Science.gov

Sample records for integrated geophysical strategy

  1. A Proposal for an Integrated Geophysical Strategy to "Follow the Water" on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.; George, J. A.; Stoker, C. R.; Briggs, G.; Beaty, D. W.

    2001-01-01

    In this abstract we propose an integrated strategy for the geophysical exploration of Mars that we believe represents the fastest, most cost-effective, and technically capable approach to identifying the state and distribution of subsurface water. Additional information is contained in the original extended abstract.

  2. A Proposal for an Integrated Geophysical Strategy to "Follow the Water" on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.; George, J. A.; Stoker, C. R.; Briggs, G.; Beaty, D. W.

    2001-01-01

    . For this reason, any exploration activity (such as drilling) whose success is contingent on the presence of subsurface water, must be preceded by a comprehensive high-resolution geophysical survey capable of assessing whether local reservoirs of water and ice actually exist. Terrestrial experience has demonstrated that the accurate identification of such targets is likely to require the application of multiple geophysical techniques. In this abstract we propose an integrated strategy for the geophysical exploration of Mars that we believe represents the fastest, most cost-effect, and technically capable approach to identifying the state and distribution of subsurface water. Additional information is contained in the original extended abstract.

  3. An Integrated Geophysical Strategy for the Characterization of a Gas Permeable Structure

    NASA Astrophysics Data System (ADS)

    Pettinelli, E.; Zaja, A.; Menghini, A.; Cecchini, F.; Margottini, S.; di Filippo, M.; Beaubien, S. E.; Annunziatellis, A.; Citotoli, G.; Lombardi, S.

    2009-04-01

    was studied, first with gas geochemical methods (CO2 soil concentration and flux) to define its extent and form, and then with a number of geophysical methods (hammer seismic, microgravity, ground penetrating radar, time domain reflectometry, frequency domain electromagnetic and 2D and 3D electrical resistivity tomography) to test their response and sensitivity, and to extend previous work conducted on this site (e.g. Annunziatellis et al., 2008; Pettinelli et al., 2008). The various datasets were merged and compared, with the combined results giving a coherent picture of the gas permeable structure. In fact, all methods are in good agreement, and show lateral variations in the soil physical properties which are related to the influence of the gas vent on the mineralogy and the water content of the shallow sediments and soil. In particular, the electrical and electromagnetic techniques put in evidence that the non-vegetated central part of the gas vent has extremely conductive. Finally, the results obtained with the different methods allowed us to define the orientation of the buried fault which causes the CO2 migration at surface. References Annunziatellis, A., Beaubien, S.E., Bigi, S., Ciotoli, G., Coltella, M., Lombardi, S. (2008) Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage. Int. J. Greenhouse Gas Control, 2/3, 353-372, doi:10.1016/j.ijggc.2008.02.003. Pettinelli E., S.E. Beaubien, S. Lombardi, and A.P. Annan (2008) GPR, TDR and geochemistry for the characterization of an active gas vent: development of monitoring strategies for CO2 geological sequestration sites Geophysics, 73(1), pp. A11-A15.

  4. Data Integration for Interpretation of Near-Surface Geophysical Tomograms

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.; Singha, K.

    2007-12-01

    Traditionally, interpretation of geophysical tomograms for geologic structure or engineering properties has been either qualitative, or based on petrophysical or statistical mapping to convert tomograms of the geophysical parameter (e.g., seismic velocity, radar velocity, or electrical conductivity) to some hydraulic parameter or engineering property of interest (e.g., hydraulic conductivity, porosity, or shear strength). Standard approaches to petrophysical and statistical mapping do not account for variable geophysical resolution, and thus it is difficult to obtain reliable, quantitative estimates of hydrologic properties or to characterize hydrologic processes in situ. Recent research to understand the limitations of tomograms for quantitative estimation points to the need for data integration. We divide near-surface geophysical data integration into two categories: 'inversion-based' and 'post- inversion' approaches. The first category includes 'informed-inversion' strategies that integrate complementary information in the form of prior information; constraints; physically-based regularization or parameterization; or coupled inversion. Post-inversion approaches include probabilistic frameworks to map tomograms to models of engineering properties, while accounting for geophysical resolution, survey design, heterogeneity, and physical models for hydrologic processes. Here, we review recent research demonstrating the need for, and advantages of, data integration. We present examples of both inversion-based and post-inversion data integration to reduce uncertainty, improve interpretation of near-surface geophysical results, and produce more reliable predictive models.

  5. Integrated Approaches On Archaeo-Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.

    2015-12-01

    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support

  6. Field Geophysics at SAGE: Strategies for Effective Education

    NASA Astrophysics Data System (ADS)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  7. Integrated Research and Capacity Building in Geophysics

    NASA Astrophysics Data System (ADS)

    Willemann, R. J.; Lerner-Lam, A.; Nyblade, A.

    2008-05-01

    There have been special opportunities over the past several years to improve the ways that newly-constructed geophysical observatories in Southeast Asia and the Americas are linked with educational and civil institutions. Because these opportunities have been only partially fulfilled, there remains the possibility that new networks will not fully address desired goals or even lose operational capabilities. In contrast, the AfricaArray project continues to progress towards goals for linkages among education, research, mitigation and observatories. With support from the Office of International Science and Education at the US National Science Foundation, we convened a workshop to explore lessons learned from the AfricaArray experience and their relevance to network development opportunities in other regions. We found closer parallels than we expected between geophysical infrastructure in the predominantly low income countries of Africa with low risk of geophysical disasters and the mostly middle-income countries of Southeast Asia and the Americas with high risk of geophysical disasters. Except in larger countries of South America, workshop participants reported that there are very few geophysicists engaged in research and observatory operations, that geophysical education programs are nearly non-existent even at the undergraduate university level, and that many monitoring agencies continue to focus on limited missions even though closer relationships researchers could facilitate new services that would make important contributions to disaster mitigation and sustainable operations. Workshop participants began discussing plans for international research collaborations that, unlike many projects of even the recent past, would include long-term capacity building and disaster mitigation among their goals. Specific project objectives would include national or regional hazard mapping, development of indigenous education programs, training to address the needs of local

  8. Strategies for joint geophysical survey design

    NASA Astrophysics Data System (ADS)

    Shakas, Alexis; Maurer, Hansruedi

    2015-04-01

    In recent years, the use of multiple geophysical techniques to image the subsurface has become a popular option. Joint inversions of geophysical datasets are based on the assumption that the spatial variations of the different physical subsurface parameters exhibit structural similarities. In this work, we combine the benefits of joint inversions of geophysical datasets with recent innovations in optimized experimental design. These techniques maximize the data information content while minimizing the data acquisition costs. Experimental design has been used in geophysics over the last twenty years, but it has never been attempted to combine various geophysical imaging methods. We combine direct current geoelectrics, magnetotellurics and seismic refraction travel time tomography data to resolve synthetic 1D layered Earth models. An initial model for the subsurface structure can be taken from a priori geological information and an optimal joint geophysical survey can be designed around the initial model. Another typical scenario includes an existing data set from a past survey and a subsequent survey that is planned to optimally complement the existing data. Our results demonstrate that the joint design methodology provides optimized combinations of data sets that include only a few data points. Nevertheless, they allow constraining the subsurface models equally well as data from a densely sampled survey. Furthermore, we examine the dependency of optimized survey design on the a priori model assumptions. Finally, we apply the methodology to geoelectric and seismic field data collected along 2D profiles.

  9. Integrated Geophysical Detection of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    2001-11-01

    Identification of subsurface organic contamination, particularly dense nonaqueous phase liquids (DNAPLs) is one of the highest priorities - and among the most difficult - for remediation of numerous sites, including those of the DOD and DOE. Complex resistivity (CR) is the only geophysical method that has been demonstrated in the laboratory to have high sensitivity to organic compounds, by detecting responses indicative of clay-organic electrochemistry. However, direct detection of organics in the field has been elusive, in part due to the difficulty of obtaining robust measurements at very low contaminant levels in the presence of heterogeneous geological materials and cultural interference (such as metallic utilities and remediation plumbing). This project sought to improve the capability to detect DNAPL by (1) better geophysical imaging of geological pathways that control DNAPL movement and (2) direct detection by detailed comparison of CR lab to field data using this improved imaging. For the first goal, algorithms were developed for the joint tomographic imaging of seismic and resistivity data. The method requires that an empirical relationship can be established between seismic and resistivity; if values are ultimately tied to specific lithologies, then the final tomographic product can be an actual geological cross-section. Because shallow subsurface investigations are now commonly performed using a cone penetrometer (CPT) a new vibratory seismic source was developed to identify sites with clay-organic reactions measurable in the lab from core samples, perform reconnaissance field surveys, and proceed to detailed 2D or 3D cross-hole imaging.

  10. HydroImage: A New Software for HydroGeophysical and BioGeophysical Data Integration

    NASA Astrophysics Data System (ADS)

    Suribhatla, R. M.; Mok, C. M.; Kaback, D.; Chen, J.; Hubbard, S. S.

    2011-12-01

    Hydrogeophysical and biogeophysical data integration have recently emerged as cost-effective and rapid techniques for improving subsurface characterization and monitoring. In a Bayesian framework for integration, borehole based data provide prior distribution and geophysical information serve as data to update the prior through likelihood functions obtained from petrophysical models between borehole and cross-well data. We present the application of a Windows-based software called HydroImage that uses this Bayesian framework for data integration and visualization. HydroImage can be used for geostatistical estimation, geophysical tomographic inversion, petrophysical model development, and Bayesian integration. We demonstrate HydroImage using three different field datasets to estimate different subsurface states or parameters. The first example combines wellbore flowmeter test data and crosshole seismic and ground penetrating radar (GPR) data to estimate hydraulic conductivity at the DOE Bacterial Transport Site in Oyster, Virginia. The second example focuses on using time-lapse radar data to estimate moisture content dynamics associated with a desiccation test performed to remediate the deep vadose zone in Hanford, Washington. The third example demonstrates the use of spectral induced polarization data to estimate the spatial and temporal distribution of geochemical parameters that are indicative of the redox state of a contaminated aquifer.

  11. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  12. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    there is an attitudinal shift emerging whereby disaster risk management can be "mainstreamed" into the sustainable development programs in many countries. Consequently, it is incumbent to demonstrate that multi-scale geophysical monitoring, comprising integration of global networks with national and sub-national operations, is a foundational component of sustainable development infrastructure. This suggests even greater emphasis on developing dynamic and adaptive multi- hazard risk assessments, encompassing valid estimates of social and physical vulnerabilities; designing multi- scale network integration strategies that consider risk as well as hazard; providing operational and flexible templates for developing national networks in a global context; emphasizing the backbone characteristics of global geophysical monitoring to nations seeking to develop their own monitoring capacity; promoting sustained international research, education and training collaborations coinciding with the development of monitoring capacity; and continuing to promote the free and open exchange of data as a necessary component of sustained intellectual interest in monitoring. A combination of these strategies may counteract the decay of interest in regional geophysical monitoring after a disaster.

  13. Integrated geophysical and chemical study of saline water intrusion.

    PubMed

    Choudhury, Kalpan; Saha, D K

    2004-01-01

    Surface geophysical surveys provide an effective way to image the subsurface and the ground water zone without a large number of observation wells. DC resistivity sounding generally identifies the subsurface formations-the aquifer zone as well as the formations saturated with saline/brackish water. However, the method has serious ambiguities in distinguishing the geological formations of similar resistivities such as saline sand and saline clay, or water quality such as fresh or saline, in a low resistivity formation. In order to minimize the ambiguity and ascertain the efficacy of data integration techniques in ground water and saline contamination studies, a combined geophysical survey and periodic chemical analysis of ground water were carried out employing DC resistivity profiling, resistivity sounding, and shallow seismic refraction methods. By constraining resistivity interpretation with inputs from seismic refraction and chemical analysis, the data integration study proved to be a powerful method for identification of the subsurface formations, ground water zones, the subsurface saline/brackish water zones, and the probable mode and cause of saline water intrusion in an inland aquifer. A case study presented here illustrates these principles. Resistivity sounding alone had earlier failed to identify the different formations in the saline environment. Data integration and resistivity interpretation constrained by water quality analysis led to a new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking. PMID:15457790

  14. Integrated Geophysical Analysis at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Yang, X.; Mellors, R. J.; Sweeney, J. J.; Sussman, A. J.

    2015-12-01

    We integrate magnetic, electromagnetic (EM), gravity, and seismic data to develop a unified and consistent model of the subsurface at the U20ak site on Pahute Mesa at the Nevada National Nuclear Security Site (NNSS). The 1985 test, conducted in tuff at a depth of approximately 600 m did not collapse to the surface or produce a crater. The purpose of the geophysical measurements is to characterize the subsurface above and around the presumed explosion cavity. The magnetic data are used to locate steel borehole casings and pipes and are correlated with surface observations. The EM data show variation in lithology at depth and clear signatures from borehole casings and surface cables. The gravity survey detects a clear gravity low in the area of the explosion. The seismic data indicates shallow low velocity zone and indications of a deeper low velocity zones. In this study, we conduct 2D inversion of EM data for better characterization of site geology and use a common 3D density model to jointly interpret both the seismic and gravity data along with constraints on lithology boundaries from the EM. The integration of disparate geophysical datasets allows improved understanding of the non-prompt physical signatures of an underground nuclear explosion (UNE). LLNL Release Number: LLNL-ABS-675677. The authors express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, and the Comprehensive Inspection Technologies and UNESE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was performed by Lawrence Livermore National Laboratory and Los Alamos National Laboratory under award number DE-AC52-06NA25946.

  15. Integration of remote sensing and geophysical techniques for coastal monitoring

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Loperte, A.; Satriani, A.; Imbrenda, V.; D'Emilio, M.; Guariglia, A.

    2009-04-01

    Coastal areas are of great environmental, economic, social, cultural and recreational relevance; therefore, the implementation of suitable monitoring and protection actions is fundamental for their preservation and for assuring future use of this resource. Such actions have to be based on an ecosystem perspective for preserving coastal environment integrity and functioning and for planning sustainable resource management of both the marine and terrestrial components (ICZM-EU initiative). We implemented an integrated study based on remote sensing and geophysical techniques for monitoring a coastal area located along the Ionian side of Basilicata region (Southern Italy). This area, between the Bradano and Basento river mouths, is mainly characterized by a narrow shore (10-30 m) of fine sandy formations and by a pine forest planted in the first decade of 50's in order to preserve the coast and the inland cultivated areas. Due to drought and fire events and saltwater intrusion phenomena, such a forest is affected by a strong decline with consequent environmental problems. Multispectral satellite data were adopted for evaluating the spatio-temporal features of coastal vegetation and the structure of forested patterns. The increase or decrease in vegetation activity was analyzed from trends estimated on a time series of NDVI (Normalized Difference Vegetation Index) maps. The fragmentation/connection levels of vegetated patterns was assessed form a set of landscape ecology metrics elaborated at different structure scales (patch, class and landscape) on satellite cover classifications. Information on shoreline changes were derived form a multi-source data set (satellite data, field-GPS surveys and Aerial Laser Scanner acquisitions) by taking also into account tidal effects. Geophysical campaigns were performed for characterizing soil features and limits of salty water infiltrations. Form vertical resistivity soundings (VES), soil resistivity maps at different a deeps (0

  16. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    SciTech Connect

    Keating, Kristina; Slater, Lee; Ntarlagiannis, Dimitris; Williams, Kenneth H.

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  17. Geophysical investigation of subrosion processes - an integrated approach

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja; Krawczyk, Charlotte

    2016-04-01

    Subrosion, i.e., leaching of readily soluble rocks mostly due to groundwater, is usually of natural origin but can be enhanced by anthropogenic interferences. In recent years, public awareness of subrosion processes in terms of the in parts catastrophic implications and incidences increased. Especially the sinkholes in Schmalkalden and Tiefenort (Germany) are - based on unforeseen collapse events and associated damage in 2010 - two dramatic examples. They illustrate that to date the knowledge of those processes and therefore the predictability of such events is insufficient. The complexity of the processes requires an integrated geophysical approach which investigates the interlinking of structure, hydraulics, solution processes, and mechanics. This finally contributes to a better understanding of the processes by reliable imaging and characterisation of subrosion structures. At LIAG an inter-sectional group is engaged in geophysical investigation of subrosion processes. The focus is application, enhancement and combination of various geophysical methods both at surface and in boreholes. This includes monitoring of (surface) deformation and variation of gravity as well as seismic, geoelectric and electromagnetic methods. Petrophysical investigations (with focus on spectral induced polarisation - SIP) are conducted to characterise the processes on pore scale. Numerical studies are applied to advance the understanding of void forming processes and the mechanical consequences in the dynamic interaction. Since March 2014, quarterly campaigns are conducted to monitor time-lapse gravity changes at 12 stations in the urban area of Bad Frankenhausen. The standard deviations of the gravity differences between the survey points are low and the accompanying levelling locally shows continuous subsidence in the mm/year-range. Eight shear-wave reflection seismic profiles were surveyed in Bad Frankenhausen using a landstreamer and an electro-dynamic vibrator. This method is

  18. Integrated Geophysical Methods Applied to Geotechnical and Geohazard Engineering: From Qualitative to Quantitative Analysis and Interpretation

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2014-12-01

    The Near-Surface is a region of day-to-day human activity on the earth. It is exposed to the natural phenomena which sometimes cause disasters. This presentation covers a broad spectrum of the geotechnical and geohazard ways of mitigating disaster and conserving the natural environment using geophysical methods and emphasizes the contribution of geophysics to such issues. The presentation focusses on the usefulness of geophysical surveys in providing information to mitigate disasters, rather than the theoretical details of a particular technique. Several techniques are introduced at the level of concept and application. Topics include various geohazard and geoenvironmental applications, such as for earthquake disaster mitigation, preventing floods triggered by tremendous rain, for environmental conservation and studying the effect of global warming. Among the geophysical techniques, the active and passive surface wave, refraction and resistivity methods are mainly highlighted. Together with the geophysical techniques, several related issues, such as performance-based design, standardization or regularization, internet access and databases are also discussed. The presentation discusses the application of geophysical methods to engineering investigations from non-uniqueness point of view and introduces the concepts of integrated and quantitative. Most geophysical analyses are essentially non-unique and it is very difficult to obtain unique and reliable engineering solutions from only one geophysical method (Fig. 1). The only practical way to improve the reliability of investigation is the joint use of several geophysical and geotechnical investigation methods, an integrated approach to geophysics. The result of a geophysical method is generally vague, here is a high-velocity layer, it may be bed rock, this low resistivity section may contain clayey soils. Such vague, qualitative and subjective interpretation is not worthwhile on general engineering design works

  19. GEOFIM: A WebGIS application for integrated geophysical modeling in active volcanic regions

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda; Napoli, Rosalba; Sicali, Antonino; Greco, Filippo; Negro, Ciro Del

    2014-09-01

    We present GEOFIM (GEOphysical Forward/Inverse Modeling), a WebGIS application for integrated interpretation of multiparametric geophysical observations. It has been developed to jointly interpret scalar and vector magnetic data, gravity data, as well as geodetic data, from GPS, tiltmeter, strainmeter and InSAR observations, recorded in active volcanic areas. GEOFIM gathers a library of analytical solutions, which provides an estimate of the geophysical signals due to perturbations in the thermal and stress state of the volcano. The integrated geophysical modeling can be performed by a simple trial and errors forward modeling or by an inversion procedure based on NSGA-II algorithm. The software capability was tested on the multiparametric data set recorded during the 2008-2009 Etna flank eruption onset. The results encourage to exploit this approach to develop a near-real-time warning system for a quantitative model-based assessment of geophysical observations in areas where different parameters are routinely monitored.

  20. An integrated geophysical study of the northern Kenya rift

    NASA Astrophysics Data System (ADS)

    Mariita, Nicolas O.; Keller, G. Randy

    2007-06-01

    The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the contact between the Archean Tanzania craton and the Proterozoic Mozambique orogenic belt. Recent geophysical investigations focused on the tectonic evolution of the East African rift and on exploration for geothermal energy in the southern portion of the Kenyan rift provide considerable information and insight on the structure and evolution of the lithosphere. In the north, a variety of other data exist. However, the lack of an integrated regional analysis of these data was the motivation for this study. Our study began with the collection and compilation of gravity data, and then we used the seismic refraction results from the Kenya Rift International Seismic Project (KRISP), published seismic reflection data, aeromagnetic data, and geologic and drilling data as constraints in the construction of integrated gravity models. These models and gravity anomaly maps provide insight on spatial variations in crustal thickness and upper mantle structure. In addition, they show the distribution of basins and help characterize the distribution of magmatism along the axis of the northern sector of the rift. Our main observations are the following: (1) the region of thinning and anomalous mantle widens northward in agreement with previous studies showing that the crust thins from about 35 km in the south to 20 km in the north; (2) as observed in the south, gravity highs observed along the axis are due to mafic

  1. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  2. A new data logger for integrated geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Orazi, Massimo; Peluso, Rosario; Caputo, Antonio; Giudicepietro, Flora; Martini, Marcello

    2015-04-01

    GILDA digital recorder is a data logger developed at Osservatorio Vesuviano (INGV). It provides excellent data quality with low power consumption and low production cost. It is widely used in the multi-parametric monitoring networks of Neapolitan volcanoes and Stromboli volcano. We have improved the characteristics of GILDA recorder to realize a robust user-oriented acquisition system for integrated geophysical monitoring. We have designed and implemented new capabilities concerning the use of the low rate channels to get data of environmental parameters of the station. We also improved the stand-alone version of the data logger. This version can be particularly useful for scientific experiments and to rapidly upgrade permanent monitoring networks. Furthermore, the local storage can be used as back-up for the monitoring systems in continuous transmission, in case of failure of the transmission system. Some firmware changes have been made in order to improve the performance of the instrument. In particular, the low rate acquisition channels were conditioned to acquire internal parameters of the recorder such as the temperature and voltage. A prototype of the new version of the logger is currently installed at Campi Flegrei for a experimental application. Our experiment is aimed at testing the new version of GILDA data logger in multi-board configuration for multiparametric acquisitions. A second objective of the experiment is the comparison of the recorded data with geochemical data acquired by a multiparametric geochemical station to investigate possible correlations between seismic and geochemical parameters. The target site of the experiment is "Bocca Grande" fumarole in Solfatara volcano. By exploiting the modularity of GILDA, for the experiment has been realized an acquisition system based on three dataloggers for a total of 12 available channels. One of GILDA recorders is the Master and the other two are Slaves. The Master is responsible for the initial

  3. Integrating Technology: Strategies.

    ERIC Educational Resources Information Center

    Kercher, Lydia

    Developed by participants in an inservice workshop at the University of Wyoming, this manual lists 26 educational strategies that make use of current educational technologies, their corresponding skill development, and the content areas involved. For example, one strategy listed is to have students create their own letterhead to be used throughout…

  4. Gulf Coast Subsidence: Integration of Geodesy, Geophysical Modeling, and Interferometric Synthetic Aperture Radar Observations

    NASA Astrophysics Data System (ADS)

    Blom, R. G.; Chapman, B. D.; Deese, R.; Dokka, R. K.; Fielding, E. J.; Hawkins, B.; Hensley, S.; Ivins, E. R.; Jones, C. E.; Kent, J. D.; Liu, Z.; Lohman, R.; Zheng, Y.

    2012-12-01

    The vulnerability of the US Gulf Coast has received increased attention in the years since hurricanes Katrina and Rita. Agencies responsible for the long-term protection of lives and infrastructure require precise estimates of future subsidence and sea level rise. A quantitative, geophysically based methodology can provide such estimates by incorporating geological data, geodetic measurements, geophysical models of non-elastic mechanical behavior at depth, and geographically comprehensive deformation monitoring made possible with measurements from Interferometric Synthetic Aperture Radar (InSAR). To be effective, results must be available to user agencies in a format suitable for integration within existing decision-support processes. Work to date has included analysis of historical and continuing ground-based geodetic measurements. These reveal a surprising degree of complexity, including regions that are subsiding at rates faster than those considered for hurricane protection planning of New Orleans and other coastal communities (http://www.mvn.usace.army.mil/pdf/hps_verticalsettlement.pdf) as well as Louisiana's coastal restoration strategies (http://www.coast2050.gov/2050reports.htm) (Dokka, 2011, J. Geophys. Res., 116, B06403, doi:10.1029/2010JB008008). Traditional geodetic measurements provide precise information at single points, while InSAR observations provide geographically comprehensive measurements of surface deformation at lower vertical precision. Available InSAR data sources include X-, C- and L-band satellite, and NASA/JPL airborne UAVSAR L-band data. The Gulf Coast environment is very challenging for InSAR techniques, especially with systems not designed for interferometry. For example, the shorter wavelength C-band data decorrelates over short time periods requiring more elaborate time-series analysis techniques, with which we've had some success. Meanwhile, preliminary analysis of limited L-Band ALOS/PALSAR satellite data show promise

  5. Non-Bayesian Information Fusion for Integrating Hydrologic and Multiple Sets of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Ozbek, M. M.; Pinder, G. F.

    2005-12-01

    Combination of geological, geophysical and geohydrological data derived from disparate sources is a cost-effective and scientifically challenging approach to maximizing information on the subsurface. Existing studies have limitations in that no universal methods are available for converting geophysical attributes to geohydrological ones due to the inconsistency in the methods of geophysical data acquisition and interpretation and the fact that the complementary nature of the geophysical methods are not exploited. Indeed, there is no single geophysical method effective in most environmental and subsurface conditions, and all are strongly scenario-dependent. Thus it becomes essential to characterize the information that each individual geophysical method provides in combination. Our approach explicitly quantifies and integrates into the characterization process the insight of a geophysicist on i) the individual capabilities that geophysical methods have and ii) what the meaning of the data is that they produce when interpreted collectively. A model based upon the mathematics of fuzzy set theory based approximate reasoning and of belief theory is used address the following problems: 1) the use of geological and hydrogeological knowledge that relates geological conditions to hydrogeological attributes for the creation of site specific a priori conductivity field in the presence of a limited amount of borehole data 2) the use of geophysical knowledge in the solution of the `geophysical data interpretation' problem defined as the synthesis of data generated by several geophysical methods to infer the true conditions of the soil and 3) the use of the inferred soil information to condition the a priori conductivity field. The approach is demonstrated through an application using real site data.

  6. Multi-Hazards Geophysical Monitoring Through the Eastern Caribbean Islands arc: Strategy, Challenges and Future Development

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Lynch, L.; Robertson, R.; Latchman, J.; Mohais, R.; Ramsingh, C.

    2007-05-01

    using region wide and CORS stations outside the Eastern Caribbean. Intra-islands volcano ground deformation networks are then processed independently per island/volcano by coupling high temporal resolution surveys with lower sampling rate local cGPS, which increases drastically the cost effectiveness and accuracy of the monitoring. The data generated by the combination of instrumentation will provide improved insights into the ongoing regional tectonic processes. Here we present SRU's strategy for integrating different spatial and temporal scales in multi-hazards geophysical monitoring, as well as real and potential challenges.

  7. An Integrated Geophysical study of the Lithospheric Structure Beneath Libya

    NASA Astrophysics Data System (ADS)

    Brown, W. A.; Doser, D. I.; Keller, R. G.

    2003-12-01

    The tectonic evolution of Libya has yielded a complex crustal structure, which is composed of a series of basins and uplifts. A considerable amount of oil exploration has been undertaken in the area and numerous studies have been published on the shallow (<10km depth) geology and geophysics of the region. In addition, over 6000 gravity measurements are available for the northern Libya region. We are using these data in conjunction with other geologic and geophysical control to construct a 3-D model of density/geology for northern Libya and surrounding regions. Knowing the surface geology and having a digital elevation model and observed gravity value at specified stations, we first calculate the gravity contribution for polygonal areas assuming infinite depth. We then calculate the gravitational contribution for the same polygonal area using the Paleozoic surface as the elevation, assuming uniform density for the volume of rocks below the Paleozoic surface. Subtracting the value calculated at the Paleozoic layer from the gravitational value at the surface yields a gravitational value matching that of the layer between the surface and the top of the Paleozoic layer. The same procedure is then repeated for the top of the Precambrian, the Moho, etc. The 3-D model will then be used to develop a regional velocity model that can be verified/modified by analysis of regional seismic waveform data we are collecting from earthquakes occurring within northern Libya. Northern Libya is the most seismologically active and highly faulted portion of the country. For this reason we have collected thirteen Landsat 5 satellite images covering the most seismically active and structurally significant regions of northeast and northwest Libya. The satellite images have been mosaicked using a seamless mosaicking technology based on ENVI's cutline feathering approached. The resulting mosaicked figures were then overlain with the previously mapped faults analyzed to identify the more recent

  8. Integrated Geophysical Exploration Program at the Rye Patch Geothermal Field, Pershing County, Nevada

    SciTech Connect

    W. Teplow

    1999-09-01

    The purpose of the geophysical exploration program was to use an integrated suite of detailed geophysical surveys to locate and map commercially productive zones in the Rye Patch geothermal field. The focus of the surveys was the production zone in Well 44-28 located at a depth of 3400' below surface. The primary goal of the program was to map the extension of the specific producing feature in 44-28 so that step-out wells could be targeted accurately. The second goal of the program was to identify additional production drilling targets that may be hydrologically independent from the 44-28 zone. The geophysical program was designed to measure a range of physical rock characteristics including magnetic, electrical, density, and sonic properties. This was done to help overcome the limitations and ambiguities inherent to any particular geophysical method. The studies and methodologies employed in the Rye Patch geophysical program are discussed. This report presents the results and a discussion of those results from each of the surveys and studies performed. Correlations among the data sets and between the data sets and the known producing zones are discussed, and drilling targets are presented as the end product of the correlations observed in the geophysical and geologic data.

  9. Integrated geophysical and geomicrobial surveys, Chapare region, Sub-Andean Boliva

    SciTech Connect

    Widdoes, D.; Verteuil, N. de; Hitzman, D.

    1996-12-31

    Approximately 4800 square kilometers of the Chapare region of Sub-Andean, Bolivia were surveyed in 1994 using combined 2-D seismic and geomicrobial surface geochemistry. The Microbial Oil Survey Technique, M.O.S.T., measures evidence of hydrocarbon microseepage by evaluating surface soils for butane associated microorganisms. Approximately 615 kilometers of seismic and over 2500 soil samples were collected for this integrated reconnaissance survey. Elevated microbial populations of these specific microorganisms indicate anomalous hydrocarbon microseepage is leaking from hydrocarbon accumulations. Integration of the geomicrobial data with geological and geophysical data was completed. Parallel seismic and microbial traverses revealed significant areas of structural targets. A portion of the frontier study area demonstrates strong hydrocarbon microseepage which aligns with geophysical targets. A fault system identified from seismic interpretation was also mapped by distinct microbial anomalies at the surface. Comparative profiles and survey maps link microbial anomalies with geological and geophysical targets.

  10. Integrated geophysical and geomicrobial surveys, Chapare region, Sub-Andean Boliva

    SciTech Connect

    Widdoes, D. ); Verteuil, N. de ); Hitzman, D. )

    1996-01-01

    Approximately 4800 square kilometers of the Chapare region of Sub-Andean, Bolivia were surveyed in 1994 using combined 2-D seismic and geomicrobial surface geochemistry. The Microbial Oil Survey Technique, M.O.S.T., measures evidence of hydrocarbon microseepage by evaluating surface soils for butane associated microorganisms. Approximately 615 kilometers of seismic and over 2500 soil samples were collected for this integrated reconnaissance survey. Elevated microbial populations of these specific microorganisms indicate anomalous hydrocarbon microseepage is leaking from hydrocarbon accumulations. Integration of the geomicrobial data with geological and geophysical data was completed. Parallel seismic and microbial traverses revealed significant areas of structural targets. A portion of the frontier study area demonstrates strong hydrocarbon microseepage which aligns with geophysical targets. A fault system identified from seismic interpretation was also mapped by distinct microbial anomalies at the surface. Comparative profiles and survey maps link microbial anomalies with geological and geophysical targets.

  11. Strategies for Maintaining Community Integration.

    ERIC Educational Resources Information Center

    Gruber, Fred

    1986-01-01

    This article outlines strategies of maintaining integration emphasizing: (1) housing offices and counseling; (2) community action to alter real estate policies; (3) school action including public relations and human relations thinking; (4) community organization of commercial and religious institutions; (5) financial incentives for pro-integrative…

  12. Integrating High-Resolution Geophysical Technologies with a GIS-Based Decision Support System into Evaluation and Management of Wetlands

    NASA Astrophysics Data System (ADS)

    Mansoor, N. M.

    2004-05-01

    Wetlands perform many ecological functions and provide numerous societal benefits such as providing unique wildlife habitats, natural mechanisms for water purification, flood storage, recreational opportunities and natural resources. Geophysical technologies are increasingly used on land for environmental assessment. However, geophysical evaluation of wetlands has received minimal attention. The problems associated with conventional direct sampling of subsurface properties are exasperated in shallow water wetlands due to the logistical constraints imposed by these environments. Growing interest in wetlands highlights a need for high-resolution, non-invasive methods for evaluating and managing wetland water resources. We have developed an integrated geophysical-GIS approach to investigating shallow water wetlands. Rapid geophysical data acquisition in shallow water (less than 2 ft) is achieved using a plastic paddleboat modified as a "research vessel" for conducting high-resolution geophysical surveys. The vessel is designed for reconnaissance electromagnetic terrain conductivity (TC), reconnaissance gradiometer and 2D/3D continuous electrical resistivity imaging. A buoyant 12-electrode array, using non-polarizing Pb-PbCl2 junctions, is pulled behind the boat with simultaneous measurement of 10 resistances at two-second intervals using a SYSCAL PRO acquisition system. All instrumentation was tested and modified to ensure removal of artifacts caused by the metal steering mechanism. A multi-purpose surface water quality probe simultaneously records water depth, surface water conductivity, salinity, temperature, pH, turbidity, and dissolved oxygen content. All instruments are set to take a multi parameter measurement every two seconds while paddling. Decimeter scale location of all measurements is obtained at the instant of acquisition using precision differential GPS unit. We are typically able to survey an average of 8 km in one day, producing over 6,000 measurements

  13. Integration of archaeological and geophysical surveys in Hierapolis of Phrygia (Turkey)

    NASA Astrophysics Data System (ADS)

    Scardozzi, G.; Leucci, G.

    2012-04-01

    An in-depth analysis of some areas in the Hellenistic, Roman and Byzantine city of Hierapolis of Phrygia (south-western Turkey) has been carried out using high resolution geophysical methods integrated to the archaeological surveys in order to detect evidence of archaeological features buried under colluvial deposits and to acquire ew data of some sectors of the urban area. In particular, three areas were investigated in the northern, central and southern sectors of the ancient city: i) the Northern Agora, built in the 2nd century AD and sourrounded by three stoai and a basilica; ii) the Sanctuary of Apollo, in use during the Hellenistic and Roman Age; iii) some insulae with houses of the Roman and Byzantine periods, inside the orthogonal road network of the city. Geophysical data were collected in these areas of interest using different surveying methodologies, during different campaigns of activity of the Italian Archaeological Mission: electrical resistivity tomography, ground penetrating radar, magnetometry and GEM. In some cases, geophysical measurements were verified during subsequent archaeological excavations. Besides the important scientific implications, the integration of archaeological and geophysical surveys provided a useful tool for the knowledge of these large sectors of the city and the reconstruction of the ancient urban layout. All data collected were integrated in the digital archaeological map of Hierapolis, linked to a Geographic Information System (GIS), in order to contextualize the identified archaeological features in the ancient urban plan.

  14. Integrated geophysical techniques for high resolution archaeological studies

    NASA Astrophysics Data System (ADS)

    Pipan, M.; Forte, E.; Finetti, I.

    2003-04-01

    We exploit the integration of linear multi-fold Ground Penetrating Radar (GPR) techniques, magnetic gradiometry, resistivity measurements and seismic tomography for the high-resolution non-invasive study of archaeological sites. Tests of the proposed integrated procedure are shown from archaeological sites in Italy and Egypt. We perform in particular the integrated subsurface reconstruction of an Iron Age tumulus, the study of high contrast ruins in alluvial sediments, the identification of low contrast remains in a desert area. Multi-fold GPR datasets are processed using pre-stack wave equation based imaging, which effectively tackles the rapid lateral velocity variations that normally characterize archaeological sites. Further image enhancement is achieved by means of proprietary Wavelet Transform based algorithms to compute the instantaneous attributes of the radar trace. The subsurface models are further verified by means of comparison with numerical simulations by FDTD modelling algorithms. Test excavations finally validate all the results. The multi-fold datasets allow image enhancement and characterization of material properties not attainable by conventional GPR methods. In particular, the comparison of conventional and multi-fold data from the desert area gives evidence of the image enhancement attainable in hostile soil conditions. Velocity fields obtained from pre-stack velocity analysis provides further information on material properties. The subsurface model is further constrained by the results of seismic, resistivity and magnetic surveys. Joint interpretation of high resolution multi-fold GPR data, after pre-stack processing and imaging, and seismic tomography allows to constrain the subsurface model and classify the targets of potential archaeological interest in the case of the Iron Age Tumulus. Details of the inner structure are evidenced by the integrated interpretation of seismic and GPR data. In particular, location of the burial chamber and of

  15. Integrated Geophysical Characteristics of the 2015 Illapel, Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Yeck, W. L.; Nealy, J. L.; Hayes, G. P.; Barnhart, W. D.; Benz, H.; Furlong, K. P.

    2015-12-01

    On September 16th, 2015, an Mw 8.3 earthquake (USGS moment magnitude) ruptured offshore of central Chile, 50 km west of the city of Illapel and 200 km north of Santiago. The earthquake occurred just north of where the Juan Fernandez Ridge enters the subduction zone. In this study, we integrate multiple seismic and geodetic datasets, including multiple-event earthquake relocations; moment tensors of the Illapel mainshock, aftershocks, and prior regional seismicity; finite fault models (FFMs) of the mainshock rupture; subduction zone geometry; Coulomb stress transfer calculations; and co-seismic GPS offsets and InSAR images. These datasets allow us to (a) assess the context of the Illapel earthquake sequence with respect to historical seismicity in central Chile; (b) constrain the relationship between subduction geometry and the kinematic characteristics of the earthquake sequence; and (c) understand the distribution of aftershocks with respect to the rupture zone. Double source W-phase moment tensor analysis indicates the Illapel mainshock rupture began as a smaller Mw ~7.2 thrusting event before growing into a great-sized Mw 8.3 earthquake. Relocated aftershock seismicity is concentrated around the main region of slip, and few aftershocks occur on the megathrust shallower than ~15 km, despite the FFM indicating slip near the trench. This distribution is consistent with the aftershock behavior following the 2010 Maule and 2014 Iquique earthquakes: aftershocks primarily surround the rupture zones and are largely absent from regions of greatest slip. However, in contrast to the recent 2014 Iquique and 2010 Maule events, which ruptured in regions of the Chilean subduction zone that had not had large events in over a century, this earthquake occurred in a section of the subduction zone that hosted a large earthquake as recently as 1943, as well as earlier significant events in 1880 and 1822. At this section of the subduction zone, in addition to the impinging Juan

  16. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Galindo-Zaldívar, J.; Pedrera, A.; Teixido, T.; Ruano, P.; Peña, J. A.; González-Castillo, L.; Ruiz-Constán, A.; López-Chicano, M.; Martín-Rosales, W.

    2014-08-01

    In this study we contrast the results of different geophysical methods in order to describe the karst system surrounding of the Gruta de las Maravillas cave (Aracena, Spain). A comprehensive study of the geophysical responses of the known cavity was carried out, after which several sections were studied to detect the karst architecture and cave continuity. To ensure precision, the inner 3D-topography of the cave was determined by classical geodetic techniques and a digital terrain model was performed with differential GPS. The microgravity method was used to obtain the residual gravity map of the entire study zone, whose minima could be related to caves. Then, the negative gravity anomalies were analyzed to plan several lines for implementing further geophysical methods: magnetic profiles (MP), electrical resistivity tomography (ERT), induced polarization (IP), 2D seismic prospection (refraction tomography and reflection sections) and ground penetrating radar (GPR). The resulting models for each line explored were integrated with detailed geological maps to establish the unknown continuity of the caves. Finally, we discuss the suitability of each geophysical technique for cave detection in marble with sulfur host rock and propose the best procedures to constrain their geometries.

  17. Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods

    NASA Astrophysics Data System (ADS)

    Giorgi, Lara De; Leucci, Giovanni

    2015-02-01

    The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system

  18. Study of shallow low-enthalpy geothermal resources using integrated geophysical methods

    NASA Astrophysics Data System (ADS)

    De Giorgi, Lara; Leucci, Giovanni

    2014-11-01

    The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.

  19. Understanding the lithosphere in complex tectonic scenarios by integrating geophysical data: The Pyrenees case study

    NASA Astrophysics Data System (ADS)

    Campanyà, Joan; Fullea, Javier; Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Liesa, Montserrat; Muñoz, Josep Anton

    2016-04-01

    Tectonic processes dominate the development of the outermost layer of the Earth over a timescale of millions of years. The locations where these processes take place provide a great opportunity for Earth scientists to study and understand the dynamics and properties of the lithosphere. The Pyrenees are a particular case of continental collision formed as a result of the collision between the Iberian and European plates, which caused the subduction of the Iberian lower crust below the European crust. Large amounts of geophysical data have been acquired in the area providing spectacular images of lithospheric subduction beneath the Western and Central Pyrenees, confirming the occurrence of this generally well-understood process. The Eastern Pyrenees, however, are a most puzzling part of the orogen and the geodynamical evolution of this area cannot be understood without the influence of the Neogene Mediterranean rifting, following the continental collision. The complexity of this area and the controversy of the geophysical results set in debate concepts well recognized in the other parts of the Pyrenees such as the subduction of the Iberian lower crust and the depth of the lithosphere-asthenosphere boundary. The aims of this study are to characterise major tectonic and geophysical variations along the Pyrenean mountain range at a lithospheric-scale and constrain the causes of the observed lateral variations. A preliminary model of the lithospheric configuration and dynamics, based on magnetotelluric geophysical results, has been developed and constrained using independent and available geophysical, geological and geochemical data. Computational petrology methods, using Litmod, were used for integrated modelling of all data.

  20. The typology of Irish hard-rock aquifers based on an integrated hydrogeological and geophysical approach

    NASA Astrophysics Data System (ADS)

    Comte, Jean-Christophe; Cassidy, Rachel; Nitsche, Janka; Ofterdinger, Ulrich; Pilatova, Katarina; Flynn, Raymond

    2012-12-01

    Groundwater flow in hard-rock aquifers is strongly controlled by the characteristics and distribution of structural heterogeneity. A methodology for catchment-scale characterisation is presented, based on the integration of complementary, multi-scale hydrogeological, geophysical and geological approaches. This was applied to three contrasting catchments underlain by metamorphic rocks in the northern parts of Ireland (Republic of Ireland and Northern Ireland, UK). Cross-validated surface and borehole geophysical investigations confirm the discontinuous overburden, lithological compartmentalisation of the bedrock and important spatial variations of the weathered bedrock profiles at macro-scale. Fracture analysis suggests that the recent (Alpine) tectonic fabric exerts strong control on the internal aquifer structure at meso-scale, which is likely to impact on the anisotropy of aquifer properties. The combination of the interpretation of depth-specific hydraulic-test data with the structural information provided by geophysical tests allows characterisation of the hydrodynamic properties of the identified aquifer units. Regionally, the distribution of hydraulic conductivities can be described by inverse power laws specific to the aquifer litho-type. Observed groundwater flow directions reflect this multi-scale structure. The proposed integrated approach applies widely available investigative tools to identify key dominant structures controlling groundwater flow, characterising the aquifer type for each catchment and resolving the spatial distribution of relevant aquifer units and associated hydrodynamic parameters.

  1. Topsoil thickness mapping at watershed scale by integration of field survey, geophysics and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Francés, Alain Pascal; Lubczynski, Maciek

    2010-05-01

    The adequate parameterisation of near subsurface is a critical issue due to the large spatial variability of soil properties. Direct observations made by common invasive field sampling procedures through drilling and trench excavations can be complemented in an efficient way by non-invasive geophysical methods, improving spatial data coverage in cost and time efficient way. The geophysical methods measure a physical property of subsurface that is convertible into the parameter or variable of interest. Such conversion requires development of data integration method. In this study, we present a methodology of data integration to assess spatially the topsoil thickness at the watershed scale. To integrate the spatial variability of the soil characteristics, we used a combination of field survey, ground-geophysics, satellite and aerial imagery processing and statistical estimation techniques. The ground-geophysics was used to complement and extend the direct field observations of the topsoil thickness. The conversion of the geophysical data in topsoil thickness and the estimation of the topsoil thickness over the catchment were done through statistical methods that integrated auxiliary variables derived from the remote sensing imagery (soil and geomorphology classifications and terrain attributes). A simple and expedite soil classification based on multi-resolution segmentation of image objects and fuzzy logic was derived from a high-resolution multispectral QuickBird image combined with aerial photograph. Landform classes and terrain attributes were computed from the Global Digital Elevation Model (GDEM) of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite. We applied this methodology to the Pisões catchment (~19 km2, Portugal) where the AB horizon, following the standard pedologic classification, is characterized by its high concentration in swelling clay. In the first step, we elaborated the sampling schema of the geophysical

  2. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  3. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    USGS Publications Warehouse

    Lane, J.W., Jr.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring

  4. Different integrated geophysical approaches to investigate archaeological sites in urban and suburban area.

    NASA Astrophysics Data System (ADS)

    Piro, Salvatore; Papale, Enrico; Zamuner, Daniela

    2016-04-01

    Geophysical methods are frequently used in archaeological prospection in order to provide detailed information about the presence of structures in the subsurface as well as their position and their geometrical reconstruction, by measuring variations of some physical properties. Often, due to the limited size and depth of an archaeological structure, it may be rather difficult to single out its position and extent because of the generally low signal-to-noise ratio. This problem can be overcome by improving data acquisition, processing techniques and by integrating different geophysical methods. In this work, two sites of archaeological interest, were investigated employing several methods (Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT), Fluxgate Differential Magnetic) to obtain precise and detailed maps of subsurface bodies. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity dating from the third century B.C. The second site, is instead situated in an urban area in the city of Rome (Basilica di Santa Balbina), where historical evidence is also present. The methods employed, allowed to determine the position and the geometry of some structures in the subsurface related to this past human activity. To have a better understanding of the subsurface, we then performed a qualitative and quantitative integration of this data, which consists in fusing the data from all the methods used, to have a complete visualization of the investigated area. Qualitative integration consists in graphically overlaying the maps obtained by the single methods; this method yields only images, not new data that may be subsequently analyzed. Quantitative integration is instead performed by mathematical and statistical solutions, which allows to have a more accurate reconstruction of the subsurface and generates new data with high

  5. Integrated Geophysical Tools for Sinkholes Study along the Dead Sea Shoreline

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, A.; Akkawwi, E.; Abueadas, A.; Eppelbaum, L.; Keydar, S.; Medvedev, B.; Levi, E.; Ezersky, M.

    2012-04-01

    Identification of cavities, fractures and collapse zones is one of the most difficult subsurface investigations: it's like finding a real needle in the haystack. It is known today that Dead Sea sinkholes at the surface are caused by development of dissolution cavities forming in the salt layers located at a depth of 40-50meters from surface. Development of karstic cavities causes variations in properties and structure of both salt and its overlain sediments: density, porosity, electrical conductivity, seismic velocity etc. Fractures and faults are formed in the shallow subsurface. These variations in properties and structure can be detected by different geophysical instruments such as Seismic Refraction and Reflection methods, Electric Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Microgravity and Magnitometry etc. That is why variety of geophysical methods, which measured different physical parameter (changes in dielectric constant, Electrical resistivity, variations in bulk Density, and changes in velocity) for shallow and deep investigation nave been applied for sinkholes assessment and delineation. The integration of different geophysical studies has a capability of detecting geologic conditions including the continuity of the deeper strata, lateral variations in an unconformity, discontinuities, cavities, zones of paleo-sinkholes collapse and hydro geological conditions. All geophysical methods address geologic questions. With geophysical applications, a volume of the subsurface is measured. It is necessary to recognize the physical properties of the feature being measured as well as the effective volume of measurement in order to define survey objectives. Data from a wide variety of sources and measurements could be integrated to improve our understanding of site conditions and provide a powerful base of information in which to evaluate subsurface conditions, design and execute a remediation for the site and enable a reasonably accurate risk

  6. 3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.

  7. Integration of Geographic Information System frameworks into domain discretisation and meshing processes for geophysical models

    NASA Astrophysics Data System (ADS)

    Candy, A. S.; Avdis, A.; Hill, J.; Gorman, G. J.; Piggott, M. D.

    2014-09-01

    Computational simulations of physical phenomena rely on an accurate discretisation of the model domain. Numerical models have increased in sophistication to a level where it is possible to support terrain-following boundaries that conform accurately to real physical interfaces, and resolve a multiscale of spatial resolutions. Whilst simulation codes are maturing in this area, pre-processing tools have not developed significantly enough to competently initialise these problems in a rigorous, efficient and recomputable manner. In the relatively disjoint field of Geographic Information Systems (GIS) however, techniques and tools for mapping and analysis of geographical data have matured significantly. If data provenance and recomputability are to be achieved, the manipulation and agglomeration of data in the pre-processing of numerical simulation initialisation data for geophysical models should be integrated into GIS. A new approach to the discretisation of geophysical domains is presented, and introduced with a verified implementation. This brings together the technologies of geospatial analysis, meshing and numerical simulation models. This platform enables us to combine and build up features, quickly drafting and updating mesh descriptions with the rigour that established GIS tools provide. This, combined with the systematic workflow, supports a strong provenance for model initialisation and encourages the convergence of standards.

  8. Integrated Geophysical Survey on Deák Ferenc Sluice in Hungary

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.

    2015-12-01

    ALI ISMET KANLI1*, G. TALLER2, Z. PRONAY2, P. TILDY2, P. NAGY3, E. TOROS2 *1Istanbul University, Turkey, kanli@istanbul.edu.tr, 2Geological and Geophysical Institute of Hungary,3MinGeo, Hungary The Ferenc Channel is one of the main irrigation and ship channel in south of Hungary, existing from 1801. The water level is controlled by the Deák Ferenc Sluice in the channel which was constructed in 1875. At that time, the sluice was unique in Europe with its two channels and brick-walls. The west channel was used for controlling the amount of water and the east channel was used for shipping. In the study, before starting to the restoration and reinforcement plannings at the sluice, non-destructive geophysical investigations were executed. In the first stage, ultra-high frequency seismic (80 kHz) and acoustic (5 kHz) investigations of the floor slab were carried out from a boat on the water level. Due to the water level was approximately 2 m, we could use the advantage of the water ensuring very good coupling with seismic sensors for high frequency seismic and acoustic measurements. In the second stage, resistivity measurements were carried out in the eastern part of the sluice which was used as the shipping channel. Three profiles were measured to map the resistivity distribution of the slab. In the third stage, for better understanding the stability conditions of the walls and easy to compare with the data of GPR measurements, the wall of the sluice were investigated by a simple seismic direct wave method using seismic P-waves for mapping seismic velocities. The last stage of the survey was the GPR measurements that were carried out both on the walls and on the slab of the sluice. During the investigation, the channels were empty and without water. The integrated survey and the interpretation of the results showed us that there were some faults, cracks and voids in the slab existed in the whole grossness of the slab and the brick walls were builded from inhomogenous

  9. Definition of a geometric model for landslide numerical modeling from the integration of multi-source geophysical data.

    NASA Astrophysics Data System (ADS)

    Gance, Julien; Bernardie, Séverine; Grandjean, Gilles; Malet, Jean-Philippe

    2014-05-01

    Landslide hazard can be assessed through numerical hydro-mechanical models. These methods require different input data such as a geometric model, rheological constitutive laws and associated hydro-mechanical parameters, and boundary conditions. The objective of this study is to fill the gap existing between geophysical and engineering communities. This gap prevents the engineering community to use the full information available in geophysical imagery. A landslide geometrical model contains information on the geometry and extent of the different geotechnical units of the landslide, and describes the layering and the discontinuities. It is generally drawn from punctual geotechnical tests, using interpolation, or better, from the combined use of a geotechnical test and the iso-value of geophysical tomographies. In this context, we propose to use a multi-source geophysical data fusion strategy as an aid for the construction of landslide geometric models. Based on a fuzzy logic data fusion method, we propose to use different geophysical tomographies and their associated uncertainty and sensitivity tomograms to design a "probable" geometric model. This strategy is tested on a profile of the Super-Sauze landslide using P-wave velocity, P-wave attenuation and electrical resistivity tomography. We construct a probable model and a true model for numerical modeling. Using basic elastic constitutive laws, we show that the model geometry is sufficiently detailed to simulate the complex surface displacements pattern.

  10. Integrated remote sensing, geological and geophysical data processing and analysis for hydrocarbon prospection in the Parana Basin, Brazil

    SciTech Connect

    Amaral, G.; Filho, A.P.; Crosta, A.P.

    1982-06-01

    The extensive basaltic lava flows of the Serra Geral Formation (Lower Cretaceous), in the upper portions of the Parana sedimentary basin, are a severe obstacle for hydrocarbon prospecting. Its thickness and physical characteristics make difficult the general application of conventional geophysical methods. In order to overcome this problem a research program was developed for PETROBRAS in order to obtain the maximum geological information from remote sensing data and integrate it with field and geophysical data. Automated analysis of LANDSAT data with visual inspection of LANDSAT and SLAR imagery resulted in a large amount of lithological and structural information, which were integrated with geological and geophysical data for the selection of target areas for future investigation.

  11. Geophysical data integration and conditional uncertainty analysis on hydraulic conductivity estimation

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Carlson, D.A.; Willson, C.S.

    2007-01-01

    Integration of various geophysical data is essential to better understand aquifer heterogeneity. However, data integration is challenging because there are different levels of support between primary and secondary data needed to be correlated in various ways. This study proposes a geostatistical method to integrate the hydraulic conductivity measurements and electrical resistivity data to better estimate the hydraulic conductivity (K) distribution. The K measurements are obtained from the pumping tests and represent the primary data (hard data). The borehole electrical resistivity data from electrical logs are regarded as the secondary data (soft data). The electrical resistivity data is used to infer hydraulic conductivity values through the Archie law and Kozeny-Carman equation. A pseudo cross-semivariogram is developed to cope with the resistivity data non-collocation. Uncertainty in the auto-semivariograms and pseudo cross-semivariogram is quantified. The methodology is demonstrated by a real-world case study where the hydraulic conductivity is estimated in the Upper Chicot aquifer of Southwestern Louisiana. The groundwater responses by the cokriging and cosimulation of hydraulic conductivity are compared using analysis of variance (ANOVA). ?? 2007 ASCE.

  12. Integrating Computer-Mediated Communication Strategy Instruction

    ERIC Educational Resources Information Center

    McNeil, Levi

    2016-01-01

    Communication strategies (CSs) play important roles in resolving problematic second language interaction and facilitating language learning. While studies in face-to-face contexts demonstrate the benefits of communication strategy instruction (CSI), there have been few attempts to integrate computer-mediated communication and CSI. The study…

  13. Preschool Integration: Strategies for Teaching.

    ERIC Educational Resources Information Center

    Stafford, Sarah H.; Green, Virginia P.

    1996-01-01

    Claims that long-term benefits of quality preschool programs include increased IQ scores; decreased time spent in special education classes; reduced education costs, crime and delinquency, and teen pregnancies; and improved socialization. Discusses definitions of integration, inclusion, mainstreaming, and LRE (least restrictive environment) and…

  14. Integration of Petrologic, Geophysical, and Gas Monitoring Data at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.; Lee, R. L.; Gansecki, C. A.; Orr, T. R.; Miklius, A.; Sutton, A. J.; Thelen, W. A.

    2014-12-01

    Well-quenched, near-vent lava samples taken at weekly to monthly intervals during the past 31 years of near-continuous Kilauea East Rift Zone (ERZ) eruption have yielded an unprecedented temporal record of petrology and geochemistry. Salient petrologic parameters derived from bulk lava major- and trace-element geochemistry, and from microprobe analyses of matrix glasses, phenocrysts, and melt-inclusions, are now incorporated into the USGS Volcano Science Center's near real-time volcano-monitoring software platform, called the Volcano Analysis and Visualization Environment (VALVE). The petrologic parameters now imported into VALVE for correlation with geophysical and gas data streams are: 1) MgO systematics of bulk lava, glass, and olivine, used to portray pre-eruptive magma temperature and temperature of lava erupted at the vent, 2) incompatible element ratios of bulk lava and glass, used to track either sudden or long-term magma-mixing or magma-source changes , and 3) magmatic sulfur, measured within glass inclusions of olivine, used to infer pre-eruptive volatile content of magma. Petrologic data in VALVE provides added insight into magmatic processes. For example, since the onset of Kilauea's summit eruption in 2008, correlations of summit deformation with MgO systematics and magmatic sulfur in coeval summit tephra and ERZ lava, along with their identical incompatible-element signatures, demonstrate summit-to-ERZ magmatic continuity. As constrained by geophysical and geologic observations at both ends of the eruptive plumbing system, changes in petrology of lava erupted at Puu Oo are likely associated with physical maturation of magma pathways along the shallow ERZ conduit, repeated intrusions and systematic over-pressurization during the 2003-2007 surge in magma supply. Two fissure eruptions uprift of Puu Oo in January 1997 and March 2011 also show a strong correlation of geophysical and gas signatures with a petrologic shift to cooler, incompatible

  15. Integration of geological, geomorphological and geophysical methods in the study of sinkholes

    NASA Astrophysics Data System (ADS)

    Margiotta, S.; Negri, S.; Parise, M.

