Science.gov

Sample records for integrated gasification ccgi

  1. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  2. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  3. Coal Integrated Gasification Fuel Cell System Study

    SciTech Connect

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  4. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  5. Integrated coal drying and steam gasification process

    SciTech Connect

    Nahas, N.C.

    1981-08-18

    Carbonaceous solids slurried in an aqueous solution, which preferably contains catalyst constituents having gasification activity, are dried by contacting the slurry with superheated steam in a fluid bed slurry dryer and the resultant dried solids are subsequently gasified with steam generated in the dryer.

  6. Integrated coal liquefaction, gasification and electricity production process

    SciTech Connect

    Cheng, S.

    1986-06-10

    A method is described for the physical and operational integration of a carbonaceous gasification plant, a gas fuel synthesis plant and a power generation station to economically produce synfuel and electric power consisting of: (a) producing synthesis gas comprising carbon monoxide and hydrogen from carbonaceous raw materials in a gasification unit under endothermic reaction conditions wherein the gasification unit utilizes exhaust steam from step (f) effective to provide at least a portion of the endothermic heat of reaction necessary for the reaction and wherein the gas from the gasification unit is passed to a coal liquefaction stage; (b) liquefying and hydrogenating coal under exothermic reaction conditions with the synthesis gas from the gasification unit as a source of hydrogen thereby producing a synthetic hydrocarbonaceous fuel and tail gases; (c) providing water to the liquefaction stage in an indirect heat exchange relationship to remove at least a portion of the exothermic heat of reaction from the coal liquefaction stage by generating high pressure steam from the water and passing the high pressure steam to a power generation unit; (d) continuously purging the tail gases from the liquefaction stage, feeding the tail gases to the power generation unit and burning the tail gases with or without additional fuel sources to superheat the high pressure steam; (e) passing the superheated steam to a turbine-generator means within the power generating unit to produce electricity and exhaust steam; and (f) feeding at least a portion of the exhaust steam from the power generating unit to the gasification unit.

  7. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  8. Survey of integrated gasification combined cycle power plant performance estimates

    NASA Astrophysics Data System (ADS)

    Larson, J. W.

    1980-03-01

    The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.

  9. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  10. Air-blown Integrated Gasification Combined Cycle demonstration project

    SciTech Connect

    Not Available

    1991-01-01

    Clean Power Cogeneration, Inc. (CPC) has requested financial assistance from DOE for the design construction, and operation of a normal 1270 ton-per-day (120-MWe), air-blown integrated gasification combined-cycle (IGCC) demonstration plant. The demonstration plant would produce both power for the utility grid and steam for a nearby industrial user. The objective of the proposed project is to demonstrate air-blown, fixed-bed Integrated Gasification Combined Cycle (IGCC) technology. The integrated performance to be demonstrated will involve all the subsystems in the air-blown IGCC system to include coal feeding; a pressurized air-blown, fixed-bed gasifier capable of utilizing caking coal; a hot gas conditioning systems for removing sulfur compounds, particulates, and other contaminants as necessary to meet environmental and combustion turbine fuel requirements; a conventional combustion turbine appropriately modified to utilize low-Btu coal gas as fuel; a briquetting system for improved coal feed performance; the heat recovery steam generation system appropriately modified to accept a NO{sub x} reduction system such as the selective catalytic reduction process; the steam cycle; the IGCC control systems; and the balance of plant. The base feed stock for the project is an Illinois Basin bituminous high-sulfur coal, which is a moderately caking coal. 5 figs., 1 tab.

  11. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  12. ''An assessment of integrated gasification combined cycle power generation''

    SciTech Connect

    Hauber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-11-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. This study was managed by Argonne National Laboratory for the U.S. Department of Energy, Office of Coal Utilization. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2,150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules.

  13. Assessment of integrated gasification combined cycle power generation

    SciTech Connect

    Huber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-01-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules. 8 figures, 12 tables.

  14. Integration of stripping of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  15. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  16. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  17. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  18. 78 FR 54640 - Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... FR Doc. 2013-20713, on page 52764, the following corrections are made: (1) In SUMMARY, sixth line... Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle... Public Comment Period and Public Hearing for the Hydrogen Energy California's Integrated...

  19. Engineering and economic evaluation of integrated gasification compressed air storage with humidification (IGCASH). Final report

    SciTech Connect

    Ghaly, O.; McCone, A.; Nakhamkin, M.; Patel, M.

    1993-11-01

    Integrated Gasification Compressed Air Storage with Humidification (IGCASH) is concept for an intermediate-load, cycling-duty plant with the environmental advantages of coal gasification and the reliability benefits of continuous operation of the hot gasification and turbomachinery equipment. The IGCASH concept integrates a quench-type coal gasification system with an advanced compressed air storage system in which the compression heat is recovered and stored in water which is used to humidify and preheat the air and fuel gas sent to the turbine. Bechtel under contract to EPRI (RP 2834-3) performed an engineering and economic evaluation to verify the feasibility of IGCASH as an option for intermediate-load power generation from coal. A baseline design was developed for a conceptual 400 MW generic IGCASH plant using currently available technology, including the Texaco full-quench gasification process, Westinghouse turbomachinery, and solution-mined salt-dome cavern for air storage. Three alternatives to the baseline design were also developed to assess the effects of storage water temperature and next-generation turbomachinery on plant performance and economics. The IGCASH concept compared favorably with conventional pulverized coal fired steam (PCFS) power generation. The IGCASH baseline design showed a significantly lower heat rate and yielded a lower cost of electricity than a comparable PCFS plant operating on the same duty cycle.

  20. 78 FR 52764 - Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    .... Department of Energy (DOE) published a notice of availability and public hearing on July 22, 2013 (78 FR... Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle... period to October 1, 2013 and announces public hearings for the Hydrogen Energy California's...

  1. 77 FR 59166 - South Mississippi Electric Cooperative: Plant Ratcliffe, Kemper County Integrated Gasification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Adoption in the Federal Register on June 20, 2012 (77 FR 36996), and the U.S. Environmental Protection... Federal Register on June 29, 2012 (77 FR 38801), which began the 30-day public review period. The comment... Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities Service, USDA. ACTION:...

  2. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  3. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack

    NASA Astrophysics Data System (ADS)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2015-03-01

    Biomass gasification-solid oxide fuel cell (BG-SOFC) combined heat and power (CHP) systems are of major interest in the context of climate change mitigation, energy security and increasing energy efficiency. Aspen Plus is employed to simulate various BG-SOFC CHP systems. The aim of the research work is to investigate the technical feasibility of these systems and to study the influence of important operating parameters and examine integration options. Systems based on dual fluidised bed steam gasification and tubular SOFC technologies are modelled. The cathode recycle and electric heater integration options are not attractive in comparison to the base case anode recycle system. Thermal integration, i.e. using SOFC flue gas as gasifier oxidant, is desirable. Lowering the syngas preheat temperature (prior to SOFC anodes) is highly recommended and is more practical than lowering the cathode air preheat temperature. Results of the parametric study indicate that: steam to carbon ratio and biomass moisture content should be as low as possible; fuel utilisation factor can change the mode of operation of the plant (focus on electricity or heat); high temperature syngas cleaning is very attractive; gasification air preheating is more attractive than gasification steam superheating. High efficiencies are predicted, proving the technical feasibility of BG-SOFC CHP systems.

  4. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  5. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  6. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  7. Integrated gasification combined-cycle research development and demonstration activities in the US

    SciTech Connect

    Ness, H.M.; Brdar, R.D.

    1996-09-01

    The United States Department of Energy (DOE)`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the commercialization of integrated gasification combined-cycle (IGCC) advanced power systems. This overview briefly describes the supporting RD&D activities and the IGCC projects selected for demonstration in the Clean Coal Technology (CCT) Program.

  8. Integrated gasification combined-cycle research development and demonstration activities in the U.S.

    SciTech Connect

    Ness, H.M.

    1994-12-31

    The United States Department of Energy (DOE) has selected seven integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D)program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  9. Stochastic modeling of coal gasification combined cycle systems: Cost models for selected integrated gasification combined cycle (IGCC) systems

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1990-06-01

    This report documents cost models developed for selected integrated gasification combined cycle (IGCC) systems. The objective is to obtain a series of capital and operating cost models that can be integrated with an existing set of IGCC process performance models developed at the US Department of Energy Morgantown Energy Technology Center. These models are implemented in ASPEN, a Fortran-based process simulator. Under a separate task, a probabilistic modeling capability has been added to the ASPEN simulator, facilitating analysis of uncertainties in new process performance and cost (Diwekar and Rubin, 1989). One application of the cost models presented here is to explicitly characterize uncertainties in capital and annual costs, supplanting the traditional approach of incorporating uncertainty via a contingency factor. The IGCC systems selected by DOE/METC for cost model development include the following: KRW gasifier with cold gas cleanup; KRW gasifier with hot gas cleanup; and Lurgi gasifier with hot gas cleanup. For each technology, the cost model includes both capital and annual costs. The capital cost models estimate the costs of each major plant section as a function of key performance and design parameters. A standard cost method based on the Electric Power Research Institute (EPRI) Technical Assessment Guide (1986) was adopted. The annual cost models are based on operating and maintenance labor requirements, maintenance material requirements, the costs of utilities and reagent consumption, and credits from byproduct sales. Uncertainties in cost parameters are identified for both capital and operating cost models. Appendices contain cost models for the above three IGCC systems, a number of operating trains subroutines, range checking subroutines, and financial subroutines. 88 refs., 69 figs., 21 tabs.

  10. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating

  11. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  12. Performance evaluation of an integrated small-scale SOFC-biomass gasification power generation system

    NASA Astrophysics Data System (ADS)

    Wongchanapai, Suranat; Iwai, Hiroshi; Saito, Motohiro; Yoshida, Hideo

    2012-10-01

    The combination of biomass gasification and high-temperature solid oxide fuel cells (SOFCs) offers great potential as a future sustainable power generation system. In order to provide insights into an integrated small-scale SOFC-biomass gasification power generation system, system simulation was performed under diverse operating conditions. A detailed anode-supported planar SOFC model under co-flow operation and a thermodynamic equilibrium for biomass gasification model were developed and verified by reliable experimental and simulation data. The other peripheral components include three gas-to-gas heat exchangers (HXs), heat recovery steam generator (HRSG), burner, fuel and air compressors. To determine safe operating conditions with high system efficiency, energy and exergy analysis was performed to investigate the influence through detailed sensitivity analysis of four key parameters, e.g. steam-to-biomass ratio (STBR), SOFC inlet stream temperatures, fuel utilization factor (Uf) and anode off-gas recycle ratio (AGR) on system performance. Due to the fact that SOFC stack is accounted for the most expensive part of the initial investment cost, the number of cells required for SOFC stack is economically optimized as well. Through the detailed sensitivity analysis, it shows that the increase of STBR positively affects SOFC while gasifier performance drops. The most preferable operating STBR is 1.5 when the highest system efficiencies and the smallest number of cells. The increase in SOFC inlet temperature shows negative impact on system and gasifier performances while SOFC efficiencies are slightly increased. The number of cells required for SOFC is reduced with the increase of SOFC inlet temperature. The system performance is optimized for Uf of 0.75 while SOFC and system efficiencies are the highest with the smallest number of cells. The result also shows the optimal anode off-gas recycle ratio of 0.6. Regarding with the increase of anode off-gas recycle ratio

  13. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study

    NASA Astrophysics Data System (ADS)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are <0.75; otherwise extra biomass must be combusted with overall efficiency penalty. For SOFC operation with U f = 0.7 and current density 2500 A m -2 the electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  14. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  15. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    SciTech Connect

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  16. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  17. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  18. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  19. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. PMID:24946772

  20. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1992-03-01

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  1. Integrated Process Configuration for High-Temperature Sulfur Mitigation during Biomass Conversion via Indirect Gasification

    SciTech Connect

    Dutta. A.; Cheah, S.; Bain, R.; Feik, C.; Magrini-Bair, K.; Phillips, S.

