic and biomedical knowledge into an on-disk semantic network where human genes and their orthologs in mouse and rat are central concepts mapped to ontology terms. The BORG was used to screen all human genes for potential links to tendinopathy. Following further prioritisation, four strong candidate genes (COL11A2, ELN, ITGB3, LOX) were identified. These genes are differentially expressed in tendinopathy, functionally linked to features of tendinopathy and previously implicated in other connective tissue diseases. In conclusion, cross-domain semantic integration of multiple sources of biomedical knowledge, and interrogation of phenotypes and gene functions associated with disease, may significantly increase the probability of identifying strong and unobvious candidate genes in genetic association studies. PMID:26804977

  4. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.

    PubMed

    Duan, Qiaonan; Flynn, Corey; Niepel, Mario; Hafner, Marc; Muhlich, Jeremy L; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Chen, Edward Y; Golub, Todd R; Sorger, Peter K; Subramanian, Aravind; Ma'ayan, Avi

    2014-07-01

    For the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites. PMID:24906883

  5. Mechanics and Single-Molecule Interrogation of DNA Recombination.

    PubMed

    Bell, Jason C; Kowalczykowski, Stephen C

    2016-06-01

    The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods. PMID:27088880

  6. Interrogating adhesion using fiber Bragg grating sensing technology

    NASA Astrophysics Data System (ADS)

    Rasberry, Roger D.; Rohr, Garth D.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David; Roach, Allen R.; Walsh, David S.; McElhanon, James R.

    2015-05-01

    The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic Individuality

    PubMed Central

    Beebe, Kirk; Kennedy, Adam D.

    2016-01-01

    Precision medicine is an active component of medical practice today, but aspirations are to both broaden its reach to a greater diversity of individuals and improve its “precision” by enhancing the ability to define even more disease states in combination with associated treatments. Given complexity of human phenotypes, much work is required. In this review, we deconstruct this challenge at a high level to define what is needed to move closer toward these aspirations. In the context of the variables that influence the diverse array of phenotypes across human health and disease – genetics, epigenetics, environmental influences, and the microbiome – we detail the factors behind why an individual's biochemical (metabolite) composition is increasingly regarded as a key element to precisely defining phenotypes. Although an individual's biochemical (metabolite) composition is generally regarded, and frequently shown, to be a surrogate to the phenotypic state, we review how metabolites (and therefore an individual's metabolic profile) are also functionally related to the myriad of phenotypic influencers like genetics and the microbiota. We describe how using the technology to comprehensively measure an individual's biochemical profile – metabolomics – is integrative to defining individual phenotypes and how it is currently being deployed in efforts to continue to elaborate on human health and disease in large population studies. Finally, we summarize instances where metabolomics is being used to assess individual health in instances where signatures (i.e. biomarkers) have been defined. PMID:26929792

  8. Web-based interrogation of gene expression signatures using EXALT

    PubMed Central

    2009-01-01

    Background Widespread use of high-throughput techniques such as microarrays to monitor gene expression levels has resulted in an explosive growth of data sets in public domains. Integration and exploration of these complex and heterogeneous data have become a major challenge. Results The EXALT (EXpression signature AnaLysis Tool) online program enables meta-analysis of gene expression profiles derived from publically accessible sources. Searches can be executed online against two large databases currently containing more than 28,000 gene expression signatures derived from GEO (Gene Expression Omnibus) and published expression profiles of human cancer. Comparisons among gene expression signatures can be performed with homology analysis and co-expression analysis. Results can be visualized instantly in a plot or a heat map. Three typical use cases are illustrated. Conclusions The EXALT online program is uniquely suited for discovering relationships among transcriptional profiles and searching gene expression patterns derived from diverse physiological and pathological settings. The EXALT online program is freely available for non-commercial users from http://seq.mc.vanderbilt.edu/exalt/. PMID:20003458

  9. Live Interrogation and Visualization of Earth Systems (LIVES)

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Anderson, L. C.

    2007-12-01

    Twenty tablet PCs and associated peripherals acquired through a HP Technology for Teaching grant are being used to redesign two freshman laboratory courses as well as a sophomore geobiology course in Geology and Geophysics at Louisiana State University. The two introductory laboratories serve approximately 750 students per academic year including both majors and non-majors; the geobiology course enrolls about 35 students/year and is required for majors in the department's geology concentration. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, GIS, manipulation of data and images, and access to geological data available online. Goals of the course redesigns include: enhancing visualization of earth materials, physical/chemical/biological processes, and biosphere/geosphere history; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method, and earth-system science/perspective in ancient and modern environments (such as coastal erosion and restoration in Louisiana or the Snowball Earth hypothesis); improving student communication skills; and increasing the quantity, quality, and diversity of students pursuing Earth Science careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data- sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with simulation software to animate earth processes such as plate motions or groundwater flow and immediately test hypothesis formulated in the data analysis. Finally, tablet PCs make it possible for data gathering and analysis outside a formal classroom. As a result, students will achieve fluency in using visualization

  10. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    NASA Astrophysics Data System (ADS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.