    2012-04-01

    The Salento region of southern Italy has a great number of active sinkholes, related to both natural and anthropogenic cavities. The presence of sinkholes is at the origin of several problems to the built-up environment, due to the increasing population growth and development pressures. In such a context, the detection of cavities, and therefore the assessment of the sinkhole hazard, presents numerous difficulties. At this aim, the present paper illustrates the advantages of integrating geological and geomorphological surveys with surface geophysical techniques such as seismic, geoelectrical and ground penetrating radar methods for the identification of sinkhole-prone areas. Three different types of sinkholes related to natural karst caves are here described. The first is that of Casalabate, a typical Adriatic coastal town affected by a long history of sinkhole phenomena correlated to the presence of marsh deposits overlying a carbonate karstified bedrock. The second is the Palude del Capitano area, along the Ionian coastline, which is characterized by alignments of sinkholes with the main tectonic systems; it is in an advanced stage of evolution, with wide basins connected by submerged passages, only a part of which has been so far explored by scuba divers. The third is the sinkhole system at Nociglia (inland Salento) where the shallow phreatic speleogenesis operates close to the water table level with formation of karst conduits and proto-caves whose evolution occurs through successive roof collapse, formation of wide caverns and sinkhole development at the surface. In all the cases above, the combination of different methods made possible to recognize the sectors more prone to sinkhole development, and to identify the zones of mechanical weakness. Geological and geomorphological analyses provided the basic data necessary to constitute a framework for understanding the mechanism of formation of sinkholes, at the same time guiding the choice of the most suitable

  16. Integrated data management system of Korean marine geological and geophysical data

    NASA Astrophysics Data System (ADS)

    Baek, Sang-Ho; Kim, Sung-Dae; Park, Soo-Young; Park, Hyuk-Min; Lee, Jin-Hee

    2013-04-01

    An integrated database system was developed to manage and provide marine geological data and marine geophysical data obtained by several Korean institutes. The system consists of two sub systems. One is the archive DB system which manages original data submitted by research scientists, the other is geographic information system which manages GIS data and provides information to the users. We established data management procedure for the data collection, processing, quality control and DB input for continuous data collection. According to the procedure, we collect data from Korean institutes every year and update DB system. Establishment of the archive DB system was accomplished through 7 steps, (1) checking the format of submitted data files (2) grouping data files by data items and research (3) retrieving metadata (position, date and time, etc.) from the submitted data files (4) validation of metadata and observation data (5) making the connection between metadata and observed data (6) rearrange matched metadata and observation data according to the DB structure (7) storing rearranged data into DB system. To make a reliable DB of system, we spent much time to validate submitted marine geological data and geophysical data. In case of marine geological data, we collected size analysis data, columnar section image, photographic data, X-ray data, heavy metal analysis data, organic carbon analysis data obtained from surface sediment samples and core sediment samples. The data formats were image file, ASCII text file and Microsoft Excel file. In case of marine geophysical data, seismic data, magnetic data and gravity data were collected in formats of SEG-Y binary file, image file and ASCII text file. We could retrieve metadata from ASCII files and Excel files directly and specialized software (Seisview2 software or BATHY2000) was used to retrieve metadata from SEG-Y data files. After validation work which checks the observation location and time using the positioning

  17. Karst system vadose zone hydrodynamics highlighted by an integrative geophysical and hydrogeological monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Rochez, G.; Kaufmann, O.

    2015-12-01

    The vadose zone of karst systems plays an important role on the water dynamics. In particular, temporary perched aquifers can appear in the subsurface due to changes of climate conditions, diminished evapotranspiration and differences of porosity relative to deeper layers. It is therefore crucial, but challenging, to separate the hydrological signature of the vadose zone from the one of the saturated zone for understanding hydrological processes that occur in the vadose zone. Although many difficulties are usually encountered when studying karst environments due to their heterogeneities, cave systems offer an outstanding opportunity to investigate vadose zone from the inside with various techniques. We present results covering two years of hydrogeological and geophysical monitoring at the Rochefort Cave Laboratory (RCL), located in the Variscan fold-and-thrust belt (Belgium), a region that shows many karstic networks within Devonian limestone units. Hydrogeological data such as flows and levels monitoring or tracer tests performed in both vadose and saturated zones bring valuable information on the hydrological context of the studied area. Combining those results with geophysical measurements allows validating and imaging them with more integrative techniques. A microgravimetric monitoring involves a superconducting gravimeter continuously measuring at the surface of the RCL. Early in 2015, a second relative gravimeter was installed in the underlying cave system located 35 meters below the surface. This set up allows highlighting vadose gravity changes. These relative measurements are calibrated using an absolute gravimeter. 12 additional stations (7 at the surface, 5 in the cave) are monitored on a monthly basis by a spring gravimeter. To complete these gravimetric measurements, the site has been equipped with a permanent Electrical Resistivity Tomography (ERT) monitoring system comprising an uncommon array of surface, borehole and cave electrodes. Although such

  18. Mapping a near surface variable geologic regime using an integrated geophysical approach

    SciTech Connect

    Rogers, N.T.; Sandberg, S.K.; Miller, P.; Powell, G.

    1997-10-01

    An integrated geophysical approach involving seismic, electromagnetic, and electrical methods was employed to map fluvial, colluvial and bedrock geology, to delineate bedrock channels, and to determine fracture and joint orientations that may influence migration of petroleum hydrocarbons at the Glenrock Oil Seep. Both P (primary)-wave and S (shear)-wave seismic refraction techniques were used to map the bedrock surface topography, bedrock minima, stratigraphic boundaries, and possible structure. S-wave data were preferred because of better vertical resolution due to the combination of slower velocities and lower frequency wave train. Azimuthal resistivity/EP (induced polarization) and azimuthal electromagnetics were used to determine fracture orientations and groundwater flow directions. Terrain conductivity was used to map the fluvial sedimentary sequences (e.g., paleochannel and overbank deposits) in the North Platte River floodplain. Conductivity measurements were also used to estimate bedrock depth and to assist in the placement and recording parameters of the azimuthal soundings. The geophysical investigation indicated that groundwater flow pathways were controlled by the fluvial paleochannels and bedrock erosional features. Primary groundwater flow direction in the bedrock and colluvial sediments was determined from the azimuthal measurements and confirmed by drilling to be N20-40W along the measured strike of the bedrock and joint orientations. Joint/fracture orientations were measured at N20-40W and N10-30E from the azimuthal data and confirmed from measurements at a bedrock outcrop south of the site. The bedrock has an apparent N10E anisotropy in the seismic velocity profiles on the old refinery property that closely match that of measured joint/fracture orientations and may have a minor effect on groundwater flow.

  19. Integrated environmental site characterization involving geochemistry, geophysics, and geology: A shortcut to remediation

    SciTech Connect

    Viellenave, J.; Slatten, M.; Church, G.; Anderson, M.

    1996-11-01

    Environmental site characterization processes have evolved from simple drill-and-sample routines into more sophisticated evaluations of increasingly complex problems involving a variety of contaminants. Strategic integration of several geoscience tools into a more holistic approach benefits the site owner/operator by developing a synoptic perspective of the site at the earliest possible time, allowing for more selective and focused use of the expensive and invasive technologies. The ultimate effect is a better site characterization, including attention to difficult PRP issues, lower liability, fewer risks of bypassing potentially hazardous contaminant accumulations, and a result that is more targeted to environmental and human health risks. An integrated site investigation system requires good geology and hydrology, but is properly augmented by use of modem and sophisticated geochemical and geophysical tools. Establishing characterization objectives is critical in deciding what geoscience tool(s) to deploy in any given situation. For each tool, critical criteria are identified that will enable the user to best decide which to use for what purposes.

  20. Office of Space Science: Integrated technology strategy

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley T., Jr.; Reck, Gregory M.

    1994-01-01

    This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.

  1. Regional-scale integration of multiresolution hydrological and geophysical data using a two-step Bayesian sequential simulation approach

    NASA Astrophysics Data System (ADS)

    Ruggeri, Paolo; Irving, James; Gloaguen, Erwan; Holliger, Klaus

    2013-07-01

    Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying "true" hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic

  2. Clay content mapping through integration of geophysical proximal and remote sensing data

    NASA Astrophysics Data System (ADS)

    Garfagnoli, Francesca; André, Frédéric; Grandjean, Gilles; Lambot, Sébastien; Ciampalini, Andrea; Moretti, Sandro

    2013-04-01

    Soil sustainable exploitation planning and land resource evaluation require up-to-date and accurate maps of soil properties. In that respect, geophysical techniques present particular interests given their non-invasiveness and their fast data acquisition capacity, which permit to characterize large areas with fine spatial and/or temporal resolutions. We investigated the relevancy of combining data from airborne hyperspectral (Hs), electromagnetic induction (EMI) and far-field ground-penetrating radar (GPR) for mapping soil properties, in particular soil clay content, at the field scale. Data from the three techniques were acquired at a test site in Mugello (Italy) characterized by relatively strong spatial variations of soil texture. Soil samples were collected for determining actual clay contents. For the frequencies used in this study (200-2000 MHz), the GPR surface reflection is mainly determined by soil dielectric permittivity, itself primarily influenced by soil moisture. In contrast, EMI is mostly sensitive to soil electrical conductivity, which integrates several soil properties including in particular soil moisture and clay content. Taking advantage of the complementary information provided by the two instruments, the GPR and EMI data were combined and correlated to local ground-truth measurements of clay content to provide high-resolution clay content maps over the entire field area. Besides, a relationship was also observed between Hs data and clay content measurements, which permitted to produce a Hs-derived clay content map. EMI-GPR and Hs maps showed close spatial patterns and a relatively high correlation was observed between both clay content estimates, as well as between clay content estimates and ground-truth clay content measurements. Future analyses will entail more advanced Bayesian data fusion techniques for combining EMI-GPR and Hs information. These results demonstrated great promise for integrated, digital soil mapping applications.

  3. Dynamic Coupling of Alaska Based Ecosystem and Geophysical Models into an Integrated Model

    NASA Astrophysics Data System (ADS)

    Bennett, A.; Carman, T. B.

    2012-12-01

    As scientific models and the challenges they address have grown in complexity and scope, so has interest in dynamically coupling or integrating these models. Dynamic model coupling presents software engineering challenges stemming from differences in model architectures, differences in development styles between modeling groups, and memory and run time performance concerns. The Alaska Integrated Ecosystem Modeling (AIEM) project aims to dynamically couple three independently developed scientific models so that each model can exchange run-time data with each of the other models. The models being coupled are a stochastic fire dynamics model (ALFRESCO), a permafrost model (GIPL), and a soil and vegetation model (DVM-DOS-TEM). The scientific research objectives of the AIEM project are to: 1) use the coupled models for increasing our understanding of climate change and other stressors on landscape level physical and ecosystem processes, and; 2) provide support for resource conservation planning and decision making. The objectives related to the computer models themselves are modifiability, maintainability, and performance of the coupled and individual models. Modifiability and maintainability are especially important in a research context because source codes must be continually adapted to address new scientific concepts. Performance is crucial to delivering results in a timely manner. To achieve the objectives while addressing the challenges in dynamic model coupling, we have designed an architecture that emphasizes high cohesion for each individual model and loose coupling between the models. Each model will retain the ability to run independently, or to be available as a linked library to the coupled model. Performance is facilitated by parallelism in the spatial dimension. With close collaboration among modeling groups, the methodology described here has demonstrated the feasibility of coupling complex ecological and geophysical models to provide managers with more

  4. Integrating model abstraction into monitoring strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed and performed to investigate the opportunities and benefits of integrating model abstraction techniques into monitoring strategies. The study focused on future applications of modeling to contingency planning and management of potential and actual contaminant release sites wi...

  5. Teaching Strategies for Integrating the Secondary Classroom.

    ERIC Educational Resources Information Center

    Freeman, Lois V.; Jacobs, Natalie

    Nearly 500 teachers in the Sequoia Union High School District (Redwood City, California) were surveyed in order to explore: (1) strategies they used to bring about integration in secondary schools; (2) techniques that discourage resegregation in desegregated high schools; (3) ways that the district's teachers draw out the best in students new to a…

  6. Visual integration of multi-displicinary datasets for the geophysical analysis of tectonic processes

    NASA Astrophysics Data System (ADS)

    Jacobs, A. M.; Dingler, J. A.; Brothers, D.; Kent, G. M.

    2006-12-01

    Within the scientific community, there is a growing emphasis on interdisciplinary analyses to gain a more complete understanding of how entire earth systems function. Challenges of this approach include integrating the numerous, and often disparate, datasets, while also presenting the integrated data in a manner comprehensible to a wide range of scientists. Three- and four-dimensional visualization is quickly becoming the primary tool for facilitating these challenges. We frequently utilize the modular methodology of the IVS Fledermaus visualization software package to enhance our ability to better understand various geophysical datasets and the tectonic processes occurring within their respective systems. A main benefit of this software is that it allows us to generate individual visual objects from geo-referenced datasets and then combine them to form interactive, multi-dimension visual scenes. Additionally, this visualization process is advantageous to interdisciplinary analyses because: 1) the visual objects are portable across scenes, 2) they can be easily exchanged between scientists to build new user-specific scenes, and 3) both the objects or scenes can be viewed using the full software package or the free viewer, iView3D, on any modern computer operating system (i.e., Mac OSX, Windows, Linux). Here we present examples of Fledermaus and how we have used visualization to better "see" oceanic, coastal, and continental tectonic environments. In one visualization, bathymetric, petrologic and hydrothermal vent information from a spreading system in the Lau back-arc basin is integrated with multichannel seismic (MCS) data to ascertain where the subduction zone influences begin strongly shaping the character of the spreading ridge. In visualizations of coastal environments, we combine high-resolution seismic CHIRP data with bathymetry, side-scan and MCS data, Landsat images, geological maps, and earthquake locations to look at slope stability in the Santa Barbara

  7. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L. (Editor); Ryder, Graham (Editor)

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  8. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    NASA Astrophysics Data System (ADS)

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench

  9. Integrated data search and access to geophysical data for Geohazards Supersites and Natural Laboratories

    NASA Astrophysics Data System (ADS)

    Rowan, L.; Baker, S.; Wier, S.; Boler, F. M.; Meertens, C. M.; Amelung, F.

    2013-12-01

    The Geohazards Supersites and Natural Laboratories (GSNL) are committed to sharing space-based and ground-based geophysical data and building collaborations to better understand Earth processes and mitigate the societal hazards related to the dynamic Earth. GSNL is global with locations in Turkey, Japan, China, Italy, Haiti the United States (e.g. Hawaii and the western U.S.) and elsewhere. The UNAVCO Data Center in Boulder, Colorado, archives and distributes geodesy data and products in the GPS/GNSS, InSAR, and LiDAR domains. UNAVCO has an open access data policy and strives to provide catalogs and data access tools for all users. In an effort to create a unified data and metadata access capability for geodesy data centers in general and for GSNL in particular, UNAVCO and our partners, have designed and implemented software for simplified access called the Geodesy Seamless Archive Centers (GSAC). GSAC is a web services based technology to facilitate data discovery and access. The GSAC technology leverages several well-accepted geodesy data and metadata formats, and identifies a relatively small set of required and recommended metadata for the basic installation. Additional optional metadata can be defined at individual data centers. The GSAC services utilize a repository layer implemented at each data center, and a service layer to identify and present the required metadata elements along with any data center-specific services and capabilities. The software for the GSAC is available through SourceForge, and any geodesy data archive can download the code and implement GSAC services for their repository; doing so will provide the data center's users with the ability to use common query and access mechanisms with other GSAC data centers. Further, optional federation of individual GSAC data centers is facilitated through the GSAC software. GSAC would significantly simplify data access and integration, while enhancing data sharing around the world. GSAC is an excellent

  10. Results of integrated geological-geophysical investigations in Makhtesh Ramon (Israel) aimed to revealing diamondiferous associations

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L.; Kouznetsov, S.; Sazonova, L.; Korotaeva, N.; Surkov, A.; Smirnov, S.; Vaksman, V.; Klepatch, C.; Itkis, S.

    2003-04-01

    of diamond-bearing of the studied area. It should be noted that the amount of these minerals (first and second groups) is extremely high: in 200 kg of the investigated geological concentrate (selected from the loose deposits and conglomerate) till the present time (January 2003) altogether were detected more than 14,000 grains of the proposed diamondiferous association. Identification of small plates of Au and Ag as well as tracing of La, Ce, Th, Nb and Ta also maybe linked with the nearest kimberlite rock occurrence. Analysis of the studied polymineral fractions has been performed using electronic scanning raster microscope CAMSCAN-4DV with energy-dispersion Roentgen micro-analyzer Link AN10000 (binocular microscopes were applied only by initial analyzing). Examination of the performed geophysical investigations: (1a) magnetic field (applied ground observations were integrated with the previous airborn measurements), (1b) magnetic susceptibility measurements; (2) self-potential field and (3) set of physical-chemical examinations of significant features (S2+, CO2-_3, Eh{-}Pt, N0^-_3, Br^-, F^-, I^-, Cl^-, Ca2+, B^+, ClO^-_4, pH, Hg2+, Na^+, K^+, Cd2+, Cu2+ &Pb2+) using ion-selective electrodes (gradient mode was applied) testifies to high probability of discovering diamondiferous pipes (dykes) at the depths from several meters up to 30 meters. The latest important petrological identifications include discovering of blue clay (usually occurring at the top of kimberlite pipe) and yttrium phosphate (it is a known signature of kimberlite associations). Finally, the total number of recognized diamonds exceeds 400 units (size of the largest crystal is about of 1.5 mm). On basis of the mentioned positive features we can unambiguously estimating that the Makhtesh Ramon Canyon is highly perspective area for discovering indigenous diamond-containing targets.

  11. Use of geophysical methods in man-made hazard management strategies. Case study from Ploiesti city, Romania

    NASA Astrophysics Data System (ADS)

    Chitea, F.; Anghelache, M. A.; Ioane, D.

    2010-05-01

    fact that affected area is continuously expanding as a consequence of contaminant transport by the underground water. Hydrogeologically the research area is located in the alluvium of one of the main hydrostructures of Romania, which holds important water resources. Preliminary investigations made in the Ploiesti city area, has shown the high vulnerability of the aquifer to pollution and it was detected a highly contaminated area. By detailed investigations made using geophysical investigations in the test-zone, it was possible the detection of the presence of the particular type of pollutants and a map with area zonation has been produced. Appliance of geophysical investigations in environmental strategies concerning underground water pollution should be added to the ones obtained by direct investigations for risk evaluation and remediation strategies in cases of man made hazards. Acknowledgements: The research was performed with financial support from MENER (project nr. 725/ 2006) and CNCSIS-UEFISCU (project nr. 244/2007)

  12. Integration and Improvement of Geophysical Root Biomass Measurements for Determining Carbon Credits

    NASA Astrophysics Data System (ADS)

    Boitet, J. I.

    2013-12-01

    Carbon trading schemes fundamentally rely on accurate subsurface carbon quantification in order for governing bodies to grant carbon credits inclusive of root biomass (What is Carbon Credit. 2013). Root biomass makes up a large chunk of the subsurface carbon and is difficult, labor intensive, and costly to measure. This paper stitches together the latest geophysical root measurement techniques into site-dependent recommendations for technique combinations and modifications that maximize large-scale root biomass measurement accuracy and efficiency. "Accuracy" is maximized when actual root biomass is closest to measured root biomass. "Efficiency" is maximized when time, labor, and cost of measurement is minimized. Several combinations have emerged which satisfy both criteria under different site conditions. Use of ground penetrating radar (GPR) and/or electrical resistivity tomography (ERT) allow for large tracts of land to be surveyed under appropriate conditions. Among other characteristics, GPR does best with detecting coarse roots in dry soil. ERT does best in detecting roots in moist soils, but is especially limited by electrode configuration (Mancuso, S. 2012). Integration of these two technologies into a baseline protocol based on site-specific characteristics, especially soil moisture and plants species heterogeneity, will drastically theoretically increase efficiency and accuracy of root biomass measurements. Modifications of current measurement protocols using these existing techniques will also theoretically lead to drastic improvements in both accuracy and efficiency. These modifications, such as efficient 3D imaging by adding an identical electrode array perpendicular to the first array used in the Pulled Array Continuous Electrical Profiling (PACEP) technique for ERT, should allow for more widespread application of these techniques for understanding root biomass. Where whole-site measurement is not feasible either due to financial, equipment, or

  13. Integration of Geophysical Data into Structural Geological Modelling through Bayesian Networks

    NASA Astrophysics Data System (ADS)

    de la Varga, Miguel; Wellmann, Florian; Murdie, Ruth

    2016-04-01

    Structural geological models are widely used to represent the spatial distribution of relevant geological features. Several techniques exist to construct these models on the basis of different assumptions and different types of geological observations (e.g. Jessell et al., 2014). However, two problems are prevalent when constructing models: (i) observations and assumptions, and therefore also the constructed model, are subject to uncertainties, and (ii) additional information, such as geophysical data, is often available, but cannot be considered directly in the geological modelling step. In our work, we propose the integration of all available data into a Bayesian network including the generation of the implicit geological method by means of interpolation functions (Mallet, 1992; Lajaunie et al., 1997; Mallet, 2004; Carr et al., 2001; Hillier et al., 2014). As a result, we are able to increase the certainty of the resultant models as well as potentially learn features of our regional geology through data mining and information theory techniques. MCMC methods are used in order to optimize computational time and assure the validity of the results. Here, we apply the aforementioned concepts in a 3-D model of the Sandstone Greenstone Belt in the Archean Yilgarn Craton in Western Australia. The example given, defines the uncertainty in the thickness of greenstone as limited by Bouguer anomaly and the internal structure of the greenstone as limited by the magnetic signature of a banded iron formation. The incorporation of the additional data and specially the gravity provides an important reduction of the possible outcomes and therefore the overall uncertainty. References Carr, C. J., K. R. Beatson, B. J. Cherrie, J. T. Mitchell, R. W. Fright, C. B. McCallum, and R. T. Evans, 2001, Reconstruction and representation of 3D objects with radial basis functions: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 67-76. Jessell, M

  14. Integrated Interpretation of Geophysical, Geotechnical, and Environmental Monitoring Data to Define Precursors for Landslide Activation

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Chambers, J.; Merritt, A.; Wilkinson, P.; Meldrum, P.; Gunn, D.; Maurer, H.; Dixon, N.

    2014-12-01

    To develop a better understanding of the failure mechanisms leading to first time failure or reactivation of landslides, the British Geological Survey is operating an observatory on an active, shallow landslide in North Yorkshire, UK, which is a typical example of slope failure in Lias Group mudrocks. This group and the Whitby Mudstone Formation in particular, show one of the highest landslide densities in the UK. The observatory comprises geophysical (i.e., ERT and self-potential monitoring, P- and S-wave tomography), geotechnical (i.e. acoustic emission and inclinometer), and hydrological and environmental monitoring (i.e. weather station, water level, soil moisture, soil temperature), in addition to movement monitoring using real-time kinematic GPS. In this study we focus on the reactivation of the landslide at the end of 2012, after an exceptionally wet summer. We present an integrated interpretation of the different data streams. Results show that the two lobes (east and west), which form the main focus of the observatory, behave differently. While water levels, and hence pore pressures, in the eastern lobe are characterised by a continuous increase towards activation resulting in significant movement (i.e. metres), water levels in the western lobe are showing frequent drainage events and thus lower pore pressures and a lower level of movement (i.e. tens of centimetres). This is in agreement with data from the geoelectrical monitoring array. During the summer season, resistivities generally increase due to decreasing moisture levels. However, during the summer of 2012 this seasonal pattern was interrupted, with the reactivated lobe displaying strongly decreasing resistivities (i.e. increasing moisture levels). The self-potential and soil moisture data show clear indications of moisture accumulation prior to the reactivation, followed by continuous discharge towards the base of the slope. Using the different data streams, we present 3D volumetric images of

  15. Integrated geophysical studies of the Fort Worth Basin (Texas), Harney Basin (Oregon), and Snake River Plain (Idaho)

    NASA Astrophysics Data System (ADS)

    Khatiwada, Murari

    Geophysical methods such as seismic, gravity, magnetics, electric, and electromagnetics are capable of identifying subsurface features but each has a different spatial resolution. Although, each of these methods are stand-alone tools and have produced wonderful and reliable results for decades to solve geological problems, integrating geophysical results from these different methods with geological and geospatial data, adds an extra dimension towards solving geological problems. Integration techniques also involve comparing and contrasting the structural and tectonic evolution of geological features from different tectonic and geographic provinces. I employed 3D and 2D seismic data, passive seismic data, and gravity and magnetic data in three studies and integrated these results with geological, and geospatial data. Seismic processing, and interpretation, as well as filtering techniques applied to the potential filed data produced many insightful results. Integrated forward models played an important role in the interpretation process. The three chapters in this dissertation are stand-alone separate scientific papers. Each of these chapters used integrated geophysical methods to identify the subsurface features and tectonic evolution of the study areas. The study areas lie in the southeast Fort Worth Basin, Texas, Harney Basin, Oregon, and Snake River Plain, Idaho. The Fort Worth Basin is one of the most fully developed shale gas fields in North America. With the shallow Barnett Shale play in place, the Precambrian basement remains largely unknown in many places with limited published work on the basement structures underlying the Lower Paleozoic strata. In this research, I show how the basement structures relate to overlying Paleozoic reservoirs in the Barnett Shale and Ellenburger Group. I used high quality, wide-azimuth, 3D seismic data near the southeast fringe of the Fort Worth Basin. The seismic results were integrated with gravity, magnetic, well log, and

  16. Integrating hydrologic and geophysical data to constrain coastal surficial aquifer processes at multiple spatial and temporal scales

    USGS Publications Warehouse

    Schultz, Gregory M.; Ruppel, Carolyn; Fulton, Patrick

    2007-01-01

    Since 1997, repeated, coincident geophysical surveys and extensive hydrologic studies in shallow monitoring wells have been used to study static and dynamic processes associated with surface water-groundwater interaction at a range of spatial scales at the estuarine and ocean boundaries of an undeveloped, permeable barrier island in the Georgia part of the U.S. South Atlantic Bight. Because geophysical and hydrologic data measure different parameters, at different resolution and precision, and over vastly different spatial scales, reconciling the coincident data or even combining complementary inversion, hydrogeochemcial analyses and well-based groundwater monitoring, and, in some cases, limited vegetation mapping to demonstrate the utility of an integrative, multidisciplinary approach for elucidating groundwater processes at spatial scales (tens to thousands of meters) that are often difficult to capture with traditional hydrologic approaches. The case studies highlight regional aquifer characteristics, varying degrees of lateral saltwater intrusion at estuarine boundaries, complex subsurface salinity gradients at the ocean boundary, and imaging of submarsh groundwater discharge and possible free convection in the pore waters of a clastic marsh. This study also documents the use of geophysical techniques for detecting temporal changes in groundwater salinity regimes under natural (not forced) gradients at intratidal to interannual (1998-200 Southeastern U.S.A. drought) time scales.

  17. Integration of potential and quasipotential geophysical fields and GPR data for delineation of buried karst terranes in complex environments

    NASA Astrophysics Data System (ADS)

    Eppelbaum, L. V.; Alperovich, L. S.; Zheludev, V.; Ezersky, M.; Al-Zoubi, A.; Levi, E.

    2012-04-01

    Karst is found on particularly soluble rocks, especially limestone, marble, and dolomite (carbonate rocks), but is also developed on gypsum and rock salt. Subsurface carbonate rocks involved in karst groundwater circulation considerably extend the active karst realm, to perhaps 14% of the world's land area (Price, 2009). The phenomenon of the solution weathering of limestone is the most widely known in the world. Active sinkholes growth appears under different industrial constructions, roads, railways, bridges, airports, buildings, etc. Regions with arid and semi-arid climate occupy about 30% of the Earth's land. Subsurface in arid regions is characterized by high variability of physical properties both on lateral and vertical that complicates geophysical survey analysis. Therefore for localization and monitoring of karst terranes effective and reliable geophysical methodologies should be applied. Such advanced methods were developed in microgravity (Eppelbaum et al., 2008; Eppelbaum, 2011b), magnetic (Khesin et al., 1996; Eppelbaum et al., 2000, 2004; Eppelbaum, 2011a), induced polarization (Khesin et al., 1997; Eppelbaum and Khesin, 2002), VLF (Eppelbaum and Khesin, 1992; Eppelbaum and Mishne, 2012), near-surface temperature (Eppelbaum, 2009), self-potential (Khesin et al., 1996; Eppelbaum and Khesin, 2002), and resistivity (Eppelbaum, 1999, 2007a) surveys. Application of some of these methodologies in the western and eastern shores of the Dead Sea area (e.g., Eppelbaum et al., 2008; Ezersky et al., 2010; Al-Zoubi et al., 2011) and in other regions of the world (Eppelbaum, 2007a) has shown their effectiveness. The common procedures for ring structure identification against the noise background and probabilistic-deterministic methods for recognizing the desired targets in complex media are presented in Khesin and Eppelbaum (1997), Eppelbaum et al. (2003), and Eppelbaum (2007b). For integrated analysis of different geophysical fields (including GPR images) intended

  18. Hydro-geophysical observations integration in numerical model: case study in Mediterranean karstic unsaturated zone (Larzac, france)

    NASA Astrophysics Data System (ADS)

    Champollion, Cédric; Fores, Benjamin; Le Moigne, Nicolas; Chéry, Jean

    2016-04-01

    Karstic hydro-systems are highly non-linear and heterogeneous but one of the main water resource in the Mediterranean area. Neither local measurements in boreholes or analysis at the spring can take into account the variability of the water storage. Since a few years, ground-based geophysical measurements (such as gravity, electrical resistivity or seismological data) allows following water storage in heterogeneous hydrosystems at an intermediate scale between boreholes and basin. Behind classical rigorous monitoring, the integration of geophysical data in hydrological numerical models in needed for both processes interpretation and quantification. Since a few years, a karstic geophysical observatory (GEK: Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) has been setup in the Mediterranean area in the south of France. The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. At the observatory water level in boreholes, evapotranspiration and rainfall are classical hydro-meteorological observations completed by continuous gravity, resistivity and seismological measurements. The main objective of the study is the modelling of the whole observation dataset by explicit unsaturated numerical model in one dimension. Hydrus software is used for the explicit modelling of the water storage and transfer and links the different observations (geophysics, water level, evapotranspiration) with the water saturation. Unknown hydrological parameters (permeability, porosity) are retrieved from stochastic inversions. The scale of investigation of the different observations are discussed thank to the modelling results. A sensibility study of the measurements against the model is done and key hydro-geological processes of the site are presented.

  19. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  20. Integrating geophysical and hydrochemical borehole-log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Buckley, David

    2002-09-01

    Geophysical and hydrochemical borehole-logging techniques were integrated to characterize hydraulic and hydrogeochemical properties of the Chalk aquifer at boreholes in Berkshire, UK. The down-hole measurements were made to locate fissures in the chalk, their spatial extent between boreholes, and to determine the groundwater chemical quality of the water-bearing layers. The geophysical borehole logging methods used were caliper, focused resistivity, induction resistivity, gamma ray, fluid temperature, fluid electrical conductivity, impeller and heat-pulse flowmeter, together with borehole wall optical-imaging. A multiparameter data transmitter was used to measure groundwater temperature, electrical conductivity, dissolved oxygen, pH, and redox potential of the borehole fluid down-hole. High permeability developed at the Chalk Rock by groundwater circulation provides the major flow horizon at the Banterwick Barn study site and represents a conduit system that serves as an effective local hydraulic connection between the boreholes. The Chalk Rock includes several lithified solution-ridden layers, hardgrounds, which imply a gap in sedimentation possibly representing an unconformity. Lower groundwater temperature, high dissolved-oxygen content, and flowmeter evidence of preferential groundwater flow in the Chalk Rock indicated rapid groundwater circulation along this horizon. By repeating the logging at different times of the year under changing hydraulic conditions, other water-inflow horizons within the Chalk aquifer were recognized. Résumé. Des techniques géophysiques et hydrochimiques de diagraphies en forage ont été mises en oeuvre pour caractériser les propriétés hydrauliques et hydrogéochimiques de l'aquifère de la craie dans des forages du Berkshire (Grande-Bretagne). Les mesures en descente ont été faites pour localiser les fissures dans la craie et leur développement spatial entre forages, et pour déterminer la qualité de l'eau souterraine des

  1. Integrating auxiliary data and geophysical techniques for the estimation of soil clay content using CHAID algorithm

    NASA Astrophysics Data System (ADS)

    Abbaszadeh Afshar, Farideh; Ayoubi, Shamsollah; Besalatpour, Ali Asghar; Khademi, Hossein; Castrignano, Annamaria

    2016-03-01

    This study was conducted to estimate soil clay content in two depths using geophysical techniques (Ground Penetration Radar-GPR and Electromagnetic Induction-EMI) and ancillary variables (remote sensing and topographic data) in an arid region of the southeastern Iran. GPR measurements were performed throughout ten transects of 100 m length with the line spacing of 10 m, and the EMI measurements were done every 10 m on the same transect in six sites. Ten soil cores were sampled randomly in each site and soil samples were taken from the depth of 0-20 and 20-40 cm, and then the clay fraction of each of sixty soil samples was measured in the laboratory. Clay content was predicted using three different sets of properties including geophysical data, ancillary data, and a combination of both as inputs to multiple linear regressions (MLR) and decision tree-based algorithm of Chi-Squared Automatic Interaction Detection (CHAID) models. The results of the CHAID and MLR models with all combined data showed that geophysical data were the most important variables for the prediction of clay content in two depths in the study area. The proposed MLR model, using the combined data, could explain only 0.44 and 0.31% of the total variability of clay content in 0-20 and 20-40 cm depths, respectively. Also, the coefficient of determination (R2) values for the clay content prediction, using the constructed CHAID model with the combined data, was 0.82 and 0.76 in 0-20 and 20-40 cm depths, respectively. CHAID models, therefore, showed a greater potential in predicting soil clay content from geophysical and ancillary data, while traditional regression methods (i.e. the MLR models) did not perform as well. Overall, the results may encourage researchers in using georeferenced GPR and EMI data as ancillary variables and CHAID algorithm to improve the estimation of soil clay content.

  2. Integration of Field Geophysics and Geology in an International Setting: Multidisciplinary Geoscience Field Experience at the University of Western Ontario

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Banerjee, N.; Pratt, R. G.

    2010-12-01

    The pedagogical value of the field experience is unequaled: students, teaching assistants, and professors alike return with a renewed sense of purpose, community, and the context in which to place classroom education. It is widely regarded as valuable to personal development, and is required by the Canadian Council of Professional Geoscientists for professional registration. As part of our ongoing International Geoscience Field Experience Initiative, Earth Sciences students at the University of Western Ontario have the opportunity to enhance their education through a study abroad program. The focus is on a residential field experience to world-class localities, offered with the collaboration of internationally recognized academic researchers, government survey personnel, and industry leaders. Recent trips have included the Sn-W mineralization in the Cornwall district of the U.K., the Iberian Pyrite Belt (IPB) in Portugal and Spain, and the metallogenic belts of Western Turkey. The integration of geological knowledge with geophysical data was one of the key organizing principles of our recent field trips to the IPB and Western Turkey. This integration is a foundation of modern Earth Sciences, and common practice in industry, it is relatively rare in classroom settings. Lectures before departure and evening exercises during the field trip supplemented the core undergraduate curriculum in geophysics, reviewing gravity, DC resistivity, induced polarization (IP), and magnetotelluric methods, focusing on application to mineral exploration. During our trip to the IPB, partnership with industry allowed students the opportunity to work with state of the art geophysical data, acquired on an exploration prospect visited during the field trip. Multi-parameter geophysical inversions of the IP and MT data produced cross-sections in depth - results interpretable by the students in the complex geological environment of the Iberian Pyrite Belt. Although the students gained valuable

  3. An integrated surface-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut, 2000

    USGS Publications Warehouse

    Johnson, Carole D.; Dawson, C.B.; Belaval, Marcel; Lane, Jr., John W.

    2002-01-01

    A surface-geophysical investigation to characterize the hydrogeology and contaminant distribution of the former landfill area at the University of Connecticut in Storrs, Connecticut, was conducted in 2000 to supplement the preliminary hydrogeologic assessment of the contamination of soil, surface water, and ground water at the site. A geophysical-toolbox approach was used to characterize the hydrogeology and contaminant distribution of the former landfill. Two-dimensional direct-current resistivity, inductive terrain-conductivity, and seismic-refraction surface-geophysical data were collected and interpreted in an iterative manner with exploratory drilling, borehole geophysics, and hydraulic testing. In this investigation, a geophysical-toolbox approach was used to 1) further define previously identified conductive anomalies and leachate plumes; 2) identify additional leachate plumes, possible fracture zones, and (or) conductive lithologic layers in the bedrock; and 3) delineate bedrock-surface topography in the drainage valleys north and south of the landfill. Resistivity and terrain-conductivity surveys were used to further delineate previously identified geophysical anomalies to the north and southwest of the landfill. A conductive anomaly identified in the terrain-conductivity survey to the north of the landfill in 2000 had a similar location and magnitude as an anomaly identified in terrain-conductivity surveys conducted in 1998 and 1999. Collectively, these surveys indicated that the magnitude of the conductive anomaly decreased with depth and with distance from the landfill. These anomalies indicated landfill leachate in the overburden and shallow bedrock. Results of previous surface-geophysical investigations southwest of the landfill indicated a shallow conductive anomaly in the overburden that extended into the fractured-bedrock aquifer. This conductive anomaly had a sheet-like geometry that had a north-south strike, dipped to the west, and terminated

  4. Integrated decision strategies for skin sensitization hazard.

    PubMed

    Strickland, Judy; Zang, Qingda; Kleinstreuer, Nicole; Paris, Michael; Lehmann, David M; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Lowit, Anna; Allen, David; Casey, Warren

    2016-09-01

    One of the top priorities of the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM) is the identification and evaluation of non-animal alternatives for skin sensitization testing. Although skin sensitization is a complex process, the key biological events of the process have been well characterized in an adverse outcome pathway (AOP) proposed by the Organisation for Economic Co-operation and Development (OECD). Accordingly, ICCVAM is working to develop integrated decision strategies based on the AOP using in vitro, in chemico and in silico information. Data were compiled for 120 substances tested in the murine local lymph node assay (LLNA), direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens assay. Data for six physicochemical properties, which may affect skin penetration, were also collected, and skin sensitization read-across predictions were performed using OECD QSAR Toolbox. All data were combined into a variety of potential integrated decision strategies to predict LLNA outcomes using a training set of 94 substances and an external test set of 26 substances. Fifty-four models were built using multiple combinations of machine learning approaches and predictor variables. The seven models with the highest accuracy (89-96% for the test set and 96-99% for the training set) for predicting LLNA outcomes used a support vector machine (SVM) approach with different combinations of predictor variables. The performance statistics of the SVM models were higher than any of the non-animal tests alone and higher than simple test battery approaches using these methods. These data suggest that computational approaches are promising tools to effectively integrate data sources to identify potential skin sensitizers without animal testing. Published 2016. This article has been contributed to by US Government employees and their work is in the public domain in the USA. PMID:26851134

  5. Integration of geological, geochemical, and geophysical spatial data of the Cement oil field, Oklahoma, test site

    USGS Publications Warehouse

    Termain, Patricia A.; Donovan, Terrence J.; Chavez, Pat S.

    1980-01-01

    Measurement pertaining to geology, geochemistry, and geophysics of the Cement oil field, Oklahoma, test site were collected employing both airborne sensors and ground-based data collection. The measurements include: (1) airborne gamma-ray spectrometry (supplying bismuth 214, thalium 208, and potassium 40 gamma-ray intensities); (2) aeromagnetic survey data; (3) multi-frequency airborne resistivity survey data (supplying apparent electrical resistivity of near surface materials); (4) gravity data; (5) geological and topographic maps; and (6) image data from Landsat MSS and U-2 photography.

  6. Integrated Geologic, Geochemical, and Geophysical Studies of Big Bend National Park, Texas

    USGS Publications Warehouse

    Gray, John E.; Finn, Carol A.; Morgan, Lisa A.; Page, William R.; Shanks, Wayne C.

    2007-01-01

    Introduction Big Bend National Park (BBNP), Texas, covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mi (190-km) stretch of the Rio Grande at the United States border with Mexico. The U.S. Geological Survey (USGS) began a 5-year project in 2003 with the objective of studying a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP. This fact sheet describes results of some of the research by USGS scientists working in BBNP.

  7. Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism

    NASA Astrophysics Data System (ADS)

    Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Moufti, Mohammed R.

    2016-02-01

    During probabilistic volcanic hazard analysis of volcanic fields, a greater variety of spatial data on crustal features should help improve forecasts of future vent locations. Without further examination, however, geophysical estimations of crustal or other features may be non-informative. Here, we present a new, robust, non-parametric method to quantitatively determine the existence of any relationship between natural phenomena (e.g., volcanic eruptions) and a variety of geophysical data. This provides a new validation tool for incorporating a range of potentially hazard-diagnostic observable data into recurrence rate estimates and hazard analyses. Through this study it is shown that the location of Cenozoic volcanic fields across the Arabian Shield appear to be related to locations of major and minor faults, at higher elevations, and regions where gravity anomaly values were between - 125 mGal and 0 mGal. These findings support earlier hypotheses that the western shield uplift was related to Cenozoic volcanism. At the harrat (volcanic field)-scale, higher vent density regions are related to both elevation and gravity anomaly values. A by-product of this work is the collection of existing data on the volcanism across Saudi Arabia, with all vent locations provided herein, as well as updated maps for Harrats Kura, Khaybar, Ithnayn, Kishb, and Rahat. This work also highlights the potential dangers of assuming relationships between observed data and the occurrence of a natural phenomenon without quantitative assessment or proper consideration of the effects of data resolution.

  8. A strategy for compression and analysis of massive geophysical data sets

    NASA Technical Reports Server (NTRS)

    Braverman, A.

    2001-01-01

    This paper describes a method for summaraizing data in a way that approximately preserves high-resolution data structure while reducing data volume and maintaining global integrity of very large, remote sensing data sets. The method is under development for one of Terra's instruments, the Multi-angle Imaging SpectroRadiometer (MISR).

  9. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  10. Buried Waste Integrated Demonstration Strategy Plan

    SciTech Connect

    Kostelnik, K.M.

    1993-02-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

  11. Integrated testing strategies for safety assessments.

    PubMed

    Hartung, Thomas; Luechtefeld, Tom; Maertens, Alexandra; Kleensang, Andre

    2013-01-01

    Despite the fact that toxicology uses many stand-alone tests, a systematic combination of several information sources very often is required: Examples include: when not all possible outcomes of interest (e.g., modes of action), classes of test substances (applicability domains), or severity classes of effect are covered in a single test; when the positive test result is rare (low prevalence leading to excessive false-positive results); when the gold standard test is too costly or uses too many animals, creating a need for prioritization by screening. Similarly, tests are combined when the human predictivity of a single test is not satisfactory or when existing data and evidence from various tests will be integrated. Increasingly, kinetic information also will be integrated to make an in vivo extrapolation from in vitro data. Integrated Testing Strategies (ITS) offer the solution to these problems. ITS have been discussed for more than a decade, and some attempts have been made in test guidance for regulations. Despite their obvious potential for revamping regulatory toxicology, however, we still have little guidance on the composition, validation, and adaptation of ITS for different purposes. Similarly, Weight of Evidence and Evidence-based Toxicology approaches require different pieces of evidence and test data to be weighed and combined. ITS also represent the logical way of combining pathway-based tests, as suggested in Toxicology for the 21st Century. This paper describes the state of the art of ITS and makes suggestions as to the definition, systematic combination, and quality assurance of ITS. PMID:23338803

  12. Multi-Parameteric Geophysical Observatory: An Integrated Approach to Earthquake Precursory Research

    NASA Astrophysics Data System (ADS)

    Bansal, B. K.; Arora, B. R.; Kumar, N.

    2009-12-01

    Laboratory based Dilatancy-diffusion model predicts that crustal rocks when subjected to various degrees of stresses, simulating different phases of earthquake preparatory cycle, undergo opening of minor cracks, in-flux of fluids, material strengthening prior to the rupture. These changes producing small perturbation in physical properties of rocks are manifested in the enhanced micro-seismicity, seismic wave velocity changes, crustal deformation, small-scale changes in gravity, resistivity, magnetic field intensity, electromagnetic and radon gas emission as well as by fluctuations in hydrological parameters. Recognising that simultaneous measurements of inter-disciplinary parameters are key to decipher characteristic space-time variation during the earthquake preparatory cycles, a Multi-Parameteric Geophysical Observatory (MPGO) has been established at Ghuttu, Central Himalaya. Located in a narrow belt of high seismicity, just south of the Main Central Thrust of the Himalaya, has been the seat of recent 1991-Uttarkashi and 1999-Chamoli earthquakes, both M> 6. The MPGO became fully operational in April 2007 and is equipped with super conducting gravimeter, overhauser magnetometer, tri-axial fluxgate magnetometer, ULF band search coil magnetometer, radon data logger, water level recorders and is backed up by the dense network of Broad Band Seismometers (BBS) and GPS. However, the isolation of weak earthquake precursory signal further requires characterization of time variability related to environmental, hydrological, tectonic and even inter planetary processes affecting differently each geophysical time series. Demonstrating the potential of data adoptive techniques like Principal Component Analysis, Wavelet, Singular Spectrum Analysis, Fractal etc in denoising and allowing parameterization of tidal, pressure and hydrological influence on gravity and other time series, the presentation shall present nature of precursory signals in gravity, magnetic, radon and water

  13. Integrating tropospheric oxidants - A measurement strategy

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Holmes, C. D.

    2013-12-01

    The troposphere contains a broad and variegated mix of chemical regimes, in which key processes such as methane loss and ozone production can vary by large factors. Convection and frontal lifting inject hot spots of highly reactive species - HOx and NOx precursors - that can enhance these processes by large factors throughout the troposphere. Lightning and aircraft can create their own hot spots with high NOx. These hot spots are transported at least part way around the globe and eventually diluted through chemical aging and mixing. All of these processes have been observed and modeled, but the challenge of making measurements that define their global integral remains. In terms of chemical regimes, the troposphere is not well mixed, but granular. Integration of methane loss or ozone production over a hemisphere or the globe requires not only chemical characterization (i.e., the covariance of HOx and NOx precursors, photochemical environment) for the mix of hot spots and the less varied background, but also their frequency of occurrence. In an effort to quantify these globally integrated processes using observations, we evaluate a sampling strategy for in situ aircraft measurements using a chemistry-transport model (CTM). We simulate the seasonal Pacific ocean transects of a HIPPO-like mission that includes measurements of the major HOx and NOx precursors. HIPPO conducted pole-to-pole observations with continuous vertical profiling from near the surface to 9 km. Oxidant hot spots occur through convection from the marine boundary layer (e.g., HOOH, CH3OOH) as well as longer-range transport of industrial pollution and biomass burning. Unlike previous missions focused on testing instantaneous photochemical steady-state along the flight path, we are interested in how each measured air parcel will destroy methane or make ozone over the next day or so. Thus, we assume that we can measure or infer all species needed to initiate a 24 hour photochemical box-model integration

  14. Integrated geophysical studies of the Fort Worth Basin (Texas), Harney Basin (Oregon), and Snake River Plain (Idaho)

    NASA Astrophysics Data System (ADS)

    Khatiwada, Murari

    Geophysical methods such as seismic, gravity, magnetics, electric, and electromagnetics are capable of identifying subsurface features but each has a different spatial resolution. Although, each of these methods are stand-alone tools and have produced wonderful and reliable results for decades to solve geological problems, integrating geophysical results from these different methods with geological and geospatial data, adds an extra dimension towards solving geological problems. Integration techniques also involve comparing and contrasting the structural and tectonic evolution of geological features from different tectonic and geographic provinces. I employed 3D and 2D seismic data, passive seismic data, and gravity and magnetic data in three studies and integrated these results with geological, and geospatial data. Seismic processing, and interpretation, as well as filtering techniques applied to the potential filed data produced many insightful results. Integrated forward models played an important role in the interpretation process. The three chapters in this dissertation are stand-alone separate scientific papers. Each of these chapters used integrated geophysical methods to identify the subsurface features and tectonic evolution of the study areas. The study areas lie in the southeast Fort Worth Basin, Texas, Harney Basin, Oregon, and Snake River Plain, Idaho. The Fort Worth Basin is one of the most fully developed shale gas fields in North America. With the shallow Barnett Shale play in place, the Precambrian basement remains largely unknown in many places with limited published work on the basement structures underlying the Lower Paleozoic strata. In this research, I show how the basement structures relate to overlying Paleozoic reservoirs in the Barnett Shale and Ellenburger Group. I used high quality, wide-azimuth, 3D seismic data near the southeast fringe of the Fort Worth Basin. The seismic results were integrated with gravity, magnetic, well log, and

  15. Constraining kimberlite geology through integration of geophysical, geological and geochemical methods: A case study of the Mothae kimberlite, northern Lesotho

    NASA Astrophysics Data System (ADS)

    Galloway, M.; Nowicki, T.; van Coller, B.; Mukodzani, B.; Siemens, K.; Hetman, C.; Webb, K.; Gurney, J.

    2009-11-01

    The Cretaceous Mothae kimberlite is located in northern Lesotho on the southeast margin of the Kaapvaal craton. Historical work suggests that Mothae has a low average diamond grade of ~ 3 cpht and the economic viability therefore depends on the presence of large, high quality (and thus value) diamonds as does that of the nearby Letseng Diamond Mine. Defining such a diamond population requires a very large and representative bulk sample. The near surface geology of the Mothae kimberlite was investigated using ground geophysical surveys, pit mapping, petrography, measurements of the mantle components and whole rock compositions. Integration of data from these different approaches clearly defines the outline of the kimberlite at the surface and permits definition, with varying confidence levels, of at least six geologically distinct domains within the body. The domains are defined primarily on the basis of variations in the relative abundances of certain mantle-derived minerals extracted from exploratory pit samples, supported to varying extents by geophysically-defined zones, variations in kimberlite type (established petrographically) and variations in whole rock composition. The domains are interpreted to reflect the presence of multiple phases of volcaniclastic kimberlite each with a potentially different diamond content. The map of the near surface geology constructed on the basis of the work described in this paper provides a valuable framework for planning of further drilling and sampling work aimed at constraining the diamond resource at Mothae. This study illustrates the value of an integrated, multidisciplinary approach to understanding the geology of a complex kimberlite body during the early stages of evaluation.

  16. Integration of geophysical and geological data for delimitation of mineralized zones in Um Naggat area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Gaafar, Ibrahim

    2015-06-01

    An integrated approach for geophysical, geological and mineralogical data was followed for Um Naggat area, Central Eastern Desert, Egypt, in order to delineate its mineralized zones. The albitized granites are well-defined on the Th- and U-channel images, by their anomalous shapes, reaching 150 ppm and 90 ppm respectively, beside low K content. Interpretations of the aeromagnetic maps delineated four regional structural trends oriented due NNW, NW, ENE and E-W directions. They are identified as strike-slip faults, which coincide well with field observations, where NW-trending faults cut and displace right laterally ENE-trending older ones. The interaction between these two strike-slip fault systems confining the albite granite is easily identified on the regional data presenting longer wavelength anomalies, implying deep-seated structures. They could represent potential pathways for migration of enriched mineralized fluids. Geochemically, albite granites of peraluminous characteristics that had suffered extensive post-magmatic metasomatic reworking, resulted into development of (Zr, Hf, Nb, Ta, U, Th, Sn) and albite-enriched and greisenized granite body of about 600 m thick, and more than 3 km in strike length. The albite granite is characterized by sharp increase in average rare metal content: Zr (830 ppm), Hf (51 ppm), Nb (340 ppm), Ta (44 ppm), and U (90 ppm). Thorite, uranothorite, uraninite and zircon are the main uranium-bearing minerals of magmatic origin within the enclosing granite. However, with respect to Zr, Nb, and Ta, the albitized granite can be categorized as rare metal granite. The integration of airborne geophysical (magnetic and γ-ray spectrometric), geological, geochemical and mineralogical data succeeded in assigning the albite granite of Um Naggat pluton as a mineralized zone. This zone is characterized by its high thorium and uranium of hydrothermal origin as indicated by its low Th/U ratio, with rare metals mineralization controlled by two

  17. Scaling filtering and multiplicative cascade information integration techniques for geological, geophysical and geochemical data processing and geological feature recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Q.

    2013-12-01

    This paper introduces several techniques recently developed based on the concepts of multiplicative cascade processes and multifractals for processing exploration geochemical and geophysical data for recognition of geological features and delineation of target areas for undiscovered mineral deposits. From a nonlinear point of view extreme geo-processes such as cloud formation, rainfall, hurricanes, flooding, landslides, earthquakes, igneous activities, tectonics and mineralization often show singular property that they may result in anomalous amounts of energy release or mass accumulation that generally are confined to narrow intervals in space or time. The end products of these non-linear processes have in common that they can be modeled as fractals or multifractals. Here we show that the three fundamental concepts of scaling in the context of multifractals: singularity, self-similarity and fractal dimension spectrum, make multifractal theory and methods useful for geochemical and geophysical data processing for general purposes of geological features recognition. These methods include: a local singularity analysis based on a area-density (C-A) multifractal model used as a scaling high-pass filtering technique capable of extracting weak signals caused by buried geological features; a suite of multifractal filtering techniques based on spectrum density - area (S-A) multifractal models implemented in various domain including frequency domain can be used for unmixing geochemical or geophysical fields according to distinct generalized self-similarities characterized in certain domain; and multiplicative cascade processes for integration of diverse evidential layers of information for prediction of point events such as location of mineral deposits. It is demonstrated by several case studies involving Fe, Sn, Mo-Ag and Mo-W mineral deposits that singularity method can be utilized to process stream sediment/soil geochemical data and gravity/aeromagnetic data as high

  18. Integrated Geophysical Examination of the CRREL Permafrost Tunnel’s Fairbanks Silt Units, Fox, Alaska

    NASA Astrophysics Data System (ADS)

    Dinwiddie, C. L.; McGinnis, R. N.; Stillman, D.; Grimm, R. E.; Hooper, D. M.; Bjella, K.

    2009-12-01

    We report on a recent geophysical survey of the U.S. Army Corps of Engineers’ Cold Region Research and Engineering Laboratory’s Permafrost Tunnel in Fox, Alaska. The tunnel consists of an adit and winze excavated into late-Pleistocene loess (Fairbanks Silt), segregated lens ice, chaotic reticulated ice, foliated massive wedge ice, clear thermokarst cave ice, and gravel pseudomorphs. From within the tunnel and at land surface above the tunnel, we used ground-penetrating radar reflection and transillumination soundings, multielectrode and capacitively coupled resistivity profiling, and electrical resistivity tomography to identify geophysical signatures of permanently frozen loess and massive wedge ice. We exploited the increasing path length through the septum between the adit and winze in the direction away from their junction to observe how radar signals attenuate in these media. GPR transillumination soundings of this septum at 100, 200, 250, 500, and 1000 MHz clearly demarcated the difference between ray paths transiting relatively conductive permanently frozen loess versus those transiting relatively resistive massive wedge ice. Multielectrode resistivity tomography of the septum also clearly distinguished between massive wedge ice with estimated resistivities >100,000 ohm-m and permanently frozen loess with resistivities ranging from 4000 to 40,000 ohm-m. Capacitively coupled resistivity data gathered at land surface above the distal end of the adit show signatures consistent with its delaminating roof at this location. Analysis of dipole-dipole multielectrode resistivity data gathered at land surface with 48 electrodes and 2-m spacings produced adit-level resistivity estimates in the 10,000 to 26,000 ohm-m range. Both surface resistivity methods revealed the 0.75-1.0-m-thick seasonally frozen active layer above the tunnel to be relatively resistive (>1000 ohm-m) during midwinter. Core samples of foliated wedge ice, clear thermokarst cave ice with bubbles

  19. 3D Integrated geophysical-petrological modelling of the Iranian lithosphere

    NASA Astrophysics Data System (ADS)

    Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier

    2016-04-01

    The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3

  20. Integration of remote sensing and surface geophysics in the detection of faults

    NASA Technical Reports Server (NTRS)

    Jackson, P. L.; Shuchman, R. A.; Wagner, H.; Ruskey, F.