    2012-06-20

    Sulfur present in biomass often causes catalyst deactivation during downstream operations after gasification. Early removal of sulfur from the syngas stream post-gasification is possible via process rearrangements and can be beneficial for maintaining a low-sulfur environment for all downstream operations. High-temperature sulfur sorbents have superior performance and capacity under drier syngas conditions. The reconfigured process discussed in this paper is comprised of indirect biomass gasification using dry recycled gas from downstream operations, which produces a drier syngas stream and, consequently, more-efficient sulfur removal at high temperatures using regenerable sorbents. A combination of experimental results from NREL's fluidizable Ni-based reforming catalyst, fluidizable Mn-based sulfur sorbent, and process modeling information show that using a coupled process of dry gasification with high-temperature sulfur removal can improve the performance of Ni-based reforming catalysts significantly.

  2. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  3. Integrated Sensing and Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier and Syngas Cooler

    SciTech Connect

    Aditya Kumar

    2010-12-30

    This report summarizes the achievements and final results of this program. The objective of this program is to develop a comprehensive systems approach to integrated design of sensing and control systems for an Integrated Gasification Combined Cycle (IGCC) plant, using advanced model-based techniques. In particular, this program is focused on the model-based sensing and control system design for the core gasification section of an IGCC plant. The overall approach consists of (i) developing a first-principles physics-based dynamic model of the gasification section, (ii) performing model-reduction where needed to derive low-order models suitable for controls analysis and design, (iii) developing a sensing system solution combining online sensors with model-based estimation for important process variables not measured directly, and (iv) optimizing the steady-state and transient operation of the plant for normal operation as well as for startup using model predictive controls (MPC). Initially, available process unit models were implemented in a common platform using Matlab/Simulink{reg_sign}, and appropriate model reduction and model updates were performed to obtain the overall gasification section dynamic model. Also, a set of sensor packages were developed through extensive lab testing and implemented in the Tampa Electric Company IGCC plant at Polk power station in 2009, to measure temperature and strain in the radiant syngas cooler (RSC). Plant operation data was also used to validate the overall gasification section model. The overall dynamic model was then used to develop a sensing solution including a set of online sensors coupled with model-based estimation using nonlinear extended Kalman filter (EKF). Its performance in terms of estimating key unmeasured variables like gasifier temperature, carbon conversion, etc., was studied through extensive simulations in the presence sensing errors (noise and bias) and modeling errors (e.g. unknown gasifier kinetics, RSC

  4. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical

  5. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  6. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  7. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  8. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  9. Environmental footprints and costs of coal-based integrated gasification combined cycle and pulverized coal technologies

    SciTech Connect

    2006-07-15

    The report presents the results of a study to establish the environmental footprint and costs of the coal-based integrated gasification combined cycle (IGCC) technology relative to the conventional pulverized coal (PC) technologies. The technology options evaluated are restricted to those that are projected by the authors to be commercially applied by 2010. The IGCC plant configurations include coal slurry-based and dry coal-based, oxygen-blown gasifiers. The PC plant configurations include subcritical, supercritical, and ultra-supercritical boiler designs. All study evaluations are based on the use of three different coals: bituminous, sub-bituminous, and lignite. The same electric generating capacity of 500 MW is used for each plant configuration. State-of-the-art environmental controls are also included as part of the design of each plant. The environmental comparisons of IGCC and PC plants are based on thermal performance, emissions of criteria and non-criteria air pollutants, solid waste generation rates, and water consumption and wastewater discharge rates associated with each plant. The IGCC plants in these comparisons include NOX and SO{sub 2} controls considered viable for 2010 deployment. In addition, the potential for use of other advanced controls, specifically the selective catalytic reduction system for NOX reduction and the ultra-efficient Selexol and Rectisol systems for SO{sub 2} reduction, is also investigated. The cost estimates presented in the report include capital and operating costs for each IGCC and PC plant configuration. Cost impacts of using the advanced NOx and SO{sub 2} controls are included. The report provides an assessment of the CO{sub 2} capture and sequestration potential for the IGCC and PC plants. A review of the technical and economic aspects of CO{sub 2} capture technologies is included. 20 refs., 75 figs., 3 apps.

  10. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. PMID:25936898

  11. Acid Gas Removal by Customized Sorbents for Integrated Gasification Fuel Cell Systems

    SciTech Connect

    Kapfenberger, J.; Sohnemann, J.; Schleitzer, D.; Loewen, A.

    2002-09-20

    In order to reduce exergy losses, gas cleaning at high temperatures is favored in IGFC systems. As shown by thermodynamic data, separation efficiencies of common sorbents decrease with increasing temperature. Therefore, acid gas removal systems have to be developed for IGFC applications considering sorbent capacity, operation temperature, gasification feedstock composition and fuel cell threshold values.

  12. Gasification Technologie: Opportunities & Challenges

    SciTech Connect

    Breault, R.

    2012-01-01

    This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

  13. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental

  14. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. PMID:25724695

  15. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. PMID:25647028

  16. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  17. Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid

  18. Integrated gasification combined-cycle power plant at Sears Island, Maine: feasibility study. Final report. Volume I. [Sears Island, Maine

    SciTech Connect

    Not Available

    1983-03-30

    This report presents the results of a feasibility study to evaluate the use of medium Btu synthesis gas, produced from high-sulfur coal, in an Integrated Gasification Combined Cycle (IGCC) power plant, as an alternative to a conventional pulverized coal plant with flue gas scrubbers presently planned for the Sears Island, Maine site of Central Maine Power Company. The process configuration is based on the oxygen-blown Texaco Coal Gasification Process and a General Electric Combined Cycle power plant. The plant design includes a 5000 ton per day oxygen plant, four 1200 tons per day gasification trains plus one spare to reduce risk, four gas turbine-generators with heat recovery steam generators, and a reheat steam turbine generator. Plant output at ISO (59/sup 0/F) conditions is 524 MW net. The report includes preliminary design and arrangement drawings, a detailed plant description, detailed cost information, performance data, schedules, and an extensive evaluation of technical, economic, and environmental results. The results of the study indicate that the IGCC power plant is still a rapidly evolving technology. Before Central Maine Power Company can commit to construction of such a plant, several issues raised in the study need to be addressed. These issues deal with refinements in cycle performance, demonstration of various major components, and construction schedule, among others. The IGCC Plant does have less environmental impact than a comparably sized conventional coal plant, while using a high sulfur, high ash, less expensive coal. The life-of-plant levelized busbar cost for the IGCC Plant is estimated to be 5% lower than for the conventional coal-fired plant, although the initial capital cost is approximately 60% higher. Other cycle designs were identified which have the potential for improving plant economics.

  19. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  2. Black liquor gasification integrated in pulp and paper mills: A critical review.

    PubMed

    Naqvi, M; Yan, J; Dahlquist, E

    2010-11-01

    Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted. PMID:20558058

  3. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  4. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect

    Brown, R.C.; Smeenk, J.; Steinfeld, G.

    1998-09-30

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  5. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  6. Simulation of biomass and/or coal gasification systems integrated with fuel cells

    SciTech Connect

    Ersoz, A.; Ozdogan, S.; Caglayan, E.; Olgun, H.

    2006-11-15

    This paper presents the results of a system simulation study. The HYSYS 3.1 - ASPEN code has been used for simulation. The system consists of a fixed bed gasifier followed by reforming and clean-up units. The produced hydrogen gas is fed to a PEM fuel cell. The gasified hydrocarbons are hazelnut shells, bark, rice straw, animal waste, and two lignites. Hydrocarbon properties, gasification, and reforming process parameters all affect the system efficiency. The effect of the moisture content and oxygen to carbon ratio of the hydrocarbon fees on the fuel processing and overall system efficiencies are presented. The overall efficiency of the system increases with increasing hydrocarbon fees oxygen to carbon ratio; this tendency is more evident at higher moisture levels.

  7. Repowering with an integrated gasification-cascaded humidified advanced turbine (IG-CHAT) cycle

    SciTech Connect

    Freier, M.D.; Goldstein, H.N.; Swensen, E.C.

    1998-12-31

    This paper presents the results of an evaluation of repowering a typical US based coal fired power plant with a combination of coal gasification and advanced turbine technologies. In this case, an oxygen blown, fixed bed gasifier (based on British Gas-Lurgi technology) generates clean, low temperature, medium Btu gas which is fired in an advanced type of power cycle; namely, the Cascaded Humidified Advanced Turbine, or CHAT cycle which is defined and described below. This conceptual site repowering follows the same methodology and uses the same design parameters as in a recent evaluation of plant repowering utilizing a broad suite of advanced technologies, many of which are currently being demonstrated in the Clean Coal Technology Demonstration Program.

  8. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification.

    PubMed

    Liu, Yangsheng; Liu, Yushan

    2005-05-15

    The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems. PMID:15952396

  9. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective.

    PubMed

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-09-01

    In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams considered, mainly due to the avoided burdens associated with the production of electricity from the plant. The plasma convertor, key characteristic of the thermal process investigated, although utilising electricity shows a relatively small contribution to the overall environmental impact of the plant. The results do not significantly vary in the scenario analysis. Accounting for biogenic carbon

  10. Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective

    SciTech Connect

    Evangelisti, Sara; Tagliaferri, Carla; Clift, Roland; Lettieri, Paola; Taylor, Richard; Chapman, Chris

    2015-09-15

    Highlights: • A life cycle assessment of an advanced two-stage process is undertaken. • A comparison of the impacts of the process when fed with 7 feedstock is presented. • Sensitivity analysis on the system is performed. • The treatment of RDF shows the lowest impact in terms of both GWP and AP. • The plasma shows a small contribution to the overall impact of the plant. - Abstract: In the past, almost all residual municipal waste in the UK was landfilled without treatment. Recent European waste management directives have promoted the uptake of more sustainable treatment technologies, especially for biodegradable waste. Local authorities have started considering other options for dealing with residual waste. In this study, a life cycle assessment of a future 20 MWe plant using an advanced two-stage gasification and plasma technology is undertaken. This plant can thermally treat waste feedstocks with different composition and heating value to produce electricity, steam and a vitrified product. The objective of the study is to analyse the environmental impacts of the process when fed with seven different feedstocks (including municipal solid waste, solid refuse fuel, reuse-derived fuel, wood biomass and commercial & industrial waste) and identify the process steps which contribute more to the environmental burden. A scenario analysis on key processes, such as oxygen production technology, metal recovery and the appropriate choice for the secondary market aggregate material, is performed. The influence of accounting for the biogenic carbon content in the waste from the calculations of the global warming potential is also shown. Results show that the treatment of the refuse-derived fuel has the lowest impact in terms of both global warming potential and acidification potential because of its high heating value. For all the other impact categories analysed, the two-stage gasification and plasma process shows a negative impact for all the waste streams

  11. Integrating black liquor gasification with pulping - Process simulation, economics and potential benefits

    NASA Astrophysics Data System (ADS)

    Lindstrom, Erik Vilhelm Mathias

    Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit

  12. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  13. The U.S. Department of Energy`s integrated gasification combined cycle research, development and demonstration program

    SciTech Connect

    Brdar, R.D.; Cicero, D.C.

    1996-07-01

    Historically, coal has played a major role as a fuel source for power generation both domestically and abroad. Despite increasingly stringent environmental constraints and affordable natural gas, coal will remain one of the primary fuels for producing electricity. This is due to its abundance throughout the world, low price, ease of transport an export, decreasing capital cost for coal-based systems, and the need to maintain fuel diversity. Recognizing the role coal will continue to play, the US Department of Energy (DOE) is working in partnership with industry to develop ways to use this abundant fuel resource in a manner that is more economical, more efficient and environmentally superior to conventional means to burn coal. The most promising of these technologies is integrated gasification combined cycle (IGCC) systems. Although IGCC systems offer many advantages, there are still several hurdles that must be overcome before the technology achieves widespread commercial acceptance. The major hurdles to commercialization include reducing capital and operating costs, reducing technical risk, demonstrating environmental and technical performance at commercial scale, and demonstrating system reliability and operability. Overcoming these hurdles, as well as continued progress in improving system efficiency, are the goals of the DOE IGCC research, development and demonstrate (RD and D) program. This paper provides an overview of this integrated RD and D program and describes fundamental areas of technology development, key research projects and their related demonstration scale activities.

  14. Integrated mild gasification processing at the Homer City Electric Power Generating Station site. Final report, July 1989--June 1993

    SciTech Connect

    Battista, J.J.; Zawadzki, E.A.

    1993-07-01

    A new process for the production of commercial grade coke, char, and carbon products has been evaluated by Penelec/NYSEG. The process, developed by Coal Technology Corporation, CTC, utilizes a unique screw reactor to produce a devolatilized char from a wide variety of coals for the production of commercial grade coke for use in blast furnaces, foundries, and other processes requiring high quality coke. This process is called the CTC Mild Gasification Process (MGP). The process economics are significantly enhanced by integrating the new technology into an existing power generating complex. Cost savings are realized by the coke producer, the coke user, and the electric utility company. Site specific economic studies involving the Homer City Generating Station site in Western Pennsylvania, confirmed that an integrated MGP at the Homer City site, using coal fines produced at the Homer City Coal Preparation Plant, would reduce capital and operating costs significantly and would enable the HC Owners to eliminate thermal dryers, obtain low cost fuel in the form of combustible gases and liquids, and obtain lower cost replacement coal on the spot market. A previous report, identified as the Interim Report on the Project, details the technical and economic studies.

  15. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines.

    PubMed

    Zhu, Yunhua; Frey, H Christopher

    2006-12-01

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. PMID:17195484

  16. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines

    SciTech Connect

    Yunhua Zhu; H. Christopher Frey

    2006-12-15

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

  17. Mineralization of integrated gasification combined-cycle power-station wastewater effluent by a photo-Fenton process.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; Aguirre, M

    2010-09-01

    The aim of this work was to study the mineralization of wastewater effluent from an integrated-gasification combined-cycle (IGCC) power station sited in Spain to meet the requirements of future environmental legislation. This study was done in a pilot plant using a homogeneous photo-Fenton oxidation process with continuous addition of H(2)O(2) and air to the system. The mineralization process was found to follow pseudo-first-order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The NNs model reproduced the experimental data to within a 90% confidence level and allowed the simulation of the process for any values of the parameters within the experimental range studied. At the optimum conditions (H(2)O(2) flow rate=120 mL/h, [Fe(II)]=7.6 mg/L, pH=3.75 and air flow rate=1 m(3)/h), a 90% mineralization was achieved in 150 min. Determination of the hydrogen peroxide consumed and remaining in the water revealed that 1.2 mol of H(2)O(2) was consumed per each mol of total organic carbon removed from solution. This result confirmed that an excess of dissolved H(2)O(2) was needed to achieve high mineralization rates, so continuous addition of peroxide is recommended for industrial application of this process. Air flow slightly improved the mineralization rate due to the formation of peroxo-organic radicals which enhanced the oxidation process. PMID:20510498

  18. Development of an advanced continuous mild gasification process for the production of coproducts. Task 4, System integration studies: Char upgrading

    SciTech Connect

    Jha, M.C.; McCormick, R.L.; Hogsett, R.F.; Rowe, R.M.; Anast, K.R.

    1991-12-01

    This document describes the results of Task 4 under which a 50 pound/hour char-to-carbon (CTC) process research unit (PRU) was designed in the second half of 1989, with construction completed in June 1990. The CTC PRU at Golden was operated for nearly one year during which 35 runs were completed for a total of nearly 800 hours of operation. Char methanation and carbon production reactor development activities are detailed in this report, as well as the results of integrated runs of the CTC process. Evaluation of the process and the carbon product produced is also included. It was concluded that carbon could be produced from mild gasification char utilizing the CTC process. Char methanation and membrane separation steps performed reasonably well and can scaled up with confidence. However, the novel directly heated reactor system for methane cracking did not work satisfactorily due to materials of construction and heat transfer problems, which adversely affected the quantity and quality of the carbon product. Alternative reactor designs are recommended.

  19. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  20. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  1. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...; manufacture nitrogen-based products in an integrated fertilizer manufacturing complex; and capture and... year of CO 2 would be utilized in fertilizer production. Following the demonstration phase, the...

  2. Recovery, transport, and disposal of CO{sub 2} from an integrated gasification combined-cycle power plant

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1993-12-31

    Initiatives to limit CO{sub 2} emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production and is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy efficiency impacts of controlling CO{sub 2} in such a system, and to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps. The value used for the equivalent CO{sub 2} budget is 1 kg CO{sub 2}/kWh. The base case for the comparison is a 458-MW IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No.6 bituminous coal, and in-bed sulfur removal. Mining, transportation, and preparation of the coal and limestone result in a net electric power production of 448 MW with a 0.872 kg/kWh CO{sub 2} release rate. For comparison, the gasifier output was taken through a water-gas shift to convert CO to CO{sub 2}, and processed in a Selexol unit to recover CO{sub 2} prior to the combustion turbine. A 500-km pipeline then took the CO{sub 2} to geological sequestering. The net electric power production was 383 MW with a 0.218 kg/kWh CO{sub 2} release rate.

  3. Gasification process

    SciTech Connect

    Woldy, P.N.; Kaufman, H.C.; Dach, M.M.; Beall, J.F.

    1981-02-03

    This version of Texaco's gasification process for high-ash-content solids is not extended to include the production of superheated steam, as described in US Patent 4,247,302. The hot, raw gas stream passes through fewer coolers, producing a high-pressure steam instead of a superheated steam.

  4. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    SciTech Connect

    Sterzinger, G J

    1994-05-01

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility.

  5. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  6. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  7. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  8. Solid fuel gasification in the global energy sector (a review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2015-07-01

    In the review of the Conference on Gasification of Solid Fuels, which was held on October 2013 by the United States, the commercial use of the most advanced coal gasification systems in the chemical and power industry is considered. Data on the projects of integrated solid fuel gasification combined-cycle plants, either being developed or exploited in the United States, as well as the nature and results performed in specialized organizations to improve the existing gasification equipment and systems, are presented.

  9. Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    Integrated gasification combined cycle (IGCC) plants are a promising technology option for power generation with carbon dioxide (CO2) capture in view of their efficiency and environmental advantages over conventional coal utilization technologies. This paper presents a three-phase, top-down, optimization-based approach for designing an IGCC plant with precombustion CO2 capture in a process simulator environment. In the first design phase, important global design decisions are made on the basis of plant-wide optimization studies with the aim of increasing IGCC thermal efficiency and thereby making better use of coal resources and reducing CO2 emissions. For the design of an IGCC plant with 90% CO2 capture, the optimal combination of the extent of carbon monoxide (CO) conversion in the water-gas shift (WGS) reactors and the extent of CO2 capture in the SELEXOL process, using dimethylether of polyethylene glycol as the solvent, is determined in the first phase. In the second design phase, the impact of local design decisions is explored considering the optimum values of the decision variables from the first phase as additional constraints. Two decisions are made focusing on the SELEXOL and Claus unit. In the third design phase, the operating conditions are optimized considering the optimum values of the decision variables from the first and second phases as additional constraints. The operational flexibility of the plant must be taken into account before taking final design decisions. Two studies on the operational flexibility of the WGS reactors and one study focusing on the operational flexibility of the sour water stripper (SWS) are presented. At the end of the first iteration, after executing all the phases once, the net plant efficiency (HHV basis) increases to 34.1% compared to 32.5% in a previously published study (DOE/NETL-2007/1281; National Energy Technology Laboratory, 2007). The study shows that the three-phase, top-down design approach presented is very

  10. 2007 gasification technologies conference papers

    SciTech Connect

    2007-07-01

    Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

  11. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  12. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  13. Analyzing organic sulfur in coal/char: Integrated mild gasification/XANES methods. Technical report, 1 March--31 May 1994

    SciTech Connect

    Palmer, S.R.; Huffman, G.P.

    1994-09-01

    The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63% to 4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and preliminary XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450 C; peroxyacetic acid at 25 C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal. Additional samples have recently been examined by XANES and W-band EPR and the data is currently being processed and evaluated.

  14. Hot gas cleanup using solid supported molten salt for integrated coal gasification/molten carbonate fuel cell power plants. Topical report, October 1982-December 1983

    SciTech Connect

    Lyke, S.E.; Sealock, L.J. Jr.; Roberts, G.L.