    1977-01-01

    Remote sensing was included in a comprehensive investigation of the use of geophysical techniques to aid in underground mine placement. The primary objective was to detect faults and slumping, features which, due to structural weakness and excess water, cause construction difficulties and safety hazards in mine construction. Preliminary geologic reconnaissance was performed on a potential site for an underground oil shale mine in the Piceance Creek Basin of Colorado. LANDSAT data, black and white aerial photography and 3 cm radar imagery were obtained. LANDSAT data were primarily used in optical imagery and digital tape forms, both of which were analyzed and enhanced by computer techniques. The aerial photography and radar data offered supplemental information. Surface linears in the test area were located and mapped principally from LANDSAT data. A specific, relatively wide, linear pointed directly toward the test site, but did not extend into it. Density slicing, ratioing, and edge enhancement of the LANDSAT data all indicated the existence of this linear. Radar imagery marginally confirmed the linear, while aerial photography did not confirm it.

  1. Integrated geophysical surveys for mapping lati-andesite intrusive bodies, Chino Valley, Arizona

    USGS Publications Warehouse

    El-Kaliouby, Hesham; Sternberg, Ben K.; Hoffmann, John P.; Langenheim, V.E.

    2012-01-01

    Three different geophysical methods (magnetic, transient electromagnetic (TEM) and gravity) were used near Chino Valley, Arizona, USA in order to map a suspected lati-andesite intrusive body (plug) previously located by interpretation of aeromagnetic data. The magnetic and TEM surveys provided the best indication of the location and depth of the plug. The north-south spatial extent of this plug was estimated to be approximately 600 meters. The depth to the top of the plug was found from the TEM survey to be approximately 350 meters near the center of the survey. The location of the plug defined by the ground magnetic data is consistent with that from the TEM data. Gravity data mostly image the basin-basement interface with a small contribution from the plug of about 0.5 mGal. Results from this investigation can be used to help define the irregular subsurface topography caused by several intrusive lati-andesite plugs that could influence groundwater flow in the area.

  2. Integrated geophysical survey in defining subsidence features on a golf course

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.

    2007-01-01

    Subsidence was observed at several places on the Salina Municipal Golf Course in areas known to be built over a landfill in Salina, Kansas. High-resolution magnetic survey (???5400 m2), multi-channel electrical resistivity profiling (three 154 m lines) and microgravity profiling (23 gravity-station values) were performed on a subsidence site (Green 16) to aid in determining boundaries and density deficiency of the landfill in the vicinity of the subsidence. Horizontal boundaries of the landfill were confidently defined by both magnetic anomalies and the pseudo-vertical gradient of total field magnetic anomalies. Furthermore, the pseudo-vertical gradient of magnetic anomalies presented a unique anomaly at Green 16, which provided a criterion for predicting other spots with subsidence potential using the same gradient property. Results of multi-channel electrical resistivity profiling (ERP) suggested the bottom limit of the landfill at Green 16 was around 21 m below the ground surface based on the vertical gradient of electric resistivity and a priori information on the depth of the landfill. ERP results also outlined several possible landfill bodies based on their low resistivity values. Microgravity results suggested a -0.14 g cm-3 density deficiency at Green 16 that could equate to future surface subsidence of as much as 1.5 m due to gradual compaction. ?? 2007 Nanjing Institute of Geophysical Prospecting.

  3. Integrating social capacity into risk reduction strategies

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, S.; Pedoth, L.; Zebisch, M.

    2012-04-01

    The reduction of risk to impacts from external stresses and shocks is an important task in communities worldwide at all government levels and independent of the development status. The importance of building social capacity as part of risk reduction strategies is increasingly recognized. However, there is space for improvement to incorporate related activities into a holistic risk governance approach. Starting point for such enhancements is to promote and improve assessments of what is called 'sensitivity' or 'adaptive capacity' in the climate change community and what is named 'vulnerability' or 'resilience' in the hazard risk community. Challenging issues that need to be tackled in this context are the integration of concepts and method as well as the fusion of data. Against this background we introduce a method to assess regional adaptive capacity to climate change focusing on mountain areas accounting for sector specific problems. By considering three levels of specificity as base for the selection of most appropriate indicators the study results have the potential to support decision making regarding most appropriate adaptation actions. Advantages and shortcomings of certain aspects of adaptive capacity assessment in general and of the proposed method in particular are presented.

  4. EPA`s integrated nitrogen oxides strategy

    SciTech Connect

    Grano, D.H.

    1997-12-31

    Nitrogen oxides (NO{sub x}) are highly reactive and play a major role in the formation of various gases and particles in the atmosphere which lead to harmful effects on human health and welfare. This paper briefly describes the multiple impacts on human health and welfare that result from emissions of NO{sub x} and describes EPA`s strategy to integrate NO{sub x} reductions from various mobile and stationary sources in a balanced manner to achieve environmental benefits. Based on modeling information, it is clear that substantial reductions in NO{sub x} emissions over large geographic areas are needed if many densely populated areas of the nation are to attain the national ambient air quality standard for ozone. In addition to attainment of the health standard for ozone, the reduction of NO{sub x} emissions will also likely improve the nation`s environment by reducing adverse impacts of acid deposition, eutrophication of waterbodies, global warming, nitrogen dioxide, particulate matter, stratospheric ozone depletion, toxics, and visibility.

  5. Integrated geophysical and LIDAR surveys at the archaeological site of Ancient Epomanduodurum, Mandeure-Mathay (Doubs, Eastern France).

    NASA Astrophysics Data System (ADS)

    Thivet, M.; Bossuet, G.; Laplaige, C.

    2009-04-01

    For several years, some integrated geophysical studies were carried out at Mandeure-Mathay (Franche-Comté Region, Eastern France) for the archaeological evaluation of ancient Epomanduodurum. It's a site of a major scientific interest for understanding the territorial structure of earliest agglomerations in the Eastern Gaul at the end of the Iron Age and during the Roman period. As regards its size, urban equipment, monuments and function, the ancient town is considered as the second behind the civitas capital of Sequani, Besançon-Vesontio. It is located in the Doubs valley, where the plain of Alsace opens into the marches of Burgundy, in a traffic zone between the Vosges and the Jura. This location allows transit between the Rhône valley and the Rhein plain, through Saône and Doubs valleys. This geographical situation was a significant factor in the creation of the late Iron Age settlement, later to turn into a major Gallo-roman town. The whole site includes urban centre and two artisan suburbs. The buried ruins are extended moreover 500 hectares outside and inside a meander of the river. The first "well-organized" research done on the site goes back as far as the end of the 18th Century. However, it is only round the beginning of the 19th century that major constructions such as the theatre (1820) and the sanctuary (1880) were uncovered. The status and the influence of Latenian sanctuary, located in the centre part of a great monumental complex of Early Augustan period, played probably an important role in the emergence of this foreground agglomeration. From the beginning of the survey, in 2001, high resolution and no invasive geophysical methods have been performed on large scale both on the terrace and in the floodplain. Automatic Resistivity Profiling (ARP) and magnetic mapping were taken in grids covering respective areas of 60 and 40 hectares. Ground penetrating radar was occasionally used to confirm the detection of specific anthropogenic anomalies

  6. Integration of geophysics within the Argonne expedited site characterization Program at a site in the southern High Plains

    SciTech Connect

    Hastings, B.; Hildebrandt, G.; Meyer, T.; Saunders, W.; Burton, J.C.

    1995-05-01

    An Argonne National Laboratory Expedited Site Characterization (ESC) program was carried out at a site in the central United States. The Argonne ESC process emphasizes an interdisciplinary approach in which all available information is integrated to produce as complete a picture as possible of the geologic and hydrologic controls on contaminant distribution and transport. As part of this process, all pertinent data that have been collected from previous investigations are thoroughly analyzed before a decision is made to collect additional information. A seismic reflection program recently concluded at the site had produced inconclusive results. Before we decided whether another acquisition program was warranted, we examined the existing data set to evaluate the quality of the raw data, the appropriateness of the processing sequence, and the integrity of the interpretation. We decided that the field data were of sufficient quality to warrant reprocessing and reinterpretation. The main thrust of the reprocessing effort was to enhance the continuity of a shallow, low-frequency reflection identified as a perching horizon within the Ogallala formation. The reinterpreted seismic data were used to locate the boundaries of the perched aquifer, which helped to guide the Argonne ESC drilling and sampling program. In addition, digitized geophysical well log data from previous drilling programs were reinterpreted and integrated into the geologic and hydrogeologic model.

  7. Ignimbrites to batholiths: integrating perspectives from geological, geophysical, and geochronological data

    USGS Publications Warehouse

    Lipman, Peter W.; Bachmann, Olivier

    2015-01-01

    Multistage histories of incremental accumulation, fractionation, and solidification during construction of large subvolcanic magma bodies that remained sufficiently liquid to erupt are recorded by Tertiary ignimbrites, source calderas, and granitoid intrusions associated with large gravity lows at the Southern Rocky Mountain volcanic field (SRMVF). Geophysical data combined with geological constraints and comparisons with tilted plutons and magmatic-arc sections elsewhere are consistent with the presence of vertically extensive (>20 km) intermediate to silicic batholiths (with intrusive:extrusive ratios of 10:1 or greater) beneath the major SRMVF volcanic loci (Sawatch, San Juan, Questa-Latir). Isotopic data require involvement of voluminous mantle-derived mafic magmas on a scale equal to or greater than that of the intermediate to silicic volcanic and plutonic rocks. Early waxing-stage intrusions (35–30 Ma) that fed intermediate-composition central volcanoes of the San Juan locus are more widespread than the geophysically defined batholith; these likely heated and processed the crust, preparatory for ignimbrite volcanism (32–27 Ma) and large-scale upper-crustal batholith growth. Age and compositional similarities indicate that SRMVF ignimbrites and granitic intrusions are closely related, but the extent to which the plutons record remnants of former magma reservoirs that lost melt to volcanic eruptions has been controversial. Published Ar/Ar-feldspar and U-Pb-zircon ages for plutons spatially associated with ignimbrite calderas document final crystallization of granitoid intrusions at times indistinguishable from the tuff to ages several million years younger. These ages also show that SRMVF caldera-related intrusions cooled and solidified soon after zircon crystallization, as magma supply waned. Some researchers interpret these results as recording pluton assembly in small increments that crystallized rapidly, leading to temporal disconnects between

  8. An integrated geological and geophysical study of the Uinta Mountains, Utah, Colorado and a geophysical study on Tamarix in the Rio Grande River basin, West Texas

    NASA Astrophysics Data System (ADS)

    Khatun, Salma

    2008-07-01

    This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a

  9. An integrated geological and geophysical study of the Uinta Mountains, Utah, Colorado and a geophysical study on Tamarix in the Rio Grande River basin, West Texas

    NASA Astrophysics Data System (ADS)

    Khatun, Salma

    2008-07-01

    This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a

  10. Integrating aerial geophysical data in multiple-point statistics simulations to assist groundwater flow models

    NASA Astrophysics Data System (ADS)

    Dickson, Neil E. M.; Comte, Jean-Christophe; Renard, Philippe; Straubhaar, Julien A.; McKinley, Jennifer M.; Ofterdinger, Ulrich

    2015-08-01

    The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively `noisy' magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.

  11. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    NASA Astrophysics Data System (ADS)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  12. An Integrated Strategy for Teaching Biochemistry to Biotechnology Specialty Students

    ERIC Educational Resources Information Center

    Ouyang, Liming; Ou, Ling; Zhang, Yuanxing

    2007-01-01

    The faculty of biochemistry established an integrated teaching strategy for biotechnology specialty students, by intermeshing the case-study method, web-assistant teaching, and improved lecture format with a brief content and multimedia courseware. Teaching practice showed that the integrated teaching strategy could retain the best features of…

  13. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    NASA Astrophysics Data System (ADS)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  14. Integration & Co-development of a Geophysical CO2 Monitoring Suite

    SciTech Connect

    Friedmann, S J

    2007-07-24

    Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had also used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2

  15. An integrated geophysical study of north African and Mediterranean lithospheric structure

    NASA Astrophysics Data System (ADS)

    Dial, Paul Joseph

    1998-07-01

    This dissertation utilizes gravity and seismic waveform modeling techniques to: (1) determine models of lithospheric structure across northern African through gravity modeling and (2) determine lithospheric and crustal structure and seismic wave propagation characteristics across northern Africa and the Mediterranean region. The purpose of the gravity investigation was to construct models of lithospheric structure across northern Africa through the analysis of gravity data constrained by previous geological and geophysical studies. Three lithospheric models were constructed from Bouguer gravity data using computer modeling, and the gravity data was wavelength-filtered to investigate the relative depth and extent of the structures associated with the major anomalies. In the Atlas Mountains area, the resulting earth models showed slightly greater crustal thickness than those of previous studies if a low density mantle region is not included in the models. However, if a low density mantle region (density = 3.25 g/cm3) was included beneath the Atlas, the earth models showed little crustal thickening (38 km), in accord with previous seismic studies. The second portion of the research consisted of seismic waveform modeling of regional and teleseismic events to determine crustal and lithospheric structure across northern Africa and the Mediterranean. A total of 174 seismograms (145 at regional distances (200--1400 km) and 29 with epicentral distances exceeding 1900 km) were modeled using 1-D velocity models and a reflectivity code. At regional distances from four stations surrounding the western Mediterranean basin (MAL, TOL, PTO and AQU) and one station near the Red Sea (HLW), 1-D velocity models can satisfactorily model the relative amplitudes of both the Pnl and surface wave portions of the seismograms. Modeling of propagation paths greater than 1900 km was also conducted across northern Africa and the Mediterranean. The results indicate that the S-wave velocity model

  16. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India.

    PubMed

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Ahmed, Shakeel

    2012-08-01

    The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains. PMID:21901310

  17. A slingram survey on the Nevada Test Site: part of an integrated geologic geophysical study of site evaluation for nuclear waste disposal

    USGS Publications Warehouse

    Flanigan, Vincent J.

    1979-01-01

    A slingram geophysical survey was made in early 1978 as part of the integrated geologlcal-geophysical study aimed at evaluating the Eleana Formation as a possible repository for nuclear waste. The slingram data were taken over an alluvial fan and pediments along the eastern flank of Syncline Ridge about 45 km north of Mercury, Nevada, on the Nevada Test Site. The data show that the more conductive argillaceous Eleana Formation varies in depth from 40 to 85 m from west to east along traverse lines. Northeast-trending linear anomalies suggest rather abrupt changes in subsurface geology that may be associated with faults and fractures. The results of the slingram survey will, when interpreted in the light of other geologic and geophysical evidence, assist in understanding the shallow parts of the geologic setting of the Eleana Formation.

  18. Integrated Geophysical and Geotechnical Investigation of the Failed Portion of a Road in Basement Complex Terrain, Southwest Nigeria.

    NASA Astrophysics Data System (ADS)

    Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.

    2008-05-01

    Several efforts by the local authority to fix the bad portion of the Ijebu Ode - Erunwon road, southwest Nigeria have over the years yielded no meaningful result as the road often gets deteriorated shortly after repair. Motorists and other road users have abandoned this road that is meant to link a commercial center with several farming communities, thus making the cost of transportation of farm produce very high. Geophysical methods of investigation integrated with geotechnical studies of the road, especially the failed portion were undertaken with the object of finding causes of the road failure as well as determine the most appropriate design method. Very Low Frequency Electromagnetic (VLF-EM) and electrical resistivity methods were employed to determine sections of the road with anomalous electrical responses that could be interpreted in terms of structures, lithology, water saturation etc. Geotechnical studies such as California Bearing ratio (CBR), grain size analysis, liquid limit, linear shrinkage, plastic limit, etc of samples obtained from sections identified as having high electrical anomaly were also carried out to determine geotechnical properties. Plots of inverted VLF-EM real and filtered real data identified bad sections of the road show peaks with positive filtered real amplitudes greater than 30% and lower amplitudes less than 30% and were interpreted to indicate major and minor linear features of faults and fractured zones, which in addition also display very high conductivity values. Vertical Electrical Soundings (VES) probe of the failed portions gave three to four layered earth interpreted to contain clayey-sand and loose saturated sand units at the upper portion, highly saturated weathered/fractured basement and fresh basement at the lower portion. Soaked and unsoaked CBR result range from 70.3 - 83.9%, and 12.9 - 31.6% respectively, indicating percentage reduction in strength with wetness of 55.7% - 83.8%. Liquid limit, linear shrinkage and

  19. Integration of borehole geophysical properties into surface multichannel seismic data sets: First results from the SCOPSCO ICDP project

    NASA Astrophysics Data System (ADS)

    Lindhorst, Katja; Krastel, Sebastian; Baumgarten, Henrike; Wonik, Thomas; Francke, Alexander; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania), located on the Balkan Peninsula within the Dinaride-Hellenide-Albanide mountain belt is probably the oldest, continuously existing lake in Europe (2-5 Ma). Multidisciplinary studies at Lake Ohrid prove that it is an important archive to study the sedimentary and tectonic evolution of a graben system over a long time period. Within the frame of the International Continental Drilling Program (ICDP) a successful deep drilling campaign was carried out in spring 2013 with more than 2000 m of sediment cores at four sites. Downhole logging was realized at each site after coring, enabling us to integrate geophysical and sedimentological data into seismic cross sections in order to get a profound knowledge of climatic and environmental changes in the catchment area. The longest record (~569 m, site DEEP), recovered in the central part of lake Ohrid likely covers the entire lacustrine succession within Lake Ohrid Basin including several Interglacial and Glacial cycles. Sedimentological analyses are still ongoing; however, the upper 260 m of the DEEP reflecting the time period between Mid-Pleistocene Transition to present. An integration of borehole geophysical data into surface seismic lines shows that sediments, within the central part of Lake Ohrid, were deposited in a deep water environment over the last 600 ka. For the uppermost sediment cover, about 50 m of penetration, a very high resolution sediment echosounder data set allows us to identify major tephra layers and track them through the entire deep basin. Furthermore, a vertical seismic profile was carried out at site DEEP resulting in a conversion from two-way-travel-time into sediment depth. One major outcome is a corridor stack of the upgoing wave that clearly shows several reflectors linked to changes of sediment properties of cores and hence environmental and climate changes in the surrounding area of Lake Ohrid Basin. Several changes from Glacial to Interglacial, and vice versa

  20. A review of integrated geophysical investigations from archaeological and cultural sites under encroaching urbanisation in İzmir, Turkey

    NASA Astrophysics Data System (ADS)

    Drahor, Mahmut Göktuğ

    In the new millennium, globalisation, and with it urbanisation, has been expanding as a consequence of economic development throughout the world. Urbanisation is a major social problem, not only for developing countries but also for developed countries. Urbanisation also has a major impact on archaeological sites and cultural heritages in urbanised zones. Non-destructive investigation techniques, such as geophysics, which uses remote sensing, and is non-invasive, are of great importance in urban areas. We are now capable of solving urbanisation-related problems, and these techniques reduce the cost of projects at urbanised sites. Geophysics has increased the possibilities of new applications in determining intensive urbanisation effects in earth science. Geophysics deals with numerous physical variations such as electricity, electromagnetism, magnetics, acoustics, gravity and radioactivity. There are numerous ways geophysics can be applied in archaeological and cultural heritage studies. In addition the hazard mitigation, infrastructure investigation, waste management, water supply, urban gateways and other factors are documented by geophysics. In recent years, archaeological sites under the encroachment of urbanisation have been investigated on numerous occasions using non-invasive geophysical techniques, allowing parameters such as the depth, dimension and extension of targets to be clearly determined. The term “urban geophysics” has recently been seen in various references related to geophysics and other earth science studies. This study reviews the results of geophysical investigations carried out at important archaeological sites under encroaching urbanisation in the city of İzmir, Turkey.

  1. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections

    NASA Astrophysics Data System (ADS)

    Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A.

    2016-04-01

    We investigate a portion of the ancient (VI and IV centuries BC) polygonal walls of Amelia, in Central Italy. After the collapse of a portion of the walls which occurred in January 2006, a wide project started in order to monitor their external facade and inspect the characteristics of the internal structure, currently not clearly known. In this specific case, the preservation of such an important cultural heritage was mandatory, therefore invasive methods like drilling or archaeological essays cannot be used. For this purpose, a multidisciplinary approach represents an innovative way to shed light on their inner structure. We combine several non-invasive techniques such as Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), specifically adapted for this study, Laser Scanning and Digital Terrestrial Photogrammetry, integrated with other geomatic measures provided by a Total Station and Global Navigation Satellite Systems (GNSS). After collecting some historical information, we gather the whole datasets exploring for their integration an interpretation approach borrowed from the reflection seismic (attribute analysis and three dimensional visualization). The results give rise for the first time to the internal imaging of this ancient walls, highlighting features associable to different building styles related to different historical periods. Among the result, we define a max wall thickness of about 3.5 m for the cyclopic sector, we show details of the internal block organization and we detect low resistivity values interpretable with high water content behind the basal part of the walls. Then, quantitative analyses to assess their reliable geotechnical stability are done, integrating new geometrical constrains provided by the geophysics and geo-technical ground parameters available in literature. From this analysis, we highlight how the Amelia walls are interested, in the investigated sector, by a critical pseudo-static equilibrium.

  2. Integrated Geophysical Investigation of Preferential Flow Paths at the Former Tyson Valley Powder Farm near Eureka, Missouri, May 2006

    USGS Publications Warehouse

    Burton, Bethany L.; Ball, Lyndsay B.; Stanton, Gregory P.; Hobza, Christopher M.

    2009-01-01

    In May 2006, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, conducted surface and borehole geophysical surveys at the former Tyson Valley Powder Farm near Eureka, Mo., to identify preferential pathways for potential contaminant transport along the bedrock surface and into dissolution-enhanced fractures. The Tyson Valley Powder Farm was formerly used as a munitions storage and disposal facility in the 1940s and 1950s, and the site at which the surveys were performed was a disposal area for munitions and waste solvents such as trichloroethylene and dichloroethylene. Direct-current resistivity and seismic refraction data were acquired on the surface; gamma, electromagnetic induction, and full waveform sonic logs were acquired in accessible boreholes. Through the combined interpretation of the seismic refraction tomographic and resistivity inversion results and borehole logs, inconsistencies in the bedrock surface were identified that may provide horizontal preferential flow paths for dense nonaqueous phase liquid contaminants. These results, interpreted and displayed in georeferenced three-dimensional space, should help to establish more effective monitoring and remediation strategies.

  3. Multi-scale analysis of Proterozoic shear zones: An integrated structural and geophysical study

    NASA Astrophysics Data System (ADS)

    Stewart, John R.; Betts, Peter G.; Collins, Alan S.; Schaefer, Bruce F.

    2009-11-01

    Structural mapping of poorly exposed shear zone outcrops is integrated with the analysis of aeromagnetic and Bouguer gravity data to develop a multi-scale kinematic and relative overprinting chronology for the Palaeoproterozoic Tallacootra Shear Zone, Australia. D 2 mylonitic fabrics at outcrop record Kimban-aged (ca. 1730-1690 Ma) N-S shortening and correlate with SZ 1 movements. Overprinting D 3 sinistral shear zones record the partitioning of near-ideal simple shear and initiated Riedel to regional-scale SZ 2 strike-slip on the Tallacootra Shear Zone (SZ 2). Previously undocumented NE-SW extension led to the emplacement of aplite dykes into the shear zone and can be correlated to the (ca. 1595-1575 Ma) Hiltaba magmatic event. D 4 dextral transpression during the (ca. 1470-1450 Ma) Coorabie Orogeny reactivated the Tallacootra Shear Zone (SZ 2-R4) exhuming lower crust of the northwestern Fowler Domain within a positive flower structure. This latest shear zone movement is related to a system of west-dipping shear zones that penetrate the crust and sole into a lithospheric detachment indicating wholesale crustal shortening. These methods demonstrate the value of integrating multi-scale structural analyses for the study of shear zones with limited exposure.

  4. An integrated geophysical study of the southeastern Sangre de Cristo Mountains, New Mexico: Summary

    NASA Astrophysics Data System (ADS)

    Cline, Veronica J.; Keller, G. Randy

    Southwestern Wyoming is located at the margin of the Archean Wyoming craton but has experienced significant deformation as a result of both the Sevier and Laramide orogenies. This study focuses on the nature and extent of this deformation and its interactions with structures within the Precambrian basement. We used about 350 km of newly released industry seismic reflection data along with gravity data, satellite imagery, and drilling information in an integrated analysis focusing on the north-south trending Rock Springs uplift, the northwest-trending Wind River uplift and the west-east trending Sweetwater uplift. These features form arches that are bounded by the Green River, Wind River, Great Divide, and the Washakie basins (Fig. 1). An example of the seismic data is shown in Figure 2 displays structural complexity at the northeast boundary of the Great Divide basin involving high-angle reverse faults with northeast dips. The fault that lies roughly in the middle of the line is interpreted to be the southeastern extension of the Wind River thrust, and the fault at the northeast end of the line is interpreted to be the Mormon Trail thrust. A gravity profile was modeled as a medium to integrate all of the data. This model of the upper crust indicates the presence of inhomogeneities in the Archean basement that have not been recognized previously. The basement northeast of the Wind River thrust contains considerable reflectivity indicating folding or fabric that either reflects or controls Laramide structures. The interweaving of reflectors in one line resemble imbricate structures shown in the CD-ROM Cheyenne belt deep reflection profile and could be related to an ancient structural boundary within the basement. Our analysis shows that the multiple thrusts bounding the Sweetwater uplift occur near major inhomogeneities in the Precambrian basement. Spatial relations we observe are consistent with the hypothesis that anastomosing arches characterize Laramide foreland

  5. Filling the gap between geophysics and geotechnics in landslide process understanding: a data fusion methodology to integrate multi-source information in hydro-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Bernadie, S.; Gance, J.; Grandjean, G.; Malet, J.

    2013-12-01

    The population increase and the rising issue of climate change impact the long term stability of mountain slopes. So far, it is not yet possible to assess in all cases conditions for failure, reactivation or rapid surges of slopes. The main reason identified by Van Asch et al. (2007) is the excessive conceptualization of the slope in the models. Therefore to improve our forecasting capability, considering local information such as the local slope geometry, the soil material variability, hydrological processes and the presence of fissures are of first importance. Geophysical imaging, combined with geotechnical tests, is an adapted tool to obtain such detailed information. The development of near-surface geophysics in the last three decades encourages the use of multiple geophysical methods for slope investigations. However, fusion of real data is little used in this domain and a gap still exists between the data processed by the geophysicists and the slope hydro-mechanical models developed by the geotechnical engineers. Starting from this statement, we propose a methodological flowchart of multi-source geophysical and geotechnical data integration to construct a slope hydro-mechanical model of a selected profile at the Super-Sauze landslide. Based on data fusion concepts, the methodology aims at integrating various data in order to create a geological and a geotechnical model of the slope profile. The input data consist in seismic and geoelectrical tomographies (that give access to a spatially distributed information on the soil physical state) supplemented by punctual geotechnical tests (dynamic penetration tests). The tomograms and the geotechnical tests are combined into a unique interpreted model characterized by different geotechnical domains. We use the fuzzy logic clustering method in order to take into account the uncertainty coming from each input data. Then an unstructured finite element mesh, adapted to the resolution of the different input data and

  6. A general framework of TOPSIS method for integration of airborne geophysics, satellite imagery, geochemical and geological data

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Norouzi, Gholam-Hossain

    2016-04-01

    This work presents the promising application of three variants of TOPSIS method (namely the conventional, adjusted and modified versions) as a straightforward knowledge-driven technique in multi criteria decision making processes for data fusion of a broad exploratory geo-dataset in mineral potential/prospectivity mapping. The method is implemented to airborne geophysical data (e.g. potassium radiometry, aeromagnetic and frequency domain electromagnetic data), surface geological layers (fault and host rock zones), extracted alteration layers from remote sensing satellite imagery data, and five evidential attributes from stream sediment geochemical data. The central Iranian volcanic-sedimentary belt in Kerman province at the SE of Iran that is embedded in the Urumieh-Dokhtar Magmatic Assemblage arc (UDMA) is chosen to integrate broad evidential layers in the region of prospect. The studied area has high potential of ore mineral occurrences especially porphyry copper/molybdenum and the generated mineral potential maps aim to outline new prospect zones for further investigation in future. Two evidential layers of the downward continued aeromagnetic data and its analytic signal filter are prepared to be incorporated in fusion process as geophysical plausible footprints of the porphyry type mineralization. The low values of the apparent resistivity layer calculated from the airborne frequency domain electromagnetic data are also used as an electrical criterion in this investigation. Four remote sensing evidential layers of argillic, phyllic, propylitic and hydroxyl alterations were extracted from ASTER images in order to map the altered areas associated with porphyry type deposits, whilst the ETM+ satellite imagery data were used as well to map iron oxide layer. Since potassium alteration is generally the mainstay of porphyry ore mineralization, the airborne potassium radiometry data was used. The geochemical layers of Cu/B/Pb/Zn elements and the first component of PCA

  7. Integrating Diverse Geophysical and Geological Data to Construct Multi-Dimensional Earth Models: The Open Earth Framework

    NASA Astrophysics Data System (ADS)

    Baru, C.; Keller, R.; Wallet, B.; Crosby, C.; Moreland, J.; Nadeau, D.

    2008-12-01

    spatial resolution. Finally, formal quantitative integration would logically begin with employing accepted relationships between physical properties (e.g., there are widely used empirical relationships between Vp and density) and then proceed to producing integrated models that facilitate the search for anomalies. Our workshops and community interactions have shown that both raster (voxels) and vector (surfaces) 3D data structures would be involved if we are to produce integrated models that have all of the properties that the community desires. These interactions also quickly revealed a consensus that building such models can only be achieved through a highly integrated approach that takes advantage of all of the geological and geophysical constraints available. Conceptually, the modeling would begin with a voxel-based approach of building a highly-integrated 3-D model at Time=0 by deriving physical properties such as Vp, Vs, density, magnetic properties, electrical properties, anisotropy, attenuation (Q), temperature, etc. for volume elements that could take on several forms. Then, interfaces that represent features such as the Moho, major faults, crystalline basement surface beneath sedimentary basins, magmatic bodies, etc. would be inserted into the model in order to properly characterize the region geologically.

  8. Teaching Strategies: Integrating Play into the Curriculum.

    ERIC Educational Resources Information Center

    Stone, Sandra J.

    1996-01-01

    Promotes the concept of serious play and discusses its role in learning, from early grades to graduate level. Provides guidelines for integrating serious play across the curriculum and includes sample primary and intermediate grade curriculum charts. (ET)

  9. Integration of Kepler with ROADNet: Visual Dataflow Design with Real-time Geophysical Data

    NASA Astrophysics Data System (ADS)

    Fricke, T. T.; Ludaescher, B.; Altintas, I.; Lindquist, K. G.; Hansen, T. S.; Rajasekar, A.; Vernon, F. L.; Orcutt, J.

    2004-12-01

    The ROADNet project concentrates real-time data from a wide variety of signal domains, providing a reliable platform to store and transport these data. Ptolemy is a general purpose visual programming environment in which work flows on data streams can be constructed by connecting general purpose components. The Kepler scientific workflow system extends Ptolemy to approach design and automation of scientific data analysis tasks. In this work we discuss our integration of ROADNet (and the Antelope platform on which ROADNet is based in part) with the Ptolemy environment. We have produced interface components that allow someone using the Kepler scientific workflow system to readily use ROADNet data resources. Presently we have working components to gather real-time waveform and image data from ROADNet object ring buffers, and we are working to provide the ability to perform Datascope database queries from Kepler. The Kepler project, including the Antelope interface, is entirely free and open-source, and will run on any platform where Java is available. We discuss existing applications in addition to possible future directions, such as coherent array processing, event detection, and online stream processing. A major advantage of the Ptolemy environment is the ease with which it may be used for rapid prototyping of analyses by even inexperienced users. For instance, a user can drag-and-drop an Orb Waveform Source component and several general purpose analysis and display components, connect them visually, and immediately perform an analysis on real-time data.

  10. Norg underground gas storage - an integrated 3-D geological and geophysical reservoir modeling study

    SciTech Connect

    Cohen, J.; Smith, S. ); Huis, R.; Copper, J.; Whyte, S. )

    1993-09-01

    The Netherlands have an extensive gas distribution infrastructure supplying 80 x 10[sup 9] m[sup 3] per annum to the domestic and European market. The capacity requirement exceeds 600 x 10[sup 6] sm[sup 3]/d, of which 430 x 10[sup 6] sm[sup 3]/d is provided by the giant Groningen gas field. The Groningen field will soon reach a pressure at which this capacity can no longer be met without considerable investments. It will also become difficult to maintain the market gas quality, because of the increasing supply from small fields with widely varying gas qualities. Underground Gas Storage (UGS) will satisfy both capacity and gas-quality requirements. This UGS must eventually store 4.5 x 10[sup 9] m[sup 3] with injection/production capacities of 36/80-100 x 10[sup 6] sm[sup 3]/d, making it one of the largest UGS projects in the world. These extremely high-capacity requirements demand both high-matrix permeability and good understanding of vertical and lateral reservoir continuity. Matrix permeability is predictable due to the close relationship with the lithofacies defined within the primary Rotliegende depositional model. Minor faults, identified on three-dimensional (3-D) seismic attribute maps, represent potential transmissibility impairment zones, compartmentalizing the reservoir. This was initially suggested by core fracture studies and confirmed by a subsequent field shut-in and pressure buildup test. Lithofacies and seismic structural data are integrated within a computerized reservoir geological modeling system known as [open quotes]Monarch[close quotes] to provide a highly detailed 3-D permeability model that is then tranformed into a model for dynamic reservoir simulation. The results confirm the required working volume for the UGS operation and provide a basis for the initial field development planning.

  11. Integrated geological and geophysical studies of the Indio Mountains and Hueco bolson, west Texas

    NASA Astrophysics Data System (ADS)

    Budhathoki, Pawan

    This dissertation consists of two different projects. The first project describes the results of an outcrop based sequence stratigraphic study of the Albian Cox Sandstone in the Indio Mountains of west Texas. The depositional environment of the Cox Sandstone ranges from shallow marine to the coastal plain deposited in four sequences where sequence 1 and sequence 2 consists of transgressive system tracts (TST) followed by highstand system tracts (HST). The highstand system tract (HST) is missing in sequence 3 and the transgressive systems tract is missing in sequence 4. The Cox changes in thickness from 320 m in the northern end of the outcrop belt to 365 m in the southern end. This thickness change is accommodated during transgression where shales drape topography that is actively being shaped by faults and block rotation recorded in exposed growth strata. During Highstand, coarse fluvial-deltaic systems truncate shales on topographic high levelling the topography. Systems tracts and sequences change thickness due to block rotation and erosion as well as deposition from a point source near the center of the outcrop belt. The second project involves the integrated study of gravity and well log data in the northern Hueco bolson. The objective of this study is to demarcate subsurface faults that appear to control the locations of fresh and brackish water. In this study 28 gravity anomalies were identified that correlate with previously mapped (Collins and Raney, 2000) and new faults, and some of them can be extended further south to south east to join with previously mapped faults by Collins and Raney (2000) and Marrufo (2011). Structural cross sections of well logs also suggest that at least some faults are present between them. The four depositional environments inferred from the gamma log responses and their stacking patterns are consistent with the previous interpretation of Doser and Langford (2006) and Marrufo (2011).

  12. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  13. Integrated geophysical application to investigate groundwater potentiality of the shallow Nubian aquifer at northern Kharga, West

    NASA Astrophysics Data System (ADS)

    Younis, Abdellatif; Soliman, Mamdouh; Moussa, Salah; Massoud, Usama; ElNabi, Sami Abd; Attia, Magdy

    2016-06-01

    Continuous evaluation of groundwater aquifers in the basin of Kharga Oasis is very important. Groundwater in Kharga Oasis represents the major factor for the development plans of this area as it is the sole source for water supplies required for drinking and irrigation purposes. This study is concerned by analyzing the groundwater potentiality of the shallow aquifer at the northern part of Kharga basin by integrated application of Vertical Electrical Sounding (VES) and Time domain Electromagnetic (TEM) techniques. The VES data were measured at 28 points arranged along a north-south trending line by applying Schlumberger array with a maximum current-electrode spacing (AB) of 1000 m. The TEM data were measured at 167 points arranged along 11 east-west trending lines by using a single square loop with 50 m loop-side length. The VES and TEM data have been individually inverted, where the VES models were used as initial models for TEM data inversion. The final models were used for construction of 17 geoelectrical sections and 5 contour maps describing subsurface water-bearing layers at the investigated area. Correlation of the obtained models with geologic, hydrogeologic and borehole information indicates that the shallow aquifer comprises two zones (A-up) and (B-down) separated by a highly conductive shale layer. The upper zone (A) is composed of fine to medium sand with thin clay intercalations. It exhibits low to moderate resistivities. This zone was detected at depth values ranging from 10 to 70 m below ground surface (bgs) and shows a thickness of 25-90 m. The lower zone (B) exhibits moderate to high resistivity values with expected good water quality. The upper surface of zone B was detected at 60-165 m depth.

  14. Devices and Desires: Integrative Strategy Instruction from a Motivational Perspective.

    ERIC Educational Resources Information Center

    Vauras, Marja; And Others

    1993-01-01

    This critique of Edwin Ellis's Integrative Strategy Instruction model comments that analyses are needed concerning the mutual social adaptations of differently disposed (cognitively, motivationally, and emotionally) students with learning disabilities and teachers within the social frames of learning environments. (JDD)

  15. Integrated interpretation of helicopter and ground-based geophysical data recorded within the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Podgorski, Joel E.; Green, Alan G.; Kalscheuer, Thomas; Kinzelbach, Wolfgang K. H.; Horstmeyer, Heinrich; Maurer, Hansruedi; Rabenstein, Lasse; Doetsch, Joseph; Auken, Esben; Ngwisanyi, Tiyapo; Tshoso, Gomotsang; Jaba, Bashali Charles; Ntibinyane, Onkgopotse; Laletsang, Kebabonye

    2015-03-01

    Integration of information from the following sources has been used to produce a much better constrained and more complete four-unit geological/hydrological model of the Okavango Delta than previously available: (i) a 3D resistivity model determined from helicopter time-domain electromagnetic (HTEM) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta, and (iii) geological details extracted from boreholes in northeastern and southeastern parts of the delta. The upper heterogeneous unit is the modern delta, which comprises extensive dry and freshwater-saturated sand and lesser amounts of clay and salt. It is characterized by moderate to high electrical resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays deposited in the huge Paleo Lake Makgadikgadi (PLM), which once covered a 90,000 km2 area that encompassed the delta, Lake Ngami, the Mababe Depression, and the Makgadikgadi Basin. Examples of PLM sediments are intersected in many boreholes. Low permeability clay within the PLM unit seems to be a barrier to the downward flow of the saline water. Below the PLM unit, freshwater-saturated sand of the Paleo Okavango Megafan (POM) unit is distinguished by moderate to high resistivities, low P-wave velocity, and numerous subhorizontal reflectors. The POM unit is interpreted to be the remnants of a megafan based on the arcuate nature of its front and the semi-conical shape of its upper surface in the HTEM resistivity model. Moderate to high resistivity subhorizontal layers are

  16. An integrated strategy for teaching biochemistry to biotechnology specialty students.

    PubMed

    Ouyang, Liming; Ou, Ling; Zhang, Yuanxing

    2007-07-01

    The faculty of biochemistry established an integrated teaching strategy for biotechnology specialty students, by intermeshing the case-study method, web-assistant teaching, and improved lecture format with a brief content and multimedia courseware. Teaching practice showed that the integrated teaching strategy could retain the best features of each pedagogy and better solve the main difficulties that lay in the teaching of biochemistry to biotechnology specialty students in the East China University of Science and Technology. PMID:21591104

  17. Genomic, Proteomic, and Metabolomic Data Integration Strategies

    PubMed Central

    Wanichthanarak, Kwanjeera; Fahrmann, Johannes F; Grapov, Dmitry

    2015-01-01

    Robust interpretation of experimental results measuring discreet biological domains remains a significant challenge in the face of complex biochemical regulation processes such as organismal versus tissue versus cellular metabolism, epigenetics, and protein post-translational modification. Integration of analyses carried out across multiple measurement or omic platforms is an emerging approach to help address these challenges. This review focuses on select methods and tools for the integration of metabolomic with genomic and proteomic data using a variety of approaches including biochemical pathway-, ontology-, network-, and empirical-correlation-based methods. PMID:26396492

  18. The Capstone Strategy Course: What Might Real Integration Look Like?

    ERIC Educational Resources Information Center

    Kachra, Ariff; Schnietz, Karen

    2008-01-01

    The traditional master of business administration (MBA) capstone strategy course is intended to integrate the prior course work of the MBA program but is doing this less and less well in today's high-velocity and complex business environment. The traditional strategy course structures, emphasizing formulation-implementation and the…

  19. Integrating the Language Arts: Alternatives and Strategies.

    ERIC Educational Resources Information Center

    Kane, Katharine A.

    Motivated by the California English/Language Arts Framework, California teachers are working toward the goal of using the integrated language arts as tools for learning in all content areas. The core of this new curriculum is to help students make sense out of a piece of literature by moving into, through, and beyond a text. For example, a lesson…

  20. Water Integration Project Science Strategies White Paper

    SciTech Connect

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  1. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  2. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  3. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  4. Strategies for Defining and Understanding Critical Technology Integration Terms

    ERIC Educational Resources Information Center

    Fagehi, Ahmed Yahya

    2013-01-01

    Educational technology scholars believe that teachers should understand how to effectively integrate technology in their teaching. This study identified key terms related to integrating technology in education and investigated the effectiveness of three online instructional strategies (Text-only, Text plus Video, and Text plus Video plus Question)…

  5. An integrated assessment of seawater intrusion in a small tropical island using geophysical, geochemical, and geostatistical techniques.

    PubMed

    Kura, Nura Umar; Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nur Azmin; Aris, Ahmad Zaharin

    2014-01-01

    In this study, geophysics, geochemistry, and geostatistical techniques were integrated to assess seawater intrusion in Kapas Island due to its geological complexity and multiple contamination sources. Five resistivity profiles were measured using an electric resistivity technique. The results reveal very low resistivity <1 Ωm, suggesting either marine clay deposit or seawater intrusion or both along the majority of the resistivity images. As a result, geochemistry was further employed to verify the resistivity evidence. The Chadha and Stiff diagrams classify the island groundwater into Ca-HCO3, Ca-Na-HCO3, Na-HCO3, and Na-Cl water types, with Ca-HCO3 as the dominant. The Mg(2+)/Mg(2+)+Ca(2+), HCO3 (-)/anion, Cl(-)/HCO3 (-), Na(+)/Cl(-), and SO4 (2-)/Cl(-) ratios show that some sampling sites are affected by seawater intrusion; these sampling sites fall within the same areas that show low-resistivity values. The resulting ratios and resistivity values were then used in the geographical information system (GIS) environment to create the geostatistical map of individual indicators. These maps were then overlaid to create the final map showing seawater-affected areas. The final map successfully delineates the area that is actually undergoing seawater intrusion. The proposed technique is not area specific, and hence, it can work in any place with similar completed characteristics or under the influence of multiple contaminants so as to distinguish the area that is truly affected by any targeted pollutants from the rest. This information would provide managers and policy makers with the knowledge of the current situation and will serve as a guide and standard in water research for sustainable management plan. PMID:24532282

  6. An integrated geophysical study on the Mesozoic strata distribution and hydrocarbon potential in the South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Weijian; Hao, Tianyao; Jiang, Weiwei; Xu, Ya; Zhao, Baimin; Jiang, Didi

    2015-11-01

    A series of drilling, dredge, and seismic investigations indicate that Mesozoic sediments exist in the South China Sea (SCS) which shows a bright prospect for oil and gas exploration. In order to study the distribution of Mesozoic strata and their residual thicknesses in the SCS, we carried out an integrated geophysical study based mainly on gravity data, gravity basement depth and distribution of residual Mesozoic thickness in the SCS were obtained using gravity inversion constrained with high-precision drilling and seismic data. In addition, the fine deep crustal structures and distribution characteristics of Mesozoic thicknesses of three typical profiles were obtained by gravity fitting inversion. Mesozoic strata in the SCS are mainly distributed in the south and north continental margins, and have been reformed by the later tectonic activities. They extend in NE-trending stripes are macro-controlled by the deep and large NE-trending faults, and cut by the NW-trending faults which were active in later times. The offset in NW direction of Mesozoic strata in Nansha area of the southern margin are more obvious as compared to the north margin. In the Pearl River Mouth Basin and Southwest Taiwan Basin of the north continental margin the Mesozoic sediments are continuously distributed with a relatively large thickness. In the Nansha area of the south margin the Mesozoic strata are discontinuous and their thicknesses vary considerably. According to the characteristics of Mesozoic thickness distribution and hydrocarbon potential analyses from drilling and other data, Dongsha Uplift-Chaoshan Depression, Southwest Taiwan Basin-Peikang Uplift and Liyue Bank have large thickness of the Mesozoic residual strata, have good hydrocarbon genesis capability and complete source-reservoir-cap combinations, show a bright prospect of Mesozoic oil/gas resources.

  7. Integrated geophysical-petrological modelling of the Trans-European Suture Zone along the TOR-profile

    NASA Astrophysics Data System (ADS)

    Pappa, Folker; Ebbing, Jörg; Rabbel, Wolfgang

    2014-05-01

    We apply the integrated geophysical-petrological software package LitMod3D to study the effect of changes in thickness and composition associated with the Sorgenfrei-Tornquist-Zone as part of the Transeuropean Suture Zone (TESZ). Results of the TOR-project (Teleseismic Tomography TORnquist) show a P wave velocity anomaly that indicates an abrupt step in the base lithosphere between southern Sweden and Northern Germany. From a depth of ~300 km beneath the proto-Proterozoic Baltic shield the base lithosphere increases to less than 100 km beneath the Phanerozoic terranes in the southwest. However, this significant change in lithospheric thickness is not expressed by significant changes in the gravity field or topography. Hence, some form of isostatic compensation must be achieved by changes in the composition or thermal structure of the crust or upper mantle. First sensitivity tests were performed to show that the most important parameters to explain seismic upper mantle velocities, gravity and topography. These are, in addition to lithospheric thickness, the densities and thermal conductivity in the crust and the amount of depletion of the subcontinental lithospheric mantle (SCLM). When applying a simple geometry with steps at the Moho and base lithosphere, the TOR results could be reproduced to a large degree when applying different compositions for the SCLM beneath the Proterozoic and Phanerozoic domains. To address the gravity field and topography as well, we present two alternative models for the TOR-profile. In the first model, the gravity field and topography is explained by dividing the Phanerozoic SCLM in a refertilized upper and more depleted lower part. This model leads to a deeper base lithosphere (130 km), but does not provide a very good fit to the P wave velocities. In the second alternative, the thermal conductivity of the Phanerozoic crust and for the sediments has been increased within reasonable parameters. This leads to a shallower LAB ~100 km and

  8. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity

  9. Integrated geophysical data processing and interpretation of crustal structure in Ethiopia with emphasis on the Ogaden Basin and adjacent areas

    NASA Astrophysics Data System (ADS)

    Tadesse, Ketsela

    The combined effects of magmatism and stretching due to asthenosphere upwelling modifies the crustal structure of the Earth as seen in the Ethiopian rift and adjacent areas. The Ethiopian rift provides unique opportunities to understand the nature of rifted crust and the intensity of its modification by magmatic processes. I used geological and geophysical data to conduct an integrated study in and around the Ethiopian rift including the northern Kenyan rift and the northern part of the Kenyan dome. New gravity, controlled source seismic, and teleseismic data from the EAGLE (Ethiopia-Afar Geoscientific Lithospheric Experiment) were used as additional constraints in my analysis of the crustal structure of Ethiopian rift and adjacent plateaus. Application of a residual gravity anomaly filtering technique using upward continuation revealed various crustal features within the Ethiopian rift and the flanking plateau regions. Short wavelength high amplitude positive anomalies coincide with the local volcanic complexes and calderas. In addition low gravity anomalies are associated with areas of thicker sediments within the rift valley. Axial and cross rift gravity profiles were modeled in 2.5 dimensions constrained with seismic refraction and geologic data. The axial model connects the Kenyan dome through Turkana rift and Main Ethiopian rift (MER) up to the Afar triple junction and provides a new integrated picture of lithospheric structure along the rift for over 1000 km. This model indicates a thin crust (26 km) underlying the Afar region. The crust gradually thickens towards the MER where it is about 35-40 km thick. Towards the south the crust thins and is only 22 km thick when it reaches the Turkana area. The southern section of the axial model indicates that the crust is about 35 km thick beneath the central Kenyan rift. All these thickness values are in agreement with the EAGLE and Kenya Rift International Seismic Project (KRISP) and earlier refraction results and

  10. Integrated Surface Power Strategy for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    A National Aeronautics and Space Administration (NASA) study team evaluated surface power needs for a conceptual crewed 500-day Mars mission. This study had four goals: 1. Determine estimated surface power needed to support the reference mission; 2. Explore alternatives to minimize landed power system mass; 3. Explore alternatives to minimize Mars Lander power self-sufficiency burden; and 4. Explore alternatives to minimize power system handling and surface transportation mass. The study team concluded that Mars Ascent Vehicle (MAV) oxygen propellant production drives the overall surface power needed for the reference mission. Switching to multiple, small Kilopower fission systems can potentially save four to eight metric tons of landed mass, as compared to a single, large Fission Surface Power (FSP) concept. Breaking the power system up into modular packages creates new operational opportunities, with benefits ranging from reduced lander self-sufficiency for power, to extending the exploration distance from a single landing site. Although a large FSP trades well for operational complexity, a modular approach potentially allows Program Managers more flexibility to absorb late mission changes with less schedule or mass risk, better supports small precursor missions, and allows a program to slowly build up mission capability over time. A number of Kilopower disadvantages-and mitigation strategies-were also explored.

  11. Integrated geophysical surveys on waste dumps: evaluation of physical parameters to characterize an urban waste dump (four case studies in Italy).

    PubMed

    Cardarelli, Ettore; Di Filippo, Gerardina

    2004-10-01

    Geophysical surveys were carried out on different waste dumps to evaluate key geometric and physical parameters. Depending on the dump dimensions and physical characteristics different geophysical techniques were used. Vertical electrical sounding, electrical resistivity tomography, induced polarization and seismic refraction techniques were integrated to eliminate the non-uniqueness of solutions and for a better understanding of the results. Physical parameters inside and outside the dumps were compared. The change of physical parameters such as resistivity, chargeability, and P-wave velocity allowed evaluation of waste dump geometry, leachate saturation levels, and thickness of waste. Furthermore, in illegal dumps, the size and waste type disposed could be evaluated. Calculated results were compared with plans and book-keeping from the dumps investigated. PMID:15560444

  12. Integrated Geophysical Monitoring Program to Study Flood Performance and Incidental CO2 Storage Associated with a CO2 EOR Project in the Bell Creek Oil Field

    NASA Astrophysics Data System (ADS)

    Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.

    2013-12-01

    second monitoring well. A pre-injection series of carbon-oxygen logging across the reservoir was acquired in 35 wells. The baseline 3-D surface seismic survey was acquired in September 2012. A 3-D VSP incorporating two wells and 2 square miles of overlapping seismic coverage in the middle of the field was acquired in May 2013. Initial iterations of geologic modeling and reservoir simulation of the field have been completed. Currently, passive seismic monitoring with the permanent borehole array is being conducted during injection. Interpretation results from the baseline surface 3-D survey and preliminary results from the baseline 3-D VSP are being evaluated and integrated into the reservoir model. The PCOR Partnership's philosophy is to combine site characterization, modeling, and monitoring strategies into an iterative process to produce descriptive integrated results. The comprehensive effort at Bell Creek will allow a comparison of the effectiveness of several complementary geophysical and well-based methods in meeting the goals of the deep subsurface monitoring effort.

  13. Integrating Terrain Maps Into a Reactive Navigation Strategy

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Werger, Barry; Seraji, Homayoun

    2006-01-01

    An improved method of processing information for autonomous navigation of a robotic vehicle across rough terrain involves the integration of terrain maps into a reactive navigation strategy. Somewhat more precisely, the method involves the incorporation, into navigation logic, of data equivalent to regional traversability maps. The terrain characteristic is mapped using a fuzzy-logic representation of the difficulty of traversing the terrain. The method is robust in that it integrates a global path-planning strategy with sensor-based regional and local navigation strategies to ensure a high probability of success in reaching a destination and avoiding obstacles along the way. The sensor-based strategies use cameras aboard the vehicle to observe the regional terrain, defined as the area of the terrain that covers the immediate vicinity near the vehicle to a specified distance a few meters away.

  14. The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.; Müller, R. Dietmar; Seton, Maria

    2013-09-01

    The tectonic evolution of the circum-Arctic, including the northern Pacific, Siberian and North American margins, since the Jurassic has been punctuated by the opening and closing of ocean basins, the accretion of autochthonous and allochthonous terranes and associated deformation. This complexity is expressed in the uncertainty of plate tectonic models of the region, with the time-dependent configurations and kinematic history remaining poorly understood. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins have implications for mantle structure, which can be used as an additional constraint for refining and evaluating plate boundary models. Here we integrate surface geology and geophysics with mantle tomography models to generate a digital set of tectonic blocks and plates as well as topologically closed plate boundaries with time-dependent rotational histories for the circum-Arctic. We find that subducted slabs inferred from seismic velocity anomalies from global P and S wave tomography models can be linked to various episodes of Arctic subduction since the Jurassic, in particular to the destruction of the South Anuyi Ocean. We present a refined model for the opening of the Amerasia Basin incorporating seafloor spreading between at least 142.5 and 120 Ma, a "windshield" rotation for the Canada Basin, and opening orthogonal to the Lomonosov Ridge for the northern Makarov and Podvodnikov basins. We also present a refined pre-accretionary model for the Wrangellia Superterrane, imposing a subduction polarity reversal in the early Jurassic before accretion to North America at 140 Ma. Our model accounts for the late Palaeozoic to early Mesozoic opening and closure of the Cache Creek Ocean, reconstructed between the Wrangellia Superterrane and Yukon-Tanana Terrane. We suggest that a triple junction may also explain the Mid-Palaeozoic opening of the Slide Mountain, Oimyakon and South Anuyi oceans. Our

  15. Integrated Geologic, Hydrologic, and Geophysical Investigations of the Chesapeake Bay Impact Structure, Virginia, USA: A Multi-Agency Program

    NASA Technical Reports Server (NTRS)

    Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.

    2001-01-01

    The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.

  16. Integration Strategies for Efficient Multizone Chemical Kinetics Models

    SciTech Connect

    McNenly, M J; Havstad, M A; Aceves, S M; Pitz, W J

    2009-10-15

    Three integration strategies are developed and tested for the stiff, ordinary differential equation (ODE) integrators used to solve the fully coupled multizone chemical kinetics model. Two of the strategies tested are found to provide more than an order of magnitude of improvement over the original, basic level of usage for the stiff ODE solver. One of the faster strategies uses a decoupled, or segregated, multizone model to generate an approximate Jacobian. This approach yields a 35-fold reduction in the computational cost for a 20 zone model. Using the same approximate Jacobian as a preconditioner for an iterative Krylov-type linear system solver, the second improved strategy achieves a 75-fold reduction in the computational cost for a 20 zone model. The faster strategies achieve their cost savings with no significant loss of accuracy. The pressure, temperature and major species mass fractions agree with the solution from the original integration approach to within six significant digits; and the radical mass fractions agree with the original solution to within four significant digits. The faster strategies effectively change the cost scaling of the multizone model from cubic to quadratic, with respect to the number of zones. As a consequence of the improved scaling, the 40 zone model offers more than a 250-fold cost savings over the basic calculation.

  17. The Gars Programme And The Integrated Global Observing Strategy For Geohazards

    NASA Astrophysics Data System (ADS)

    Marsh, S.; Paganini, M.; Missotten, R.; Palazzo, F.