    1983-12-01

    Battelle, Pacific Northwest Laboratories is developing a solid supported molten salt (SSMS) hot gas cleanup process for integrated coal gasification/molten carbonate fuel cell (MCFC) power plants. Exploratory and demonstration experiments have been completed to select a salt composition and evaluate its potential for simultaneous hydrogen sulfide (H/sub 2/S) and hydrogen chloride (HCl) removal under the conditions projected for the MCFC plants. Results to date indicate that equilibrium capacity and removal efficiencies may be adequate for one step H/sub 2/S and HCl removal. Regeneration produced a lower H/sub 2/S concentration than expected, but one from which sulfur could be recovered. Bench scale experiments will be designed to confirm laboratory results, check carbonyl sulfide removal, refine dual cycle (sulfide-chloride) regeneration techniques and obtain data for engineering/economic evaluation and scale-up. 8 references, 24 figures, 7 tables.

  15. Process screening study of alternative gas treating and sulfur removal systems for IGCC (Integrated Gasification Combined Cycle) power plant applications: Final report

    SciTech Connect

    Biasca, F.E.; Korens, N.; Schulman, B.L.; Simbeck, D.R.

    1987-12-01

    One of the inherent advantages of the Integrated Gasification Combined Cycle plant (IGCC) over other coal-based electric generation technologies is that the sulfur in the coal is converted into a form which can be removed and recovered. Extremely low sulfur oxide emissions can result. Gas treating and sulfur recovery processes for the control of sulfur emissions are an integral part of the overall IGCC plant design. There is a wide range of commercially proven technologies which are highly efficient for sulfur control. In addition, there are many developing technologies and new concepts for applying established technologies which offer potential improvements in both technical and economic performance. SFA Pacific, Inc. has completed a screening study to compare several alternative methods of removing sulfur from the gas streams generated by the Texaco coal gasification process for use in an IGCC plant. The study considered cleaning the gas made from high and low sulfur coals to produce a low sulfur fuel gas and a severely desulfurized synthesis gas (suitable for methanol synthesis), while maintaining a range of low levels of total sulfur emissions. The general approach was to compare the technical performance of the various processes in meeting the desulfurization specifications laid out in EPRI's design basis for the study. The processing scheme being tested at the Cool Water IGCC facility incorporates the Selexol acid gas removal process which is used in combination with a Claus sulfur plant and a SCOT tailgas treating unit. The study has identified several commercial systems, as well as some unusual applications, which can provide efficient removal of sulfur from the fuel gas and also produce extremely low sulfur emissions - so as to meet very stringent sulfur emissions standards. 29 refs., 8 figs., 8 tabs.

  16. Air blown gasification cycle

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Brown, D.; Burnard, G.K.

    1995-12-31

    The Air Blown Gasification Cycle (ABGC) is a hybrid partial gasification cycle based on a novel, air blown pressurized fluidized bed gasifier (PFBG) with a circulating fluidized bed combustor (CFBC) to burn the residual char from the PFBG. The ABGC has been developed primarily as a clean coal generation system and embodies a sulfur capture mechanism based on the addition of limestone, or other sorbent, to the PFBG where it is sulfided in the reducing atmosphere, followed by oxidation to a stable sulfate residue in the CFBC. In order to achieve commercialization, certain key technological issues needed to be addressed and an industry-led consortium was established to develop the components of the system through the prototype plant to commercial exploitation. The consortium, known as the Clean Coal Power Generation Group (CCPGG), is undertaking a program of activity aimed at achieving a design specification for a 75 MWe prototype integrated plant by March, 1996. Component development consists of both the establishment of new components, such as the PFBG and the hot gas clean up system, and specific development of already established components, such as the CFBC, raw gas cooler, heat recovery steam generator (HRSG) and gas turbine. This paper discusses the component development activities and indicates the expected performance and economics of both the prototype and commercial plants. In addition, the strategy for component development and achievement of the specification for a 75 MWe prototype integrated plant is described.

  17. Gasification: redefining clean energy

    SciTech Connect

    2008-05-15

    This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

  18. 2010 Worldwide Gasification Database

    DOE Data Explorer

    The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

  19. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  20. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    NASA Astrophysics Data System (ADS)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  1. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    PubMed

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. PMID:26227570

  2. Treatment of real coal gasification wastewater using a novel integrated system of anoxic hybrid two stage aerobic processes: performance and the role of pure oxygen microbubble.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Shan, Shengdao

    2016-06-01

    A novel integrated system of anoxic-pure oxygen microbubble-activated sludge reactor-moving bed biofilm reactor was employed in treatment of real coal gasification wastewater. The results showed the integrated system had efficient performance of pollutants removal in short hydraulic retention time. While pure oxygen microbubble with the flow rate of 1.5 L/h and NaHCO3 dosage ratio of 2:1 (amount NaHCO3 to NH4 (+)-N ratio, mol: mol) were used, the removal efficiencies of COD, total phenols (TPh) and NH4 (+)-N reached 90, 95, and 95 %, respectively, with the influent loading rates of 3.4 kg COD/(m(3) d), 0.81 kg TPh/(m(3) d), and 0.28 kg NH4 (+)-N/(m(3) d). With the recycle ratio of 300 %, the concentrations of NO2 (-)-N and NO3 (-)-N in effluent decreased to 12 and 59 mg/L, respectively. Meanwhile, pure oxygen microbubble significantly improved the enzymatic activities and affected the effluent organic compositions and reduced the foam expansion. Thus, the novel integrated system with efficient, stable, and economical advantages was suitable for engineering application. PMID:26961523

  3. Coal gasification for electric power generation.

    PubMed

    Spencer, D F; Gluckman, M J; Alpert, S B

    1982-03-26

    The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

  4. Coal Gasification (chapter only)

    SciTech Connect

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2002-11-15

    Coal gasification is presented in terms of the chemistry of coal conversion and the product gas characteristics, the historical development of coal gasifiers, variations in the types and performance of coal gasifiers, the configuration of gasification systems, and the status and economics of coal gasification. In many ways, coal gasification processes have been tailored to adapt to the different types of coal feedstocks available. Gasification technology is presented from a historical perspective considering early uses of coal, the first practical demonstration and utilization of coal gasification, and the evolution of the various processes used for coal gasification. The development of the gasification industry is traced from its inception to its current status in the world economy. Each type of gasifier is considered focusing on the process innovations required to meet the changing market needs. Complete gasification systems are described including typical system configurations, required system attributes, and aspects of the industry's environmental and performance demands. The current status, economics of gasification technology, and future of gasification are also discussed.

  5. Integrated Sensing & Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier & Syngas Cooler. Topical Rerport for Phase III

    SciTech Connect

    Kumar, Aditya

    2011-02-17

    This Topical Report for the final Phase III of the program summarizes the results from the Task 3 of the program. In this task, the separately designed extended Kalman Filter (EKF) and model predictive controls (MPC) with ideal sensing, developed in Phase II, were integrated to achieve the overall sensing and control system for the gasification section of an IGCC plant. The EKF and MPC algorithms were updated and re-tuned to achieve closed-loop system stability as well as good steady-state and transient control response. In particular, the performance of the integrated EKF and MPC solution was tested extensively through multiple simulation studies to achieve improved steady-state as well as transient performance, with coal as well as coal-petcoke blended fuel, in the presence of unknown modeling errors as well as sensor errors (noise and bias). The simulation studies demonstrated significant improvements in steady state and transient operation performance, similar to that achieved by MPC with ideal sensors in Phase II of the program.

  6. Coal gasification players, projects, prospects

    SciTech Connect

    Blankinship, S.

    2006-07-15

    Integrated gasification combined cycle (IGCC) technology has been running refineries and chemical plants for decades. Power applications have dotted the globe. Two major IGCC demonstration plants operating in the United States since the mid-1900s have helped set the stage for prime time, which is now approaching. Two major reference plant designs are in the wings and at least two major US utilities are poised to build their own IGCC power plants. 2 figs.

  7. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  8. An integrated process for hydrogen-rich gas production from cotton stalks: The simultaneous gasification of pyrolysis gases and char in an entrained flow bed reactor.

    PubMed

    Chen, Zhiyuan; Zhang, Suping; Chen, Zhenqi; Ding, Ding

    2015-12-01

    An integrated process (pyrolysis, gas-solid simultaneous gasification and catalytic steam reforming) was utilized to produce hydrogen-rich gas from cotton stalks. The simultaneous conversion of the pyrolysis products (char and pyrolysis gases) was emphatically investigated using an entrained flow bed reactor. More carbon of char is converted into hydrogen-rich gas in the simultaneous conversion process and the carbon conversion is increased from 78.84% to 92.06% compared with the two stages process (pyrolysis and catalytic steam reforming). The distribution of tar components is also changed in this process. The polycyclic aromatic compounds (PACs) of tar are converted into low-ring compounds or even chain compounds due to the catalysis of char. In addition, the carbon deposition yield over NiO/MgO catalyst in the steam reforming process is approximately 4 times higher without the simultaneous process. The potential H2 yield increases from 47.71 to 78.19g/kg cotton stalks due to the simultaneous conversion process. PMID:26433156

  9. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  10. Evaluation and modification of ASPEN fixed-bed gasifier models for inclusion in an integrated gasification combined-cycle power plant simulation

    SciTech Connect

    Stefano, J.M.

    1985-05-01

    Several Advanced System for Process Engineering (ASPEN) fixed-bed gasifier models have been evaluated to determine which is the most suitable model for use in an integrated gasification combined-cycle (IGCC) power plant simulation. Four existing ASPEN models were considered: RGAS, a dry ash gasifier model developed by Halcon/Scientific Design Company; USRWEN, the WEN II dry ash gasifier model originally developed by C.Y. Wen at West Virginia University; the slagging gasifier model developed by Massachusetts Institute of Technology (MIT) and based on Continental Oil Company's (CONOCO) design study for the proposed Pipeline Demonstration Plant; and the ORNL dry ash gasifier model developed by Oak Ridge National Laboratory for the simulation of the Tri-States Indirect Liquefaction Process. Because none of the models studied were suitable in their present form for inclusion in an IGCC power plant simulation, the SLAGGER model was developed by making significant modifications to the MIT model. The major problems with the existing ASPEN models were most often inaccurate material and energy balances, limitations of coal type, or long run times. The SLAGGER model includes simplifications and improvements over the MIT model, runs quickly (less than 30 seconds of computer time on a VAX-11/780), and gives more accurate mass and energy balances.

  11. System calculation of integrated coal gasification/molten carbonate fuel cell combined cycle. Reflection of electricity generating performances of practical cell

    NASA Astrophysics Data System (ADS)

    Yoshiba, Fumihiko; Izaki, Yoshiyuki; Watanabe, Takao

    Materials and heat balance of integrated coal gasification/molten carbonate fuel cell (IG/MCFC) combined system are calculated considering the electricity generating performance of the practical cell. The considered gas conditions that are required to stabilise the electricity generation of MCFCs are the non-carbon deposition condition, the lower limit of H 2 concentration at the anode outlet of 1 mol% and the upper limit of CO 2 partial pressure on the cathode inlet gas of 0.1 MPa. The anode gas recycling system and the anode heat exchange system have been studied supposing a not-equilibrium state of water-gas shift reaction in anode gas channel. From the investigation on carbon deposition at the anode inlet gas, the anode gas recycling system requires approximately 80% re-circulation of the anode outlet gas, whereas the anode heat exchange system needs 60% humidity of the fuel gas. The fuel utilisation in the anode gas recycling system should be set lower than in the anode heat exchange system. The net thermal efficiency of the anode gas recycling system has a peak for CO 2 partial pressure where the net thermal efficiency of the anode heat exchange system increases as the CO 2 partial pressure of the cathode gas decreases.

  12. Energy and exergy analyses of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent.

    PubMed

    Li, Sheng; Jin, Hongguang; Gao, Lin; Mumford, Kathryn Anne; Smith, Kathryn; Stevens, Geoff

    2014-12-16

    Energy and exergy analyses were studied for an integrated gasification combined cycle (IGCC) power plant with CO2 capture using hot potassium carbonate solvent. The study focused on the combined impact of the CO conversion ratio in the water gas shift (WGS) unit and CO2 recovery rate on component exergy destruction, plant efficiency, and energy penalty for CO2 capture. A theoretical limit for the minimal efficiency penalty for CO2 capture was also provided. It was found that total plant exergy destruction increased almost linearly with CO2 recovery rate and CO conversion ratio at low CO conversion ratios, but the exergy destruction from the WGS unit and the whole plant increased sharply when the CO conversion ratio was higher than 98.5% at the design WGS conditions, leading to a significant decrease in plant efficiency and increase in efficiency penalty for CO2 capture. When carbon capture rate was over around 70%, via a combination of around 100% CO2 recovery rate and lower CO conversion ratios, the efficiency penalty for CO2 capture was reduced. The minimal efficiency penalty for CO2 capture was estimated to be around 5.0 percentage points at design conditions in an IGCC plant with 90% carbon capture. Unlike the traditional aim of 100% CO conversion, it was recommended that extremely high CO conversion ratios should not be considered in order to decrease the energy penalty for CO2 capture and increase plant efficiency. PMID:25389800

  13. The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)

    SciTech Connect

    1996-12-01

    A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

  14. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  15. Gasification-based biomass

    SciTech Connect

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  16. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  17. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; O`Keefe, C.A.; Katrinak, K.; Allan, S.E.; Hassett, D.J.; Hauserman, W.B.; Zygarlicke, C.J.

    1995-11-01

    The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior.

  18. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.; Erickson, T.A.; Zygarlicke, C.J.

    1995-12-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  19. Trace metal transformation in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.; Katrinak, K.A.; Allen, S.E.; Hassett, D.J.; Hauserman, W.B.; Holcombe, N.T.

    1996-12-31

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to 1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, 2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and 3) identify methods to control trace element emissions.

  20. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be

  1. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    SciTech Connect

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  2. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2010-01-08

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  3. Gasification: A Cornerstone Technology

    SciTech Connect

    Gary Stiegel

    2008-03-26

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  4. 2006 gasification technologies conference papers

    SciTech Connect

    2006-07-01

    Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

  5. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas

  6. EMERY BIOMASS GASIFICATION POWER SYSTEM

    SciTech Connect

    Benjamin Phillips; Scott Hassett; Harry Gatley

    2002-11-27

    Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

  7. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  8. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  9. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  10. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  11. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    NASA Astrophysics Data System (ADS)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  12. Wabash River coal gasification repowering project: Public design report

    SciTech Connect

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  13. Underground Coal Gasification Program

    Energy Science and Technology Software Center (ESTSC)

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large,more » almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.« less

  14. Behavior of trace metals in simulated gasification conditions

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.

    1995-03-01

    The fate of trace metals is being investigated in two emerging coal gasification electric power-generating systems: integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC). Some of the trace metals in coal are considered air toxics when released into the atmosphere and can also cause the degradation of fuel cell efficiency as a result of contamination. The fate of trace metals during coal conversion in GCC and IGFC systems is closely tied to how the trace metals are associated in the coal and gasification conditions. Bench- and pilot-scale gasification experiments were performed using Illinois No. 6 coal to determine the partitioning of mercury, selenium, arsenic, nickel, cadmium, lead, and chromium into gas, liquid, and solid phases as a function of gasification conditions and coal composition. Entrained ash was collected from the small-scale reactor using a multicyclone and impinger sampling train. Coal analysis revealed arsenic, mercury, nickel, lead, and selenium to be primarily associated with pyrite. Chromium was associated primarily with clay minerals, and cadmium appeared to have mostly an organic association. The partitioning during gasification indicated that chromium, lead, and nickel were enriched in the small ash particulate fraction (less than 1.5 {mu}m), while arsenic, selenium, and mercury were depleted in the particulate and more enriched in the vapor-phase fraction (collected in the impingers). Oxygen contents were varied to represent both combustion and gasification systems. Most of the work was conducted at lower oxygen-to-carbon ratios. Lower oxygen-to-carbon ratios resulted in more reducing environments in the gasification system, which appeared to drive more mercury to the vapor phase. Under constant oxygen-to-carbon ratios, mercury, selenium, and cadmium showed increasing volatility with increasing reaction zone temperature.

  15. Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4. 1 to 4. 6), Volume 2

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. ); Duthie, R.G. ); Wootten, J.M. )

    1991-09-01

    Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

  16. Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    SciTech Connect

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

    2011-12-15

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  17. Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    SciTech Connect

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E.

    2012-02-08

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  18. Atmospheric pressure gasification process for power generation

    SciTech Connect

    Morris, M.

    1996-12-31

    Since 1987 TPS Termiska Processer AB has been working on the development of both a biomass-fueled circulating fluidized bed (CFB) gasification process and a downstream dolomite catalytic tar removal process. The combined process has been developed in a 2 MWth pilot plant which was built originally for investigating the use of the product gas in a diesel motor cogeneration plant. A prototype gasification plant comprising two waste-fueled 15 MWth CFB gasifiers has been installed in Greve-in-Chianti, Italy. Since 1990, TPS has been working on the development of a biomass-fueled integrated gasification combined-cycle scheme utilizing both a CFB gasifier and a CFB tar cracker. In 1992, TPS was contracted by the Global Environmental Facility (GEF) to perform work for Phase II of the Brazilian BIG-GT (Biomass Integrated Gasification-Gas Turbine) project. This stage of the project involved both experimental and engineering studies and the basic engineering for a 30 MWe eucalyptus-fueled power plant in Brazil. The plant is based on the GE LM 2500 gas turbine. During this stage of the project the TPS process was in competition with a process from a pressurized gasification technology vendor. However, in 1995 TPS was selected for participation in Phase III of the project. Phase III of the project includes construction and commissioning of the plant. Involvement in the Brazilian BIG-GT project has served as a springboard for the participation of TPS in similar projects in the Netherlands and the UK. In the UK, ARBRE Energy Limited is constructing a coppice-fueled 8 MWe plant with support from the EU THERMIE program and the UKs NFFO (Non Fossil Fuel Obligation). The design contract will be awarded in late 1996. In the Netherlands, a number of projects for biomass and wastes are being pursued by TPS in cooperation with Royal Schelde of the Netherlands.

  19. Variable capacity gasification burner

    SciTech Connect

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  20. Advanced hybrid gasification facility

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; Johnson, S.A.; Dixit, V.B.

    1993-08-01

    The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

  1. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  2. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  3. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  4. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  5. Innovative gasification technology for future power generation

    SciTech Connect

    Mahajan, K.; Shadle, L.J.; Sadowski, R.S.

    1995-07-01

    Ever tightening environmental regulations have changed the way utility and non-utility electric generation providers currently view their fuels choices. While coal is still, by far, the major fuel utilized in power production, the general trend over the past 20 years has been to switch to low-sulfur coal and/or make costly modifications to existing coal-fired facilities to reach environmental compliance. Unfortunately, this approach has led to fragmented solutions to balance our energy and environmental needs. To date, few integrated gasification combined-cycle (IGCC) suppliers have been able to compete with the cost of other more conventional technologies or fuels. One need only look at the complexity of many IGCC approaches to understand that unless a view toward IEC is adopted, the widespread application of such otherwise potentially attractive technologies will be unlikely in our lifetime. Jacobs-Sirrine Engineers and Riley Stoker Corporation are working in partnership with the Department of Energy`s Morgantown Energy Technology Center to help demonstrate an innovative coal gasification technology called {open_quotes}PyGas{trademark},{close_quotes} for {open_quotes}pyrolysis-gasification{close_quotes}. This hybrid variation of fluidized-bed and fixed-bed gasification technologies is being developed with the goal to efficiently produce clean gas at costs competitive with more conventional systems by incorporating many of the principles of IEC within the confines of a single-gasifier vessel. Our project is currently in the detailed design stage of a 4 ton-per-hour gasification facility to be built at the Fort Martin Station of Allegheny Power Services. By locating the test facility at an existing coal-fired plant, much of the facility infrastructure can be utilized saving significant costs. Successful demonstration of this technology at this new facility is a prerequisite to its commercialization.

  6. Conceptual design report -- Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Skinner, W.H.; House, L.S.; Duck, R.R.; Lisauskas, R.A.; Dixit, V.J.; Morgan, M.E.; Johnson, S.A.; Boni, A.A.

    1994-09-01

    The problems heretofore with coal gasification and IGCC concepts have been their high cost and historical poor performance of fixed-bed gasifiers, particularly on caking coals. The Gasification Product Improvement Facility (GPIF) project is being developed to solve these problems through the development of a novel coal gasification invention which incorporates pyrolysis (carbonization) with gasification (fixed-bed). It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration caused in the conventional process of gradually heating coal through the 400 F to 900 F range. In so doing, the coal is rapidly heated sufficiently such that the coal tar exists in gaseous form rather than as a liquid. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can become chemically bound to aluminosilicates in (or added to) the ash. To reduce NH{sub 3} and HCN from fuel born nitrogen, steam injection is minimized, and residual nitrogen compounds are partially chemically reduced in the cracking stage in the upper gasifier region. Assuming testing confirms successful deployment of all these integrated processes, future IGCC applications will be much simplified, require significantly less mechanical components, and will likely achieve the $1,000/kWe commercialized system cost goal of the GPIF project. This report describes the process and its operation, design of the plant and equipment, site requirements, and the cost and schedule. 23 refs., 45 figs., 23 tabs.