    UNESCO and the IUGS have funded the Geological Applications of Remote Sensing Programme (GARS) since 1984. Its aim is to assess the value and utility of remotely sensed data for geoscience, whilst at the same time building capacity in developing countries. It has run projects in Africa on geological mapping, in Latin America on landslide hazards and in Asia on volcanic hazards. It is a main sponsor of the Integrated Global Observing Strategy (IGOS) for Geohazards. The societal impact of geological and related geophysical hazards is enormous. Every year volcanoes, earthquakes, landslides and subsidence claim thousands of lives, injure thousands more, devastate homes and destroy livelihoods. Damaged infrastructure and insurance premiums increase these costs. As population increases, more people live in hazardous areas and the impact grows. The World Summit on Sustainable Development recognised that systematic, joint international observations under initiatives like the Integrated Global Observing Strategy form the basis for an integrated approach to hazard mitigation and preparedness. In this context, the IGOS Partners developed this geohazards theme. Its goal is to integrate disparate, multidisciplinary, applied research into global, operational systems by filling gaps in organisation, observation and knowledge. It has four strategic objectives; building global capacity to mitigate geohazards; improving mapping, monitoring and forecasting, based on satellite and ground-based observations; increasing preparedness, using integrated geohazards information products and improved geohazards models; and promoting global take-up of local best practice in geohazards management. Gaps remain between what is known and the knowledge required to answer citizen's questions, what is observed and what must be observed to provide the necessary information for hazard mitigation and current data integration and the integration needed to make useful geohazard information products. An

  18. Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland

    SciTech Connect

    Martel, S.J.; Peterson, J.E. Jr. )

    1990-05-01

    Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.

  19. Integrated study of geophysical and biological anomalies before earthquakes (seismic and non-seismic), in Austria and Indonesia

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Assef, Rizkita; Faber, Robert; Ferasyi, Reza

    2015-04-01

    Earthquakes are commonly seen as unpredictable. Even when scientists believe an earthquake is likely, it is still hard to understand the indications observed, as well as their theoretical and practical implications. There is some controversy surrounding the concept of using animals as a precursor of earthquakes. Nonetheless, several institutes at University of Natural Resources and Life Sciences, and Vienna University of Technology, both Vienna, Austria, and Syiah Kuala University, Banda Aceh, as well as Terramath Indonesia, Buleleng, both Indonesia, cooperate in a long-term project, funded by Red Bull Media House, Salzburg, Austria, which aims at getting some decisive step forward from anecdotal to scientific evidence of those interdependencies, and show their possible use in forecasting seismic hazard on a short-term basis. Though no conclusive research has yet been published, an idea in this study is that even if animals do not respond to specific geophysical precursors and with enough notice to enable earthquake forecasting on that basis, they may at least enhance, in conjunction with other indications, the degree of certainty we can get of a prediction of an impending earthquake. In Indonesia, indeed, before the great earthquakes of 2004 and 2005, ominous geophysical as well as biological phenomena occurred (but were realized as precursors only in retrospect). Numerous comparable stories can be told from other times and regions. Nearly 2000 perceptible earthquakes (> M3.5) occur each year in Indonesia. Also, in 2007, the government has launched a program, focused on West Sumatra, for investigating earthquake precursors. Therefore, Indonesia is an excellent target area for a study concerning possible interconnections between geophysical and biological earthquake precursors. Geophysical and atmospheric measurements and behavioral observation of several animal species (elephant, domestic cattle, water buffalo, chicken, rat, catfish) are conducted in three areas

  20. The study of a potential CO2 repository: Integrating laboratory and field geophysical experiments to characterize the upper Muschelkalk aquifer (northern Switzerland)

    NASA Astrophysics Data System (ADS)

    Almqvist, B.; Zappone, A. S.; Misra, S.; Diamond, L.

    2011-12-01

    The upper Muschelkalk saline aquifer consists of partly dolomitized to completely dolomitized carbonate rocks of mid Triassic age (~230 Ma). This aquifer is present throughout the Swiss Molasse Basin (SMB), north of the Alps. A regional appraisal of the SMB indicates that this Formation is a potential host aquifer for sequestered CO2. However, the spatial distribution and heterogeneity of the porosity, permeability and other relevant physical and mechanical properties of the upper Muschelkalk are still poorly known. The uncertainty in this knowledge stems mainly from the weakly developed oil and gas exploration industry in Switzerland. We use an integrated approach to better constrain the aquifer physical properties, which couples field scale geophysical surveys (borehole logging and seismic reflection profiles) with laboratory analytical data. Here we focus on a set of boreholes from northern Switzerland, where geophysical data and drill core useable for laboratory measurements are available. Two sub-units comprise the upper Muschelkalk Formation. The stratigraphically higher part is a fossiliferous dolomite (>90 vol% CaMg(CO3)2; Trigodonusdolomit). The underlying unit, is composed of micritic calcite and dolomite layers interbedded with fossil-rich layers (Hauptmuschelkalk). Although both units are part of the aquifer formation, they appear to have distinctly different physical properties. The transition from Trigodonusdolomit to the Hauptmuschelkalk is marked by an increase in the sonic velocity, density and acoustic impedance. The magnitude of increase in sonic velocity can be up to 500 m/s, accompanied by an increase in acoustic impedance from 8500 to 15500 (m/s*g/cm3), but varies between the different boreholes. Poisson's ratio, determined from a single borehole, show sharp decrease at the transition. The origin of the changes in the geophysical data is likely reflecting differences in porosity and mineral composition in the Trigodonusdolomit and

  1. China's Demographic Challenge Requires an Integrated Coping Strategy

    ERIC Educational Resources Information Center

    Peng, Xizhe

    2013-01-01

    China has entered into a new stage of demographic dynamics whereby population-related challenges are more complicated than ever before. The current one-child policy should be modified. However, the anticipated impacts of such a policy change should not be over-exaggerated. China's demographic challenge requires an integrated coping strategy.…

  2. Integrating Vocabulary Learning Strategy Instruction into EFL Classrooms

    ERIC Educational Resources Information Center

    Lai, Ying-Chun

    2013-01-01

    In the current study, explicit vocabulary learning strategy instruction was integrated into an EFL curriculum to investigate its effects on learners' vocabulary acquisition. A total of 180 EFL learners enrolled in the freshmen English program at a university in Taiwan participated in the study. The participants were guided to explore and practice…

  3. Organisational Learning through International M&A Integration Strategies

    ERIC Educational Resources Information Center

    Holland, Wayne; Salama, Alzira

    2010-01-01

    Purpose: The purpose of this research paper is to explore the learning process associated with international mergers and acquisitions (M&A) integration strategies. Design/methodology/approach: The paper employs a comparative case study methodology, utilising qualitative data through in-depth interviews with top management responsible for…

  4. Handwriting Club: Using Sensory Integration Strategies To Improve Handwriting.

    ERIC Educational Resources Information Center

    Keller, Melissa

    2001-01-01

    This article describes all the steps and materials necessary to organize and conduct a handwriting club that provides direct instruction in handwriting combined with sensory integration activities. Typical club session format, sample activities, the promotion of social skills, handwriting strategies, and external stimulants are discussed.…

  5. Integrating Gender and Group Differences into Bridging Strategy

    ERIC Educational Resources Information Center

    Yilmaz, Serkan; Eryilmaz, Ali

    2010-01-01

    The main goal of this study was to integrate gender and group effect into bridging strategy in order to assess the effect of bridging analogy-based instruction on sophomore students' misconceptions in Newton's Third Law. Specifically, the authors developed and benefited from anchoring analogy diagnostic test to merge the effect of group and gender…

  6. ELECTRE III: A knowledge-driven method for integration of geophysical data with geological and geochemical data in mineral prospectivity mapping

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Torabi, Seyed Ali; Norouzi, Gholam-Hossain; Hamzeh, Mohammad

    2012-12-01

    This paper describes the application of a multicriteria decision-making (MCDM) technique called ELECTRE III, which is well-known in operations research, to mineral prospectivity mapping (MPM), which involves representation and integration of evidential map layers derived from geological, geophysical, and geochemical geo-data sets. In a case study, thirteen evidential map layers are used for MPM in the area containing the Now Chun copper prospect in the Kerman province of Iran. The ELECTRE III technique was applied for MPM, and the outputs are validated using 3D models of Cu and Mo concentrations from 21 drill hole data. This proposed method shows high performance for MPM.

  7. An integrated petrophysical-geophysical approach for the characterization of a potential caprock-reservoir system for CO2 storage.

    NASA Astrophysics Data System (ADS)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Casula, Giuseppe; Giovanna Bianchi, Maria; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto

    2016-04-01

    The selection of a CO2 geologic storage site requires the choice of a study site suitable for the characterization in order to create a robust experimental database especially regarding the spatial petrophysical heterogeneities and elasto-mechanical properties of the rocks that make up a potential caprock-reservoir system. In our study the petrophysical and elasto-mechanical characterization began in a previously well drilled area in the northern part of the Sulcis coal basin (Nuraxi Figus area - SW Sardinia - Italy) where crucial geologic data were recovered from high-quality samples from stratigraphic wells and from mining galleries. The basin represents one of the most important Italian carbon reserves characterized by a great mining potential. In the study area, the Middle Eocene - Lower Oligocene Cixerri Fm. made up of terrigeneous continental rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin have been identified respectively as potential caprock and reservoir for CO2 storage. Petrophysical and geophysical investigations were carried out by a great number of laboratory tests on the core samples and in situ measurements on a mining gallery in order to characterize the potential caprock-reservoir system and to substantially reduce geologic uncertainty in the storage site characterization and in the geological and numerical modelling for the evaluation of CO2 storage capacity. In order to better define the spatial distribution of the petrophysical heterogeneity, the seismic responses from the caprock-reservoir system formations were also analysed and correlated with the petrophysical and elasto-mechanical properties In a second step of this work, we also analysed the tectonic stability of the study area by the integrated application of remote-sensing monitoring spatial geodetic techniques. In particular, the global positioning system (GPS) and interferometric synthetic aperture radar (inSAR) were considered

  8. Integrated geophysical and geological studies of selected major tectonic features in south-central U.S

    NASA Astrophysics Data System (ADS)

    Alrefaee, Hamed

    The current dissertation includes three separate chapters, each utilizing the power of the integration of different geophysical datasets with geology to investigate tectonic and structural processes responsible for the geological evolution of selected major tectonic features in south-central U. S. These tectonic features are; the Arkoma basin of Oklahoma and Arkansas, the Llano uplift of central Texas, and the Meers fault of the southwestern Oklahoma. The Arkoma basin is an arcuate structural feature that extends from the Gulf coastal plain in central Arkansas westward 400 km to the Arbuckle Mountains in south-central Oklahoma. The interpretation of the 3-D seismic data reveals an E-W zone of crustal weakness in the northern part of the study area, which could be a Late Paleozoic tectonic inversion of the extension faulting that developed during Cambrian rifting and later foreland basin development. The seismic interpretation reveals a compressive deformation of the Late Paleozoic strata related to the Ouachita orogeny. Magnetic boundaries such as faults andor body edges extending E-W, NE-SW and NW-SE have been delineated using magnetic edge detector techniques in the northern, southeastern, and western parts of the study area, respectively. The Euler magnetic depth estimation method delineated the same faults determined using magnetic edge detector techniques. The maximum depth to faults dominating the basement and/or the intrabasement features determined by the Euler's method is about 3850 m. The fault trends delineated by the seismic interpretation and those determined by the Euler's method and the edge detector techniques show a very clear correlation. The Llano Uplift is a broad structural dome in central Texas with 2 to 3 km of structural relief relative to the subsurface Fort Worth and Kerr basins to the northeast and southwest. The initial uplift due to an arc-continent collision was followed by a continent-continent collision between the Laurentia and a

  9. Heterogeneous integration of epitaxial nanostructures: strategies and application drivers

    NASA Astrophysics Data System (ADS)

    Chui, Chi On; Shin, Kyeong-Sik; Kina, Jorge; Shih, Kun-Huan; Narayanan, Pritish; Moritz, C. Andras

    2012-10-01

    In order to sustain the historic progress in information processing, transmission, and storage, concurrent integration of heterogeneous functionality and materials with fine granularity is clearly imperative for the best connectivity, system performance, and density metrics. In this paper, we review recent developments in heterogeneous integration of epitaxial nanostructures for their applications toward our envisioned device-level heterogeneity using computing nanofabrics. We first identify the unmet need for heterogeneous integration in modern nanoelectronics and review state-of-the-art assembly approaches for nanoscale computing fabrics. We also discuss the novel circuit application driver, known as Nanoscale Application Specific Integrated Circuits (NASICs), which promises an overall performance-power-density advantage over CMOS and embeds built-in defect and parameter variation resilience. At the device-level, we propose an innovative cross-nanowire field-effect transistor (xnwFET) structure that simultaneously offers high performance, low parasitics, good electrostatic control, ease-of-manufacturability, and resilience to process variation. In addition, we specify technology requirements for heterogeneous integration and present two wafer-scale strategies. The first strategy is based on ex situ assembly and stamping transfer of pre-synthesized epitaxial nanostructures that allows tight control over key nanofabric parameters. The second strategy is based on lithographic definition of epitaxial nanostructures on native substrates followed by their stamping transfer using VLSI foundry processes. Finally, we demonstrate the successful concurrent heterogeneous co-integration of silicon and III-V compound semiconductor epitaxial nanowire arrays onto the same hosting substrate over large area, at multiple locations, with fine granularity, close proximity and high yield.

  10. Integrating an Academic Electronic Health Record: Challenges and Success Strategies.

    PubMed

    Herbert, Valerie M; Connors, Helen

    2016-08-01

    Technology is increasing the complexity in the role of today's nurse. Healthcare organizations are integrating more health information technologies and relying on the electronic health record for data collection, communication, and decision making. Nursing faculty need to prepare graduates for this environment and incorporate an academic electronic health record into a nursing curriculum to meet student-program outcomes. Although the need exists for student preparation, some nursing programs are struggling with implementation, whereas others have been successful. To better understand these complexities, this project was intended to identify current challenges and success strategies of effective academic electronic health record integration into nursing curricula. Using Rogers' 1962 Diffusion of Innovation theory as a framework for technology adoption, a descriptive survey design was used to gain insights from deans and program directors of nursing schools involved with the national Health Informatics & Technology Scholars faculty development program or Cerner's Academic Education Solution Consortium, working to integrate an academic electronic health record in their respective nursing schools. The participants' experiences highlighted approaches used by these schools to integrate these technologies. Data from this project provide nursing education with effective strategies and potential challenges that should be addressed for successful academic electronic health record integration. PMID:27326804

  11. Integration of geology, non-seismic geophysics and seismic data in a structurally complex, frontier oil play: Northern Sangre de Cristo Mountains/Northeast San Luis Basin, Colorado

    SciTech Connect

    Watkins, T.A.; Belcher, J.S.; Gries, R.

    1995-06-01

    The discovery of live Cretaceous oil in mineral exploration drill holes, followed by the identification of Mesozoic sediments in outcrop and in shallow drill holes, has lead to an integrated approach to exploration of a structurally complex, frontier oil play in south-central Colorado. Gravity, aeromagnetic, magnetotelluric (MT), and time domain electromagnetic (TDEM) data were acquired and interpreted in the initial stages of the project. Models derived from the geophysical data were augmented with geologic field work to explain specific anomalies. Interpretation of the gravity data was constrained by density measurements on representative rock samples collected in the field. Seismic data, acquired in the most recent exploration stage, provided confirmation and modification of the basin margin geometry. Velocity data from the seismic was integrated with resistivity, density, magnetic and geologic data to predict lithologies on an intermediate fault block located between the Sangre de Cristo Mountains and the San Luis Basin.

  12. Bridging the gap: strategies to integrate classroom and clinical learning.

    PubMed

    Flood, Lisa Sue; Robinia, Kristi

    2014-08-01

    Nursing students often feel their classroom (didactic) learning and clinical (practice) experiences are disconnected which can lead to a rejection of academe and dissatisfaction with the profession. This classroom/clinical divide may be exacerbated because of the increased use of part-time clinical faculty, who are often isolated from their didactic peers. If clinical faculty, either novice or experienced, are disconnected from didactic faculty, is it any wonder students feel their learning is fragmented? The purpose of this paper is to discuss strategies to help bridge the gap between didactic and clinical learning. Specific integration strategies for faculty are presented using examples from a baccalaureate adult nursing didactic course and its related clinical course. The role of a clinical coordinator in facilitating course integration and support for part-time clinical faculty is described. Ideas for using technology to enhance learning and suggestions to promote socialization to decrease faculty isolation are also discussed. PMID:24674949

  13. EDITORIAL: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage

    NASA Astrophysics Data System (ADS)

    Masini, N.; Soldovieri, F.

    2011-09-01

    In the last two decades, the use of non-invasive methods for the study and conservation of cultural heritage, from artefacts and historical sites to recent architectural structures, has gained increasing interest. This is due to several reasons: (i) the improvement of performance and information resolution of sensors and devices; (ii) the increasing availability of user-friendly data/image analysis, and processing software and routines; (iii) the ever greater awareness of archaeologists and conservators of the benefits of these technologies, in terms of reduction of costs, time and the risk associated with direct and destructive investigations of archaeological sites (excavation) and monuments (i.e. masonry coring). The choice of diagnostic strategy depends on the spatial and physical characteristics of the cultural objects or sites, the aim of the investigation (knowledge, conservation, restoration) and the issues to be addressed (monitoring, decay assessment, etc). This makes the set up and validation of ad hoc procedures based on data processing and post-processing methods necessary, generally developed to address issues in other fields of application. This methodological perspective based on an integrated and multi-scale approach characterizes the papers of this special issue, which is focused on integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage. In particular, attention is given to the advanced application of the synthetic aperture radar (SAR) from the satellite-based platform for deformation monitoring thanks to the innovative differential SAR interferometry (DInSAR) technique; Zeni et al show the significant possibilities of the proposed methodology in achieving a global vision not only of cultural heritage but also of the embedding territory. This collection also deals with the application of non-invasive diagnostics to archaeological prospecting, and

  14. A review of integration strategies for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Chan, S. H.; Li, Guojun; Ho, H. K.; Li, Jun; Feng, Zhenping

    Due to increasing oil and gas demand, the depletion of fossil resources, serious global warming, efficient energy systems and new energy conversion processes are urgently needed. Fuel cells and hybrid systems have emerged as advanced thermodynamic systems with great promise in achieving high energy/power efficiency with reduced environmental loads. In particular, due to the synergistic effect of using integrated solid oxide fuel cell (SOFC) and classical thermodynamic cycle technologies, the efficiency of the integrated system can be significantly improved. This paper reviews different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security.

  15. An overview on integrated data system for archiving and sharing marine geology and geophysical data in Korea Institute of Ocean Science & Technology (KIOST)

    NASA Astrophysics Data System (ADS)

    Choi, Sang-Hwa; Kim, Sung Dae; Park, Hyuk Min; Lee, SeungHa

    2016-04-01

    We established and have operated an integrated data system for managing, archiving and sharing marine geology and geophysical data around Korea produced from various research projects and programs in Korea Institute of Ocean Science & Technology (KIOST). First of all, to keep the consistency of data system with continuous data updates, we set up standard operating procedures (SOPs) for data archiving, data processing and converting, data quality controls, and data uploading, DB maintenance, etc. Database of this system comprises two databases, ARCHIVE DB and GIS DB for the purpose of this data system. ARCHIVE DB stores archived data as an original forms and formats from data providers for data archive and GIS DB manages all other compilation, processed and reproduction data and information for data services and GIS application services. Relational data management system, Oracle 11g, adopted for DBMS and open source GIS techniques applied for GIS services such as OpenLayers for user interface, GeoServer for application server, PostGIS and PostgreSQL for GIS database. For the sake of convenient use of geophysical data in a SEG Y format, a viewer program was developed and embedded in this system. Users can search data through GIS user interface and save the results as a report.

  16. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  17. Using Methods of Dimension Reduction to Expand Data Integration and Reduce Uncertainty in Hydrological and Geophysical Parameters

    NASA Astrophysics Data System (ADS)

    Yu, A.; Savoy, H.; Heße, F.; Rubin, Y.

    2015-12-01

    The Method of Anchored Distributions (MAD), first demonstrated by Rubin et al. in 2010, has been particularly useful in hydrological and geophysical applications. MAD provides a new framework for successfully using diverse data for the characterization of heterogeneous subsurface quantities (eg. hydraulic conductivity). Through Bayesian inverse modeling, MAD is able to take a general, assumption-free approach, incorporating both local data, ie. data that pertains directly to the target quantity, as well as other indirectly related non-local data. The latter are used for the inversion and converted into local data, called 'anchors', therefore improving the overall characterization of the target variable. However, with the use of more and more data, problems arise with the inversion due to the high dimensionality of said data, eg. when using time series. As a result, MAD becomes increasingly difficult, if not impossible, to use for large data sets. The objective of our study is therefore to investigate and demonstrate effective methods of dimension reduction that reduces large data sets to a small set of relevant parameters while still retaining a strong effect on the inversion procedure. The poster will explain the relevant methods and present examples of their effect on different data types, primarily looking at hydrological data (ie. concentration breakthrough curves, drawdown time series or vertical head profiles) then further theorizing its possible application to geophysical information. Ultimately, the broader goal of this study is to propose ways of applying dimension reduction to the realm of hydrogeophysics, which will not only expand the application of MAD, but also improve our ability to reduce uncertainty in the relevant parameters.

  18. The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus

    ERIC Educational Resources Information Center

    Salleh, Tuan Salwani; Zakaria, Effandi

    2016-01-01

    The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…

  19. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  20. An Integrated Strategy for Promoting Geoscience Education and Research in Developing Countries through International Cooperation

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    2007-12-01

    Geoscience education and research in Developing countries should aim at achieving food, water and environmental security, and disaster preparedness, based on the synergetic application of earth (including atmospheric and oceanic realms), space and information sciences through economically-viable, ecologically- sustainable and people-participatory management of natural resources. The proposed strategy involves the integration of the following three principal elements: (i) What needs to be taught: Geoscience needs to be taught as earth system science incorporating geophysical, geochemical and geobiological approaches, with focus (say, 80 % of time) on surficial processes (e.g. dynamics of water, wind and waves, surface and groundwater, soil moisture, geomorphology, landuse, crops), and surficial materials (e.g. soils, water, industrial minerals, sediments, biota). Subjects such as the origin, structure and evolution of the earth, and deep-seated processes (e.g. dynamics of the crust-mantle interaction, plate tectonics) could be taught by way of background knowledge (say, 20 % of the time), (ii) How jobs are to be created: Jobs are to be created by merging geoscience knowledge with economic instruments (say, micro enterprises), and management structures at different levels (Policy level, Technology Transfer level and Implementation level), customized to the local biophysical and socioeconomic situations, and (iii) International cooperation: Web-based instruction (e.g. education portals, virtual laboratories) through South - South and North - South cooperation, customized to the local biophysical and socioeconomic situations, with the help of (say) UNDP, UNESCO, World Bank, etc.

  1. Tracking and understanding volcanic emissions through cross-disciplinary integration of field, textural, geochemical and geophysical data: A textural working group. (Invited)

    NASA Astrophysics Data System (ADS)

    gurioli, L.

    2013-12-01

    Relating magma ascent to eruption style using information preserved in pyroclastic deposits is a major challenge in modern volcanology. Because magma ascent and fragmentation are inaccessible to direct observation, one way to obtain quantitative information for conduit dynamics is through textural quantification of the sampled products (i.e., full definition of the rock vesicle and crystal properties). Many workers have shown that quantification of vesicle and crystal size distributions yields valuable insights into the processes that created the pyroclasts. However, the physical characteristics of individual pyroclasts must not be considered in isolation from information regarding: (i) the deposits from which they are taken; (ii) their chemistry; (iii) geophysical signatures of the related explosive events; and (iv) results from petrological and/or analogue experiments. As a result, attempts to understand eruption dynamics have increasingly involved the coupling of traditional field and sample-return analyses with geophysical measurements made synchronous with sample collection. In spite of this progress, we remain far from developing a definitive methods that allows us to sample, correlate and/or compare the multitude of parameters that can be measured at an actively building field deposits. As a result, no study has yet been able to correlate all derivable textural parameters with the full range of available multidisciplinary data. To discuss these issues, a working group met during 6-7 November 2012 at the Maison International of the Université Blaise Pascal (Clermont-Ferrand, France). The workshop was supported by the European Science Foundation and was held under the title: 'Tracking and understanding volcanic emissions through cross-disciplinary integration: A textural working group'. Our main objective was to gather an advisory group to define measurements, methods, formats and standards to be applied to integration of geophysical and physical

  2. Integrated geophysical and petrological characterization of mud volcanoes at the Morrocan Atlantic margin - linking morphology to fluid flow.

    NASA Astrophysics Data System (ADS)

    Depreiter, D.; van Rensbergen, P.; Poort, J.; de Boever, E.; Swennen, R.; Henriet, J.

    2005-12-01

    Detailed geophysical, geochemical and petrological data over a cluster of large mud volcanoes at the Moroccan North Atlantic margin document the activity of sea floor mud volcanoes in relation to its morphology and structural setting. Mud volcanoes are often long-lived systems; their changing morphology bears witness of the evolution of fluid flow expulsion. The El Arraiche mud volcano field is a cluster of 9 mud volcanoes. It was discovered in 2002 at the Morrocan Atlantic margin in water depths from 200 m to 700 m. The largest mud volcano in the field is 255 m high and 5.4 km wide. Marine surveys between 2002 and 2005 yielded detailed geophysical, geochemical, sedimentological, and petrological data. The geophysical data include multibeam bathymetry, high-resolution seismics, deep-tow sub bottom profiles and side-scan sonar mosaics. Video imagery lines, video guided grab samples, dredge samples, gravity cores, and box cores were collected for groundtruthing purposes. Petrological and geochemical analysis of authigenic carbonates provided a record of hydrocarbon sources, fluid characteristics, processes of mixing and the mode of venting. The El Arraiche mud volcanoes cluster around two subparallel anticlines and are associated active extensional faults. Extruded rock clasts and regional seismic data locate the El Arraiche field over a Late Miocene to Pliocene extensional basin. The onset of mud volcanic activity is estimated at about 2.4 Ma and probably roots in the Cretacous to Miocene accretionary wedge. Stacked outflows are visible up to a depth of about 500 m below the sea floor. Stratigraphic correlation of the outflow lenses over the entire mud volcano field indicate that although large outflow events are not synchronized between the individual mud volcanoes, eruptions occurred more frequently during periods of active extensive tectonics. The morphology of the sea floor mud volcanoes is the result of a combination of extrusive and intrusive processes

  3. Integrated design strategy for product life-cycle management

    NASA Astrophysics Data System (ADS)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  4. Enhancing impact: visualization of an integrated impact assessment strategy.

    PubMed

    Krieger, Gary R; Bouchard, Michel A; de Sa, Isabel Marques; Paris, Isabelle; Balge, Zachary; Williams, Dane; Singer, Burton H; Winkler, Mirko S; Utzinger, Jürg

    2012-05-01

    The environmental impact assessment process is over 40 years old and has dramatically expanded. Topics, such as social, health and human rights impact are now included. The main body of an impact analysis is generally hundreds of pages long and supported by countless technical appendices. For large, oil/gas, mining and water resources projects both the volume and technical sophistication of the reports has far exceeded the processing ability of host communities. Instead of informing and empowering, the reports are abstruse and overwhelming. Reinvention is required. The development of a visual integrated impact assessment strategy that utilizes remote sensing and spatial analyses is described. PMID:22639133

  5. The Relative Effectiveness of Integrated Reading Study Strategy and Conceptual Physics Approach

    ERIC Educational Resources Information Center

    Taslidere, Erdal; Eryilmaz, Ali

    2012-01-01

    The primary purpose of this study was to investigate the combined and partial effects of the Integrated Reading/Study Strategy and Conceptual Physics Approach on ninth grade private high school students' achievement in and attitudes toward optics. The Integrated Reading/Study Strategy is a new strategy which was developed by integrating previously…

  6. An integrated geophysical study of basin structure in the Van Horn segment of the Rio Grande rift

    SciTech Connect

    Maciejewski, T.J.; Whitelaw, J.L. . Dept. of Geological Sciences)

    1993-02-01

    The Rio Grande Rift is a major late Cenozoic continental rift which trends north-south from Colorado to West Texas where it takes an abrupt south-west turn. A series of basins then follow the Texas-Mexico border passing through the Big Bend Area into Mexico. This rifting zone produced a series of bolsons: Hueco Bolson, Red Light Bolson, Eagle Flat, Green River Bolson, and Ryan Flat being the most predominant of the area. The target of this study was the area southeast of the Hueco Bolson; the Red Light and Green River Bolson is an intermontane basin being bounded on the west by the Eagle Mountains and on the east by the Van Horn Mountains. The Red Light Bolson is nested between the Quitman and Eagle Mountains. Through the use of gravity data, drill hole information and other related geophysical information, the subsurface structure of this region was investigated. A broad gravity low dominates the region, but does not correlate well with late Cenozoic features. Drilling data suggest that this low is due to thick Cretaceous strata. The Green River Bolson is associated with a north-south trending gravity low suggesting it contains considerable Cenozoic fill.

  7. Integrated Pore-Water and Geophysical Investigations StreamlineCharacterization of Ground-Water Discharges to Surface Water

    EPA Science Inventory

    This issue of Technology News and Trends highlights strategies and tools for characterizing or monitoring remediation of sites with contaminated sediment. Addressing these sites often relies upon dynamic workplans that involve more efficient, cost-effective, and practical methods...

  8. Function-based integration strategy for an agile manufacturing testbed

    NASA Astrophysics Data System (ADS)

    Park, Hisup

    1997-01-01

    This paper describes an integration strategy for plug-and- play software based on functional descriptions of the software modules. The functional descriptions identify explicitly the role of each module with respect to the overall systems. They define the critical dependencies that affect the individual modules and thus affect the behavior of the system. The specified roles, dependencies and behavioral constraints are then incorporated in a group of shared objects that are distributed over a network. These objects may be interchanged with others without disrupting the system so long as the replacements meet the interface and functional requirements. In this paper, we propose a framework for modeling the behavior of plug-and-play software modules that will be used to (1) design and predict the outcome of the integration, (2) generate the interface and functional requirements of individual modules, and (3) form a dynamic foundation for applying interchangeable software modules. I describe this strategy in the context of the development of an agile manufacturing testbed. The testbed represents a collection of production cells for machining operations, supported by a network of software modules or agents for planning, fabrication, and inspection. A process definition layer holds the functional description of the software modules. A network of distributed objects interact with one another over the Internet and comprise the plug-compatible software nodes that execute these functions. This paper will explore the technical and operational ramifications of using the functional description framework to organize and coordinate the distributed object modules.

  9. An integrative test strategy for cancer hazard identification.

    PubMed

    Luijten, Mirjam; Olthof, Evelyn D; Hakkert, Betty C; Rorije, Emiel; van der Laan, Jan-Willem; Woutersen, Ruud A; van Benthem, Jan

    2016-08-01

    Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented. PMID:27142259

  10. Integration of Geologic and Geophysical Data to Model Hydrostratigraphy Under a Recharge Pond for Aquifer Storage and Recovery

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Pidlisecky, A.; Knight, R. J.; Jenni, S.; Will, R.; Lear, J.

    2009-12-01

    The Harkins Slough Recharge Pond (HSRP) near Watsonville, CA, was developed to lessen the adverse impacts of excessive groundwater pumping in the Pajaro Valley. Storm-flow run-off is filtered and diverted into the pond during the winter, percolates through the base of the pond to the alluvial aquifer, and is recovered in the summer. The pond faces two operational challenges. The first is a decrease in the infiltration rate throughout the winter, reducing the amount of run-off that can percolate into the aquifer. The second is a recovery rate of less than 25%. Operators need a clearer understanding of the hydrologic processes governing the movement and storage of water beneath the pond. Efforts to characterize hydrologic processes at the HSRP have resulted in the acquisition of numerous data sets. Geologic data include lithologic descriptions from shallow cores and drillers’ logs of ten, ~50 m deep wells. An additional nine monitoring wells were used to measure hydraulic head every 15 minutes throughout the year. Geophysical surveys, including shallow shear-wave reflection, ground-penetrating radar, electrical resistivity, and seismic cone penetration testing, were collected along the base of the HSRP in Summer 2007 when the pond was drained. In addition, four probes collected 1D resistivity profiles every 3 minutes throughout an infiltration cycle in the winter of 2007-2008. We combined these data, using PETREL software, into a model describing the hydrostratigraphy beneath the pond, and then used ECLIPSE to simulate the variably-saturated flow behavior. The extent of our model, 380 m by 390 m, roughly matches the size of the pond, and extends to a depth of ~60 m. We input all data using the resolution at which they were acquired; this ranged from 0.2 m resolution for the shallow cores to ~3 m resolution for seismic data. The GPR and electrical data were input as images and used with the seismic data to identify hydrostratigraphic boundaries. We elected to use 12

  11. The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling II: 3D thermal and compositional structure

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Muller, M. R.; Jones, A. G.; Afonso, J. C.

    2014-02-01

    The lithosphere-asthenosphere boundary (LAB) depth represents a fundamental parameter in any quantitative lithospheric model, controlling to a large extent the temperature distribution within the crust and the uppermost mantle. The tectonic history of Ireland includes early Paleozoic closure of the Iapetus Ocean across the Iapetus Suture Zone (ISZ), and in northeastern Ireland late Paleozoic to early Mesozoic crustal extension, during which thick Permo-Triassic sedimentary successions were deposited, followed by early Cenozoic extrusion of large scale flood basalts. Although the crustal structure in Ireland and neighboring offshore areas is fairly well constrained, with the notable exception of the crust beneath Northern Ireland, the Irish uppermost mantle remains to date relatively unknown. In particular, the nature and extent of a hypothetical interaction between a putative proto Icelandic mantle plume and the Irish and Scottish lithosphere during the Tertiary opening of the North Atlantic has long been discussed in the literature with diverging conclusions. In this work, the present-day thermal and compositional structure of the lithosphere in Ireland is modeled based on a geophysical-petrological approach (LitMod3D) that combines comprehensively a large variety of data (namely elevation, surface heat flow, potential fields, xenoliths and seismic tomography models), reducing the inherent uncertainties and trade-offs associated with classical modeling of those individual data sets. The preferred 3D lithospheric models show moderate lateral density variations in Ireland characterized by a slightly thickened lithosphere along the SW-NE trending ISZ, and a progressive lithospheric thinning from southern Ireland towards the north. The mantle composition in the southern half of Ireland (East Avalonia) is relatively and uniformly fertile (i.e., typical Phanerozoic mantle), whereas the lithospheric composition in the northern half of Ireland (Laurentia) seems to vary

  12. Integrated electrical geophysical surveys (ERT and SP) for the study of buried structure in a archeological complex

    NASA Astrophysics Data System (ADS)

    Negri, Sergio; Mazzone, Fiorella; Maglio, Graziano

    2010-05-01

    Geophysical methods, particularly ERT, are very popular in archeological investigations. The success of the ERT method depends on the difference between the resistivity properties of the potential archeological targets (walls, roads, cavities etc..) and the surrounding environment. In this context often the main issue is to identify cavities or antropic buried structures. In this work we have used ERT and SP combined surveys for the study of buried structures in a farm of artistic importance of the XVII century located near Lecce (Salento peninsula, Italy). In the courtyard of the farm, characterized by the presence of two access holes to a possible underground cavity, we performed a 3D ERT that consists of 7 parallel profiles with 15 electrodes and a resolution of 0.7m, inverted with robust method. Also we performed a 3D SP surveys with 70 data points and a resolution of 1m using non-polarizing Cu/CuSO4 electrodes and a high internal impedance voltmeter using the Charge Occurence Probability (COP) algorithm. In correspondence of the two access holes both methods demonstrate clearly the presence of a cavity that extends to a depth of about 1.8m from ground level probably used for storage of rainwater. Furthermore the ERT surveys show the presence of a second cavity at greater depths (2.5m) that is not resolved by the SP method. The 3D inversion results clearly illustrate the capability to resolve in view of quality 3D structures of archeological interest. Particularly, in this work, we underline the role of SP surveys in this context and the good correlation with ERT surveys.

  13. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial

  14. IRETHERM: Developing a Strategic and Holistic Understanding of Ireland's Geothermal Energy Potential through Integrated Modelling of New and Existing Geophysical, Geochemical and Geological Data

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.; Daly, Stephen; Vozar, Jan; Rath, Volker; Campanya, Joan; Blake, Sarah; Delhaye, Robert; Fritschle, Tobias; Willmot Noller, Nicola; Long, Mike; Waters, Tim

    2015-04-01

    The Science Foundation Ireland funded academia-government-industry collaborative IRETHERM project (www.iretherm.ie), initiated in 2011, is developing a strategic understanding of Ireland's (all-island) deep geothermal energy potential through integrated modelling of new and existing geophysical, geochemical and geological data. Potential applications include both low enthalpy district space heating of large urban centres and electricity generation from intermediate-temperature waters. IRETHERM comprises three broad geothermal target types; 1) Assessment of the geothermal energy potential of Ireland's radiogenic granites (EGS), (2) Assessment of the geothermal energy potential of Ireland's deep sedimentary basins (HSA), and, (3) Assessment of the geothermal energy potential of warm springs. The geophysical subsurface imaging techniques of choice are controlled-source (CSEM) and natural-source (magnetotellurics, MT) electromagnetic methods. Electrical conductivity, being a transport property, is a proxy for permeability, and appropriate porosity-permeability relations are being developed. To date, MT measurements have been made at 466 sites over sedimentary basins (190 sites), granites (156 sites) and warm springs (120 sites), with CSEM across one warm spring. An ongoing continuous geochemical (temperature and electrical conductivity every 15 mins) and time-lapse seasonal hydrochemical sampling programmes are in progress at six warm spring sites. A database on heat production in Irish rocks has been compiled, of more than 3,300 geochemical sample measurements, with 3,000 retrieved from various archives and over 300 new analyses. Geochemistry, geochronology and isotopic analyses have been conducted on subsurface granites and exposed analogues astride the Iapetus Suture Zone in order to understand the underlying reasons for their radiogenic heat production. Finally, thermal conductivity measurements have been made on borehole samples from representative lithologies

  15. Integration of geophysical and geochemical data for the study of the North-Est Rift dynamics on Mount Etna volcano

    NASA Astrophysics Data System (ADS)

    Tripaldi, Simona; Balasco, Marianna; Lapenna, Vincenzo; Loddo, Mariano; Moretti, Pierpaolo; Neri, Marco; Piscitelli, Sabatino; Romano, Gerardo; Schiavone, Domenico; Siniscalchi, Agata

    2010-05-01

    Mount Etna volcano is located at the front of the Apennine-Maghrebian Chain, along the Malta Escarpment, and lies on the Pliocene-Pleistocene foredeep deposits. The apparatus is characterized by a central conduit divided, at surface, into four summit craters, with a maximum elevation of 3329 m above sea level. In the upper part (>1500 m), three main "rift zones" can be identified: the NE Rift, the S Rift and the W Rift. These structures are probably shallow, do not tap deep magma and are usually directly fed by the central conduit, rather than from an underlying shallow magma chamber. The volcano is characterized by the displacement of its eastern to southern flanks, involving an on-shore area of >700 km2. This is confined to the north by the Pernicana fault system (PFS). The PFS, located on the NE sector of Mt. Etna, is >18 km long, from the NE Rift to the coastline. The western PFS is seismogenetic, while the eastern PFS undergoes creep movements. In its westernmost section, the PFS is divided into two main segments, the more northerly of these starting from the Monte Nero area of the NE Rift and the more southerly from Piano Provenzana. The PFS is kinematically connected, with a feedback mechanism, to eruptions occurring on the NE Rift. In spite of this relationship, the PFS has shown continuous activity between 1947 and 2002, a period when no eruptions occurred on the NE Rift, with major surface fracturing and seismic activity in 1984-1988. Geophysical-geochemical investigation were conducted in the area where PFS is connected with the NE Rift, including the areas characterized by a consistent slip, as well as those structures through which the motion occurs. The aim of this work is to provide a multidisciplinary frame to characterize this dynamic and structural natural system. Magnetotelluric, geoelectric, self-potential and and soil gas emissions measurements give a comprehensive view on the geometry and depth of the lithological units together with fluid

  16. Advances in Shallow-Water, High-Resolution Seafloor Mapping: Integrating an Autonomous Surface Vessel (ASV) Into Nearshore Geophysical Studies

    NASA Astrophysics Data System (ADS)

    Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.

    2006-12-01

    The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence

  17. The coastal theme of the integrated global observing strategy (IGOS)

    NASA Astrophysics Data System (ADS)

    Digiacomo, P. M.; Talaue-McManus, L.; Igos Coastal Theme Team

    A proposal for a Coastal Theme of the Integrated Global Observing Strategy (IGOS; http://www.igospartners.org/) was approved at the 10th IGOS Partners Meeting in June 2003. The goal of the IGOS Coastal Theme is to develop a strategy for integrated global observations that will provide improved understanding of earth system variability and change in the coastal zone, with a particular emphasis on propagation of change and variability across the land-sea interface. Specific objectives of the IGOS Coastal Theme are to: 1) Specify user driven requirements for in situ and remote observations (e.g., variables to be measured, appropriate time-space scales of observations, platforms/sensors to be used) of the linked terrestrial-marine-atmospheric environments of the coastal zone and the associated requirements for data management and models; 2) Evaluate current and projected observation capabilities in terms of the extent to which they meet these requirements, identifying gaps, redundancies, and activities that need to be strengthened; 3) Establish a framework to integrate observations (in situ and remote), particularly across boundaries, as time-space scales of variability differ dramatically between the terrestrial side and the marine side of the coastal zone; 4) Incorporate the approved IGOS Coral Reef Sub-Theme. In this overall context the IGOS Coastal Theme will help identify gaps in satellite observations and reduce unnecesary duplication; strengthen the linkage between in situ and space-based observations for coastal research and management applications; assist in the design and implementation of Global Observing Systems with coastal components, particularly GOOS and GTOS; stimulate building of long-term coastal data sets by identifying continuity needs; and enable improved products and services by facilitating the integration of coastal data across the land-ocean margins. A Coastal Theme Report addressing the above issues is presently being developed and will be

  18. The Coastal Theme of the Integrated Global Observing Strategy (IGOS)

    NASA Astrophysics Data System (ADS)

    Digiacomo, P. M.; Talaue-McManus, L.

    A proposal for a Coastal Theme of the Integrated Global Observing Strategy (IGOS; http://www.igospartners.org/) was approved at the 10th IGOS Partners Meeting in June 2003. The goal of the IGOS Coastal Theme is to develop a strategy for integrated global observations that will provide improved understanding of earth system variability and change in the coastal zone, with a particular emphasis on propagation of change and variability across the land-sea interface. Specific objectives of the IGOS Coastal Theme are to: 1) Specify user driven requirements for in situ and remote observations (e.g., variables to be measured, appropriate time-space scales of observations, platforms/sensors to be used) of the linked terrestrial-marine-atmospheric environments of the coastal zone and the associated requirements for data management and models; 2) Evaluate current and projected observation capabilities in terms of the extent to which they meet these requirements, identifying gaps, redundancies, and activities that need to be strengthened; 3) Establish a framework to integrate observations (in situ and remote), particularly across boundaries, as time-space scales of variability differ dramatically between the terrestrial side and the marine side of the coastal zone; 4) Incorporate the approved IGOS Coral Reef Sub-Theme. In this overall context the IGOS Coastal Theme will help identify gaps in satellite observations and reduce unnecesary duplication; strengthen the linkage between in situ and space-based observations for coastal research and management applications; assist in the design and implementation of Global Observing Systems with coastal components, particularly GOOS and GTOS; stimulate building of long-term coastal data sets by identifying continuity needs; and enable improved products and services by facilitating the integration of coastal data across the land-ocean margins. A Coastal Theme Report addressing the above issues is presently being developed and will be

  19. Integrating simulated teaching/learning strategies in undergraduate nursing education.

    PubMed

    Sinclair, Barbara; Ferguson, Karen

    2009-01-01

    In this article, the results of a mixed-methods study integrating the use of simulations in a nursing theory course in order to assess students' perceptions of self-efficacy for nursing practice are presented. Nursing students in an intervention group were exposed to a combination of lecture and simulation, and then asked to rate their perceptions of self-efficacy, satisfaction and effectiveness of this combined teaching and learning strategy. Based on Bandura's (1977, 1986) theory of self-efficacy, this study provides data to suggest that students' self-confidence for nursing practice may be increased through the use of simulation as a method of teaching and learning. Students also reported higher levels of satisfaction, effectiveness and consistency with their learning style when exposed to the combination of lecture and simulation than the control group, who were exposed to lecture as the only method of teaching and learning. PMID:19341357

  20. Clinical Strategies for Integrating Medication Interventions Into Behavioral Treatment for Adolescent ADHD: The Medication Integration Protocol

    PubMed Central

    Hogue, Aaron; Bobek, Molly; Tau, Gregory Z.; Levin, Frances R.

    2014-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is highly prevalent among adolescents enrolled in behavioral health services but remains undertreated in this age group. Also the first-line treatment for adolescent ADHD, stimulant medication, is underutilized in routine practice. This article briefly describes three behavioral interventions designed to promote stronger integration of medication interventions into treatment planning for adolescent ADHD: family ADHD psychoeducation, family-based medication decision-making, and behavior therapist leadership in coordinating medication integration. It then introduces the Medication Integration Protocol (MIP), which incorporates all three interventions into a five-task protocol: ADHD Assessment and Medication Consult; ADHD Psychoeducation and Client Acceptance; ADHD Symptoms and Family Relations; ADHD Medication and Family Decision-Making; and Medication Management and Integration Planning. The article concludes by highlighting what behavior therapists should know about best practices for medication integration across diverse settings and populations: integrating medication interventions into primary care, managing medication priorities and polypharmacy issues for adolescents with multiple diagnoses, providing ADHD medications to adolescent substance users, and the compatibility of MIP intervention strategies with everyday practice conditions. PMID:25505817

  1. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies

  2. Toward the Development of an Integrated Global Observing Strategy

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    In the current environment of stagnant or shrinking budgets for space research and exploration, nations can no longer afford to develop costly systems in a vacuum. Greater coordination of existing and planned systems, both among space agencies and between the space agencies and user communities, will enable the maximization of global investments in all areas of space-related research. In this manner, a group of space agencies has embarked on an initiative to link their activities in Earth observation with complementary observation programs. The goal of this initiative is to develop a comprehensive strategy for enhanced levels of support to scientific, operational and research communities. The space agencies, through the Committee on Earth Observation Satellites (CEOS), have embraced the concept of an Integrated Global Observing Strategy (IGOS), primarily in fulfillment of their own set of objectives and to derive greater benefit from both operating and planned Earth observing systems. Through working together, CEOS agencies are in a position to plan their Earth observation projects with the minimum of unnecessary overlap and to devise joint strategies for addressing serious gaps in their observation capabilities. Ultimately, an IGOS should be the joint product of all groups involved in the collection and analysis of both space-based and in-situ data. CEOS is actively seeking IGOS -related partnerships with the Global Climate, Global Ocean and Global Terrestrial Observing Systems, their intergovernmental Sponsors, the International Group of Funding Agencies for Global Change Research, and other scientific and user organizations including the International Geosphere-Biosphere Programme and the World Climate Research Programme.

  3. The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: An integrated geological and geophysical approach

    NASA Astrophysics Data System (ADS)

    Swayze, Gregg Alan

    alunite-zone rocks cooled below alunite closure temperatures in both centers by 6.9-6.5 Ma with late stage vein alunites forming at 6.2 Ma in the western center. A K-Ar isotopic date from unaltered olivine basalt erupted onto altered conglomerate, between the centers, implies that all hydrothermal activity ceased by 6.2 Ma. Altogether, hydrothermal activity spanned at least 1.4 m.y. in the western center and with a shorter duration in the eastern center. The geologic and geophysical evidence collected during this study is most consistent with the separate development, both temporally and spatially, of the two hydrothermal centers at Cuprite during and subsequent to activity in the nearby Stonewall Mountain volcanic center. Abundant jarosite in the western center marks the location of oxidized pyrite from an initial stage of mineralization, and lack of a later stage of Cu-sulfide mineralization may explain the absence of gold in the western center. Because the eastern center developed independently, it is a likely target for future exploration, especially in the west-dipping hydrothermal conduit below its siliceous cap. (Abstract shortened by UMI.)

  4. Multi-sourced, 3D geometric characterization of volcanogenic karst features: Integrating lidar, sonar, and geophysical datasets (Invited)

    NASA Astrophysics Data System (ADS)

    Sharp, J. M.; Gary, M. O.; Reyes, R.; Halihan, T.; Fairfield, N.; Stone, W. C.

    2009-12-01

    Karstic aquifers can form very complex hydrogeological systems and 3-D mapping has been difficult, but Lidar, phased array sonar, and improved earth resistivity techniques show promise in this and in linking metadata to models. Zacatón, perhaps the Earth’s deepest cenote, has a sub-aquatic void space exceeding 7.5 x 106 cubic m3. It is the focus of this study which has created detailed 3D maps of the system. These maps include data from above and beneath the the water table and within the rock matrix to document the extent of the immense karst features and to interpret the geologic processes that formed them. Phase 1 used high resolution (20 mm) Lidar scanning of surficial features of four large cenotes. Scan locations, selected to achieve full feature coverage once registered, were established atop surface benchmarks with UTM coordinates established using GPS and Total Stations. The combined datasets form a geo-registered mesh of surface features down to water level in the cenotes. Phase 2 conducted subsurface imaging using Earth Resistivity Imaging (ERI) geophysics. ERI identified void spaces isolated from open flow conduits. A unique travertine morphology exists in which some cenotes are dry or contain shallow lakes with flat travertine floors; some water-filled cenotes have flat floors without the cone of collapse material; and some have collapse cones. We hypothesize that the floors may have large water-filled voids beneath them. Three separate flat travertine caps were imaged: 1) La Pilita, which is partially open, exposing cap structure over a deep water-filled shaft; 2) Poza Seca, which is dry and vegetated; and 3) Tule, which contains a shallow (<1 m) lake. A fourth line was run adjacent to cenote Verde. La Pilita ERI, verified by SCUBA, documented the existence of large water-filled void zones ERI at Poza Seca showed a thin cap overlying a conductive zone extending to at least 25 m depth beneath the cap with no lower boundary of this zone evident

  5. Efficiency of Integrated Geophysical techniques in delineating the extension of Bauxites ore in north Riyadh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Almutairi, Yasir; Alanazi, Abdulrahman; Almutairi, Muteb; Alsama, Ali; Alhenaki, Bander; Almalki, Awadh

    2014-05-01

    We exploit the integration of Ground Penetrating Radar (GPR) techniques, magnetic gradiometry, resistivity measurements and seismic tomography for the high-resolution non-invasive study for delineating the subsurface Bauxite layer in Zabira locality, north of Riyadh. Integrated GPR, magnetic gradiometry resistivity and seismic refraction are used in the case of high contrast targets and provide an accurate subsurface reconstruction of foundations in sediments. Resistivity pseudo-sections are in particular useful for the areal identification of contacts between soils and foundations while GPR and magnetic gradiometry provide detailed information about location and depth of the structures. Results obtained by GPR, Magnetics and resistivity shows a very good agreement in mapping the bauxite layer depth at range of 5 m to 10 m while the depth obtained by seismic refraction was 10 m to 15 m due to lack of velocity information.

  6. Integrated Attitude Control Strategy for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; Price, Hoppy; San Martin, Miguel

    2014-01-01

    A deep-space mission has been proposed to redirect an asteroid to a distant retrograde orbit around the moon using a robotic vehicle, the Asteroid Redirect Vehicle (ARV). In this orbit, astronauts will rendezvous with the ARV using the Orion spacecraft. The integrated attitude control concept that Orion will use for approach and docking and for mated operations will be described. Details of the ARV's attitude control system and its associated constraints for redirecting the asteroid to the distant retrograde orbit around the moon will be provided. Once Orion is docked to the ARV, an overall description of the mated stack attitude during all phases of the mission will be presented using a coordinate system that was developed for this mission. Next, the thermal and power constraints of both the ARV and Orion will be discussed as well as how they are used to define the optimal integrated stack attitude. Lastly, the lighting and communications constraints necessary for the crew's extravehicular activity planned to retrieve samples from the asteroid will be examined. Similarly, the joint attitude control strategy that employs both the Orion and the ARV attitude control assets prior, during, and after each extravehicular activity will also be thoroughly discussed.

  7. Developing Multipurpose Reproductive Health Technologies: An Integrated Strategy

    PubMed Central

    Harrison, P. F.; Hemmerling, A.; Romano, J.; Whaley, K. J.; Young Holt, B.

    2013-01-01

    Women worldwide confront two frequently concurrent reproductive health challenges: the need for contraception and for protection from sexually transmitted infections, importantly HIV/AIDS. While conception and infection share the same anatomical site and mode of transmission, there are no reproductive health technologies to date that simultaneously address that reality. Relevant available technologies are either contraceptive or anti-infective, are limited in number, and require different modes of administration and management. These “single-indication” technologies do not therefore fully respond to what is a substantial reproductive health need intimately linked to pivotal events in many women's lives. This paper reviews an integrated attempt to develop multipurpose prevention technologies—“MPTs”—products explicitly designed to simultaneously address the need for both contraception and protection from sexually transmitted infections. It describes an innovative and iterative MPT product development strategy with the following components: identifying different needs for such technologies and global variations in reproductive health priorities, defining “Target Product Profiles” as the framework for a research and development “roadmap,” collating an integrated MPT pipeline and characterizing significant pipeline gaps, exploring anticipated regulatory requirements, prioritizing candidates for problem-solving and resource investments, and implementing an ancillary advocacy agenda to support this breadth of effort. PMID:23533733

  8. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  9. An Integration of Geophysical Methods for the Determination of Subsurface Structure of the Intra-Mountain Plains: The CASES of Rieti and Leonessa (CENTRAL APENNINES, ITALY)

    NASA Astrophysics Data System (ADS)

    Skrame, K.; Di Filippo, M.; Di Nezza, M.

    2014-12-01

    This work, carried out with an integrated methodological approach, describes the acquisition of gravity data and their integration with different geophysical techniques, in order to map and model the thickness of unconsolidated deposits and determine the bedrock configuration of two different intra-mountain plains: Leonessa plain (hereafter LP) and Rieti plain (hereafter RP). The LP and the RP, the test areas of this study, are typical intra-mountain depressions of Center Apennines, related to the Plio-Quaternary extensional tectonic. Both basins are characterized by thick Quaternary fluvial-lacustrine deposits (gravel, sand and clay) overlaying the Meso-Cenozoic pelagic basin deposits. On the LP, the study involved an area of 62 km2 occupied by 333 gravity stations. Instead, on the RP, the study area, of 35 km2, were occupied by 170 gravity stations. The gravity data resulted from the network adjustment were used to calculate the Bouguer anomaly map. Subtracting the regional field from the Bouguer anomaly produced the residual anomaly map. In order to determine the distribution of the sedimentary infill, a 2D gravity modeling was developed in the region, including five profiles in the case study of LP and six profiles in the case study of RP. A realistic density of the unconsolidated Quaternary deposits (1.75-2,00 g/cm3 in the case of LP and 2,15 g/cm3 in the case of RP), a density of 2.50 g/cm3 for the Travertine and a density of 2.60 g/cm3 for the Meso-Cenozoic pelagic basin deposits were used to constrain the 2D gravimetric models. The models match quite well with the information determined from a collection of existing well logs and geophysical data obtained by the ambient noise, MASW and Downhole measurements. Finally, referring to these models, we were able to evaluate the thickness of the Quaternary sedimentary infilling and to define the 3D bedrock configuration of the basins. These 3D models represent a useful starting point for future activities such as

  10. Food for Thought … Integrated Testing Strategies for Safety Assessments

    PubMed Central

    Hartung, Thomas; Luechtefeld, Tom; Maertens, Alexandra; Kleensang, Andre

    2013-01-01

    Summary Despite the fact that toxicology uses many stand-alone tests, a systematic combination of several information sources very often is required: Examples include: when not all possible outcomes of interest (e.g., modes of action), classes of test substances (applicability domains), or severity classes of effect are covered in a single test; when the positive test result is rare (low prevalence leading to excessive false-positive results); when the gold standard test is too costly or uses too many animals, creating a need for prioritization by screening. Similarly, tests are combined when the human predictivity of a single test is not satisfactory or when existing data and evidence from various tests will be integrated. Increasingly, kinetic information also will be integrated to make an in vivo extrapolation from in vitro data. Integrated Testing Strategies (ITS) offer the solution to these problems. ITS have been discussed for more than a decade, and some attempts have been made in test guidance for regulations. Despite their obvious potential for revamping regulatory toxicology, however, we still have little guidance on the composition, validation, and adaptation of ITS for different purposes. Similarly, Weight of Evidence and Evidence-based Toxicology approaches require different pieces of evidence and test data to be weighed and combined. ITS also represent the logical way of combining pathway-based tests, as suggested in Toxicology for the 21st Century. This paper describes the state of the art of ITS and makes suggestions as to the definition, systematic combination, and quality assurance of ITS. PMID:23338803

  11. Geophysical data integration, stochastic simulation and significance analysis of groundwater responses using ANOVA in the Chicot Aquifer system, Louisiana, USA

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Carlson, D.A.; Willson, C.S.

    2008-01-01

    Data integration is challenging where there are different levels of support between primary and secondary data that need to be correlated in various ways. A geostatistical method is described, which integrates the hydraulic conductivity (K) measurements and electrical resistivity data to better estimate the K distribution in the Upper Chicot Aquifer of southwestern Louisiana, USA. The K measurements were obtained from pumping tests and represent the primary (hard) data. Borehole electrical resistivity data from electrical logs were regarded as the secondary (soft) data, and were used to infer K values through Archie's law and the Kozeny-Carman equation. A pseudo cross-semivariogram was developed to cope with the resistivity data non-collocation. Uncertainties in the auto-semivariograms and pseudo cross-semivariogram were quantified. The groundwater flow model responses by the regionalized and coregionalized models of K were compared using analysis of variance (ANOVA). The results indicate that non-collocated secondary data may improve estimates of K and affect groundwater flow responses of practical interest, including specific capacity and drawdown. ?? Springer-Verlag 2007.

  12. Integrated use of geophysical, hydrological and geographic information system (GIS) methods in enhancing the groundwater quality in a fluoride-endemic terrain (Andhra Pradesh, India)

    NASA Astrophysics Data System (ADS)

    Andrade, Rolland

    2012-12-01

    The concept of groundwater recharge and quality improvement is often implemented in arid and semi-arid areas with depleted aquifers. Nalgonda district in Andhra Pradesh, India, has endemic fluoride, with concentrations in drinking water varying between 3 and 8 mg/l. Numerous techniques adopted in the recent past for defluoridizing groundwater proved to have limitations. The integrated approach of a geographic information system (GIS) and an analytic hierarchy process (AHP), to identify suitable sites for recharge structures over an area of ˜115 km2, is highlighted. Further, to validate the delineated sites, a micro-watershed basin (2 km2) was selected for detailed recharge assessment and site feasibility studies through geophysical and tracer tests. Groundwater velocity (7 m/day) and flow direction through fractures in the shallow horizon were established through tracer experiments. The efficacy of the recommended recharge structures and their impact on groundwater quality were assessed over a period of 5 years, from 2002 to 2007, and the mean groundwater fluoride concentration of > 3.5 mg/l over the study area was brought down to < 1.5 mg/l.

  13. An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows

    NASA Astrophysics Data System (ADS)

    Tang, H. S.; Qu, K.; Wu, X. G.

    2014-09-01

    It is now becoming important to develop our capabilities to simulate coastal ocean flows involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales. This paper presents a hybrid modeling system for such simulation. The system consists of a fully three dimensional (3D) fluid dynamics model and a geophysical fluid dynamics model, which couple with each other in two-way and march in time simultaneously. Particularly, in the hybrid system, the solver for incompressible flow on overset meshes (SIFOM) resolves fully 3D small-scale local flow phenomena, while the unstructured grid finite volume coastal ocean model (FVCOM) captures large-scale background flows. The integration of the two models are realized via domain decomposition implemented with an overset grid method. Numerical experiments on performance of the system in resolving flow patterns and solution convergence rate show that the SIFOM-FVCOM system works as intended, and its solutions compare reasonably with data obtained with measurements and other computational approaches. Its unparalleled capabilities to predict multiphysics and multiscale phenomena with high-fidelity are demonstrated by three typical applications that are beyond the reach of other currently existing models. It is anticipated that the SIFOM-FVCOM system will serve as a new platform to study many emerging coastal ocean problems.

  14. Integrated testing strategies for toxicity employing new and existing technologies.

    PubMed

    Combes, Robert D; Balls, Michael

    2011-07-01

    We have developed individual, integrated testing strategies (ITS) for predicting the toxicity of general chemicals, cosmetics, pharmaceuticals, inhaled chemicals, and nanoparticles. These ITS are based on published schemes developed previously for the risk assessment of chemicals to fulfil the requirements of REACH, which have been updated to take account of the latest developments in advanced in chemico modelling and in vitro technologies. In addition, we propose an ITS for neurotoxicity, based on the same principles, for incorporation in the other ITS. The technologies are deployed in a step-wise manner, as a basis for decision-tree approaches, incorporating weight-of-evidence stages. This means that testing can be stopped at the point where a risk assessment and/or classification can be performed, with labelling in accordance with the requirements of the regulatory authority concerned, rather than following a checklist approach to hazard identification. In addition, the strategies are intelligent, in that they are based on the fundamental premise that there is no hazard in the absence of exposure - which is why pharmacokinetic modelling plays a key role in each ITS. The new technologies include the use of complex, three-dimensional human cell tissue culture systems with in vivo-like structural, physiological and biochemical features, as well as dosing conditions. In this way, problems of inter-species extrapolation and in vitro/in vivo extrapolation are minimised. This is reflected in the ITS placing more emphasis on the use of volunteers at the whole organism testing stage, rather than on existing animal testing, which is the current situation. PMID:21777036

  15. Research on the Evolutionary Strategy Based on AIS and Its Application on Numerical Integration

    NASA Astrophysics Data System (ADS)

    Bei, Li

    Based on the features of artificial immune system, a new evolutionary strategy is proposed in order to calculate the numerical integration of functions. This evolutionary strategy includes the mechanisms of swarm searching and constructing the fitness function. Finally, numerical examples are given for verifying the effectiveness of evolutionary strategy. The results show that the performance of evolutionary strategy is satisfactory and more accurate than traditional methods of numerical integration, such as trapezoid formula and Simpson formula.

  16. Integrated Geologic and Geophysical Approach for Establishing Geothermal Play Fairways and Discovering Blind Geothermal Systems in the Great Basin Region, Western USA: A Progress Report

    SciTech Connect

    Faulds, James E.; Hinz, Nicholas H.; Coolbaugh, Mark F.; Shevenell, Lisa A.; Siler, Drew L.; dePolo, Craig M.; Hammond, William C.; Kreemer, Corne; Oppliger, G.; Wannamaker, P.; Queen, John H.; Visser, Charles

    2015-09-02

    We have undertaken an integrated geologic, geochemical, and geophysical study of a broad 240-km-wide, 400-km-long transect stretching from west-central to eastern Nevada in the Great Basin region of the western USA. The main goal of this study is to produce a comprehensive geothermal potential map that incorporates up to 11 parameters and identifies geothermal play fairways that represent potential blind or hidden geothermal systems. Our new geothermal potential map incorporates: 1) heat flow; 2) geochemistry from springs and wells; 3) structural setting; 4) recency of faulting; 5) slip rates on Quaternary faults; 6) regional strain rate; 7) slip and dilation tendency on Quaternary faults; 8) seismologic data; 9) gravity data; 10) magnetotelluric data (where available); and 11) seismic reflection data (primarily from the Carson Sink and Steptoe basins). The transect is respectively anchored on its western and eastern ends by regional 3D modeling of the Carson Sink and Steptoe basins, which will provide more detailed geothermal potential maps of these two promising areas. To date, geological, geochemical, and geophysical data sets have been assembled into an ArcGIS platform and combined into a preliminary predictive geothermal play fairway model using various statistical techniques. The fairway model consists of the following components, each of which are represented in grid-cell format in ArcGIS and combined using specified weights and mathematical operators: 1) structural component of permeability; 2) regional-scale component of permeability; 3) combined permeability, and 4) heat source model. The preliminary model demonstrates that the multiple data sets can be successfully combined into a comprehensive favorability map. An initial evaluation using known geothermal systems as benchmarks to test interpretations indicates that the preliminary modeling has done a good job assigning relative ranks of geothermal potential. However, a major challenge is defining

  17. Geophysical modelling of the lithosphere-asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region: integrating potential field, surface heat flow, elevation, seismological and petrological data

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Fernàndez, M.; Afonso, J.; Verges, J.; Zeyen, H. J.

    2009-12-01

    In this work we study the present-day thermal and compositional 3D structure of the lithosphere beneath the Atlantic-Mediterranean Transition Region (AMTR) and the lithosphere-asthenosphere interaction from Jurassic times to present. The AMTR comprises the western segment of the Africa-Eurasia plate boundary, encompassing two main large-scale tectonic domains: the Gibraltar Arc System and the Atlas Mountains. We apply an integrated and self-consistent geophysical-petrological methodology (LitMod3D) that combines elevation, gravity, geoid, surface heat flow, and seismic data and allows modelling of compositional heterogeneities within the lithospheric mantle. Our results reveal large variations in the depth of the Moho and the lithosphere-asthenosphere boundary (LAB) as well as a lack of spatial correlation between the thicknesses of these two boundaries. The Moho essentially mimics the topography with depths ranging from ~10 km beneath the oceanic domains of the Atlantic abyssal plains and the Algerian Basin to >34 km in the Eastern Betics and Rif, the High Atlas mountains, and the Sahara Platform. In contrast, the LAB is shallower beneath the central and eastern Alboran Basin (~70 km) and all along the High, Middle and Anti Atlas (<100 km) coinciding with the loci of Cenozoic volcanism. Deeper LAB depths are found along the central and western Betics and the Moroccan Atlantic margin (>140 km) with values exceeding 230 km beneath the Rif and the Sahara Platform. We find that the average bulk composition of the lithospheric mantle corresponds to that of a typical Tecton (i.e. Phanerozoic) domain, with the exceptions of the Sahara Platform, the Alboran Basin, and Atlas Mountains. Distinct mantle compositions are required in these areas to make model predictions and geophysical observables compatible. We propose that the highly irregular LAB topography is the result of the superposition of three different geodynamic mechanisms, which include shortening and thickening

  18. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  19. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  20. Application of an Integrated Ground Water Monitoring Strategy

    NASA Astrophysics Data System (ADS)

    Price, V.; Hodges, R.; Heffner, D.; Nicholson, T. J.; Temples, T.

    2006-05-01

    The ground-water monitoring strategy developed through a U.S. Nuclear Regulatory Commission-sponsored research project was tested using monitoring data from the C-Area at the Savannah River Site. This strategy employs a systematic approach to integrate site characterization, conceptual model development, identification and evaluation of ground-water system performance indicators, site performance assessment, and monitor network design. The strategy provides guidance for monitoring across a wide range of geologic settings, waste compositions, and site designs to support performance assessment analysis. The goal is to provide decision-makers with the necessary information to implement an effective monitoring program at any specific site. The Savannah River Site is situated on multi-layer, interbedded, discontinuous Coastal Plain sediments that regionally dip gently to the south-southeast. The sediments are predominantly sands and clays deposited in fluvial to near-shore marine, environments. The hydrology at C-Area is a classic sequence of unconfined, semi-confined, and confined aquifers with the semi-confined aquifer becoming unconfined as it nears Four Mile Branch. High permeability pathways that affect transport can be present due to channels, gravel layers, and fractures. There are two major contaminant plumes at C Area. The first is a trichloroethene (TCE) plume which migrates to the west from the C-Area burning rubble pit to Four Mile Branch. This plume is delineated by an extensive monitoring network of over 150 wells, though none reach the confined aquifer beneath the plume extent (to avoid downward transport during and after well installation). Transport modeling (using the RT3D code) was performed to simulate the TCE distribution and to determine if TCE could affect the confined aquifer. Modeling results suggest the confined aquifer could be monitored with wells placed west of Four Mile Branch across from the plume. The second is a tritium plume which

  1. Integrated EPA Science for Decision-Making: Lawrence, MA Water Strategy

    EPA Science Inventory

    Powerpoint presentation on the Lawrence MA Making a Visible Difference in Communities project’s comprehensive water quality strategy, demonstrating a systems approach applying integrated EPA science

  2. Integrated geophysical and geological study and petroleum appraisal of Cretaceous plays in the Western Gulf of Gabes, Tunisia

    NASA Astrophysics Data System (ADS)

    Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi

    2015-09-01

    An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.

  3. Decrypting geophysical signals at Stromboli Volcano (Italy): Integration of seismic and Ground-Based InSAR displacement data

    PubMed Central

    Di Traglia, F; Cauchie, L; Casagli, N; Saccorotti, G

    2014-01-01

    We present the integration of seismic and Ground-Based Interferometric Synthetic Aperture Radar system (GBInSAR) displacement data at Stromboli Volcano. Ground deformation in the area of summit vents is positively correlated with both seismic tremor amplitude and cumulative amplitudes of very long period (VLP) signals associated with Strombolian explosions. Changes in VLP amplitudes precede by a few days the variations in ground deformation and seismic tremor. We propose a model where the arrival of fresh, gas-rich magma from depth enhances gas slug formation, promoting convection and gas transfer throughout the conduit system. At the shallowest portion of the conduit, an increase in volatile content causes a density decrease, expansion of the magmatic column and augmented degassing activity, which respectively induce inflation of the conduit, and increased tremor amplitudes. The temporal delay between increase of VLP and tremor amplitudes/conduit inflation can be interpreted in terms of the different timescales characterizing bulk gas transfer versus slug formation and ascent. PMID:25821278

  4. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  5. Integrating geophysical and archaeological data for knowledge and management of the Historical Heritage. The case of the medieval church at Vereto (Apulia, Italy)

    NASA Astrophysics Data System (ADS)

    Congedo, F.; Pepe, P.; Sammarco, M.; Parise, M.

    2009-04-01

    The native settlement of Vereto lies at the top of a small calcareous hill near the Adriatic coast, in the southernmost part of the Salento Peninsula of Apulia region (southern Italy). Recent topographical and aero-topographical surveys carried out in the ‘urban' area and in a wide sector of the surrounding territory, integrated by a thorough research of the literary and archival sources, allowed to define the long human occupation of the site between Bronze Age and the late Middle Age, and to focus the important role it played for many centuries, due to both vicinity to a commercial port and a coastal sanctuary, and its connection with the ancient road network. Within the framework of a research project by the Department of Cultural Heritage of the Salento University, the regional Archaeological Superintendence and the local Administration, detailed analyses of the ancient settlement and of its most significant structures (city-walls, cisterns, private buildings) have been started. The attention was focused particularly on the 500th century religious building located at the hilltop and dedicated to the eponymous Holy Virgin. Here two different methods of investigation have been used. The first level of knowledge consists in geophysical surveys, that included georadar (GPR) and geoelectrical prospections. Georadar data were acquired using GSSI SIR 20 with 2 antenna simultaneously mounted on the same cart. The choice of array was determined to get a very good resolution (up to 1 meter) using an high frequency antenna (900Mhz) and to increase the investigation depth (up to 3 meters) with the medium frequency antenna (400Mhz). Data were acquired both inside and outside the religious building along two orthogonal direction (lines spaced 0.5 m), processed using Radan 6.5 software, and eventually were represented as georadar profiles and 3D time-slices and 3D volumes in order to show the distribution of anomalies with depth. To get information at higher depth, to

  6. The Saguenay Fjord, Quebec, Canada: Integrating marine geotechnical and geophysical data for spatial seismic slope stability and hazard assessment

    USGS Publications Warehouse

    Urgeles, R.; Locat, J.; Lee, H.J.; Martin, F.

    2002-01-01

    In 1996 a major flood occurred in the Saguenay region, Quebec, Canada, delivering several km3 of sediment to the Saguenay Fjord. Such sediments covered large areas of the, until then, largely contaminated fjord bottom, thus providing a natural capping layer. Recent swath bathymetry data have also shown that sediment landslides are widely present in the upper section of the Saguenay Fjord, and therefore, should a new event occur, it would probably expose the old contaminated sediments. Landslides in the Upper Saguenay Fjord are most probably due to earthquakes given its proximity to the Charlevoix seismic region and to that of the 1988 Saguenay earthquake. In consequence, this study tries to characterize the permanent ground deformations induced by different earthquake scenarios from which shallow sediment landslides could be triggered. The study follows a Newmark analysis in which, firstly, the seismic slope performance is assessed, secondly, the seismic hazard analyzed, and finally an evaluation of the seismic landslide hazard is made. The study is based on slope gradients obtained from EM1000 multibeam bathymetry data as well as water content and undrained shear strength measurements made in box and gravity cores. Ground motions integrating local site conditions were simulated using synthetic time histories. The study assumes the region of the 1988 Saguenay earthquake as the most likely source area for earthquakes capable of inducing large ground motions in the Upper Saguenay region. Accordingly, we have analyzed several shaking intensities to deduce that generalized sediment displacements will begin to occur when moment magnitudes exceed 6. Major displacements, failure, and subsequent landslides could occur only from earthquake moment magnitudes exceeding 6.75. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Integrated testing strategy (ITS) for bioaccumulation assessment under REACH.

    PubMed

    Lombardo, Anna; Roncaglioni, Alessandra; Benfentati, Emilio; Nendza, Monika; Segner, Helmut; Fernández, Alberto; Kühne, Ralph; Franco, Antonio; Pauné, Eduard; Schüürmann, Gerrit

    2014-08-01

    REACH (registration, evaluation, authorisation and restriction of chemicals) regulation requires that all the chemicals produced or imported in Europe above 1 tonne/year are registered. To register a chemical, physicochemical, toxicological and ecotoxicological information needs to be reported in a dossier. REACH promotes the use of alternative methods to replace, refine and reduce the use of animal (eco)toxicity testing. Within the EU OSIRIS project, integrated testing strategies (ITSs) have been developed for the rational use of non-animal testing approaches in chemical hazard assessment. Here we present an ITS for evaluating the bioaccumulation potential of organic chemicals. The scheme includes the use of all available data (also the non-optimal ones), waiving schemes, analysis of physicochemical properties related to the end point and alternative methods (both in silico and in vitro). In vivo methods are used only as last resort. Using the ITS, in vivo testing could be waived for about 67% of the examined compounds, but bioaccumulation potential could be estimated on the basis of non-animal methods. The presented ITS is freely available through a web tool. PMID:24806447

  8. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  9. Geophysics, Oceanography

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Wentz, F.

    1993-01-01

    Development of decade-long time series of global surface wind measurements for studies ofseasonal-to-interannual climate variability presents unique challenges for space- borne instrumentationbecause of the necessity to combine data sets of 3- to 5-year lifetimes. Before the first Special SensorMicrowave Imager (SSMI), which was launched on the Defence Meteorological Satellite Program(DMSP) F8 spacecraft in July 1987, stopped recording wind speed in December 1991, another SSMIwas launched on DMSP F10 in December 1991. Interpretation of the 1987 - 1993 composite timeseries is dependent upon the space and time characteristics of the differences between concurrent F8and F10 SSMI measurements. This paper emphasizes large geographical regions and 1-month timescale. The F8-F10 area-weighted difference between 60 degrees S and 60 degrees S during 305 daysof 1991 (-0.12 m s^(-1)) was comparable to the year-to-year wind speed variations during 1988-1991. The 10 degree-zonal averaged monthly mean F8-F10 difference was negative (positive) forwind speeds less (greater) than 7.9 m s^(-1), reaching - 0.43(0.32) m s^(-1) at 5(10) m s^(-1). The10 degree-zonal averaged monthly mean F8-F10 bias had considerable variations throughout the yearand between 60 degrees S - 60 degrees N, with the largest temporal variation (1.4 m s^(-1)) in the 50degrees - 60 degrees N region from February to April. The 1991 average value of the monthly meanroot-mean-square (rms) difference between F8 and F10 daily wind speeds in 10 degree-longitudinalbands was 2.0 m s^(-1) over 60 degrees S - 60 degrees N, the amplitude of the annual cycle of therms difference was largest in the northern hemisphere middle latitudes, and the rms difference wasrelated to the wind speed (e.g., at 6 and 10 m s^(-1), the rms difference was 1.7 and 2.7 m s^(-1),respectively). The relationship between monthly mean 1/3 degrees x 1/3 degrees F8-F10 SSMI windspeed differences and integrated water vapor and liquid water content in

  10. Integrative Mixed Methods Data Analytic Strategies in Research on School Success in Challenging Circumstances

    ERIC Educational Resources Information Center

    Jang, Eunice E.; McDougall, Douglas E.; Pollon, Dawn; Herbert, Monique; Russell, Pia

    2008-01-01

    There are both conceptual and practical challenges in dealing with data from mixed methods research studies. There is a need for discussion about various integrative strategies for mixed methods data analyses. This article illustrates integrative analytic strategies for a mixed methods study focusing on improving urban schools facing challenging…

  11. Integrated geophysical imaging of a concealed mineral deposit: a case study of the world-class Pebble porphyry deposit in southwestern Alaska

    USGS Publications Warehouse

    Shah, Anjana K.; Bedrosian, Paul A.; Anderson, Eric D.; Kelley, Karen D.; Lang, James

    2013-01-01

    We combined aeromagnetic, induced polarization, magnetotelluric, and gravity surveys as well as drillhole geologic, alteration, magnetic susceptibility, and density data for exploration and characterization of the Cu-Au-Mo Pebble porphyry deposit. This undeveloped deposit is almost completely concealed by postmineralization sedimentary and volcanic rocks, presenting an exploration challenge. Individual geophysical methods primarily assist regional characterization. Positive chargeability and conductivity anomalies are observed over a broad region surrounding the deposit, likely representing sulfide minerals that accumulated during multiple stages of hydrothermal alteration. The mineralized area occupies only a small part of the chargeability anomaly because sulfide precipitation was not unique to the deposit, and mafic rocks also exhibit strong chargeability. Conductivity anomalies similarly reflect widespread sulfides as well as water-saturated glacial sediments. Mineralogical and magnetic susceptibility data indicate magnetite destruction primarily within the Cu-Au-Mo mineralized area. The magnetic field does not show a corresponding anomaly low but the analytic signal does in areas where the deposit is not covered by postmineralization igneous rocks. The analytic signal shows similar lows over sedimentary rocks outside of the mineralized area, however, and cannot uniquely distinguish the deposit. We find that the intersection of positive chargeability anomalies with analytic signal lows, indicating elevated sulfide concentrations but low magnetite at shallow depths, roughly delineates the deposit where it is covered only by glacial sediments. Neither chargeability highs nor analytic signal lows are present where the deposit is covered by several hundred meters of sedimentary and volcanic rocks, but a 3D resistivity model derived from magnetotelluric data shows a corresponding zone of higher conductivity. Gravity data highlight geologic features within the

  12. Crustal structure and tectonic development of Gulf of Guinea Cul-deSac from integrated interpretation of new aeromagnetic and existing geophysical data

    SciTech Connect

    Babalola, O.O.

    1985-02-01

    Data-acquisition difficulties and propriety restrictions on industry data have necessitated liberal extrapolations and generalizations in previous tectono-structural studies of the Gulf of Guinea cul-de-sac. This region is the locus of a postulated Late Cretaceous triple junction whose arms were the transform-dominated Equatorial Atlantic, the northward-propagating South Atlantic, and the Benue Trough aulacogen. Oceanic crust has been inferred to underlie most of the thick sedimentary wedge of the oil-prolific Niger Delta basin. Integrated interpretation of new aeromagnetic data of the Geological Survey of Nigeria and existing geophysical data corroborates previous work on the general structure of the marginal basins. New aeromagnetic data, however, reveal a detail structure more complex than previously known. Low-frequency magnetic anomalies over the Niger delta indicate that oceanic crust extends northward to about Onitsha. From Onitsha, the edge of oceanic crust extends northward to about Onitsha. From Onitsha, the edge of oceanic crust trends southwestward along the Benin hinge line (an apparent continental continuation of either the Chain fracture zone or a new Okitipupa fracture zone) and also wiggles southeastward (adjoined by a wide margin of transitional crust) toward the shelf break off Cameroon. Linear magnetic anomalies trending northeast indicate about 7 fracture zones beneath the Niger Delta basin. The region of high-frequency magnetic anomalies west of the Niger delta represent the Okitipupa basement ridge complex, which separates the Niger Delta basin from the Dahomey embayment. In this embayment, 2 wide bands of intervening high- and low-frequency aeromagnetic anomalies are interpreted to represent a basement high or ridge and a fault-bonded trough, respectively.

  13. Preliminary analysis of an integrated logistics system for OSSA payloads. Volume 2: OSSA integrated logistics support strategy

    NASA Technical Reports Server (NTRS)

    Palguta, T.; Bradley, W.; Stockton, T.

    1988-01-01

    The purpose is to outline an Office of Space Science and Applications (OSSA) integrated logistics support strategy that will ensure effective logistics support of OSSA payloads at an affordable life-cycle cost. Program objectives, organizational relationships, and implementation of the logistics strategy are discussed.

  14. Securing Trustworthy Data from an Interview Situation with Young Children: Six Integrated Interview Strategies.

    ERIC Educational Resources Information Center

    Parkinson, Debra D.

    2001-01-01

    Explores how six integrated interview strategies provoke and influence expression of children's thinking about a pen pal project with preservice teachers. Describes the interdependence of the strategies and emphasizes the match between researchers' desire for valid data and children's need for developmentally appropriate interview strategies.…

  15. Teaching Research Integrity in Higher Education: Policy and Strategy

    ERIC Educational Resources Information Center

    Shephard, Kerry; Trotman, Tiffany; Furnari, Mary; Löfström, Erika

    2015-01-01

    Recently published research suggested that university academics have qualitatively disparate views on some key aspects of teaching research integrity within the broader construct of academic integrity and surprisingly ambiguous views on others. In the light of this variation, we have reviewed the research and academic integrity policies of our…

  16. OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES

    EPA Science Inventory

    An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...

  17. Strategies for and Successes with Promoting Social Integration in Primary Schools in Canada and China

    ERIC Educational Resources Information Center

    Dyson, Lily

    2012-01-01

    This study examined social integration in 11 primary schools in Canada and 19 primary schools in China as reported by teachers in terms of the strategies employed to promote social integration and success in achieving social integration. Structured interviews were conducted with 64 Canadian and 52 Chinese general education teachers. The results…

  18. Strategies and motives for resistance to persuasion: an integrative framework

    PubMed Central

    Fransen, Marieke L.; Smit, Edith G.; Verlegh, Peeter W. J.

    2015-01-01

    Persuasion is an important element of human communication. But in many situations, we resist rather than embrace persuasive attempts. Resistance to persuasion has been studied in many different disciplines, including communication science, psychology, and marketing. The present paper reviews and connects these diverse literatures, and provides an organizing framework for understanding and studying resistance. Four clusters of resistance strategies are defined (avoidance, contesting, biased processing, and empowerment), and these clusters are related to different motivations for resisting persuasion (threat to freedom, reluctance to change, and concerns of deception). We propose that, while avoidance strategies may be triggered by any of these motivations, contesting strategies are linked primarily to concerns of deception, while empowerment and biased processing strategies are most common when people are reluctant to change. PMID:26322006

  19. Five Ways to Integrate: Using Strategies from Contemporary Art

    ERIC Educational Resources Information Center

    Marshall, Julia

    2010-01-01

    This article is for art teachers of all levels who want to teach through art and about art. The purpose of this article is twofold. It provides evidence that integration is a significant, lively and authentic art practice today and, therefore, studying about art and integrating it are compatible. It also offers teachers and students in elementary,…

  20. Self-Authored Graphic Design: A Strategy for Integrative Studies

    ERIC Educational Resources Information Center

    McCarthy, Steven; De Almeida, Cristina Melibeu

    2002-01-01

    The purpose of this essay is to introduce the concepts of self-authorship in graphic design education as part of an integrative pedagogy. The enhanced potential of harnessing graphic design's dual modalities--the integrative processes inherent in design thinking and doing, and the ability of graphic design to engage other disciplines by giving…

  1. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  2. Post-acute integration strategies in an era of accountability

    PubMed Central

    McHugh, John P; Trivedi, Amal N; Zinn, Jacqueline S; Mor, Vincent

    2016-01-01

    The Institute of Medicine, in its 2001 Crossing the Quality Chasm report, recommended greater integration and coordination as a component of a transformed health care system, yet relationships between acute and post-acute providers have remained weak. With payment reforms that hold hospitals and health systems accountable for the total costs of care and readmissions, the dynamic between acute and post-acute providers is changing. In this article, we outline the internal and market factors that will drive health systems’ decisions about whether and how they integrate with post-acute providers. Enhanced integration between acute and post-acute providers should reduce variation in post-acute spending. PMID:27148428

  3. EDITORIAL: The interface between geophysics and engineering

    NASA Astrophysics Data System (ADS)

    2004-03-01

    imaging to reduce uncertainty and associated risk. In the economically dominant area of petroleum exploration and production, the focus has moved dramatically from exploration to production. This shift is leading increasingly to integration between petroleum geoscience and petrophysics on the one hand, and petroleum engineering and rock mechanics on the other. This integration means that petroleum engineers need to be aware of developments in geophysics, and geophysicists need to be aware of the problems and requirements of the reservoir engineer. Journal of Geophysics and Engineering has been established firmly in that context, and we expect this trend to strengthen and extend far into the future. The Editors welcome your submissions, and comments on this first issue of JGE.

  4. Inspect, Detect, Correct: Structural Integrated Pest Management Strategies at School.

    ERIC Educational Resources Information Center

    Jochim, Jerry

    2003-01-01

    Describes a model integrated pest management (IPM) program for schools used in Monroe County, Indiana. Addresses how to implement an IPM program, specific school problem areas, specific pest problems and solutions, and common questions. (EV)

  5. Techniques and strategies for data integration in mineral resource assessment

    USGS Publications Warehouse

    Trautwein, Charles M.; Dwyer, John L.

    1991-01-01

    The Geologic and the National Mapping divisions of the U.S. Geological Survey have been involved formally in cooperative research and development of computer-based geographic information systems (GISs) applied to mineral-resource assessment objectives since 1982. Experience in the Conterminous United States Mineral Assessment Program (CUSMAP) projects including the Rolla, Missouri; Dillon, Montana; Butte, Montana; and Tonopah, Nevada 1?? ?? 2?? quadrangles, has resulted in the definition of processing requirements for geographically and mineral-resource data that are common to these studies. The diverse formats of data sets collected and compiled for regional mineral-resource assessments necessitate capabilities for digitally encoding and entering data into appropriate tabular, vector, and raster subsystems of the GIS. Although many of the required data sets are either available or can be provided in a digital format suitable for direct entry, their utility is largely dependent on the original intent and consequent preprocessing of the data. In this respect, special care must be taken to ensure the digital data type, encoding, and format will meet assessment objectives. Data processing within the GIS is directed primarily toward the development and application of models that can be used to describe spatially geological, geophysical, and geochemical environments either known or inferred to be associated with specific types of mineral deposits. Consequently, capabilities to analyze spatially, aggregate, and display relations between data sets are principal processing requirements. To facilitate the development of these models within the GIS, interfaces must be developed among vector-, raster-, and tabular-based processing subsystems to reformat resident data sets for comparative analyses and multivariate display of relations.

  6. Risk Assessment and Integration Team (RAIT) Portfolio Risk Analysis Strategy

    NASA Technical Reports Server (NTRS)

    Edwards, Michelle

    2010-01-01

    Impact at management level: Qualitative assessment of risk criticality in conjunction with risk consequence, likelihood, and severity enable development of an "investment policy" towards managing a portfolio of risks. Impact at research level: Quantitative risk assessments enable researchers to develop risk mitigation strategies with meaningful risk reduction results. Quantitative assessment approach provides useful risk mitigation information.

  7. Learning Strategies and Performance in a Technology Integrated Classroom

    ERIC Educational Resources Information Center

    Debevec, Kathleen; Shih, Mei-Yau; Kashyap, Vishal

    2006-01-01

    This study examines students' use of technology for learning (accessing the course Web site to download PowerPoint slides for note taking and exam preparation) relative to more traditional learning methods (reading the textbook and taking notes in class and from the textbook) and the effect of their learning strategies on exam performance and…

  8. Vertical Integration: Corporate Strategy in the Information Industry.

    ERIC Educational Resources Information Center

    Davenport, Lizzie; Cronin, Blaise

    1986-01-01

    Profiles the corporate strategies of three sectors of the information industry and the trend toward consolidation in electronic publishing. Three companies' acquisitions are examined in detail using qualitative data from information industry columns and interpreting it on the basis of game theory. (EM)

  9. Online Strategy Instruction for Integrating Dictionary Skills and Language Awareness

    ERIC Educational Resources Information Center

    Ranalli, Jim

    2013-01-01

    This paper explores the feasibility of an automated, online form of L2 strategy instruction (SI) as an alternative to conventional, classroom-based forms that rely primarily on teachers. Feasibility was evaluated by studying the effectiveness, both actual and perceived, of a five-week, online SI course designed to teach web-based dictionary skills…

  10. Teaching Strategies from the Arizona Comprehensive/Integrated Arts Program.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Education, Phoenix.

    These 28 interdisciplinary learning activities for elementary children are designed to provide perceptual, cognitive, and personal-social growth experiences. Subject areas included are art, dance, language arts, math, music, science, career education, health, physical education, reading, and social studies. The teaching strategies, which provide…

  11. A comparison of teaching strategies for integrating information technology into clinical nursing education.

    PubMed

    Elfrink, V L; Davis, L S; Fitzwater, E; Castleman, J; Burley, J; Gorney-Moreno, M J; Sullivan, J; Nichols, B; Hall, D; Queen, K; Johnson, S; Martin, A

    2000-01-01

    As health care becomes more information-intensive and diverse, there is a need to integrate information technology (IT) into clinical education. Little is known, however, about how to design instructional strategies for integrating information technology into clinical nursing education. This article outlines the instructional strategies used by faculty in five nursing programs who taught students to use a point-of-care information technology system. The article also reports students' computer acceptance and summarizes IT clinical teaching recommendations. PMID:11111570

  12. Integrative thinking and learning in undergraduate nursing education: three strategies.

    PubMed

    Dickieson, Patti; Carter, Lorraine M; Walsh, Mireille

    2008-01-01

    This article describes three learning activities used in the undergraduate nursing degree program at a mid-sized university in northeastern Ontario, Canada. Each activity, a reflective writing assignment, scenario testing, and an OSCE experience, is considered in terms of integrative thinking. Formal and informal evaluation of the activities is also discussed.Based on the authors' experiences, integrative thinking including habits of mind and cognitive skills can be directed and enhanced. To maximize students' growth as integrative thinkers, they should be exposed to many kinds of activities that target this growth. Generally, such activities tend to be case-based and interactive in nature. They also require a level of scaffolding or directedness. To develop and implement such activities, teachers are encouraged to work with educational researchers and instructional designers. PMID:18976236

  13. Smith heads Reviews of Geophysics

    NASA Astrophysics Data System (ADS)

    On January 1, Jim Smith began his term as editor-in-chief of Reviews of Geophysics. As editor-in-chief, he leads the board of editors in enhancing the journal's role as an integrating force in the geophysical sciences by providing timely overviews of current research and its trends. Smith is already beginning to fulfill the journal's role of providing review papers on topics of broad interest to Union members as well as the occasional definitive review paper on selected topics of narrower focus. Smith will lead the editorial board until December 31, 2000. Michael Coffey, Tommy Dickey, James Horwitz, Roelof Snieder, and Thomas Torgersen have been appointed as editors to serve with Smith. At least one more editor will be named to round out the disciplinary expertise on the board.

  14. The Relative Effectiveness of Integrated Reading Study Strategy and Conceptual Physics Approach

    NASA Astrophysics Data System (ADS)

    Taslidere, Erdal; Eryilmaz, Ali

    2012-04-01

    The primary purpose of this study was to investigate the combined and partial effects of the Integrated Reading/Study Strategy and Conceptual Physics Approach on ninth grade private high school students' achievement in and attitudes toward optics. The Integrated Reading/Study Strategy is a new strategy which was developed by integrating previously existing reading strategies of the KWL and SQ3R with classroom lecturing. The Conceptual Physics Approach is an instructional strategy developed on the basis of Conceptual Physics suggested by Paul G. Hewitt. To investigate the partial and combined effects of methods, factorial design was used. The study was conducted with 124 students from two private high schools in the Çankaya district region of Ankara, Turkey. Various teaching/learning materials were developed and used for the study. Two measuring tools, Achievement Test about Optics and Attitude Scale about Optics were used as pre and post tests before and after instruction. The study continued for a two-month treatment period. The results of the study showed that the combined effect of the Integrated Reading/Study Strategy and Conceptual Physics Approach improved students' achievement significantly compared to the separate individual methods. Although the product of the Integrated Reading/Study Strategy and Conceptual Physics Approach increased students' attitudes more compared to the remaining methods, the result is not statistically significant.

  15. The Enhancement of Community Integration: Coping Strategies of Chinese Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Wong, Bernard P. H.; Lam, Shui-fong; Leung, Doris; Ho, Daphne; Au-Yeung, Peter

    2014-01-01

    This study presents a collaborative research project by school psychologists and educators in Hong Kong. It investigated the coping strategies used by Chinese parents of children with Autism Spectrum Disorders ("N"?=?380) to enhance their children's community integration and how these strategies were related to their perceptions of…

  16. The Relationship between Hospital Financial Performance and Information Technology Integration Strategy Selection

    ERIC Educational Resources Information Center

    Xie, Yue

    2012-01-01

    In light of the new healthcare regulations, hospitals are increasingly reevaluating their IT integration strategies to meet expanded healthcare information exchange requirements. Nevertheless, hospital executives do not have all the information they need to differentiate between the available strategies and recognize what may better fit their…

  17. Best Practice Strategies to Promote Academic Integrity in Online Education. Version 2.0

    ERIC Educational Resources Information Center

    WCET, 2009

    2009-01-01

    This list of best practice strategies is based on "Institutional Policies/Practices and Course Design Strategies to Promote Academic Integrity in Online Education," produced by WCET (WICHE Cooperative for Educational Technologies) in February 2009 and updated in April 2009. In May 2009, the Instructional Technology Council (ITC) surveyed its…

  18. Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity

    ERIC Educational Resources Information Center

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01

    In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…

  19. An Integrated Strategy for an Apparel Design Curriculum

    ERIC Educational Resources Information Center

    Bye, Elizabeth; Labat, Karen L.

    2005-01-01

    The core of apparel design education is the studio experience. This article discusses an Integrated Apparel Design Curriculum model built on a foundation of creative and technical experimentation and learning which contributes to developing abstract thinking skills. Various learning styles are supported as students work through the design process…

  20. Integrating Religion and Spirituality into Counselor Education: Barriers and Strategies

    ERIC Educational Resources Information Center

    Adams, Christopher M.; Puig, Ana; Baggs, Adrienne; Wolf, Cheryl Pence

    2015-01-01

    Despite a professionally recognized need for training in religion/spirituality, literature indicates that religious and spirituality issues continue to be inconsistently addressed in counselor education. Ten experts were asked to identify potential barriers to integrating religion and spirituality into counselor education and indicate strategies…

  1. Part 2 -- current program integrating strategies and lubrication technology

    SciTech Connect

    Johnson, B.

    1996-12-01

    This paper is the second of two that describe the Predictive Maintenance Program for rotating machinery at the Palo Verde Nuclear Generating Station. The Predictive Maintenance program has been enhanced through organizational changes and improved interdisciplinary usage of technology. This paper will discuss current program strategies that have improved the interaction between the Vibration and Lube Oil programs. The {open_quotes}Lube Oil{close_quotes} view of the combined program along with case studies will then be presented.

  2. Integration of hydrological and geophysical data beyond the local scale: Application of Bayesian sequential simulation to field data from the Saint-Lambert-de-Lauzon site, Québec, Canada

    NASA Astrophysics Data System (ADS)

    Ruggeri, Paolo; Gloaguen, Erwan; Lefebvre, René; Irving, James; Holliger, Klaus

    2014-06-01

    Adequate characterization of aquifer heterogeneity is critically important for the sustainable use, protection, and remediation of groundwater resources. The combined use of hydrological and geophysical measurements is arguably the most effective means of achieving this objective. In this regard, significant progress has been made on the quantitative integration of geophysical and hydrological data at the local scale. However, the extension of such approaches to larger, more regional scales remains a major research challenge. In this paper, we demonstrate the application of a recently developed regional-scale hydrogeophysical data integration approach, which is based on Bayesian sequential simulation, to a field database from Quebec, Canada consisting of low-resolution, surface-based geoelectrical measurements as well as high-resolution direct-push and borehole-based measurements of the electrical and hydraulic conductivities. The results of our study, which involved the integration of data along an approximately 250-m-long survey line, confirm that this novel methodology, with suitable adaptation, is fully applicable to field data and has the potential of providing realistic estimates of the spatial distribution of hydraulic target parameters at the regional-scale. Equally importantly, through the generation of multiple stochastic realizations, the methodology allows for quantitative assessment of the uncertainty associated with the inferred subsurface models, which in turn is essential for interpreting subsequent predictions of the flow and transport characteristics of the studied region.

  3. The Future of School Integration: Socioeconomic Diversity as an Education Reform Strategy

    ERIC Educational Resources Information Center

    Kahlenberg, Richard D., Ed.

    2012-01-01

    The Century Foundation released The Future of School Integration: Socioeconomic Diversity as an Education Reform Strategy, edited by senior fellow Richard D. Kahlenberg. The volume seeks to answer important questions about how socioeconomic integration plans are faring and to provide guidance for how they can be sustained and expanded in the…

  4. Preferred Instructional Design Strategies for Preparation of Pre-Service Teachers of Integrated STEM Education

    ERIC Educational Resources Information Center

    Roberts, Amanda Shackleford

    2013-01-01

    The purpose of this study was to identify the preferred instructional design strategies for the preparation of pre-service teachers who will deliver integrated STEM lessons. The research objectives were threefold and included identifying a preferred definition of integrated STEM education, developing its purpose statement, and creating a list of…

  5. Geophysics in INSPIRE

    NASA Astrophysics Data System (ADS)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  6. Intelligent Sensors: Strategies for an Integrated Systems Approach

    NASA Technical Reports Server (NTRS)

    Chitikeshi, Sanjeevi; Mahajan, Ajay; Bandhil, Pavan; Utterbach, Lucas; Figueroa, Fernando

    2005-01-01

    This paper proposes the development of intelligent sensors as an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Intelligent Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS) and Virtual Intelligent Sensors (VIS).

  7. Generalized access control strategies for integrated services token passing systems

    NASA Astrophysics Data System (ADS)

    Pang, Joseph W. M.; Tobagi, Fouad A.; Boyd, Stephen

    1994-08-01

    The demand for integrated services local area networks is increasing at a rapid pace with the advent of many new and exciting applications: office and factory automation, distributed computing, and multimedia communications. To support these new applications, it is imperative to integrate traffic with diverse statistical characteristics and differing delay requirements on the same network. An attractive approach for integrating traffic has been adopted in two token passing local area network standards, the IEEE 802.4 token bus standard and FDDI. The idea is to control the transmissions of each station based on a distributed timing algorithm, so as to achieve the following goals: (1) to limit the token cycles so that time-critical traffic can be accommodated, and (2) to allocate pre-specified bandwidths to different stations when the network is overloaded. We have investigated the analysis and design of this protocol. In this paper, we generalize the transmission control algorithm used previously. The major advantages of the generalization over the original protocol are: (1) it provides a much expanded design space, (2) it guarantees convergent behavior, and (3) it gives meaningful insights into the dynamics of the basic control algorithm.

  8. Late Cenozoic Magmatic and Tectonic Evolution of the Ancestral Cascade Arc in the Bodie Hills, California and Nevada: Insights from Integrated Geologic, Geophysical, Geochemical and Geochronologic Studies

    NASA Astrophysics Data System (ADS)

    John, D. A.; du Bray, E. A.; Box, S. E.; Blakely, R. J.; Fleck, R. J.; Vikre, P. G.; Cousens, B.; Moring, B. C.

    2012-12-01

    Geologic mapping integrated with new geophysical, geochemical, and geochronologic data characterize the evolution of Bodie Hills volcanic field (BHVF), a long-lived eruptive center in the southern part of the ancestral Cascade arc. The ~700 km2 field was a locus of magmatic activity from ~15 to 8 Ma. It includes >25 basaltic andesite to trachyandesite stratovolcanoes and silicic trachyandesite to rhyolite dome complexes. The southeastern part of the BHVF is overlain by the ~3.9 to 0.1 Ma, post-arc Aurora Volcanic Field. Long-lived BHVF magmatism was localized by crustal-scale tectonic features, including the Precambrian continental margin, the Walker Lane, the Basin and Range Province, and the Mina deflection. BHVF eruptive activity occurred primarily during 3 stages: 1) dominantly trachyandesite stratovolcanoes (~15.0 to 12.9 Ma), 2) coalesced trachydacite and rhyolite lava domes and trachyandesite stratovolcanoes (~11.6 to 9.7 Ma), and 3) dominantly silicic trachyandesite to dacite lava dome complexes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Relatively mafic stratovolcanoes surrounded by debris flow aprons lie on the margins of the BHVF, whereas more silicic dome fields occupy its center. Detailed gravity and aeromagnetic data suggest the presence of unexposed cogenetic granitic plutons beneath the center of the BHVF. Isotopic compositions of BHVF rocks are generally more radiogenic with decreasing age (e.g., initial Sr isotope values increase from ~0.7049 to 0.7061), which suggests progressively greater magma contamination by crustal components during evolution of the BHVF. Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during BHVF formation. Extensive alluvial gravel deposits that grade laterally into fluvial gravels and finer grained lacustrine sediments and the westerly sourced Eureka Valley Tuff (EVT; ~9.4 Ma) blanket large parts of the BHVF. The earliest sediments

  9. Integrated Approach (Geophysics and Remote Sensing) to identify Water-bearing Dyke Swarms and Fractured Basement in the Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Sultan, M.; Ahmed, M. E.; Sauck, W.; Abouelmagd, A. A.; Chouinard, K.

    2012-12-01

    An integrated approach utilizing Very Low Frequency (VLF) and magnetic field surveying and temporal remote sensing data including: (1) Advanced Space Borne Thermal Emission and Reflection (ASTER) data, (2) European Remote Sensing (ERS-1 and ERS-2) radar imagery, and (3) Tropical Rainfall Measuring Mission (TRMM) was used to delineate water-bearing sub-vertical shear zones within the basement complex of the Sinai Peninsula. The following steps were undertaken: (1) the shear zones and dyke swarms within the basement complex were delineated using false color ASTER band and band ratio images; (2) the spatial and temporal precipitation events over the basement complex were then identified from TRMM data, and (3) finally, observations extracted from temporal radar and thermal ASTER bands were used to identify the water-bearing shear zones and dyke swarms. A fracture or dyke was deemed to be water bearing if: (1) it witnessed a large increase in its reflectivity and emissivity compared to its surroundings following a precipitation event, and maintained such differences for periods ranging from days to months. Field observations and VLF investigations were then applied to test the validity of our satellite-based methodologies for locating targeted aquifer types and for refining the satellite-based selections. The VLF detects conductive water-saturated subvertical breccia zones in bedrock. Thirty two VLF transects were collected in September of 2011 and July of 2012 along with 10 magnetic profiles at the same VLF locations. Both VLF and magnetic transects were acquired along a traverse perpendicular to the dike orientations with station separations ranging from 10 to 25 m. The VLF receiver (T-VLF) measures the distortion of the normally horizontal electromagnetic flux lines by local electrical conductors. At each VLF station, and for each frequency used, the following were measured: the tilt of the electromagnetic field, from the horizontal (given in percentage), the

  10. Air-depolyable geophysics package

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1993-11-01

    We are using Lawrence Livermore National Laboratory`s (LLNL`s) diverse expertise to develop a geophysical monitoring system that can survive being dropped into place by a helicopter or airplane. Such an air-deployable system could significantly decrease the time and effort needed to set up such instruments in remote locations following a major earthquake or volcanic eruption. Most currently available geophysical monitoring and survey systems, such as seismic monitoring stations, use sensitive, fragile instrumentation that requires personnel trained and experienced in data acquisition and field setup. Rapid deployment of such equipment can be difficult or impossible. Recent developments in low-power electronics, new materials, and sensors that are resistant to severe impacts have made it possible to develop low-cost geophysical monitoring packages for rapid deployment missions. Our strategy was to focus on low-cost battery-powered systems that would have a relatively long (several months) operational lifetime. We concentrated on the conceptual design and engineering of a single-component seismic system that could survive an air-deployment into an earth material, such as alluvium. Actual implementation of such a system is a goal of future work on this concept. For this project, we drew on LLNL`s Earth Sciences Department, Radio Shop, Plastics Shop, and Weapons Program. The military has had several programs to develop air-deployed and cannon-deployed seismometers. Recently, a sonobuoy manufacturer has offered an air-deployable geophone designed to make relatively soft landings.

  11. Positioning strategies and sensor integration in tools for assembling MOEMS

    NASA Astrophysics Data System (ADS)

    Reinhart, Gunther; Jacob, Dirk

    2000-08-01

    Assembly is a crucial process during the production of microsystems. Especially automated and economic assembly of flip- chip at small and medium batch sizes is not solved at the moment in industry. For flexible and economic assembly of standard and flip-chip elements a tool was developed, which makes it possible to assemble MOEMS with an accuracy of less than 8 micrometers by a standard industrial robot. This is done by integrating a fine positioning drive and sensors into the tool. Moreover, a special optics module for the assembly of flip-chip elements was developed, which can be used in different positioning devices in a manual and automatic modus.

  12. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  13. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  14. National mass care strategy: a national integrated approach.

    PubMed

    Mintz, Amy; Gonzalez, Waddy

    2013-01-01

    Mass care refers to a wide range of humanitarian activities that collectively provide life- sustaining services, such as emergency sheltering, feeding, reunification, distribution of emergency supplies and recovery information, before or in the aftermath of an emergency or disaster. Most services are coordinated and provided by non-governmental organisations and/or local government. Based on the lessons learned in the aftermath of Hurricanes Katrina and Rita in 2005, the American Red Cross, the Federal Emergency Management Agency and the National Voluntary Organizations Active in Disasters joined efforts to expand national mass care capabilities in order to support survivors in the wake of catastrophic events, as well as to enhance the integration of volunteers and non-governmental organisations into the broader national effort. These efforts resulted in the creation of the National Mass Care Council in 2010, with representatives of Federal and State agencies, voluntary organisations and the private sector working together to develop a unified approach to mass care and to ensure the provision of consistent and uniform services across the USA, regardless of the magnitude of the event. PMID:24113635

  15. Integrating Psychosocial Care into Neuro-Oncology: Challenges and Strategies

    PubMed Central

    Chambers, Suzanne K.; Grassi, Luigi; Hyde, Melissa K.; Holland, Jimmie; Dunn, Jeff

    2015-01-01

    Approximately 256,000 cases of malignant brain and nervous system cancer were diagnosed worldwide during 2012 and 189,000 deaths, with this burden falling more heavily in the developed world. Problematically, research describing the psychosocial needs of people with brain tumors and their carers and the development and evaluation of intervention models has lagged behind that of more common cancers. This may relate, at least in part, to poor survival outcomes and high morbidity associated with this illness, and stigma about this disease. The evidence base for the benefits of psychosocial care in oncology has supported the production of clinical practice guidelines across the globe over the past decade, with a recent mandate to integrate the psychosocial domain and measurement of distress into routine care. Clinical care guidelines for people with brain tumors have emerged, with a building focus on psychosocial and survivorship care. However, researchers will need to work intensively with health care providers to ensure future practice is evidence-based and able to be implemented across both acute and community settings and likely within existing resources. PMID:25756038

  16. Integrating the development of innovative concepts into corporate strategy

    SciTech Connect

    Smith, R.M.

    1988-03-01

    Most good innovative ideas come from individuals who become creatively stimulated when they least expect it. The challenge is to convert these good ideas into marketable products. Most scientists contribute greatly to the advancement of technology often without considering that their discoveries may solve a market need. Better communications and understanding of marketing objectives and techniques is needed, since the problem facing most large corporate executives is to convert fragmented developments into total market solutions. Several organizational approaches have evolved in the management of technology designed to address the possibility of maximizing benefits from creative ideas, but two will be discussed in depth in this paper. The first internally directed method is to incorporate innovative ideas into the portfolio structure of strategic business units. The second externally directed method is to form a technology transfer operation which leads to new corporate or external spinoff ventures. Both of these approaches deal with the problems of cost and risk associated with the crucial step of commercialization, but in different ways. The achievements of all participants in technological research will be greatest if individual efforts are clearly and efficiently coordinated. The result will be the satisfaction of the objectives of all parties. The ultimate benefit, however, will be increased productivity and an improved standard of living. Consumers will have access to superior products, and American business will regain its competitive advantage by developing efficient methods of integrating good ideas into commercial and industrial products and services. 6 refs.

  17. Sensitivity analysis and application in exploration geophysics

    NASA Astrophysics Data System (ADS)

    Tang, R.

    2013-12-01

    In exploration geophysics, the usual way of dealing with geophysical data is to form an Earth model describing underground structure in the area of investigation. The resolved model, however, is based on the inversion of survey data which is unavoidable contaminated by various noises and is sampled in a limited number of observation sites. Furthermore, due to the inherent non-unique weakness of inverse geophysical problem, the result is ambiguous. And it is not clear that which part of model features is well-resolved by the data. Therefore the interpretation of the result is intractable. We applied a sensitivity analysis to address this problem in magnetotelluric(MT). The sensitivity, also named Jacobian matrix or the sensitivity matrix, is comprised of the partial derivatives of the data with respect to the model parameters. In practical inversion, the matrix can be calculated by direct modeling of the theoretical response for the given model perturbation, or by the application of perturbation approach and reciprocity theory. We now acquired visualized sensitivity plot by calculating the sensitivity matrix and the solution is therefore under investigation that the less-resolved part is indicated and should not be considered in interpretation, while the well-resolved parameters can relatively be convincing. The sensitivity analysis is hereby a necessary and helpful tool for increasing the reliability of inverse models. Another main problem of exploration geophysics is about the design strategies of joint geophysical survey, i.e. gravity, magnetic & electromagnetic method. Since geophysical methods are based on the linear or nonlinear relationship between observed data and subsurface parameters, an appropriate design scheme which provides maximum information content within a restricted budget is quite difficult. Here we firstly studied sensitivity of different geophysical methods by mapping the spatial distribution of different survey sensitivity with respect to the

  18. Translational toxicology: a developmental focus for integrated research strategies

    PubMed Central

    2013-01-01

    Background Given that toxicology studies the potential adverse effects of environmental exposures on various forms of life and that clinical toxicology typically focuses on human health effects, what can and should the relatively new term of "translational toxicology" be taken to mean? Discussion Our assertion is that the core concept of translational toxicology must incorporate existing principles of toxicology and epidemiology, but be driven by the aim of developing safe and effective interventions beyond simple reduction or avoidance of exposure to prevent, mitigate or reverse adverse human health effects of exposures. The field of toxicology has now reached a point where advances in multiple areas of biomedical research and information technologies empower us to make fundamental transitions in directly impacting human health. Translational toxicology must encompass four action elements as follows: 1) Assessing human exposures in critical windows across the lifespan 2) Defining modes of action and relevance of data from animal models 3) Use of mathematical models to develop plausible predictions as the basis for 4) Protective and restorative human health interventions. The discussion focuses on the critical window of in-utero development. Summary Exposure assessment, basic toxicology and development of certain categories of mathematical models are not new areas of research; however overtly integrating these in order to conceive, assess and validate effective interventions to mitigate or reverse adverse effects of environmental exposures is our novel opportunity. This is what we should do in translational toxicology so that we have a portfolio of interventional options to improve human health that include both minimizing exposures and specific preventative/restorative/mitigative therapeutics. PMID:24079609

  19. Multi-Modal Integrated Safety, Security & Environmental Program Strategy

    SciTech Connect

    Walker, Randy M; Omitaomu, Olufemi A; Ganguly, Auroop R; Abercrombie, Robert K; Sheldon, Frederick T

    2008-01-01

    This paper describes an approach to assessing and protecting the surface transportation infrastructure from a network science viewpoint. We address transportation security from a human behavior-dynamics perspective under both normal and emergency conditions for the purpose of measuring, managing and mitigating risks. The key factor for the planning and design of a robust transportation network solution is to ensure accountability for safety, security and environmental risks. The Oak Ridge National Laboratory (ORNL) Multi-Modal Integrated Safety, Security and Environmental Program (M2IS2EP) evolved from a joint US Department of Energy (DOE) Oak Ridge Office (ORO) Assets Utilization Program and ORNL SensorNet Program initiative named the Identification and Monitoring of Radiation (in commerce) Shipments (IMRicS). In November of 2002 the first of six pilot demonstrations was constructed at the Tennessee I-40/75 Knox County Weigh Station outside of Knoxville. Over the life of the project four more installations were deployed with various levels of ORNL oversight. In October of 2004 the ORNL SensorNet Program commissioned a research team to develop a project plan and to identify/develop a strategic vision in support of the SensorNet Program, keeping in mind the needs of the various governmental constituencies (i.e., DOT/DHS/EPA) for improving the safety/security/environment of the highway transportation system. Ultimately a more comprehensive ORNL SensorNet Program entitled Trusted Corridors was established and presented to ORNL, DOE, DOT, DHS, EPA and State leaders. Several of these entities adopted their own versions of these programs and are at various stages of deployment. All of these initiatives and pilots make up the foundation of the concepts and ideas of M2IS2EP and will be discussed further on in this paper.

  20. A Strategy for Integrating a Large Finite Element Model: X-33 Lessons Learned

    NASA Technical Reports Server (NTRS)

    McGhee, David S.

    2000-01-01

    The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past three years the Structural Dynamics & Loads Group of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made. These six decisions are: purpose of model, units, common material list, model numbering, interface control, and archive format. This strategy has been proved and expanded from experience on the X-33 vehicle.