  7. Gasification Plant Cost and Performance Optimization

    SciTech Connect

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    facility based on the Subtask 3.2 design. The air-blown case was chosen since it was less costly and had a better return on investment than the oxygen-blown gasifier case. Under appropriate conditions, this study showed a combined heat and power air-blown gasification facility could be an attractive option for upgrading or expanding the utilities area of industrial facilities. Subtask 3.4 developed a base case design for a large lignite-fueled IGCC power plant that uses the advanced GE 7FB combustion turbine to be located at a generic North Dakota site. This plant uses low-level waste heat to dry the lignite that otherwise would be rejected to the atmosphere. Although this base case plant design is economically attractive, further enhancements should be investigated. Furthermore, since this is an oxygen-blown facility, it has the potential for capture and sequestration of CO{sub 2}. The third objective for Task 3 was accomplished by having NETL personnel working closely with Nexant and Gas Technology Institute personnel during execution of this project. Technology development will be the key to the long-term commercialization of gasification technologies. This will be important to the integration of this environmentally superior solid fuel technology into the existing mix of power plants and industrial facilities. As a result of this study, several areas have been identified in which research and development will further advance gasification technology. Such areas include improved system availability, development of warm-gas clean up technologies, and improved subsystem designs.

  8. Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4.1 to 4.6), Volume 2. Final report

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H.; Duthie, R.G.; Wootten, J.M.

    1991-09-01

    Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

  9. Gasification reactivities of solid biomass fuels

    SciTech Connect

    Moilanen, A.; Kurkela, E.

    1995-12-31

    The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

  10. Catalysis in biomass gasification

    SciTech Connect

    Baker, E.G.; Mudge, L.K.

    1984-06-01

    The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

  11. PNNL Coal Gasification Research

    SciTech Connect

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  12. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  13. Development of solar coal gasification technology

    SciTech Connect

    Adinberg, R.; Epstein, M.

    1996-12-31

    This paper describes an approach to the development and characterization of a solar-assisted coal gasification plant. Two solar receivers for steam coal gasification, both on a sub pilot scale, have been designed and set up at the Weizmann Institute`s solar facilities for tests under the conditions of highly concentrated solar radiation. In spite of the fact that chemical reactors of different types, one-tubular and the second-volumetric, have been installed in each of these receivers, they have in common the integration of a reactor and associated steam generator into one complex solar thermal system. The receiver constructed of a reaction tube coupled with a superheated steam generator provides processing of grained carbonaceous materials at temperature as high as 900--950 C with a sufficiently high rate of the syngas yield. Results from a series of the windowed reactor/receiver tests are also successful, demonstrating the suitability of this reactor for operating in a wide range of conditions required for coal gasification. Being designed in a certain degree of simplicity, that is adequate to the present stage of problem initiation, the receivers employed need to be optimized in order to achieve considerable efficiency of solar thermal power conversion into the energy of product gas. Results show that the temperature of process steam can strongly influence the system performance.

  14. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  15. Gasification Product Improvement Facility (GPIF). Final report

    SciTech Connect

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

  16. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct

  17. Coal gasification cogeneration process

    SciTech Connect

    Marten, J.H.

    1990-10-16

    This patent describes a process for the coproduction of a combustible first gas stream usable as an energy source, a sulfur-dioxide-containing second gas stream usable as a source for oxidant in the gasification of coal and a sulfur-dioxide-containing third gas stream usable as a feedstock for the production of sulfuric acid. It comprises: reacting coal in a coal gasification zone in the presence of an oxidant under partial coal-gasifying conditions to produce carbonaceous char and a crude gas stream; separating sulfur-containing compounds from the crude gas stream in a sulfur recovery zone to produce a combustible first gas stream and elemental sulfur; reacting the carbonaceous char and gypsum in a reaction zone in proportions such that the non-gypsum portion of the carbonaceous char and gypsum mixture contains sufficient reducing potential to reduce sulfur in the gypsum to gaseous compounds of sulfur in a +4 or lower oxidation state under reducing conditions to produce first a sulfur-dioxide-containing second gas stream which contains weaker SO{sub 2} produced in an early stage of the reaction zone and removed from the reaction zone, and then a sulfur-dioxide-containing third gas stream which contains concentrated SO{sub 2} recovered from a later stage of the reaction zone.

  18. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  19. Gasification of hybrid feedstock using animal manures and hays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

  20. Combustion Engineering Integrated Gasification Combined Cycle (IGCC) Repowering Project -- Clean Coal II Project. Annual report, November 20, 1990--December 31, 1991

    SciTech Connect

    Not Available

    1993-03-01

    The IGCC system will consist of CE`s air-blown, entrained-flow, two-stage, pressurized coal gasifier; an advanced hot gas cleanup process; a combustion turbine adapted to use low-Btu coal gas; and all necessary coal handling equipment. The IGCC will include CE`s slogging, entrained-flow, gasifier operating in a pressurized mode and using air as the oxidant. The hot gas will be cleaned of particulate matter (char) which is recycled back to the gasifier. After particulate removal, the product gas will be cleaned of sulfur prior to burning in a gas turbine. The proposed project includes design and demonstration of two advanced hot gas cleanup processes for removal of sulfur from the product gas of the gasifier. The primary sulfur removal method features a newly developed moving-bed zinc ferrite system downstream of the gasifier. The process data from these pilot tests is expected to be sufficient for the design of a full-scale system to be used in the proposed demonstration. A second complementary process is in situ desulfurization achieved by adding limestone or dolomite directly to the coal feed. The benefit, should such an approach prove viable, is that the downstream cleanup system could be reduced in size. In this plant, the gasifier will be producing a low-Btu gas (LBG). The LBG will be used as fuel in a standard GE gas turbine to produce power. This gas turbine will have the capability to fire LBG and natural gas (for start-up). Since firing LBG uses less air than natural gas, the gas turbine air compressor will have extra capacity. This extra compressed air will be used to pressurize the gasifier and supply the air needed in the gasification process. The plant is made of three major blocks of equipment as shown in Figure 2. They are the fuel gas island which includes the gasifier and gas cleanup, gas turbine power block, and the steam turbine block which includes the steam turbine and the HRSG.

  1. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  2. Wabash River coal gasification repowering project -- first year operation experience

    SciTech Connect

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  3. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  4. Materials of Gasification

    SciTech Connect

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  5. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  6. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  7. June 2007 gasification technologies workshop papers

    SciTech Connect

    2007-06-15

    Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

  8. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  9. Method and system for controlling a gasification or partial oxidation process

    SciTech Connect

    Rozelle, Peter L; Der, Victor K

    2015-02-10

    A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.

  10. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect

    Wilzbach, K.E.; Reilly, C.A. Jr.

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  11. Beluga Coal Gasification - ISER

    SciTech Connect

    Steve Colt

    2008-12-31

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  12. Biothermal gasification of biomass

    SciTech Connect

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  13. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

  14. Beluga coal gasification feasibility study

    SciTech Connect

    Robert Chaney; Lawrence Van Bibber

    2006-07-15

    The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

  15. Geosphere in underground coal gasification

    SciTech Connect

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  16. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-01-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  17. Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant

    SciTech Connect

    Steinfeld, G.; Wilson, W.G.

    1993-06-01

    Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

  18. Mild coal gasification: Product separation

    SciTech Connect

    Wallman, P.H.; Singleton, M.F.

    1992-08-04

    Our general objective is to further the development of efficient continuous mild coal gasification processes. The research this year has been focused on product separation problems and particularly the problem of separating entrained ultra-fine particles from the chemically reactive environment of the product gas stream. Specifically, the objective of the present work has been to study candidate barrier filters for application to mild coal gasification processes. Our approach has been to select the most promising existing designs, to develop a design of our own and to test the designs in our bench-scale gasification apparatus. As a first step towards selection of the most promising barrier filter we have determined coking rates on several candidate filter media.

  19. Summary report: Trace substance emissions from a coal-fired gasification plant

    SciTech Connect

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  20. Coal gasification 2006: roadmap to commercialization

    SciTech Connect

    2006-05-15

    Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

  1. Pilot gasification and hot gas cleanup operations

    SciTech Connect

    Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

    1995-12-31

    The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

  2. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  3. Costs and technical characteristics of environmental control processes for low-Btu coal gasification plants

    SciTech Connect

    Singh, S.P.N.; Salmon, R.; Fisher, J.F.; Peterson, G.R.

    1980-06-01

    Technical characteristics and costs of 25 individual environmental control processes that can be used for treating low-Btu coal gas are given. These processes are chosen from a much larger array of potential environmental control processes because of their likely applicability to low-Btu coal gasification operations and because of the limited scope of this study. The selected processes cover gas treating, by-product recovery, wastewater treating, and particulate recovery operations that are expected to be encountered in coal gasification operations. Although the existence of the Resource Conservtion and Recovery Act of 1976 is recognized, no treatment schemes for solid wastes are evaluated because of the paucity of information in this area. The potential costs of emission controls (by using eight integrated combinations of these 25 environmental control processes) in conceptual low-Btu coal gasification plants are given in an adjunct report titled Evaluation of Eight Environmental Control Systems for Low-Btu Coal Gasification Plants, ORNL-5481.

  4. Wood Gasification in a Lab-Scale Bubbling Fluidized Bed: Experiment and Simulation

    NASA Astrophysics Data System (ADS)

    He, L.; Schotte, E.; Thomas, S.; Schlinkert, A.; Herrmann, A.; Mosch, V.; Rajendran, V.; Heinrich, S.

    In theory, an integrated biomass gasification and fuel cell system has a higher overall plant efficiency when compared to the efficiency of biomass gasification combined with simple combustion systems and gas engines. In order to develop a prototype of this new concept of power plant operating in the range of l50kW to 5MW, several institutes of the Max Planck Society and the Fraunhofer-Gesellschaft in Germany have been working on the ProBio project with focus on the theoretical and experimental investigation of an integrated 1-2kWe system. The paper will firstly describe the gasification unit of the system: a lab-scale atmospheric bubbling fluidized bed gasifier. Wood gasification experiments were conducted and the influence of operation parameters, i.e. gasification agents, equivalence ratio ER and steam to biomass ratio SIB on gas yield and gas composition was analyzed. In parallel with the experimental work, chemical kinetics of wood gasification was studied and simulated. Furthermore, simulation of bubbling fluidized bed hydrodynamics at high temperature, using commercial computational fluid dynamics (CFD) software FLUENT, was also conducted to better understand the phenomenon of fluidization inside the bed.

  5. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. ); Duthie, R.G. ); Wootten, J.M. )

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  6. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  7. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  8. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  9. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  10. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  11. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  12. Plasma gasification of coal in different oxidants

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2008-12-15

    Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

  13. Underground coal gasification using oxygen and steam

    SciTech Connect

    Yang, L.H.; Zhang, X.; Liu, S.

    2009-07-01

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  14. Fuel Flexibility in Gasification

    SciTech Connect

    McLendon, T. Robert; Pineault, Richard L.; Richardson, Steven W.; Rockey, John M.; Beer, Stephen K.; Lui, Alain P.; Batton, William A.