  1. Integrating Scientists into Teacher Professional Development—Strategies for Success

    NASA Astrophysics Data System (ADS)

    Lynds, S. E.; Buhr, S. M.; Smith, L. K.

    2010-12-01

    subsequent workshops. To measure achievement of program goals, feedback surveys, interviews, and workshop observation are employed. Evaluation data have shown consistently throughout the years that both educators and scientists value the time spent with each other at these workshops. Scientists enjoy sharing their topic areas with motivated and energetic educators. Conversely, science teachers appreciate the opportunity to work directly with scientists and to hear about cutting-edge research being done. This paper will review the most successful strategies for including scientists in professional development workshops, from both the teachers’ and the scientists’ perspectives.

  2. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    SciTech Connect

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  3. Laboratory informatics tools integration strategies for drug discovery: integration of LIMS, ELN, CDS, and SDMS.

    PubMed

    Machina, Hari K; Wild, David J

    2013-04-01

    There are technologies on the horizon that could dramatically change how informatics organizations design, develop, deliver, and support applications and data infrastructures to deliver maximum value to drug discovery organizations. Effective integration of data and laboratory informatics tools promises the ability of organizations to make better informed decisions about resource allocation during the drug discovery and development process and for more informed decisions to be made with respect to the market opportunity for compounds. We propose in this article a new integration model called ELN-centric laboratory informatics tools integration. PMID:22895535

  4. Integrated NASA Lidar System Strategy for Space-Based Remote Sensing

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Heaps, William S.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Recent peer reviews of' NASA's space-based lidar missions and of the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. This paper presents a multi-Center efforts leading to formulation of an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the earth's atmosphere.

  5. Multicriteria Evaluation of Classical Swine Fever Control Strategies Using the Choquet Integral.

    PubMed

    Brosig, J; Traulsen, I; Krieter, J

    2016-02-01

    An outbreak of the highly contagious animal disease classical swine fever (CSF) requires the selection of an optimal control strategy. The choice of a control strategy is a decision process depending on different aspects. Besides epidemiology, economic and ethical/social aspects must be taken into account. In this study, multicriteria decision-making (MCDM) was used to evaluate six control strategies for two regions with different farm densities. A strategy including only the minimum EU control measures and the traditional control strategy based on preventive culling were compared to alternative control strategies using emergency vaccination and/or rapid PCR testing ('emergency vaccination', 'test to slaughter', 'test to control' and 'vaccination in conjunction with rapid testing'). The MACBETH approach was used in order to assess the three main criteria (epidemiology, economics and ethical/social aspects). Subcriteria with both quantitative and qualitative performance levels were translated into a normalized scale. The Choquet integral approach was adopted to obtain a ranking of the six CSF control strategies based on the three main criteria, taking interactions into account. Three different rankings of the importance of the main criteria, which were to reflect the potential perceptions of stakeholders, were examined. Both the region under investigation and the ranking of the main criteria had an influence on the 'best' choice. Alternative control strategies were favourable to the minimum EU control and the traditional control measures independent of the farm density. Because the choice of the 'best' control strategy does not solely depend on the epidemiological efficiency, MCDM can help to find the best solution. Both MACBETH and the Choquet integral approach are feasible MCDM approaches. MACBETH only needs a qualitative evaluation and is therefore a comparatively intuitive approach. The Choquet integral does not only take the importance of the criteria into

  6. A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

    NASA Astrophysics Data System (ADS)

    Seer, Qiu Han; Nandong, Jobrun

    2016-03-01

    This paper presents a new control strategy which unifies the direct and indirect multi-scale control schemes via a double-loop control structure. This unified control strategy is proposed for controlling a class of highly nonminimum-phase processes having both integrating and unstable modes. This type of systems is often encountered in fed-batch fermentation processes which are very difficult to stabilize via most of the existing well-established control strategies. A systematic design procedure is provided where its applicability is demonstrated via a numerical example.

  7. Geophysical investigation at Fort Detrick Maryland. Final report

    SciTech Connect

    Llopis, J.L.; Simms, J.E.

    1993-07-01

    Results of a comprehensive, integrated geophysical investigation of 15 suspected disposal areas at Area B, Fort Detrick, Maryland, are presented. Between 1943 and 1969, Fort Detrick served as the nation's center for military offensive and defensive biological research. As a result of this activity, chemically and biologically contaminated materials were generated and disposed in burial pits at Site B. Based on historical and visual information, 15 sites suspected of containing burial pits were selected to be examined in greater detail using geophysical methods. The geophysical investigations were designed to detect anomalous conditions indicative of past disposal activities. The geophysical program included electromagnetic (EM), magnetic, ground penetrating radar (GPR), and seismic refraction methods. Anomalous conditions were found at several of the sites tested and noted. The anomalous conditions may have resulted from the presence of buried material or from physical and/or chemical soil changes caused by disposal activities.... Geophysics, Electromagnetics ground penetrating radar, Geophysical surveys, Magnetics, Seismic refraction.

  8. Managing incidental pancreatic cystic neoplasms with integrated molecular pathology is a cost-effective strategy

    PubMed Central

    Das, Ananya; Brugge, William; Mishra, Girish; Smith, Dennis M.; Sachdev, Mankanwal; Ellsworth, Eric

    2015-01-01

    Background and study aims: Current guidelines recommend using endoscopic ultrasound (EUS), carcinoembryonic antigen (CEA) testing and cytology to manage incidental pancreatic cystic neoplasms (PCN); however, studies suggest a strategy including integrated molecular pathology (IMP) of cyst fluid may further aid in predicting risk of malignancy. Here, we evaluate several strategies for diagnosing and managing asymptomatic PCN using healthcare economic modeling. Patients and methods: A third-party-payer perspective Markov decision model examined four management strategies in a hypothetical cohort of 1000 asymptomatic patients incidentally found to have a 3 cm solitary pancreatic cystic lesion. Strategy I used cross-sectional imaging, recommended surgery only if symptoms or risk factors emerged. Strategy II considered patients for resection without initial EUS. Strategy III (EUS + CEA + Cytology) referred only those with mucinous cysts (CEA > 192 ng/mL) for resection. Strategy IV implemented IMP; a commercially available panel provided a “Benign,” “Mucinous,” or “Aggressive” classification based on the level of mutational change in cyst fluid. “Benign” and “Mucinous” patients were followed with surveillance; “Aggressive” patients were referred for resection. Quality-adjusted life-years (QALY), relative risk with 95 %CI, Number Needed to Treat (NNT), and incremental cost-effectiveness ratios were calculated. Results: Strategy IV provided the greatest increase in QALY at nearly identical cost to the cheapest approach, Strategy I. Relative risk of malignancy compared to the current standard of care and nearest competing strategy, Strategy III, was 0.18 (95 %CI 0.06 – 0.53) with an NNT of 56 (95 %CI 34 – 120). Conclusions: Use of IMP was the most cost-effective strategy, supporting its routine clinical use. PMID:26528505

  9. Geophysical Methods: an Overview

    NASA Technical Reports Server (NTRS)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.

    1992-01-01

    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  10. Strategies for Preparing Integrated Faculty: The Center for the Integration of Research, Teaching, and Learning

    ERIC Educational Resources Information Center

    Austin, Ann E.; Connolly, Mark R.; Colbeck, Carol L.

    2008-01-01

    When university and college search committees select new faculty members, they hope that the newcomer will understand and support the missions of the institution and be successful in integrating components of the professorial role--including research, teaching, learning, advising, institutional citizenship, and outreach and professional service…

  11. The PEA Strategy: One Teacher's Approach to Integrating Writing in the Social Studies Classroom

    ERIC Educational Resources Information Center

    Sielaff, Christopher K.; Washburn, Erin K.

    2015-01-01

    With the adoption of the "Common Core State Standards" many social studies teachers are faced with the task of very intentionally integrating writing instruction into their content curriculum. While this task may be daunting, there are research-based instructional frameworks to help teachers implement strategies to support student…

  12. ECONOMIC ANALYSIS OF INSECT CONTROL STRATEGIES USING AN INTEGRATED CROP ECOSYSTEM MANAGEMENT MODEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Integrated Crop Ecosystem Management Model (ICEMM) (stochastic simulation model) was used to predict cotton lint yields for five insect management strategies under various states of nature (i.e., weather and insect densities) using historical weather data, insecticide rates, bollworm/tobacco bud...

  13. Exploring the Benefits of Teacher-Modeling Strategies Integrated into Career and Technical Education

    ERIC Educational Resources Information Center

    Cathers, Thomas J., Sr.

    2013-01-01

    This case study examined how career and technical education classes function using multiple instructional modeling strategies integrated into vocational and technical training environments. Seven New Jersey public school technical teachers received an introductory overview of the investigation and participated by responding to 10 open-end…

  14. Instructional Strategies for Learners with Dual Sensory Impairments in Integrated Settings

    ERIC Educational Resources Information Center

    Downing, June; Eichinger, Joanne

    2011-01-01

    This article presents information on instructional strategies and the effective use of personnel needed for educating students with dual sensory impairments in integrated learning environments. To counter the practice of educating students in separate environments according to their most apparent weaknesses and limitations, the authors contend…

  15. Institutional-Level Integration of the Learning and Study Strategies Inventory (LASSI)

    ERIC Educational Resources Information Center

    Kwong, Theresa; Wong, Eva; Downing, Kevin

    2009-01-01

    Purpose: The purpose of this paper is to exhibit the integration of learning and study strategies inventory (LASSI) with the City University of Hong Kong information systems to promote teaching and learning within the university. Design/methodology/approach: From the 2006 entry cohort, all undergraduate freshmen at City University of Hong Kong are…

  16. Rural Poverty Alleviation in Brazil: Toward an Integrated Strategy. World Bank Country Study.

    ERIC Educational Resources Information Center

    Valdes, Alberto; Mistiaen, Johan A.

    This report constitutes a step toward designing an integrated strategy for rural poverty reduction in Brazil. The report contains an updated and detailed profile of the rural poor in the northeast and southeast regions of Brazil; identifies key components of rural poverty in those regions; and proposes a five-pronged strategic framework in which…

  17. Integration of Technology Enhanced Learning within Business Organizations: Which Strategy to Choose?

    ERIC Educational Resources Information Center

    Kaminskiene, Lina; Rutkiene, Aušra; Trepule, Elena

    2015-01-01

    The article discusses a responsible and a responsive strategic organizational approach for a smooth integration of technology enhanced learning (TEL). A response to external and internal contingencies and an involvement of different stakeholders into the development and implementation of the so-called eLearning strategies is one of the approaches…

  18. Second Language Writers' Strategy Use and Performance on an Integrated Reading-Listening-Writing Task

    ERIC Educational Resources Information Center

    Yang, Hui-Chun; Plakans, Lia

    2012-01-01

    Integrated writing tasks that involve different language modalities such as reading and listening have increasingly been used as means to assess academic writing. Thus, there is a need for understanding how test-takers coordinate different skills to complete these tasks. This study explored second language writers' strategy use and its…

  19. Integrating Research and Teaching Strategies: Implications for Institutional Management and Leadership. Perspective

    ERIC Educational Resources Information Center

    Lapworth, Susan

    2004-01-01

    This paper discusses the link between teaching and research, with emphasis on how best to manage core business of a higher education institution. The author argues that institutions should seek to integrate these core strategies, and agrees that 'universities need to set as a mission goal the improvement of the nexus between research and teaching'…

  20. Development the conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation

    NASA Astrophysics Data System (ADS)

    Milana; Khan, M. K.; Munive, J. E.

    2014-07-01

    The importance of maintenance has escalated significantly by the increasing of automation in manufacturing process. This condition switches traditional maintenance perspective of inevitable cost into the business competitive driver. Consequently, maintenance strategy and operation decision needs to be synchronized to business and manufacturing concerns. This paper shows the development of conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation (KBIMSO). The framework of KBIMSO is elaborated to show the process of how the KBIMSO works to reach the maintenance decision. By considering the multi-criteria of maintenance decision making, the KB system embedded with GAP and AHP to support integrated maintenance strategy and operation which is novel in this area. The KBIMSO is useful to review the existing maintenance system and give reasonable recommendation of maintenance decisions in respect to business and manufacturing perspective.

  1. Advances in BAC-Based Physical Mapping and Map Integration Strategies in Plants

    PubMed Central

    Ariyadasa, Ruvini; Stein, Nils

    2012-01-01

    In the advent of next-generation sequencing (NGS) platforms, map-based sequencing strategy has been recently suppressed being too expensive and laborious. The detailed studies on NGS drafts alone indicated these assemblies remain far from gold standard reference quality, especially when applied on complex genomes. In this context the conventional BAC-based physical mapping has been identified as an important intermediate layer in current hybrid sequencing strategy. BAC-based physical map construction and its integration with high-density genetic maps have benefited from NGS and high-throughput array platforms. This paper addresses the current advancements of BAC-based physical mapping and high-throughput map integration strategies to obtain densely anchored well-ordered physical maps. The resulted maps are of immediate utility while providing a template to harness the maximum benefits of the current NGS platforms. PMID:22500080

  2. Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy

    NASA Astrophysics Data System (ADS)

    Razumnikov, S.; Prankevich, D.

    2016-04-01

    Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.

  3. The Future of Nematology: Integration of New and Improved Management Strategies

    PubMed Central

    Roberts, Philip A.

    1993-01-01

    The potential for managing plant-parasitic nenlatodes by combining two or more control strategies in an integrated program is examined. Advantages of this approach include the use of partially effective strategies and protection of highly effective ones vulnerable from nematode adaptation or environmental risk. Strategies can be combined sequentially from season to season or applied simultaneously. Programs that have several strategies available but that are limited in the true integration of control components are used as examples of current management procedures and the potential for their improvement. These include potato cyst nematodes in northern Europe, soybean cyst nematode in North Carolina, and root-knot nematodes on vegetable and field crops in California. A simplified model of the impact of component strategies on the nematode damage function indicates the potential for combining control measures with different efficacies to give acceptable nematode population reduction and crop protection. The likelihood for additive, synergistic, or antagonistic effects from combining strategies is considered with respect to the biological target and component compatibility. PMID:19279784

  4. An Integrated Hydrogeologic and Geophysical Investigation to Characterize the Hydrostratigraphy of the Edwards Aquifer in an Area of Northeastern Bexar County, Texas

    USGS Publications Warehouse

    Shah, Sachin D.; Smith, Bruce D.; Clark, Allan K.; Payne, Jason D.

    2008-01-01

    In August 2007, the U.S. Geological Survey, in cooperation with the San Antonio Water System, did a hydrogeologic and geophysical investigation to characterize the hydrostratigraphy (hydrostratigraphic zones) and also the hydrogeologic features (karst features such as sinkholes and caves) of the Edwards aquifer in a 16-square-kilometer area of northeastern Bexar County, Texas, undergoing urban development. Existing hydrostratigraphic information, enhanced by local-scale geologic mapping in the area, and surface geophysics were used to associate ranges of electrical resistivities obtained from capacitively coupled (CC) resistivity surveys, frequency-domain electromagnetic (FDEM) surveys, time-domain electromagnetic (TDEM) soundings, and two-dimensional direct-current (2D-DC) resistivity surveys with each of seven hydrostratigraphic zones (equivalent to members of the Kainer and Person Formations) of the Edwards aquifer. The principal finding of this investigation is the relation between electrical resistivity and the contacts between the hydrostratigraphic zones of the Edwards aquifer and the underlying Trinity aquifer in the area. In general, the TDEM data indicate a two-layer model in which an electrical conductor underlies an electrical resistor, which is consistent with the Trinity aquifer (conductor) underlying the Edwards aquifer (resistor). TDEM data also show the plane of Bat Cave fault, a well-known fault in the area, to be associated with a local, nearly vertical zone of low resistivity that provides evidence, although not definitive, for Bat Cave fault functioning as a flow barrier, at least locally. In general, the CC resistivity, FDEM survey, and 2D-DC resistivity survey data show a sharp electrical contrast from north to south, changing from high resistivity to low resistivity across Bat Cave fault as well as possible karst features in the study area. Interpreted karst features that show relatively low resistivity within a relatively high

  5. Multiple Strategies for Spatial Integration of 2D Layouts within Working Memory

    PubMed Central

    Meilinger, Tobias; Watanabe, Katsumi

    2016-01-01

    Prior results on the spatial integration of layouts within a room differed regarding the reference frame that participants used for integration. We asked whether these differences also occur when integrating 2D screen views and, if so, what the reasons for this might be. In four experiments we showed that integrating reference frames varied as a function of task familiarity combined with processing time, cues for spatial transformation, and information about action requirements paralleling results in the 3D case. Participants saw part of an object layout in screen 1, another part in screen 2, and reacted on the integrated layout in screen 3. Layout presentations between two screens coincided or differed in orientation. Aligning misaligned screens for integration is known to increase errors/latencies. The error/latency pattern was thus indicative of the reference frame used for integration. We showed that task familiarity combined with self-paced learning, visual updating, and knowing from where to act prioritized the integration within the reference frame of the initial presentation, which was updated later, and from where participants acted respectively. Participants also heavily relied on layout intrinsic frames. The results show how humans flexibly adjust their integration strategy to a wide variety of conditions. PMID:27101011

  6. Multiple Strategies for Spatial Integration of 2D Layouts within Working Memory.

    PubMed

    Meilinger, Tobias; Watanabe, Katsumi

    2016-01-01

    Prior results on the spatial integration of layouts within a room differed regarding the reference frame that participants used for integration. We asked whether these differences also occur when integrating 2D screen views and, if so, what the reasons for this might be. In four experiments we showed that integrating reference frames varied as a function of task familiarity combined with processing time, cues for spatial transformation, and information about action requirements paralleling results in the 3D case. Participants saw part of an object layout in screen 1, another part in screen 2, and reacted on the integrated layout in screen 3. Layout presentations between two screens coincided or differed in orientation. Aligning misaligned screens for integration is known to increase errors/latencies. The error/latency pattern was thus indicative of the reference frame used for integration. We showed that task familiarity combined with self-paced learning, visual updating, and knowing from where to act prioritized the integration within the reference frame of the initial presentation, which was updated later, and from where participants acted respectively. Participants also heavily relied on layout intrinsic frames. The results show how humans flexibly adjust their integration strategy to a wide variety of conditions. PMID:27101011

  7. Multilevel Mechanisms of Implementation Strategies in Mental Health: Integrating Theory, Research, and Practice.

    PubMed

    Williams, Nathaniel J

    2016-09-01

    A step toward the development of optimally effective, efficient, and feasible implementation strategies that increase evidence-based treatment integration in mental health services involves identification of the multilevel mechanisms through which these strategies influence implementation outcomes. This article (a) provides an orientation to, and rationale for, consideration of multilevel mediating mechanisms in implementation trials, and (b) systematically reviews randomized controlled trials that examined mediators of implementation strategies in mental health. Nine trials were located. Mediation-related methodological deficiencies were prevalent and no trials supported a hypothesized mediator. The most common reason was failure to engage the mediation target. Discussion focuses on directions to accelerate implementation strategy development in mental health. PMID:26474761

  8. Geophysical applications of squids

    SciTech Connect

    Clarke, J.

    1983-05-01

    Present and potential geophysical applications of Superconducting Quantum Interference Devices (SQUIDs) include remote reference magnetotellurics, controlledsource electromagnetic sounding, airborne gradiometry, gravity gradiometers, rock magnetism, paleomagnetism, piezomagnetism, tectonomagnetism, the location of hydrofractures for hot dry rock geothermal energy and enhanced oil and gas recovery, the detection of internal ocean waves, and underwater magnetotellurics.

  9. Habitat Demonstration Unit (HDU) Pressurized Excursion Module (PEM) Systems Integration Strategy

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Toups, Larry; Howe, A. Scott

    2011-01-01

    The Habitat Demonstration Unit (HDU) project team constructed an analog prototype lunar surface laboratory called the Pressurized Excursion Module (PEM). The prototype unit subsystems were integrated in a short amount of time, utilizing a rapid prototyping approach that brought together over 20 habitation-related technologies from a variety of NASA centers. This paper describes the system integration strategies and lessons learned, that allowed the PEM to be brought from paper design to working field prototype using a multi-center team. The system integration process was based on a rapid prototyping approach. Tailored design review and test and integration processes facilitated that approach. The use of collaboration tools including electronic tools as well as documentation enabled a geographically distributed team take a paper concept to an operational prototype in approximately one year. One of the major tools used in the integration strategy was a coordinated effort to accurately model all the subsystems using computer aided design (CAD), so conflicts were identified before physical components came together. A deliberate effort was made following the deployment of the HDU PEM for field operations to collect lessons learned to facilitate process improvement and inform the design of future flight or analog versions of habitat systems. Significant items within those lessons learned were limitations with the CAD integration approach and the impact of shell design on flexibility of placing systems within the HDU shell.

  10. Geophysical Characterization and Reactive Transport Modeling to Quantify Plume Behavior

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Wainwright, H.; Bea, S. A.; Spycher, N.; Li, L.; Sassen, D.; Chen, J.

    2012-12-01

    Predictions of subsurface contaminant plume mobility and remediation often fail due to the inability to tractably characterize heterogeneous flow-and-transport properties and monitor critical geochemical transitions over plume-relevant scales. This study presents two recently developed strategies to quantify and predict states and processes across scales that govern plume behavior. Development of both strategies takes advantage of multi-scale and disparate datasets and has involved the use of reactive transport models, geophysical methods, and stochastic integration approaches. The first approach, called reactive facies, exploits coupled physiochemical heterogeneity to characterize subsurface flow and transport properties that impact plume sorption and thus mobility. We develop and test the reactive facies concept within uranium contaminated Atlantic Coastal Plain sediments that underlie the U.S. Department of Energy Savannah River Site, F-Area, South Carolina. Through analysis of field data (core samples, geophysical well logs, and cross-hole ground penetrating radar and seismic datasets) coupled with laboratory sorption studies, we have identified two reactive facies that have unique distributions of mineralogy, texture, porosity, hydraulic conductivity and geophysical attributes. We develop and use facies-based relationships with geophysical data in a Bayesian framework to spatially distribute reactive facies and their associated transport properties and uncertainties along local and plume-scale geophysical transects. To illustrate the value of reactive facies, we used the geophysically-obtained reactive facies properties to parameterize reactive transport models and simulate the migration of an acidic-U(VI) plume through the 2D domains. Modeling results suggest that each identified reactive facies exerts control on plume evolution, highlighting the usefulness of the reactive facies concept and approach for spatially distributing properties that control flow and

  11. The effects of hospital-physician integration strategies on hospital financial performance.

    PubMed Central

    Goes, J B; Zhan, C

    1995-01-01

    STUDY QUESTION. This study investigated the longitudinal relations between hospital financial performance outcomes and three hospital-physician integration strategies: physician involvement in hospital governance, hospital ownership by physicians, and the integration of hospital-physician financial relationships. DATA SOURCES AND STUDY SETTING. Using secondary data from the State of California, integration strategies in approximately 300 California short-term acute care hospitals were tracked over a ten-year period (1981-1990). STUDY DESIGN. The study used an archival design. Hospital performance was measured on three dimensions: operational profitability, occupancy, and costs. Thirteen control variables were used in the analyses: market competition, affluence, and rurality; hospital ownership; teaching costs and intensity; multihospital system membership; hospital size; outpatient service mix; patient volume case mix; Medicare and Medicaid intensity; and managed care intensity. DATA COLLECTION/EXTRACTION. Financial and utilization data were obtained from the State of California, which requires annual hospital reports. A series of longitudinal regressions tested the hypotheses. PRINCIPAL FINDINGS. Considerable variation was found in the popularity of the three strategies and their ability to predict hospital performance outcomes. Physician involvement in hospital governance increased modestly from 1981-1990, while ownership and financial integration declined significantly. Physician governance was associated with greater occupancy and higher operating margins, while financial integration was related to lower hospital operating costs. Direct physician ownership, particularly in small hospitals, was associated with lower operating margins and higher costs. Subsample analyses indicate that implementation of the Medicare prospective payment system in 1983 had a major impact on these relationships, especially on the benefits of financial integration. CONCLUSIONS. The

  12. Strategies to support drug discovery through integration of systems and data.

    PubMed

    Waller, Chris L; Shah, Ajay; Nolte, Matthias

    2007-08-01

    Much progress has been made over the past several years to provide technologies for the integration of drug discovery software applications and the underlying data bits. Integration at the application layer has focused primarily on developing and delivering applications that support specific workflows within the drug discovery arena. A fine balance between creating behemoth applications and providing business value must be maintained. Heterogeneous data sources have typically been integrated at the data level in an effort to provide a more holistic view of the data packages supporting key decision points. This review will highlight past attempts, current status, and potential future directions for systems and data integration strategies in support of drug discovery efforts. PMID:17706544

  13. Resources for Computational Geophysics Courses

    NASA Astrophysics Data System (ADS)

    Keers, Henk; Rondenay, Stéphane; Harlap, Yaël.; Nordmo, Ivar

    2014-09-01

    An important skill that students in solid Earth physics need to acquire is the ability to write computer programs that can be used for the processing, analysis, and modeling of geophysical data and phenomena. Therefore, this skill (which we call "computational geophysics") is a core part of any undergraduate geophysics curriculum. In this Forum, we share our personal experience in teaching such a course.

  14. Integrated seismic, geophysical and geological interpretation of Meso-Atlantic Gulf of Guinea continental margin evolution, and hydrocarbon potential of the Cotonou (Dahomey or Benin) basin

    SciTech Connect

    Babalola, O.O.

    1990-01-01

    The assembled aeromagnetic, reflection-seismic, well-log, and gravity data, eliminate the large, problematic gaps in published geophysical data over the shallow-marine and coastal onshore. Data interpretation reveal discordant fracture zones beneath the Niger Delta region, indicating the Gulf of Guinea basins originated as a series of pull-apart basins, that favorable maturation estimates, migration pathways to good source-rocks, and trapping stratigraphic and structural configurations exist for the accumulation of hydrocarbons in several parts of the basin. Depth-to-basement data from exploratory wells in the basins were evaluated with thermo-mechanical subsidence models, to make geodynamic estimates of lithospheric extension. Seismic stratigraphic and structural analysis illustrate tectonic control of clastic and carbonate sedimentation, and the interplay of basinal subsidence with eustatic sea-level changes. The results support a hypothesis that during the breakup of Africa and South America, the Gulf of Guinea cul-de-sac consisted of several microplates, generated from brittle deformation of continental crust in response to mantle convection stresses from below, as well as torsional stresses from the northward of the South Atlantic rip into the Brasilo-West African region. Relative motion between five of these plates is invoked as the evolutionary model, accounting for the observed tectonic physiography as well as the extensional and compressional features of the Cotonou basin and the peri-Niger Delta region. The generation of short-lived continental microplates is also advanced as a model for breakup of large continental plates, as sea-floor spreading is established along nascent continental margins.

  15. Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Flechsig, Christina; Heinicke, Jens; Mrlina, Jan; Kämpf, Horst; Nickschick, Tobias; Schmidt, Alina; Bayer, Tomáš; Günther, Thomas; Rücker, Carsten; Seidel, Elisabeth; Seidl, Michal

    2015-11-01

    The Mýtina maar is the first known Quaternary maar in the Bohemian Massif. Based on the results of Mrlina et al. (J Volcanol Geother Res 182:97-112, 2009), a multiparametric geophysical (electrical resistivity tomography, gravimetry, magnetometry, seismics) and geological/petrochemical research study had been carried out. The interpretation of the data has provided new information about the inner structure of the volcanic complex: (1) specification of the depth of post-volcanic sedimentary fill (up to ~100 m) and (2) magnetic and resistivity signs of one (or two) hidden volcanic structures interpreted as intrusions or remains of a scoria cone. The findings at the outer structure of the maar incorporate the (1) evidence of circular fracture zones outside the maar, (2) detection and distribution of volcanic ejecta and tephra-fall deposits at the surface, and (3) indications from electrical resistivity tomography and gravity data in the area between the Mýtina maar and Železná hůrka scoria cone, interpreted as a palaeovalley, filled by volcaniclastic rocks, and aligned along the strike line (NW-SE) of the Tachov fault zone. These findings are valuable contributions to extend the knowledge about structure of maar volcanoes in general. Because of ongoing active magmatic processes in the north-east part of the Cheb Basin (ca. 15-30 km north of the investigation area), the Mýtina maar-diatreme volcano and surroundings is a suitable key area for research directed to reconstruction of the palaeovolcanic evolution and assessment of possible future hazard potential in the Bohemian Massif.

  16. Constraining Slab Sinking on a Whole-Mantle Scale: Quantitative Integration of Surface and Sub-Surface Observations from Geophysics and Geology

    NASA Astrophysics Data System (ADS)

    Sigloch, K.; Mihalynuk, M. G.

    2014-12-01

    How rapidly slabs sink, which trajectories they follow, and how they deform in the process, presents an inferential challenge to geophysics. Mantle rheologies remain highly uncertain, and seismic tomography can merely offer present-day snapshots of a process defined by temporal evolution. Thus observational constraints on slab sinking have tended to remain non-unique. Subduction zones are complex litho-consumers whose time-variant activity can be reconstructed from geological observations on paleo-arcs, but the association of arcs to their subducted, tomographically imaged lithosphere is iffy. Except for young slabs that can be reliably linked with coeval paleo-arc activity a priori, deeper geological time information cannot be exploited with certainty. As long as slab geometries remain "undated", few constraints on slab sinking behavior and hence mantle rheology can be extracted. Sigloch & Mihalynuk (2013) demonstrated a quantitative method to tighten constraints on slab sinking in the lower mantle by investigating the least ambiguous slab geometries observed. Extremely massive and almost vertical slab walls should have been deposited by vertical sinking beneath (intra-oceanic) trenches that remained stationary for a long time (~100 m.y.). We showed how this hypothesis of vertical sinking can be tested quantitatively and successfully, making only minimal assumptions on mantle rheology, and with proper error propagation for all observations (tomography, plate reconstructions, geology). Here the discussion of sinking trajectories and rates is extended to more challenging geometries. Dipping slabs in the lower mantle, and laterally extensive "stagnant slabs" in the transition zone can also be rendered dateable and trackable by (re-)investigation of their paleo-trenches. We discuss examples and link to recent geodynamic modeling of viscous sheet sinking. Reference: Sigloch K & Mihalynuk MG (2013), Intra-oceanic subduction shaped the assembly of Cordilleran North

  17. Strategies for integrating mental health into schools via a multitiered system of support.

    PubMed

    Stephan, Sharon Hoover; Sugai, George; Lever, Nancy; Connors, Elizabeth

    2015-04-01

    To fully realize the potential of mental health supports in academic settings, it is essential to consider how to effectively integrate the mental health and education systems and their respective resources, staffing, and structures. Historically, school mental health services have not effectively spanned a full continuum of care from mental health promotion to treatment, and several implementation and service challenges have evolved. After an overview of these challenges, best practices and strategies for school and community partners are reviewed to systematically integrate mental health interventions within a school's multitiered system of student support. PMID:25773320

  18. Using Integrated Design Strategies and Energy Efficient Technologies to Enhance Green Buildings

    SciTech Connect

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-06-07

    Sustainable design principles promote the use of integrated design strategies that balance economic, environmental, and human considerations into a building design. By definition, energy efficient technologies should be a cornerstone of ''green'' buildings as they reduce operating costs, minimize the environmental impact of the building, and operate efficiently to offer optimal occupancy comfort. However, first cost and ease of design and construction has a tendency to control the design decisions and in some cases edging out the energy efficient technologies. Examples will be used to demonstrate how integrated design techniques can help reduce these roadblocks and support incorporation of innovative energy efficient technology applications in green buildings.

  19. Using Integrated Design Strategies and Energy Efficient Technologies to Enhance Green Buildings

    SciTech Connect

    Fowler, Kimberly M.; Rauch, Emily M.

    2007-03-31

    Sustainable design principles promote the use of integrated design strategies that balance economic, environmental, and human considerations into a building design. By definition, energy efficient technologies should be a cornerstone of ‘green’ buildings as they reduce operating costs, minimize the environmental impact of the building, and operate efficiently to offer optimal occupancy comfort. However, first cost and ease of design and construction has a tendency to control the design decisions and in some cases edging out the energy efficient technologies. Examples will be used to demonstrate how integrated design techniques can help reduce these roadblocks and support incorporation of innovative energy efficient technology applications in green buildings.

  20. Workshop on geophysical grain flows

    NASA Astrophysics Data System (ADS)

    Hanes, Daniel M.

    Geophysical Grain Flows: Fluid-Grain Interactions in Coastal Sand Transport” was the focus of a workshop held from March 10 to 14 on Amelia Island, Fla. The workshop was sponsored by the National Science Foundation and the University of Florida. Approximately thirty-five participants from ten different countries attended, representing universities, government laboratories, and private companies. During the workshop, one of the largest and strongest storms in the recorded history of North America impacted the eastern half of the United States. The local response of the beach at Amelia Island to this storm was striking and somewhat surprising. There was substantial accretion and widening of the beach. While the morphological changes in the beach profile were of medium to large scale, it is intriguing to realize that the changes resulted from the integrated motion of an uncountable number of sand grains, each moving more or less independently, yet cumulatively producing a wider beach.

  1. Integrated health promotion strategies: a contribution to tackling current and future health challenges.

    PubMed

    Jackson, Suzanne F; Perkins, Fran; Khandor, Erika; Cordwell, Lauren; Hamann, Stephen; Buasai, Supakorn

    2006-12-01

    This paper was presented as a technical background paper at the WHO sixth Global Conference on Health Promotion in Bangkok Thailand, August 2005. It describes what we know about the effectiveness of four of the Ottawa Charter health promotion strategies from eight reviews that have been conducted since 1999. The six lessons are that (i) the investment in building healthy public policy is a key strategy; (ii) supportive environments need to be created at the individual, social and structural levels; (iii) the effectiveness of strengthening community action is unclear and more research and evidence is required; (iv) personal skills development must be combined with other strategies to be effective; (v) interventions employing multiple strategies and actions at multiple levels are most effective; (vi) certain actions are central to effectiveness, such as intersectoral action and interorganizational partnerships at all levels, community engagement and participation in planning and decision-making, creating healthy settings (particularly focusing on schools, communities, workplaces and municipalities), political commitment, funding and infrastructure and awareness of the socio-environmental context. In addition, four case studies at the international, national, regional and local levels are described as illustrations of combinations of the key points described earlier. The paper concludes that the four Ottawa Charter strategies have been effective in addressing many of the issues faced in the late 20th century and that these strategies have relevance for the 21st century if they are integrated with one another and with the other actions described in this paper. PMID:17307960

  2. Geophysical structures and tectonic evolution of the southern Guyana shield, Brazil

    NASA Astrophysics Data System (ADS)

    Rosa, João Willy Corrêa; Rosa, José Wilson Corrêa; Fuck, Reinhardt A.

    2014-07-01

    Aerogeophysical data of an area located on the southern portion of the Guyana shield in Brazil was processed using a fine interpolating mesh, and a corresponding spatial data integration strategy which included the stacking of different high-resolution images, and interpretation following quality control of these. The selected images were correlated to the local known surface geologic units, and to the spatial distribution of the main geochronological provinces of the Amazonian craton. The interpretation of the results also included the available geophysical information for the region, related to Moho depth values, and previously determined SKS shear-wave splitting direction. The observed magnetic regional trends may be strongly influenced by the Proterozoic crustal structure in the area, while radiometric anomalies correlate with the more detailed geologic features. Based on the parallelism among mapped geochronological provinces of the Amazonian craton, and observed geophysical structures on the study area, a geotectonic model is proposed for southern Guyana shield at Proterozoic age.

  3. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  4. Fundamentals of Geophysics

    NASA Astrophysics Data System (ADS)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  5. Geophysical fluid dynamics

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W.

    1981-01-01

    Systematic scaling or dimensional analysis reveals that certain scales of geophysical fluid flows (such as stellar, ocean, and planetary atmosphere circulations) can be accurately modeled in the laboratory using a procedure which differs from conventional engineering modeling. Rather than building a model to obtain numbers for a specific design problem, the relative effects of the significant forces are systematically varied in an attempt to deepen understanding of the effects of these forces. Topics covered include: (1) modeling a large-scale planetary atmospheric flow in a rotating cylindrical annulus; (2) achieving a radial dielectric body force; (3) spherical geophysical fluid dynamics experiments for Spacelab flights; (4) measuring flow and temperature; and (5) the possible effect of rotational or precessional disturbances on the flow in the rotating spherical containers.

  6. An Integrated 3D Hydrogeological, Geophysical, and Microbiological Investigation of Geochemical Gradients in a Pristine Aquifer Located in Laurentian Hills, ON, Canada

    NASA Astrophysics Data System (ADS)

    Shirokova, V.; Graves, L.; Stojanovic, S.; Enright, A. M.; Bank, C.; Ferris, F. G.

    2013-12-01

    A pristine glaciofluvial aquifer displaying naturally occurring geochemical gradients was investigated using hydrogeological, geophysical, and microbiological methods. A network of 25 piezometers was used to collect samples for groundwater chemical analysis, including parameters such as total iron (Fe), ferrous iron (Fe2+), sulphate (SO42-), sulfur (S2-), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), silica (SiO2), phosphate (PO43-), pH, and oxidation reduction potential (ORP). Ion concentration values between piezometers were interpolated using kriging and inverse distance weighting. Yearly analysis of the network shows spatially and temporally persistent plumes of iron and sulfur. A 3D model of the aquifer was compiled to aid in the understanding of the nature and origin of the geochemical gradients. The resulting maps showed zones with high concentrations of dissolved total iron (predominantly soluble ferric iron and complexed iron compounds), followed immediately downgradient by a high concentration of ferrous iron. Similarly, zones of high sulfide concentration were followed by areas of high sulfate concentration. There was some overlap between the iron and sulfur plumes, and ion concentrations were higher in years with a lower water table elevation. Metagenomic analysis revealed a diverse microbial community in the sediment, capable of the biogeochemical cycling of iron, sulfur, and nitrogen. The aquifer basin, as bounded by a till aquitard, was delineated using ground penetrating radar tomography from 45 lines. The plumes corresponded to an area where there is large, channel-like depression in the till boundary. Flow vectors from hydrogeological modelling indicated increased velocity followed by a slowing and convergence of groundwater in this location. Resistivity values from 20 lines varied in general from high values (2000-6000 Ohm.m) above 1-2 m to lower values (less than 1000 Ohm.m) below 2 to a 5m depth. The resistivity surveys consistently showed

  7. An integrated approach (remote sensing, geophysics, field) to assess the structural control of groundwater flow in Wadi Feiran basement complex, Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Sultan, M.; Ahmed, M.; Zaki, A.

    2013-12-01

    The groundwater flow and potentiality for groundwater accumulation in the fractured basement rocks and the overlaying alluvial deposits were examined in Wadi Feiran basin using remote sensing (Landsat ETM, Ikonos, and Envisat, TRMM, and SIR-C radar images), field (well location, depth to water table), and geophysical (Very Low Frequency [VLF], magnetic) datasets. Our approach encompassed the following steps: (1) head data from 52 wells was utilized to build an approximate potentiometric surface map for the basin; (2) Landsat ETM, 3D, hill shade, Ikonos and SIR-C radar images were used to delineate structures in the study area including faults and dikes; (3) major precipitation events were identified from three-hourly TRMM data; and (4) false color composite images were generated from pairs of multi-temporal Envisat images acquired before and after a precipitation event (17th and 18th of January 2010) to identify structures (faults and dykes) that show an increase in moisture content and radar reflectivity following precipitation events and persisting for periods of days to months. Examination of the radar images revealed: (1) a network of highly reflective interconnected structures and channels (wadis) that are here interpreted to indicate preferred groundwater flow direction in the study area; and (2) many of the identified highly persistent reflective structures were found to be sub-parallel (hereafter referred to as low angle) to groundwater flow directions indicating that they are exceptionally conducive to groundwater flow. We suspect that groundwater flow occurs along low angle faults and dykes within the fault damaged zones and the weathered borders of mafic dykes. These suggestions are further corroborated by: (1) VLF results that showed significant dip angles (up to 60%) indicative of presence of shallow sub-vertical, sheet-like conductors across the identified low angle faults and dykes, (2) the presence of groundwater accumulation down gradient, along

  8. The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling - I: Observations, 1D and 2D hypothesis testing and modeling

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.; Afonso, Juan Carlos; Fullea, Javier; Salajegheh, Farshad

    2014-02-01

    Modeling the continental lithosphere's physical properties, especially its depth extent, must be done within a self-consistent petrological-geophysical framework; modeling using only one or two data types may easily lead to inconsistencies and erroneous interpretations. Using the LitMod approach for hypothesis testing and first-order modeling, we show how assumptions made about crustal information and the probable compositions of the lithospheric and sub-lithospheric mantle affect particular observables, particularly especially surface topographic elevation. The critical crustal parameter is density, leading to ca. 600 m error in topography for 50 kg m- 3 imprecision. The next key parameter is crustal thickness, and uncertainties in its definition lead to around ca. 4 km uncertainty in LAB for every 1 km of variation in Moho depth. Possible errors in the other assumed crustal parameters introduce a few kilometers of uncertainty in the depth to the LAB. We use Ireland as a natural laboratory to demonstrate the approach. From first-order arguments and given reasonable assumptions, a topographic elevation in the range of 50-100 m, which is the average across Ireland, requires that the lithosphere-asthenosphere boundary (LAB) beneath most of Ireland must lie in the range 90-115 km. A somewhat shallower (to 85 km) LAB is permitted, but the crust must be thinned (< 29 km) to compensate. The observations, especially topography, are inconsistent with suggestions, based on interpretation of S-to-P receiver functions, that the LAB thins from 85 km in southern Ireland to 55 km in central northern Ireland over a distance of < 150 km. Such a thin lithosphere would result in over 1000 m of uplift, and such rapid thinning by 30 km over less than 150 km would yield significant north-south variations in topographic elevation, Bouguer anomaly, and geoid height, none of which are observed. Even juxtaposing the most extreme probable depleted composition for the lithospheric mantle

  9. Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS).

    PubMed

    Lombardo, Anna; Roncaglioni, Alessandra; Benfenati, Emilio; Nendza, Monika; Segner, Helmut; Jeram, Sonja; Pauné, Eduard; Schüürmann, Gerrit

    2014-11-01

    To satisfy REACH requirements a high number of data on chemical of interest should be supplied to the European Chemicals Agency. To organize the various kinds of information and help the registrants to choose the best strategy to obtain the needed information limiting at the minimum the use of animal testing, integrated testing strategies (ITSs) schemes can be used. The present work deals with regulatory data requirements for assessing the hazards of chemicals to the aquatic pelagic environment. We present an ITS scheme for organizing and using the complex existing data available for aquatic toxicity assessment. An ITS to optimize the choice of the correct prediction strategy for aquatic pelagic toxicity is described. All existing information (like physico-chemical information), and all the alternative methods (like in silico, in vitro or the acute-to-chronic ratio) are considered. Moreover the weight of evidence approach to combine the available data is included. PMID:25262089

  10. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in

  11. Asteroid Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Sánchez, P.; Schwartz, S. R.; Miyamoto, H.

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique microgravity environment that these bodies possess, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesized through detailed spacecraft observations and have been further studied using theoretical, numerical, and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging toward a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions.

  12. Strategies for Integrated Analysis of Genetic, Epigenetic, and Gene Expression Variation in Cancer: Addressing the Challenges

    PubMed Central

    Thingholm, Louise B.; Andersen, Lars; Makalic, Enes; Southey, Melissa C.; Thomassen, Mads; Hansen, Lise Lotte

    2016-01-01

    The development and progression of cancer, a collection of diseases with complex genetic architectures, is facilitated by the interplay of multiple etiological factors. This complexity challenges the traditional single-platform study design and calls for an integrated approach to data analysis. However, integration of heterogeneous measurements of biological variation is a non-trivial exercise due to the diversity of the human genome and the variety of output data formats and genome coverage obtained from the commonly used molecular platforms. This review article will provide an introduction to integration strategies used for analyzing genetic risk factors for cancer. We critically examine the ability of these strategies to handle the complexity of the human genome and also accommodate information about the biological and functional interactions between the elements that have been measured—making the assessment of disease risk against a composite genomic factor possible. The focus of this review is to provide an overview and introduction to the main strategies and to discuss where there is a need for further development. PMID:26870081

  13. DEVELOPING AN INTEGRATED NATIONAL STRATEGY FOR THE DISPOSITION OF SPENT NUCLEAR FUEL

    SciTech Connect

    Gelles, C.M.

    2003-02-27

    This paper summarizes the Department of Energy's (DOE's) current efforts to strengthen its activities for the management and disposition of DOE-owned spent nuclear fuel (SNF). In August 2002 an integrated, ''corporate project'' was initiated by the Office of Environmental Management (EM) to develop a fully integrated strategy for disposition of the approximately {approx}250,000 DOE SNF assemblies currently managed by EM. Through the course of preliminary design, the focus of this project rapidly evolved to become DOE-wide. It is supported by all DOE organizations involved in SNF management, and represents a marked change in the way DOE conducts its business. This paper provides an overview of the Corporate Project for Integrated/Risk-Driven Disposition of SNF (Corporate SNF Project), including a description of its purpose, scope and deliverables. It also summarizes the results of the integrated project team's (IPT's) conceptual design efforts, including the identification of project/system requirements and alternatives. Finally, this paper highlights the schedule of the corporate project, and its progress towards development of a DOE corporate strategy for SNF disposition.

  14. An integrative strategy for quantitative analysis of the N-glycoproteome in complex biological samples

    PubMed Central

    2014-01-01

    Background The complexity of protein glycosylation makes it difficult to characterize glycosylation patterns on a proteomic scale. In this study, we developed an integrated strategy for comparatively analyzing N-glycosylation/glycoproteins quantitatively from complex biological samples in a high-throughput manner. This strategy entailed separating and enriching glycopeptides/glycoproteins using lectin affinity chromatography, and then tandem labeling them with 18O/16O to generate a mass shift of 6 Da between the paired glycopeptides, and finally analyzing them with liquid chromatography-mass spectrometry (LC-MS) and the automatic quantitative method we developed based on Mascot Distiller. Results The accuracy and repeatability of this strategy were first verified using standard glycoproteins; linearity was maintained within a range of 1:10–10:1. The peptide concentration ratios obtained by the self-build quantitative method were similar to both the manually calculated and theoretical values, with a standard deviation (SD) of 0.023–0.186 for glycopeptides. The feasibility of the strategy was further confirmed with serum from hepatocellular carcinoma (HCC) patients and healthy individuals; the expression of 44 glycopeptides and 30 glycoproteins were significantly different between HCC patient and control serum. Conclusions This strategy is accurate, repeatable, and efficient, and may be a useful tool for identification of disease-related N-glycosylation/glycoprotein changes. PMID:24428921

  15. Integrated Water Management Strategies For The Rhine and Meuse Basins In A Changing Environment

    NASA Astrophysics Data System (ADS)

    Middelkoop, H.; van Asselt, M. B. A.; van St Klooster, S. A.; van Deursen, W. P. A.; Kwadijk, J. C. J.; Buiteveld, H.; Haasnoot, M.; Können, G. P.

    Water management of the Rhine and Meuse is surrounded by major uncertainties. The central question is then: given the uncertainties, what is the best water management strategy? This raises the need for integrated scenarios that consider possible futures in a coherent and consistent way. Within the framework of IRMA-SPONGE a scenario study was carried out in which physical modelling was combined with socio-cultural theory. Existing climate, land use and socio-economic scenarios, as well as water man- agement strategies have been structured using the Perspectives method. This resulted in integrated scenarios for water management, each representing a different view on the future, together with the according water management style. These were put in a scenario matrix with combinations of world views and management styles, both where these match and mis-match. Using a suite of existing modelling tools the implications of each scenario for the water systems were evaluated. Finally, a comparison of differ- ent water management styles under different possible futures was made, showing the risk, cost and benefits of different strategies.

  16. Engaging Communities in Identifying Local Strategies for Expanding Integrated Employment During and After High School.

    PubMed

    Carter, Erik W; Blustein, Carly L; Bumble, Jennifer L; Harvey, Sarah; Henderson, Lynnette M; McMillan, Elise D

    2016-09-01

    Amidst decades of attention directed toward improving employment outcomes for people with intellectual and developmental disabilities (IDD), few efforts have been made to engage communities in identifying local solutions for expanding integrated employment opportunities. We examined the implementation and outcomes of "community conversation" events held in 6 geographically and economically diverse locales. Each event used an asset-based dialogue approach called the World Café ( Brown & Isaacs, 2005 ) to solicit ideas from a broad cross-section of community members on improving integrated employment that reflect local priorities and possibilities. Six key themes encapsulated the 1,556 strategies generated by the almost 400 attendees. Although considerable consistency was found among the categories of strategies raised across events, the manner in which those individual strategies would be implemented locally reflected the unique accent of each community. Attendees also viewed these events as promising and productive pathways for identifying next steps for their community. We offer recommendations for community-level intervention efforts and suggest directions for future research. PMID:27611351

  17. Resolving multisensory conflict: a strategy for balancing the costs and benefits of audio-visual integration

    PubMed Central

    Roach, Neil W; Heron, James; McGraw, Paul V

    2006-01-01

    In order to maintain a coherent, unified percept of the external environment, the brain must continuously combine information encoded by our different sensory systems. Contemporary models suggest that multisensory integration produces a weighted average of sensory estimates, where the contribution of each system to the ultimate multisensory percept is governed by the relative reliability of the information it provides (maximum-likelihood estimation). In the present study, we investigate interactions between auditory and visual rate perception, where observers are required to make judgments in one modality while ignoring conflicting rate information presented in the other. We show a gradual transition between partial cue integration and complete cue segregation with increasing inter-modal discrepancy that is inconsistent with mandatory implementation of maximum-likelihood estimation. To explain these findings, we implement a simple Bayesian model of integration that is also able to predict observer performance with novel stimuli. The model assumes that the brain takes into account prior knowledge about the correspondence between auditory and visual rate signals, when determining the degree of integration to implement. This provides a strategy for balancing the benefits accrued by integrating sensory estimates arising from a common source, against the costs of conflating information relating to independent objects or events. PMID:16901835

  18. An Integrated Modeling and Data Management Strategy for Cellulosic Biomass Production Decisions

    SciTech Connect

    David J. Muth Jr.; K. Mark Bryden; Joshua B. Koch

    2012-07-01

    Emerging cellulosic bioenergy markets can provide land managers with additional options for crop production decisions. Integrating dedicated bioenergy crops such as perennial grasses and short rotation woody species within the agricultural landscape can have positive impacts on several environmental processes including increased soil organic matter in degraded soils, reduced sediment loading in watersheds, lower green house gas (GHG) fluxes, and reduced nutrient loading in watersheds. Implementing this type of diverse bioenergy production system in a way that maximizes potential environmental benefits requires a dynamic integrated modeling and data management strategy. This paper presents a strategy for designing diverse bioenergy cropping systems within the existing row crop production landscape in the midwestern United States. The integrated model developed quantifies a wide range environmental processes including soil erosion from wind and water, soil organic matter changes, and soil GHG fluxes within a geospatial data management framework. This framework assembles and formats information from multiple spatial and temporal scales. The data assembled includes yield and productivity data from harvesting equipment at the 1m scale, surface topography data from LiDAR mapping at the less than 1m scale, soil data from US soil survey databases at the 10m to 100m scale, and climate data at the county scale. These models and data tools are assembled into an integrated computational environment that is used to determine sustainable removal rates for agricultural residues for bioenergy production at the sub-field scale under a wide range of land management practices. Using this integrated model, innovative management practices including cover cropping are then introduced and evaluated for their impact on bioenergy production and important environmental processes. The impacts of introducing dedicated energy crops onto high-risk landscape positions currently being manage in

  19. A comparison of integrated river basin management strategies: A global perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  20. Changing academic medicine: strategies used by academic leaders of integrative medicine-a qualitative study.

    PubMed

    Witt, Claudia M; Holmberg, Christine

    2012-01-01

    In Western countries, complementary and alternative medicine (CAM) is more and more provided by practitioners and family doctors. To base this reality of health care provision on an evidence-base, academic medicine needs to be included in the development. In the study we aimed to gain information on a structured approach to include CAM in academic health centers. We conducted a semistructured interview study with leading experts of integrative medicine to analyze strategies of existing academic institutions of integrative medicine. The study sample consisted of a purposive sample of ten leaders that have successfully integrated CAM into medical schools in the USA, Great Britain, and Germany and the Director of the National Center for Alternative and Complementary Medicine. Analysis was based on content analysis. The prerequisite to foster change in academic medicine was a strong educational and professional background in academic medicine and research methodologies. With such a skill set, the interviewees identified a series of strategies to align themselves with colleagues from conventional medicine, such as creating common goals, networking, and establishing well-functioning research teams. In addition, there must be a vision of what should be needed to be at the center of all efforts in order to implement successful change. PMID:23093984

  1. Implementation of the Integrated Management of Childhood Illnesses strategy: challenges and recommendations in Botswana

    PubMed Central

    Mupara, Lucia U.; Lubbe, Johanna C.

    2016-01-01

    Background Under-five mortality has been a major public health challenge from time immemorial. In response to this challenge, the World Health Organization and the United Nations Children's Fund developed the Integrated Management of Childhood Illnesses (IMCI) strategy and presented it to the whole world as a key approach to reduce child morbidity and mortality. Botswana started to implement the IMCI strategy in 1998. Reductions in the under-five mortality rate (U5MR) have been documented, although the reduction is not on par with the expected Millennium Development Goal 4 predictions. Design A quantitative study was done to identify the problems IMCI implementers face when tending children under 5 years in the Gaborone Health District of Botswana. The study population was made up of all the IMCI-trained and registered nurses, and systematic sampling was used to randomly select study participants. Questionnaires were used to collect data. Results The study findings indicated challenges related to low training coverage, health systems, and the unique features of the IMCI strategy. Conclusions The comprehensive implementation of the IMCI strategy has the potential to significantly influence the U5MR in Botswana. PMID:26899774

  2. Integrated strategies needed to prevent iron deficiency and to promote early child development.

    PubMed

    Black, Maureen M

    2012-06-01

    Iron deficiency (ID) and iron deficiency anemia (IDA) are global public health problems that differentially impact pregnant women and infants in low and middle income countries. IDA during the first 1000 days of life (prenatally through 24 months) has been associated with long term deficits in children's socio-emotional, motor, cognitive, and physiological functioning. Mechanisms linking iron deficiency to children's development may include alterations to dopamine metabolism, myelination, and hippocampal structure and function, as well as maternal depression and unresponsive caregiving, potentially associated with maternal ID. Iron supplementation trials have had mixed success in promoting children's development. Evidence suggests that the most effective interventions to prevent iron deficiency and to promote early child development begin early in life and integrate strategies to ensure adequate iron and nutritional status, along with strategies to promote responsive mother-child interactions and early learning opportunities. PMID:22664336

  3. An integrated water resources management strategy for Al-Ain City, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Mohamed, M. M.

    2014-09-01

    Al-Ain is the second largest city in the Emirate of Abu Dhabi and the third in the UAE. Currently, desalination plants are the only source of drinking water in the city with an average daily supply of 170 MIG. Recently, Abu Dhabi Urban Planning Council (UPC) released Al-Ain 2030 Plan. Projects suggested in this plan, over and above the expected natural population growth, will certainly put additional stress on the water resources in the city. Therefore, Al-Ain city seems to be in urgent need for an integrated water resources management strategy towards achieving sustainable development. This strategy will contain three main components; namely, a Water Demand Forecasting Model (WDFM), a Water Budget Model (WBM), and a Water Resources Optimization Model (WROM). The main aim of this paper is to present the WBM that estimates all inflows and outflows to assess water resources sustainability in the city.

  4. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    NASA Technical Reports Server (NTRS)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  5. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  6. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This report provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  7. Strategies and Decision Support Systems for Integrating Variable Energy Resources in Control Centers for Reliable Grid Operations. Executive Summary

    SciTech Connect

    Jones, Lawrence E.

    2011-11-01

    This is the executive summary for a report that provides findings from the field regarding the best ways in which to guide operational strategies, business processes and control room tools to support the integration of renewable energy into electrical grids.