    2001-11-06

    coal to percent by weight sawdust. The mixtures of interest were: 65/35 subbituminous, 75/25 subbituminous, 85/15 subbituminous, and 75/25 bituminous. Steady state was achieved quickly when going from one subbituminous mixture to another, but longer when going from subbituminous to bituminous coal. The most apparent observation when comparing the base case to subbituminous coal/sawdust mixtures is that operating conditions are nearly the same. Product gas does not change much in composition and temperatures remain nearly the same. Comparisons of identical weight ratios of sawdust and subbituminous and bituminous mixtures show considerable changes in operating conditions and gas composition. The highly caking bituminous coal used in this test swelled up and became about half as dense as the comparable subbituminous coal char. Some adjustments were required in accommodating changes in solids removal during the test. Nearly all the solids in the bituminous coal sawdust were conveyed into the upper freeboard section and removed at the mid-level of the reactor. This is in marked contrast to the ash-agglomerating condition where most solids are removed at the very bottom of the gasifier. Temperatures in the bottom of the reactor during the bituminous test were very high and difficult to control. The most significant discovery of the tests was that the addition of sawdust allowed gasification of a coal type that had previously resulted in nearly instant clinkering of the gasifier. Several previous attempts at using Pittsburgh No. 8 were done only at the end of the tests when shutdown was imminent anyway. It is speculated that the fine wood dust somehow coats the pyrolyzed sticky bituminous coal particles and prevents them from agglomerating quickly. As the bituminous coal char particles swell, they are carried to the cooler upper regions of the reactor where they re-solidify. Other interesting phenomena were revealed regarding the transport (rheological) properties of the

  15. Kinetics characteristics of straw semi-char gasification with carbon dioxide.

    PubMed

    Xiao, Ruirui; Yang, Wei

    2016-05-01

    The gasification process has promising potential as a solution for the current global energy problem. Kinetics characteristics of straw semi-char gasification were investigated. The main influence factors of gasification, which include bio-char particle size, pyrolysis temperature and pyrolysis atmosphere, were studied. The smaller the particle size is, the higher is the conversion rate. The gasification reactivity of semi-chars increases with pyrolysis temperature and reaches its maximum at approximately 400°C. The straw semi-char obtained in an H2 pyrolysis atmosphere has the best gasification reactivity, while the semi-char obtained in a CO2 atmosphere has the worst reactivity. In addition, characteristics of semi-char were systematically tested. A random pore model, unreacted core shrinking model and integrated model were employed to describe the reactive behavior of semi-chars. Gasification kinetics parameters were calculated. The random pore model fitting result is in better agreement with the experiments than that of the other two models. PMID:26890792

  16. Coal gasification plant

    DOEpatents

    Wood, Andrew

    1978-01-01

    A removable annular hearth member, shaped to fit over the slag outlet of a slagging gasifier, comprises a cast body of high thermal conductivity having integral coolant passageways, said passageways being formed by shaping a metal tube into a coil having an inlet and an outlet, and casting metal to the desired shape around the coil such that the inlet and outlet communicate exteriorly of the cast body.

  17. Coal gasification plant

    SciTech Connect

    Brooks, C.T.

    1980-03-11

    A removable annular hearth member, shaped to fit over the slag outlet member of a slagging gasifier, comprises a cast body of high thermal conductivity having integral liquid coolant passageways, the central openings of the annular hearth member and slag outlet member being arranged in vertical alignment for the discharge of slag, and the lower portion of the hearth member opening having a lip or beak extending downwardly so as to form a sealed joint with the slag outlet opening whereby in operation of the gasifier to prevent preparation of molten slag therebetween.

  18. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  19. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  20. COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS

    EPA Science Inventory

    The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

  1. Updraft gasification of salmon processing waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  2. Coal gasification plant

    SciTech Connect

    Hebden, D.; Brooks, C.T.

    1984-12-11

    A slagging gasifier has a hearth comprising an annular solid cast structure formed from a high thermal conductivity metal such as copper and shaped to fit above a slag tap of the gasifier. The hearth is provided with one or more integrally formed passageways for circulating a coolant liquid therethrough and has an upper tundish surface with a slope of at least 10/sup 0/ to the horizontal (preferably between 25/sup 0/ and 45/sup 0/), across which tundish surface the molten slag flows downwardly and inwardly towards the slag tap. The annular structure may be formed from at least three sector-shaped cast parts secured together in situ in the gasifier.

  3. Fundamental aspects of catalysed coal char gasification

    NASA Astrophysics Data System (ADS)

    Gangwal, S. K.; Truesdale, R. S.

    1980-06-01

    A brief review of the basic aspects of catalysed coal char gasification is presented. Kinetics and mechanisms of catalysed and uncatalysed gasification reactions of coal char with steam, carbon dioxide and hydrogen are discussed. Mass transport effects and internal structure of coals are shown to be important in determining rates of these reactions. The importance of the type of catalyst used is also discussed. Such factors as catalyst cations and anions, the method by which the catalyst is contacted with the coal char, and physical and chemical states of the catalyst both prior to and during reaction are shown to be important in the gasification process. Finally, research instruments and equipment used recently for studies in catalysed gasification are reviewed. These include various types of reactor systems for following the course of these reactions and analytical instruments for assessing the physical and/or chemical state of the catalysts and/or coal char both prior to and during the gasification reactions.

  4. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-11-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  5. Gasification Product Improvement Facility (GPIF)

    SciTech Connect

    Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

    1992-01-01

    The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

  6. Shell Coal Gasification Project. Final report on eighteen diverse feeds

    SciTech Connect

    Phillips, J.N.; Kiszka, M.B.; Mahagaokar, U.; Krewinghaus, A.B.

    1993-07-01

    This report summarizes the overall performance of the Shell Coal Gasification Process at SCGP-1 in Deer Park, Texas. It covers the four year demonstration and experimental program jointly conducted by Shell oil and Shell Internationale Research Maatschappij, with support from the Electric Power Research Institute. The report describes coal properties and gasification results on eighteen feeds which include seventeen diverse coals from domestic and international markets, and petroleum coke. Comparisons between design premises and actual performance on two key feeds, Illinois No. 5 coal and Texas lignite demonstrate that the plant met and exceeded design targets on all key process parameters. Equipment performance results are discussed for all areas of the plant based on periodic interim inspections, and the final inspection conducted in April 1991 after the end of operations. The report describes process control tests conducted in gasifier lead and turbine lead configurations, demonstrating the ability of the process to meet utility requirements for load following. Environmental result on the process for a wide variety of feedstocks are documented. These results underscore the inherent strength of the SCGP technology in meeting and exceeding all environmental standards for air, water and solids. The excellent applicability of the Shell Coal Gasification Process in integrated combined cycle power generation systems is described in view of the high efficiency derived from this process.

  7. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect

    Calderon, A.; Madison, E.; Probert, P.

    1992-01-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  8. Calderon coal gasification Process Development Unit design and test program

    SciTech Connect

    Calderon, A.; Madison, E.; Probert, P.

    1992-11-01

    The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

  9. Gasification of New Zealand coals: a comparative simulation study

    SciTech Connect

    Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

    2008-07-15

    The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. Gasification of these coals was simulated in an integrated gasification combined cycle (IGCC) application and associated preliminary economics compared. A simple method of coal characterization was developed for simulation purposes. The carbon, hydrogen, and oxygen content of the coal was represented by a three component vapor solid system of carbon, methane, and water, the composition of which was derived from proximate analysis data on fixed carbon and volatile matter, and the gross calorific value, both on a dry, ash free basis. The gasification process was modeled using Gibb's free energy minimization. Data from the U.S. Department of Energy's Shell Gasifier base cases using Illinios No. 6 coal was used to verify both the gasifier and the IGCC flowsheet models. The H:C and O:C ratios of the NZ coals were adjusted until the simulated gasifier output composition and temperature matched the values with the base case. The IGCC power output and other key operating variables such as gas turbine inlet and exhaust temperatures were kept constant for study of comparative economics. The results indicated that 16% more lignite than sub-bituminous coal was required. This translated into the requirement of a larger gasifier and air separation unit, but smaller gas and steam turbines were required. The gasifier was the largest sole contributor (30%) to the estimated capital cost of the IGCC plant. The overall cost differential associated with the processing of lignite versus processing sub-bituminous coal was estimated to be of the order of NZ $0.8/tonne. 13 refs., 9 tabs.

  10. Use of coal gasification in compressed-air energy storage systems

    SciTech Connect

    Nakhamkin, M. )

    1989-09-01

    This report presents the results of a study conducted by Energy Storage and Power Consultants (ESPC) whose objective was to try to develop a cost effective Compressed Air Energy Storage (CAES) power plant concept integrated with the Texaco Coal Gasification System (TCGS). The capital cost of a coal gasification system is significantly higher than some other power plant systems and if operated at low capacity factors, the total cost of electricity would not be competitive. One of the main objectives of this study was to try to develop a concept which would provide continuous operation of the gasification system and, as a result, improve the plant economics through better utilization of its expensive components. Five CAES/TCGS concepts have been identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilized various configurations of conventional reheat turbomachinery trains specifically developed for CAES application, the GE Frame 7F, Frame 7E and LM5000 gas turbine units as parts of the integrated CAES/TCGS plant concepts. The project resulted in development of integrated CAES/TCGS plant concepts which were optimized to provide TCGS capacity factors up to over 90%. Cursory economics for some of the integrated CAES/TCGS concepts are slightly better than those of a conventional integrated coal gasification-combined-cycle (IGCC) plant. 25 figs., 8 tabs.

  11. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  12. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  13. Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

  14. COAL GASIFICATION/GAS CLEANUP TEST FACILITY: VOLUME I. DESCRIPTION AND OPERATION

    EPA Science Inventory

    The report describes an integrated fluidized-bed coal gasification reactor and acid gas removal system. The gasifier operates at 100 psig at up to 2000 F, and has a coal feed capacity of 50 lb/hr. The gas cleaning system contains a cyclone, a venturi scrubber, and an absorber/fla...

  15. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1. Final report

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H.; Duthie, R.G.; Wootten, J.M.

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  16. Pulsed combustion process for black liquor gasification

    SciTech Connect

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  17. Low/medium Btu coal gasification assessment program for potential users in New Jersey: executive summary

    SciTech Connect

    Not Available

    1981-05-01

    This preliminary study evaluation has manifested an overall technical and economic feasibility for producing a medium Btu quality gas (MBG) from coal at PSE and G's Sewaren Generating Station in New Jersey. The production of MBG for use as a fuel gas for on-site power plant boilers or for distribution to industrial customers appears to be economically attractive. The economic attractiveness of MBG is very dependent on the location of sufficient numbers of industrial customers near the gasification facilities and on high utilization of the gasification plant. The Sewaren Generating Station was identified as potentially the most suitable site for a gasification plant. The Texaco Coal Gasification Process (TCGP) was selected as the gasifier type due to a combination of efficiency and pilot plant experience. Further, it has the advantage of being a pressurized process, capable of supplying the gas without downstream compression which is required if the gas is to be transported to industrial consumers. The TCGP can handle the high sulfur eastern coals chosen as a feedstock. All equipment downstream of the gasifier is commercially proven. For maximum efficiency and flexibility, it would be desirable to consider the integration of the gasification process with a methanol synthesis plant, consuming up to 25% of the MBG produced. Such a combination scheme would allow storage of MBG when its demand is low and thereby increasing the gasifier capacity factor and minimizing its turndown requirements.

  18. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  19. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  20. Advanced high-temperature, high-pressure transport reactor gasification

    SciTech Connect

    Swanson, M.L.

    1999-07-01

    The mission of the U.S. Department of Energy's (DOE's) Federal Energy Technology Center Office of Power Systems Product Management is to foster the development and deployment of advanced, clean, and affordable fossil-based (coal) power systems. These advanced power systems include the development and demonstration of gasification-based advanced power systems. These systems are integral parts of the Vision 21 Program for the co-production of power and chemicals which is being developed at DOE. DOE has been developing advanced gasification systems which lower the capital and operating cost of producing syngas for electricity or chemicals production. A transport reactor gasifier has shown potential to be a low-cost syngas producer as compared to other gasification systems because of its high throughput. This work directly supports the Power Systems Development Facility (PSDF) utilizing the Kellogg, Brown and Root (KBR) transport reactor located at the Southern Company Services (SCS) Wilsonville, Alabama, site. Over 1000 hours of operation on three different fuels in the pilot-scale transport reactor development unit (TRDU) has been completed to date. The Energy and Environmental Research Center (EERC) has established an extensive database on the operation of various fuels in a transport reactor gasifier. This database will be useful in determining the effectiveness of design changes on a transport reactor gasifier. It has been demonstrated that corrected fuel gas heating values ranging between 105 to 130 Btu/scf can be achieved. Factors that affect the TRDU product gas quality appear to be circulation rate, coal type, temperature, and air:coal and steam:coal ratios. Future plans are to modify the transport reactor mixing zone and J-leg loop seal to increase backmixing, thereby increasing solids residence time and gasifier performance. Enriched air- and oxygen-blown gasification tests, especially on widely available low-cost fuels such as petroleum coke, will also be

  1. Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994

    SciTech Connect

    1997-07-01

    Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

  2. Investigation of plasma-aided bituminous coal gasification

    SciTech Connect

    Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B.

    2009-04-15

    This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

  3. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    PubMed

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. PMID:20060289

  4. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and

  5. Wabash River Coal Gasification Repowering Project: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2002-01-15

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million.

  6. Coal gasification using solar energy

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.; Breault, R. W.; Lakshmanan, S.

    1983-01-01

    An economic evaluation of conventional and solar thermal coal gasification processes is presented, together with laboratory bench scale tests of a solar carbonization unit. The solar design consists of a heliostat field, a central tower receiver, a gasifier, and a recirculation loop. The synthetic gas is produced in the gasifier, with part of the gas upgraded to CH4 and another redirected through the receiver with steam to form CO and H2. Carbonaceous fuels are burned whenever sunlight is not available. Comparisons are made for costs of Lurgi, Bi-gas, Hygas, CO2 Acceptor, and Peat Gas processes and hybrid units for each. Solar thermal systems are projected to become economical with 350 MWt output and production of 1,420,000 cu m of gas per day. The laboratory bench scale unit was tested with Montana rosebud coal to derive a heat balance assessment and analyse the product gas. Successful heat transfer through a carrier gas was demonstrated, with most of the energy being stored in the product gas.

  7. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  8. Solar gasification of carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Taylor, R. W.; Berjoan, R.; Coutures, J. P.

    1983-01-01

    Charcoal, wood and paper have ben gasified in a packed-bed reactor using steam and solar energy. The steam was generated by spraying water directly on to the surface of the fuel and, at the same time, heating the fuel at the focus of a solar furnace. Half of the steam reacted with carbon and 30 pct of the incident solar energy was stored as chemical enthalpy. The performance of a fluidized-bed reactor was compared to that of a packed-bed reactor using charcoal and CO2. The fraction of the incident solar energy utilized to produce CO (stored) was 10 pct in the case of the fluidized-bed reactor and 40 pct for the packed-bed reactor. The fuel value of the gas produced from the steam-gasification of wood and paper was 65 kcal/mole (320 Btu/lb). On an ash free basis the volume yield of the gas was within 0.1 of 1 cu m/kq.

  9. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  10. Uses found for gasification slag

    SciTech Connect

    Not Available

    1986-12-01

    A study carried out for the Electric Power Research Institute by Praxis Engineers, Inc. has examined possible uses for the gasifier slag produced during coal gasification. After describing some of the problems foreseen to market development, seven categories of uses are listed and briefly discussed. The possible uses for slag identified are: (1) Agriculture (soil conditioner, lime substitute, low analysis fertilizer, carrier for insecticides); (2) Industrial material (abrasive grit, catalyst and adsorbent, roofing granules, industrial filler, mineral wool production, filter media); (3) Cement and Concrete (concrete aggregate, mortar/grouting material, pozzolanic admixture, raw materials for Portland cement production, masonary unit production); (4) Road Construction and Maintenance (de-icing grit, fine aggregate for bituminous pavement, base aggregate, sub-base aggregate, seal-cost aggregate); (5) Synthetic Aggregate (lightweight construction aggregate, landscaping material, sand substitute); (6) Land Fill and Soil Stabilization (soil conditioner for improving stability, structural fill, embankment material); (7) Resource Recovery (source of carbon, magnetite, iron, aluminium, and other metals). 2 tables.

  11. Solar coal gasification - Plant design and economics

    NASA Astrophysics Data System (ADS)

    Aiman, W. R.; Thorsness, C. B.; Gregg, D. W.

    A plant design and economic analysis is presented for solar coal gasification (SCG). Coal pyrolysis and char gasification to form the gasified product are reviewed, noting that the endothermic gasification reactions occur only at temperatures exceeding 1000 K, an energy input of 101-136 kJ/mol of char reformed. Use of solar heat offers the possibility of replacing fuels needed to perform the gasification and the oxygen necessary in order to produce a nitrogen-free product. Reactions, energetics, and byproducts from the gasification of subbituminous coal are modeled for a process analysis code used for the SCG plant. Gas generation is designed to occur in a unit exposed to the solar flux focus from a heliostat field. The SCG gas would have an H2 content of 88%, compared to the 55% offered by the Lurgi process. Initial capital costs for the SCG plant are projected to be 4 times those with the Lurgi process, with equality being achieved when coal costs $4/gJ.

  12. Chicken-Bio Nuggets Gasification process

    SciTech Connect

    Sheth, A.C.

    1996-12-31

    With the cost of landfill disposal skyrocketing and land availability becoming scarce, better options are required for managing our nation`s biomass waste. In response to this need, the University of Tennessee Space Institute (UTSI) is evaluating an innovative idea (described as Chicken-Bio Nuggets Gasification process) to gasify waste products from the poultry industry and industrial wood/biomass-based residues in {open_quotes}as-is{close_quotes} or aggregate form. The presence of potassium salts in the poultry waste as well as in the biomass can act as a catalyst in reducing the severity of the thermal gasification. As a result, the mixture of these waste products can be gasified at a much lower temperature (1,300-1,400{degrees}F versus 1,800-2,000{degrees}F for conventional thermal gasification). Also, these potassium salts act as a catalyst by accelerating the gasification reaction and enhancing the mediation reaction. Hence, the product gas from this UTSI concept can be richer in methane and probably can be used as a source of fuel (to replace propane in hard reach remote places) or as a chemical feed stock. Exxon Research and Engineering Company has tested a similar catalytic gasification concept in a fluid-bed gasifier using coal in a one ton/day pilot plant in Baytown, Texas. If found technically and economically feasible, this concept can be later on extended to include other kinds of waste products such as cow manure and wastes from swine, etc.

  13. Apparatus for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  14. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  15. Imperium/Lanzatech Syngas Fermentation Project - Biomass Gasification and Syngas Conditioning for Fermentation Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-12-474

    SciTech Connect

    Wilcox, E.

    2014-09-01

    LanzaTech and NREL will investigate the integration between biomass gasification and LanzaTech's proprietary gas fermentation process to produce ethanol and 2,3-butanediol. Using three feed materials (woody biomass, agricultural residue and herbaceous grass) NREL will produce syngas via steam indirect gasification and syngas conditioning over a range of process relevant operating conditions. The gasification temperature, steam-to-biomass ratio of the biomass feed into the gasifier, and several levels of syngas conditioning (based on temperature) will be varied to produce multiple syngas streams that will be fed directly to 10 liter seed fermenters operating with the Lanzatech organism. The NREL gasification system will then be integrated with LanzaTech's laboratory pilot unit to produce large-scale samples of ethanol and 2,3-butanediol for conversion to fuels and chemicals.

  16. Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-09-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fifteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Rosebud subbituminous coal, from June 17, 1985 to June 24, 1985. 4 refs., 20 figs., 15 tabs.

  17. Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal

    SciTech Connect

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

  18. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    SciTech Connect

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  19. Biomass Gasification Technology Assessment: Consolidated Report

    SciTech Connect

    Worley, M.; Yale, J.

    2012-11-01

    Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

  20. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  1. Process for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  2. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable. PMID:19799663

  3. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. PMID:25755167

  4. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  5. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  6. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  7. Continuous Removal of Coal-Gasification Residue

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

    1986-01-01

    Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

  8. Updraft Fixed Bed Gasification Aspen Plus Model

    Energy Science and Technology Software Center (ESTSC)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability ofmore » the process model.« less

  9. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  10. Recent design and cost studies for air blown gasification

    SciTech Connect

    Dawes, S.G.; Mordecai, M.; Welford, G.B.; Otter, N.R.

    1997-12-31

    The Air Blown Gasification Cycle (ABGC) (formerly known as the British Coal Topping Cycle) is a high efficiency low cost system for producing power with excellent environmental performance. High efficiency is achieved without the complexity associated with other advanced cycles and the technology can be introduced in a modular fashion. Being a simple air blown fluid bed gasifier and combustor combination it is capable of using a wide range of fuels and is particularly suited for dealing with high ash melting point fuels found in areas of the world short of natural gas. An extensive program of pilot plant testing of a variety of fuels is now being completed on the test facility at the Coal Technology Development Division (CTDD) of British Coal as part of a UK program to develop the Air Blown Gasification Cycle. This program is supplying data to produce a design specification for a Prototype Integrated Plant (PIP) of around 90 MWe, and is managed by a consortium, the Clean Coal Power Generation Group. The paper summarizes recent results and operating experience for the pilot plant including fuel behavior studies, research in hot gas cleaning (particulate and gaseous contaminants), and gas combustion experience. The various cost studies undertaken on the ABGC are outlined and compared, including recent studies by EPRI.