  8. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  9. Positive inversion tectonics in foreland fold-and-thrust belts: A reappraisal of the Umbria-Marche Northern Apennines (Central Italy) by integrating geological and geophysical data

    NASA Astrophysics Data System (ADS)

    Scisciani, Vittorio; Agostini, Simone; Calamita, Fernando; Pace, Paolo; Cilli, Andrea; Giori, Italiano; Paltrinieri, Werter

    2014-12-01

    Unraveling the tectonic style in the outer zones of fold-and-thrust belts is generally puzzling because the basement-cover relationships are often hidden in the subsurface as in the outer Northern Apennines of Italy. This study aims to reconstruct the deep setting of the Northern Apennine foreland thrust belt by integrating surface structural-geological and subsurface seismic reflection profile and well data, corroborated by a gravity-magnetic modeling. A remarkable mountain ridge, the Umbria-Marche Apennine Ridge (UMAR), which corresponds to a prominent area of structural and topographic elevation, characterizes the morphology of the Northern Apennines. This mountain ridge is constituted by Meso-Cenozoic carbonates involved in Neogene compressive structures and is surrounded by wide exposures of foredeep deposits. The basement-cover relationships are poorly constrained and both thin- and thick-skinned tectonic styles have been applied. The interpretation of subsurface data allowed recognizing a thick pre-Jurassic sedimentary sequence filling a late Paleozoic(?)-Triassic symmetric fault-bounded extensional basin, lying directly below the UMAR. This deep-rooted basin underwent positive inversion during the Neogene compression and thrust-fold development. The reconstructed thick-skinned inversion tectonic model is consistent with both the modest amount of shortening and the remarkable structural elevation of the UMAR. The outcomes of this study reveal that prominent mountain ridges occurring in foreland thrust belts are most likely related to the deep-rooted basement-involved positive inversion of pre-existing extensional basins.

  10. Messenger RNA- Versus Retrovirus-Based Induced Pluripotent Stem Cell Reprogramming Strategies: Analysis of Genomic Integrity

    PubMed Central

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith

    2014-01-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients’ iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications. PMID:24736403

  11. Manual development: A strategy for identifying core components of integrated health programs.

    PubMed

    Mooss, Angela; Hartman, Megan; Ibañez, Gladys

    2015-12-01

    Integrated care models are gaining popularity as a clinical strategy to reduce costs and improve client outcomes; however, implementation of such complex models requires an understanding of programmatic core components essential to producing positive outcomes. To promote this understanding, evaluators can work collaboratively with organization staff and leaderships to gather information on program implementation, adaptations, organizational buy-in, and project outcomes. In 2011, SAMHSA funded two Miami health clinics to implement integrated care models in co-located settings. Changes in the federal healthcare landscape, non-Medicaid expansion for Florida, and the complexity of projects goals led evaluators to facilitate a core component review as part of evaluation. A manual was developed throughout the project and captured a description, adaptations, inputs needed, lessons learned, and sustainability for each integrated care component. To increase chances for program success, evaluators should institute a method to better define core components of new programs and implementation adaptations, while keeping program replication in mind. Breaking down the program structurally gave the evaluation utility for stakeholders, and ultimately served as a resource for organizations to better understand their program model. The manual also continues to serve as a dissemination and replication source for other providers looking to implement integrated care. PMID:26298862

  12. Strategies to Promote Integration and Acceptance of Students with Disabilities among Their Non-Disabled Peers, Using Microcomputers.

    ERIC Educational Resources Information Center

    Dutton, Donna H.

    The paper describes three strategies featuring a microcomputer to promote the integration and acceptance of students with disabilities among their nondisabled peers. The first strategy is a cross-age tutoring program in which disabled, learning disabled, emotionally disabled, or mildly retarded students demonstrate computer use to nondisabled…

  13. University Educational Service Delivery Strategy in a Changing World: Implications for Ethical Values and Leadership Integrity in Nigeria

    ERIC Educational Resources Information Center

    Akintayo, D. I.

    2008-01-01

    This paper examined university educational service delivery strategy in a changing world as it affects ethical values and leadership integrity in Nigeria. This was for the purpose of determining appropriate strategies for improving the quality of service delivery system in Nigerian universities. The paper submits that the quality and quantity of…

  14. Integrated Geohazard Screening Using Remote Sensing, Including Satellite and Helicopter Based Imagery, LiDAR, and Geophysics, in Tajikistan and Kyrgyzstan, Central Asia

    NASA Astrophysics Data System (ADS)

    Wade, A. M.; Kozaci, O.; Hitchcock, C. S.; Konieczny, G.; Garrie, D.

    2015-12-01

    We performed a detailed geohazard investigation of a 5 km-wide, 650km-long corridor through Tajikistan and Kyrgyzstan, Central Asia. The study area includes the Rasht and Alai valleys at the boundary between the Pamir Mountains and the Alai Range of the southern Tien Shan. Ongoing collision between the India and Eurasia plates has resulted in the Tien Shan orogenic belt and the Pamir Mountains. Thus the study area is one of the most seismically active regions in the world. Rapid uplift, erosion, and steep slopes give rise to widespread landsliding and massive rock slope failures in both the Pamir and Tien Shan Mountains. Our integrated data acquisition and interpretation plan used airborne and remote sensing methods including satellite based DEMs and high resolution imagery, LiDAR, aerial photography, and helicopter based electromagnetic resistivity (HEM). Analysis of these data sets allowed us to delineate potential geohazards through surficial geologic mapping. Initial desktop geohazard screening included 1:50,000-scale mapping for potential faults, landslides, and liquefiable deposits, which included traffic light-style susceptibility maps for route refinement and hazard mitigation. As part of detailed investigations, continuous HEM data was collected and processed at a spatial sampling interval of approximately 3m. Apparent resistivity was calculated for each of the five operating frequencies over the entire survey area. For the purposes of this study, resistivity values at 10 m and 20 m depths were sliced from the interpolated 3D Differential Resistivity model for use in the analysis. Using GIS, we compared these results with mapped Quaternary units and found good correlation between resistivity contrasts and the boundaries of mapped surficial units. With this confidence, the HEM measurements were further analyzed to identify subsurface features and to develop a 3D geologic model. Based on this analysis we provided a framework for an optimized geotechnical

  15. Electrical geophysical characterization of the Hanford 300 Area Integrated Field Research Challenge using high performance DC resistivity inversion geostatistically constrained by borehole conductivity logs

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Versteeg, R. J.; Ward, A. L.; Strickland, C. E.; Greenwood, J.

    2009-12-01

    The Hanford 300 Area Integrated Field Research Challenge is a DOE funded multi-institution field study designed to better understand the field scale subsurface processes governing uranium transport in the Hanford 300 Area and other DOE sites. The primary focus area includes 28 monitoring wells spaced approximately 10 meters apart and extending downward 18 meters through the unconfined aquifer to a lower fine-grained confining unit. Each well is equipped with 15 permanent electrodes in the vadose zone and 15 removable electrodes in the saturated zone for a total 840 electrodes. To characterize the electrical conductivity structure of the site, a set of 32 overlapping 3D DC resistivity surveys were conducted where each survey included 4 adjacent wells. The complete set of surveys comprises approximately 150,000 resistivity measurements. We demonstrate the characterization by inverting the complete data set using a parallel resistivity modeling/inversion code developed at the Idaho National Laboratory. We compare two approaches; 1) an Occam minimum-structure type inversion, and 2) an inversion using geostatistical and borehole conductivity constraints. The first inversion shows the larger scale conductivity features of the site as resolved by the resistivity data only. The second inversion provides solutions which honor the resistivity data, the directional and zonal semivariograms derived from borehole conductivity logs, and the corresponding borehole conductivities. This approach allows an ensemble of solutions to be generated which incorporate uncertainty in both the semivariograms and the resistivity data. Assuming electrical conductivity is well correlated with hydrogeologic properties at the site, this ensemble of models can be used, along with appropriate petrophyiscal transforms, to generate an ensemble of hydrogeologic models which can ultimately be used to investigate uncertainty in flow and transport processes.

  16. Mathematical Methods for Geophysics and Space Physics

    NASA Astrophysics Data System (ADS)

    Newman, William I.

    2016-05-01

    Graduate students in the natural sciences - including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy - need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. * Provides an authoritative and accessible introduction to the subject * Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics * Features numerous exercises throughout * Ideal for students and researchers alike * An online illustration package is available to professors

  17. Integrated Analysis of Airborne Geophysical Data to Understand the Extent, Kinematics and Tectonic Evolution of the Precambrian Aswa Shear Zone in East Africa.

    NASA Astrophysics Data System (ADS)

    Katumwehe, A. B.; Atekwana, E. A.; Abdelsalam, M. G.; Laó-Dávila, D. A.

    2014-12-01

    The Aswa Shear zone (ASZ) is a Precambrian lithospheric structure which forms the western margin of the East African Orogeny (EAO) that influenced the evolution of many tectonic events in Eastern Africa including the East African Rift System. It separates the cratonic entities of Saharan Metacraton in the northeast from the Congo craton and the Tanzanian craton and the Kibaran orogenic belt to the southwest. However little is known about its kinematics and the extent and tectonic origin are not fully understood. We developed a new technique based on the tilt method to extract kinematic information from high-resolution airborne magnetic data. We also used radiometric data over Uganda integrated with Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) in South Sudan to understand the extent, kinematics and define the tectonic origin of ASZ. (1) Our results suggest that the ASZ extends in a NW-SE for ~550 km in Uganda and South Sudan. (2) The airborne magnetic and radiometric data revealed a much wider (~50 km) deformation belt than the mapped 5-10 km of exposed surface expression of the ASZ. The deformation belt associated with the shear is defined by three NW-trending sinistral strike-slip shear zones bounding structural domains with magnetic fabrics showing splays of secondary shear zones and shear-related folds. These folds are tighter close to the discrete shear zones with their axial traces becoming sub-parallel to the shear zones. Similar fold patterns are observed from South Sudan in the SRTM DEM. We interpret these folds as due to ENE-WSW shortening associated with the sinistral strike-slip movement. (3) To the northeast of the shear zone, the magnetic patterns suggest a series of W-verging nappes indicative of strong E-W oriented shortening. Based on the above observations, we relate the evolution of the ASZ to Neoproterozoic E-W collision between East and West Gondwana. This collision produced E-W contraction resulting in W-verging thrusts

  18. The Effects of an Integrated Reading Comprehension Strategy: A Culturally Responsive Teaching Approach for Fifth-Grade Students' Reading Comprehension

    ERIC Educational Resources Information Center

    Bui, Yvonne N.; Fagan, Yvette M.

    2013-01-01

    The study evaluated the effects of the Integrated Reading Comprehension Strategy on two levels. The Integrated Reading Comprehension Strategy integrated story grammar instruction and story maps, prior knowledge and prediction method, and word webs through a culturally responsive teaching framework; the Integrated Reading Comprehension Strategy…

  19. Geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  20. Geophysics on Wikipedia

    NASA Astrophysics Data System (ADS)

    Newell, A. J.

    2010-12-01

    A priority for both NSF and AGU is the communication of scientific knowledge to the public. One way of determining where the public is looking for information is to search for geophysical terms on Google. Often the first hit is a Wikipedia site. Wikipedia is often the first place that high school students look. Yet there are few geophysicists who contribute to Wikipedia pages. This is particularly true of paleomagnetism and related subjects. In this project, efforts to improve the extent and quality of paleomagnetism coverage are described. The state of the Wikipedia articles at the beginning of this project is compared with their current state. The process of organizing the large number of articles and prioritizing them is described, along with ways to form collaborations on Wikipedia between geophysicists.

  1. Sampling functions for geophysics

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  2. Earth Rotational Variations Excited by Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Modern space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations". for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  3. Demonstrations in Introductory Geophysics

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Stein, S.; van der Lee, S.; Swafford, L.; Klosko, E.; Delaughter, J.; Wysession, M.

    2005-12-01

    Geophysical concepts are challenging to teach at introductory levels, because students need to understand both the underlying physics and its geological application. To address this, our introductory courses include class demonstrations and experiments to demonstrate underlying physical principles and their geological applications. Demonstrations and experiments have several advantages over computer simulations. First, computer simulations "work" even if the basic principle is wrong. In contrast, simple demonstrations show that a principle is physically correct, rather than a product of computer graphics. Second, many students are unfamiliar with once-standard experiments demonstrating ideas of classical physics used in geophysics. Demonstrations are chosen that we consider stimulating, relevant, inexpensive, and easy to conduct in a non-lab classroom. These come in several groups. Many deal with aspects of seismic waves, using springs, light beams, and other methods such as talking from outside the room to illustrate the frequency dependence of diffraction (hearing but not seeing around a corner). Others deal with heat and mass transfer, such as illustrating fractional crystallization with apple juice and the surface/volume effect in planetary evolution with ice. Plate motions are illustrated with paper cutouts showing effects like motion on transform faults and how the Euler vector geometry changes a plate boundary from spreading, to strike-slip, to convergence along the Pacific-North America boundary from the Gulf of California to Alaska. Radioactive decay is simulated by having the class rise and sit down as a result of coin flips (one tail versus two gives different decay rates and hence half lives). This sessions' goal of exchanging information about demonstrations is an excellent idea: some of ours are described on http://www.earth.nwu.edu/people/seth/202.

  4. Serious games for Geophysics

    NASA Astrophysics Data System (ADS)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  5. An integrated crop- and soil-based strategy for variable-rate nitrogen management in corn

    NASA Astrophysics Data System (ADS)

    Roberts, Darrin F.

    Nitrogen (N) management in cereal crops has been the subject of considerable research and debate for several decades. Historic N management practices have contributed to low nitrogen use efficiency (NUE). Low NUE can be caused by such things as poor synchronization between soil N supply and crop demand, uniform application rates of fertilizer N to spatially variable landscapes, and failure to account for temporally variable influences on soil N supply and crop N need. Active canopy reflectance sensors and management zones (MZ) have been studied separately as possible plant- and soil-based N management tools to increase NUE. Recently, some have suggested that the integration of these two approaches would provide a more robust N management strategy that could more effectively account for soil and plant effects on crop N need. For this reason, the goal of this research was to develop an N application strategy that would account for spatial variability in soil properties and use active canopy reflectance sensors to determine in-season, on-the-go N fertilizer rates, thereby increasing NUE and economic return for producers over current N management practices. To address this overall goal, a series of studies were conducted to better understand active canopy sensor use and explore the possibility of integrating spatial soil data with active canopy sensors. Sensor placement to assess crop N status was first examined. It was found that the greatest reduction in error over sensing each individual row for a hypothetical 24-row applicator was obtained with 2-3 sensors estimating an average chlorophyll index for the entire boom width. Next, use of active sensor-based soil organic matter (OM) estimation was compared to more conventional aerial image-based soil OM estimation. By adjusting regression intercept values for each field, OM could be predicted using either a single sensor or image data layer. The final study consisted of validation of the active sensor algorithm

  6. Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation.

    PubMed

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    Multiple trait integration (MTI) is a multi-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) through backcross breeding. From a breeding standpoint, MTI involves four steps: single event introgression, event pyramiding, trait fixation, and version testing. This study explores the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events in the light of the overall goal of MTI of recovering equivalent performance in the finished hybrid conversion along with reliable expression of the value-added traits. Using the results to optimize single event introgression (Peng et al. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol Breed, 2013) which produced single event conversions of recurrent parents (RPs) with ≤8 cM of residual non-recurrent parent (NRP) germplasm with ~1 cM of NRP germplasm in the 20 cM regions flanking the event, this study focused on optimizing process efficiency in the second and third steps in MTI: event pyramiding and trait fixation. Using computer simulation and probability theory, we aimed to (1) fit an optimal breeding strategy for pyramiding of eight events into the female RP and seven in the male RP, and (2) identify optimal breeding strategies for trait fixation to create a 'finished' conversion of each RP homozygous for all events. In addition, next-generation seed needs were taken into account for a practical approach to process efficiency. Building on work by Ishii and Yonezawa (Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: I. Schedule of crossing between the donor lines. Crop Sci 47:537-546, 2007a), a symmetric crossing schedule for event pyramiding was devised for stacking eight (seven) events in a given RP. Options for trait fixation breeding strategies considered selfing and doubled haploid approaches to achieve homozygosity

  7. Integration Strategy Is a Key Step in Network-Based Analysis and Dramatically Affects Network Topological Properties and Inferring Outcomes

    PubMed Central

    Jin, Nana; Wu, Deng; Gong, Yonghui; Bi, Xiaoman; Jiang, Hong; Li, Kongning; Wang, Qianghu

    2014-01-01

    An increasing number of experiments have been designed to detect intracellular and intercellular molecular interactions. Based on these molecular interactions (especially protein interactions), molecular networks have been built for using in several typical applications, such as the discovery of new disease genes and the identification of drug targets and molecular complexes. Because the data are incomplete and a considerable number of false-positive interactions exist, protein interactions from different sources are commonly integrated in network analyses to build a stable molecular network. Although various types of integration strategies are being applied in current studies, the topological properties of the networks from these different integration strategies, especially typical applications based on these network integration strategies, have not been rigorously evaluated. In this paper, systematic analyses were performed to evaluate 11 frequently used methods using two types of integration strategies: empirical and machine learning methods. The topological properties of the networks of these different integration strategies were found to significantly differ. Moreover, these networks were found to dramatically affect the outcomes of typical applications, such as disease gene predictions, drug target detections, and molecular complex identifications. The analysis presented in this paper could provide an important basis for future network-based biological researches. PMID:25243127

  8. The PanCam instrument on the 2018 Exomars rover: Science Implementation Strategy and Integrated Surface Operations Concept

    NASA Astrophysics Data System (ADS)

    Schmitz, Nicole; Jaumann, Ralf; Coates, Andrew; Griffiths, Andrew; Hauber, Ernst; Trauthan, Frank; Paar, Gerhard; Barnes, Dave; Bauer, Arnold; Cousins, Claire

    2010-05-01

    Geologic context as a combination of orbital imaging and surface vision, including range, resolution, stereo, and multispectral imaging, is commonly regarded as basic requirement for remote robotic geology and forms the first tier of any multi-instrument strategy for investigating and eventually understanding the geology of a region from a robotic platform. Missions with objectives beyond a pure geologic survey, e.g. exobiology objectives, require goal-oriented operational procedures, where the iterative process of scientific observation, hypothesis, testing, and synthesis, performed via a sol-by-sol data exchange with a remote robot, is supported by a powerful vision system. Beyond allowing a thorough geological mapping of the surface (soil, rocks and outcrops) in 3D, using wide angle stereo imagery, such a system needs to be able to provide detailed visual information on targets of interest in high resolution, thereby enabling the selection of science targets and samples for further analysis with a specialized in-situ instrument suite. Surface vision for ESA's upcoming ExoMars rover will come from a dedicated Panoramic Camera System (PanCam). As integral part of the Pasteur payload package, the PanCam is designed to support the search for evidence of biological processes by obtaining wide angle multispectral stereoscopic panoramic images and high resolution RGB images from the mast of the rover [1]. The camera system will consist of two identical wide-angle cameras (WACs), which are arranged on a common pan-tilt mechanism, with a fixed stereo base length of 50 cm. The WACs are being complemented by a High Resolution Camera (HRC), mounted between the WACs, which allows a magnification of selected targets by a factor of ~8 with respect to the wide-angle optics. The high-resolution images together with the multispectral and stereo capabilities of the camera will be of unprecedented quality for the identification of water-related surface features (such as sedimentary

  9. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    SciTech Connect

    Bennett, Joseph W.; Rabe, Karin M.

    2012-11-15

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb{sub 1/2}Mn{sub 1/2})O{sub 3} as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb{sub 2}O{sub 4}; and (3) ferroelectric semiconductors with formula M{sub 2}P{sub 2}(S,Se){sub 6}. A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: Black-Right-Pointing-Pointer Integration of first-principles methods and database mining. Black-Right-Pointing-Pointer Minor structural families with desirable functional properties. Black-Right-Pointing-Pointer Survey of polar entries in the Inorganic Crystal Structural Database.

  10. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  11. Continuous monitoring of the lunar or Martian subsurface using on-board pattern recognition and neural processing of Rover geophysical data

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.; Boyd, Richard V.; Sternberg, Ben K.

    1991-01-01

    The overall aim is to provide base technology for an automated vision system for on-board interpretation of geophysical data. During the first year's work, it was demonstrated that geophysical data can be treated as patterns and interpreted using single neural networks. Current research is developing an integrated vision system comprising neural networks, algorithmic preprocessing, and expert knowledge. This system is to be tested incrementally using synthetic geophysical patterns, laboratory generated geophysical patterns, and field geophysical patterns.

  12. Best-bet integrated strategies for containing drug-resistant trypanosomes in cattle

    PubMed Central

    2012-01-01

    Background African animal trypanosomosis is a major constraint to the rearing of productive livestock in the sub-humid Sudan-Sahel zone of West Africa where cotton is grown. Trypanosomosis is mainly controlled using trypanocidal drugs, but the effective use of drugs is threatened by the development of widespread resistance. This study tested integrated best-bet strategies for containment and/ or reversal of trypanocide resistance in villages in south-east Mali where resistance has been reported. Methods Four sentinel villages each from an intervention area (along the road from Mali to Burkina Faso) and a control area (along the road from Mali to Côte d’Ivoire) were selected for the study. Tsetse control was based on deltamethrin-treated stationary attractive devices and targeted cattle spraying between March 2008 and November 2009. Trypanosome-positive cattle were selectively treated with 3.5 mg/kg diminazene aceturate. Strategic helminth control using 10 mg/kg albendazole was also undertaken. During the intervention, tsetse densities along drainage lines, trypanosome infections and faecal egg counts in risk cattle (3 to 12 months of age) were monitored. Results Catch reductions of 66.5 % in Glossina palpalis gambiensis and 90 % in G. tachinoides were observed in the intervention area. Trypanosome prevalence was significantly (p < 0.05) lower in the intervention area (2.3 %; 1.3-3.6 %) compared to the control area (17.3 %; 14.8-20.1 %). Albendazole treatment resulted in a faecal egg count reduction of 55.6 % and reduced trypanosome infection risk (2.9 times lower than in the placebo group) although not significantly (p > 0.05). Further studies are required before confirming the existence of albendazole resistant strongyles in the study area. Conclusion Integration of best-bet strategies in areas of multiple drug-resistance is expected to reduce trypanosome infection risk thus contributing to containment of trypanocidal drug resistance

  13. Geophysical applications for levee assessment

    NASA Astrophysics Data System (ADS)

    Chlaib, Hussein Khalefa

    Levees are important engineering structures that build along the rivers to protect the human lives and shield the communities as well as agriculture lands from the high water level events. Animal burrows, subsurface cavities, and low density (high permeability) zones are weakness features within the levee body that increase its risk of failure. To prevent such failure, continuous monitoring of the structure integrity and early detection of the weakness features must be conducted. Application of Ground Penetrating Radar (GPR) and Capacitively Coupled Resistivity (CCR) methods were found to be very effective in assessing the levees and detect zones of weakness within the levee body. GPR was implemented using multi-frequency antennas (200, 400, and 900 MHz) with survey cart/wheel and survey vehicle. The (CCR) method was applied by using a single transmitter and three receivers. Studying the capability and the effectiveness of these methods in levee monitoring, subsurface weakness feature detection, and studying the structure integrity of levees were the main tasks of this dissertation. A set of laboratory experiments was conducted at the Geophysics Laboratory of the University of Arkansas at Little Rock (UALR) to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Also three full scale field expeditions at the Big Dam Bridge (BDB) Levee, Lollie Levee, and Helena Levee in Arkansas were conducted using the GPR technique. This technique was effective in detecting empty, water, and clay filled cavities as well as small scale animal burrows (small rodents). The geophysical work at BDB and Lollie Levees expressed intensive subsurface anomalies which might decrease their integrity while the Helena Levee shows less subsurface anomalies. The compaction of levee material is a key factor affecting piping phenomenon. The structural integrity of the levee partially depends on the density/compaction of the soil layers. A

  14. Integrated management of childhood illness (IMCI) strategy for children under five

    PubMed Central

    Gera, Tarun; Shah, Dheeraj; Garner, Paul; Richardson, Marty; Sachdev, Harshpal S

    2016-01-01

    Background More than 7.5 million children younger than age five living in low- and middle-income countries die every year. The World Health Organization (WHO) developed the integrated management of childhood illness (IMCI) strategy to reduce mortality and morbidity and to improve quality of care by improving the delivery of a variety of curative and preventive medical and behavioral interventions at health facilities, at home, and in the community. Objectives To evaluate the effects of programs that implement the IMCI strategy in terms of death, nutritional status, quality of care, coverage with IMCI deliverables, and satisfaction of beneficiaries. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 3), including the Cochrane Effective Practice and Organisation of Care (EPOC) Group Specialised Register; MEDLINE; EMBASE, Ovid; the Cumulative Index to Nursing and Allied Health Literature (CINAHL), EbscoHost; the Latin American Caribbean Health Sciences Literature (LILACS), Virtual Health Library (VHL); the WHO Library & Information Networks for Knowledge Database (WHOLIS); the Science Citation Index and Social Sciences Citation Index, Institute for Scientific Information (ISI) Web of Science; Population Information Online (POPLINE); the WHO International Clinical Trials Registry Platform (WHO ICTRP); and the Global Health, Ovid and Health Management, ProQuest database. We performed searches until 30 June 2015 and supplemented these by searching revised bibliographies and by contacting experts to identify ongoing and unpublished studies. Selection criteria We sought to include randomised controlled trials (RCTs) and controlled before-after (CBA) studies with at least two intervention and two control sites evaluating the generic IMCI strategy or its adaptation in children younger than age five, and including at minimum efforts to improve health care worker skills for case management. We excluded studies in which IMCI was

  15. Brine production strategy modeling for active and integrated management of water resources in CCS

    NASA Astrophysics Data System (ADS)

    Court, B.; Celia, M. A.; Nordbotten, J. M.; Buscheck, T. A.; Elliot, T. J.; Bandilla, K.; Dobossy, M.

    2010-12-01

    Our society is at present highly dependent on coal, which will continue to play a major role in baseload electricity production in the coming decades. Most projected climate change mitigation strategies require CO2 Capture and Sequestration (CCS) as a vital element to stabilize CO2 atmospheric emissions. In these strategies, CCS will have to expand in the next two decades by several orders of magnitude compared to current worldwide implementation. At present the interactions among freshwater extraction, CO2 injection, and brine management are being considered too narrowly across CCS operations, and in the case of freshwater almost completely overlooked. Following the authors’ recently published overview of these challenges, an active and integrated management of water resources throughout CCS operations was proposed to avoid overlooking critical challenges that may become major obstacles to CCS implementation. Water resources management is vital for several reasons including that a coal-fired power plant retrofitted for CCS requires twice as much cooling water as the original plant. However this increased demand may be accommodated by brine extraction and treatment, which would concurrently function as large-scale pressure management and a potential source of freshwater. Synergistic advantages of such proactive integration that were identified led the authors to concluded that: Active management of CCS operations through an integrated approach -including brine production, treatment, use for cooling, and partial reinjection- can address challenges simultaneously with several synergistic advantages; and, that freshwater and brine must be linked to CO2 and pressure as key decision making parameters throughout CCS operations while recognizing scalability and potential pore space competition challenges. This work presents a detailed modeling investigation of a potential integration opportunity resulting from brine production. Technical results will focus solely on the

  16. Ninety Years of International Cooperation in Geophysics

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Beer, T.

    2009-05-01

    Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes

  17. Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy

    PubMed Central

    Mizrachi, Dario; Chen, Yujie; Liu, Jiayan; Peng, Hwei-Ming; Ke, Ailong; Pollack, Lois; Turner, Raymond J.; Auchus, Richard J.; DeLisa, Matthew P.

    2015-01-01

    Integral membrane proteins (IMPs) play crucial roles in all cells and represent attractive pharmacological targets. However, functional and structural studies of IMPs are hindered by their hydrophobic nature and the fact that they are generally unstable following extraction from their native membrane environment using detergents. Here we devise a general strategy for in vivo solubilization of IMPs in structurally relevant conformations without the need for detergents or mutations to the IMP itself, as an alternative to extraction and in vitro solubilization. This technique, called SIMPLEx (solubilization of IMPs with high levels of expression), allows the direct expression of soluble products in living cells by simply fusing an IMP target with truncated apolipoprotein A-I, which serves as an amphipathic proteic ‘shield' that sequesters the IMP from water and promotes its solubilization. PMID:25851941

  18. Three years monitoring survey of pesticide residues in Sardinia wines following integrated pest management strategies.

    PubMed

    Angioni, Alberto; Dedola, Fabrizio

    2013-05-01

    This paper reports the results of a pesticide monitoring survey on wine grapes from the 2008-2010 vintage from vineyards grown according to integrated pest management strategies. A multi-residue gas chromatography-mass spectrometry method in electron ionization and chemical ionization mode has been used for the determination of 30 pesticides in wine samples. The analytical method showed good recoveries and allowed a good separation of the selected pesticides. Repeatability and intermediate precision showed good results with CV < 20 %. The instrumental method limits of determination (LOD) and of quantification (LOQ) were below the maximum residue levels set in wine. The analysis of the wines showed that pesticide residues were below the instrumental LOQ, and most of them were undetectable (

  19. Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1997-01-01

    This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

  20. Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy.

    PubMed

    Mizrachi, Dario; Chen, Yujie; Liu, Jiayan; Peng, Hwei-Ming; Ke, Ailong; Pollack, Lois; Turner, Raymond J; Auchus, Richard J; DeLisa, Matthew P

    2015-01-01

    Integral membrane proteins (IMPs) play crucial roles in all cells and represent attractive pharmacological targets. However, functional and structural studies of IMPs are hindered by their hydrophobic nature and the fact that they are generally unstable following extraction from their native membrane environment using detergents. Here we devise a general strategy for in vivo solubilization of IMPs in structurally relevant conformations without the need for detergents or mutations to the IMP itself, as an alternative to extraction and in vitro solubilization. This technique, called SIMPLEx (solubilization of IMPs with high levels of expression), allows the direct expression of soluble products in living cells by simply fusing an IMP target with truncated apolipoprotein A-I, which serves as an amphipathic proteic 'shield' that sequesters the IMP from water and promotes its solubilization. PMID:25851941

  1. Integrated, flexible, and rapid geophysical surveying

    NASA Astrophysics Data System (ADS)

    Miller, S. F.; McGinnis, L. D.; Thompson, M. D.; Tome, C.

    Aberdeen Proving Ground (APG) is currently managing a comprehensive Installation Restoration Program involving more than 360 solid-waste managing units contained within 13 study areas. The Edgewood area and two landfills in the Aberdeen area appear on the National Priority List under the Comprehensive Environmental Response, Compensation, and Liability Act. Therefore, APG has entered into an interagency agreement with the US Environmental Protection Agency to address the listed areas. The West Branch of the Canal Creek area, located within the Edgewood area, is one of the areas that requires a Source Definition Study because there is an ongoing release of volatile organic compounds into the creek. A report prepared in 1989 included a list of 29 potentially contaminated buildings in the Edgewood area. Sixteen of the buildings contain known contaminants, nine buildings contain unknown contaminants, and four of the buildings are potentially clean. The EAI report recommended that a sampling and monitoring program be established to verify contamination levels in and around each building. Thirteen of the potentially contaminated buildings are in the West Branch of the Canal Creek area and are potential sources of volatile organic compounds. Operations have ceased, and the buildings have been abandoned, but processing equipment, sumps, drains, ventilation systems, and underground storage tanks remain. These appurtenances may contain liquid, solid, or vapor contaminants of unknown nature.

  2. Integrated, flexible, and rapid geophysical surveying

    SciTech Connect

    Miller, S.F.; McGinnis, L.D.; Thompson, M.D.; Tome, C.

    1993-01-01

    Aberdeen Proving Ground (APG), in the state of Maryland (Figure 1), is currently managing a comprehensive Installation Restoration Program involving more than 360 solid-waste managing units contained within 13 study areas. The Edgewood area and two landfills in the Aberdeen area appear on the National Priority List under the Comprehensive Environmental Response, Compensation, and Liability Act. Therefore, APG has entered into an interagency agreement with the US Environmental Protection Agency to address the listed areas. The West Branch of the Canal Creek area (Figure 1), located within the Edgewood area, is one of the areas that requires a Source Definition Study because there is an ongoing release of volatile organic compounds into the creek. A report prepared by EAI Corporation (1989) included a list of 29 potentially contaminated buildings in the Edgewood area. Sixteen of the buildings contain known contaminants, nine buildings contain unknown contaminants, and four of the buildings are potentially clean. The EAI report recommended that a sampling and monitoring program be established to verify contamination levels in and around each building. Thirteen of the potentially contaminated buildings are in the West Branch of the Canal Creek area and are potential sources of volatile organic compounds. Operations have ceased and the buildings have been abandoned, but processing equipment, sumps, drains, ventilation systems, and underground storage tanks remain. These appurtenances may contain liquid, solid, or vapor contaminants of unknown nature.

  3. Integrated, flexible, and rapid geophysical surveying

    SciTech Connect

    Miller, S.F.; McGinnis, L.D.; Thompson, M.D.; Tome, C.

    1993-03-01

    Aberdeen Proving Ground (APG), in the state of Maryland (Figure 1), is currently managing a comprehensive Installation Restoration Program involving more than 360 solid-waste managing units contained within 13 study areas. The Edgewood area and two landfills in the Aberdeen area appear on the National Priority List under the Comprehensive Environmental Response, Compensation, and Liability Act. Therefore, APG has entered into an interagency agreement with the US Environmental Protection Agency to address the listed areas. The West Branch of the Canal Creek area (Figure 1), located within the Edgewood area, is one of the areas that requires a Source Definition Study because there is an ongoing release of volatile organic compounds into the creek. A report prepared by EAI Corporation (1989) included a list of 29 potentially contaminated buildings in the Edgewood area. Sixteen of the buildings contain known contaminants, nine buildings contain unknown contaminants, and four of the buildings are potentially clean. The EAI report recommended that a sampling and monitoring program be established to verify contamination levels in and around each building. Thirteen of the potentially contaminated buildings are in the West Branch of the Canal Creek area and are potential sources of volatile organic compounds. Operations have ceased and the buildings have been abandoned, but processing equipment, sumps, drains, ventilation systems, and underground storage tanks remain. These appurtenances may contain liquid, solid, or vapor contaminants of unknown nature.

  4. A ``model`` geophysics program

    SciTech Connect

    Nyquist, J.E.

    1994-03-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy`s Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994.

  5. Jesuit Geophysical Observatories

    NASA Astrophysics Data System (ADS)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  6. Evaluating integrated strategies for robust treatment of high saline piggery wastewater.

    PubMed

    Kim, Hyun-Chul; Choi, Wook Jin; Chae, A Na; Park, Joonhong; Kim, Hyung Joo; Song, Kyung Guen

    2016-02-01

    In this study, we integrated physicochemical and biological strategies for the robust treatment of piggery effluent in which high levels of organic constituents, inorganic nutrients, color, and salts remained. Piggery effluent that was stabilized in an anaerobic digester was sequentially coagulated, micro-filtered, and air-stripped prior to biological treatment with mixotrophic algal species that showed tolerance to high salinity (up to 4.8% as Cl(-)). The algae treatment was conducted with continuous O2 supplementation instead of using the combination of high lighting and CO2 injection. The microalga Scenedesmus quadricauda employed as a bio-agent was capable of assimilating both nitrogen (222 mg N g cell(-1) d(-1)) and phosphorus (9.3 mg P g cell(-1) d(-1)) and utilizing dissolved organics (2053 mg COD g cell(-1) d(-1)) as a carbon source in a single treatment process under the heterotrophic growth conditions. The heterotrophic growth of S. quadricauda proceeded rapidly by directly incorporating organic substrate in the oxidative assimilation process, which coincided with the high productivity of algal biomass, accounting for 2.4 g cell L(-1) d(-1). The algae-treated wastewater was subsequently ozonated to comply with discharge permits that limit color in the effluent, which also resulted in improved biodegradability of residual organics. The integrated treatment scheme proposed in this study also achieved 89% removal of COD, 88% removal of TN, and 60% removal of TP. The advantage of using the hybrid configuration suggests that this would be a promising strategy in full-scale treatment facilities for piggery effluent. PMID:26689659

  7. Formulation of a strategy for monitoring control integrity in critical digital control systems

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1991-01-01

    Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.

  8. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms.

    PubMed

    Arleo, Angelo; Rondi-Reig, Laure

    2007-09-01

    Flexible spatial behavior requires the ability to orchestrate the interaction of multiple parallel processes. At the sensory level, multimodal inputs must be combined to produce a robust description of the spatiotemporal properties of the environment. At the action-selection level, multiple concurrent navigation policies must be dynamically weighted in order to adopt the strategy that is the most adapted to the complexity of the task. Different neural substrates mediate the processing of spatial information. Elucidating their anatomo-functional interrelations is fundamental to unravel the overall spatial memory function. Here we first address the multisensory integration issue and we review a series of experimental findings (both behavioral and electrophysiological) concerning the neural bases of spatial learning and the way the brain builds unambiguous spatial representations from incoming multisensory streams. Second, we move at the navigation strategy level and present an overview of experimental data that begin to explain the cooperation-competition between the brain areas involved in spatial navigation. Third, we introduce the spatial cognition function from a computational neuroscience and neuro-robotics viewpoint. We provide an example of neuro-computational model that focuses on the importance of combining multisensory percepts to enable a robot to acquire coherent (spatial) memories of its interaction with the environment. PMID:17933016

  9. A clinical information systems strategy for a large integrated delivery network.

    PubMed Central

    Kuperman, G. J.; Spurr, C.; Flammini, S.; Bates, D.; Glaser, J.

    2000-01-01

    Integrated delivery networks (IDNs) are an emerging class of health care institutions. IDNs are formed from the affiliation of individual health care institutions and are intended to be more efficient in the current fiscal health care environment. To realize efficiencies and support their strategic visions, IDNs rely critically on excellent information technology (IT). Because of its importance to the mission of the IDN, strategic decisions about IT are made by the top leadership of the IDN. At Partners HealthCare System, a large IDN in Boston, MA, a clinical information systems strategy has been created to support the Partners clinical vision. In this paper, we discuss the Partners' structure, clinical vision, and current IT initiatives in place to address the clinical vision. The initiatives are: a clinical data repository, inpatient process support, electronic medical records, a portal strategy, referral applications, knowledge resources, support for product lines, patient computing, confidentiality, and clinical decision support. We address several of the issues encountered in trying to bring excellent information technology to a large IDN. PMID:11079921

  10. Down syndrome screening information in midwifery practices in the Netherlands: Strategies to integrate biomedical information.

    PubMed

    Rosman, Sophia

    2016-03-01

    The aim of this qualitative study was to analyse counselling with regard to prenatal screening in midwifery consultations in the Netherlands where a national prenatal screening programme has only existed since 2007, after years of social and political debates. The methodology is based on in situ observations of 25 counselling consultations in four midwifery practices in two main cities in the Netherlands. The results of this study show that, since midwives are obliged to offer information on Down syndrome screening to all pregnant women (2007), they have to deal with the communication of medical screening information using biostatistical concepts to explain risks, calculations, probabilities and chromosomal anomalies. In order to avoid the risk of medicalization of their consultation, midwives develop strategies that allow them to integrate this new biomedical discourse while maintaining their low medicalized approach of midwife-led care. One of their main strategies is to switch from 'alarming' biomedical messages to 'reassuring words' in order to manage the anxiety induced by the information and to keep the control over their low medicalized consultation. They also tend to distance themselves from the obligation to talk about screening. The way midwives handle these counselling consultations allows them to respect their obligation to propose information, and to remain faithful to their struggle to protect the natural process of pregnancy as well as their professional autonomy. PMID:25504473

  11. An integrative review: instructional strategies to improve nurses' retention of cardiopulmonary resuscitation priorities.

    PubMed

    Sullivan, Nancy

    2015-01-01

    Recognizing and responding to a cardiac arrest in the hospital setting is a high stress, high anxiety event for all healthcare providers. It requires the performance of several basic, but extremely important cardiopulmonary resuscitation (CPR) skills and response priorities. If not executed correctly and in a timely manner, a bad outcome may result. Poor retention of cardiopulmonary resuscitation skills and priorities is well documented in the literature. An integrative review of the evidence was conducted to answer the question, "Is there a more effective training method to improve nurses' retention of CPR priorities during an in hospital cardiac arrest as compared to traditional American Heart Association training? "This review evaluated high fidelity and low fidelity simulation training, online or computer-based training and video instruction as potential teaching strategies focusing on CPR priorities. The role of deliberate practice is discussed. The strongest evidence suggests that a teaching plan employing brief, frequent, repetitive or deliberate practice used in collaboration with low fidelity or high fidelity simulation may be a potential strategy to improve nurses' retention of CPR priorities over time. PMID:25830906

  12. Integrating complexity into data-driven multi-hazard supply chain network strategies

    USGS Publications Warehouse

    Long, Suzanna K.; Shoberg, Thomas G.; Ramachandran, Varun; Corns, Steven M.; Carlo, Hector J.

    2013-01-01

    Major strategies in the wake of a large-scale disaster have focused on short-term emergency response solutions. Few consider medium-to-long-term restoration strategies that reconnect urban areas to the national supply chain networks (SCN) and their supporting infrastructure. To re-establish this connectivity, the relationships within the SCN must be defined and formulated as a model of a complex adaptive system (CAS). A CAS model is a representation of a system that consists of large numbers of inter-connections, demonstrates non-linear behaviors and emergent properties, and responds to stimulus from its environment. CAS modeling is an effective method of managing complexities associated with SCN restoration after large-scale disasters. In order to populate the data space large data sets are required. Currently access to these data is hampered by proprietary restrictions. The aim of this paper is to identify the data required to build a SCN restoration model, look at the inherent problems associated with these data, and understand the complexity that arises due to integration of these data.

  13. Borehole Geophysical Logging Program: Incorporating New and Existing Techniques in Hydrologic Studies

    USGS Publications Warehouse

    Wacker, Michael A.; Cunningham, Kevin J.

    2008-01-01

    The borehole geophysical logging program at the U.S. Geological Survey (USGS)-Florida Integrated Science Center (FISC) provides subsurface information needed to resolve geologic, hydrologic, and environmental issues in Florida. The program includes the acquisition, processing, display, interpretation, and archiving of borehole geophysical logs. The borehole geophysical logging program is a critical component of many FISC investigations, including hydrogeologic framework studies, aquifer flow-zone characterization, and freshwater-saltwater interface delineation.

  14. Geophysical methods for monitoring infiltration in soil

    NASA Astrophysics Data System (ADS)

    Coquet, Yves; Pessel, Marc; Saintenoy, Albane

    2015-04-01

    Geophysics provides useful tools for monitoring water infiltration in soil essentially because they are non-invasive and have a good time-resolution. We present some results obtained on different soils using two geophysical techniques: electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). Infiltration in a loamy soil was monitored using a 2D Wenner array set up under a tension disc infiltrometer. A good imaging of the infiltration bulb below the infiltrometer could be achieved provided a sufficient resistivity contrast between the wet and the dry soil zones. ERT data could be used to invert soil hydraulic properties. However, we found that the information provided by the ERT could be of limited importance in regard to the information provided by the infiltration rate dynamics if the ERT spatial resolution is not small enough to capture the details of the infiltration front at the limit between the wet and dry soil zones. GPR was found to be a good tool to monitor the progression of the infiltration front in a sandy soil. By combining a water transport simulation model (HYDRUS-1D), a method for transforming water content into dielectric permittivity values (CRIM), and an electromagnetic wave propagation model (GprMax), the Mualem-van Genuchten hydraulic parameters could be retrieved from radargrams obtained under constant or falling head infiltration experiments. Both ERT and GPR methods have pros and cons. Time and spatial resolutions are of prime importance to achieve a sufficient sensitivity to all soil hydraulic parameters. Two exploration fields are suggested: the combination of different geophysical methods to explore infiltration in heterogeneous soils, and the development of integrated infiltrometers that allow geophysical measurements while monitoring water infiltration rate in soil.

  15. Primary prevention of type 2 diabetes: integrative public health and primary care opportunities, challenges and strategies

    PubMed Central

    Green, Lawrence W; Brancati, Frederick L; Albright, Ann

    2012-01-01

    Type 2 diabetes imposes a large and growing burden on the public’s health. This burden, combined with the growing evidence for primary prevention from randomized controlled trials of structured lifestyle programs leads to recommendations to include caloric reduction, increased physical activity and specific assistance to patients in problem solving to achieve modest weight loss as well as pharmacotherapy. These recommendations demand exploration of new ways to implement such primary prevention strategies through more integrated community organization, medical practice and policy. The US experience with control of tobacco use and high blood pressure offers valuable lessons for policy, such as taxation on products, and for practice in a variety of settings, such as coordination of referrals for lifestyle supports. We acknowledge also some notable exceptions to their generalizability. This paper presents possible actions proposed by an expert panel, summarized in Table 1 as recommendations for immediate action, strategic action and research. The collaboration of primary care and public health systems will be required to make many of these recommendations a reality. This paper also provides information on the progress made in recent years by the Division of Diabetes Translation at the US Centers for Disease Control and Prevention (CDC) to implement or facilitate such integration of primary care and public health for primary prevention. PMID:22399542

  16. Integrated Waste Management Strategy and Radioactive Waste Forms for the 21st Century

    SciTech Connect

    Dirk Gombert; Jay Roach

    2007-03-01

    The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilization and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.

  17. Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays.

    PubMed

    Shen, Mingyun; Tian, Sheng; Pan, Peichen; Sun, Huiyong; Li, Dan; Li, Youyong; Zhou, Hefeng; Li, Chuwen; Lee, Simon Ming-Yuen; Hou, Tingjun

    2015-01-01

    Rho-associated kinases (ROCKs) have been regarded as promising drug targets for the treatment of cardiovascular diseases, nervous system diseases and cancers. In this study, a novel integrated virtual screening protocol by combining molecular docking and pharmacophore mapping based on multiple ROCK1 crystal structures was utilized to screen the ChemBridge database for discovering potential inhibitors of ROCK1. Among the 38 tested compounds, seven of them exhibited significant inhibitory activities of ROCK1 (IC50 < 10 μM) and the most potent one (compound TS-f22) with the novel scaffold of 4-Phenyl-1H-pyrrolo [2,3-b] pyridine had an IC50 of 480 nM. Then, the structure-activity relationships of 41 analogues of TS-f22 were examined. Two potent inhibitors were proven effective in inhibiting the phosphorylation of the downstream target in the ROCK signaling pathway in vitro and protecting atorvastatin-induced cerebral hemorrhage in vivo. The high hit rate (28.95%) suggested that the integrated virtual screening strategy was quite reliable and could be used as a powerful tool for identifying promising active compounds for targets of interest. PMID:26568382

  18. Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays

    PubMed Central

    Shen, Mingyun; Tian, Sheng; Pan, Peichen; Sun, Huiyong; Li, Dan; Li, Youyong; Zhou, Hefeng; Li, Chuwen; Lee, Simon Ming-Yuen; Hou, Tingjun

    2015-01-01

    Rho-associated kinases (ROCKs) have been regarded as promising drug targets for the treatment of cardiovascular diseases, nervous system diseases and cancers. In this study, a novel integrated virtual screening protocol by combining molecular docking and pharmacophore mapping based on multiple ROCK1 crystal structures was utilized to screen the ChemBridge database for discovering potential inhibitors of ROCK1. Among the 38 tested compounds, seven of them exhibited significant inhibitory activities of ROCK1 (IC50 < 10 μM) and the most potent one (compound TS-f22) with the novel scaffold of 4-Phenyl-1H-pyrrolo [2,3-b] pyridine had an IC50 of 480 nM. Then, the structure-activity relationships of 41 analogues of TS-f22 were examined. Two potent inhibitors were proven effective in inhibiting the phosphorylation of the downstream target in the ROCK signaling pathway in vitro and protecting atorvastatin-induced cerebral hemorrhage in vivo. The high hit rate (28.95%) suggested that the integrated virtual screening strategy was quite reliable and could be used as a powerful tool for identifying promising active compounds for targets of interest. PMID:26568382

  19. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  20. Revealing potential molecular targets bridging colitis and colorectal cancer based on multidimensional integration strategy

    PubMed Central

    Hu, Yongfei; Li, Xiaobo; Wang, Xishan; Fan, Huihui; Wang, Guiyu; Wang, Dong

    2015-01-01

    Chronic inflammation may play a vital role in the pathogenesis of inflammation-associated tumors. However, the underlying mechanisms bridging ulcerative colitis (UC) and colorectal cancer (CRC) remain unclear. Here, we integrated multidimensional interaction resources, including gene expression profiling, protein-protein interactions (PPIs), transcriptional and post-transcriptional regulation data, and virus-host interactions, to tentatively explore potential molecular targets that functionally link UC and CRC at a systematic level. In this work, by deciphering the overlapping genes, crosstalking genes and pivotal regulators of both UC- and CRC-associated functional module pairs, we revealed a variety of genes (including FOS and DUSP1, etc.), transcription factors (including SMAD3 and ETS1, etc.) and miRNAs (including miR-155 and miR-196b, etc.) that may have the potential to complete the connections between UC and CRC. Interestingly, further analyses of the virus-host interaction network demonstrated that several virus proteins (including EBNA-LP of EBV and protein E7 of HPV) frequently inter-connected to UC- and CRC-associated module pairs with their validated targets significantly enriched in both modules of the host. Together, our results suggested that multidimensional integration strategy provides a novel approach to discover potential molecular targets that bridge the connections between UC and CRC, which could also be extensively applied to studies on other inflammation-related cancers. PMID:26461477

  1. An integrated chinmedomics strategy for discovery of effective constituents from traditional herbal medicine

    PubMed Central

    Wang, Xijun; Zhang, Aihua; Zhou, Xiaohang; Liu, Qi; Nan, Yang; Guan, Yu; Kong, Ling; Han, Ying; Sun, Hui; Yan, Guangli

    2016-01-01

    Traditional natural product discovery affords no information about compound structure or pharmacological activities until late in the discovery process, and leads to low probabilities of finding compounds with unique biological properties. By integrating serum pharmacochemistry-based screening with high-resolution metabolomics analysis, we have developed a new platform, termed chinmedomics which is capable of directly discovering the bioactive constituents. In this work, the focus is on ShenQiWan (SQW) treatment of ShenYangXu (SYX, kidney-yang deficiency syndrome) as a case study, as determined by chinmedomics. With serum pharmacochemistry, a total of 34 peaks were tentatively characterised in vivo, 24 of which were parent components and 10 metabolites were detected. The metabolic profiling and potential biomarkers of SYX were also investigated and 23 differential metabolites were found. 20 highly correlated components were screened by the plotting of correlation between marker metabolites and serum constituents and considered as the main active components of SQW. These compounds are imported into a database to predict the action targets: 14 importantly potential targets were found and related to aldosterone-regulated sodium reabsorption and adrenergic signaling pathways. Our study showed that integrated chinmedomics is a powerful strategy for discovery and screening of effective constituents from herbal medicines. PMID:26750403

  2. A Strategy for Integrating a Large Finite Element Model Using MSC NASTRAN/PATRAN: X-33 Lessons Learned

    NASA Technical Reports Server (NTRS)

    McGhee, D. S.

    1999-01-01

    The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past 3 years the Structural Dynamics and Loads Branch of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made: purpose of models, units, common materials list, model numbering, interface control, and archive format. This strategy has been proven and expanded from experience on the X-33 vehicle.

  3. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  4. Optimization of coalbed-methane-reservoir exploration and development strategies through integration of simulation and economics

    SciTech Connect

    Clarkson, C.R.; McGovern, J.M.

    2005-12-15

    The unique properties and complex characteristics of coalbed methane (CBM) reservoirs, and their consequent operating strategies, call for an integrated approach to be used to explore for and develop coal plays and prospects economically. An integrated approach involves the use of sophisticated reservoir, wellbore, and facilities modeling combined with economics and decision-making criteria. A new CBM prospecting tool (CPT) was generated by combining single-well (multilayered) reservoir simulators with a gridded reservoir model, Monte Carlo (MC) simulation, and economic modules. The multilayered reservoir model is divided into pods, representing relatively uniform reservoir properties, and a 'type well' is created for each pod. At every MC iteration, type-well forecasts are generated for the pods and are coupled with economic modules. A set of decision criteria contingent upon economic outcomes and reservoir characteristics is used to advance prospect exploration from the initial exploration well to the pilot and development stages. A novel approach has been used to determine the optimal well spacing should prospect development be contemplated. CPT model outcomes include a distribution of after-tax net present value (ATNPV), mean ATNPV (expected value), chance of economic success (Pe), distribution of type-well and pod gas and water production, reserves, peak gas volume, and capita. Example application of CPT to a hypothetical prospect is provided. An integrated approach also has been used to assist with production optimization of developed reservoirs. For example, an infill-well locating tool (ILT) has been constructed to provide a quick-look evaluation of infill locations in a developed reservoir. An application of ILT to a CBM reservoir is provided.

  5. Building Geophysics Talent and Opportunity in Africa: Experience from the AfricaArray/Wits Geophysics Field School

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Manzi, M.; Scheiber-Enslin, S. E.; Durrheim, R. J.; Jones, M. Q. W.; Nyblade, A.

    2015-12-01

    There are many challenges faced by geophysics students and academic staff in Africa that make it difficult to develop effective field and research programs. Challenges to conducting field work that have been identified, and that can be tackled are: lack of training on geophysical equipment and lack of exposure to field program design and implementation. To address these challenges, the AfricaArray/Wits Geophysics field school is designed to expose participants to a wide variety of geophysical instruments and the entire workflow of a geophysical project. The AA field school was initially developed for the geophysics students at the University of the Witwatersrand. However, by increasing the number of participants, we are able to make more effective use of a large pool of equipment, while addressing challenging geophysical problems at a remote field site. These additional participants are selected partially based on the likely hood of being able start a field school at their home institution. A good candidate would have access to geophysical equipment, but may not have knowledge of how to use it or how to effectively design surveys. These are frequently junior staff members or graduate students in leadership roles. The three week program introduces participants to the full geophysical field workflow. The first week is spent designing a geophysical survey, including determining the cost. The second week is spent collecting data to address a real geophysical challenge, such as determining overburden thickness, loss of ground features due to dykes in a mine, or finding water. The third week is spent interpreting and integrating the various data sets culminating in a final presentation. Participants are given all lecture material and much of the software is open access; this is done to encourage using the material at the home institution. One innovation has been to use graduate students as instructors, thus building a pool of talent that has developed the logistic and

  6. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  7. An Integrated Evaluation Strategy For Demonstrating In Situ Bioenhanced NAPL Dissolution

    NASA Astrophysics Data System (ADS)

    Seagren, E. A.; Rittmann, B. E.

    2006-12-01

    Performance evaluation of in situ bioremediation processes in the field is difficult due to the uncertainty created by matrix and contaminant heterogeneity, inaccessibility to observation, expense of sampling, and limitations of some measurements. The report In Situ Bioremediation: When Does It Work? (National Research Council, 1993, National Academies Press, Washington, D.C.), provides an evaluation strategy that overcomes these difficulties by defining success as the demonstration of three types of evidence: (1) loss of contaminants, (2) laboratory assays showing that microorganisms in site samples have the potential to transform the contaminants under the expected conditions, and (3) evidence that the biodegradation potential is actually realized in the field. The objective of this research was to use these guidelines for the purpose of evaluating in situ bioremediation of nonaqueous-phase liquid (NAPL) contamination and demonstrating the occurrence of bioenhanced NAPL dissolution by: (1) integrating a suite of analyses into a rational evaluation strategy; and (2) demonstrating the strategy's application in sand-tank mesocosm experiments simulating in situ bioremediation of an aquifer contaminated with a pool of synthetic NAPL (a binary mixture of naphthalene dissolved in dodecane). Two sand-tank mesocosms (T1 and T2) were operated to see how the monitored parameters change under two conditions of interest: T1 was operated to simulate the "no bioremediation" scenario, provide a common baseline for comparison with the "intrinsic" bioremediation phase, and demonstrate the results expected using the proposed measurements when bioremediation is not significant; and T2 was operated to simulate an "intrinsic in situ" bioremediation scenario to demonstrate measurements indicative of low levels of biological activity. A key point in this evaluation is the integration of the different measures of microbial activity and contaminant degradation used to provide evidence of

  8. Geophysics & Geology Inspected.

    ERIC Educational Resources Information Center

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  9. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  10. Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.

    2002-12-01

    Science educators working directly with scientists to develop inquiry-based instructional materials in Earth science yield some of the best results. The TEXTEAMS (Texas Teachers Empowered for Achievement in Mathematics and Science) Leadership Training for the Texas high school science course, Geology, Meteorology and Oceanography (GMO) is one example of a successful program that provides high-quality training to master teachers using geophysical data collected by scientists at The University of Texas Institute for Geophysics (UTIG). TEXTEAMS is a certification program of professional development and leadership training sponsored by the National Science Foundation that is part of the Texas Statewide Systemic Initiative. UTIG scientists teamed with science educators at the Charles A. Dana Center for Mathematics and Science Education at UT and the Texas Education Agency to develop inquiry-based instructional materials for eight GMO modules. Our learning activities help students and teachers understand how Earth scientists interpret the natural world and test their hypotheses, and provide opportunities for the use of technology in classroom science learning; they are aligned with national and state teaching standards. Examples of TEXTEAMS GMO learning activities that use geophysical data. 1. Neotectonics: radiocarbon dates and elevation above current sea level of raised coral reefs in the New Georgia Islands are used to calculate rates of tectonic uplift and as a basis for the development of a conceptual model to explain the pattern of uplift that emerges from the data. 2. Large Igneous Provinces:geophysical logging data collected on ODP Leg 183 (Kerguelen Plateau) are analyzed to identify the transition from sediment to basement rock. 3. The Search for Black Gold: petroleum exploration requires the integration of geology, geophysics, petrophysics and geochemistry. Knowledge gained in previous GMO modules is combined with fundamental knowledge about economics to

  11. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  12. Optimization and geophysical inverse problems

    SciTech Connect

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  13. Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks.

    PubMed

    Mei, Lei; Wang, Lin; Yuan, Li-yong; An, Shu-wen; Zhao, Yu-liang; Chai, Zhi-fang; Burns, Peter C; Shi, Wei-qun

    2015-08-01

    The assembly of two-dimensional (2D) large channel uranyl-organic polyrotaxane networks as well as structural regulation of uranyl-bearing units using jointed cucurbit[6]uril-based pseudorotaxanes with integral rigidity based on supramolecular inclusion is presented for the first time. This construction strategy concerning controlling molecular integral rigidity based on supramolecular inclusion may afford an entirely new methodology for coordination chemistry. PMID:26121567

  14. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells

    PubMed Central

    Congras, Annabelle; Barasc, Harmonie; Canale-Tabet, Kamila; Plisson-Petit, Florence; Delcros, Chantal; Feraud, Olivier; Oudrhiri, Noufissa; Hadadi, Eva; Griscelli, Franck; Bennaceur-Griscelli, Annelise; Turhan, Ali; Afanassieff, Marielle; Ferchaud, Stéphane; Pinton, Alain; Yerle-Bouissou, Martine; Acloque, Hervé

    2016-01-01

    The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians. PMID:27245508

  15. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells.

    PubMed

    Congras, Annabelle; Barasc, Harmonie; Canale-Tabet, Kamila; Plisson-Petit, Florence; Delcros, Chantal; Feraud, Olivier; Oudrhiri, Noufissa; Hadadi, Eva; Griscelli, Franck; Bennaceur-Griscelli, Annelise; Turhan, Ali; Afanassieff, Marielle; Ferchaud, Stéphane; Pinton, Alain; Yerle-Bouissou, Martine; Acloque, Hervé

    2016-01-01

    The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians. PMID:27245508

  16. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    SciTech Connect

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.

    2009-11-01

    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  17. MAI (Multi-Dimensional Activity Based Integrated Approach): A Strategy for Cognitive Development of the Learners at the Elementary Stage

    ERIC Educational Resources Information Center

    Basantia, Tapan Kumar; Panda, B. N.; Sahoo, Dukhabandhu

    2012-01-01

    Cognitive development of the learners is the prime task of each and every stage of our school education and its importance especially in elementary state is quite worth mentioning. Present study investigated the effectiveness of a new and innovative strategy (i.e., MAI (multi-dimensional activity based integrated approach)) for the development of…

  18. Effects of Instructional Technology Integration Strategies in Orientation Programs on Nurse Retention in Magnet and Non-Magnet Hospitals

    ERIC Educational Resources Information Center

    Hancharik, Sharon D.

    2008-01-01

    This applied dissertation study was designed to learn if the increased use of instructional technology integration strategies in nursing orientation programs resulted in an increased retention of new nurses. The study attempted to uncover the current retention rate and use of technology at the participating hospitals. The data obtained from Magnet…

  19. Preparing Teachers for the 21st Century Using PBL as an Integrating Strategy in Science and Technology Education

    ERIC Educational Resources Information Center

    Brears, Lindsay; MacIntyre, Bill; O'Sullivan, Gary

    2011-01-01

    This paper explores the foundational principles of Problem-Based Learning (PBL) as an integrative teaching strategy designed deliberately to cross discipline boundaries in order to make meaningful and lasting connections. The authors suggest that while PBL has in recent times has largely manifested towards a method of inquiry within a single…

  20. Work Values, Cognitive Strategies, and Applicant Reactions in a Structured Pre-Employment Interview for Ethical Integrity.

    ERIC Educational Resources Information Center

    Pawlowski, Donna R.; Hollwitz, John

    2000-01-01

    Notes that companies emphasize ethical behavior, and schools and professional groups devote many resources to applied ethics training. Describes initial construct validation of a structured ethical integrity pre-employment interview. Reviews evidence relating to cognitive and impression management strategies used when college students encounter an…

  1. Integrating Assessment and Research Strategies on a Large Development and Research Project: Kids as Airborne Mission Scientists (KaAMS).

    ERIC Educational Resources Information Center

    Grabowski, Barbara L.; Koszalka, Tiffany A.

    Combining assessment and research components on a large development and research project is a complex task. There are many descriptions of how either assessment or research should be conducted, but detailed examples illustrating integration of such strategies in complex projects are scarce. This paper provides definitions of assessment,…

  2. An integrated testing strategy for in vitro skin corrosion and irritation assessment using SkinEthic™ Reconstructed Human Epidermis.

    PubMed

    Alépée, Nathalie; Grandidier, Marie-Hélène; Tornier, Carine; Cotovio, José

    2015-10-01

    The SkinEthic™ Reconstructed Human Epidermis (RHE) method has been formally adopted for the regulatory assessment of skin irritation (OECD TG 439) and corrosion (OECD TG 431). Recently, the OECD adopted an Integrated Approach on Testing and Assessment (IATA) for skin corrosion and skin irritation (OECD GD 203), which provides guidance on the integration of existing and new information in a modular approach for classification and labelling. The present study aimed to evaluate the use of the SkinEthic™ RHE model within the proposed OECD IATA. Data on 86 substances were integrated in a bottom-up and top-down testing strategy to assess their capacity for EU CLP and UN GHS classifications. For EU CLP, strategies showed an accuracy of 84.8% to discriminate non-classified from classified substances, 94.4% to discriminate corrosive from non-corrosive substances, and 68.5% to discriminate the four (sub)-categories. For UN GHS, strategies showed an accuracy of 89.5% to discriminate non-classified from classified substances, 93.4% to discriminate corrosive from non-corrosive substances, and 74.2% to discriminate four GHS (sub)-categories (excluding Category 3). In conclusion, the integration of SkinEthic™ RHE irritation and corrosion data in a bottom-up and top-down testing strategy allows the classification of substances according to EU CLP and UN GHS. PMID:26187475

  3. SAGE celebrates 25 years of learning geophysics by doing geophysics

    USGS Publications Warehouse

    Jiracek, G.R.; Baldridge, W.S.; Sussman, A.J.; Biehler, S.; Braile, L.W.; Ferguson, J.F.; Gilpin, B.E.; McPhee, D.K.; Pellerin, L.

    2008-01-01

    The increasing world demand and record-high costs for energy and mineral resources, along with the attendant environmental and climate concerns, have escalated the need for trained geophysicists to unprecedented levels. This is not only a national need; it's a critical global need. As Earth scientists and educators we must seriously ask if our geophysics pipeline can adequately address this crisis. One program that has helped to answer this question in the affirmative for 25 years is SAGE (Summer of Applied Geophysical Experience). SAGE continues to develop with new faculty, new collaborations, and additional ways to support student participation during and after SAGE. ?? 2008 Society of Exploration Geophysicists.

  4. Strategies for the integration of intermittent renewable energy sources in the electrical system

    NASA Astrophysics Data System (ADS)

    Romanelli, Francesco

    2016-03-01

    Europe is pursuing an aggressive programme to increase its share of renewable energy source (RES). However, the integration of intermittent RES (wind and photovoltaic) in the electrical system requires either maintaining in operation thermal backup systems or providing a substantial amount of electricity storage. We analyze the Italian electricity data for the year 2013 provided by the transmission system operator TERNA. The present level of intermittent RES power is scaled-up to a level at which it generates an amount of electricity equal to the annual demand. While a substantial reduction of the energy annually produced by fossil backup systems (and the associated CO2 emission) with respect to the no-RES case is possible in many scenarios considered here, the backup power is generally only marginally reduced below the value in the absence of RES. The strategy proposed is based on the combination of a modest amount of storage (0.5-5TWh) and base-load power (6-15GW, to be used during the seasons of low RES production). In this way the non-RES installed power can be reduced from ˜ 50 GW to less than 15GW and could be covered by a combination of biomass and nuclear energy without any CO2 emission.

  5. New Strategies in Barrett’s Esophagus Integrating clonal evolutionary theory with clinical management

    PubMed Central

    Reid, Brian J; Kostadinov, Rumen; Maley, Carlo C.

    2011-01-01

    Barrett’s esophagus is a condition in which the normal stratified squamous epithelium of the distal esophagus is replaced by intestinal metaplasia. For more than three decades the prevailing clinical paradigm has been that Barrett’s esophagus is a complication of symptomatic reflux disease that predisposes to esophageal adenocarcinoma, yet no clinical strategy for cancer prevention or early detection based on this paradigm has been proven to reduce esophageal adenocarcinoma mortality in a randomized clinical trial in part because only about 5-10% of individuals with Barrett’s esophagus develop esophageal adenocarcinoma. Recent research indicates that Barrett’s metaplasia is an adaptation for mucosal defense in response to chronic reflux in most individuals. The risk of progressing to esophageal adenocarcinoma is determined by development of genomic instability and dynamic clonal evolution in the distal esophagus modulated by host and environmental risk and protective factors, including inherited genotype. The challenge in Barrett’s esophagus lies in integrating knowledge about genomic instability and clonal evolution into clinical management to increase the lifespans and quality of life of individuals with this condition. PMID:21498395

  6. New strategies in Barrett's esophagus: integrating clonal evolutionary theory with clinical management.

    PubMed

    Reid, Brian J; Kostadinov, Rumen; Maley, Carlo C

    2011-06-01

    Barrett's esophagus is a condition in which the normal stratified squamous epithelium of the distal esophagus is replaced by intestinal metaplasia. For more than three decades, the prevailing clinical paradigm has been that Barrett's esophagus is a complication of symptomatic reflux disease that predisposes to esophageal adenocarcinoma. However, no clinical strategy for cancer prevention or early detection based on this paradigm has been proven to reduce esophageal adenocarcinoma mortality in a randomized clinical trial in part because only about 5% to 10% of individuals with Barrett's esophagus develop esophageal adenocarcinoma. Recent research indicates that Barrett's metaplasia is an adaptation for mucosal defense in response to chronic reflux in most individuals. The risk of progressing to esophageal adenocarcinoma is determined by development of genomic instability and dynamic clonal evolution in the distal esophagus modulated by host and environmental risk and protective factors, including inherited genotype. The challenge for investigators of Barrett's esophagus lies in integrating knowledge about genomic instability and clonal evolution into clinical management to increase the lifespan and quality of life of individuals with this condition. PMID:21498395

  7. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.

    PubMed

    Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. PMID:14740661

  8. An integrated top-down and bottom-up strategy for characterization protein isoforms and modifications

    SciTech Connect

    Wu, Si; Tolic, Nikola; Tian, Zhixin; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2011-04-15

    Bottom-up and top-down strategies are two commonly used methods for mass spectrometry (MS) based protein identification; each method has its own advantages and disadvantages. In this chapter, we describe an integrated top-down and bottom-up approach facilitated by concurrent liquid chromatography-mass spectrometry (LC-MS) analysis and fraction collection for comprehensive high-throughput intact protein profiling. The approach employs a high resolution reversed phase (RP) LC separation coupled with LC eluent fraction collection and concurrent on-line MS with a high field (12 Tesla) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer. Protein elusion profiles and tentative modified protein identification are made using detected intact protein mass in conjunction with bottom-up protein identifications from the enzymatic digestion and analysis of corresponding LC fractions. Specific proteins of biological interest are incorporated into a target ion list for subsequent off-line gas-phase fragmentation that uses an aliquot of the original collected LC fraction, an aliquot of which was also used for bottom-up analysis.

  9. Cooperative business management strategies for the U.S. integrated textile complex

    SciTech Connect

    Washington, K.E.

    1995-12-31

    The mission of the American Textile (AMTEX{trademark}) Partnership is to engage the unique technical resources of the Department of Energy National Laboratories to work with the US Integrated Textile Complex (US ITC) and research universities to develop and deploy technologies that will increase the competitiveness of the US ITC. The objectives of the Demand Activated Manufacturing Architecture (DAMA) project of AMTEX are: (1) to determine strategic business structure changes for the US ITC; (2) to establish a textile industry electronic marketplace, (3) to provide methods for US ITC education ad implementation of an electronic marketplace. The Enterprise Modeling and Simulation Task of DAMA is focusing on the first DAMA goal as described in another paper of this conference. The Cooperative Business Management (CBM) Task of DAMA is developing computer-based tools that will render system-wide information accessible for improved decision making. Three CBM strategies and the associated computer tools being developed to support their implementation are described in this paper. This effort is addressing the second DAMA goal to establish a textile industry electronic marketplace in concert with the Connectivity and Infrastructure Task of DAMA. As the CBM tools mature, they will be commercialized through the DAMA Education, Outreach and Commercialization Task of DAMA to achieve the third and final DAMA goal.

  10. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots. PMID:27558065

  11. Integrating complementary medicine literacy education into Australian medical curricula: Student-identified techniques and strategies for implementation.

    PubMed

    Templeman, Kate; Robinson, Anske; McKenna, Lisa

    2015-11-01

    Formal medical education about complementary medicine (CM) that comprises medicinal products/treatments is required due to possible CM interactions with conventional medicines; however, few guidelines exist on design and implementation of such education. This paper reports findings of a constructivist grounded theory method study that identified key strategies for integrating CM literacy education into medical curricula. Analysis of data from interviews with 30 medical students showed that students supported a longitudinal integrative and pluralistic approach to medicine. Awareness of common patient use, evidence, and information relevant to future clinical practice were identified as focus points needed for CM literacy education. Students advocated for interactive case-based, experiential and dialogical didactic techniques that are multiprofessional and student-centred. Suggested strategies provide key elements of CM literacy within research, field-based practice, and didactic teaching over the entirety of the curriculum. CM educational strategies should address CM knowledge deficits and ultimately respond to patients' needs. PMID:26573450

  12. An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation.

    PubMed

    Fulton, Elizabeth A; Smith, Anthony D M; Smith, David C; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722

  13. An Integrated Approach Is Needed for Ecosystem Based Fisheries Management: Insights from Ecosystem-Level Management Strategy Evaluation

    PubMed Central

    Fulton, Elizabeth A.; Smith, Anthony D. M.; Smith, David C.; Johnson, Penelope

    2014-01-01

    An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals. PMID:24454722

  14. Gender diversity in Geophysics

    NASA Astrophysics Data System (ADS)

    Deuss, Arwen

    2016-04-01

    As a successful female scientist with two ERC grants, first as a starter and now a consolidator, I was priviliged that I personally never perceived any obstacles. At the same time, I am also aware that the statistics tell a different story when you look at the whole population. I will give an account and tell some anecdotes about what I think helped me, though it is important to be careful not to generalise my personal strategies. My main strategy is to publish papers in international journals and obtain personal grants. This also means limiting additional responsibilities that will not benefit my publication record or potential success in grant applications. The second important factor is that I have always been surrounded by people who give me confidence and support me, such as my parents, partner and senior colleagues who have acted (mostly unofficially) as mentor. In the workplace, there is a great advantage in having a senior mentor, who needs to be a successful academic(!), and can help with any career related issues and choices. But also at home, a supportive partner who will take an equal share in childcare responsibilities, makes a great difference. Are there any new strategies that we can implement to further overcome barriers? Not by design, but by coincidence, my research team for my ERC starting grant consisted largely of female PhD students and postdocs. The great things was that they stimulated each other, all became very confident, and several of them now have academics jobs at prestigious universities in the US and Europe. They believe in themselves, which is the first step in overcoming any potential barriers they may encounter later in their careers.

  15. Object Storage for Geophysical Data

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Readey, J.

    2015-12-01

    Object storage systems (such as Amazon S3 or Ceph) have been shown to be cost-effective and highly scalable for data repositories in the Petabyte range and larger. However traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In this session we'll discuss the advantages and challenges of moving to an object store-based model for geophysical data. We'll review a proposed model for a geophysical data service that provides an API-compatible library for traditional NetCDF and HDF5 applications while providing high scalability and performance. One further advantage of this approach is that any dataset or dataset selection can be referenced as a URI. By using versioning, the data the URI references can be guaranteed to be unmodified, thus enabling reproducibility of referenced data.

  16. Unleashing Geophysics Data with Modern Formats and Services

    NASA Astrophysics Data System (ADS)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability

  17. 3D stochastic geophysical inversion for contact surface geometry

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo

    2015-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple

  18. A geostatistical approach to integrating data from multiple and diverse sources: An application to the integration of well data, geological information, 3d/4d geophysical and reservoir-dynamics data in a north-sea reservoir

    NASA Astrophysics Data System (ADS)

    Caers, Jef; Castro, Scarlet

    Modeling the subsurface is an inherently difficult task due to limited access and lack of direct observation of the complex medium under investigation. Nevertheless, practical engineering questions often call for a full 3D modeling of subsurface heterogeneity, whether the task is to maximize production of an oil reservoir or to optimize storage of water during dry seasons in an aquifer storage and recovery process. While the goal of modeling and the nature of fluid flow may be different between the field of petroleum and hydrogeology, each deals with a similar heterogeneous medium and faces similar questions in model building. Modeling aquifers or reservoirs requires integrating diverse sources of information into a single model (e.g., Deutsch, 2003, Caers, 2005). One faces many challenges in doing so, most related to the issue of scale, since the unit grid cell size of the model is different from the scale of information provided by each source of information. Each such source informs the aquifer or reservoir at a different scale of observation. Secondly, models contain several geological building blocks, such as a structural model (fault/horizons), 3D distribution of facies types, petrophysical properties (porosity and permeability) per facies, fluid distributions and fluid properties, etc.; each building block needs to be constrained to the available data.

  19. Critical aspects of integrated monitoring systems for landslides risk management: strategies for a reliable approach

    NASA Astrophysics Data System (ADS)

    Castagnetti, C.; Bertacchini, E.; Capra, A.; Corsini, A.

    2012-04-01

    interesting and critical aspects that will be deeper described and analyzed are: - strategy for planning a successful integrated system for continuous monitoring. - Choice of the reference frame: local coordinate system or georeferenced one. - Stability of the site for the master unit positioning: GPS time series analysis for controlling the effective stability. Thanks to the GPS master station that are operating for over three years, atmospheric disturbances affecting the signal may be removed in order to carefully verify the stability of the area and to establish whether the site is geologically stable, as originally suggested, or not. In the latter case, the magnitude of movements may also be computed for providing corrections to TS observations. - Stability of the monumentation, both for reference points and TS pillar. This is an essential aspect for avoiding misinterpretations when analyzing displacements of prisms placed within the landslide. The results of experiences carried out by Authors over last years about different landslides will be presented in order to propose guidelines for a sort of procedure aiming to increase the reliability of the information provided by the system and the usefulness for local Agencies.

  20. Space-time adaptive numerical methods for geophysical applications.

    PubMed

    Castro, C E; Käser, M; Toro, E F

    2009-11-28

    In this paper we present high-order formulations of the finite volume and discontinuous Galerkin finite-element methods for wave propagation problems with a space-time adaptation technique using unstructured meshes in order to reduce computational cost without reducing accuracy. Both methods can be derived in a similar mathematical framework and are identical in their first-order version. In their extension to higher order accuracy in space and time, both methods use spatial polynomials of higher degree inside each element, a high-order solution of the generalized Riemann problem and a high-order time integration method based on the Taylor series expansion. The static adaptation strategy uses locally refined high-resolution meshes in areas with low wave speeds to improve the approximation quality. Furthermore, the time step length is chosen locally adaptive such that the solution is evolved explicitly in time by an optimal time step determined by a local stability criterion. After validating the numerical approach, both schemes are applied to geophysical wave propagation problems such as tsunami waves and seismic waves comparing the new approach with the classical global time-stepping technique. The problem of mesh partitioning for large-scale applications on multi-processor architectures is discussed and a new mesh partition approach is proposed and tested to further reduce computational cost. PMID:19840984

  1. Geophysical investigation at Philadelphia Naval Shipyard. Final report,

    SciTech Connect

    Sharp, M.K.

    1992-03-01

    Results of a geophysical investigation at the incinerator site of Philadelphia Naval Shipyard are presented. Following the end of World War II, 50 to 60 pallets of gas cylinders were reportedly buried to the west of the old incinerator at Girard Point. The contents of the cylinders are unknown. Extensive filling operations occurred at Girard Point from 1940 to 1970, resulting in shallow groundwater surface in the area, 2 to 10 ft deep, which would indicate that the cylinders are probably in direct contact with the water surface. The geophysical investigation presented in this report was designed to help alleviate uncertainties produced from previous studies in the area. The geophysical program included electromagnetic induction and magnetic survey methods. The results of the various surveys were integrated, and numerous anomalous areas were interpreted. Anomalies warranting further investigation were presented along with a priority ranking.

  2. Payload-Directed Control of Geophysical Magnetic Surveys

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey

    2010-01-01

    Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.

  3. Joint geophysical data analysis for geothermal energy exploration

    NASA Astrophysics Data System (ADS)

    Wamalwa, Antony Munika

    Geophysical data modelling often yields non-unique results and hence the interpretation of the resulting models in terms of underlying geological units and structures is not a straightforward problem. However, if multiple datasets are available for a region of study, an integrated interpretation of models for each of the geophysical data may results to a more realistic geological description. This study not only demonstrates the strength of resistivity analysis for geothermal fields but also the gains from interpreting resistivity data together with other geophysical data such as gravity and seismic data. Various geothermal fields have been examined in this study which includes Silali and Menengai geothermal fields in Kenya and Coso geothermal field in California, USA.

  4. An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice

    PubMed Central

    Malik, Naveen; Dwivedi, Nidhi; Singh, Ashok K.; Parida, Swarup K.; Agarwal, Pinky; Thakur, Jitendra K.; Tyagi, Akhilesh K.

    2016-01-01

    The present study deployed a Mediator (MED) genes-mediated integrated genomic strategy for understanding the complex genetic architecture of grain size/weight quantitative trait in rice. The targeted multiplex amplicon resequencing of 55 MED genes annotated from whole rice genome in 384 accessions discovered 3971 SNPs, which were structurally and functionally annotated in diverse coding and non-coding sequence-components of genes. Association analysis, using the genotyping information of 3971 SNPs in a structured population of 384 accessions (with 50–100 kb linkage disequilibrium decay), detected 10 MED gene-derived SNPs significantly associated (46% combined phenotypic variation explained) with grain length, width and weight in rice. Of these, one strong grain weight-associated non-synonymous SNP (G/A)-carrying OsMED4_2 gene was validated successfully in low- and high-grain weight parental accessions and homozygous individuals of a rice mapping population. The seed-specific expression, including differential up/down-regulation of three grain size/weight-associated MED genes (including OsMED4_2) in six low and high-grain weight rice accessions was evident. Altogether, combinatorial genomic approach involving haplotype-based association analysis delineated diverse functionally relevant natural SNP-allelic variants in 10 MED genes, including three potential novel SNP haplotypes in an OsMED4_2 gene governing grain size/weight differentiation in rice. These molecular tags have potential to accelerate genomics-assisted crop improvement in rice. PMID:27000976

  5. Exploring the geophysical signatures of microbial processes in the earth

    SciTech Connect

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  6. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Redmond, Jay; Kodak, Charles

    2001-01-01

    This report summarizes the technical parameters and the technical staff of the Very Long Base Interferometry (VLBI) system at the fundamental station Goddard Geophysical and Astronomical Observatory (GGAO). It also gives an overview about the VLBI activities during the previous year. The outlook lists the outstanding tasks to improve the performance of GGAO.

  7. Geophysical applications of satellite altimetry

    SciTech Connect

    Sandwell, D.T. )

    1991-01-01

    Publications related to geophysical applications of Seasat and Geosat altimetry are reviewed for the period 1987-1990. Problems discussed include geoid and gravity errors, regional geoid heights and gravity anomalies, local gravity field/flexure, plate tectonics, and gridded geoid heights/gravity anomalies. 99 refs.

  8. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  9. Addressing the difficulty of changing fields in geophysics

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Savage, M. K.

    2014-12-01

    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  10. Integration of Gross Anatomy in an Organ System-Based Medical Curriculum: Strategies and Challenges

    ERIC Educational Resources Information Center

    Brooks, William S.; Woodley, Kristina T. C. Panizzi; Jackson, James R.; Hoesley, Craig J.

    2015-01-01

    The University of Alabama School of Medicine (UASOM) instituted a fully integrated, organ system-based preclinical curriculum in 2007. Gross anatomy and embryology were integrated with other basic science disciplines throughout the first two years of undergraduate medical education. Here we describe the methods of instruction and integration of…

  11. Launching forward: The integration of behavioral health in primary care as a key strategy for promoting young child wellness.

    PubMed

    Oppenheim, Jennifer; Stewart, Whitney; Zoubak, Ekaterina; Donato, Ingrid; Huang, Larke; Hudock, William

    2016-03-01

    In 2008, the Substance Abuse and Mental Health Services Administration (SAMHSA) created a national grant program, Project LAUNCH (Linking Actions for Unmet Needs in Children's Health), to improve behavioral health and developmental outcomes for young children through the incorporation of prevention and wellness promotion practices in key early childhood settings. Project LAUNCH supports states, tribal nations, and territories to improve coordination across early childhood systems and implement 5 core strategies of prevention and promotion. This article focuses on the lessons learned from 1 of the 5 core strategies: integration of behavioral health into primary care for young children. This paper analyzes the experiences of a sample of Project LAUNCH grantees, describing 10 common elements of integration approaches and exploring some of the challenges of promoting health and preventing social, emotional, and behavioral problems at a population level. (PsycINFO Database Record PMID:26963182

  12. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: scientific predictions, space physics, atmospheric sciences, snow, ice and permafrost, tectonics and sedimentation, seismology, volcanology, remote sensing, and other projects.

  13. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  14. Decreasing sex bias through education for parenthood or prevention of adolescent pregnancy: a developmental model with integrative strategies.

    PubMed

    Weinstein, E; Rosen, E

    1994-01-01

    This paper identifies the need for more research, education, and services for males about adolescent pregnancy and parenthood to augment their social and familial learning experiences. A case is made for more participation by schools in achieving a better balance between males and females in preparing for parenthood or prevention of pregnancy. Developmentally appropriate educational concepts and strategies that are integrated into the curriculum are described. PMID:7832036

  15. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression.

    PubMed

    Peng, Ting; Sun, Xiaochun; Mumm, Rita H

    2014-01-01

    From a breeding standpoint, multiple trait integration (MTI) is a four-step process of converting an elite variety/hybrid for value-added traits (e.g. transgenic events) using backcross breeding, ultimately regaining the performance attributes of the target hybrid along with reliable expression of the value-added traits. In the light of the overarching goal of recovering equivalent performance in the finished conversion, this study focuses on the first step of MTI, single event introgression, exploring the feasibility of marker-aided backcross conversion of a target maize hybrid for 15 transgenic events, incorporating eight events into the female hybrid parent and seven into the male parent. Single event introgression is conducted in parallel streams to convert the recurrent parent (RP) for individual events, with the primary objective of minimizing residual non-recurrent parent (NRP) germplasm, especially in the chromosomal proximity to the event (i.e. linkage drag). In keeping with a defined lower limit of 96.66 % overall RP germplasm recovery (i.e. ≤120 cM NRP germplasm given a genome size of 1,788 cM), a breeding goal for each of the 15 single event conversions was developed: <8 cM of residual NRP germplasm across the genome with ~1 cM in the 20 cM region flanking the event. Using computer simulation, we aimed to identify optimal breeding strategies for single event introgression to achieve this breeding goal, measuring efficiency in terms of number of backcross generations required, marker data points needed, and total population size across generations. Various selection schemes classified as three-stage, modified two-stage, and combined selection conducted from BC1 through BC3, BC4, or BC5 were compared. The breeding goal was achieved with a selection scheme involving five generations of marker-aided backcrossing, with BC1 through BC3 selected for the event of interest and minimal linkage drag at population size of 600, and BC4 and BC5 selected for

  16. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    NASA Astrophysics Data System (ADS)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  17. Group Investigation as a Cooperative Learning Strategy: An Integrated Analysis of the Literature

    ERIC Educational Resources Information Center

    Mitchell, Mitzi G.; Montgomery, Hilary; Holder, Michelle; Stuart, Dan

    2008-01-01

    The cooperative learning strategy of group investigation has been used extensively in elementary and high school classrooms. Whereas this learning strategy seems to benefit low- and middle-achieving students, the performance of high-achieving students seems to change little. This article examines the literature on group investigation as a…

  18. Teaching Marketing Strategy: Using Resource-Advantage Theory as an Integrative Theoretical Foundation

    ERIC Educational Resources Information Center

    Hunt, Shelby D.; Madhavaram, Sreedhar

    2006-01-01

    Knowledge of marketing strategy is essential for marketing majors. To supplement and/or replace the traditional lecture-discussion approach, several pedagogical vehicles have been recommended to teach marketing strategy, including the analytic hierarchy process; career-planning cases; computer-assisted, simulated marketing cases; experiential…

  19. Integrating the Language Arts and Content Areas: Effective Research-Based Strategies.

    ERIC Educational Resources Information Center

    Lapp, Diane; Fisher, Douglas; Flood, James

    1999-01-01

    Teachers can confront issues of students' infrequent reading and infrequent choice of content area texts by using specific instructional strategies that are highly motivating. Five research-based language arts strategies that many teachers use to successfully teach content area information are: (1) previewing vocabulary and content; (2) developing…

  20. Modeling evaluation of integrated strategies to meet proposed dissolved oxygen standards for the Chicago waterway system.

    PubMed

    Melching, Charles S; Ao, Yaping; Alp, Emre

    2013-02-15

    The Chicago Waterway System (CWS) is a 113.8 km branching network of navigable waterways controlled by hydraulic structures in which the majority of flow is treated sewage effluent and there are periods of substantial combined sewer overflow. The Illinois Pollution Control Board (IPCB) designated the majority of the CWS as Secondary Contact and Indigenous Aquatic Life Use waters in the 1970s and made small alterations to these designations in 1988. Between 1988 and 2002 substantial improvements in the pollution control and water-quality management facilities were made in the Chicago area. The results of a Use Attainability Analysis led the Illinois Environmental Protection Agency (IEPA) to propose the division of the CWS into two new aquatic life use classes with appropriate dissolved oxygen (DO) standards. To aid the IPCB in their deliberations regarding the appropriate water use classifications and DO standards for the CWS, the DUFLOW model that is capable of simulating hydraulics and water-quality processes under unsteady-flow conditions was used to evaluate integrated strategies of water-quality improvement facilities that could meet the proposed DO standards during representative wet (2001) and dry (2003) years. A total of 28 new supplementary aeration stations with a maximum DO load of 80 or 100 g/s and aerated flow transfers at three locations in the CWS would be needed to achieve the IEPA proposed DO standards 100% of the time for both years. A much simpler and less costly (≈one tenth of the cost) system of facilities would be needed to meet the IEPA proposed DO standards 90% of the time. In theory, the combinations of flow augmentation and new supplemental aeration stations can achieve 100% compliance with the IEPA proposed DO standards, however, 100% compliance will be hard to achieve in practice because of-(1) difficulties in determining when to turn on the aeration stations and (2) localized heavy loads of pollutants during storms that may yield

  1. Gemitis : an integrated and participative risk reduction strategy for the sustainable development of cities

    NASA Astrophysics Data System (ADS)

    Masure, P.

    2003-04-01

    The GEMITIS method has been implemented since 1995 into a global and integrated Risk Reduction Strategy for improving the seismic risk-assessment effectiveness in urban areas, including the generation of crisis scenarios and mid- to long term- seismic impact assessment. GEMITIS required us to provide more precise definitions of notions in common use by natural-hazard specialists, such as elements at risk and vulnerability. Until then, only the physical and human elements had been considered, and analysis of their vulnerability referred to their fragility in the face of aggression by nature. We have completed this approach by also characterizing the social and cultural vulnerability of a city and its inhabitants, and, with a wider scope, the functional vulnerability of the "urban system". This functional vulnerability depends upon the relations between the system elements (weak links in chains, functional relays, and defense systems) and upon the city's relations with the outside world (interdependence). Though well developed in methods for evaluating industrial risk (fault-tree analysis, event-tree analysis, multiple defense barriers, etc.), this aspect had until now been ignored by the "hard-science" specialists working on natural hazards. Based on the implementation of an Urban System Exposure methodology, we were able to identify specific human, institutional, or functional vulnerability factors for each urban system, which until had been very little discussed by risk-analysis and civil-protection specialists. In addition, we have defined the new concept of "main stakes" of the urban system, ranked by order of social value (or collective utility). Obviously, vital or strategic issues must be better resistant or protected against natural hazards than issues of secondary importance. The ranking of exposed elements of a city in terms of "main stakes" provides a very useful guide for adapting vulnerability studies and for orienting preventive actions. For this

  2. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review.

    PubMed

    Lambrinidis, George; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2015-06-23

    only indirect information on binding mechanism. Efforts for the establishment of global models, automated workflows and web-based platforms for PPB predictions are presented and discussed. Structure-based methods relying on the crystal structures of drug-protein complexes provide detailed information on the underlying mechanism but are usually restricted to specific compounds. They are useful to identify the specific binding site while they may be important in investigating drug-drug interactions, related to PPB. Moreover, chemometrics or structure-based modeling may be supported by experimental data a promising integrated alternative strategy for ADME(T) properties optimization. In the case of PPB the use of molecular modeling combined with bioanalytical techniques is frequently used for the investigation of AGP binding. PMID:25819487

  3. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  4. More on South American geophysics

    NASA Astrophysics Data System (ADS)

    Lomnitz, Cinna

    As an addendum to J. Urrutia Fucugauchi's (Eos, 63, June 8, 1982, p. 529) excellent analysis of why things go wrong in Latin American geophysics, I submit that funds in whatever form are not the only answer. In Mexico over the past decade there has been a reasonable availability of funds, yet no dramatic increase in the quality or quantity of geophysical research was detected. Graduate scholarships have even gone begging for applicants in the earth sciences!Leadership is the big problem. National plans and forecasts for science and technology continue to ignore this central fact. They want to generate hundreds, nay thousands, of middle-level scientists while providing no incentive for excellence. As others have found out long before us, this approach is doomed from the start.

  5. Environmental geophysics - fad or future?

    SciTech Connect

    Romig, P.R.

    1994-12-31

    For ten years, the oil industry has suffered cycles of downsizing, out-sourcing, and reorganization. As layoffs and early retirement have become widespread, an increasing number of geophysicists have seen the environmental business as an opportunity to stay in their chosen professions. There have been predictions that the use of geophysics for environmental mapping and characterization could spawn an industry larger than oil exploration. These predictions have come from serious financial analysts as well as from hopeful geophysicists, so they cannot be ignored. There also are reputable professionals who believe that environmentalism is a fad which will die out as soon as the next oil shortage occurs. They point to recent publicity about excessive expenditures for waste remediation as a signal of the beginning of the end. These conflicting views raise serious questions about the form and function of, and the future for, environmental geophysics. This paper reviews these views.

  6. Geophysical investigations at Momotombo, Nicaragua

    SciTech Connect

    Cordon, U.J.; Zurflueh, E.G.

    1980-09-01

    The Momotombo geothermal field in Nicaragua was investigated in three exploration stages, using a number of geophysical techniques. Stage 1 of the investigations by Texas Instruments, Inc., (1970) located and delineated a potential geothermal field, with the dipole mapping surveys and electromagnetic soundings being most effective. Stage 2 of the investigations, performed in 1973 by the United Nations Development Program (UNDP), outlined the resistivity anomalies in the area west of the previously selected field; Schlumberger VES soundings and constant depth profiling (SCDP) proved most useful. During Stage 3 of the investigations, Electroconsult (ELC) performed 20 additional Schlumberger VES soundings as part of the 1975 plant feasibility studies. Results of these geophysical techniques are summarized and their effectiveness briefly discussed.

  7. Applied Geophysics Opportunities in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  8. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    NASA Astrophysics Data System (ADS)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    particle size analysis and initial post-processing of geophysical data. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. The course concludes with a series of professional-level final presentations and discussions with academic and industry supporters in which students examine the geologic history and sedimentary processes of the studied area of the Gulf Coast continental shelf. After completion, students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (12 students, three faculty, and three teaching assistants). This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  9. Geophysics of Ceres from Dawn

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.; Russell, C. T.; Park, R. S.; Konopliv, A. S.; Asmar, S. W.; Castillo-Rogez, J. C.; Hughson, K.; Jaumann, R.; McCord, T.; Presuker, F.; Schenck, P.; Smith, D. E.; Zuber, M. T.

    2015-10-01

    Dawn's 16-month investigation of Ceres will return comprehensive data elucidating its geology and morphology, composition, and gravity field. One of the objectives of the investigation is to understand Ceres' interior structure and the possibility of communication between the subsurface ocean, thought to have existed during the first half of Ceres' evolution, and the surface. Geophysical data collected to date provide a preliminary assessment of the structure and composition of the ice shell and implications for past mobility.

  10. Geophysical Fluid Flow Cell Simulation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  11. Geophysical investigation of the Sandalp rock avalanche deposits

    NASA Astrophysics Data System (ADS)

    Socco, Laura Valentina; Jongmans, Denis; Boiero, Daniele; Stocco, Stefano; Maraschini, Margherita; Tokeshi, Ken; Hantz, Didier

    2010-04-01

    In the study of rock avalanche phenomena, numerical modelling makes use of back analyses of the rock avalanche propagation for calibration of the modelling assumptions and parameters. The back analyses require knowledge of the run-out area boundaries and the thickness distribution of the deposit. Geophysical methods can be applied to retrieve the thickness distribution, but, due to strong heterogeneities and logistic problems they are seldom applied. The aim of this work is to assess the potential of integrated geophysical methods to recognise and characterise a deposit created by two rock avalanches which occurred in the Sandalp valley (Switzerland) in 1996. The topography of the site before and after the rock avalanche is known and can be used as a benchmark. Resistivity tomography, seismic P-wave tomography, and active and passive surface wave analysis have been applied on several profiles deployed both on the rock avalanche deposit and in the surrounding area. Innovative approaches for surface wave analysis based on laterally constrained inversion and multimodal inversion have been applied to the data. A comparison of the results of the geophysical investigations with the topographic benchmark has shown the capability of the geophysical methods to locate the bottom of the deposit in the areas where the contrast with the host sediments properties is significant. In these areas, the deposit has higher resistivities and lower seismic velocities than the underlying materials. In the areas where the deposit is thicker and richer in fine-grained materials the geophysical parameters are not able to discriminate between the rock avalanche deposit and the underlying sediments. As a secondary task, the geophysical methods also allowed the bedrock pattern to be outlined.

  12. Historians probe geophysics in Seattle

    NASA Astrophysics Data System (ADS)

    Fleming, James R.

    The history of geophysics is becoming a “hot topic” among historians of science and technology. While previous annual meetings of the History of Science Society had few papers on the topic, the latest meeting of the society on October 25-28, 1990, in Seattle featured three sessions with a total of 11 papers. Two “works in progress” papers were also on geophysical topics.The first session on the history of geophysics was Climate Change in Historical Perspective. In spite of all the recent attention given to global warming, it is important to remember that climatic change is not a new issue. Indeed, measured over the course of centuries, approaches to the study of climate and ideas about climatic change have been changing more rapidly than the climate itself. In addition to being interesting in its own right, the history of climatic change is beginning to play a crucial role in global change education, research, and policy decisions. Papers in this session spanned 200 years of the history of climatology as a science and climatic change as an issue.

  13. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  14. The investigation of the lithosphere by geophysical methods: Electromagnetic methods, geothermy, and complex interpretation

    NASA Astrophysics Data System (ADS)

    Magnitskii, V. A.; Sollogub, V. B.; Starostenko, V. I.

    The book discusses the methodology used in studies of the geophysical and geodynamical features of the lithosphere of central and eastern Europe, which were conducted between 1981 and 1984 by the Academies of Sciences of socialist European states. Consideration is given to the computer-aided interpretation of geophysical (gravimetric) data, techniques used in electromagnetic and geothermic investigations, quantitative methods used in the interpretation of complex geophysical data, and qualitative methods used in the development of a complex geophysical model of the lithosphere. Special attention is given to the use of a computer system for the solution of inverse problems of contact surfaces, the prediction of earthquakes from variations in electrical resistance, the calculation of temperatures in the earth's crust and upper mantle, and correlational methods for integrating geophysical fields.

  15. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    ERIC Educational Resources Information Center

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  16. Laboratory Logistics: Strategies for Integrating Information Literacy Instruction into Science Laboratory Classes

    ERIC Educational Resources Information Center

    Gregory, Kathleen

    2013-01-01

    Active learning is a hallmark of the traditional science laboratory class, making it a natural place for librarians to integrate active information literacy instruction. The course structure of science lab classes, particularly large entry-level undergraduate classes, can make the logistics of such integration a challenge. This paper presents two…

  17. Integrating Geriatrics into Medical School: Student Journaling as an Innovative Strategy for Evaluating Curriculum

    ERIC Educational Resources Information Center

    Shield, Renee R.; Farrell, Timothy W.; Nanda, Aman; Campbell, Susan E.; Wetle, Terrie

    2012-01-01

    Purpose of the study: The Alpert Medical School of Brown University began to integrate geriatrics content into all preclerkship courses and key clerkship cases as part of a major medical school curriculum redesign in 2006. This study evaluates students' responses to geriatrics integration within the curriculum using journals kept by volunteer…

  18. Designing Learning Strategy to Improve Undergraduate Students' Problem Solving in Derivatives and Integrals: A Conceptual Framework

    ERIC Educational Resources Information Center

    Hashemi, Nourooz; Abu, Mohd Salleh; Kashefi, Hamidreza; Mokhtar, Mahani; Rahimi, Khadijeh

    2015-01-01

    Derivatives and integrals are two important concepts of calculus which are precondition topics for most of mathematics courses and other courses in different fields of studies. A majority of students at the undergraduate level have to master derivatives and integrals if they want to be successful in their studies However, students encounter…

  19. Integrating a Domestic Violence Education Program into a Medical School Curriculum: Challenges and Strategies.

    ERIC Educational Resources Information Center

    Weiss, Lucia Beck; Kripke, Elana N.; Coons, Helen L.; O'Brien, Mary K.

    2000-01-01

    Describes both the content of a domestic violence teaching program and the process used to integrate the program into the curriculum at MCP Hahnemann School of Medicine in Philadelphia. Quantitative and qualitative date from a three-year period indicate that the program has been successfully integrated, is effective, and satisfies students. (EV)

  20. Learning about Sensory Integration Dysfunction: Strategies to Meet Young Children's Sensory Needs at Home

    ERIC Educational Resources Information Center

    Thompson, Stacy D.; Rains, Kari W.

    2009-01-01

    Practitioners and parents are seeking ways to help children who are not able to integrate sensory information; this has generated recent media attention. A child's inability to integrate sensory information can have implications for the whole family and their everyday routines. Research conducted by occupational therapists has provided a rich…

  1. Programmatic Considerations for Facilitating Educational R & D: A Case for Integrated Design Strategies.

    ERIC Educational Resources Information Center

    Jeffers, Elaine S.

    1978-01-01

    This paper discusses the utility of integrated systematic design methods for promoting educational research and development projects. It argues that procedures pertinent to the integrated methodologies of research-evaluation, monitoring-formative evaluation, and planning-research can be successfully utilized to promote the execution and completion…

  2. Geophysical Model Research and Results

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Flanagan, M

    2004-07-07

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics: (1) a priori geophysical models, (2) surface wave models, (3) receiver function derived profiles, and (4) stochastic geophysical models. The first, a priori models, can be used to predict a host of geophysical measurements, such as body wave travel times, and can be derived from direct regional studies or even by geophysical analogy. Use of these models is particularly important in aseismic regions or regions without seismic stations, where data of direct measurements might not exist. Lawrence Livermore National Laboratory (LLNL) has developed the Western Eurasia and North Africa (WENA) model which has been evaluated using a number of data sets, including travel times, surface waves, receiver functions, and waveform analysis (Pasyanos et al., 2004). We have joined this model with our Yellow Sea - Korean Peninsula (YSKP) model and the Los Alamos National Laboratory (LANL) East Asia model to construct a model for all of Eurasia and North Africa. Secondly, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. We are also using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In a collaborative project with Ammon, et al., they have been focusing on stations throughout western Eurasia and North Africa, while we have been focusing on LLNL deployments in the Middle East, including Kuwait, Jordan, and the United Arab Emirates. Finally, we have been

  3. Progress in geophysical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Robinson, Allan R.

    Geophysical fluid dynamics deals with the motions and physics of the atmosphere, oceans and interior of the earth and other planets: the winds, the swirls, the currents that occur on myriads of scales from millimeter to climatological. Explanations of natural phenomena, basic processes and abstractions are sought. The rotation of the earth, the buoyancy of its fluids and the tendency towards large-scale turbulence characterize these flows. But geophysical fluid dynamics is importantly a part of modern fluid dynamics which is contributing to the development of nonlinear mechanics generally. Some general insights are emerging for nonlinear systems which must be regarded as partly deterministic and partly random or which are complex and aperiodic. Contributions from geophysical fluid dynamics come from its methodology, from the experience of examples, and from the perspective provided by its unique scale. Contributions have been made to turbulent, chaotic and coherently structured nonlinear process research. Turbulent vortices larger than man himself naturally invite detailed investigation and deterministic physical studies. Examples are storms in the atmosphere and large ring vortices spun off by the Gulf Stream current in mid-ocean. The statistics of these events determine critical aspects of the general circulations. Fluid dynamicists generally now know that it is often relevant or necessary to study local dynamical processes of typical eddies even though only the average properties of the flow are of interest; progress in understanding the turbulent boundary layer in pipes involves the study of millimeter-scale vortices. Weather-related studies were seminal to the construction of the new scientific field of chaos. Coherent vortices abound of which the Great Red Spot of Jupiter is a spectacular example. Geophysical fluid dynamicists have been among forefront researchers in exploiting the steadily increasing speed and capacity of modern computers. Supercomputers

  4. Integration of gross anatomy in an organ system-based medical curriculum: strategies and challenges.

    PubMed

    Brooks, William S; Woodley, Kristina T C Panizzi; Jackson, James R; Hoesley, Craig J

    2015-01-01

    The University of Alabama School of Medicine (UASOM) instituted a fully integrated, organ system-based preclinical curriculum in 2007. Gross anatomy and embryology were integrated with other basic science disciplines throughout the first two years of undergraduate medical education. Here we describe the methods of instruction and integration of gross anatomy and embryology in this curriculum as well as challenges faced along the way. Gross anatomy and embryology are taught through a combination of didactic lectures, team-based learning activities, and cadaveric dissection laboratories. Vertical integration occurs through third- and fourth-year anatomy and embryology elective courses. Radiology is integrated with anatomy instruction through self-study modules and hands-on ultrasound sessions. Our model of anatomy instruction is time efficient, clinically relevant, and effective as demonstrated by student performance on the United States Medical Licensing Examination(®) (USMLE(®) ) Step 1 examination. We recommend that medical schools considering full integration of gross anatomy and embryology (1) carefully consider the sequencing of organ system modules, (2) be willing to sacrifice anatomical detail for clinical application, (3) provide additional electives to third- and fourth-year students, and (4) integrate radiology with anatomical education. PMID:25132664

  5. Integrated Pest Management of Coffee Berry Borer: Strategies from Latin America that Could Be Useful for Coffee Farmers in Hawaii.

    PubMed

    Aristizábal, Luis F; Bustillo, Alex E; Arthurs, Steven P

    2016-01-01

    The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) is the primary arthropod pest of coffee plantations worldwide. Since its detection in Hawaii (September 2010), coffee growers are facing financial losses due to reduced quality of coffee yields. Several control strategies that include cultural practices, biological control agents (parasitoids), chemical and microbial insecticides (entomopathogenic fungi), and a range of post-harvest sanitation practices have been conducted to manage CBB around the world. In addition, sampling methods including the use of alcohol based traps for monitoring CBB populations have been implemented in some coffee producing countries in Latin America. It is currently unclear which combination of CBB control strategies is optimal under economical, environmental, and sociocultural conditions of Hawaii. This review discusses components of an integrated pest management program for CBB. We focus on practical approaches to provide guidance to coffee farmers in Hawaii. Experiences of integrated pest management (IPM) of CBB learned from Latin America over the past 25 years may be relevant for establishing strategies of control that may fit under Hawaiian coffee farmers' conditions. PMID:26848690

  6. Integrated Pest Management of Coffee Berry Borer: Strategies from Latin America that Could Be Useful for Coffee Farmers in Hawaii

    PubMed Central

    Aristizábal, Luis F.; Bustillo, Alex E.; Arthurs, Steven P.

    2016-01-01

    The coffee berry borer (CBB), Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) is the primary arthropod pest of coffee plantations worldwide. Since its detection in Hawaii (September 2010), coffee growers are facing financial losses due to reduced quality of coffee yields. Several control strategies that include cultural practices, biological control agents (parasitoids), chemical and microbial insecticides (entomopathogenic fungi), and a range of post-harvest sanitation practices have been conducted to manage CBB around the world. In addition, sampling methods including the use of alcohol based traps for monitoring CBB populations have been implemented in some coffee producing countries in Latin America. It is currently unclear which combination of CBB control strategies is optimal under economical, environmental, and sociocultural conditions of Hawaii. This review discusses components of an integrated pest management program for CBB. We focus on practical approaches to provide guidance to coffee farmers in Hawaii. Experiences of integrated pest management (IPM) of CBB learned from Latin America over the past 25 years may be relevant for establishing strategies of control that may fit under Hawaiian coffee farmers’ conditions. PMID:26848690

  7. Geophysical data fusion for subsurface imaging. Final report

    SciTech Connect

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  8. The design and evaluation of integrated envelope and lighting control strategies for commercial buildings

    SciTech Connect

    Lee, E.S.; Selkowitz, S.E.

    1994-06-01

    This study investigates control strategies for coordinating the variable solar-optical properties of a dynamic building envelope system with a daylight controlled electric lighting system to reduce electricity consumption and increase comfort in the perimeter zone of commercial buildings. Control strategy design can be based on either simple, instantaneous measured data, or on complex, predictive algorithms that estimate the energy consumption for a selected operating state of the dynamic envelope and lighting system. The potential benefits of optimizing the operation of a dynamic envelope and lighting system are (1) significant reductions in electrical energy end-uses - lighting, and cooling due to solar and lighting heat gains - over that achieved by conventional static envelope and lighting systems, (2) significant reductions in peak demand, and (3) increased occupant visual and thermal comfort. The DOE-2 building energy simulation program was used to model two dynamic envelope and lighting systems, an automated venetian blind and an electrochromic glazing system, and their control strategies under a range of building conditions. The energy performance of simple control strategies are compared to the optimum performance of a theoretical envelope and lighting system to determine the maximum potential benefit of using more complex, predictive control algorithms. Results indicate that (1) predictive control algorithms may significantly increase the energy-efficiency of systems with non-optimal solar-optical properties such as the automated venetian blind, and (2) simpler, non-predictive control strategies may suffice for more advanced envelope systems 1 incorporating spectrally selective, narrow-band electrochromic coatings.

  9. An integral strategy toward the rapid identification of analogous nontarget compounds from complex mixtures.

    PubMed

    Wu, Liang; Gong, Ping; Wu, Yuzheng; Liao, Ke; Shen, Hanyuan; Qi, Qu; Liu, Huiying; Wang, Guangji; Hao, Haiping

    2013-08-16

    Identification of nontarget compounds in complex mixtures is of significant importance in various scientific fields. On the basis of the universal property that the compounds in complex mixtures can be classified to various analogous families, this study presents a general strategy for the rapid identification of nontarget compounds from complex matrixes using herbal medicine as an example. The proposed strategy consists of three sequential steps. First, a blank control sample is prepared for the purpose of removing interferences in the complex matrixes via automatic chromatographic and mass spectrometric data comparisons. Second, the diagnostic ions guided bridging network strategy is developed for the rapid classification of analogous compounds and structural characterizations. Finally, a quantitative structure retention relationship (QSRR) is built to validate the identifications and to differentiate isomers. Using this strategy, we have successfully identified a total of 45 organic acids from Mai-Luo-Ning and Flos Lonicerae injection, and 46 ginsenosides from Shen-Mai injection samples. The QSRR approach enabled a successful differentiation of most isomers. The proposed strategy will be expected to be applicable to the identification of nontarget compounds in complex mixtures. PMID:23838303

  10. Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch.

    PubMed

    Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-02-01

    We developed a novel strategy for constructing yeast to improve levels of amylase gene expression and the practical potential of yeast by combining delta-integration and polyploidization through cell fusion. Streptococcus bovis alpha-amylase and Rhizopus oryzae glucoamylase/alpha-agglutinin fusion protein genes were integrated into haploid yeast strains. Diploid strains were constructed from these haploid strains by mating, and then a tetraploid strain was constructed by cell fusion. The alpha-amylase and glucoamylase activities of the tetraploid strain were increased up to 1.5- and tenfold, respectively, compared with the parental strain. The diploid and tetraploid strains proliferated faster, yielded more cells, and fermented glucose more effectively than the haploid strain. Ethanol productivity from raw starch was improved with increased ploidy; the tetraploid strain consumed 150 g/l of raw starch and produced 70 g/l of ethanol after 72 h of fermentation. Our strategy for constructing yeasts resulted in the simultaneous overexpression of genes integrated into the genome and improvements in the practical potential of yeasts. PMID:19707752

  11. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  12. Multiparametric Geophysical Signature of Vulcanian Explosions

    NASA Astrophysics Data System (ADS)

    Gottsmann, J.; de Angelis, S.; Fournier, N.; van Camp, M. J.; Sacks, S. I.; Linde, A. T.; Ripepe, M.

    2010-12-01

    explosions the geophysical signature is indicative of the style of eruption priming, the dynamics of the ensuing eruption, and the nature of the erupted material. Our study conclusively demonstrates the extraordinary value of integrated multi-parameter systems for monitoring operations, in particular at volcanoes characterized by phases of continuous dome growth interspersed by vigorous, often unexpected, explosive activity.

  13. The Syrian hamster embryo cells transformation assay identifies efficiently nongenotoxic carcinogens, and can contribute to alternative, integrated testing strategies.

    PubMed

    Benigni, Romualdo; Bossa, Cecilia; Tcheremenskaia, Olga; Battistelli, Chiara Laura; Giuliani, Alessandro

    2015-02-01

    The long-term carcinogenesis bioassays have played a central role in protecting human health, but for ethical and practical reasons their use is dramatically diminishing and the genotoxicity short-term tests have taken the pivotal role in the pre-screening of chemical carcinogenicity. However, this strategy cannot detect nongenotoxic carcinogens. Since up to 25% of IARC human carcinogens are recognized to have nongenotoxic mechanisms of action, the risk they pose to human health cannot be disregarded, and it is urgent to fill the gap in the tools for alternative testing. In this paper, we analyze from different perspectives the ability of Cell Transformation Assays to identify nongenotoxic carcinogens, and we conclude that the Syrian hamster embryo cells test is able to identify nongenotoxic carcinogens with 80-90% efficiency, and thus, can play an important role in integrated, alternative testing strategies. PMID:25813724

  14. [Differences and similarities in approach of integrated strategy for dengue prevention and control between Colombia and Peru].

    PubMed

    Castro-Orozco, Raimundo; Alvis-Guzmán, Nelson; Gómez-Arias, Rubén

    2015-10-01

    We analyzed and compared two Integrated Management Strategies for Dengue Prevention and Control (IMS-dengue Colombia and IMS-dengue Peru), through a narrative review of available literature, in order to identify common and dissimilar patterns in two Andean countries with epidemiological differences in the context of dengue disease. We were able to identify differences related to: formal assessment of problem, formation of groups of actors, and quantitative information provided by performance indicators. These limitations identified in IMS-dengue Colombia 2006-2010 were overcome in a new version of the strategy (IMS-dengue Colombia 2012-2021). We were able to document an epidemiological impact of implementation of IMS-dengue Colombia 2006-2010. Additionally, a gradual increase was observed in incidence rates of dengue cases that could be related to the strengthening of surveillance system of IMS- dengue Peru. PMID:26732932

  15. Optimal Strategy for the Integrated Vendor-buyer Inventory Model with Fuzzy Annual Demand and Fuzzy Adjustable Production Rate

    NASA Astrophysics Data System (ADS)

    Yang, M. F.

    In this research we present a stylized model to find the optimal strategy for integrated vendor-buyer inventory model with fuzzy annual demand and fuzzy adjustable production rate. This model with such consideration is based on the total cost optimization under a common stock strategy. However, the supposition of known annual demand and adjustable production rate in most related publications may not be realistic. This paper proposes the triangular fuzzy number of annual demand and adjustable production rate and then employs the signed distance, to find the estimation of the common total cost in the fuzzy sense